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Abstract 
 

Modelling the Interplay between Responsive Individual Vaccination Decisions  
and the Spread of SARS-CoV-2 

 
By Karina Wallrafen-Sam 

 
 

Background. The uptake of primary and booster vaccinations against SARS-CoV-2 infection remains 
low despite high vaccine effectiveness. Vaccine hesitancy is a major barrier to higher uptake, but it is 
unclear whether modifying hesitancy could result in substantial prevention benefits. Mathematical 
models of disease transmission that represent decision-making psychology can provide insight into 
the potential effects of different interventions against vaccine hesitancy in the context of the ongoing 
COVID-19 pandemic. 
 
Methods. We coupled a network-based mathematical model of SARS-CoV-2 transmission with a 
social-psychological vaccination decision-making process in which vaccine side effects and 
breakthrough (i.e., post-vaccination) infections could “nudge” agents towards vaccine resistance while 
spikes in COVID-19 hospitalizations could nudge them towards vaccine willingness. This model was 
parameterized and calibrated to represent the COVID-19 epidemic in the state of Georgia, USA from 
January 2021 to August 2022. We modelled various intervention scenarios in which increases to the 
probability of resistant-to-willing attitude switches were combined with decreases to the probability 
of willing-to-resistant switches. We compared cumulative vaccine doses administered, SARS-CoV-2 
incidence, and COVID-related deaths across scenarios. 
 
Results. Increasing the probability that a spike in hospitalized prevalence would prompt vaccine 
resistant persons to vaccinate and decreasing the probability that breakthrough infections would 
prompt vaccine willing persons to forgo further vaccination both increased the intermediate outcome 
of cumulative vaccine doses administered by as much as 1’632.0 doses (50% SI: (1’358.5, 1’854.5)), 
with the former probability having more of an impact than the latter. However, this additional vaccine 
coverage built up too slowly to avert a non-negligible number of infections or deaths within our model 
timeframe.  The minimum number of infections across scenarios was 67’111.7 per 100’000 person-
years (50% SI: (66’344.0, 67’976.6)), corresponding to only 634.7 (50% SI: (-230.2, 1’402.4)) infections 
averted per 100’000 person-years. 
 
Conclusions. Reactive interventions may have only a limited ability to avert SARS-CoV-2 infections 
in the short term. This suggests that attention should be paid to formulating vaccine promotion 
interventions that anticipate the case curve instead of reacting to it.  Our findings also highlight the 
importance of addressing baseline vaccine unwillingness to reduce the proportion of the population 
that is entirely vaccine-naïve. 
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BACKGROUND  

 

The worldwide spread of SARS-CoV-2, the virus which causes COVID-19 disease, has already 

become one of the defining health events of the 21st century, and one of the most impactful 

pharmaceutical interventions to date against this outbreak has been the development and distribution 

of highly effective vaccines. The COVID-19 vaccine rollout in the United States began in late 2020 

with a two-dose primary series, before waning immunity and decreased effectiveness against novel 

SARS-CoV-2 strains prompted the development of three booster vaccinations: two monovalent 

boosters, the latter of which was recommended for certain populations only, and an updated bivalent 

booster that became available in late 2022 and is currently recommended for anyone who received 

their last dose at least two months ago.1 Although these vaccines have been widely available in the 

United States for the past two years, only about 69% of the eligible U.S. population had completed 

the primary vaccine series as of the end of March 2023, while primary series coverage was even lower 

in the state of Georgia, at 57%.2 Uptake rates were initially high but began decreasing in the later 

months of 2021, have been consistently lower in younger age groups, and have tapered off markedly 

for subsequent doses.2 Qualitative research indicates that this is due at least in part to vaccine hesitancy 

– a complex phenomenon related to concerns about the safety, efficacy, and necessity of these 

vaccines – which remains a considerable public health challenge.3,4  

 

Encouraging higher vaccine uptake and allaying fears about vaccination are crucial to pandemic 

control. But the effects of vaccine promotion interventions can be difficult to predict, as individuals’ 

decisions on whether to receive each vaccine dose and when to receive them are influenced by a 

multitude of factors. Dynamic transmission models, due to their ability to compare counterfactual 

scenarios and represent complex individual- and community-level behaviours, could provide insight 

into the optimal formulation and timing of such interventions. But while there exists a vast literature 

on mathematical models of vaccination decision-making, most of these models consider one-time 

decisions; are more focused on theory than on representing specific real-world scenarios; and, most 

crucially, are rooted in game theory, meaning they rely on the assumption of rational actors.5-8 In 

contrast, social psychology suggests that individuals depend on heuristics rather than rational cost-

benefit analyses when making complex decisions and that such decisions generally obey the law of 

inertia: they tend to remain stable over time but are sensitive to small “nudges” from unfavourable 

outcomes.9,10  



   

 

2 

 

In accordance with these findings, Papst et al developed an annual influenza model in which infections 

and vaccine costs (i.e., side effects) from past years could “nudge” persons to change their approach 

to vaccines.11 This model, while theoretical in its focus, is consistent with the empirical findings of 

Walsh et al’s longitudinal cohort study on trends in influenza vaccinations – specifically, that (1) in a 

given year, respondents were highly likely to repeat the decision they had made in the previous year, 

(2) respondents who changed their behaviour once were more likely to persist in their new behaviour 

than to switch back, and (3) those who forwent the vaccine but still became infected were more likely 

to switch to vaccinating in the future, while those who did receive the vaccine but still succumbed to 

infection were less likely to vaccinate again.12 Thus, the role of heuristics and inertia in decision-making 

has been studied in the context of annual influenza vaccinations but is not yet well understood in the 

context of the ongoing COVID-19 vaccine rollout – which is analogous in that it is currently possible 

for people to receive up to five COVID-19 vaccine doses over time (with more possibly forthcoming), 

but distinct in that the ongoing COVID-19 pandemic lacks the predictable seasonality of the flu. 

Adapting the modelling techniques developed by Papst et al for integration into a dynamic 

mathematical model of SARS-CoV-2 transmission could provide insight into how vaccine promotion 

interventions should be formulated and targeted specifically to boost the stagnant levels of COVID-

19 vaccine coverage in Georgia. 

 

In this study, we utilized a network-based dynamic transmission model of SARS-CoV-2 coupled with 

a social-psychological decision-making model in which vaccine side effects, breakthrough infections, 

and the overall state of the outbreak could “nudge” individuals to change their attitudes towards 

vaccines. Our goal was to provide insight on how the overall epidemic outcomes might be impacted 

by interventions either on the probability that someone would cease to vaccinate after experiencing a 

breakthrough infection, or on the probability that someone would start to vaccinate after 

hospitalizations spiked in their community. We calibrated this model to reflect the local epidemic in 

the state of Georgia from January 2021 to August 2022 (i.e., from the month in which eligibility for 

the first vaccine dose began to expand in Georgia to the month before the start of the bivalent booster 

rollout) and aimed to make this work informative about the potential effects of interventions against 

vaccine hesitancy in the context of an ongoing pandemic.  

  



   

 

3 

METHODS  

 

In this study, we utilized a network-based model of SARS-CoV-2 transmission, disease progression, 

and vaccination behaviours in the population of Georgia, USA over a twenty-month period from the 

beginning of January 2021 to the end of August 2022. Our model was built and simulated using 

EpiModelCOVID, a previously validated extension of the EpiModel software platform.13 This 

platform uses the statistical framework of exponential random graph models (ERGMs) to estimate 

and simulate a population’s underlying contact patterns. For this study, we built a social-psychological 

decision-making model into EpiModelCOVID’s existing vaccination module to explicitly simulate the 

dynamic vaccination decision-making process of each agent in the population. The model code and 

updated software are available on GitHub at https://github.com/EpiModel/COVID-Vax-Decisions 

and https://github.com/EpiModel/EpiModelCOVID/tree/Vax-Decisions, respectively. 

  

Core Model Structure 

Our model tracked 100’000 individuals (agents), intended to represent the population of the state of 

Georgia, USA. Age was represented as a continuous attribute, with agents assigned an initial age (with 

one-year categories) at simulation start between 0 and 100 according to Georgia’s age pyramid as of 

2020.14 Individuals could exit the model population at any time through death (general or disease-

specific), with mortality rates varying by age. New individuals entered the model population exclusively 

through birth, with an assigned initial age of 0.   

  

All modelled individuals were members of 2 distinct, overlapping contact network layers and 

transmission environments, representing the community and the home, respectively (Figure 1). For 

the community network layer, all contacts (edges) had a duration of one day – meaning each node 

could receive a new set of contacts at each daily time step, without regard for which nodes they were 

previously connected to. The overall cross-sectional mean degree across the population for this 

network layer was estimated at 13.8, based on the results of the COVIDVu study, which surveyed a 

probability sample of 3’112 U.S. households in spring 2021 and found 13.8 to be participants’ mean 

number of daily contacts across all non-household settings (work, school, and other).15 The mean 

degree for nodes aged 65 or older was specified to be less than the overall mean degree (specifically, 

5.7), based on COVIDVu.15 Additionally, based on the results of the POLYMOD social mixing study 

extrapolated to U.S. settings, age mixing assortativity was set at 69% for children (those under 18), 
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81% for adults (those aged at least 18 and under 65), and 21% for the elderly (those aged 65 and 

over).16 The community environment was represented by an ERGM used to re-simulate contacts at 

each timestep in accordance with these network degree and age mixing targets. 

 

In contrast to community edges, household edges were kept constant over time, lasting from 

simulation start or birth (whichever came first) to simulation end or death (whichever came first). For 

the household network layer, each agent was algorithmically assigned to a household according to six 

rules based on Census household composition data: (1) 29.2% of households had at least one member 

under 18,17 (2) 79.1% of household had at least one member in the 18-to-64 age range,17 (3) 31.4% of 

households had at least one member aged 65 or older,17 (4) the average household had about 2.7 

persons,18 (5) every household with a child also had at least one adult, and (6) 97.9% of children had 

an adult under 65 in their household (Figure 2). Rule 6 was a simplifying assumption based on the 

Census finding that 2.1% of U.S. children lived with at least one grandparent and without a parent as 

of 2021.19 This approach was taken to circumvent the lack of recent social mixing data for children in 

U.S. settings. Household edges were specified (without the use of an ERGM) such that each 

household was fully saturated and each edge was within a single household. Community and 

household contacts were subsequently combined to create a multi-layer dynamic network used in the 

final simulations.   

  

Each model simulation was initialized with 865 persons in the exposed (infected but not infectious) 

state, in accordance with an estimate of the proportion of the Georgia population that was infected as 

of the start of July 2020.20 Simulations were each run for an initial period of 180 daily time steps 

(corresponding to 5 July 2020 through 31 December 2020) for calibration purposes; the results of this 

calibration period were then used as the initial conditions for the simulation of our intervention 

timeframe of interest: a period of 608 days, corresponding to 1 January 2021 to 31 August 2022. Each 

scenario was simulated a total of 128 times.   

 

Parameters defining the model’s disease progression, transmission, and clinical epidemiology (Table 

1) were either drawn from existing literature or calibrated as discussed below.  

 

Our model represented the natural history of COVID-19 using a SEIRS framework (Figure 3). At 

simulation start, all individuals were either susceptible or exposed, and all new births entered the 
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population in the susceptible state. Once exposed via contact with an infectious person, newly infected 

individuals were stochastically assigned to either the asymptomatic or symptomatic clinical pathway, 

with the probability of symptoms dependent on age and vaccination status. Symptomatic individuals 

progressed from the exposed state through the infectious pre-symptomatic state to the infectious 

symptomatic state; from the infectious symptomatic state, individuals could stochastically enter the 

hospitalized state before recovery or directly enter the recovered state, with the probability of 

hospitalization also dependent on age and vaccination status. Asymptomatic individuals progressed 

directly from the exposed state to the asymptomatic state and then on to the recovered state. Once 

recovered, individuals stochastically re-entered the susceptible population, where they could be 

reinfected. Overall, individuals in the infectious pre-symptomatic, infectious symptomatic, or 

asymptomatic states were considered infectious, while individuals in the hospitalized state were subject 

to a higher age-specific mortality rate than those in other states to account for disease-related mortality. 

 

This SEIRS framework allowed susceptible agents to stochastically transition from the susceptible to 

the exposed state (i.e., to become infected) upon contact with an infected person (i.e., a discordant 

contact). The per-day probability of infection given a discordant contact depended on the vaccination 

status of the susceptible agent, the symptom status of the infectious agent, and whether the contact 

was household-level or community-level. Asymptomatic infected persons had 50% the transmission 

potential of those with symptomatic infections.21 Household contacts had about three times the per-

day transmission potential of community contacts, accounting for increased opportunity for 

transmission via what were assumed to be closer, more sustained contacts. Interventions other than 

vaccination (such as case isolation) were not explicitly accounted for in the model, although their real-

world effects were reflected in the calibrated transmission probabilities. 

  

Vaccination Decision-Making Process  

At simulation start or upon turning 18, whichever came first, each adult agent was assigned a binary 

“vaccinator type” attribute – resistant or willing – such that the prevalence of vaccine willingness by 

age group at the start of the vaccine rollout matched the empirical distribution measured in late 2020. 

The vaccination decision-making process for agents under age 18 was not explicitly modelled, since 

the vaccination decisions that parents/guardians make for their children are expected to be 

fundamentally different than the decisions they make for themselves; instead, the two youngest age 
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groups simply received vaccine doses according to age group-specific but otherwise homogenous 

rates. 

 

In accordance with the law of inertia in decision-making,9 agents maintained their initial attitude 

toward vaccination until an adverse event prompted them to reconsider. In the model, three such 

precipitating events were considered: (1) experiencing vaccine side effects could prompt a vaccine 

willing individual to become vaccine resistant, (2) experiencing an infection while fully vaccinated and 

(if applicable) up-to-date on booster doses (hereafter referred to as a “breakthrough infection”) could 

prompt a vaccine willing individual to become vaccine resistant due to decreased trust in the vaccine, 

and (3) the hospitalized prevalence in the overall population crossing a certain threshold could prompt 

a vaccine resistant individual to become willing, due to heightened concern about the effects of the 

spread of COVID-19.  

 

We identified (1) the odds ratio comparing the odds of booster willingness for those who had versus 

had not missed work due to side effects from the primary vaccination series22 and (2) the odds ratio 

comparing the odds of booster willingness for those who had received the primary vaccination series 

and had versus had not been subsequently infected.23 We then converted these odds ratios to risk 

differences so they could be interpreted as one-time probabilities of being “nudged” from vaccine 

willingness to vaccine resistance due to side effects or breakthrough infections, respectively. For the 

resistant-to-willing pathway, we estimated the probability that a vaccine-eligible adult in Georgia was 

convinced to vaccinate by an increase in hospitalized COVID-19 prevalence, by assuming that 38% 

of the late adopters who were vaccinated between July and September 2021 did so because of local 

hospitals filling with COVID-19 patients during that time, as the Delta variant spread.24 Since the 

percentage of hospital beds in Georgia occupied by COVID-19 patients increased from about 2% to 

about 29% during this period,25 we treated 20% as the threshold of interest; 20% of Georgia’s 19’747 

hospital beds translated to 3’895 hospitalized COVID patients out of Georgia’s approximately 10.7 

million people, or about 36 hospitalized COVID cases per 100’000 persons. Thus, hospitalized 

prevalence crossing 36 cases was treated as the precipitating event that could (potentially) convince 

vaccine resistant agents to become vaccine willing in our model.  
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Vaccination Intervention  

The vaccination rollout in the model proceeded by age group (0 to 4, 5 to 17, 18 to 49, 50 to 64, and 

65+), with the oldest group becoming eligible for the first dose on Day 11 of each simulation 

(corresponding to 11 January 2021, when everyone aged 65 or over became eligible for the first dose 

in Georgia).26 Individuals became eligible for their second dose 21 days after receiving their first;27 they 

became eligible for their first booster once (1) it had been rolled out to their age group and (2) six 

months had passed since they had received their second dose;28 they then became eligible for their 

second booster once (1) it had been rolled out to their age group and (2) four months had passed since 

they received their first booster.29 At any given timestep, individuals could stochastically undergo 

vaccination if (1) they were not currently symptomatic and had not tested positive in the last two 

weeks, (2) they were vaccine willing (for adult agents), and (3) they were currently eligible for their 

next dose based on their age group and vaccination history. Daily vaccination probabilities for those 

who fulfilled these criteria were age- and dose-specific and decayed over time to match the observed 

vaccination rates in Georgia.  

 

Vaccination reduced the risk of disease acquisition, the risk of progression to symptomatic disease, 

and the risk of eventual hospitalization. These effects were dose specific. Vaccine immunity waned 

over time following an exponential decay pattern with a half-life of 80 days.30 

 

Calibration 

The per-act infection probability was manually calibrated so that the resultant number of incident 

infections by month matched the confirmed case counts reported by the Georgia Department of 

Public Health,20 multiplied by five to account for underreporting31 and scaled to a population of 

100’000 (Figure 4). This per-act infection probability was allowed to vary over time by 30% of its 

reference value to account for time-dependent factors such as coverage of non-pharmaceutical 

interventions and the introduction of new variants. The daily act rate for the community network layer 

was assumed to be one (so that the per-act infection probability was equivalent to the daily infection 

probability for this layer); the daily act rate for the household network layer was calculated such that 

the total probability of infection from a household contact across a five-day infectious period 

approximately matched the secondary attack rate reported by a household transmission study.32 
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Similarly, the age-specific hospitalization proportions and disease-related mortality multiplier were 

calibrated so that the resultant hospital admissions and deaths by month matched the confirmed 

COVID-19 related hospitalizations and deaths reported by the Georgia Department of Public Health, 

scaled to a population of 100’000.20 

 

Age- and dose-specific vaccination rates and the half-lives that controlled how quickly they decayed 

were manually calibrated so that the resultant vaccine coverage by age, dose, and month matched the 

levels reported by the CDC for Georgia (Figure 5).2 

 

Intervention Scenarios  

In addition to the reference scenario, in which vaccination coverage was calibrated to match reported 

levels, we modelled three sets of theoretical intervention scenarios. Within each set, we explored the 

impacts of (1) increasing the probability of a hospital capacity-related vaccine resistant-to-willing 

switch (hereafter referred to as the Hospitalization Nudge Probability or HNP) to as much as two 

times the reference value, and (2) decreasing the probability of a breakthrough infection-related 

vaccine willing-to-resistant switch (hereafter referred to as the Breakthrough Nudge Probability or 

BNP) to as little as zero. These changes were applied to all adults for our first set of scenarios, to older 

adults (those aged at least 65) only for our second set of scenarios, and to younger adults (those aged 

at least 18 and under 65) only for our third set of scenarios.  

 

Model Output  

For each model run, we tracked the cumulative number of incident SARS-CoV-2 infections, COVID 

hospitalizations, and COVID deaths, as well as the hospitalized prevalence over time. We also tracked 

the levels of vaccine willingness and per-dose vaccine coverage by age group over time. Our calculated 

summary metrics included cumulative incidence, cumulative deaths, number and percent of infections 

and deaths averted compared to the reference scenario, and infections and deaths averted per 

additional vaccine dose administered compared to the reference scenario. For each scenario, the 

median and 50% simulation interval of each metric across 128 simulations were reported.  
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RESULTS  

 

As seen in Figure 4, the simulated monthly incidence in the reference model closely matched the 

trends in the empirical, underreporting-adjusted monthly incidence in Georgia per 100’000 persons, 

with smaller peaks in January 2021 and September 2021, followed by a larger peak in January 2022 

corresponding to the Omicron wave. The reference model’s median number of infections across the 

January 2021 to August 2022 timeframe was 67’746.4 per 100’000 person-years (50% SI: (66’937.9, 

68’534.7)), compared to the target of 45’824.3 infections per 100’000 person-years, while its median 

number of COVID-related deaths was 119.5 per 100’000 person-years (50% SI: (113.2, 124.0)), 

compared to the target of 128.6 deaths per 100’000 person-years.  

 

In the reference model, the median number of vaccine doses administered (across all ages and doses) 

during the 20-month timeframe was 149’704.5 (50% SI: (149’471.2, 150’040.0)). Figure 5 compares 

the trends over time in simulated vaccine coverage by age group and dose to the corresponding trends 

in empirical coverage. As shown in the first row of Table 2, the end cross-sectional coverage of the 

first dose was 71.5% (50% SI: (71.4%, 71.6%)) for 18- to 64-year-olds and 89.5% (50% SI: (89.3%, 

89.7%)) for 65+ year-olds, compared to calibration targets of 73.3% and 92.4%, respectively. Final 

coverage of the second dose was 62.5% (50% SI: (62.3%, 62.6%)) for 18- to 64-year-olds and 81.1% 

(50% SI: (80.9%, 81.4%)) for 65+ year-olds, compared to targets of 61.2% and 81.2%, respectively. 

Final coverage of the third dose was 18.1% (50% SI: (18.0%, 18.2%)) for 18- to 49-year-olds, 34.3% 

(50% SI: (34.1%, 34.6%)) for 50- to 64-year-olds, and 51.8% (50% SI: (51.4%, 52.0%)) for 65+ year-

olds, compared to targets of 17.5%, 34.5%, and 51.3%, respectively. Lastly, final coverage of the fourth 

dose was 7.4% (50% SI: (7.3%, 7.6%)) for 50- to 64-year-olds and 15.0% (50% SI: (14.9%, 15.3%)) 

for 65+ year-olds, compared to targets of 7.0% and 16.2%, respectively. These percentages represent 

coverage among the full population in each age group, not only the eligible population. Results for 

18- to 49-year-olds and 50- to 64-year-olds were combined for the first two doses but treated separately 

for booster doses to match CDC vaccine coverage reports and because those under age 50 were not 

eligible for the fourth dose at all. 

 

Table 2 also shows the final vaccine coverage by age group and dose for a select set of intervention 

scenarios intended to be representative of the full range of scenarios tested. It shows that doubling 

the HNP for a particular age group generally led to a slight but noticeable increase in the coverage of 
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the first dose for that age group (for example, from a median of 71.5% to a median of 73.1% for 18- 

to 64-year-olds) but did not markedly impact coverage of subsequent doses. Meanwhile, reducing the 

BNP to zero for a particular age group generally led to a slight increase in coverage of the third and 

(if applicable) fourth dose for that age group (for example, from medians of 34.3% and 7.4% to 

medians of 35.0% and 7.7% for 50- to 64-year-olds, for the third and fourth doses respectively). 

Alongside Table 2, Figure 6 shows how the total number of vaccine doses administered varied as 

the HNP varied from its reference value to twice its reference value and the BNP varied from its 

reference value to zero. The dose count generally increased as the HNP increased (i.e., as a vaccine 

resistant-to-willing switch was made more likely) and the BNP decreased (i.e., as a vaccine willing-to-

resistant switch was made less likely), although the impact of the HNP was generally more 

pronounced, as indicated by the vertically skewed contours in Figure 6. Across all targeting 

approaches, the dose count was maximized when the HNP was maximized (i.e., doubled) and the 

BNP was minimized (i.e., reduced to zero). When all adults were targeted, the maximum number of 

doses administered across scenarios was 151’336.5 (50% SI: (151’063.0, 151’559.0)), for an excess of 

1’632.0 doses (50% SI: (1’358.5, 1’854.5)) compared to the reference scenario; when only adults 65 

years of age or older were targeted, the maximum number of doses across scenarios was 150’025.5 

(50% SI: (149’804.8, 150,387.0)), for an excess of 321 doses (50% SI: (100.3, 682.5)); and when only 

adults under 65 were targeted, the maximum number of doses across scenarios was 151’096.0 (50% 

SI: (150’878.0, 151’372.3)), for an excess of 1’391.5 doses (50% SI: (1’173.5, 1’667.8)).  

 

Analogously, Table 3 and Figure 7 show how varying the HNP and BNP affected cumulative 

incidence. The variation in the median cumulative incidence across scenarios was small compared to 

the variation in cumulative incidence across simulations within a single scenario, but Figure 7 does 

indicate that slightly lower cumulative incidence results were more common when a high HNP was 

combined with a low BNP. When all adults were targeted, the minimum number of infections across 

scenarios was 67’111.7 per 100’000 person-years (50% SI: (66’344.0, 67’976.6)), corresponding to 

634.7 (50% SI: (-230.2, 1’402.4)) infections averted per 100’000 person-years; this occurred when the 

HNP was doubled and the BNP was reduced to 60% of its reference value. When only older adults 

were targeted, the minimum number of infections across scenarios was 67’116.8 per 100’000 person-

years (50% SI: (66’350.1, 68’493.4)), corresponding to 629.6 (50% SI: (-747.0, 1’396.3)) infections 

averted per 100’000 person-years; this occurred when the HNP was at 140% of its reference value and 

the BNP was at 0. When only younger adults were targeted, the minimum number of infections across 
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scenarios was 66’894.0 per 100’000 person-years (50% SI: (66’079.2, 67’932.5)), corresponding to 

852.4 (50% SI: (-186.1, 1’667.2)) infections averted; this occurred when the HNP and BNP were at 

180% and 10% of their reference values, respectively.   

 

As shown in Table 4 and Figure 8, the interventions had little to no impact on deaths, which did not 

vary according to any discernible systematic pattern across scenarios. When all adults were targeted, 

the minimum number of deaths across scenarios was 115.9 per 100’000 person-years (50% SI: (111.4, 

122.8)), corresponding to 3.6 deaths averted per 100’000 person-years (50% SI: (-3.3, 8.1)) compared 

to the reference scenario; this occurred when the HNP and BNP were at 190% and 60% of their 

reference values, respectively. When only older adults were targeted, the minimum number of deaths 

across scenarios was 116.8 per 100’000 person-years (50% SI: (112.0, 123.4)), corresponding to 2.7 

deaths averted per 100’000 person-years (50% SI: (-3.9, 7.5)); this occurred when the HNP and BNP 

were at 190% and 50% of their reference values, respectively. When only younger adults were targeted, 

the minimum number of deaths across scenarios was 116.2 per 100’000 person-years (50% SI: (111.2, 

123.5)), corresponding to 3.3 deaths averted per 100’000 person-years (50% SI: (-4.0, 8.3)); this 

occurred when the HNP was doubled and the BNP was reduced to 40% of its reference value.  

 

Figure 9 shows the timing of the impact of the modelled interventions on vaccine coverage relative 

to the epidemic curve for five example scenarios. It shows that the epidemic curve was virtually 

indistinguishable across scenarios, while boosting the HNP caused a marked increase in the number 

of additional first doses delivered relative to the reference scenario, starting when the hospitalization 

threshold was typically crossed in mid-January 2022 and continuing until the end of the timeframe. 

However, these effects did not trickle down to subsequent doses, as also seen in Table 2. Suppressing 

the BNP caused a marked increase in the number of additional third and fourth doses delivered relative 

to the reference scenario; the additional third dose coverage built up throughout early 2022 (when the 

number of infections – and by extension, the number of breakthrough infections – was high) and 

plateaued when the number of infections decreased throughout spring 2022.  
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DISCUSSION   

 

In our study, we used a network-based mathematical model of SARS-CoV-2 transmission and 

vaccination decision-making to explore how manipulating the probabilities of changes in vaccine 

attitudes might impact vaccine coverage, disease incidence, and disease-related deaths. We found that 

while the theoretical interventions we modelled increased vaccine coverage, the additional vaccine-

induced immunity built up too slowly compared to the rapid transmission of SARS-CoV-2 to markedly 

change the overall cumulative infections and deaths during our timeframe of interest. Essentially, in 

our stochastic model, the signal of the intervention effects was negligible compared to the noise of 

the random variations in incidence and deaths across model runs. We also found that increasing the 

probability that a spike in hospitalized prevalence would prompt vaccine hesitant persons to vaccinate 

(i.e., making resistant-to-willing switches more likely) generally had more of an impact on vaccination 

rates than decreasing the probability that breakthrough infections would prompt a previously vaccine 

willing person to forgo further vaccination (i.e., making willing-to-resistant switches less likely). These 

findings indicate that optimizing the timing of any vaccine promotion intervention relative to the 

timing of infection waves – so that the interventions anticipate the case curve instead of reacting to it 

– is crucial. They also highlight the importance of addressing baseline vaccine unwillingness to reduce 

the proportion of the population that is entirely vaccine-naïve. 

 

The muted impact of our interventions on the final outcomes of cumulative incidence and deaths is 

likely due, at least in part, to the intervention effects’ suboptimal timing. The modelled interventions 

acted slowly compared to the rapid transmission of SARS-CoV-2: for example, the hospitalized 

prevalence in our model generally crossed its threshold for the first time in January 2022, by which 

point most infections had already accrued, so the hospitalization nudge probability could only affect 

vaccine coverage during the last eight months of the modelled timeframe – when incidence was 

generally low to begin with and the number of infections that could potentially be averted was 

relatively small. If the model were run over a longer timeframe, allowing the intervention effects to 

build up over time, a long-term impact on incidence might become apparent, but the waves of 

infection during our twenty-month timeframe of interest were clearly unaffected in our model. Our 

findings diverge here from those of Papst et al and a preceding study by Wells et al, who implicitly 

assumed that each year’s influenza vaccine rollout concluded before that year’s outbreak began, and 

who found that under certain assumptions, infection waves could be eradicated biennially.11,33 Our 
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results are, however, conceptually consistent with those of other COVID-19 modelling studies that 

have found the success of a particular vaccination campaign to be highly sensitive to its timing – for 

example, Gavish et al projected that advancing Israel’s summer 2021 booster campaign by 2 weeks 

could have halved the number of cases in the subsequent three months.34  The interventions we 

modelled were, by nature, reactive, in that they affected agents’ responses to naturally occurring 

transmission events, but our findings indicate that proactive interventions – ones that anticipate 

transmission events like increases in hospitalized prevalence instead of capitalizing on them once they 

do occur – could have a more pronounced impact on epidemic outcomes. 

 

Unlike our final outcomes of cumulative incidence and deaths, our intermediate outcome of vaccine 

doses administered was sensitive to the parameter changes that we tested, with the hospitalization 

nudge probability having more of an impact than the breakthrough nudge probability. In part, the 

relative importance of the hospitalization nudge probability follows from the “law of inertia” process 

that underlies our model: if someone was unvaccinated and vaccine-resistant, and an intervention 

prompted them to become vaccine-willing, they would tend to stay willing over time, and could receive 

up to four vaccine doses they would not have received otherwise. In contrast, if a vaccine willing 

person had received the primary vaccine sequence, and an intervention prompted them to stay vaccine 

willing, then they could receive at most two doses that they would not have received otherwise. The 

timing of the intervention effects relative to the vaccine rollout may also have contributed to the 

relatively higher impact of interventions on the hospitalization nudge probability: agents in our model 

were generally already eligible for the first two vaccine doses by the time such an intervention 

prompted them to make a resistant-to-willing switch they otherwise would not have made, meaning 

that they could act on their new vaccine views immediately. Meanwhile, agents who remained vaccine 

willing due to an intervention on the breakthrough nudge probability often did so well before they 

became eligible for subsequent doses, which occurred late in the model timeframe if it did at all. 

 

Finally, we also found that limiting our intervention to older adults rather than targeting younger adults 

or all adults led to less of an impact on our outcomes. This is likely due in part to the relatively small 

size of the older age group and to their higher reference levels of vaccine willingness, which left less 

room for intervention-prompted increases. In conjunction with previous modelling studies that have 

illustrated the benefits of vaccinating younger age groups that are less susceptible to severe disease or 

death but play a larger role in transmission,34-36 our study highlights the importance of broadly 



   

 

14 

addressing vaccine hesitancy in younger populations for whom COVID-19 vaccine willingness was 

lower to begin with. 

 

Limitations. One of the major limitations of our model is our simplified representation of the 

vaccination decision-making process. We only considered three factors that could affect an individual’s 

decisions: their own experience of vaccine side-effects, their own experience of breakthrough 

infections, and overall hospitalized prevalence. There may be many others, including (but not limited 

to) employer mandates,24 social conformity,24,37 friends’ and family members’ experiences with 

vaccines and COVID-19,24,38 and the spread of information via news outlets and social media.39 Of 

the three factors we considered, only one (side effects) could cause people to become vaccine resistant 

after their first dose (before they were considered fully vaccinated and therefore able to experience a 

breakthrough infection), and this relatively minor pathway could not fully account for the significant 

number of people in Georgia who received their first dose but not their second. Instead, our model 

manufactured this drop-off through manipulation of the vaccination rates: our calibration resulted in 

initially high rates for the second dose that decayed very quickly, to replicate the real-life dichotomy 

between persons who received their second dose promptly after the recommended interval and 

persons who never received it at all. Since the vaccination rates were kept constant across scenarios, 

these parameters muted the impact of our interventions on the resistant-to-willing pathway: because 

the daily probability of receiving the second dose among the vaccine willing decayed so quickly over 

time, an unreasonably high number of the newly willing agents nudged by the spike in hospitalizations 

ended up getting the first dose but not the second and therefore never moved past partial vaccine-

induced immunity. Future work on this model should explore different ways of realizing the drop-off 

between the first two doses that do not exaggerate this effect for late adopters of the vaccine.  

 

A further limitation of our model is the considerable uncertainty to which some of our parameters are 

subject. Since COVID-19 emerged relatively recently, data on the duration of vaccine-induced and 

natural immunity is currently limited. We represented waning vaccine immunity using an exponential 

decay process based off the half-life of post-vaccination serum antibody levels and waning natural 

immunity using an all-or-nothing approach (with a period of on average 270 days in which recovered 

agents were completely protected from infection, followed by a return to pre-infection levels of 

susceptibility). Both methodologies are potentially flawed, especially as they do not account for 

heterogeneities in immunity duration by age, disease severity, or other factors.40-42 We also arrived at 
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our reference willing-to-resistant nudge probabilities by extrapolating data from surveys of vaccine 

willingness beyond their intended use. In the future, sensitivity analyses should be performed on these 

particularly uncertain parameters.  

 

CONCLUSIONS 

 

Our results show how dynamical transmission models that are calibrated to empirical data and that 

include realistic details of human behaviour, based on established results in social psychology, can 

generate predictions that diverge from the results of simpler models that, for example, assume 

homogenized behaviour patterns or are not validated against appropriate data. This illustrates how 

models with greater psychological realism can be useful for informing public health interventions. 

Specifically, our findings indicate that reactive vaccination interventions may have only a limited ability 

to avert infection waves in the short-term, suggesting that attention should be paid to formulating 

vaccine promotion interventions that accurately anticipate the case curve instead of reacting to it.   
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TABLES AND FIGURES 

 
Table 1. Model parameters  

Parameter Value Source 

Population Characteristics   

Total population size 100'000 Assumed 

Proportion of population aged under 18 0.233 http://wonder.cdc.gov/bridged-race-
v2020.html [14] 

Proportion of population aged at least 18 
and under 65 0.620 http://wonder.cdc.gov/bridged-race-

v2020.html [14] 

Proportion of population aged over 65 0.147 http://wonder.cdc.gov/bridged-race-
v2020.html [14] 

Household Characteristics   

Average household size 2.7 https://www.census.gov/quickfacts/ [18] 

Proportion of households with a member 
aged under 18 0.292 Census Table H2 2020 [17] 

Proportions of households with a member 
aged at least 18 and under 65 0.791 Census Table H2 2020 [17] 

Proportion of households with a member 
aged at least 65 0.314 Census Table H2 2020 [17] 

Proportion of children living with a person 
aged 18 or older 1.0 Assumed 

Proportion of children living with a person 
aged at least 18 and under 65 0.979 Census Table C4 2021 [19] 

Community Contact Patterns   

Overall daily mean degree 13.8 Nelson et al 2022 [15] 

Daily mean degree for persons aged 65 
and over 5.7 Nelson et al 2022 [15] 

Associative mixing proportion for persons 
aged under 18 0.69 Prem et al 2017 [16] 

Associative mixing proportion for persons 
aged at least 18 and under 65 0.81 Prem et al 2017 [16] 

Associative mixing proportion for persons 
aged at least 65 0.21 Prem et al 2017 [16] 

Transmission   

Reference per-act transmission probability 0.050 Calibrated 

Per-act transmission probability during 
periods of decreased transmission 0.035 Calibrated 
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Per-act transmission probability during 
periods of increased transmission 0.065 Calibrated 

Relative risk of transmission for 
asymptomatic individuals 0.5 Davies et al 2020 [21] 

Contacts per pairing per day for 
community-level pairings 1 Assumed 

Contacts per pairing per day for 
household-level pairings 3 Calculated from Madewell et al 2022 [32] 

Natural History    

Proportion symptomatic, per decade of age 
0.573, 0.642, 0.760, 0.800, 
0.813, 0.814, 0.769, 0.723, 
0.666 

Harrington 2022 [43] 

Proportion hospitalized given symptomatic 
infection, per decade of age 

0.006, 0.006, 0.008, 0.015, 
0.021, 0.027, 0.036, 0.046, 
0.054 

Calibrated, with ratios from Harrington 
2022 [43] 

Average duration of latent period, in days 5.5 Xin et al 2022 [44] 

Average duration of pre-clinical infectious 
period, in days 1.5 Davies et al 2020 [21] 

Average duration of clinical infectious 
period prior to hospitalization, in days 3.0 Harrington 2022 [43] 

Average duration of clinical infectious 
period prior to recovery, in days 3.5 Davies et al 2020 [21] 

Average duration of hospitalization, in days 10.0 Conlon et al 2021 [45] 

Average duration of asymptomatic 
infectious period, in days 5.0 Davies et al 2020 [21] 

Average duration of immunity after 
recovery, in days 270 

https://www.cdc.gov/coronavirus/2019-
ncov/science/science-briefs/vaccine-
induced-immunity.html [30] 

Birth rate, in births per 100'000 persons 
per year 1399 Assumed (to maintain stable population 

size) 

General annual mortality rate, in deaths 
per 100'000 persons per year* 

608, 30, 13, 22, 63, 116, 
143, 187, 228, 300, 416, 
600, 945, 1453, 1952, 
2817, 4369, 7159, 15626 

https://oasis.state.ga.us/ 
oasis/WebQuery/qryMortality.aspx [46] 

COVID-related mortality multiplier 1800 Calibrated 

Testing   

Testing rate for symptomatic persons 0.10 Jenness et al 2021 [47] 

General testing rate 0.01 Jenness et al 2021 [47] 

PCR test sensitivity 0.80 Lopman et al 2021 [48] 

Vaccination Decision-Making   
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Proportion initially vaccine willing   

Ages 18 - 49 0.70 Kelly et al 2021 [49] 

Ages 50 - 64 0.75 Kelly et al 2021 [49] 

Ages 65+ 0.91 Nikolovski et al 2021 [50] 

Probability of resistant-to-willing switch due 
to hospitals approaching capacity 0.102 Calculated from Hamel et al 2021 [24] 

Probability of willing-to-resistant switch due 
to vaccine side effects 0.073 Chrissian et al 2022 [22] 

Probability of willing-to-resistant switch due 
to breakthrough infection 0.125 Dziedzic et al 2022 [23] 

Hospitalization threshold, in cases per 
100'000 persons 36 covid.cdc.gov/covid-data-

tracker/#hospital-capacity [25] 

Vaccination    

Time step for start of dose 1 rollout (in 
parentheses: corresponding calendar date) 

  

Ages 0 to 4 Day 534 (18 Jun. 2022) https://www.cdc.gov/media/releases/202
2/s0618-children-vaccine.html [51] 

Ages 5 to 17 Day 132 (12 May 2021) www.nytimes.com/2021/05/12/health/cor
onavirus-vaccine-children.html [52] 

Ages 18 to 49 Day 84 (25 Mar. 2021) https://www.ajc.com/politics/S2TLG4G3
CBDNJBUPPRROV5ROSI/ [53] 

Ages 50 to 64 Day 74 (15 Mar. 2021) https://www.ajc.com/politics/PO4VMZ3Q
3NA25LPQB6CNDW7PAA/ [54] 

Ages 65+ Day 11 (11 Jan. 2021) https://publichealthathens.com/ [26] 

Time step for start of dose 3 rollout (in 
parentheses: corresponding calendar date) 

  

Ages 5 to 17 Day 368 (3 Jan. 2022) https://www.fda.gov/news-events/press-
announcements/ [55] 

Ages 18 to 49 Day 323 (19 Nov. 2021) https://www.cdc.gov/media/releases/202
1/s1119-booster-shots.html [56] 

Ages 50 to 64 Day 323 (19 Nov. 2021) https://www.cdc.gov/media/releases/202
1/s1119-booster-shots.html [56] 

Ages 65+ Day 265 (22 Sep. 2021) https://www.fda.gov/news-events/press-
announcements/ [28] 

Time step for start of dose 4 rollout (in 
parentheses: corresponding calendar date) 

  

Ages 50 to 64 Day 453 (29 Mar. 2022) https://www.fda.gov/news-events/press-
announcements/ [29] 

Ages 65+ Day 453 (29 Mar. 2022) https://www.fda.gov/news-events/press-
announcements/ [29] 
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Dose 1 vaccination rate, per day  
(in parentheses: rate half-life, in days) 

  

Ages 0 to 4 0.0005 (365) Calibrated 

Ages 5 to 17 0.0020 (220) Calibrated 

Ages 18 to 49 0.0210 (160) Calibrated 

Ages 50 to 64 0.0210 (160) Calibrated 

Ages 65+ 0.0200 (365) Calibrated 

Dose 2 vaccination rate, per day  
(in parentheses: rate half-life, in days) 

  

Ages 0 to 4 0.0100 (365) Calibrated 

Ages 5 to 17 0.5400 (60) Calibrated 

Ages 18 to 49 0.6500 (30) Calibrated 

Ages 50 to 64 0.6500 (30) Calibrated 

Ages 65+ 0.2500 (40) Calibrated 

Dose 3 vaccination rate, per day  
(in parentheses: rate half-life, in days) 

  

Ages 5 to 17 0.0050 (60) Calibrated 

Ages 18 to 49 0.0100 (35) Calibrated 

Ages 50 to 64 0.0250 (30) Calibrated 

Ages 65+ 0.0200 (50) Calibrated 

Dose 4 vaccination rate, per day  
(in parentheses: rate half-life, in days) 

  

Ages 50 to 64 0.0050 (60) Calibrated 

Ages 65+ 0.0050 (80) Calibrated 

Minimum interval between doses 1 and 2, 
in days 21 https://www.cdc.gov/vaccines/covid-

19/info-by-product/index.html [27] 

Minimum interval between doses 2 and 3, 
in days 180 https://www.fda.gov/news-events/press-

announcements/ [28] 

Minimum interval between doses 3 and 4, 
in days 120 https://www.fda.gov/news-events/press-

announcements/ [29] 

Relative risk of infection at peak of vaccine 
immunity 
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Dose 1 0.324 Pilishvili et al 2021 [57] 

Dose 2 0.112 Pilishvili et al 2021 [57] 

Dose 3 0.120 Barda et al 2021 [58] 

Dose 4 0.120 Barda et al 2021 [58] 

Relative risk of symptomatic disease at 
peak of vaccine immunity 

  

Dose 1 0.400 Chung et al 2021 [59] 

Dose 2 0.090 Chung et al 2021 [59] 

Dose 3 0.090 Barda et al 2021 [58] 

Dose 4 0.090 Barda et al 2021 [58] 

Relative risk of hospitalization at peak of 
vaccine immunity 

  

Dose 1 0.300 Chung et al 2021 [59] 

Dose 2 0.020 Chung et al 2021 [59] 

Dose 3 0.070 Barda et al 2021 [58] 

Dose 4 0.070 Barda et al 2021 [58] 

Per-dose probability of vaccine side effects 0.180 Chrissian et al 2022 [22] 

Half-life of vaccine immunity, in days 80 
https://www.cdc.gov/coronavirus/2019- 
ncov/science/science-briefs/vaccine-
induced-immunity.html [30] 

 
* Rates displayed for the following age groups: <1, 1-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-
49, 50-54, 55-59, 60-64, 65-69, 70-74, 75-79, 80-84, 85+ 
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Table 2. Proportion of adult population vaccinated, by dose and age group, for select scenarios. Green indicates higher coverage 
than the reference level. Corresponding 50% simulation intervals are shown in the appendix in Table A1. 
 

Scenario Ages 18 - 49 Ages 50 - 64 

Targeting Hospitalization 
Nudge Prob. 

Breakthrough 
Nudge Prob. 

Dose 1 Dose 2 Dose 3 Dose 1 Dose 2 Dose 3 Dose 4 

% % % % % % % 

- Reference Reference 71.5  62.5  18.1  71.5  62.5  34.3  7.4  

All Adults  
(18+) 

200% of Reference Reference 73.1  62.5  18.1  73.1  62.5  34.3  7.4  

Reference 50% of Reference 71.5  62.5  18.3  71.5  62.5  34.6  7.5  

Reference 0% of Reference 71.5  62.5  18.4  71.5  62.5  35.0  7.7  

200% of Reference 50% of Reference 73.0  62.5  18.3  73.0  62.5  34.7  7.6  

200% of Reference 0% of Reference 73.1  62.5  18.4  73.1  62.5  35.0  7.7  

Older Adults  
(65+) 

200% of Reference Reference 71.5  62.5  18.1  71.5  62.5  34.3  7.4  

Reference 50% of Reference 71.5  62.6  18.1  71.5  62.6  34.3  7.4  

Reference 0% of Reference 71.5  62.5  18.1  71.5  62.5  34.3  7.4  

200% of Reference 50% of Reference 71.5  62.5  18.1  71.5  62.5  34.3  7.4  

200% of Reference 0% of Reference 71.5  62.5  18.1  71.5  62.5  34.4  7.4  

Younger 
Adults  

(18 - 64) 

200% of Reference Reference 73.1  62.5  18.1  73.1  62.5  34.3  7.5  

Reference 50% of Reference 71.5  62.5  18.3  71.5  62.5  34.6  7.6  

Reference 0% of Reference 71.5  62.5  18.4  71.5  62.5  35.0  7.7  

200% of Reference 50% of Reference 73.0  62.5  18.3  73.0  62.5  34.6  7.5  

200% of Reference 0% of Reference 73.1  62.5  18.5  73.1  62.5  35.0  7.7  
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Scenario Ages 65+ 

Targeting Hospitalization 
Nudge Probability 

Breakthrough  
Nudge Probability 

Dose 1 Dose 2 Dose 3 Dose 4 

% % % % 

- Reference Reference 89.5  81.1  51.8  15.0  

All Adults (18+) 

200% of Reference Reference 90.5  81.2  51.9  15.1  

Reference 50% of Reference 89.5  81.1  52.0  15.2  

Reference 0% of Reference 89.6  81.1  52.3  15.4  

200% of Reference 50% of Reference 90.4  81.1  52.1  15.3  

200% of Reference 0% of Reference 90.5  81.1  52.2  15.3  

Older Adults (65+) 

200% of Reference Reference 90.4  81.2  51.8  15.1  

Reference 50% of Reference 89.6  81.1  52.1  15.2  

Reference 0% of Reference 89.5  81.1  52.1  15.3  

200% of Reference 50% of Reference 90.3  81.1  52.0  15.2  

200% of Reference 0% of Reference 90.4  81.1  52.2  15.4  

Younger Adults  
(18 - 64) 

200% of Reference Reference 89.6  81.1  51.8  15.0  

Reference 50% of Reference 89.5  81.1  51.8  15.1  

Reference 0% of Reference 89.6  81.2  51.8  15.0  

200% of Reference 50% of Reference 89.6  81.1  51.9  15.0  

200% of Reference 0% of Reference 89.6  81.1  51.8  15.0  
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Table 3. Cumulative infections and infections averted by end of simulation, for select scenarios. Green indicates fewer infections 
than the reference level and orange indicates more. Corresponding 50% simulation intervals are available in the appendix in Table A2. 
 

Scenario Total Infections per 
100'000 PY 

Infections Averted 
per 100'000 PY 

Percent of Infections 
Averted 

Infections Averted 
per Addtl. Dose 

Targeting Hospitalization 
Nudge Prob. 

Breakthrough 
Nudge Prob. n n % n 

- Reference Reference 67'746.4 - - - 

All Adults 
(18+) 

200% of Reference Reference 67'256.6 489.8 0.7 0.5 

Reference 50% of Reference 67'701.8 44.6 0.1 0.1 

Reference 0% of Reference 67'632.6 113.8 0.2 0.2 

200% of Reference 50% of Reference 67'531.7 214.7 0.3 0.2 

200% of Reference 0% of Reference 67'270.7 475.7 0.7 0.3 

Older 
Adults (65+) 

200% of Reference Reference 67'435.0 311.4 0.5 0.4 

Reference 50% of Reference 67'542.2 204.2 0.3 0.4 

Reference 0% of Reference 67'638.6 107.8 0.2 0.0 

200% of Reference 50% of Reference 67'786.2 -39.8 -0.1 -0.2 

200% of Reference 0% of Reference 67'412.9 333.5 0.5 1.2 

Younger 
Adults  

(18 - 64) 

200% of Reference Reference 67'358.1 388.3 0.6 0.6 

Reference 50% of Reference 67'702.4 44.0 0.1 0.3 

Reference 0% of Reference 67'527.5 218.9 0.3 0.1 

200% of Reference 50% of Reference 67'182.0 564.4 0.8 0.5 

200% of Reference 0% of Reference 67'294.0 452.4 0.7 0.4 
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Table 4. Cumulative deaths and deaths averted by end of simulation, for select scenarios. Green indicates fewer deaths than the 
reference level and orange indicates more. Corresponding 50% simulation intervals are available in the appendix in Table A3. 
 

Scenario Total Deaths per 
100'000 PY 

Deaths Averted per 
100'000 PY 

Percent of Deaths 
Averted 

Deaths Averted per 
Addtl. Dose 

Targeting Hospitalization 
Nudge Prob. 

Breakthrough 
Nudge Prob. n n % n 

- Reference Reference 119.5 - - - 

All Adults (18+) 

200% of Reference Reference 118.3 1.2 1.0 0.0 

Reference 50% of Reference 118.6 0.9 0.8 0.0 

Reference 0% of Reference 119.2 0.3 0.3 0.0 

200% of Reference 50% of Reference 117.1 2.4 2.0 0.0 

200% of Reference 0% of Reference 119.2 0.3 0.3 0.0 

Older Adults 
(65+) 

200% of Reference Reference 118.6 0.9 0.8 0.0 

Reference 50% of Reference 117.1 2.4 2.0 0.0 

Reference 0% of Reference 118.6 0.9 0.8 0.0 

200% of Reference 50% of Reference 118.3 1.2 1.0 0.0 

200% of Reference 0% of Reference 120.4 -0.9 -0.8 0.0 

Younger Adults 
(18 - 64) 

200% of Reference Reference 116.8 2.7 2.3 0.0 

Reference 50% of Reference 120.7 -1.2 -1.0 0.0 

Reference 0% of Reference 117.4 2.1 1.8 0.0 

200% of Reference 50% of Reference 118.9 0.6 0.5 0.0 

200% of Reference 0% of Reference 119.2 0.3 0.3 0.0 
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Figure 1. Network schematic. All agents in the model were part of two distinct contact network 
layers, representing the household and the community, respectively. The community network layer 
was intended to encompass all non-household contacts, including workplace, school, social, and other 
contacts. The household network layer was static, with agents assigned a household at simulation start 
or birth and remaining in contact with all other members of that household until simulation end or 
death. The community network layer, in contrast, reset each day, with the number and age distribution 
of daily contacts for each agent depending on that agent’s age.  
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Figure 2. Household assignment example. This figure illustrates the household assignment 
algorithm with an example set of 100 agents, each assigned an age category (‘C’ for child, ‘A’ for adult, 
or ‘E’ for elderly) according to the age distribution of the Georgia population. These 100 agents are 
shown divided among 37 households (for an overall average household size of about 2.7), such that 
29.2% of households have at least one child, 79.1% of household have at least one adult, 31.4% of 
households have at least one elderly person, every child lives with at least one adult or elderly person, 
and 97.9% of children live with at least one non-elderly adult. (Due to the small number of nodes in 
this example, the percentages do not work out exactly, as they do with the 100’000 nodes in the full 
model.)  
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Figure 3. Model flow diagram. The model’s SARS-CoV-2 transmission and COVID-19 disease 
progression processes were represented as stochastic transitions in the modified Susceptible-
Exposed-Infected-Recovered compartmental framework shown below. 
 

 
  



   

 

28 

Figure 4. Model calibration results for cases, hospitalizations, and deaths. The reference 
model was calibrated to (1) an estimate of the total number of incident SARS-CoV-2 infections, 
(2) the reported number of confirmed COVID-19-related hospital admissions, and (3) the 
reported number of confirmed COVID-19-related deaths, all per 100’000 persons in Georgia 
per month.  
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Figure 5. Model calibration results for vaccine coverage. The reference model was also 
calibrated to the reported vaccine coverage levels in Georgia by age group, dose, and month. 
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Figure 6. Cumulative vaccine doses administered by end of simulation, by model scenario. 
The hospitalization nudge probability (abbreviated as HNP) was increased from 100% to 200% of its 
reference value in increments of 10%; the breakthrough nudge probability (abbreviated as BNP) was 
decreased from 100% to 0% of its reference value in increments of 10%. For each parameter 
combination, the median number of doses administered per run across 128 runs is displayed.  
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Figure 7. Cumulative incidence per 100’000 PY, by model scenario. The hospitalization nudge 
probability (abbreviated as HNP) was increased from 100% to 200% of its reference value in 
increments of 10%; the breakthrough nudge probability (abbreviated as BNP) was decreased from 
100% to 0% of its reference value in increments of 10%. For each parameter combination, the median 
cumulative incidence (scaled to 100’000 person-years) across 128 simulations is displayed.  
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Figure 8. Cumulative deaths per 100’000 PY, by model scenario. The hospitalization nudge 
probability (abbreviated as HNP) was increased from 100% to 200% of its reference value in 
increments of 10%; the breakthrough nudge probability (abbreviated as BNP) was decreased from 
100% to 0% of its reference value in increments of 10%. For each parameter combination, the median 
cumulative death count (scaled to 100’000 person-years) across 128 simulations is displayed.  
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Figure 9. Epidemic curve vs. cumulative vaccines administered over time for select scenarios. 
The grey bars represent the (median) incident infections by day (across the full population of 100’000 
nodes). The coloured lines represent the difference between the (median) cumulative number of 
vaccine doses administered across all age groups in the scenario of interest and the corresponding 
(median) number from the reference scenario, as of each point in time. 
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APPENDIX 

Table A1. Proportion of adult population vaccinated by dose and age group for select scenarios, with simulation intervals. 

Scenario Ages 18 - 49 Ages 50 - 64 

Targeting Hospitalization 
Nudge Prob. 

Breakthrough 
Nudge Prob. 

Dose 1 Dose 2 Dose 3 Dose 1 Dose 2 Dose 3 Dose 4 

% (50% SI) % (50% SI) % (50% SI) % (50% SI) % (50% SI) % (50% SI) % (50% SI) 

- Reference Reference 71.5  
(71.4, 71.6) 

62.5  
(62.3, 62.6) 

18.1  
(18.0, 18.2) 

71.5  
(71.4, 71.6) 

62.5  
(62.3, 62.6) 

34.3  
(34.1, 34.6) 

7.4  
(7.3, 7.6) 

All Adults  
 

(18+) 

200% of Reference Reference 73.1 
(73.0, 73.2) 

62.5 
(62.4, 62.7) 

18.1 
(18.0, 18.2) 

73.1 
(73.0, 73.2) 

62.5 
(62.4, 62.7) 

34.3 
(34.1, 34.7) 

7.4 
(7.2, 7.6) 

Reference 50% of Reference 71.5 
(71.4, 71.6) 

62.5 
(62.3, 62.6) 

18.3 
(18.1, 18.4) 

71.5 
(71.4, 71.6) 

62.5 
(62.3, 62.6) 

34.6 
(34.4, 34.9) 

7.5 
(7.4, 7.6) 

Reference 0% of Reference 71.5 
(71.4, 71.7) 

62.5 
(62.4, 62.7) 

18.4 
(18.3, 18.6) 

71.5 
(71.4, 71.7) 

62.5 
(62.4, 62.7) 

35.0 
(34.7, 35.3) 

7.7 
(7.6, 7.8) 

200% of Reference 50% of Reference 73.0 
(72.9, 73.2) 

62.5 
(62.4, 62.6) 

18.3 
(18.1, 18.4) 

73.0 
(72.9, 73.2) 

62.5 
(62.4, 62.6) 

34.7 
(34.4, 34.9) 

7.6 
(7.4, 7.7) 

200% of Reference 0% of Reference 73.1 
(72.9, 73.1) 

62.5 
(62.4, 62.7) 

18.4 
(18.3, 18.6) 

73.1 
(72.9, 73.1) 

62.5 
(62.4, 62.7) 

35.0 
(34.8, 35.3) 

7.7 
(7.6, 7.9) 

Older Adults  
(65+) 

200% of Reference Reference 71.5 
(71.4, 71.7) 

62.5 
(62.3, 62.7) 

18.1 
(17.9, 18.3) 

71.5 
(71.4, 71.7) 

62.5 
(62.3, 62.7) 

34.3 
(34.1, 34.6) 

7.4 
(7.3, 7.6) 

Reference 50% of Reference 71.5 
(71.4, 71.8) 

62.6 
(62.4, 62.8) 

18.1 
(18.0, 18.3) 

71.5 
(71.4, 71.8) 

62.6 
(62.4, 62.8) 

34.3 
(34.1, 34.8) 

7.4 
(7.3, 7.6) 

Reference 0% of Reference 71.5 
(71.4, 71.6) 

62.5 
(62.4, 62.7) 

18.1 
(18.0, 18.3) 

71.5 
(71.4, 71.6) 

62.5 
(62.4, 62.7) 

34.3 
(34.0, 34.6) 

7.4 
(7.2, 7.5) 

200% of Reference 50% of Reference 71.5 
(71.4, 71.7) 

62.5 
(62.3, 62.6) 

18.1 
(18.0, 18.3) 

71.5 
(71.4, 71.7) 

62.5 
(62.3, 62.6) 

34.3 
(34.0, 34.6) 

7.4 
(7.3, 7.5) 

200% of Reference 0% of Reference 71.5 
(71.4, 71.7) 

62.5 
(62.4, 62.7) 

18.1 
(18.0, 18.2) 

71.5 
(71.4, 71.7) 

62.5 
(62.4, 62.7) 

34.4 
(34.1, 34.7) 

7.4 
(7.3, 7.6) 

Younger 
Adults  

 
(18 - 64) 

200% of Reference Reference 73.1 
(72.9, 73.2) 

62.5 
(62.4, 62.6) 

18.1 
(18.0, 18.3) 

73.1 
(72.9, 73.2) 

62.5 
(62.4, 62.6) 

34.3 
(34.1, 34.6) 

7.5 
(7.3, 7.6) 

Reference 50% of Reference 71.5 
(71.4, 71.7) 

62.5 
(62.3, 62.7) 

18.3 
(18.1, 18.5) 

71.5 
(71.4, 71.7) 

62.5 
(62.3, 62.7) 

34.6 
(34.4, 35.0) 

7.6 
(7.4, 7.7) 

Reference 0% of Reference 71.5 
(71.3, 71.7) 

62.5 
(62.3, 62.7) 

18.4 
(18.2, 18.6) 

71.5 
(71.3, 71.7) 

62.5 
(62.3, 62.7) 

35.0 
(34.7, 35.3) 

7.7 
(7.5, 7.8) 

200% of Reference 50% of Reference 73.0 
(72.9, 73.2) 

62.5 
(62.4, 62.7) 

18.3 
(18.1, 18.4) 

73.0 
(72.9, 73.2) 

62.5 
(62.4, 62.7) 

34.6 
(34.4, 35.0) 

7.5 
(7.4, 7.7) 

200% of Reference 0% of Reference 73.1 
(72.9, 73.2) 

62.5 
(62.4, 62.6) 

18.5 
(18.2, 18.6) 

73.1 
(72.9, 73.2) 

62.5 
(62.4, 62.6) 

35.0 
(34.8, 35.3) 

7.7 
(7.5, 7.9) 
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Scenario Ages 65+ 

Targeting Hospitalization 
Nudge Probability 

Breakthrough  
Nudge Probability 

Dose 1 Dose 2 Dose 3 Dose 4 

% (50% SI) % (50% SI) % (50% SI) % (50% SI) 

- Reference Reference 89.5 (89.3, 89.7) 81.1 (80.9, 81.4) 51.8 (51.4, 52.0) 15.0 (14.9, 15.3) 

All Adults (18+) 

200% of Reference Reference 90.5 (90.3, 90.7) 81.2 (80.9, 81.4) 51.9 (51.7, 52.1) 15.1 (14.9, 15.3) 

Reference 50% of Reference 89.5 (89.4, 89.7) 81.1 (80.9, 81.4) 52.0 (51.7, 52.3) 15.2 (15.0, 15.3) 

Reference 0% of Reference 89.6 (89.4, 89.7) 81.1 (80.9, 81.4) 52.3 (52.0, 52.5) 15.4 (15.2, 15.6) 

200% of Reference 50% of Reference 90.4 (90.3, 90.6) 81.1 (80.9, 81.4) 52.1 (51.8, 52.4) 15.3 (15.1, 15.5) 

200% of Reference 0% of Reference 90.5 (90.3, 90.6) 81.1 (81.0, 81.3) 52.2 (51.9, 52.6) 15.3 (15.2, 15.6) 

Older Adults (65+) 

200% of Reference Reference 90.4 (90.2, 90.5) 81.2 (80.9, 81.5) 51.8 (51.6, 52.3) 15.1 (14.9, 15.3) 

Reference 50% of Reference 89.6 (89.4, 89.7) 81.1 (80.9, 81.4) 52.1 (51.8, 52.4) 15.2 (15.0, 15.4) 

Reference 0% of Reference 89.5 (89.3, 89.7) 81.1 (80.9, 81.4) 52.1 (51.9, 52.4) 15.3 (15.1, 15.5) 

200% of Reference 50% of Reference 90.3 (90.2, 90.6) 81.1 (80.9, 81.4) 52.0 (51.7, 52.4) 15.2 (15.0, 15.4) 

200% of Reference 0% of Reference 90.4 (90.2, 90.6) 81.1 (81.0, 81.5) 52.2 (52.0, 52.5) 15.4 (15.2, 15.6) 

Younger Adults (18 - 
64) 

200% of Reference Reference 89.6 (89.4, 89.8) 81.1 (80.9, 81.3) 51.8 (51.5, 52.1) 15.0 (14.8, 15.2) 

Reference 50% of Reference 89.5 (89.4, 89.7) 81.1 (80.9, 81.4) 51.8 (51.5, 52.2) 15.1 (14.9, 15.3) 

Reference 0% of Reference 89.6 (89.4, 89.7) 81.2 (81.0, 81.4) 51.8 (51.6, 52.1) 15.0 (14.9, 15.2) 

200% of Reference 50% of Reference 89.6 (89.5, 89.8) 81.1 (80.9, 81.4) 51.9 (51.6, 52.3) 15.0 (14.9, 15.3) 

200% of Reference 0% of Reference 89.6 (89.5, 89.8) 81.1 (80.9, 81.4) 51.8 (51.6, 52.2) 15.0 (14.9, 15.2) 
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Table A2. Cumulative infections and infections averted by end of simulation for select scenarios, with simulation intervals. 

Scenario Total Infections per 
100'000 PY 

Infections Averted 
per 100'000 PY 

Percent of 
Infections Averted 

Infections Averted 
per Addtl. Dose 

Targeting Hospitalization 
Nudge Prob. 

Breakthrough 
Nudge Prob. n (50% SI) n (50% SI) % (50% SI) n (50% SI) 

- Reference Reference 67'746.4 (66'937.9, 68'534.7) - - - 

All Adults 
(18+) 

200% of Reference Reference 67'256.6 (66'269.6, 67'980.8) 489.8 (-234.4, 1'476.8) 0.7 (-0.3, 2.2) 0.5 (-0.4, 1.9) 

Reference 50% of Reference 67'701.8 (66'528.3, 68'461.8) 44.6 (-715.4, 1'218.1) 0.1 (-1.1, 1.8) 0.1 (-5.2, 5.1) 

Reference 0% of Reference 67'632.6 (66'830.5, 68'605.8) 113.8 (-859.4, 915.9) 0.2 (-1.3, 1.4) 0.2 (-2.9, 2.6) 

200% of Reference 50% of Reference 67'531.7 (66'569.6, 68'487.0) 214.7 (-740.6, 1'176.8) 0.3 (-1.1, 1.7) 0.2 (-1.0, 1.0) 

200% of Reference 0% of Reference 67'270.7 (66'320.7, 68'237.9) 475.7 (-491.5, 1'425.7) 0.7 (-0.7, 2.1) 0.3 (-0.5, 1.3) 

Older 
Adults 
(65+) 

200% of Reference Reference 67'435.0 (66'429.5, 68'505.1) 311.4 (-758.7, 1'316.9) 0.5 (-1.1, 1.9) 0.4 (-5.1, 5.0) 

Reference 50% of Reference 67'542.2 (66'697.9, 68'636.7) 204.2 (-890.3, 1'048.5) 0.3 (-1.3, 1.5) 0.4 (-4.1, 4.7) 

Reference 0% of Reference 67'638.6 (66'636.8, 68'435.9) 107.8 (-689.5, 1'109.6) 0.2 (-1.0, 1.6) 0.0 (-7.1, 4.6) 

200% of Reference 50% of Reference 67'786.2 (66'827.2, 68'672.3) -39.8 (-925.9, 919.2) -0.1 (-1.4, 1.4) -0.2 (-6.7, 4.2) 

200% of Reference 0% of Reference 67'412.9 (66'600.4, 68'459.6) 333.5 (-713.2, 1'146.0) 0.5 (-1.1, 1.7) 1.2 (-2.0, 5.8) 

Younger 
Adults  

(18 - 64) 

200% of Reference Reference 67'358.1 (66'325.1, 68'409.7) 388.3 (-663.3, 1'421.3) 0.6 (-1.0, 2.1) 0.6 (-0.9, 2.3) 

Reference 50% of Reference 67'702.4 (66'601.6, 68'403.4) 44.0 (-657.0, 1'144.8) 0.1 (-1.0, 1.7) 0.3 (-2.2, 3.5) 

Reference 0% of Reference 67'527.5 (66'499.1, 68'492.8) 218.9 (-746.4, 1'247.3) 0.3 (-1.1, 1.8) 0.1 (-3.7, 3.5) 

200% of Reference 50% of Reference 67'182.0 (66'253.0, 68'173.5) 564.4 (-427.1, 1'493.4) 0.8 (-0.6, 2.2) 0.5 (-0.5, 1.7) 

200% of Reference 0% of Reference 67'294.0 (66'546.1, 68'037.6) 452.4 (-291.2, 1'200.3) 0.7 (-0.4, 1.8) 0.4 (-0.4, 1.7) 
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Table A3. Cumulative deaths and deaths averted by end of simulation for select scenarios, with simulation intervals. 

Scenario Total Deaths per 
100'000 PY 

Deaths Averted per 
100'000 PY 

Percent of Deaths 
Averted 

Deaths Averted per 
Addtl. Dose 

Targeting Hospitalization 
Nudge Prob. 

Breakthrough 
Nudge Prob. n (50% SI) n (50% SI) % (50% SI) n (50% SI) 

- Reference Reference 119.5 (113.2, 124.0) - - - 

All Adults (18+) 

200% of Reference Reference 118.3 (113.8, 124.0) 1.2 (-4.5, 5.7) 1.0 (-3.8, 4.8) 0.0 (0.0, 0.0) 

Reference 50% of Reference 118.6 (113.2, 124.1) 0.9 (-4.6, 6.3) 0.8 (-3.9, 5.3) 0.0 (0.0, 0.0) 

Reference 0% of Reference 119.2 (112.0, 124.1) 0.3 (-4.6, 7.5) 0.3 (-3.9, 6.3) 0.0 (0.0, 0.0) 

200% of Reference 50% of Reference 117.1 (112.0, 123.4) 2.4 (-3.9, 7.5) 2.0 (-3.3, 6.3) 0.0 (0.0, 0.0) 

200% of Reference 0% of Reference 119.2 (113.2, 124.1) 0.3 (-4.6, 6.3) 0.3 (-3.9, 5.3) 0.0 (0.0, 0.0) 

Older Adults 
(65+) 

200% of Reference Reference 118.6 (114.4, 123.5) 0.9 (-4.0, 5.1) 0.8 (-3.4, 4.3) 0.0 (0.0, 0.0) 

Reference 50% of Reference 117.1 (111.2, 121.1) 2.4 (-1.6, 8.3) 2.0 (-1.4, 6.9) 0.0 (0.0, 0.0) 

Reference 0% of Reference 118.6 (113.8, 123.5) 0.9 (-4.0, 5.7) 0.8 (-3.4, 4.8) 0.0 (0.0, 0.0) 

200% of Reference 50% of Reference 118.3 (112.0, 125.1) 1.2 (-5.6, 7.5) 1.0 (-4.8, 6.3) 0.0 (0.0, 0.0) 

200% of Reference 0% of Reference 120.4 (113.6, 124.7) -0.9 (-5.2, 5.9) -0.8 (-4.4, 4.9) 0.0 (0.0, 0.0) 

Younger Adults 
(18 - 64) 

200% of Reference Reference 116.8 (112.4, 123.4) 2.7 (-3.9, 7.1) 2.3 (-3.3, 5.9) 0.0 (0.0, 0.0) 

Reference 50% of Reference 120.7 (114.4, 126.5) -1.2 (-7.0, 5.1) -1.0 (-5.9, 4.3) 0.0 (0.0, 0.0) 

Reference 0% of Reference 117.4 (112.0, 124.0) 2.1 (-4.5, 7.5) 1.8 (-3.8, 6.3) 0.0 (0.0, 0.0) 

200% of Reference 50% of Reference 118.9 (113.2, 124.0) 0.6 (-4.5, 6.3) 0.5 (-3.8, 5.3) 0.0 (0.0, 0.0) 

200% of Reference 0% of Reference 119.2 (113.8, 124.0) 0.3 (-4.5, 5.7) 0.3 (-3.8, 4.8) 0.0 (0.0, 0.0) 
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