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Abstract 

 
Investigating Histone Acetylation in Lipogenic Triple Negative Breast Cancer Cells using Cell 

Engineering and Bioinformatics 
By Yifei Wu 

 
Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype that has poor 
outcomes when compounded with obesity. Adipocyte secreted factors (ASFs) activate metabolic 
pathways that change the level of acetyl-CoA, a substrate involved in histone acetylation and 
fatty acid synthesis, suggesting an association between epigenetic remodeling and ASFs. 
Although aberrant histone acetylation is a marker for cancer progression, the relationship 
between lipogenesis and histone acetylation is yet to be elucidated in TNBC cells. To investigate 
the association between chromatin structure and tumor suppressor gene (TSG) expression, we 
used RNA-seq and ATAC-seq to identify if chromosomal accessibility is reduced around the 
promoter site of downregulated TSGs in lipogenic TNBC cells. We found no significant 
difference in peak signal value between cells treated with adipocyte-conditioned media (ACM) 
vs unconditioned media (UCM), suggesting an alternative mechanism for downregulation of 
TSGs other than chromosomal accessibility. By performing transcription factor enrichment 
analysis, we found that downregulated TSGs are regulated by a set of TFs that uniquely regulates 
downDEGs. This suggests downregulation of TSGs is induced by dysregulation of TFs. In future 
work, we will determine how TNBC aggressiveness is impacted by TFs by treating cells with 
specific TF inhibitors. To visualize histone acetylation level and nuclear distribution in lipogenic 
TNBC cells, we use fusion protein technology to engineer plasmids that express histone 
acetylation reader probes with bromodomain (BRD) dimers fused to fluorescent proteins. We 
found that BT549 transfection rate with the engineered plasmids was low, likely due to transgene 
silencing induced by CMV promoter in the GGDestX4 expression vector. In future experiments, 
we will engineer a new Golden Gate compatible plasmid based on the pSBtetTA-YP_CFP 
vector, which has been shown to achieve high transfection rate in BT549 cells. To determine 
histone acetylation level and its nuclear redistribution in lipogenic TNBC cells, we will re-do 
transfection with the new expression vector and treat the cells with ACM or UCM. 
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Investigating Histone Acetylation in Lipogenic Triple Negative Breast Cancer Cells 

using Cell Engineering and Bioinformatics 

Abstract 

 Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype that has 

poor outcomes when compounded with obesity. Adipocyte secreted factors (ASFs) activate 

metabolic pathways that change the level of acetyl-CoA, a substrate involved in histone 

acetylation and fatty acid synthesis, suggesting an association between epigenetic 

remodeling and ASFs. Although aberrant histone acetylation is a marker for cancer 

progression, the relationship between lipogenesis and histone acetylation is yet to be 

elucidated in TNBC cells. To investigate the association between chromatin structure and 

tumor suppressor gene (TSG) expression, we used RNA-seq and ATAC-seq to identify if 

chromosomal accessibility is reduced around the promoter site of downregulated TSGs in 

lipogenic TNBC cells. We found no significant difference in peak signal value between cells 

treated with adipocyte-conditioned media (ACM) vs unconditioned media (UCM), 

suggesting an alternative mechanism for downregulation of TSGs other than chromosomal 

accessibility. By performing transcription factor enrichment analysis, we found that 

downregulated TSGs are regulated by a set of TFs that uniquely regulates downDEGs. This 

suggests downregulation of TSGs is induced by dysregulation of TFs. In future work, we 

will determine how TNBC aggressiveness is impacted by TFs by treating cells with specific 

TF inhibitors. To visualize histone acetylation level and nuclear distribution in lipogenic 

TNBC cells, we use fusion protein technology to engineer plasmids that express histone 

acetylation reader probes with bromodomain (BRD) dimers fused to fluorescent proteins. 

We found that BT549 transfection rate with the engineered plasmids was low, likely due to 
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transgene silencing induced by CMV promoter in the GGDestX4 expression vector. In 

future experiments, we will engineer a new Golden Gate compatible plasmid based on the 

pSBtetTA-YP_CFP vector, which has been shown to achieve high transfection rate in 

BT549 cells. To determine histone acetylation level and its nuclear redistribution in 

lipogenic TNBC cells, we will re-do transfection with the new expression vector and treat 

the cells with ACM or UCM. 

Background 

As of 2018, the obesity prevalence rate of US adults aged 20 and older is over 40%1. 

Considered an epidemic2, obesity is closely associated with an increased risk of at least 13 

types of cancer, including breast cancer3. Each year, around 2.1 million women are 

diagnosed with breast cancer worldwide4. Among all breast cancer subtypes, triple-negative 

breast cancer (TNBC) accounts for 10-20% of all breast cancers and is associated with poor 

prognosis, high rate of recurrence, and low survival rate5. It is reported that premenopausal 

women with obesity (BMI ≥30 kg/m2) have a 42% higher risk of developing TNBC 

compared with women with normal weight6. However, it is worth noting that obesity, as 

defined by BMI, does not always have a negative impact on TNBC patient outcome. Based 

on a study on the effect of BMI on survival outcomes of TNBC patients,  moderately obese 

patients have better survival than severely obese, slightly obese, overweight, and 

underweight/normal weight patients7 (Figure 1). This finding is known as the “obesity 

paradox in cancer”. Therefore, it is necessary to take into account other confounding factors 

that might impact patient outcome, such as race, tumor type, and weight history8. In breast 

cancer patients with obesity, adipocyte secreted factors (ASF) have been shown to promote 

breast cancer epithelial-mesenchymal transition (EMT), invasion, proliferation, and 

 

https://paperpile.com/c/U9HWHZ/quIH
https://paperpile.com/c/U9HWHZ/Vj0jr
https://paperpile.com/c/U9HWHZ/YO8Z
https://paperpile.com/c/U9HWHZ/8vld
https://paperpile.com/c/U9HWHZ/mQgup
https://paperpile.com/c/U9HWHZ/ZyBH8
https://paperpile.com/c/U9HWHZ/ZIU1
https://paperpile.com/c/U9HWHZ/6v79
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lipogenesis in invasive cells910. Therefore it is important to identify intracellular factors that 

respond to ASF signaling and mediate intracellular changes that promote cancer. We 

prepared adipocyte-conditioned media (ACM) as our in-vitro co-culture obesity model 

(Figure 2A). Our preliminary studies have shown that ACM increases lipid droplet 

formation in BT549 TNBC cells compared to cells treated with unconditioned media 

(UCM) (Figure 2B). Compared to other traditional models of obesity1110, our in-vitro 

co-culture model creates a system where cancerous cells are directly exposed to secreted 

factors from adipocytes, while maintaining cell-cell interaction. Moreover, such a model 

allows for a more controlled and precise simulation of the obese microenvironment, since 

we are able to decide the amount of ACM treatment for the cells. 

 

Figure 1. Kaplan-Meier plot of disease-free survival for TNBC patients based on BMI 

groups. Moderately obese TNBC patients have higher survival outcomes than other BMI 

groups. Figure adapted from Widschwendter et al.7 

 

 

https://paperpile.com/c/U9HWHZ/odvk2
https://paperpile.com/c/U9HWHZ/XJyS
https://paperpile.com/c/U9HWHZ/iyjCK
https://paperpile.com/c/U9HWHZ/XJyS
https://paperpile.com/c/U9HWHZ/ZIU1
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Figure 2. In-vitro model to study how obesity impacts breast cancer cells. (A) OP-9 

mouse adipocytes are differentiated in vitro, the supernatant is collected as 

adipocyte-conditioned media (ACM) and added to BT549 cells. (B) ACM increases lipid 

droplet formation in BT549 cells. 

 

Histone acetylation is an epigenetic modification where histone acetyltransferase 

enzymes (HATs) use acetyl-CoA as substrate to add acetyl groups to histone lysines, 

decreasing the binding between nucleosome and DNA, and thus activating gene 

expression12. Adipocyte signaling activates pathways including PI3K/AKT/mTOR13, 

NF-ᴋB14, JAK/STAT315, hypoxia-induced HIF-1α16, and MAPK/ERK17, activating genes 

that drive metabolic processes, including fatty acid synthesis. In the de novo fatty acid (FA) 

synthesis pathway, acetyl-CoA is converted to malonyl-CoA by acetyl-CoA carboxylase 1 

(ACC1) for lipogenesis18, suggesting an association between lipogenesis and histone 

acetylation19 (Figure 3). Aberrant histone acetylation is one of the most pervasive epigenetic 

drivers that promote breast cancer progression20. However, to our knowledge, the 

association between histone acetylation and lipogenesis in TNBC cells is yet to be 

elucidated. Therefore, we are interested in determining how histone acetylation might 

 

https://paperpile.com/c/U9HWHZ/16oO9
https://paperpile.com/c/U9HWHZ/pqYQ
https://paperpile.com/c/U9HWHZ/jE5x
https://paperpile.com/c/U9HWHZ/WtSY
https://paperpile.com/c/U9HWHZ/QBx7
https://paperpile.com/c/U9HWHZ/05SK
https://paperpile.com/c/U9HWHZ/IWUGN
https://paperpile.com/c/U9HWHZ/XKVb0
https://paperpile.com/c/U9HWHZ/4U8OL


5 

modulate chromatin in lipogenic TNBC cells, which may shed light on how ASF-stimulated 

chromatin reorganization contributes to cancer aggressiveness. 

 

Figure 3. Hypothesis model showing the association between lipogenesis through 

adipocyte secreted factor signaling and histone acetylation. 

 

Typically, antibodies are used to stain regions in fixed cells that have high levels of 

specific histone posttranslational modifications (histone PTMs) and other features such as 

DNA methylation and nonhistone chromatin proteins. Cells naturally express proteins called 

chromatin readers or reader-effectors that contain chromatin-binding domains (CBDs). 

Scientists have isolated the minimal CBD sequences needed to selectively bind specific 

histone PTMs, fused these with fluorescent proteins, and expressed these in living cells to 

“paint” chromatin regions in the nucleus21. This methodology has been used to detect 

histone acetylation (H3K14ac) in HEK293 cells22, but to our knowledge not in lipogenic 

breast cancer cells. Within the human BRD4 protein, a domain of 119 amino acids known as 

 

https://paperpile.com/c/U9HWHZ/9jtW
https://paperpile.com/c/U9HWHZ/h3lqG
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BRD (bromodomain) specifically binds acetylated lysines within histones H3 and H4 

(H3K14ac, H4K5ac, H4K8ac, H4K12ac, H4K16ac, H4K20ac)23,24. Constructs containing 

dimeric repeats of BRD have been shown to best colocalize with H3K14ac antibody in 

transfected kidney cells and provide information on the nuclear distribution of histone 

acetylation22. Therefore, we used a one-step DNA assembly method called Golden Gate to 

build a fluorescent fusion protein that contains a dimeric repeat of BRD fused to fluorescent 

protein with nuclear localization sequence (NLS) to visualize histone acetylation and its 

nuclear distribution within the nucleus of lipogenic TNBC cells.  

Hypothesis 

Lipogenesis in triple negative breast cancer (TNBC) cells drives global loss or 

redistribution of histone acetylation that results in condensed (closed) chromatin that 

reduces the expression of tumor suppressor genes (TSGs). 

Research Aims 

Aim 1 - Use RNA-seq to determine the transcriptional profile of lipogenic TNBC 

cells and identify downregulated tumor suppressor genes (TSGs). 

Aim 2 - Use ATAC-seq to determine if chromatin takes on a condensed (closed) 

state at TSGs and/or other downregulated genes.  

Aim 3 - Use fusion protein technology to engineer histone acetylation reader probe 

to determine changes in global histone acetylation levels and nuclear distribution. 

 

 

https://paperpile.com/c/U9HWHZ/fZJWR+tQThu
https://paperpile.com/c/U9HWHZ/h3lqG
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Methodology 

Cell Culture 

The BT549 cell line was grown in RPMI1640 media supplemented with 1% 

L-glutamine, 10% fetal bovine serum (FBS), and 0.0008 mg/mL human recombinant 

insulin. The BT549 cell media was used as UCM in TNBC experiments. 

 

Obesity Model 

 Confluent murine OP-9 bone marrow stromal cells were trypsinized and plated at 

cells/well in 10-cm plates. Cells were cultured in DMEM media supplemented with 10% 105

FBS. On the following day, media was changed with either fresh DMEM media 

supplemented with 10% FBS for stromal cell culture or insulin-oleate media (IOM, 1.8mM 

Oleate bound to BSA with the molar ratio of 5.5:1) for adipocyte differentiation. 

Supernatants from adipocytes were harvested on day 3 of culture for use as 

adipocyte-conditioned media (ACM) in TNBC experiments. 

 

RNA-Seq 

BT-549 TNBC cells were seeded in unconditioned media (UCM) or 50% ACM, with 

3 replicates per condition. We performed RNA extraction and purification for RNA-seq 

library preparation and deep sequencing at Novogene. RNA-seq was performed with the 

following parameters: paired-end, 150 bp, Q30 ≥ 85%. We trimmed raw reads with Trim 

Galore and performed alignment using STAR25 with the most recent human genome 

(GRCh38/hg38). We calculated mRNA levels and generated count matrices with RSEM26. 

Differential gene expression was performed with DESeq227, using a negative binomial 

 

https://paperpile.com/c/U9HWHZ/VOgZ4
https://paperpile.com/c/U9HWHZ/WYZSm
https://paperpile.com/c/U9HWHZ/I7HzW
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distribution algorithm to recognize games with a p-value ≤ 0.05 and fold change ≥ 1.5. We 

generated a volcano plot in RStudio to show a transcriptional profile.  

 

ATAC-Seq 

We prepared cell samples as in RNA-seq, and sent frozen samples to Novogene for 

ATAC-seq library preps and deep sequencing. We trimmed raw reads with Trim Galore and 

performed alignment using BWA-MEM28 with the most recent human genome 

(GRCh38/hg38). We removed PCR duplicates using Picard. To adjust read start positions to 

account for Tn5 chemistry, we aligned all reads as plus (+) strands offset by +4 bp and 

minus (-) strands offset by -5 bp. We performed peak calling using MACS329. We visually 

explored our ATAC-seq data on Integrated Genomics Viewer (IGV) to investigate 

chromosome accessibility near genes of interest. 

 

Synthetic Reader Probe Construction 

We built a probe containing dimeric BRD repeats fused by a linker, and a fluorescent 

protein (FP) attached to the nuclear localization sequence (NLS). To determine which 

fluorescent protein allows for best quantification of histone acetylation, we built four 

plasmids, each containing a different fluorescent protein: yellow fluorescent protein (YFP), 

cyan fluorescent protein (CFP), red fluorescent protein (RFP), or green fluorescent protein 

(GFP). The coding sequence was inserted into an engineered mammalian vector GGDestX4. 

Under UCM conditions, BT-549 TNBC cells were transfected and selected under G418 to 

generate a stable clonal cell line. Fluorescence imaging was performed on both the 

 

https://paperpile.com/c/U9HWHZ/1TLcb
https://paperpile.com/c/U9HWHZ/vM87S
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transiently transfected and stably transfected cells to determine the brightness and nuclear 

distribution of the fluorescence signals.  

Results 

Downregulation of tumor suppressor genes in lipogenic TNBC cells 

 13,724 differentially expressed transcripts of BT549 cells cultured in ACM and 

UCM were measured using RNA-sequencing analysis. We identified 538 upregulated 

differentially expressed genes (UpDEGs) in ACM compared to UCM (p < 0.05,  p.adj < 

0.05, and FC > 1.5) and 235 down regulated differentially expressed genes (DownDEGs) (p 

< 0.05,  p.adj < 0.05, and FC < -1.5) (Figure 4A). DownDEGs are found across all 

chromosomes, suggesting global repression (Figure 4B). We then matched the downDEGs 

with the breast cancer TSG list BRCA from the Tumor Suppressor Gene Database 

(TSGene)3031. We identified 9 TSGs that were downregulated in cells treated with ACM 

compared to UCM: AGTR1, CDKN2C, EPHB6, IDH1, LRRC4, NFATC2, NRF1, 

PCDH10, and SIK1 (Figure 4C). 

 

 

 

https://paperpile.com/c/U9HWHZ/b5gT
https://paperpile.com/c/U9HWHZ/WWBz
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Figure 4. Adipocyte secretome impacts the transcriptional profile of BT549 cells. (A) 

Volcano plot showing upregulated and downregulated differentially expressed genes. (B) 

Differentially expressed gene distribution across all chromosomes. (C) Downregulated 

TSGs identified from RNA-seq. 

 

Downregulation of TSGs due to dysregulation of TFs instead of chromatin structure 

change 
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To determine the chromosomal accessibility around the promoter site of 

downregulated TSGs, we loaded the six narrowPeak files and the six pileup bigWig files 

from ATAC-seq analysis as tracks in Integrated Genomics Viewer (IGV)31,32 and selected 

Human (GRCh38/hg38) as genome. We navigated the window to promoter sites of all 

downregulated TSGs. For example, the promoter of AGTR1 is located at chr3:148697903. 

We looked for consistent peaks near promoter sites across all 6 narrowPeak files and 6 

bigWig files (Figure 5), and then averaged the peak signal value of 3 ACM replicates and 3 

UCM replicates respectively. Two-way ANOVA was performed on the ATAC-seq peak 

signal values (Figure 6A) and the RNA-seq TPM values (Figure 6B). Statistical significant 

difference was determined by p-value < 0.05. The peak signal value significantly increased 

at the promoter site of PDK4 (one of the upDEGs) for cells treated with ACM, suggesting 

more chromosomal accessibility for gene activation. This also tracks with RNA-seq 

transcript expression, as TPM of PDK4 increased in cells treated with ACM. The peak 

signal values of downregulated TSGs in ACM group are not significantly different from 

those in UCM group, suggesting no significant change in chromatin structure induced by 

ASFs at the promoter site of downregulated TSGs. 

 

 

 

https://paperpile.com/c/U9HWHZ/WWBz+qaIN
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Figure 5. Visualization of narrowPeak and bigWig files from ATAC-seq for AGTR1. 

NarrowPeak files provide called peaks of signal enrichment. BigWig files provide dense, 

continuous data that can be displayed on IGV as graphs. Consistency in peaks is found in all 

narrowPeak and bigWig files at the promoter site of AGTR1. 

 

Figure 6. Peak signal values from ATAC-seq and TPM values from RNA-seq for 

downregulated TSGs. (A) Peak signal values of ACM replicates are not significantly 

different from that of UCM replicates for downregulated TSGs. The peak signal value for 

PDK4 is significantly higher for cells treated with ACM. (B) RNA-seq TPM values showing 

transcript expression levels for downregulated TSGs and PDK4. 
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 Our ATAC-seq analysis further suggests that the downregulation of TSGs is 

determined by gene regulation. Therefore, these TSGs could be regulated by a unique set of 

transcription factors (TFs) that are distinct from TFs that regulate the upDEGs. To test this 

alternative hypothesis, we performed TF binding sites enrichment analysis on upDEGs and 

downDEGs using TF_targets (https://github.com/cplaisier/TF_targets) and the Transcription 

Factor Target Gene Database33. TFs were ranked based on p-value, which represents the 

enrichment of input genes (upDEGs or downDEGs) with TF target genes. We selected 22 

TFs with most significant p-values and eliminated two TFs (SP1 and ZEB1) that target both 

upDEGs and downDEGs (Figure 7A). We then derived the top 20 most enriched unique 

TFs for either upDEGs or downDEGs, and determined whether the downregulated TSGs, 

the top 5 downDEGs and upDEGs are target genes of these TFs. As a result, downregulated 

TSGs and top 5 downDEGs are only targeted by most enriched TFs for downDEGs, 

whereas top 5 upDEGs are only targeted by most enriched TFs for upDEGs (Figure 7B). 

This suggests that the downregulation of TSGs is regulated by a specific group of TFs that 

exclusively regulate downDEGs. 

 

 

 

 

 

https://github.com/cplaisier/TF_targets
https://paperpile.com/c/U9HWHZ/BsYK
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Figure 7. Downregulated TSGs are targeted by TFs that exclusively regulate 

downDEGs. (A) Venn diagram showing top 20 enriched TFs that exclusively regulate 

upDEGs or downDEGs. (B) DownDEGs and upDEGs are targeted by two distinct groups of 

TFs. Green box with “1” shows that the specific gene is targeted by that specific TF. 

 

Engineering Histone Acetylation Reader Probe 
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To prepare linear DNA donors, we performed Q5 PCR on commercial plasmids 

(Twist Bioscience) to add recognition sites for the Type IIS restriction enzyme BbsI and 4 

bp 5’ overhangs to each end of each module’s open reading frame (ORF). Using the PCR 

products, we generated donor plasmids through Zero BluntTM TOPOTM  PCR cloning, which 

is a system for cloning blunt-end DNA (Figure 8A). Such a cloning system has several key 

advantages. The vector contains a kanamycin resistance gene, which is different from the 

ampicillin resistance gene in the GGDestX4 expression vector. This allows for the selection 

of cells transformed with the fully assembled Golden Gate plasmid and kills cells 

transformed with the donor plasmids. The PCR-Blunt II-TOPO vector also has convenient 

designs for plasmid donor construction validation, including recognition sites for EcoRI 

restriction enzyme outside donor ORF,  and M13 forward and reverse primer sites for 

Sanger sequencing or colony PCR screening. In addition, although plasmid donors are not 

always necessary for Golden Gate assembly34, it allows for long-term storage and accurate 

regeneration of donor parts through bacterial transformation. Successful construction of 

plasmid donor DNA was verified by restriction digestion and Sanger sequencing. 

GGDestX4 is an engineered plasmid built from pcDNATM3.1(+) neo mammalian 

expression vector (Thermo Fisher Scientific) that contains two modifications to make it 

compatible for the Golden Gate assembly (Figure 8B). As the expression vector must not 

contain any BbsI sites, Dr. Karmella Haynes performed site-directed mutagenesis to remove 

the BbsI site in the bovine growth hormone polyadenylation (BGH polyA) sequence of 

pcDNATM3.1(+) neo. Another key modification that I assisted with was linearizing the  

pcDNATM3.1(+) neo using restriction enzyme, and ligated with an annealed double-stranded 

oligo (dsOligo) containing a pair of BbsI sites for Golden Gate cloning. The dsOligo also 

 

https://paperpile.com/c/U9HWHZ/gh1t
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includes a Kozak sequence that functions as the initiation site for reader probe protein 

translation in eukaryotic cells35. GGDestX4 expression vector has several features that are 

designed for mammalian cell transfection. The CMV promoter is a strong promoter 

commonly used to drive transgene expression in mammalian cells36. A BGH polyA 

sequence allows polyA tails to be added to the mRNA transcript to terminate transcription 

of the reader probe37. To select for stable transfection, the GGDestX4 plasmid contains a 

neomycin resistance marker, which protects stable cells from the toxicity of G418. 

Traditionally, Golden Gate assembly requires an intermediate shuttle destination vector for 

the donor fragments to be assembled34. Using GGDestX4 bypasses the shuttle vector step 

and provides a convenient method of assembling donors directly into expression vectors. 

 

 

 

 

 

 

 

https://paperpile.com/c/U9HWHZ/jtI1
https://paperpile.com/c/U9HWHZ/vuBs
https://paperpile.com/c/U9HWHZ/ORrJ
https://paperpile.com/c/U9HWHZ/gh1t
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Figure 8. Construction of Golden Gate plasmid donors and expression destination 

vector for histone acetylation reader probe. (A) Preparation for linear donors using PCR 

amplification, and plasmid donors by cloning donor DNA into PCR-Blunt II TOPO vector. 

GFP is used as an example for the D-part fluorescent protein. (B) Plasmid map of 

GGDestX4 expression vector. 
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 We performed Golden Gate single-pot assembly to assemble donor DNA directly 

into GGDestX4 expression vector. The 4 bp overhang at each end of each module’s ORF 

guides the assembly of the four modules in order. Single-pot digestion using BbsI restriction 

enzyme allows the donor fragments to be cut out from PCR-Blunt II TOPO vectors, and 

ligated into the GGDestX4 expression vector in directed assembly (Figure 9A). For plasmid 

verification, colony PCR with MV1 primers and Sanger sequencing were performed 

(Figure 9B). For example, the expected band for plasmid 2xBRD-GFP_GGDX4 with 

complete Golden Gate assembly insert is 2625 bp.  

 

Figure 9. Single-pot Golden Gate assembly of histone acetylation reader probe and 

plasmid verification. (A) Single-pot digestion and ligation allows for directed assembly of 

donor modules into expression destination vector. Figure adapted from Haynes et al34. (B) 

Plasmid verification for Golden Gate products. The bands showing plasmids with complete 

Golden Gate insert for 2xBRD-GFP_GGDX4 are shown in green box. 

 

 

https://paperpile.com/c/U9HWHZ/gh1t
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 The four plasmids expressing histone acetylation probes were then transfected into 

BT549 cells. Three days after transfection, fluorescence imaging was performed on 

transiently transfected cells (Figure 10). The overall fluorescence expression and 

transfected cell viability were low. To select for stable transfected cells, we added 250 

ug/mL G418 to the cells. We then saw that there was an increase in cell death and the few 

cells expressing fluorescence did not proliferate. 

 

Figure 10. Low transient transfection rate across all four histone acetylation probes. 

The first row shows imaging under CFP, CFP, YFP, and RFP channels (from left to right). 

The second row shows imaging when the fluorescence channel and trans channel are 

merged. 

 

Conclusion and Future Directions 

Downregulation of TSGs induced by adipocyte secretome 

 In conclusion, our RNA-seq and ATAC-seq results suggest that downregulation of 

TSGs is not induced by change in chromosomal accessibility at the promoter site, but rather 
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regulated by TFs that exclusively target downDEGs. To investigate further regarding the 

role of TFs in TSG repression, we will treat the cells with inhibitors for specific TF that 

targets downregulated TSG, and measure changes in terms of cancer proliferation, 

metastasis, and aggressiveness. In addition, we will work with Dr. David Gorkin to 

normalize the ATAC-seq results in order to perform differential expression analysis, since 

current results are only based on signal values after peak calling. 

 

Histone acetylation reader probe 

 Both of the transiently transfected and stably transfected BT549 cells showed low 

viability of fluorescence-expressing cells. One possible explanation is that CMV, as a strong 

viral promoter, induces transgene silencing through CpG methylation38. The transgene 

expression could also be specific to cell type. Our preliminary studies have shown that HEK 

cells had high transfection rate with GGDestX4, but the histone acetylation probes is our 

first experiment transfecting GGDestX4 into TNBC cells. Instead of continuing with 

GGDestX4 expression vector, we will transition to the pSBtetTA-YP_CFP vector, which is a 

plasmid engineered by Dr. Karmella Haynes. The pSBtetTA-YP_CFP vector constitutively 

expresses YFP signals and expresses CFP when induced by doxycycline (dox) (Figure 11). 

Studies performed by graduate student Ashley Townsel have shown high transfection rates 

of pSBtetTA-YP_CFP into BT549 cells under UCM conditions39. Therefore, we will make 

modifications to the pSBtetTA-YP_CFP to make it compatible for Golden Gate assembly. 

The Golden-Gate compatible plasmid pSBtetTA-luc2GG will have CFP replaced with a 

Golden Gate drop-in site by ligating with annealed dsOligo to add a pair of BbsI sites for 

Golden Gate cloning. The constitutively expressed YFP gene will be replaced by the 

 

https://paperpile.com/c/U9HWHZ/6xTJ
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colorless luciferase, as YFP’s spectrum overlaps with the spectrum of GFP. We will perform 

site-directed mutagenesis to eliminate the BbsI site in BGH polyA and in luciferase gene. 

 

Figure 11. Engineering design for pSBtetTA-luc2GG based on pSBtetTA-YP_CFP. 

pSBtetTA-YP_CFP vector constitutively expresses YFP and contains dox-inducible CFP 

gene. At the presence of doxycycline, Tet-TA binds to dox and undergoes a conformational 

change. The complex binds to the pCMV promoter, allowing CFP gene to be expressed. 

 

 After assembling the donor modules into pSBtetTA-luc2GG using Golden Gate, we 

will transfect the plasmids into BT549 cells and treat with dox to induce expression of the 

histone acetylation probe. We will then select for stable cells by adding puromycin. After 

generating the stably transfected cells, we will treat them with either ACM or UCM to 

determine how ASFs impact the fluorescence brightness and nuclear distribution of histone 

acetylation. We will also have a positive control where cells are treated with histone 

deacetyltransferase (HDAC) inhibitor, and a negative control where cells are treated with 

histone acetyltransferase (HAT) inhibitor. We expect to see diffuse fluorescence expression 

in cells treated with ACM or HAT inhibitor (HATi), as the synthetic reader probes are 

expressed but do not bind to acetylated histone lysine tails. In cells treated with UCM or 

HDAC inhibitor (HDACi), we expect to see concentrated fluorescence expression, due to 
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higher concentration in histone acetylation in some regions of the nucleus than the others 

(Figure 12). 

 

Figure 12. Expected results of fluorescence expression in stably transfected BT549 cells 

treated with different conditions. Using 2xBRD-GFP_GGDX4 as an example, we expect 

to see diffuse GFP expression in cells treated with ACM or HATi, while concentrated GFP 

expression is expected in cells treated with UCM or HDACi. 
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