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Abstract 

 

Spatial Distribution of Leprosy and Schistosomiasis and the Role of Coinfection in 

Leprosy Disease Severity in Minas Gerais, Brazil 

 

By Nishanth Parameswaran 

 

 Background. Leprosy and schistosomiasis are co-endemic in certain areas of Brazil. 

It has been demonstrated that leprosy can present in its more infectious and 

debilitating multibacillary form if the patient concurrently has a helminth infection 

due to a change in immune response. We hypothesized that this association can be 

presented spatially and aspatially. 

Methods. Aspatial logistic regression was applied to case-control data (n = 126) 

from a population in Minas Gerais, Brazil to estimate the association between 

schistosomiasis infection and leprosy infection, as well as multibacillary leprosy. 

The Kulldorff spatial scan statistic was used to identify clusters of infections and 

coinfections The Cuzick-Edwards method was used to test for heterogeneity in 

disease distribution. The local join count statistic was used to identify cluster cores 

of infections and coinfections by assessing for spatial autocorrelation. 

Results. Leprosy was associated with a 4.97 (1.03, 24.09) times higher odds of 

schistosomiasis infection compared to non-cases. Multibacillary leprosy was 

associated with a 5.28 (95% CI 1.49, 18.75) times higher odds of schistosomiasis 

compared to paucibacillary cases. The spatial scan statistic identified 

schistosomiasis and coinfection clusters, while the local join count statistic 

identified leprosy and schistosomiasis clusters, albeit in the same general vicinity. 

The Cuzick-Edwards method results showed global spatial autocorrelation in 

leprosy cases and schistosomiasis cases. The spatial scan and local join count 

identified clusters of infected and coinfected individuals in the same section of the 

study area.  

Conclusion. We successfully described aspatial and spatial associations between 

leprosy and schistosomiasis infection in a coendemic area in Minas Gerais, Brazil. 

Furthermore, we estimated the aspatial association between multibacillary leprosy 

and schistosomiasis infection which supports the hypothesis that schistosomiasis 

may be a factor in the sustained transmission of leprosy in co-endemic areas. 
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Background 

 

In 2015, there were 28,761 reported leprosy cases in Brazil, with a case detection rate of 

14.07 per 100,000 inhabitants (1, 2). However, a large number of municipalities are still 

considered hyperendemic (in which case detection rates are > 40/100,000) (1, 2). 

Although leprosy is on the downturn, it is still a major public health problem in low or 

middle income countries and is associated with social stigma, disability, as well as loss of 

productivity if not treated early with multidrug therapy (3).  

Leprosy, or Hansen’s disease, is a long term infection characterized by initially pale 

patches of skin, nerve problems such as numbness or tenderness, with potential tissue 

loss and reabsorption of cartilage (4-6). Mycobacterium leprae is the primary causative 

organism, and there is evidence that a second organism, Mycobacterium lepromatosis, 

can be responsible for leprosy as well. Both organisms are obligate intracellular 

pathogens, and M. leprae can infect dendritic cells, Schwann cells, and macrophages (6). 

Leprosy is transmitted through close contact between humans, primarily through nasal 

droplets (7). Household contacts compared to the general population have a higher risk of 

contracting leprosy (7). Close contact with infected armadillos or consumption of 

infected armadillo meat can also lead to infection (3). Although M. leprae is highly 

infective, it has a low pathogenicity wherein ~10% of infected actually develop 

symptoms (2, 8). Furthermore, it is estimated that the majority of the population is 

resistant (9). 
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Clinical diagnosis of leprosy is accomplished through a combination of skin lesions and 

sensory disorders (6, 8, 10-13). For better determination of the clinical type of leprosy, or 

if the patient presents with purely neurological symptoms, skin and / or nerve biopsiesare 

the gold standard. This is not always possible in low resourced areas (6). Leprosy can 

also be characterized using the microscopic examination where bacillary index is 

calculated on earlobe or skin smears. There are generally three accepted classification 

systems. The Ridley-Jopling system combines clinical, histopathological, and 

bacteriological indices as correlates for the host immune response. This system splits up 

the clinical types into tuberculoid (IT), borderline tuberculoid (BT), borderline borderline 

(BT), borderline lepromatous (BL), and lepromatous (LL) (13). The World Health 

Organization (WHO) classification of leprosy involves counting skin lesions, where 1-5 

lesions classify as paucibacillary (PB) while 6 or more classify as multibacillary (MB). 

The WHO classification, in comparison to the Ridley-Jopling system, corresponds to 

lepromatous at the far end of the MB spectrum and tuberculoid at the far end of the PB 

side. Finally, the Madrid system lies in between with four clinical categories: 

indeterminate, tuberculoid, borderline, and lepromatous (3). Contacts of multibacillary 

cases have a higher relative risk of developing leprosy in comparison to contacts of 

paucibacillary cases, due to the higher bacillary load in MB cases  (7). Multibacillary 

cases are characterized by an immune response notable for elevated Th2 cytokines, while 

paucibacillary cases demonstrate a strong cell-mediated or Th1 response (4, 14).  
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Schistosomiasis is another neglected tropical disease (NTD). It is caused by trematodes 

carried by freshwater snails, and the species responsible for a large amount of disease 

burden in Brazil is Schistosoma mansoni (1, 15-17). Both leprosy and schistosomiasis are 

NTDs where the highest burden is often found in areas of poverty, but schistosomiasis in 

particular is often found in areas with poor water, hygiene, and sanitation (WASH) 

practices and is driven by environmental factors such as vegetation, land cover, elevation, 

temperature, and water availability (15, 18-22). Schistosome eggs contaminate water in 

which infected humans have defecated or urinated. After hatching, the parasites infect 

and multiply within snails in the water, and then leave the snail to enter the skin of people 

who enter the freshwater source (20, 22, 23). Schistosomiasis is typically diagnosed by 

egg counts in stool or urine samples. Immunological methods are also used, such as 

enzyme-linked immunosorbent assay (ELISA) (24). In Brazil, 700-800 deaths due to 

schistosomiasis are reported annually, and between 2 and 6 million are infected (21). 

 

Exposure to helminth infections has been shown to raise Th2 levels, and this may be 

linked to increased likelihood of developing the more severe and infectious MB leprosy, 

due to potential immune dysregulation and suppression of cell-mediated immunity which 

is thought to be the primary means of controlling the M. leprae  (14, 26-28).  Diniz et al 

showed an association with soil-transmitted helminths and leprosy, especially 

multibacillary leprosy, that was accompanied by a predominant Th2 cytokine response 
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(29). These differing responses motivate the proposed associations between 

multibacillary leprosy and schistosomiasis in co-infected individuals (14, 27).   

 

Spatial epidemiological methods are useful for defining clusters of single infections as 

well as coinfections, and can identify geographic features relevant to these spatial 

patterns (1, 2, 10, 18-23, 25-27, 30-42). In the case of leprosy and schistosomiasis which 

are oftentimes driven by environmental factors, data about clusters can help identify 

contaminated freshwater sources that are nearby. The spatial distribution of leprosy in 

Brazil is heterogeneous with clear areas with high disease burden in the North, Central-

West, and Northeast, where approximately 17% of the country’s population reside (1, 

10).  

 

Several spatial analyses have been performed to increase understanding of the spatial 

distribution of leprosy in Brazil, and one with both leprosy and schistosomiasis. The new 

case detection rates have been analyzed using various methods such as the empirical 

Bayesian method, spatial autocorrelation assessment, and Kernel density estimation (1, 

18, 22, 37, 42). These studies have aggregated data at mesoregion, microregion, 

neighborhood, district, as well as municipality levels (1). The state of Pará in Brazil is 

hyperendemic for leprosy and has problems with lack of access to healthcare for large 

proportions of the population. Serological testing for leprosy and geographic information 
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system (GIS) techniques were used to assess the heterogeneity of the disease’s 

distribution among schoolchildren, as well as to identify subclinical infections (2, 10, 43). 

There is reason to believe that there are many hidden cases showing serological signs of 

infection who have yet to present with leprosy symptoms, specifically anti-PGL-I, LID-I 

and Ag85B biomarkers (7, 11, 28). In another one of these studies, the authors mapped 

cases of leprosy, schistosomiasis, and visceral leishmaniasis at the neighborhood level, 

and conducted a stratified analysis by neighborhood population density. It was found that 

there was a relative risk (RR) of 6.8 of leprosy in a neighborhood with known 

schistosomiasis compared to a neighborhood without schistosomiasis, and this 

association stayed at a high value when controlling for income and population. This 

association did not appear to be true for leprosy and visceral leishmaniasis, which is 

another endemic disease in the area with similar risk factors, and is therefore in need of 

further study (27).  

Beyond spatial distributions, cluster analyses can be used to identify areas of high and 

low burdens so that resources can be effectively utilized, especially in situations of 

scarcity. Additionally, continuous monitoring using GIS can help with assessment of 

intervention efficacy (10, 18, 21, 41). Lastly, it can help us better understand infection 

transmission, especially in the case of leprosy, that could be influenced by other 

infections and living conditions.  

In the present study, we describe the spatial distributions of leprosy, schistosomiasis, and 

coinfected cases in a town located in Minas Gerais. The high prevalence of 
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schistosomiasis in this area of Minas Gerais coupled with the hyperendemicity and long 

latency period of leprosy, also highly endemic in the study region, may contribute to the 

ongoing reservoir of infection in the community and to a possible preponderance of MB 

leprosy, which could prolong the transmission cycle of these two NTDs within 

communities.   
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Methods 

Study Population  

The study population was comprised individuals from a small town in eastern Minas 

Gerais, Brazil. Minas Gerais is the fourth largest by area and second most populous state 

and is located in southeastern Brazil.  In certain municipal areas of Minas Gerais, 

including the region where this town is located, the case detection for leprosy has been as 

high as 41/100,000 from 2010-2015, which is just above the hyperendemicity threshold 

of 40/100,000 (11).  As of 2016, Minas Gerais has one of the highest age-adjusted 

Disability-Adjusted Life Year (DALY) rates due to all NTDs (433.7/100,000) among all 

the Brazilian states (44). The town of interest has a river in the southeast, which is a 

likely route of exposure to the freshwater snails, Biomphalaria, that carry S. mansoni. In 

Minas Gerais, the distribution of S. mansoni is not uniform, and high transmission areas 

are often found next to areas of little to no transmission or non-endemic areas (19).  

Non-pregnant individuals of ages 3 and above were recruited into the study. Cases were 

identified by inviting community members who were known contacts of former cases to 

the family health center recruitment. These individuals were examined by a dermatologist 

with expertise in leprosy and were classified as a case of leprosy if there was evidence of 

skin lesions or nerve abnormalities consistent with leprosy. Skin smears were performed 

in all cases to document bacillary index and skin biopsies were performed when the 

diagnosis was in question. There were two control groups that were divided depending on 

their contact with known leprosy cases. Healthy controls in the community were matched 
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with cases by age and sex. These controls had no current or prior leprosy status and no 

history of undiagnosed skin or nervous disorders. Contacts were controls who had a close 

contact or family member enrolled in the study, but who did not have signs or symptoms 

of leprosy. Both groups of controls had extensive dermatologic evaluations to rule out 

active leprosy.  

Ethical Approval 

Institutional Review Board (IRB) approval was obtained from both Emory’s institutional 

review board as well as from the local Brazilian university (Universidade Federal de Juiz 

de Fora, Campus Governador Valadares, Brazil). Informed written consent was obtained 

from the participants in the study. 

 

Data Collection  

All participants were given a basic questionnaire to determine demographic data, which 

included age, sex, and socioeconomic status. Blood samples were obtained, as well as 

skin smears or biopsies based on disease status to determine bacillary load and improve 

diagnosis accuracy. Clinical features of leprosy cases were recorded. Leprosy cases were 

categorized based on WHO as well as Madrid classification methods. Patients were given 

instructions as well as requisite supplies to collect their own stool samples. Three 

separate stool samples on three days were collected and then sent to the microbiology 

laboratory at Universidad Federal de Juiz de Fora for diagnosis of schistosomiasis and 
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other helminth infections using the Kato Katz method for egg counts (45). Due to the low 

sensitivity of stool microscopy for low burden infections, 6 slides (3 per sample) were 

examined for each participant. Global positioning system (GPS) locations of participants 

were obtained by study staff or the family health center nurse.  

 

Aspatial Analysis and Logistic Regression 

Statistical analysis involving logistic regression was performed using SAS software 

version 9.4 (SAS Institute Inc., Cary, NC, USA).  

A conditional logistic regression (Model 1) was used to identify the association between 

schistosomiasis infection and leprosy infection while controlling for matched factors of 

age and sex.  

ln(𝑜𝑑𝑑𝑠 𝑜𝑓 𝑙𝑒𝑝𝑟𝑜𝑠𝑦) =  𝛽0 +  𝛽1𝑆𝑐ℎ𝑖𝑠𝑡𝑜 +  ∑ 𝛽𝑀𝑖𝑉𝑀𝑖

42

1
+ 𝑒 

Where VMi denotes dummy variables for the matched individuals. 

An unconditional logistic regression (Model 2) was also run, controlling for age and sex 

conventionally instead of through use of the matching variable.  

ln(𝑜𝑑𝑑𝑠 𝑜𝑓 𝑙𝑒𝑝𝑟𝑜𝑠𝑦) =  𝛽0 +  𝛽1𝑆𝑐ℎ𝑖𝑠𝑡𝑜 + 𝛽2𝐴𝑔𝑒 + 𝛽3𝐺𝑒𝑛𝑑𝑒𝑟 + 𝑒 

This was to allow for comparison to the ordinal logistic regression (Model 3) controlling 

for age and sex, with 3 levels of outcome (0: no leprosy, 1: paucibacillary leprosy, and 2: 

multibacillary leprosy).   
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ln (
𝑃(𝐿𝑒𝑝𝑟𝑜𝑠𝑦𝑇𝑦𝑝𝑒 ≥ 𝑔 |𝑆𝑐ℎ𝑖𝑠𝑡𝑜, 𝐴𝑔𝑒, 𝐺𝑒𝑛𝑑𝑒𝑟)

𝑃(𝐿𝑒𝑝𝑟𝑜𝑠𝑦𝑇𝑦𝑝𝑒 < 𝑔 |𝑆𝑐ℎ𝑖𝑠𝑡𝑜, 𝐴𝑔𝑒. 𝐺𝑒𝑛𝑑𝑒𝑟)
) 

= ∝𝑔+ 𝛽1𝑆𝑐ℎ𝑖𝑠𝑡𝑜 +  𝛽2𝐴𝑔𝑒 +  𝛽3𝐺𝑒𝑛𝑑𝑒𝑟 + 𝑒 

𝑔 = 1, 2  

The proportional odds assumption was assessed with the Score Test, which followed a χ2 

distribution with 3 degrees of freedom. The null hypothesis of the Score test is that the 

assumption is met, with all resulting odds ratios being equal regardless of where the cut-

point for the outcome is made. 

Spatial Analysis  

GPS coordinates were imported into QGIS 3.6.1, and projected to World Geographic 

System 1984, Universal Transverse Mercator Zone 24S (46). Coordinates for households 

outside the municipality of interest were considered outliers, and subsequently omitted 

from spatial analyses.  

Spatial Scan Statistic 

The presence-absence of clinical leprosy and schistosomiasis diagnoses were analyzed in 

SaTScan 9.6 to calculate the spatial scan statistic using a Bernoulli model (47). The 

Bernoulli spatial scan utilizes a roaming window that moves throughout the study area 

with varying sizes to detect most likely clustering of clinically diagnosed leprosy, 

schistosomiasis, and coinfections as compared to controls (48). High and low clusters 

were detected using the Log Likelihood Ratio test with the null hypothesis being that 
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disease risk within the window was equal to the risk outside the window (47-49). The P-

value for each cluster was calculated using 999 Monte Carlo simulations (48).  

Cuzick and Edwards’ Statistic 

ClusterSeer 2.5.2 was used to calculate Cuzick and Edwards’ Statistic, for up to ten 

nearest neighbors for clinical leprosy and schistosomiasis (50, 51). The Cuzick and 

Edward’s method uses a case control method to calculate a test statistic Tk by comparing 

the distribution of the cases to that of the controls to determine if cases are more 

aggregated. Tk represents the sum of the number of each case’s k nearest neighbors that 

are also cases, so that when cases are clustered the value of  Tk will increase (50).  

Univariate Local Join Count 

Geoda 1.12.1.161 was used to create a K-Nearest Neighbor Weights matrix (k = 4), and 

to perform a local join count analysis for leprosy diagnoses, schistosomiasis diagnoses, 

and coinfection status coded as 1 and controls coded as 0 to identify clustering of clinical 

cases (52). Given two neighboring patients are both cases (both equal 1), they are 

considered ‘joined’. Positive spatial autocorrelation is detected when neighbors are 

primarily cases with few or no controls (52).   



12 

 

 

 

 

Results 

Study Population 

In total, there were 126 participants from 63 unique households, with equal numbers of 

cases, negative controls, and close contacts. Demographic data for the study are 

summarized in Table 1. Roughly half of the participants (n = 64, 50.7%) were women.  

The median age of all participants was 42.5 years, with the close contacts being the 

youngest category with a median age of 34.5 years. 13(~31%) of the 42 leprosy cases 

were diagnosed as paucibacillary. 

Logistic Regression 

Point estimates for the covariates are listed in Table 2 and odds ratios are found in Table 

3. Among leprosy cases, the odds of having schistosomiasis is 6.32times higher (95% CI 

1.60, 24.95) compared to negative controls and close contacts when using an 

unconditional logistic regression controlling for age and sex. The magnitude of this 

association was reduced when a conditional logistic regression was used to account for 

matching – where among leprosy cases, the odds of having schistosomiasis is 4.97 times 

higher (95% CI 1.03, 24.09) compared to negative controls and close contacts. To further 

investigate the association between schistosomiasis and leprosy severity, the ordinal 

logistic regression was performed while controlling for age and sex conventionally. The 

proportional odds assumption was met, with a chi square value of 0.61 and a p value of 

0.89.  The odds of having schistosomiasis was 5.28 times higher (95% CI 1.49, 18.75) 
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among multibacillary leprosy cases compared to paucibacillary cases after controlling for 

age and sex. 

Spatial Scan Statistic 

 Table 4 contains the various clusters identified by the Bernoulli spatial scan. There was 

no significant clustering of leprosy cases when the Bernoulli spatial scan was applied. In 

contrast, there was 1 cluster identified for schistosomiasis cases, and 1 cluster identified 

for coinfected cases. These two clusters completely overlapped, and are depicted in 

Figure 2.  

Cuzick and Edwards’ Test 

Cuzick and Edwards’ test identified clustering of leprosy cases, schistosomiasis cases, 

and coinfection cases relative to the distributions of their respective non-cases. Leprosy 

case distribution was significantly spatially clustered at up to 6 nearest neighbors (P = 

0.03). Schistosomiasis case distribution was also significantly spatially clustered up to 6 

nearest neighbors (P  < 0.01).  For schistosomiasis cases, expected neighboring cases 

E[T] was much lower than observed neighboring cases T[k] for up to 10 nearest 

neighbors. There was spatial clustering of coinfected cases at 7 nearest neighbors and 

above (P = 0.03).  

Univariate Local Join Count 

The cluster cores are presented in Figure 3. The Local Join Count for leprosy cases 

indicates that there is one significant (P = 0.048) cluster. There were 2 clusters of 
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schistosomiasis cases where significant local spatial autocorrelation was present. There 

were no clusters of coinfection identified.   
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Discussion 

 

Aspatial logistic regressions estimated the odds of having schistosomiasis infections 

among leprosy cases to be 4-6 times higher than close contacts and negative controls after 

controlling for age and sex. Additionally, among leprosy cases, the odds of having 

schistosomiasis was approximately 5 times higher among multibacillary cases compared 

to paucibacilllary cases. However, in all 3 models, the confidence intervals were wide 

and close to the null value, possibly due to the size of the study. These findings are 

similar to results seen in other studies. Diniz et al observed the association between 

intestinal helminth infection and lepromatous leprosy having an OR of 10.88 (29). 

Oktaria et al found more helminth positive MB leprosy cases than helminth positive PB 

leprosy cases (11/61 vs 0/20) (53). 

The three spatial tests for clustering when taken together indicate that there is 

heterogeneity in the distribution of cases compared to controls for both leprosy and 

schistosomiasis. Furthermore, mapping the most likely clusters derived from the spatial 

scan statistic as well as the statistically significant clusters from the local join count 

statistic resulted in highlighting the northwest cluster of individuals. However, there is 

lack of agreement between the methods as to which disease statuses are clustered. The 

spatial scan statistic identified schistosomiasis and coinfection clusters, while the local 

join count statistic identified leprosy and schistosomiasis clusters, albeit in the same 

general vicinity. The Cuzick-Edwards method results showed global spatial 
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autocorrelation in leprosy cases and schistosomiasis cases. Clustering of these two 

diseases is associated with common factors. Studies in the literature have shown that 

leprosy case clustering is often associated with family income, sanitation, and years of 

schooling (41). Similarly, schistosomiasis case clustering is often associated with poor 

living conditions and lack of proper sanitation (21). However, this study is the first to 

demonstrate that there is overlap between the two diseases spatially.    

The strengths of the study lie in the relatively small area of interest, where the median 

age and socioeconomic status were similar across the three groups, with a roughly even 

gender distribution. However, the small area of interest also creates a situation where the 

results of the analysis may not be as generalizable to other populations, since there is a 

greater likelihood that study participants have similar exposures, such as water sources 

including the river that runs through the southeast part of the town. Furthermore, this was 

a population who has a dual burden of leprosy and schistosomiasis and thus provides an 

ideal community to study. The use of the Cuzick and Edwards method was important in 

this analysis because of the ability to assess clustering in a population that is not evenly 

distributed (50). As seen in the descriptive mapping in Figure 1, the study population was 

concentrated in two main areas. However, due to the small study population, there were 

only 13 schistosomiasis cases (~10% of the population). Of those 13, 8 were leprosy 

cases. Of the 8 coinfections, 6 were multibacillary leprosy cases, which is 75% of the 

coinfected population in the study. Another limitation is the inability to assess latent 

infection of leprosy and low intensity infection in schistosomiasis in individuals.  
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A next step to study these interactions could be incorporating the use of serological 

markers to identify areas of increased infection and to better study leprosy cases and 

those at higher risk of the development of leprosy. Biomarkers such as IDRI diagnostic 

protein-1 ( LID-1) antibodies or anti PGL-1 antibodies can identify latent infections that 

had not presented with symptoms (2, 10, 11, 28, 43). These methods can determine if 

close contacts may have latent disease. And due to the long incubation period of leprosy 

and potentially numerous subclinical infections, interventions can be deployed in areas 

with positive serological results, so that multidrug therapy can begin before MB leprosy 

develops and spreads to others in these communities (3, 6, 43). Additionally, due to the 

semi-quantitative nature of certain serological tests, these immune responses and other 

parameters of interest such as egg counts from the Kato-Katz method can be used as 

correlates for disease intensity and help tease out which covariates are responsible for the 

greatest changes in disease intensity.  

The interplay between Th2 cytokines, immune system dysregulation, and helminth 

infections are hypothesized to affect the development of MB leprosy, and in this study, 

focus was placed on one helminth infection (14). The use of multiplex serology 

platforms, which can assess for immune responses to many antigens, is a potent 

serosurveillance tool that can incorporate additional helminths and other endemic 

infections of interest (54). Certain assays can be used for both dried blood spots as well 

as serum samples, which makes them versatile for various study designs (54). Such an 

assay can be used as part of an integrated serosurveillance strategy, monitoring for 
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helminth and leprosy infections so that multidrug therapy and other interventions can be 

delivered and hyperendemicity can be cleared from regions in Brazil.  

In the present study, aspatial and spatial analyses were used to describe distributions of 

disease and assess the effect of coinfection on disease severity. A direct estimate of the 

association between schistosomiasis infection and leprosy infection was calculated. 

Moreover, the hypothesized association between schistosomiasis and MB leprosy was 

found in this study. These findings emphasize the need for more work towards 

understanding the role of helminths in the development of MB leprosy in coendemic 

areas. Previous studies in Brazil, Indonesia and Nepal have proposed that this association 

exists with other helminths (14, 29, 53). This relationship indicates that meeting leprosy 

reduction targets in these regions requires addressing helminth infections as well as part 

of a comprehensive integrated strategy.  
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Figures and Figure Legends 

 

 

Figure 1. The distribution of study participants in Minas Gerais, Brazil. The 

distribution of leprosy cases, schistosomiasis cases, coinfected cases, and healthy 

individuals (n = 113). 
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Figure 2. Bernoulli Spatial Scan Clusters of Schistosomiasis and Coinfections. 

Space-only cluster analysis performed by calculating Kulldorff’s spatial scan statistic 

using SaTScan v. 9.1.1. Mapping of clusters was done in QGIS 3.6. The spatial scan 

identified a cluster of schistosomiasis and a cluster of coinfections which overlapped. 
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Figure 3. Local Join Count Cluster Cores. The Local Joint Count statistic tested for 

spatial autocorrelation among leprosy cases, schistosomiasis cases, and coinfected 

individuals. Statistically significant cluster cores are circled, and color coded by disease 

(leprosy = red, schistosomiasis = green)  
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Tables 

Table 1. Demographic Data 

 Cases Contacts 
Negative 

Controls 
Total 

Participants 42 42 42 126 

Female (%) 20 (47.6)  23 (54.8) 21 (50) 64 (50.8) 

Median Age (IQR) 
47.0  

(35.3-63.5) 

34.5  

(20-47.5) 

47.0 

 (28.5-61.8) 

42.5  

(23.5-56) 

Classification of Leprosy Cases     

Paucibacillary (%) 13 (30.9) 0 0 13 

Multibacillary (%) 29 (69.1) 0 0 29 

Schistosomiasis Positive 8 1 4 13 

Location Data Unavailable 5 0 1 6 

 

 

 

 

 

 

 

 

 

 



27 

 

 

 

 

Table 2. Logistic Regression Parameter Estimates (β’s) 

  Model 11 Model 22 Model 33 

Schistosomiasis Estimate 1.604 1.84 1.66 
 P Value 0.05 0.01 0.01 

Age Estimate  0.03 0.03 
 P Value  0.02 0.03 

Sex Estimate  -0.05 -0.08 
 P Value  0.91 0.85 

Intercept Estimate  -2.03  

 P Value  <0.01  

Intercept 2 

(MB v PB) 
Estimate    -2.44 

 P Value   <0.01 

Intercept 1  

(MB & PB v No Leprosy) 
Estimate   -1.85 

 P Value   <0.01 
1 Conditional Logistic Regression.  

2 Unconditional Logistic Regression.  

3 Ordinal Logistic Regression. 

Table 3. Logistic Regression Odds Ratios for Schistosomiasis Infection 

 

Model Odds Ratio 95% CI 

1 (Conditional) 4.97 1.03, 24.10 

2 (Unconditional) 6.32 1.60, 24.95 

3 (Ordinal) 5.28 1.49, 18.75 
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Table 4. Bernoulli Spatial Scan Clusters  

 

Cluster Type 
Cluster 

No. 

Log 

Likelihood 

Ratio 

P value 
Observed 

Cases 

Expected 

Cases 

Observed/

Expected 

Relative 

Risk 

Schisto* 1 9.85 0.004 8 1.850 4.325 13.193 

Schisto 2 4.65 0.445 0 3.602 0.000 0.000 

Schisto 3 2.52 0.910 0 2.142 0.000 0.000 

Schisto 4 2.27 0.958 0 1.947 0.000 0.000 
        

Leprosy 1 6.71 0.059 0 5.115 0.000 0.000 

Leprosy 2 4.16 0.522 12 6.319 1.899 2.390 

Leprosy 3 3.05 0.862 10 5.416 1.846 2.199 

Leprosy 4 2.60 0.966 0 2.106 0.000 0.000 
        

Coinfection* 1 9.53 0.004 5 0.841 5.947 N/A 

Coinfection 2 3.54 0.507 0 2.478 0.000 0.000 

*statistically significant at α = 0.05 


