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Abstract 

 

Identifying land use and meteorological factors associated with the ratio 

of personal PM2.5 exposures versus ambient concentration in a panel of 

college students 
By Sarita Mohanty 

 

 

Exposure to air pollution, such as fine particulate matter PM2.5, have been associated with 

many adverse health outcomes. A large portion of the urban population live within a 

close distance to major roadways. Given that traffic is a major source of PM2.5, there is an 

increased interest in understanding personal exposure to PM2.5 at fine spatiotemporal 

resolution. This study is motivated by a dataset of personal PM2.5 measurements from 

wearable sensors at 15 second intervals with geo-location information, and hourly 

meteorological data from stationary monitors every hour. We built linear regression 

models and random forest models for predicting the ratio between personal exposure to 

PM2.5 and background ambient PM2.5 levels. Both approaches identified several land use 

and meteorological factors, including distance to highway, traffic counts, temperature, 

and relative humidity.  
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1. Introduction 

Outdoor air pollution is a mixture of many different pollutants that originate from natural 

and anthropogenic sources. Anthropogenic sources are increasing due to greater needs in 

transportation, power generation, industrial activity, and domestic heating and cooking. 

Fine particles with aerodynamic diameters less than 2.5 micrometers (PM2.5) is a 

common air pollutant that is often used as an indicator of air quality. Cohort and case-

control studies across Europe, North America and Asia have shown that there are positive 

relationships between high levels of PM2.5 and adverse health outcomes such as lung 

cancer, asthma, and cardiovascular diseases (Sarnat et al., 2018) (Loomis et al., 2013) 

Moreover, the World Health Organization declared air pollution to be one of the major 

environmental health risks and estimated 4.2 million premature deaths in 2016 to be due 

to outdoor air pollution (Guan et al., 2019). An estimated 30 – 45% of the population in 

large North American cities live within a range of up to 300 to 500 m from a major road, 

an environment that is highly affected by traffic-related air pollution (Sarnat et al., 2018). 

As the concern around exposure to harmful air pollutants grows in the world, there is a 

greater need to understand personal exposure to air pollution on a real-time basis and at a 

geographically localized scale. The conventional way of measuring outdoor air pollution 

is by using stationary monitors. These monitors are highly reliable, accurate and measure 

many kinds of pollutants. However, the instruments are large, heavy and very expensive. 

The locations of these monitors are often based on careful considerations to capture 

specific sources (e.g. traffic) or measure background levels. As a result, they are sparsely 

distributed and cannot capture the highly heterogenous spatial variations within cities, 

especially near roadways. The stationary monitors may also lead to substantial 
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measurements errors for the use in epidemiology study as shown by Liang et al (Liang et 

al., 2018). Finally, most stationary monitors provide readings every hour or every day. 

Therefore, the air pollution maps created by the stationary monitors have low spatial and 

temporal resolutions (Yi et al., 2015) 

Reliance on low spatiotemporal resolution of air quality data will limit the public’s 

awareness of their personal exposure and therefore their personal health risks. As stated 

previously, air pollution varies greatly with a myriad of factors. Research has shown that 

pollution concentrations within one street can vary greatly over a few meters and a few 

seconds (Tiwary et al., 2011). Moreover, research has also shown that personal 

measurements of black carbon, a pollutant that reflect vehicular combustion, can be 

vastly different from ambient roadside monitoring (Sarnat et al., 2018) 

To remedy this issue, there has been development of small, portable monitors that can be 

used in various ways to measure pollutants and can also be available at low cost. Mobile 

monitors can either be small devices that measure as they are in motion or can be 

stationary portable monitors that are easily moved between locations. Mobile monitors 

are especially useful in potentially capturing the spatiotemporal variability in air pollution 

that results from traffic volume, distance from sources, pollutant chemistry, and local 

weather patterns (Moltchanov et al., 2015). Since pollution levels can vary in small 

spatiotemporal scales, dense networks offer an increased spatial flexible that cannot be 

found in stationary monitors (Brantley et al., 2014).  

Development of low-cost air quality sensors is a rapidly evolving technology area. 

Sensors are now available commercially in a wide variety of designs and capabilities and 

cost between $100 - $2500 (Nathan & Scobell, 2012). The MicroPEM is an example sensor 
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for characterizing personal P.M. exposure that is wearable and can provide measurements 

every 15 seconds. The MicroPEM also contains a Teflon filter that can be gravimetrically 

weighed to calibrate real time data (Yan et al., 2018)(RTI International, 2016). These 

wearable air pollution monitors allow individuals to understand their exposure to air 

pollution while doing certain activities or being at certain locations and thereby remedy 

their lifestyle if needed (Sarnat et al., 2018). It also allows for researchers to quantify the 

health effects of air pollution in a more personalized manner. 

This thesis describes an analysis of MicroPEM data with high spatial and temporal 

resolutions collected from 34 students of the Georgia Institute of Technology during the 

period September 22nd 2014 – December 5th 2014. The main aims are to develop models 

for the ratio of personal exposure to PM2.5 versus ambient background level using 

predictors such as meteorological conditions, time of day, and distance to major 

roadways. We focus on the ratio to help elucidate factors that can contribute to error 

associated with use of background levels measured at standard fixed location monitors 

instead of actual personal exposures.  

 

2. Methods 

2. 1 The Dorm Room Inhalation to Vehicular Exposure (DRIVE) Study  

The Dorm Room Inhalation to Vehicle Emissions (DRIVE) study was conducted to 

measure traditional single-pollutant and novel multipollutant traffic indicators along the 

busiest and most congested highway artery in the geographic core of Atlanta. Personal 

exposure data were collected through field sampling on the Georgia Institute of 
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Technology’s (GIT) campus. The GIT campus is adjacent to one of the most heavily 

trafficked highway arteries (I-75/I-85 highway connector). Moreover, there are also many 

smaller roadways that surround the GIT campus that could also contribute towards PM2.5. 

The DRIVE study recruited 34 students who lived in the two different dormitories – one 

near the highway connector (Near dorm) and one that was farther away (Far Dorm). The 

Near dorm was approximately 20 m west of the connector highway while the far dorm 

was approximately 1.4 km west of the connector highway (Sarnat et al., 2018) The 

subjects only walked on weekdays (Monday – Friday) and therefore, no data were 

collected on weekends.  

The GIT map below shows a sample of the recorded locations of all the participants, the 

two dormitories, as well as the connector highway and secondary roads surrounding 

campus. The buildings on campus are also marked.  

 

2.1.1 Personal Exposure Data 

Figure 1: Map of GIT campus - Red dots indicate the location of the dorm, Light green polygons 

represent the buildings in and around the campus, Purple polygon represents the connector highway, the 

Green lines represent the secondary roads in and around the campus 
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Continuous personal exposure monitoring was conducted on days when students were on 

campus between September 22nd, 2014 to December 5th, 2014. Each week, about six 

students participated in two consecutive 48-hour personal exposure sampling sessions 

where they were asked to carry a 3lbs personal sampling pack that recorded PM2.5 at one-

minute intervals.  The measurements were done via the nephelometry by the MicroPEMs 

that contained 37-mm Teflon Filters, which collected particles through the sampling 

inlets at a 0.5-L/min flow rate. (Sarnat et al., 2018) Measurements were bias-corrected 

using gravimetric analysis of the 48- hour integrated Teflon filter within the personal 

sampling devise.  

 

2.1.2 Location Data 

Each subject’s position was recorded using global positioning system (GPS) trackers that 

were attached to the side of the personal sampling pack. When a participant stayed within 

a radius of about 6m for longer than 5 minutes, their locations were recorded as 

waypoints. GPS measurements were recorded every second when the participant was 

moving. 

 

2.1.3 Meteorological and Background PM2.5 Data 

There are several stationary monitors around the GIT campus. For the purposes of this 

analysis, we obtained meteorological data from the roadside monitor (RDS). The RDS 

monitor is 10m away from the closest lane of the 15 – lane connector highway and the 

area surrounding the monitor was a campus parking lot.  The meteorology monitor 

measured the temperature, rain volume, relative humidity, wind speed, wind direction at 
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every hour. We also obtained hourly PM2.5 measurement from the Jefferson Street (JST) 

monitor, which is located 2.4 km from the highway, to reflect the background level. The 

two monitors are shown in Figure 2. 

 

 

2.1.3 Traffic Count Data 

The hourly traffic counts data for the connector highway was taken from the Georgia 

Department of Transportation’s database. However, there was no traffic count data 

available between 10/22/2014 to 11/11/2014. Since traffic volumes remained consistent 

for all the days, we assigned the hourly mean of traffic counts for the missing days from 

available data.  

 

2.2 Development of the Analytic Dataset 

In order to build spatiotemporal models for personal exposure to PM2.5, we first linked 

various datasets to a common spatial and temporal scale. Since the PM2.5 measurements 

were taken every minute, the GPS locations were recorded every 15 seconds and the 

meteorological variables were recorded every hour, we decided to aggregate the GPS 

Figure 2: Map of GIT campus - Red dots indicate the location of the stationary monitors that were used in this 

study 
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data to the minute-scale. Hourly background PM2.5 and meteorological measurements 

were assigned to for the corresponding minute. 

For the days between 10/22/2014 to 11/11/2014, the meteorological measurements from 

the RDS monitor were missing. As a result, we used a regression-based imputation 

technique to predict the temperature, relative humidity, and wind speed values for the 

missing days. The predictors for the regression for each of the variables were the 

respective measurements from two additional meteorological monitors in the study 

region. Table 1 shows the linear models that were used to impute the meteorological 

variable. Our ability to impute hourly temperature and relative humidity is excellent. 

Since wind direction is measured in degrees, we did not use the same regression-based 

imputation technique and instead used the mean of the hour from all the available days to 

impute the values.  

 

Meteorological 

Variable 

Linear Model R2 

Temperature 𝑇𝑒𝑚𝑝𝑅𝐷𝑆 =  −0.057 + 0.386𝑇𝑒𝑚𝑝𝐽𝑆𝑇 + 0.627𝑇𝑒𝑚𝑝𝑅𝐹  0.996 

Relative Humidity 𝑅𝐻𝑅𝐷𝑆 =  6.627 + 0.236𝑅𝐻𝐴𝑇𝐿 + 0.656𝑅𝐻𝐽𝑆𝑇  0.961 

Wind Speed 𝑊𝑆𝑃𝐷𝑅𝐷𝑆 =  0.649 + 0.090𝑊𝑆𝑃𝐷𝐴𝑇𝐿 + 0.334𝑊𝑆𝑃𝐷𝐽𝑆𝑇

+ 0.172𝑊𝑆𝑃𝐷𝑅𝐹  

0.328 

 

Furthermore, if there was no location data for a minute for a participant, their location 

was treated to be the same as their last recorded location. Finally, there were several time 

points for which traffic counts were not available. However, looking at Figure 3, we find 

Table 1: Linear models used for regression-based imputation on selected meteorological 

variables 
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there is a distinct pattern on traffic flow on the connector highway. Therefore, for the 

missing hours, we use the mean of the hour from all the available days to impute their 

values. 

 

 

2.3 Derived Variables 

Several derived variables were created that were used as predictors for personal exposure 

to PM2.5  

Indoor Indicator - Buildings were manually marked using ArcMap’s default 

basemap. If the GPS measurements overlapped with the buildings, the indoor 

indicator takes the value 1 at the time.  

Upwind Indicator - To assess if the wind was blowing from the highway towards 

participant (downwind), the wind field were plotted on ArcMap (Figure 4) and 

visually assessed to create a rule for points being upwind or downwind. For example, 

points to the west of the highway were assigned to be downwind if the wind direction 

was greater than 180o while the points to the east of the highway. 

Figure 3: Daily Weekday Traffic Volume trends – each color represents a day in the study 
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Time Intervals – To assess how time of day affects personal exposure, each day was 

divided into five intervals as follows: 

T1 (Morning): 7am – 10am 

T2 (Midday): 10am – 4pm 

T3 (Evening): 4pm – 8pm 

T4 (Night): 8pm – 12am 

T5 (Early Morning): 12am – 7am 

Secondary Road – Besides the connector highway, there are several other streets 

inside or around the main GIT campus. We created an indicator variable for whether 

there was a secondary road within a 50m buffer area. 

Distance to Connector Highway – This was calculated using ArcMap by spatially joining 

the GPS measurements with the highway polygon. The closest distance between the 

points and the highway was calculated in meters. 

Figure 4: Upwind vs. Downwind – The blue arrows represent downwind points and the red arrows represent 

upwind points 
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2.4 Data Analysis 

The outcome variable for this analysis, RatioPM, was defined to be the ratio between the 

15-second personal PM2.5 measurement as recorded by the MicroPEM sensor and the 

hourly PM2.5 measurement as recorded by the JST monitor. The purpose of using this 

outcome variable rather than the personal PM2.5 measurement is to help identify 

predictors that are associated with differences between personal exposures and 

background levels. Specifically, we wanted to evaluate various variables may impact the 

error associated with the use of ambient PM2.5 levels to assign exposure.  

Linear Regression Model (LR) 

We first constructed a linear regression model by fitting a full model with RatioPM as the 

outcome and all the predictors. Then, using the regression subset procedure in R 

(package: leaps) we selected the following linear model based on the maximum adjusted 

r2 value 

𝑅𝑎𝑡𝑖𝑜𝑃𝑀 =  T1 +  T2 +  T3 +  T4 +  Temperature +  Relative Humidity 

+  Wind Speed +  Traffic Count +  Indoors 

+  Distance from Highway +  Upwind +  Secondary Road +  ε 

Random Forest Regression Model (RF) 

To create a RF model, we used the Ranger package in R with a split rile that was based 

on minimizing variance. We used the same predictors that we included in the LR model. 

We set the number of trees to be 500 and number of variables to possibly split at in each 

node to be 5.  The importance of each variable in the model was based on the variance of 

the response variable. 
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2.5 Prediction Grid Calculations 

To better visualize model predictions over the study region, we designed a 100 x 100 grid 

on top of the GIT campus to be able to make predictions (Figure 6). Each grid measured 

an area of 18m x 18m.  Predictions from the models were made for each hour for each 

grid centroid.  

 

  

Figure 6: Grid centroids of 100 x 100x. Each grid is 18m x 18m and the total area on which RatioPM 

was predicted is  
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3. Results 

The summary table for the predictors included in the dataset is shown in Table 2. 

 

 Mean (SD) 

Personal PM2.5 (μg/m3) 8.34 (5.71) 

Jefferson St. PM2.5 (μg/m3) 10.64 (6.09)  

PM2.5 Ratio 0.95 (0.74) 

Hourly Temperature (Farenheit) 61.13 (12.98) 

Hourly Relative Humidity (%) 64.67 (17.44) 

Hourly Windspeed (mph) 2.09 (1.38) 

Hourly Traffic Count 12534 (5711) 

Indoors (Count/% of Total) 27130 (23.5%) 

Downwind (Count/% of Total) 65065 (56.2%) 

Secondary Road (Count/% of Total) 30150 (26.1%) 

Distance from Connector Highway (m) 465.62 (480.80) 

 

The table on the next page shows the variables stratified by each within-day time period 

(Table 3).  

  

Table 2: Summary of variables measured or derived in the study, N=34 
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 7 – 10am 10 – 4pm 4pm – 8pm 8pm – 12am 

Personal PM2.5 (μg/m3) 8.48 (5.80) 7.98 (5.17) 8.22 (5.19) 8.96 (6.81) 

Jefferson St. PM2.5 (μg/m3) 14.19 (7.71) 7.59 (4.46) 9.14 (4.27) 12.15 (5.91) 

Ratio PM2.5  0.70 (0.50) 1.30 (1.00) 1.04 (0.69) 0.81 (0.56) 

Temperature (Farenheit) 57.12 (11.54) 67.80 (11.34) 65.57 (12.37) 59.74 (11.77) 

Relative Humidity (%) 74.61 (14.03) 54.54 (16.31) 53.54 (14.67) 64.46 (13.45) 

Windspeed (mph) 1.98 (1.18) 2.99 (1.06) 2.13 (1.41) 1.67 (1.33) 

Traffic Count 15940 (1017) 17559 (922) 15456 (892) 9715 (2683) 

Indoors (Count/% of Total) 2888 (21.1%) 8105 (26.7%) 4992 (24.2%) 4390 (22.8%) 

Downwind (Count/% of 

Total) 

7859 (57.3%) 17133 (56.5%) 11773 (57.2%) 10705 (55.5%) 

Secondary Road (Count/% 

of Total) 

3433 (25.0%) 6337 (20.9%) 4979 (24.2%) 5836 (30.3%) 

Distance from Connector 

Highway (m) 

463.55 (456.08) 494.88 (415.54) 481.32 (475.97) 448.40 (509.26) 

 

3.1 LR Model 

The coefficients and their associated p-values for the predictors in the LR model are 

shown in Table 4. 

  

Table 3: Summary of variables measured or derived in the study stratified by 

Time, Mean (SD), N=34 
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 Estimate  95% Confidence Interval p-value 

Intercept (T5) 2.078  (2.047, 2.110) * 

T1 (7am – 10am) -0.073  (-0.091, -0.056) * 

T2 (10am, - 4pm) 0.448  (0.428, 0.468) * 

T3 (4pm – 8pm) 0.196  (0.178, 0.214) * 

T4 (8pm – 12am) -2.611 X 10-4  (-0.014, 0.013) 0.286 

Temperature (Fahrenheit) -0.013  (-0.013, -0.012) * 

Relative Humidity (%) -8.263 X 10-3  (-8.539 X 10-3, -7.987 X 

10-3) 

* 

Wind Speed (mph) 0.057  (0.053, 0.060) * 

Traffic Counts -1.480 X 10-6  (-2.658X 10-6, (-3.012 X 

10-7 

* 

Indoors -0.097  (-0.107, -0.087) * 

Distance from Connecter 

(meters) 

-5.409 X 10-5  (-6.280 X 10-5, -4.538 X 

10-5) 

* 

Downwind -0.054  (-0.062, -0.045) * 

Secondary Road 0.037  (0.028, 0.047) * 

* Indicates p-value < 0.01 

 

3.2 RF Model 

As mentioned previously, the variable importance of the RF model was based on the 

variance of the response. Figure 7 shows the ranking of the variables in the model. We 

see that the relative humidity is an important variable in all three models.  

 

Table 4: LR Model Predictors, R2 = 0.202 
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3.3 Predictions based on LR and RF Models 

We predicted in-sample RatioPM using both the LR and the RF model and compared 

them to the observed RatioPM. Figure 5 shows that the RF model is better able to capture 

extreme values and provides estimates that are more similar in distribution to the 

observed RatioPM.  

 

 

Figure 7: Variable Importance – The RF model shows relative humidity to be the most important variable in the 

model, followed by Distance from Highway, Temperature, and Wind Speed 

Figure 5: Distributions of observed RatioPM, LR Model Predicted RatioPM and RF Model Predicted RatioPM 
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Using the two models, we created predictions for each hour on the grid shown in Figure 

6. The average for each of the time period (T1 – T4) for each of the model is shown 

below in Figure 8. 

 

 

Table 4 below shows the average RatioPM for all the 10,000 grids for each of the time 

periods.  

Table 4: Average Predictions of RatioPM by Time, Mean (SD) 

 LR RF 

7 – 10am 0.725 (0.056) 0.795 (0.032) 

10 – 4pm 1.338 (0.056) 1.414 (0.044) 

4 – 8pm 1.065 (0.056) 1.068 (0.052) 

8 – 12am 0.843 (0.056) 0.848 (0.034) 

 

Figure 8: Predictions of the ratio between personal PM2.5 exposures and ambient concentration by time periods 

based on LR (top panel) and RF models 
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The LR and the RF model produce some interesting results. First, we see that ratio of 

personal exposure to ambient PM2.5 is the highest in the time period from 10am to 4pm. 

This is in line with the observed data as well since the mean RatioPM for 10am – 4pm is 

1.30 (Table 3). It is interesting to note that the personal exposure of the subjects remains 

consistent through the different time periods. However, the background PM2.5 levels as 

measured by the JST monitor appear to change quite dramatically between the time 

periods, thereby leading to changes in the RatioPM.  

From the linear model, we can see the direction of each of the predictors in relationship 

to the response. Among the continuous variables, temperature, relative humidity, traffic 

counts, and distance from highway appear to be negatively related with RatioPM, while 

wind speed appears to be positively related with RatioPM. Among the categorical 

variables, we see that being indoors, and downwind are negatively related to RatioPM, 

while within an 50m-buffer of secondary road is positively related. All these variables are 

significant predictors in the model. It is interesting to see that traffic count is negatively 

related to RatioPM. This means that with a higher volume of traffic, the ratio between 

personal exposure and ambient PM2.5 decreases. This could be explained by the fact that 

an increase in traffic in the connector highway creates higher level of ambient air 

pollution and therefore reduces the ratio of personal exposure to ambient PM2.5. 

Similarly, being within a 50m proximity of secondary road leads to an increase in the 

RatioPM.  

Distance from highway is negatively correlated with RatioPM. This is in line with our 

hypothesis that as an individual move farther away from the highway, the individual’s 

RatioPM lowers. Given the large volume of traffic on the connector highway, an 
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individual who is very close to the highway is likely to be exposed to PM2.5 at a much 

higher level than the ambient PM2.5 levels on campus. 

Moreover, we see that the random forest model generally produces slightly higher 

predictions for RatioPM. Given, the model’s inherent ability to account for extreme 

values, the model is better able to predict higher values. The RF model also shows 

relative humidity to be the most important predictor in RatioPM. Cheng et al. shows that 

an increase in relative humidity is positively correlated with PM2.5. They also showed that 

high humidity conditions were favorable in the formation of air pollution episodes with 

high PM2.5 concentrations in Bejing, China (Cheng et al., 2015)This implies that an 

increase in relative humidity increases ambient air pollution and therefore we should 

expect to see a smaller RatioPM.  

In the linear regression model, we see that the RatioPM for participants who were indoors 

was higher in all time periods except for between 10-4pm. Given that the ambient air 

pollution was assumed to be constant throughout the entire area for the hour, this 

indicates that personal exposure to PM2.5 was higher indoors in those time periods. This 

could indicate some potential sources of indoor air pollution that the students were 

exposed to in the campus’s buildings. 

4. Discussion 

4.1 Limitations 

Limitations of this study include the relatively small area of the GIT campus. Second, we 

used GPS points to identify subject’s locations and to determine key predictor variables 

such as whether they were indoors and their distance from the highway. However, GPS 
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data is known to exhibit spatial measurement error, which could impact our results. 

Moreover, our methodology in creating an indicator variable for indoors or outdoors can 

be improved on, since we visually identified parts of the GIT campus as buildings (Figure 

1). 

Adherence to the study protocol by participants in the study is unknown. Although the 

participants were asked to wear the sampling pack during all times when they were 

moving in the 48-hour period, it is possible that they did not completely adhere to this 

given the extra 3lbs weight. We also know that a person breathes at a higher rate when 

they are more active. Therefore, a person who is walking fast is likely to intake more 

PM2.5 than another person who is idle in the same location and in the same hour. This 

difference will not be captured by the microPEM. 

4.2 Future Work 

Based on our results, we see that there is a significant difference in RatioPM within the 

different time periods within the day. The time periods were created based on general 

knowledge on when college students might be outside and when they would be active. As 

a next step, we would create separate models for each of the time periods and determine 

which variable is the most critical in predicting RatioPM. We can also build similar 

models using the absolute personal PM2.5 measurement as the response variable. It would 

be interesting to observe if personal PM2.5 had the same covariate as the RatioPM.  

Moreover, the RF model appears to predict lower RatioPM in areas that are right adjacent 

to the highway. It is worth investigating why that might be since we would hypothesize 

that the RatioPM would gradually decrease as a person moved away from the highway. 

One possible explanation may be the sparse data points near on and very near the 
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highway and future analysis may consider restricting the training dataset only to 

observations west of the highway.  
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