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Abstract

Bayesian Tree-Based Methods for Environmental Health Research
By Jacob R. Englert

Bayesian nonparametric models are widely used for estimating complex relationships and
functional forms among predictors in regression settings. Within this class of models, Bayesian
Additive Regression Trees (BART) is frequently cited for its strong performance and flexibility
in a wide variety of statistical problems. This dissertation extends BART to three modeling
frameworks commonly used to measure associations between environmental exposures and
health outcomes.

In the first aim, a varying coefficient BART model is introduced to estimate heterogeneous
short-term associations between acute exposure and health outcomes within the case-crossover
design. This approach is applied to examine trends in emergency department visits among
patients with Alzheimer’s disease during heat waves in California. The proposed method
allows individual responses to heat waves to vary based on chronic comorbid conditions such
as chronic kidney disease and hypertension, thus providing a more nuanced understanding of
heat-related vulnerability in this population.

For the second aim, a soft version of BART is applied to model count-based health out-
comes in environmental mixtures studies. The approach approximates a smooth exposure-risk
surface for daily asthma-related emergency department visits in the Metropolitan Atlanta
area, modeling risk as a function of temperature and an air pollution mixture consisting
of ozone, fine particulate matter, nitrogen dioxide, and carbon monoxide. Existing BART
implementations for count outcomes require complex prior specifications, making it difficult
to incorporate other useful model components such as spatial random effects and population
offsets. To address this, we use latent random variables to model the risk surface. We further
describe the use of accumulated local effects for summarizing exposure-risk surfaces composed
of correlated continuous exposures.

In the third aim, an extension of the quantile g-computation framework for studying
heterogeneous effects of environmental mixtures is proposed. When data arise from a large
geographical study region, it may be unreasonable to expect a common mixture effect due
to variation in the composition of the mixture or nonlinearity in the true exposure-response
function. The proposed method leverages a recently developed varying coefficient BART
model to explore spatially varying mixture effects describing the association between air
pollution mixtures and reduced birth weight in Georgia.
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Chapter 1

Introduction

1.1 Organization

The research presented in this dissertation is divided into three aims, each exploring the utility

of Bayesian additive regression trees (BART) for estimating complex relationships between

one or more environmental exposures and health outcomes. The chapters corresponding to

the three aims share the same outline: (1) Introduction, (2) Data, (3) Methods, (4) Simulation

Study, (5) Application, and (6) Discussion. Each chapter concludes with Supplementary

Materials section containing relevant additional tables, figures, and derivations.

Before presenting the three aims, Chapter 2 provides background on the technical details

of BART. This chapter covers the original model formulation, estimation procedures, and

recent methodological advances relevant to the methods and applications discussed in this

dissertation. It also introduces model interpretation strategies that are used extensively in

later chapters.

Chapter 3 addresses the first aim. In this chapter, we develop a novel extension of

the popular case-crossover study design for estimating heterogeneous exposure-response

relationships using BART. This work is motivated by the growing interest in identifying

subpopulations more vulnerable to environmental exposures. We apply the proposed method
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to study the impact of heat waves on people with Alzheimer’s disease in California from

2005-2015. We examine effect modification by other chronic conditions such as hypertension

and chronic kidney disease. Through this application, we illustrate strategies for interpreting

heterogeneous odds ratios through variable importance, partial dependence, and lower-

dimensional summaries.

Chapter 4 addresses the second aim. In this chapter, we demonstrate how to incorporate

a soft version of BART into a negative binomial regression model to approximate smooth

exposure-risk surfaces for count outcomes. The proposed approach enables flexible modeling

of mixtures of potentially correlated environmental exposures which may interact with

each other. We apply this method to estimate associations between air pollution mixtures,

temperature and asthma-related emergency department visits during the warm season in

Atlanta, Georgia from 2011-2018. Additionally, we use a strategy known as accumulated local

effects to extract meaningful insights into the association between the mixture of interest

and asthma-related morbidity.

Chapter 5 addresses the third and final aim of this dissertation. In this chapter, we

explore the ability of a recently developed varying coefficient BART model to estimate

spatially heterogeneous mixture effects within the quantile g-computation summary index

framework. After reviewing spatially varying coefficient models and quantile g-computation,

we demonstrate the advantages of varying coefficient BART through simulation. We then

apply this model to analyze associations between multiple ambient air pollutants and birth

weight in Georgia from 2005-2016.

Finally, Chapter 6 provides concluding remarks and discusses potential future opportunities

for integrating BART into statistical modeling frameworks for applications in environmental

health. This chapter also describes software that has been developed to perform these

analyses.
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1.2 Description of Data Sources

The applications discussed in Chapters 3, 4, and 5 involve the analysis of large health

administrative and exposure datasets which pull from different sources. While the specific

data sources used for each application are described in their respective chapters, this section

serves to briefly introduce each data source and provide insight how they were combined.

1.2.1 Health Data Sources

California Department of Health Care Access and Information

Patient-level records for all emergency department visits in the state of California from 2005

to 2015 were obtained from the California Department of Health Care Access and Information

(formerly the California Office of Statewide Health Planning and Development). The raw

data is available by request at https://hcai.ca.gov/data/request-data/. These data

contained the admission date, the residential ZIP code for the patient, and demographic

information. Each visit record also contained a list of diagnosis codes based on the Inter-

national Classification of Diseases, ninth and tenth revisions (ICD-9 and ICD-10). From

these codes we determined primary and secondary diagnoses of Alzheimer’s disease and other

chronic conditions. For the analysis in Chapter 3, these records are filtered to only include

those visits with a primary or secondary diagnosis of Alzheimer’s disease (ICD-9 code 331.0;

ICD-10 codes G30.0, G30.1, G30.8, and G30.9).

Georgia Hospital Association

Patient-level billing records for emergency department visits to hospitals in the metropoli-

tan Atlanta area from 2011 to 2018 were obtained from the Georgia Hospital Associ-

ation (now available through the Healthcare Cost and Utilization Project (HCUP) at

https://hcup-us.ahrq.gov/tech_assist/centdist.jsp). These data included admis-

sion date, billing address, ICD-9/10 discharge diagnosis codes, and patient demographic

https://hcai.ca.gov/data/request-data/
https://hcup-us.ahrq.gov/tech_assist/centdist.jsp
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information. For the analysis in Chapter 4, these records are filtered to only include visits

with a primary or secondary asthma diagnosis (ICD-9 code 493; ICD-10 code J45).

Office of Health Indicators for Planning, Georgia Department of Public Health

Birth records were obtained from the Office of Health Indicators for Planning, Georgia

Department of Public Health (available by request via the Public Health Information Portal

at https://dph.georgia.gov/phip-data-request). These data covered births to mothers

residing in any of the 159 counties in Georgia from January 1st, 2005 to December 31st,

2017. Each record contained information about the birth such as the date of birth, estimated

conception date and gestational age, birth weight, sex, and plurality. The data also contain

demographic information for the mother, including race, ethnicity, level of educational

attainment, marital status, and self-reported use of alcohol or tobacco.

Emergency Department Visits vs. Hospitalizations

Both sets of emergency department visit data we use include hospitalizations. The decision

to include all emergency department visits provides a greater sample size for studying health

outcomes with simple fixes (e.g., administration and distribution of albuterol for asthmatic

patients). Limiting the analyses to only hospitalizations would greatly reduce the power to

detect associations between exposures and health outcomes.

1.2.2 Exposure Data Sources

Daymet

Daily estimates of minimum air temperature, maximum air temperature, and water vapor

pressure were obtained from Daymet Version 4 R1 [104] (available for download at https:

//doi.org/10.3334/ORNLDAAC/2129). This data product covers North America and has a

1km x 1km spatial resolution and daily temporal resolution beginning with January 1st, 1980.

Daymet pools from many weather stations across the continental North America, Hawaii,

https://dph.georgia.gov/phip-data-request
https://doi.org/10.3334/ORNLDAAC/2129
https://doi.org/10.3334/ORNLDAAC/2129
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and Puerto Rico, and interpolates using multiple algorithms to obtain near-surface estimates

at a fine spatial resolution.

Air Quality Data

Daily estimates of concentrations of various air pollutants are obtained from the Community

Multiscale Air Quality Modeling System (CMAQ) and the Environmental Protection Agency’s

Air Quality System (AQS) database (available for download at https://www.epa.gov/cmaq

and https://www.epa.gov/aqs). CMAQ produces estimates of a wide variety of pollutants

using cutting edge air quality models. The AQS compiles measurements from many air

quality networks across the United States.

Specifically, the air pollution data used in Chapters 4 and 5 was produced using the data

fusion model described by Senthilkumar et al. [93], which utilized chemical transport model

simulations from CMAQ and monitoring data from AQS. This model has been shown to

reduce spatial bias in the CMAQ estimates for many common air pollutants by incorporating

land use variables and census tract level population data. This data product is available at a

12km x 12km gridded spatial resolution.

1.2.3 Linking Exposures to Health Data

Linking exposure data to patient billing records requires some decision making. Geocoding

the residential addresses attached to the billing records allows for matching records to ZIP

codes, census tracts, and counties. Matching gridded air quality and meteorology data to

these areal units is a bit more involved, as it requires area-weighted spatial averaging. This

is done by overlaying the gridded data with the areas of interests and, for each areal unit,

calculating a weighted average of all grid estimates which overlap the area, where the weights

are determined by the percentage of the area covered by each grid cell.

For each of the applications discussed in this dissertation, daily area-weighted averages are

calculated at the ZIP code level for all temperature and air pollution data. These exposure

https://www.epa.gov/cmaq
https://www.epa.gov/aqs
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values are then linked to the health data by ZIP code and date. For the analysis of birth

weight in Chapter 5, the assigned daily exposures are also averaged over the duration of the

pregnancy.

This strategy for merging temperature and air quality data with health administrative

datasets is common in the environmental epidemiology literature, but is not without flaw.

While gridded estimates are improving in quality thanks to tools such as those mentioned

above, they do contain varying levels of measurement error. Also, Geographic Information

Systems (GIS) tools do not always geocode addresses correctly. Certain areas may not be

well-covered, and even a perfect GIS geocoding instrument will fail if the supplied address is

incorrect. Even for addresses which are successfully geocoded, or for aggregate data reported

by areal units, the assigned exposure may not be accurate for all individuals. Unmeasured

factors such as lifestyle behaviors or occupation can cause even next-door neighbors to

experience very different levels of exposures. Additionally, for some individuals their home

address may not even be the most important location. For example, if one were studying

wildfire smoke, a firefighter who resides in an area with no wildfires may experience health

outcomes similar to an individual exposed to wildfire smoke.

1.3 Notation

The following notation is used throughout the document to denote different types of data and

common parameters across chapters. Additional notation specific to each chapter is defined

where it is introduced.

1.3.1 Data

• N : total number of observations in a dataset.

• D: collection of observed data for all observations.
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• Y: N × 1 random outcome vector.

– y: N × 1 observed vector (used in the data likelihood).

• Yi: random outcome for observation i.

– yi: observed outcome for observation i (used in the data likelihood).

• W: N × Pw design matrix of confounders.

• wi: Pw × 1 vector of confounders for observation i.

• X: N × Px matrix of exposures.

• xi: Px × 1 vector of exposures for observation i.

• Z: N × Pz matrix of exposure moderators.

• zi: Pz × 1 vector of exposure moderators for observation i.

1.3.2 Densities and Distributions

• p(D | θ): data likelihood, in a Bayesian context.

• π(θ): prior distribution of the parameter θ.

• π(θ | D): posterior distribution of θ given data D.

• π(θ) = f(θ | ·)⇔ θ ∼ f(·)

– E.g., π(θ) = Normal(θ | µ, σ2) is synonymous with θ ∼ Normal(µ, σ2).

1.3.3 Parameters

The following parameters are consistent in their use throughout this dissertation:

• γ: Pw × 1 vector of regression coefficients for confounders.
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• βp: regression coefficient of the pth exposure. p omitted implies there is only one

exposure.

• βp(zi): heterogeneous regression coefficient of the pth exposure, which depends on zi. p

omitted implies there is only one exposure.

• T : collection of decision rules that define a binary tree structure.

• M: collection of scalar-valued terminal (“leaf”) node parameters associated with a tree

structure T .

• µtl: a single terminal (“leaf”) node parameter associated with leaf l of tree t.

Note on Causation vs. Association

Throughout this dissertation, certain parameters (e.g., βp) are sometimes referred to as

exposure effects. While this term may imply a causal relationship – suggesting that modi-

fying the associated exposure would directly or indirectly change the outcome – we use it

synonymously with the more general association. Although biological evidence supports the

causal role of air pollution and extreme heat in various health outcomes, the statistical models

presented in this work are not designed to explicitly target causal parameters. Similarly, effect

modification or effect moderation simply refer to heterogeneity in the estimated parameter

across demographic subgroups, space, etc.
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Chapter 2

Review of Bayesian Additive

Regression Trees

2.1 Bayesian Additive Regression Trees

The methods developed and applied in this dissertation are based on a flexible fully Bayesian

machine learning approach known as Bayesian Additive Regression Trees (BART) [25]. Since

BART was introduced in the late 2000s, researchers have applied BART in numerous settings

and extended the original methodology to model various types of data and estimate different

parameters of interest. BART is widely known for its excellent empirical performance

in prediction, classification, and causal inference settings when compared to or used in

conjunction with other state of the art methods [25, 52, 31]. Because BART is integral to

the work described in this dissertation, this chapter has been provided as a review of the

method insofar as it relates to the work described herein. Additionally, the reader may be

interested in recently published reviews of BART included in Hill et al. [51] and Tan and

Roy [102]. A textbook treatment is available in Daniels et al. [27].
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2.1.1 The Original BART Model

BART is a Bayesian ensemble approach most closely related to boosting in the machine

learning literature, where the individual base learners are Bayesian classification and regression

trees (BCART) [24]. The original BCART model is a semiparametric regression model for

Gaussian outcome data written as in (2.1).

Y ∼ Normal
(
f(x), σ2

)
(2.1)

f(x) = Tree(x; T ,M), (2.2)

where T is a binary tree structure with L terminal, or leaf, nodes, andM = {µ1, . . . , µL} is

the set of scalar-valued leaf node parameters associated with tree T . Further, Tree(x; T ,M)

is the function which deterministically maps a vector of covariates x = (x1, x2, . . . , xPx)
T

to a single leaf node l of T and assigns it the corresponding scalar parameter µl ∈M. An

example of such a binary tree is provided in Figure 2.1.

Figure 2.1: Example Binary Tree

Note how the binary tree in Figure 2.1 partitions the covariate space into four distinct

groups defined by the covariates X1, X2, and X3, and a set of selected cut points x∗1, x
∗
2, and

x∗3. Each observation is mapped to exactly one of the four leaf nodes depending on the values

of its covariates. The three internal nodes depicted as rectangles are referred to as branch
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nodes (i.e., nodes that split). Henceforth B(T ) will be used to refer to the set of branch

nodes and L(T ) will be used to refer to the set of leaf nodes for a tree structure T .

Conceptually, BCART should enjoy several benefits over a frequentist classification and

regression tree (CART) [15]. For one, BCART has the ability to fit more data generating

processes than CART. This is because CART is “greedy” in the sense that it always selects the

best available split based on some scoring criteria, such as the Gini impurity for classification

or root mean squared error (RMSE) for prediction. BCART on the other hand randomly

samples splitting rules using a Markov chain Monte Carlo (MCMC) algorithm. This allows

BCART to explore tree structures that CART cannot. For instance, if the splitting rule

based on X1 in Figure 2.1 was associated with the greatest improvement in scoring criteria

out of all splitting rules, then it would always be chosen as the first split in a CART model.

Due to the stochastic nature of BCART, this split could appear further down in the tree,

or not even be used at all in certain iterations of the MCMC algorithm. Since BCART is

Bayesian, the end result of the MCMC algorithm is a posterior distribution of regression trees.

Point estimates for predictions are typically taken as the average prediction across posterior

samples, which might be viewed as an ensemble-like model averaging approach. Additionally,

one can obtain natural estimates of uncertainty for any and all predictions via the posterior

distribution. This can be more convenient than, say, bootstrapping a CART model.

Unfortunately, BCART has been shown to have poor mixing, often requiring multiple

restarts or many MCMC chains to obtain reliable samples from the posterior distribution of

trees [24]. CART also has its limitations, including to but not limited to those discussed above.

For this reason, when the true prediction function is complex, algorithms using ensembles of

CART models, such as gradient boosted trees and random forests, are more widely used than

just a single CART model. Similarly, we can use BART, which is an ensemble of BCART

models, to achieve better performance.

BART extends the BCART approach to the “sum-of-trees” model which replaces the
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Figure 2.2: Example State of a 3-tree BART Ensemble

mean model in (2.2) with (2.3),

f(x) =
T∑
t=1

Tree(x; Tt,Mt) (2.3)

where t is used to index the each of the T binary tree structures (Tt) and their corresponding

sets of leaf node parameters (Mt). Each individual tree provides only a small contribution to

the overall ensemble prediction, which allows for more efficient exploration of the parameter

space. This behavior generally results in BART being more efficient in sampling from the

posterior distribution than BCART, as well as being more readily capable of approximating

complex regression functions. It is common for BART ensembles to include as many as 50 or

200 trees, where each individual tree may use different splitting criteria based on the same or

different predictors. See Figure 2.2 for an example of what a posterior sample of a BART

ensemble of T = 3 trees might look like.

2.1.2 Parameter Estimation

The tree ensemble portion of any BART model is typically referred to as nonparametric,

however this simply means that there is a vast (and variable) number of parameters in

the model which require estimation. The parameters which must be estimated in a BART
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ensemble are the tree structures {Tt}Tt=1 and their corresponding sets of leaf node parameters

{Mt}Tt=1. This estimation is carried out using MCMC to draw samples of all parameters

from their joint posterior distribution. The posterior distribution for any BART model can

be written as in (2.4):

π ((T1,M1), . . . , (TT ,MT ),η | D) , (2.4)

where η represents any additional parameters which might be present in the larger semi-

parametric model (e.g., σ2 in (2.1)), and D = {yi,xi}Ni=1 is the observed data. Define the

sum-of-trees prediction for a single observation i as λi ≡
∑T

t=1Tree(xi; Tt,Mt), and the

vector containing the prediction for all N observations as λ ≡ (λ1, . . . , λN )
T . It is also helpful

to define the partial residuals λti ≡ yi −
∑

k ̸=t Tree(xi; Tk,Mk), which represent the residual

of the overall BART fit excluding the contribution from Tt, and the corresponding vector

λt ≡ (λti, . . . , λ
t
N )

T . The MCMC algorithm for sampling from the BART posterior is provided

in Algorithm 2.1.

Algorithm 2.1 One MCMC Iteration of the Original BART Algorithm

1: Input: D, {Tt,Mt}Tt=1 ,η
2: for t = 1, . . . , T do
3: Compute the partial residuals λt.
4: Sample Tt ∼ π(Tt | {Tk,Mk}k ̸=t ,η,D) ≡ π(Tt | λt).
5: SampleMt ∼ π(Mt | Tt, {Tk,Mk}k ̸=t ,η,D) ≡ π(Mt | Tt,λt) using Gibbs sampling.
6: end for
7: Update any parameters included in η, conditional on D and {Tt,Mt}Tt=1.

In Algorithm 2.1, the tree structures and their corresponding sets of leaf node parameters

are updated sequentially using Bayesian backfitting [49]. The first step to updating the tth

tree involves computing the vector of partial residuals λt given the most recent values of the

other T − 1 trees. The ensuing updates of Tt andMt only depend on the data and other

trees through the partial residual λt, which serves as the outcome in the Gaussian likelihood

calculation. Thus, the tth regression tree is being trained on the partial residuals, as is done

in traditional boosting.
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Updating Tree Structures

In step 4 of Algorithm 2.1, a new tree is sampled from its marginal distribution. The first step

in doing this is to perturb the existing tree structure using, for example, a GROW, PRUNE,

or CHANGE move. The type of move is chosen at random given some prior probabilities,

and conditional on a selected move type, the choice of which node(s) are affected and the

decision rule is also chosen randomly (see Section 2.1.2). Figure 2.3 illustrates an example of

how one might arrive at the ensemble depicted in Figure 2.2 after four MCMC iterations

using these three moves. The first tree grows at each iteration, while the second tree grows

at iteration 2, changes the decision rule at iteration 3, and then grows again at iteration

4. Finally, the third tree grows at iteration 2, is pruned at iteration 3, and grows again at

iteration 4, this time using a new decision rule.

While all of the trees in Figures 2.3 change with each iteration, it is also possible for the

tree structure to remain unchanged after an iteration. The decision of whether or not to

accept the proposed tree structure at any given iteration is made using a Metropolis-Hastings

(M-H) step [78, 50]. Because the dimension of the parameter space may change with a GROW

or PRUNE move, this step technically requires reversible jump MCMC (RJMCMC) [44, 43].

Brief overviews of sampling from the posterior using the M-H procedure and RJMCMC

are provided in Appendixes A.2.1 and A.2.2. The RJMCMC M-H acceptance ratio for the

proposal of a new tree structure T ′
t from an existing tree structure Tt is given by Equation

(2.5):

rT =
π (T ′,M∗ | D)
π (T ,M | D)

× q (T ,M | T ′,M∗)

q (T ′,M∗ | T ,M)

=
π (T ′,M∗ | D)
π (T ,M | D)

× q1 (T | T ′)

q1 (T ′ | T )
× q2 (M |M∗)

q2 (M∗ | M)

(2.5)

where q(· | ·) is the proposal distribution for T ′ andM∗, the latter of which represents the

values we would need to propose for M under the new tree structure. It is typically the

case that the proposal distribution q may be factored into a proposal for the tree structure



15

Figure 2.3: Example Branching Process over 4 iterations for a 3-tree BART ensemble
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(q1) and a proposal for the the interim leaf node parameters (q2). Note that if q2 is specified

to be the full conditional distribution for M, then cancellation occurs with the posterior

distribution and the acceptance ratio simplifies to that in (2.6).

rT =
π (T ′,M∗ | D)
π (T ,M | D)

× q1 (T | T ′)

q1 (T ′ | T )
× π (M | T ,D)
π (M∗ | T ′,D)

=
π (M∗ | T ′,D)
π (M | T ,D)

× π (T ′ | D)
π (T | D)

× q1 (T | T ′)

q1 (T ′ | T )
× π (M | T ,D)
π (M∗ | T ′,D)

=
π (T ′ | D)
π (T | D)

× q1 (T | T ′)

q1 (T ′ | T )
.

(2.6)

The result is that the acceptance ratio rT does not depend onM orM∗ at all, and so

step 4 can be conducted independently of and prior to samplingM in step 5 of Algorithm 2.1.

This simplification is only possible when the full conditional distribution ofM, π(M | T ,D),

is available in closed form. This generally only occurs when the prior over leaf nodes is

conditionally conjugate to the outcome model. In the case of the original BART model (2.3),

the prior for the leaf nodes is chosen to be µtl ∼ Normal(µµ, σ
2
µ). Due to the conjugacy

with the Gaussian outcome regression, Mt may be integrated out of the full conditional

distribution for Tt, allowing for the simplification from (2.5) to (2.6). Algorithm 2.2 formalizes

this process and expands upon step 4 in Algorithm 2.1.

Algorithm 2.2 Sampling Tree Structures in the Original BART Algorithm

1: Input: Tt,λt

2: Propose a new tree structure T ′
t from the current state Tt using, e.g., a GROW, PRUNE,

or CHANGE move.
3: Compute rT , the Metropolis-Hastings acceptance ratio in (2.6).
4: Set Tt ← T ′

t with probability min(1, rT ).

The GROW, PRUNE, and CHANGE proposals introduced by Chipman et al. [24] are the

most commonly used proposals for tree structures in BART models. The decision rules used

for these moves are traditionally of the form X ≤ x∗, where all observations having X ≤ x∗

move into the left child node, and all observations having X > x∗ into the right. These moves
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tend to perform well in a variety of settings, but some researchers have introduced other types

of moves. For instance, Deshpande [29] developed BIRTH and CHANGE proposal decision

rules which are more suitable to categorical covariates where rules of the form X ≤ x∗ don’t

apply. This work includes rules for graph-structured covariates, which is explored further in

Chapter 5. Others have developed new proposal mechanisms entirely in an attempt to more

efficiently sample from the posterior distribution [90, 77].

Updating Leaf Node Parameters

In step 5 of Algorithm 2.1, new values of the leaf node parameters Mt may be sampled

sequentially from their full conditional distribution π(Mt | Tt,λt). Once again, the dependence

on the structures and parameters of the other T − 1 trees is entirely captured by the partial

residual λt. When π(Mt | Tt,λt) is available in closed form, as it is in the original BART

model, Gibbs sampling may be used. It is worth mentioning that this update occurs at every

MCMC iteration, regardless of whether or not the proposed tree structure is accepted in the

previous step.

Regularization Priors

The specification of priors over trees in the BART model is crucial to the performance of the

model and to prevent over-fitting. Assuming priors on individual leaf nodes are independent

conditional on their tree structure, the prior distribution for the BART model (2.3) may be

factored as in (2.7).

π
(
{Tt,Mt}Tt=1

)
=

T∏
t=1

π(Tt)π(Mt | Tt) =
T∏
t=1

π(Tt)
∏

l∈L(Tt)

π(µtl | Tt) (2.7)

The computation of rT in (2.6) requires a prior distribution over trees, which we denote

π(T ). This is typically taken to be the branching process of Chipman et al. [25]. The tree

prior, which is assumed to be the same for all trees, has three main components:
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1. Depth penalty: the probability that a given node at depth d splits is given by:

αT (1 + d)−βT , αT ∈ (0, 1), βT ∈ [0,∞) (2.8)

Here, αT controls the probability that the root node splits, and higher values of βT

penalizes deeper trees. Chipman et al. [25] recommend default values of (αT , βT ) =

(0.95, 2), which set the prior probability of trees with 1, 2, 3, 4, and over 5 leaf nodes at

0.05, 0.55, 0.28, 0.09, and 0.03, respectively.

2. Choice of splitting covariate: the probabilities of selecting a variable to split upon in a

decision rule. This is typically taken to be uniform over the available covariates, though

Linero [70] suggests an extension for high-dimensional settings (see Section 2.1.3).

3. Choice of splitting rule: given a splitting covariate, the probability of selecting the

decision rule. This is typically taken to be uniform over the available cut points.

The depth penalty is the most important feature of the branching process prior when

considering the regularization features, as it encourages shallower trees. This in turn results in

BART favoring additive relationships and lower-order interactions in the estimated response

surface.

Recall that the prior distribution for the leaf nodes is typically taken to be π(µtl) =

Normal(µtl | µµ, σ
2
µ). This corresponds to a prior distribution for a prediction from the entire

sum-of-trees ensemble to be Normal(Tµµ, Tσ
2
µ). We often let µµ = 0, which is reasonable

when scaling the outcome to have mean zero prior to fitting the model. To prevent the prior

for predictions from being dependent on the number of trees in the ensemble, and to further

constrain the contributions of individual trees to be small, we usually set σµ = σ∗
µ/
√
T . Prior

scaling of the outcome can inform the value chosen for σ∗
µ. More details surrounding this

technique and alternative methods using prior distributions on σµ are described in Appendix

A.5.
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Updating Additional Parameters

Once all of the parameters related to the tree ensemble have been updated, any remaining

parameters can be updated as per usual. In the original BART model 2.1, this only refers

to the outcome variance σ2, but in more complicated BART models η may refer to many

different types of parameters and/or hyperparameters, including but not limited to a vector

of regression coefficients, random effects, or even parameters from another BART ensemble.

Whether or not a closed form Gibbs sampler exists for η depends on the parameters included

in model being estimated and whether conditional conjugacy holds.

2.1.3 Extensions

Different Outcomes

BART was originally proposed for Gaussian outcomes, and by extension binary classification

via a probit link function [25]. More generally, extending BART to any outcome distribution

that admits a conditionally conjugate prior distribution is relatively straightforward, though

it does require thoughtful consideration to preserve the effect of the regularization priors

discussed in the previous section. A few recent BART developments include nonparametric

extensions for multinomial logistic and count regression models [82], heteroskedastic log-

normal and gamma hurdle models [74], and survival analysis models [14, 96].

Recently, Linero [71] published a generalized BART method based on RJMCMC that

theoretically allows using BART to estimate any parameter in any model without the need

for conditional conjugacy. For this method, it is helpful to define the partial residuals

λ
(t)
i ≡

∑
k ̸=t Tree(xi; Tk,Mk), which represents the contribution to λi by all trees except for

Tt, and the corresponding vector λ(t) ≡
(
λ
(t)
i , . . . , λ

(t)
N

)T
.

One of the main difficulties with extending BART to new types of models is designing

regularization, or shrinkage, priors for the leaf node parameters which are conjugate to the

outcome distribution. In general, BART makes use of the integrated likelihood (2.9) when
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calculating rT to update the tree structures in Algorithms 2.1 and 2.2. When (2.9) is not

tractable, the original algorithm falls apart.

Λ(Tt) = p(D | Tt) =
∏

l∈L(Tt)

∫
π(µ)

( ∏
i:xi 7→l

p
(
yi | λ(t)i + µ,η

))
dµ (2.9)

This generalized BART approach of Linero [71] is outlined in Algorithm 2.3.

Algorithm 2.3 One MCMC Iteration of the RJMCMC BART Algorithm

1: Input: D, {Tt,Mt}Tt=1 ,η
2: for t = 1, . . . , T do
3: Compute the partial residuals λ(t).
4: Propose a new tree structure T ′

t from the current state Tt using, e.g., a GROW,
PRUNE, or CHANGE move.

5: Propose interim values forM∗
t .

6: Compute rT , the RJMCMC M-H acceptance ratio in (2.5) for the move from (Tt,Mt)
to (T ′

t ,M∗).
7: Set Tt ← T ′

t with probability min(1, rT ).
8: SampleMt targeting its full conditional distribution using, say, slice sampling [84] or

adaptive rejection sampling [42].
9: end for
10: Update any parameters included in η, conditional on D and {Tt,Mt}Tt=1.

Algorithm 2.3 differs in several ways from Algorithm 2.1. Notably, step 5 is not required

in the original algorithm, and step 8 now requires advanced sampling techniques because a

closed-form Gibbs sampler is not available. The lack of conjugacy also requires using λ(t)

instead of λt in steps 5-8.

To see this more closely, notice that Algorithm 2.1 could be written in terms of λ(t), but

the reverse is not true. This is because the BART parameter in the integrated likelihood

used behind the scenes in Algorithm 2.3 is essentially offset by λ(t), as opposed to using λt

as the outcome. In other words, the likelihood component used in the M-H update of Tt

for the original BART model can be changed from p (λti | µ) to p
(
yi | λ(t)i + µ

)
(where µ is

the parameter being estimated by Tt) with no change in result since λti = yi − λ(t)i . This

won’t always be the case, with the most obvious example being when we want to use BART

to estimate individual-level parameters other than predictions. When there is no observed
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outcome with which to define the partial residual λti, we will still have access to λ
(t)
i . The

generalized BART framework allows for modeling of any parameter in a statistical model,

not just predicting the observed outcome.

This approach is indeed very flexible, and is promising for the future of BART. In Chapter

3, this methodology is used to allow for a heterogeneous regression coefficient within a

conditional logistic regression model. The downside to this approach is that proposing and

sampling values ofM∗ in step 5 andM in step 8 can be challenging and time consuming.

For step 8, sampling techniques such as slice sampling or adaptive rejection sampling may be

used [84, 42]. A brief overview of adaptive rejection sampling is provided in Appendix A.2.4.

Dirichlet Additive Regression Trees

The BART algorithm will naturally tend towards trees with decision rules based on predictors

that are most important in the true data generating process since those rules will be associated

with the greatest M-H acceptance ratios. Nevertheless, the algorithm will at times choose

to split on unimportant predictors due to the innate randomness of the approach. This is

particularly an issue in high-dimensional settings where only a fraction of the predictors

are actually useful. Linero [70] proposed using an additional hyperprior on the selection

of predictors to use within a splitting rule. The original model uniformly selects a single

predictor from the available list of predictors which is to be used for a splitting rule. In

other words, Sp =
1
P
, where P is the number of predictors. Linero [70] instead specifies a

hierarchical prior distribution on predictor selection probabilities as in (2.10)–(2.12):

{up}Pp=1 ∼ Multinomial
(
Nb, {Sp}Pp=1

)
(2.10)

{Sp}Pp=1 ∼ Dirichlet
(α
P

)
(2.11)

α

α + P
∼ Beta(1, 0.5) (2.12)
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where up is the number of splits in the ensemble based on Xp, and Nb is the total number

of splits in the ensemble in the current iteration. This hierarchical formulation leads to the

conjugate update for {Sp}Pp=1 provided in (2.13).

{Sp}Pp=1 | {up}
P
p=1 ∼ Dirichlet

(α
P

+ u1, . . . ,
α

P
+ uP

)
(2.13)

This proposed Dirichlet prior more effectively filters out unimportant predictors by

encouraging the algorithm to split on predictors which have previously been used. In practice

this update is often initiated half-way through the burn-in period to allow the ensemble to

reach a “good” point before tuning variable selection probabilities.

Soft Bayesian Additive Regression Trees

BART, like other tree-based ensemble machine learning methods, can be used to learn all

types of response surfaces. However, the usage of binary trees forces the resulting fit to

be rigid. When enough trees are used, the model might be able to approximate a smooth

function well enough, but the resulting fit will never truly be smooth.

Recently, Linero and Yang [73] proposed an modification to the algorithm coined soft

BART. This modification replaces the deterministic decision trees traditionally used within

BART ensembles with soft decision trees [122]. In a soft decision tree, the prediction for an

observation is a weighted average of all of the leaf node parameters within the tree, rather

than just a single leaf node parameter. The weights are defined as the probability that the

observation is mapped to each leaf node as determined by, say, a logistic gating function [73].

When compared to the deterministic predictions obtained from a traditional decision tree,

this has the effect of smoothing over the otherwise rigid decision rules that form the binary

tree. Mathematically, x is mapped to leaf l ∈ L(T ) with probability (2.14)

ϕ(x; T , l) =
∏

b∈A(l)

ψ(x; T , b)1−Rb {1− ψ(x; T , b)}Rb , (2.14)
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where A(l) is the set of interior nodes ancestral to leaf node l and Rb = 1 if the path to l

goes right at branch node b ∈ B(T ). The choice of ψ is important, and the original authors

suggest (2.15)

ψ(x; T , b) = ψ

(
Cb − xp
τb

)
, (2.15)

where Cb is the cut point for variable Xp used in the split for branch node b, τb is a bandwidth

probability with higher values resulting in a smoother fit, and ψ(x) = (1 + exp (−x))−1 is

the logistic gating function previously mentioned. More information regarding this approach,

including details for how to update and specify τb, can be found at the original source [73].

The primary drawback to using soft BART is the greatly increased computational burden

that comes as a result of having to complete traversals over the entire tree for all observations.

This formulation results in predictions for observations with values close to, but on

opposite sides of a split Cb to have more similar predictions than observations further away

from one another in the covariate space. When working with environmental data, it is not

often the case that small changes in an exposure should result in sudden, large changes in

the exposure-response surface, so soft BART will prove useful in this setting.

2.2 Interpretable BART

BART is similar to other machine learning methods in that the ultimate result is a so-called

“black-box” from which it can be difficult to explain how the fitted model is generating

predictions from its inputs. To combat this, researchers use a suite of tools to quantify the

relative importance, as well as join and marginal effects of input variables on the ensemble

output.

2.2.1 Variable Importance

One common strategy for summarizing a fitted BART model is to tabulate the usage of each

input variable in the ensemble. For any given MCMC iteration, one might count the number
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of splits across all trees based on each covariate, and report the proportions of all splits

based on each covariate. This can be done for all posterior samples, providing an estimate of

uncertainty to go along with a posterior mean. Similarly, one might report posterior inclusion

proportions, calculated as the proportion of all posterior samples which use each variable

within the ensemble. For large T , both approaches will struggle due to unimportant variables

entering the model unless a sparsity inducing prior such as the one described in Section 2.1.3.

This approach tends to favor continuous variables, as they admit more valid split values.

2.2.2 Partial Dependence

When it comes to describing marginal effects of one variable, or joint effects of multiple

variables, a common tool in the machine learning literature is partial dependence. Partial

dependence statistics were originally introduced by Friedman [36] and serve as a way to

quantify the impact of shifting one or more predictors on the estimated prediction function f̂ .

The partial dependence function for a single predictor Xp evaluated at xp is given by (2.16)

fp,PD(xp) ≡ E
[
f̂ (xp,X−p)

]
, (2.16)

where X−p represents all but the pth predictor. It’s important to reiterate that partial

dependence functions are defined in terms of the estimated prediction function, f̂ , and not

the true function f . Thus, this approach is simply a way to better understand a fitted model,

and it is not a tool to be used for determining whether the model is performing well. This

quantity is estimated by averaging evaluations of f̂ over the sample as in (2.17).

f̂p,PD(xp) =
1

N

N∑
i=1

f̂ (xp,xi,−p) (2.17)

The estimator tracks the average prediction in the sample as if all observations were

to have Xp = xp. This quantity is typically calculated for a range of values of Xp, most

commonly running from the minimum observed value of Xp, xmin,p, to the maximum observed
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value, xmax,p. For continuous Xp, these values are traditionally chosen to be either equally

spaced in this range or perhaps to align with quantiles of the observations. The result may

be plotted as a “dose-response” or “exposure-response” curve. For discrete Xp, one might

compute (2.17) for each distinct value in Xp, or for the difference between two values.

Poor Man’s Partial Dependence

A major drawback of using partial dependence is the need to evaluate f̂ for all observations,

for all values of Xp under consideration. This can be time consuming for large datasets or for

models that require more time to generate predictions (e.g., time spent traversing many tree

structures across many posterior samples for BART). Alternatively, one might fix the other

variables X−p to a typical value, such as their respective medians. This approximation to the

partial dependence method is sometimes referred to as poor man’s partial dependence, or

fixed value partial dependence. The estimand is given by (2.18)

fp,F ixed(xp) ≡ E
[
f̂
(
xp,x

∗
−p

)]
, (2.18)

where x∗
−p represents the observed medians (or some other fixed value) for each predictor

except for Xp. The quantity is estimated by (2.19).

f̂p,F ixed(xp) = f̂
(
xp,x

∗
−p

)
(2.19)

Observe that (2.19) is much faster to compute than (2.17) since it only requires one

evaluation of f̂ for each value of Xp, whereas the number of computations required for (2.17)

scales linearly with N . The downside with the fixed values approach is that the result does

not average over the predictors that aren’t of interest.
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2.2.3 Accumulated Local Effects

A undesirable feature of both the partial dependence and fixed values approaches is that

the resulting estimates may involve extrapolating the prediction function. An alternative

approach that addresses these concerns and bridges the computation gap between the two is

known as accumulated local effects, or ALE [6]. The true uncentered ALE main effect for Xp

evaluated at xp is defined as the quantity in (2.20).

fp,ALE(xp) ≡
∫ xp

xmin,p

E

[
∂f̂

∂Xp

(xp,X−p) | Xp = x′p

]
dx′p (2.20)

The idea behind this estimand is threefold:

1. Isolate the partial effect of shifting Xp by targeting the partial derivative of f̂ with

respect to Xp.

2. Avoid extrapolation in the evaluation of f̂ by taking the expectation over the conditional

distribution of Xp.

3. Visualize by accumulating local changes in f̂ corresponding to small incremental changes

in Xp.

To estimate the quantity in (2.20), we first rewrite the estimand using the limit definition

of the derivative as in (2.21).

fp,ALE(xp) ≡ lim
K→∞

kKp (xp)∑
k=1

E
[
f̂
(
xKk,p,X−p

)
− f̂

(
xKk−1,p,X−p

)
| Xp ∈

(
xKk−1,p, x

K
k,p

]]
(2.21)

Here, K is the number of intervals in the support of Xp over which local effects are

estimated, and xKk−1,p and xKk,p are the lower and upper bounds of the kth interval. The
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estimator of the uncentered ALE main effect is given by (4.18)

f̂p,ALE(xp) =

kKp (xp)∑
k=1

1

Nk

∑
i:xi,p∈(xK

k−1,p,x
K
k,p]

[
f̂
(
xKk,p,xi,−p

)
− f̂

(
xKk−1,p,xi,−p

)]
, (2.22)

where Nk is the number of observations having Xp ∈
(
xKk−1,p, x

K
k,p

]
. In practice we compute

estimates of local effects for a fixed number of intervals (K). The ALE is also typically

centered vertically by overall average prediction. This results in the interpretation of the

estimates to become relative to the average prediction, as opposed to the prediction for the

lowest observed value of Xp.

Accumulated Local Effects: A Brief Illustration

Suppose two correlated variables, X1 and X2, are observed and the true bivariate response

surface is given by f(X1, X2) = −X2(X1− 0.5)2. The resulting surface might resemble Figure

2.4.

Overlaid on the surface in 2.4 are 25 observations. The data have been simulated so that

there is a strong positive correlation between X1 and X2. This is the exact type of scenario

where ALE shines. Figure 2.5 walks through the steps necessary to compute and plot the

ALE.

Figure 2.6 plots the ALE main effect of X1 on f̂ alongside the partial dependence and

fixed values (median) approach for estimating the main effect of X1 on f̂ . The latter two

approaches are similar to one another, but very different from the ALE. For small values of

X1, the ALE main effect estimate is much higher. We can see why this occurs by examining

Figure 2.4. For this same lower range of values of X1, from about 0 to 0.25, the surface value

is relatively higher in the region where data was observed. During the estimation process,

the partial dependence approach extrapolates to the upper left quadrant and the fixed values

approach extrapolates to the median value of X2 (≈ 0.50). The result is that the main

effect estimate for X1 in this lower range has a downward bias when using either of these
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Figure 2.4: True Bivariate Response Surface for ALE Illustration

approaches. The reverse is true for the upper range of X1 (from about 0.75 to 1). Unlike

partial dependence and fixed values approach, the ALE only computes the main effect for X1

using realistic values of X2, providing the result with a more reliable interpretation.

Partial dependence and the fixed values approach are easily extendable to more than one

exposure of interest, while ALE requires a bit more work (see Apley and Zhu [6] for more

details on this). For continuous variables, it is not common to estimate any of these quantities

for more than 2 variables since interpretation and visualization becomes very complicated.

Regardless of the method chosen for estimating partial effects, the accuracy of the result

hinges entirely on the estimated prediction function f̂ capturing the true response surface f .
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Figure 2.6: Comparison of Approaches for Estimating the Partial Effect of X1 on f̂
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Chapter 3

Estimating Heterogeneous Exposure

Effects in the Case-Crossover Design

using BART

3.1 Introduction

In the United States, Alzheimer’s disease (AD) affected 6.7 million people aged 65 and

older in 2023, with that number projected to more than double by 2060. AD is the most

common cause of dementia, entirely or partially responsible for 60-80% of all cases. People

with AD often struggle to communicate and complete tasks in their daily life due to a host

of symptoms headlined by forgetfulness, lethargy, and confusion. An estimated 1.3% of

emergency department (ED) visits involve people with AD and related dementia, and within

this population the number of ED visits per 1,000 Medicare beneficiaries increased 28% from

2008 to 2018 - outpacing cancer, stroke, and heart failure [3].

In recent years, extreme heat has been associated with elevated risk of ED visit, hospital-

ization, and death among people with AD and dementia in Spain, Australia, Germany, and

the United States [26, 118, 37, 109, 120]. Fritze [37] reported that the number of comorbid
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conditions is associated with increased risk of mortality among people with dementia.

There are several potential explanations for why people with AD are more affected by

extreme heat. People with AD may have elevated core body temperature due to disturbed

circadian rhythms responsible for thermoregulation [106, 91, 48, 59]. Alternatively, people

with AD tend to wander or get lost, resulting in prolonged exposure to extreme temperatures

[3]. Another possibility is that these individuals may struggle to communicate their heat-

related discomfort in certain situations with their caregivers [105].

These explanations may not apply to the entire AD population. People with AD and

related dementia are 2.7 times more likely to have 4 or more additional chronic conditions

compared to people without AD or dementia; in the United States, 56% have hypertension,

46% have chronic kidney disease (CKD), 37% have diabetes, 34% have congestive heart failure

(CHF), and 20% have chronic obstructive pulmonary disease (COPD) [3]. Additionally, an

estimated 12.7% of people with AD have clinically diagnosed depression [23]. Given the variety

of concomitant diagnoses these individuals tend to have, it is possible that heterogeneity

exists in the exposure-response relationship describing heat wave-related morbidity. Thus,

studying modifiers of this relationship is of interest.

Some of the aforementioned studies model heterogeneous exposure effects via stratification

or by interacting covariates with the exposure [37, 120], while others directly target these

effects using the case-only approach of Armstrong [7] [118]. In the extreme temperature

literature, stratification has been mostly applied for demographic characteristics (e.g., age,

race, and sex), while the case-only approach has also been used for chronic conditions,

socioeconomic status, and various census tract characteristics [92, 119, 117, 76]. These

approaches to heterogeneous effects estimation are limited by the need for expert knowledge

regarding which factors are important before model-fitting, and they are not readily capable

of identifying complex interactions among potential effect moderators.

We propose an extension of the popular case-crossover study design to estimate heteroge-

neous exposure effects using Bayesian additive regression trees (BART) [25]. As it is typically
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applied, this design is limited to the previously mentioned strategies for heterogeneous effects

estimation. The proposed method, CL-BART, uses BART within the case-crossover design to

flexibly learn potentially complicated heterogeneous exposure-response relationships during

the model-fitting process, with minimal prespecification required. In Section 3.2 we introduce

the data for the motivating application. In Section 3.3 we review the case-crossover design,

conditional logistic regression, and BART. We then develop CL-BART, focusing on the

reversible jump portion of the estimation algorithm. In Section 3.3.3 we describe strategies

for drawing posterior inference from the proposed model. In Section 3.4, we conduct two

simulations illustrating the performance of CL-BART, and in Section 3.5 we apply CL-BART

to estimate the effects of heat waves on ED visits among people with AD in California.

Finally, in Section 3.6 we summarize our findings, discuss the limitations of the approach,

and suggest possibilities for future improvements.

3.2 Data

3.2.1 Health Data

The data for our motivating application includes all ED visits among people with AD in

California occurring from 2005 to 2015. These data were obtained from the California Office

of Statewide Health Planning and Development (now California Department of Health Care

Access and Information), and include patients’ visit date, sex, age, race, ethnicity, residential

ZIP code, and diagnosis codes based on the International Classification of Diseases. We

restrict the ED visit records to include only those who had either a primary or secondary

diagnosis of AD. Diagnoses of comorbid conditions were also based on the presence of any

diagnosis code for CHF, CKD, COPD, depression, diabetes, hypertension, and hyperlipidemia

(see the Chapter 3 Supplementary Materials for a list of codes).
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3.2.2 Exposure Data

Meteorology data were obtained from Daymet [104]. The 1km x 1km data product was

spatially averaged within each ZIP code, and linked to the ED visit data by both date and

ZIP code. Specifically, we use the daily average temperature (◦C) and dew-point temperature

(◦C). The former is calculated as the arithmetic mean of the daily minimum and maximum

temperature, and the latter is derived from water vapor pressure using the Magnus formula

presented in Sonntag [95]. The exposure of interest, heat wave, is defined as any sequence

of two or more days at or above the ZIP code-specific 95th percentile of daily average

temperature (excluding the first day of such a sequence to better reflect sustained heat

exposure). Daily average temperature, dew-point temperature, and a US federal holiday

indicator were also treated as potential confounders in the health model.

3.3 Methods

3.3.1 Model Development

Review of the Case-Crossover Design

In environmental epidemiology studies, it is common to only observe cases, or events associated

with some health outcome. For instance, we might observe visits to an emergency department

or hospitalizations, but we generally do not observe anything for healthy individuals, or on

days when events do not occur. Because of this, clever matching schemes are often employed

to select controls, or observations for which no event was recorded.

Case-crossover designs are frequently used to analyze the effects of short-term exposure

on health outcomes in large environmental epidemiology studies when only cases are available

[18]. This design allows for estimation of associations between an outcome and time-varying

exposures of interest while avoiding the need to adjust for confounding by time-invariant

covariates that may be difficult or impossible to measure. In the case-crossover design, each
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observed case is matched to a set of controls within a referent window to create a stratum.

There are many options for selecting referent windows, but the most popular approach is the

time-stratified design (see Appendix A.1 for further details regarding the various options).

This strategy matches each case to the 3-4 other dates in a calendar month with the same day

of the week. A crucial assumption of the time-stratified approach is that the observed cases

are independent and rare enough such that an individual would not experience the event twice

within the referent window. The time-stratified design is a popular choice for selecting referent

windows because it is both localizable and ignorable, thus providing unbiased estimation of

regression coefficients when using conditional logistic regression [53].

Review of Conditional Logistic Regression

Suppose we observe N cases. Each of the i = 1, . . . , N individuals is assigned a referent

window, Wi, of time points based on the time-stratified design. We note whether a case was

observed for the individual at each time point j ∈ Wi and record it as either Yij = 1 (case)

or Yij = 0 (no case). Then the true data generating model might be represented as:

Yij ∼ Bernoulli(pij), j ∈ Wi (3.1)

logit(pij) = vT
i α+wT

ijγ + βxij, (3.2)

where Yij is the outcome for individual i at time j, pij is the probability of observing

Yij = 1, and Wi is the referent window containing observation times j for individual i.

The time-varying primary exposure is denoted by xij, while vi and wij represent column

vectors which include time-invariant and time-varying confounders of the exposure-response

relationship, respectively. For the AD example, xij is a binary heat wave indicator, vi includes

time-invariant demographic information or other unmeasured quantities, and wij includes

daily average temperature, dew-point temperature, and a federal holiday indicator. The

parameters α,γ, and β represent log odds ratios quantifying the association between the
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various predictor variables and the outcome.

Integral to the case-crossover design is the assumption that
∑

j∈Wi
Yij = 1 for i = 1, . . . , N

(i.e., individuals experience exactly one event within their referent window). Given this

information, the conditional probability of observing a case at time point j for observation i

is given by (3.3).

pcij = Pr

(
Yij = 1 |

∑
j∈Wi

Yij = 1

)

=
exp

(
vT
i α+wT

ijγ + βxij
)∑

j∈Wi
exp

(
vT
i α+wT

ijγ + βxij
)

=
exp

(
wT

ijγ + βxij
)∑

j∈Wi
exp

(
wT

ijγ + βxij
) .

(3.3)

Notably, all time-invariant covariates (vi) have been conditioned out entirely. This is the

primary benefit of working with the conditional likelihood, but it comes at the expense of being

able to produce unconditional probability predictions. The conditional likelihood contribution

for a single individual corresponds to a multinomial distribution with probabilities given by

(3.3). With this in mind, the conditional likelihood for the observed data is is expressed as:

p(y | β,γ) =
N∏
i=1

p(yi | β,γ)

=
N∏
i=1

∏
j∈Wi

(
pcij
)yij

=
N∏
i=1

∏
j∈Wi

(
exp

(
wT

ijγ + βxij
)∑

j∈Wi
exp

(
wT

ijγ + βxij
))yij

=
N∏
i=1

exp
(
wT

iji
γ + βxiji

)∑
j∈Wi

exp
(
wT

ijγ + βxij
) ,

(3.4)

where yi is the observed vector of outcomes within the ith individual’s referent window Wi,

and y is a vector containing all yi, i = 1, . . . , N . For the final form of p(y | β,γ) in (3.4), we
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implicitly include the outcome through the subscript iji, which represents the index time

point of the ith case. This notation relies on the fact that only one of the yij is equal to 1 for

each individual. Maximum likelihood estimation of (3.4) results in unbiased log odds ratios

(ORs) for the confounders (γ) and the primary exposure (β). Alternatively, the parameters

may be estimated using Markov chain Monte Carlo sampling in a Bayesian framework.

The data model in (3.4) assumes a homogeneous exposure effect, β, across all individuals.

To examine how the association between the exposure and outcome varies across individuals,

researchers may specify subgroup analyses ahead of time, defining the subgroups using

demographic characteristics like sex and age. This requires some knowledge of the outcome

and exposure to be able to identify which subgroups should be considered prior to analyzing

the data.

CL-BART and the Exposure Moderating Function β(·)

We propose extending this modeling framework to allow for estimation of heterogeneous

exposure effects within a study population. Specifically, we use BART [25] to model the

exposure effect as a function of individual-level covariates that were previously conditioned

out. We start by defining a more general version of the conditional likelihood in (3.5), which

we will refer to as the conditional logistic BART (CL-BART) likelihood.

p (y | β(·),γ) =
N∏
i=1

p (yi | β(zi),γ) =
N∏
i=1

exp
(
wT

iji
γ + β(zi)xiji

)∑
j∈Wi

exp
(
wT

ijγ + β(zi)xij
) . (3.5)

Here we have simply replaced β with β(zi), suggesting that the increase in the log odds of

an ED visit due to a unit increase in the primary exposure may differ across individuals.

The contents of zi may overlap with vi in (3.2), but the two are not required to be identical.

In the AD example, zi includes comorbid conditions, such as diabetes and chronic kidney

disease, as well as sex and age.

We place a nonparametric BART prior on the exposure moderating function β(·) as in
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(3.6).

β(zi) =
T∑
t=1

Tree(zi; Tt,Mt). (3.6)

The BART prior represents β(zi) as a sum of T weak learners - in this case, Bayesian

regression trees [24]. Each tree is composed of a tree structure T defined by a series of binary

splits based on covariates z, a set of terminal or leaf nodes L(T ), and a set of scalar-valued

leaf node parametersM = {µl}l∈L(T ). In (3.6), “Tree” is the function that makes a prediction

for covariate vector z by mapping z to a single leaf node in the given tree.

In the simplest setting, z consists only of a series of Pz binary effect moderators and the

maximum number of unique values of β(z) is 2Pz , regardless of sample size. When T = 1,

CL-BART simplifies to a treed conditional logistic regression, where the confounder effects are

shared across leaf nodes. Including continuous covariates is a straightforward extension, and

allows for modeling more complex high-order interactions and nonlinearities among exposure

effect moderators. We do not consider time-varying covariates in z, as this would result in

individual strata being allocated to multiple leaf nodes, thus violating the case-crossover

design.

3.3.2 Estimation

Generalized BART

BART was originally designed with Gaussian outcomes in mind, relying heavily on the

conditional conjugacy between the outcome model and the prior distribution on the leaf node

parameters. This allows for a Metropolis-Hastings (M-H) proposal for the tree structure

to be conducted separately from the Gibbs update of the leaf node parameters through

marginalization, resulting in a simple and efficient Markov chain Monte Carlo (MCMC)

algorithm [25]. BART has since been extended to other outcome regressions, including

survival, log-linear, and gamma models [96, 82, 74], but such extensions require extensive

modification of the original algorithm and existing software. BART has also been used to
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model varying coefficients, but these leverage conditional conjugacy as well [30, 46]. As

mentioned in 2.1.3, Linero [71] recently proposed a general strategy based on reversible

jump MCMC (RJMCMC) [44, 43] as a promising alternative for adapting BART to more

complicated likelihoods. This approach is appealing because it avoids the need for conjugate

priors altogether, and so we use it for CL-BART. We now provide a brief overview of this

approach and our implementation, but refer the reader to the source for further detail.

Data Likelihood

It is first helpful to rewrite the data likelihood in terms of the tree structure. The likelihood

for a single tree Tt can be represented as in (3.7).

p(y | Tt,Mt) =
∏

l∈L(Tt)

∏
i:zi 7→l

p (yi | µl) . (3.7)

For CL-BART, we may substitute the likelihood given in (3.4), where µl represents the

prediction from Tt (i.e., the exposure effect) for strata having zi mapped ( 7→) to leaf node l.

Since γ is shared across all leaf nodes, we omit it in (3.7) to lighten the notation.

Prior Distribution

The unknown quantities for each tree in CL-BART include the leaf node parametersMt =

{µl}l∈L(Tt) and the tree structure itself Tt. By imposing independence on the former, we may

factor the joint prior distribution for a single tree as in (3.8).

π (Tt,Mt) ∼ π(Tt)π(Mt | Tt) ∼ π(Tt)
∏

l∈L(Tt)

π (µl) . (3.8)

The µl are given i.i.d. Normal(0, σ2
µ) priors, but this is not a requirement since conjugacy

with the likelihood is no longer a concern. While one may have some intuition regarding

the range of log odds ratio values to expect for β(·), generally this will be unknown. For
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this reason, we follow Linero [71] and specify a half-Cauchy hyperprior σµ ∼ C+
(
0, k/
√
T
)

to help learn the range of appropriate predictions. Here, k is a fixed hyperparameter, and

the division by
√
T ensures predictions are made on the same general scale regardless of the

number of trees used. Mathematical details for this update are provided in Appendix A.5.2.

For the tree structure Tt, we use the branching process prior described in Chipman et al.

[25], where each node in Tt is split with probability ρd = αT (1 + d)−βT (here d is the depth

of the node in Tt). We use the default values of (αT , βT ) = (0.95, 2), but note that in the

heterogeneous effects setting there have been several proponents for stronger regularization

[46, 17]. We make one departure from the traditional branching process by further placing a

Dirichlet hyperprior on the covariate selection probabilities as suggested in Linero [70] (see

Section 2.1.3 for more detail). This modification is particularly helpful in settings with many

covariates that each have many available values upon which to split.

Tree Proposals and the Posterior Distribution

New tree structures are proposed and accepted with a M-H step. We consider three types of

proposals: GROW, PRUNE, and CHANGE. Both the GROW and PRUNE moves involve

jumping between parameter spaces of differing dimensions, and thus require modification of

the traditional M-H acceptance ratio. The general form for this ratio is given in (3.9).

rT =
π (T ′,M′)

π (T ,M)︸ ︷︷ ︸
Prior Ratio

× p (y | T
′,M′)

p (y | T ,M)︸ ︷︷ ︸
Likelihood Ratio

× q (T ,M | T
′,M′)

q (T ′,M′ | T ,M)︸ ︷︷ ︸
Proposal Ratio

. (3.9)

The prior term may be factored as in Section 3.3.2, while the proposal term may be

factored into two parts: a structural component and a proposal for the new leaf node

parameter(s) based on some distribution G. We use a normal distribution based on a Laplace

approximation for G, as suggested by [71] (see the Chapter 3 Supplementary Materials for

details). Each type of proposal is summarized below, where NOG(T ) is defined as the set of

nodes in T that are parents of two terminal nodes - that is, internal nodes which have no
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grandchildren.

• GROW: a random leaf node l ∈ L(T ) is selected. Subsequently, a splitting covariate

Zp and cut-point z∗p based on the observed values of Zp are selected. Then node l is

split into lL and lR, where strata having Zp ≤ z∗p are fed into lL and strata having

Zp > z∗p are fed into lR. For l of depth d, the modified RJMCMC M-H acceptance ratio

is given by (3.10).

rGROW
T =

ρd(1− ρd+1)
2

(1− ρd)
×
π(µ′

lL | 0, σ2
µ)× π(µ′

lR | 0, σ2
µ)

π(µl | 0, σ2
µ)

×
∏

i:zi 7→lL p(yi | µ′
lL)×

∏
i:zi 7→lR p(yi | µ′

lR)∏
i:zi 7→l p(yi | µl)

× pPRUNE(T ′)|NOG(T ′)|−1

pGROW (T )|L(T )|−1
× GPRUNE(µl)

GGROW (µ′
lL, µ

′
lR)

.

(3.10)

• PRUNE: a random node branch node b ∈ NOG(Tt) is selected. Leaf nodes bL and bR

are removed from the tree, along with the decision rule that defined the branch. For b

of depth d, the modified RJMCMC M-H acceptance ratio is given by (3.11).

rPRUNE
T =

(1− ρd)
ρd(1− ρd+1)2

×
π(µ′

l | 0, σ2
µ)

π(µlL | 0, σ2
µ)× π(µlR | 0, σ2

µ)

×
∏

i:zi 7→b p(yi | µ′
b)∏

i:zi 7→bL p(yi | µbL)×
∏

i:zi 7→bR p(yi | µbR)

× pGROW (T ′)|L(T ′)|−1

pPRUNE(T )|NOG(T )|−1
× GGROW (µbL, µbR)

GPRUNE(µ′
b)

.

(3.11)

• CHANGE: a random branch node b ∈ NOG(Tt) is selected. The criteria for further

splitting into leaf nodes bL and bR are exchanged for another covariate and/or cut-point.

Since the general tree structure is unchanged, the structural components of the prior
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and proposal ratios cancel out. The M-H acceptance ratio is given by (3.12).

rCHANGE
T =

π(µ′
lL | 0, σ2

µ)× π(µ′
lR | 0, σ2

µ)

π(µlL | 0, σ2
µ)× π(µlR | 0, σ2

µ)

×
∏

i:zi 7→bL p(yi | µ′
bL)×

∏
i:zi 7→bR p(yi | µ′

bR)∏
i:zi 7→bL p(yi | µbL)×

∏
i:zi 7→bR p(yi | µbR)

× GCHANGE(µbL, µbR)

GCHANGE(µ′
bL, µ

′
bR)

.

(3.12)

At each iteration, one type of proposal is made for each tree in the ensemble. We set the

prior probability of each proposal type to pGROW = 0.3, pPRUNE = 0.3, and pCHANGE = 0.4.

The trees are cycled through using a generalized version of Bayesian backfitting [49, 71].

Essentially, this involves offsetting the likelihood calculation in the M-H acceptance ratio

for the update of tree Tt by the sum of the predictions from the remaining T − 1 trees.

Mathematically, we swap (3.7) with (3.13),

p(y | Tt,Mt) =
∏

l∈L(Tt)

∏
i:zi 7→l

p
(
yi | µl + λ

(t)
i

)
, (3.13)

where λ
(t)
i =

∑
k ̸=tTree(zi; Tk,Mk). The M-H acceptance ratios presented in this section

only depend on the likelihood within the affected leaf nodes, and so the inner product term

of (3.13) can be used wherever the likelihood component is evaluated in (3.10), (3.11), and

(3.12).

Thus far for tree t, the proposed valuesMt have been used solely to update Tt. Once

Tt has been updated, we propose new values for all µl ∈ Mt sequentially from their full

conditional distribution via adaptive rejection sampling [42].

Prior to the BART update, we update γ using a traditional random-walk M-H step. For

the proposal distribution, we use a multivariate normal distribution centered at the current

value of γ and with covariance matrix σ2
γVγ , where we initialize Vγ as the confounder portion

of the covariance matrix of γ̂ from the fit of a conventional conditional logistic regression as
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in (3.4), and σ2
γ is initially set to unity but tuned throughout the burn-in phase to achieve an

optimal acceptance rate. Note that the proposal for {Tt,Mt} is also offset by the confounders,

in addition to the fits of other T − 1 trees. An outline for the CL-BART MCMC algorithm is

provided in Algorithm 3.4.

Algorithm 3.4 One MCMC Iteration of CL-BART

1: Input: D = {y,W,X,Z} ,γ, {Tt,Mt}Tt=1 , αT , βT , {Sp}Pz

p=1 , a, σ
2
µ, σ

2
γ ,Vγ

2: Update γ (via M-H step with multivariate normal prior).
3: Set λi ←

∑T
t=1 Tree(zi; Tt,Mt) for i = 1, . . . , N .

4: for t = 1 to T do
5: Set λ

(t)
i ← λi − Tree(zi; Tt,Mt) for i = 1, . . . , N .

6: Propose T ′
t from Tt using a GROW, PRUNE, or CHANGE step.

7: ProposeM∗
t from G based on a Laplace approximation [71].

8: Compute rT , the (modified) M-H acceptance ratio for {T ′
t ,M∗

t}.
9: Set Tt ← T ′

t with probability min(1, rT ).

10: UpdateMt | Tt,
{
λ
(t)
i

}N

i=1
using adaptive rejection sampling [42].

11: Set λi ← λ
(t)
i + Tree(zi; Tt,Mt) for i = 1, . . . , N .

12: end for
13: Update {Sp}Pz

p=1 ∼ Dirichlet( a
Pz

+ u1, . . . ,
a
Pz

+ uPz), where up is the number of times Zp

is split upon.
14: Update a (via discrete step described in Linero [70]).
15: Update σµ (via M-H step with half-Cauchy prior - see Appendix A.5).

3.3.3 Posterior Inference

As with any Bayesian model, point estimates and posterior credible intervals may be obtained

for the confounder coefficients and other scalar parameters. To summarize the estimated

heterogeneous exposure effects, we introduce estimands similar to those presented in the

BART for causal inference literature [52, 46], with the two main differences being that we

are working on the log odds ratio scale, and that we have not laid out a formal statistical

framework allowing us to assert the presented quantities have causal interpretations.

Initially, we estimate the average conditional exposure effect for a unit increase in the

exposure as β̄ = 1
N

∑N
i=1 β̂(zi). This may also be exponentiated if an odds ratio interpretation

is desired. Perhaps of greater interest are the individual conditional exposure effects β(zi),
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i = 1, . . . , N . These are numerous, so it is helpful to have strategies for summarizing them.

We can easily obtain point estimates and posterior credible intervals of β(z) for any desired

set of exposure modifiers z. However, the individual-level quantities can be noisy, and so it

can be beneficial to instead report partial averages of conditional exposure effects, such as

the partial dependence functions introduced in Friedman [36] and described in Section 2.2.2.

Define z = (z1, z2, . . . , zPz)T as a Pz × 1 vector of observed potential effect moderators,

zp as the pth component of z, and z−p as all but the pth component of z. Note that

either or both of zp and z−p might represent multiple effect moderators. The corresponding

observations made on individual i are zi, zi,p, and zi,−p, respectively. The partial average

exposure effect corresponding to setting Zp = z∗
p is estimated as in (3.14).

β̄p,PD(z
∗
p) =

1

N

N∑
i=1

β̂(z∗
p, zi,−p). (3.14)

One might select multiple settings of z∗
p for comparison, where only a subset of z need

be included in z∗
p, and calculate (3.14) for each setting. The resulting estimates (or any

function of the estimates) can be compared across the posterior distribution. The simplest

case is to select a single binary covariate, say Zp, compute (3.14) for both levels of the

covariate, and then calculate the difference in the partial dependence functions as in (3.15).

The corresponding estimate represents the average difference in the (log) exposure effect due

to having Zp = 1 versus having Zp = 0.

β̄p,DPD = β̄p,PD(1)− β̄p,PD(0) =
1

N

N∑
i=1

[
β̂(1, zi,−p)− β̂(0, zi,−p)

]
(3.15)

It may be difficult or computationally infeasible to perform an exhaustive comparison

of all partial average exposure effects. To identify covariate values to fix during the partial

averaging in (3.14), we suggest creating a lower-dimensional summary using, say, a single

classification and regression tree (CART) as described by Woody et al. [116]. This involves

using some subset of the input covariates Z to “predict” the posterior mean individual
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exposure effects. We can then compute (3.14) for the combinations of covariates leading to

each leaf node in the resulting CART summary.

3.3.4 Model Diagnostics

Sometimes it is helpful to have a “quick and dirty” method for establishing variable importance.

One option is to check the frequencies with which the BART portion of the model splits

on each of the effect moderators [25]. In general, we expect the model to favor splits on

covariates which are essential to the true data generating process. However, as the size of the

ensemble increases, spurious splits will be included. The sparse branching process prior of

Linero [70] help to alleviate this issue in many cases. Additionally, it is important to consider

correlation between the covariates, and that there may be more than one path to a good

model.

Since unconditional predictions are not available when using conditional logistic regression,

cross-validation based on model selection criteria that involve the outcome (e.g., RMSE

or similar) do not apply. However, models can still be evaluated using likelihood-based

criteria. We suggest referencing the Widely Applicable Information Criterion (WAIC), which

approximates leave-one-out cross-validation [108, 40]. The WAIC uses the entire posterior

distribution and all of the available data to evaluate and penalize models, and can conveniently

be computed during model-fitting. This metric is useful for comparing CL-BART models with

different hyperparameter specifications, such as the number of trees. Details for computing

WAIC are provided in Appendix A.3.1.

Lastly, it is essential to monitor the convergence of the Markov chain samples. Since

the RJMCMC algorithm performs both model selection and parameter estimation, posterior

chains of individual exposure effects may not have well-mixed trace plots due to the possibility

of jumping between different parameter spaces. For this reason we suggest monitoring trace

plots for global parameters, such as β̄, γ, σ2
µ, and other quantities such as the log-likelihood

or average number of nodes across trees. We did not find it was necessary to run multiple
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Figure 3.1: True Conditional Odds Ratios for CART Simulation

chains for the analyses described in the simulation study and application.

3.4 Simulation Study

In this section we design a simulation to mimic the case-crossover design. We follow 10,000

individuals for three years, and generate their shared exposure time-series as in (3.16).

Xj ∼ Normal

(
sin

(
2πj × 3

1096

)
, 1

)
, j = 1, . . . , 1096. (3.16)

Five time-varying covariates are generated as W1, . . . ,W5
i.i.d.∼ Uniform(0, 1), with odds ratios

0.5, 0.8, 1.0, 1.2, and 2.0. The probability of individual i experiencing the event at time j is

calculated as pij = expit
(
α +wT

ijγ + β(zi)xj
)
, where we set α = −8 to ensure rare events,

and the true β(zi) for each individual i is specified under two deterministic scenarios:

1. CART: 10 binary covariates are generated as [Z1, Z2, . . . , Z10]
T ∼ MVN(0,Σ), where Σ

has an AR-1 structure (i.e., Σp,p′ = 0.6|p−p′|). Three of these 10 covariates are randomly

selected (Z ′
1, Z

′
2, Z

′
3) and odds ratio exp[β(zi)] is given one of four values according to

the tree diagram in Figure 3.1.

2. Friedman: 10 continuous covariates are generated as Z1, . . . , Z10
i.i.d.∼ Uniform(0, 1),
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and β(zi) = [f(zi) − 14]/15, where f (3.17) is the benchmark function proposed in

Friedman [35]. We have scaled f to approximately have a mean of zero and standard

deviation of one-third, thus restricting the majority of potential odds ratios to be

between 0.5 and 2.

f(Z) = 10 sin(πZ1Z2) + 20(Z3 − 0.5)2 + 10Z4 + 5Z5 (3.17)

As individuals are followed throughout the study period, cases are noted and the time-

stratified case-crossover design is implemented. In both scenarios, approximately 4500 cases

are typically observed.

For Scenario 1, we compare 1, 5, 10, 25, and 50 tree ensembles. For Scenario 2, due to

the presence of many continuous predictors, we explore larger ensembles of 5, 10, 25, 50, and

100 trees. For both scenarios, we set (k, αT , βT ) = (1, 0.95, 2) and run 10,000 total MCMC

iterations, with the first 5,000 serving as a burn-in period. We keep every fifth post-burn-in

sample, resulting in 1,000 posterior samples. Other hyperparameter settings are explored in

the Chapter 3 Supplementary Materials.

To evaluate performance we fit an oracle conditional logistic regression by creating a

design matrix consisting of the true interactions and/or functional forms of the moderators,

each interacting with the exposure. For each simulation run we compute the average bias

(3.18), root mean squared error (RMSE) (3.19), and average 95% posterior credible interval

coverage (3.20) of the individual exposure effects.

B̂iasβ =
1

N

N∑
i=1

[
β̂(zi)− β(zi)

]
(3.18)

R̂MSEβ =

√√√√ 1

N

N∑
i=1

[
β̂(zi)− β(zi)

]2
(3.19)
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̂Coverageβ =
1

N

N∑
i=1

I
[
β(zi) ∈

[
β̂(zi)0.025, β̂(zi)0.975

]]
(3.20)

In (3.18), (3.19), and (3.20), β̂(zi), β̂(zi)0.025, β̂(zi)0.975 are the posterior mean, 2.5th per-

centile, and 97.5th percentile of the individual exposure effect, respectively, and I is an

indicator function which takes value 1 when the true individual exposure effect is within

the credible interval. Results are summarized over 200 simulations for each setting and are

presented in Tables 3.1 and 3.2.

3.4.1 CART Simulation

Table 3.1: CART Simulation Results - BART Predictions

Type T a Biasb RMSEb Coverageb Widthb

Oracle 0.002 (0.001) 0.036 (0.001) 0.940 (0.017) 0.144 (0.000)

CL-BART 1 0.000 (0.001) 0.067 (0.001) 0.819 (0.027) 0.187 (0.003)
CL-BART 5 0.002 (0.001) 0.056 (0.001) 0.933 (0.018) 0.211 (0.002)
CL-BART 10 0.002 (0.001) 0.058 (0.001) 0.952 (0.015) 0.235 (0.002)
CL-BART 25 0.002 (0.001) 0.063 (0.001) 0.960 (0.014) 0.266 (0.001)
CL-BART 50 0.002 (0.001) 0.069 (0.001) 0.958 (0.014) 0.286 (0.001)
a T : Number of trees.
b Monte Carlo mean and standard errors across 200 simulations reported.

The oracle shows overall unbiasedness and near 95% coverage, confirming the validity of

the case-crossover design setup (Table 3.1). CL-BART also has negligible bias, but generally

has greater RMSE and wider intervals. The latter is to be expected since CL-BART estimates

individual (not average) effects. RMSE is lowest for the 5 and 10 tree settings, and the average

coverage generally increases as the number of trees is increased. Bias and coverage of the

confounders is on par with the oracle (see Tables 3.6 and 3.7 in the Chapter 3 Supplementary

Materials).

The WAIC is lower for the 5, 10, and 25 tree settings for the default tree regularization

priors, suggesting the potential for using WAIC to select hyperparameters (see Figure 3.7 in
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Figure 3.2: CART Simulation Variable Importance: Observed split proportions across
200 simulations (Monte Carlo mean and 95% uncertainty interval presented).

the Chapter 3 Supplementary Materials).

Across all simulations, the important covariates (Z ′
1, Z

′
2, Z

′
3) are typically split on with

greater frequency than the remaining seven covariates (Figure 3.2). While these values are

not perfect indicators of variable importance, this trend suggests the Dirichlet hyperprior is

at least somewhat effective at selecting important covariates.

3.4.2 Friedman Simulation

For the Friedman scenario, the oracle achieves low bias and near 95% average coverage.

CL-BART is unbiased even in small ensembles (Table 3.2). As more trees are added, RMSE

and average coverage improve, but interval widths increase. Once again, this is likely due to

CL-BART making predictions on the individual level. Estimates of the confounders exhibit

low bias and good coverage, and the WAIC for this scenario suggests that larger ensembles

perform better, but the improvements diminish as the number of trees approaches 100 (see

Figure 3.10 in the Chapter 3 Supplementary Materials).
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Table 3.2: Friedman Simulation Results - BART Predictions

Type T a Biasb RMSEb Coverageb Widthb

Oracle -0.001 (0.001) 0.040 (0.001) 0.949 (0.016) 0.160 (0.000)

CL-BART 5 -0.001 (0.001) 0.165 (0.001) 0.801 (0.028) 0.431 (0.002)
CL-BART 10 -0.001 (0.001) 0.144 (0.001) 0.914 (0.020) 0.502 (0.002)
CL-BART 25 -0.001 (0.001) 0.130 (0.001) 0.967 (0.013) 0.568 (0.002)
CL-BART 50 -0.001 (0.001) 0.127 (0.001) 0.978 (0.010) 0.596 (0.003)
CL-BART 100 -0.001 (0.001) 0.126 (0.001) 0.980 (0.010) 0.600 (0.003)
a T : Number of trees.
b Monte Carlo mean and standard errors across 200 simulations reported.

We see that the important covariates (Z1, Z2, Z3, Z4, Z5) are all split on with greater

frequencies, on average, than the remaining covariates (Figure 3.3). The Dirichlet hyperprior

is particularly effective in this setting since there are many available splitting points for all

covariates. Also, CL-BART does well to capture the true marginal partial dependence for

each covariate (see Figure 3.11 in the Chapter 3 Supplementary Materials).

3.5 Application: Alzheimer’s Disease and Heat Waves

in California

3.5.1 Descriptive Statistics

There were 633,639 ED visits with an AD diagnosis reported during the study period. Patient

sex was not reported for 62 cases, race was not reported for 7,662 cases, and ethnicity was

not reported for 8,930 cases. Further, only 72,413 cases contained a heat wave per our

definition within their referent window (most occurring in the summer months), and thus are

the only cases which are informative for estimating heat wave effects. Dropping these cases

and implementing the time-stratified case-crossover design resulted in a total of 71,020 cases
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Figure 3.3: Friedman Simulation Variable Importance: Observed split proportions
across 200 simulations (Monte Carlo mean and 95% uncertainty interval presented).

(319,336 observations).

The sample is primarily Non-Hispanic White (64.8%) and female (63.7%). The median

age is 84 years (IQR: 79, 89). The median number of comorbid conditions is 2 (IQR: 1, 3),

and hypertension is the most prevalent condition (65.2%) (Table 3.3). Over half of the sample

has multiple conditions (56.1%), with the most common pairings being hypertension and

hyperlipidemia (25.0%), hypertension and CKD (20.7%), hypertension and diabetes (19.6%),

and hypertension and CHF (12.4%).

3.5.2 Model Considerations

Previous studies have found that associations between heat waves and health outcomes may

differ by race and ethnicity [76, 60], so in addition to the overall analysis, we also conduct a

stratified analysis with the following mutually exclusive subgroups: Hispanic, Non-Hispanic
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Table 3.3: Descriptive Statistics for Emergency Department Visits Among Alzheimer’s Disease
Patients, CA 2005-2015

Characteristic Overall

Na 71,020

Race/Ethnicityb

Hispanic 11,959 (16.8%)
Non-Hispanic White 46,019 (64.8%)
Non-Hispanic Black 5,635 (7.9%)
Non-Hispanic Asian and Pacific Islander 5,521 (7.8%)
Non-Hispanic Other 1,886 (2.7%)

Sexb

Male 25,762 (36.3%)
Female 45,258 (63.7%)

Age, yrsc 84 (79, 89)

Number of Comorbid Conditionsc 2 (1, 3)

Congestive Heart Failure (CHF)b 11,494 (16.2%)

Chronic Kidney Disease (CKD)b 17,937 (25.3%)

Chronic Obstructive Pulmonary Disease (COPD)b 8,483 (11.9%)

Depression (DEP)b 9,005 (12.7%)

Diabetes (DIAB)b 17,654 (24.9%)

Hypertension (HT)b 46,281 (65.2%)

Hyperlipidemia (HLD)b 21,575 (30.4%)

a N; b N (%); c Median (IQR).
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White, Non-Hispanic Black, Non-Hispanic Asian and Pacific Islander, and Non-Hispanic

“other”. The overall analysis includes these subgroups as potential effect moderators via

one-hot encoding, while the stratified analysis is effectively forcing a split on race first. The

overall analysis has the added benefit of having a larger sample size, but it may also mask

heterogeneity within smaller subgroups, so we present both for comparison. In all analyses,

we include sex and age alongside the comorbid conditions as potential moderators, with age

being the only continuous moderator. The intuition behind including age is to allow it to

serve as a proxy for other conditions that are not among those collected. The distribution of

sex and age is similar across subgroups, but the prevalence of the comorbid conditions varies

(e.g., hypertension and diabetes are less prevalent among the Non-Hispanic White subgroup)

(see Table 3.12 in the Chapter 3 Supplementary Materials).

On the confounder side, both the daily average temperature and daily average dew-point

temperature are modeled using natural cubic splines with four degrees of freedom. Federal

holidays are included as a single indicator variable.

We fit a CL-BART model within each subgroup using the following hyperparameter

settings: T = 25, k = 1, αT = 0.95, and βT = 2. The WAIC was generally similar across

different settings, so we only present the results for these particular values. For the overall

model, we use the same settings except with T = 100, which had the lowest WAIC. We ran

all models for 10,000 iterations, setting aside the first 5,000 as burn-in and only keeping every

fifth sample, resulting in a total of 1,000 posterior samples. When fitting the CL-BART

model, we monitor trace plots for σµ, β̄, and the average number of nodes to ensure adequate

mixing and convergence in the final model fits. Examples of these plots are included in Figure

3.15 in the Chapter 3 Supplementary Materials).
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Table 3.4: Homogeneous vs. Average Heterogeneous Estimate for Heat Wave Effect

CLR CL-BART

Subgroup exp
(
β̂
)a

(95% CrI) WAIC exp
(
β̄
)b

(95% CrI) WAIC

Overall 1.02 (0.99, 1.05) 216,788 1.01 (0.99, 1.05) 212,623
Hispanic 0.98 (0.91, 1.06) 36,170 0.99 (0.92, 1.05) 35,724
Non-Hispanic API 0.99 (0.89, 1.09) 16,512 0.99 (0.90, 1.08) 16,513
Non-Hispanic Black 1.09 (0.97, 1.21) 16,874 1.07 (0.96, 1.21) 16,868
Non-Hispanic Other 0.90 (0.73, 1.08) 5,658 0.92 (0.76, 1.09) 5,657
Non-Hispanic White 1.03 (0.99, 1.07) 137,904 1.01 (0.98, 1.05) 137,894

API: Asian and Pacific Islander.

CLR: Conditional Logistic Regression. CrI: Posterior Credible Interval.
a Estimated odds ratio from CLR with no effect moderators.
b Average exposure effect from CL-BART model.

3.5.3 Results

Both overall and within each subgroup, estimates of the average exposure effect β̄ are similar

to what one would obtain had they ignored effect heterogeneity entirely and simply fit a

conditional logistic regression model as specified in (3.4) (Table 3.4). The WAIC is similar or

better for the CL-BART model in all subgroups (Table 3.4), suggesting that the overall fit of

the models are improved by considering effect heterogeneity, but the additional complexity

introduced by using BART may limit the ability of the model to generalize to new data.

Density plots of the posterior mean individual exposure effects illustrate the varying degrees

of heterogeneity captured by CL-BART in each subgroup (see Figure 3.13 in the Chapter 3

Supplementary Materials).

To explore the heterogeneity estimated by CL-BART, we begin by visualizing the propor-

tions of splits attributable to each moderator in Figure 3.4A. Unsurprisingly, age is split on

with greater frequency than any of the binary moderators since it has more available splitting

values. We also note that in some cases, certain binary covariates are split on more often
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than others. Notably, CKD is more prominent for the Hispanic subgroup, and hypertension

status is more prominent for Non-Hispanic Black subgroup. We have omitted the proportions

for one-hot encoded race variables in the overall model, but together these accounted for 28%

of splits, pointing toward the importance of race/ethnicity in the analysis.

Additionally, we present the marginal contributions as defined in (3.15) for each binary

covariate in Figure 3.4B. These estimates are ratios of ORs, and thus represent the multi-

plicative effect associated with the given moderator on the underlying OR estimate for the

association between ED visits and heat waves. In this way, they are similar to the interaction

coefficient in a traditional regression model. For example, the presence of CKD among the

Hispanic subgroup appears to be associated with a harmful modification of the exposure

effect. Similarly, the presence of hypertension among the Non-Hispanic Black subgroup is

associated with a protective modification of the exposure effect. While the harmful effect of

CKD is most pronounced among the Hispanic subgroup, the estimated OR is greater than

1 across all subgroups, and the posterior credible interval is greater than 1 in the overall

analysis. Other covariates have mixed effects on the heat wave effect across groups, but these

are the most notable.

To examine interaction effects estimated via CL-BART, we fit CART models using

the rpart R package [103] to obtain lower-dimensional summaries of the posterior mean

individual exposure effects (see Figure 3.5 in the Chapter 3 Supplementary Materials). For

these models, we drop the demographic moderators from the list of predictors to see how well

the heterogeneity can be described by the comorbid conditions alone. We then compute β̄PD

for each leaf node represented in the summaries and plot the results in Figure 3.5. These

plots are helpful in that they allow one to view the actual exposure effect, as opposed to just

ratios of exposure effects in Figure 3.4B.
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Figure 3.4: Variable Importance and Marginal Partial Dependence for the
Alzheimer’s Disease Application: Panel A displays the proportion of splits in the
CL-BART model based on each covariate. Panel B displays the difference in partial average
exposure effects for each binary covariate on the odds ratio scale (posterior means and 95%
credible intervals presented). Numeric values corresponding to the estimates in panel B are
provided in Tables 3.13 and 3.14 in the Chapter 3 Supplementary Materials. Abbreviations:
DEP: depression, DIAB: diabetes, HT: hypertension, HLD: hyperlipidemia.
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Figure 3.5: CART-Informed Partial Average Heat Wave Effects for the Alzheimer’s
Disease Application: Posterior mean and 95% credible intervals for the partial average
heat wave effects within each leaf of the lower-dimensional CART summaries. Each condition
is either present (Y), not present (N), or irrelevant (-). Results are presented on the odds
ratio scale. Numeric values and CART diagrams are provided Table 3.15 and Figure 3.5 in
the Chapter 3 Supplementary Materials. Abbreviations: DIAB: diabetes, HT: hypertension,
HLD: hyperlipidemia.
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In Figure 3.5, we observe that diabetes appears in 4 out of 5 subgroups, while CKD

and CHF are the next most common moderators. Depression is the only condition that

did not show up in any of the summaries. In the overall analysis, the estimated association

between ED visits and heat waves is very strong for those with CKD, regardless of other

important conditions. The subgroup with the most pronounced risks is Non-Hispanic Black.

Among patients in this subgroup, the estimated association between ED visit and heat wave

is greatest for those without hypertension, though an additional diagnosis of COPD may

reduce this. Findings such as this illustrate the importance of considering interaction among

moderators when modeling effect heterogeneity.

Unfortunately, the nice interpretations of the CART summaries come at a cost. The

summary R2 [116] for the CART summaries are relatively high for the Hispanic, Non-

Hispanic Asian and Pacific Islander, and Non-Hispanic Black subgroups (0.89, 0.71, and

0.79, respectively), but suggest that much of the finer interactions estimated by CL-BART

are not captured. The summary R2 is very low for the Non-Hispanic Other (0.39) and

Non-Hispanic White (0.09) subgroups. Age was split on with much greater frequency for

these subgroups (Figure 3.4A), so in addition to struggling to summarize the CL-BART

model fit, it is possible that age and/or sex are the drivers of effect heterogeneity in these

subgroups. These findings should not dissuade one from studying effect heterogeneity, but

they do illustrate the limitation of automating the analysis.

3.6 Discussion

CL-BART is a helpful tool for estimating heterogeneous effects in the case-crossover study

design commonly used in environmental epidemiology. The primary benefit of CL-BART is
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its ability to detect and estimate important high-order interactions and functional forms of

potential effect moderators without requiring prespecification. Interpreting the heterogeneous

effects can be challenging, but the proposed strategies revolving around variable importance,

partial dependence, and lower-dimensional summaries provide a good start.

In terms of the application, the most consistent finding across most subgroups was

that CKD and/or diabetes may modify the response to heat waves among people with

AD. Specifically, having CKD was generally associated with an increased risk of ED visit

during heat waves, which aligns with previous work that has established an association

between kidney-related illness and extreme heat [56, 75, 47]. Another key finding was the

protective-leaning effect of hypertension, particularly among the Non-Hispanic Black subgroup.

This finding aligns well with previous studies of extreme heat both in California [94] and

New York [68], and might be attributed to blood vessel dilation in hot weather, decreasing

the risk of hypertension-associated morbidity [8]. We suspect that a mixture of biological

and behavioral changes experienced by and medication(s) taken by those living with these

comorbid conditions may be a contributing factor. Finally, while we used co-diagnosis codes

at the ED visit to define comorbid conditions, other studies may consider other sources to

ascertain pre-existing chronic conditions (e.g., medication use or medical history), to reduce

classification error.

We acknowledge room for future improvements to CL-BART. The computation time is

the largest limitation at this point in time. The bottleneck is the repeated evaluation of the

conditional logistic regression likelihood required for Fisher scoring when determining the

proposal distribution G of interim leaf node parameters and the adaptive rejection sampling

of the final leaf node parameters. Exploring additional tree proposals such as those described

in Pratola [90] and Deshpande [29] may improve mixing of the posterior chains, and thus
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indirectly reduce computation time by lowering the number of MCMC iterations required to

reach the stationary distribution. Average runtime for the simulation studies and application

analyses are presented in the Chapter 3 Supplementary Materials.

Additionally, we have shown that the exposure may either be binary (application) or

continuous (simulations). In both cases, a linear exposure-response relationship is assumed.

There are many scenarios where this assumption may be violated. For example, we struggled

to achieve model convergence in an exploratory analysis of the ED visit data using continuous

daily average temperature as the exposure (results not shown). We suspect a nonlinear

exposure-response relationship is at least partly responsible. Extending the CL-BART model

to allow for polynomial, splines, and other flexible functions of the exposure could be desirable.

For continuous exposure, it may also be interesting to consider short-term lagged effects via

a distributed lag nonlinear model [38, 45]. Each basis function would require its own forest

to be managed, substantially increasing the computational burden of an already burdensome

algorithm.

In conclusion, CL-BART serves as a robust alternative to the typical strategies for

estimating heterogeneous effects in the case-crossover design, using RJMCMC to integrate

the flexibility of BART with traditional conditional logistic regression. This framework offers

researchers a powerful tool to disentangle and model heterogeneous effects, whether it be

in the context of treatment outcomes, environmental exposures, or any other one-to-many

matched case-control study.



61

3.7 Supplementary Materials

3.7.1 CL-BART Algorithm Details

The Proposal Distribution G

In the reversible jump algorithm, the choice of the proposal distributions GGROW , GPRUNE,

and GCHANGE is crucial to ensuring good mixing. Linero [71] suggests a Normal proposal

distribution based on the Laplace approximation. For any node η that is involved in a tree

update proposal, we may sample µη ∼ Normal(mη, v
2
η), where

mη = arg maxµ
∑

i:zi 7→η

log p
(
yi | λ(t)i + µ

)
+ log πµ(µ)

and

v−2
η =

∑
i:zi 7→η

I
(
λ
(t)
i +mη

)
− d2

dµ2
log πµ(µ) |µ=mη

Both mη and v−2
η may obtained using a Fisher scoring algorithm. Details for the gradient

and Fisher information computation required in this step are provided in Section 3.7.1. For a

starting point, we use the parameter from the leaf node that was split in either a GROW

or CHANGE move, or a weighted average of the leaf node parameters that were deleted

in a PRUNE move. We have found that this strategy typically works well, but in certain

cases these starting values may be inadequate, causing the Fisher scoring algorithm to not

converge. This usually occurs when there exists an extreme imbalance in the covariate space

or the true predictions for leaf nodes are very different from that of their parent. In this

rare scenario, we estimate mη by first maximizing the likelihood using frequentist conditional

logistic regression, followed by an application of the optimization technique introduced in
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Brent [16] to incorporate prior information during the maximization.

Conditional Logistic Regression Derivations

Recall that in the case-crossover design, the conditional data likelihood is given by (3.4).

Now suppose γ is known and we are interested only in the BART parameter β. Write the

contribution to the conditional data likelihood for individual i as:

Lc
i(β) = p (yi | β) =

exp
{
wT

iji
γ + βxiji

}∑
j∈Wi

exp
{
wT

ijγ + βxij
} . (3.21)

The log-likelihood is given by:

l(β) = wT
iji
γ + βxiji − log

∑
j∈Wi

exp
{
wT

ijγ + βxij
}
. (3.22)

The score with respect to β is given by:

U(β) = ziji −
∑

j∈Wi
xij exp

{
wT

ijγ + βxij
}∑

j∈Wi
exp

{
wT

ijγ + βxij
} =

∑
j∈Wi

yijxij −
∑
j∈Wi

xijp
c
ij, (3.23)

where pcij is as defined in (3.3).

Let θij = wT
ijγ + βxij. Then the Fisher information for β is given by:

I(β) =

(∑
j∈Wi

exp (θij)
)(∑

j∈Wi
x2ij exp (θij)

)
−
(∑

j∈Wi
xij exp (θij)

)2
(∑

j∈Wi
exp (θij)

)2
=
∑
j∈Wi

x2ijp
c
ij −

(∑
j∈Wi

xijp
c
ij

)2

.

(3.24)
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Note that in this scenario the Fisher information is equal to the observed information. These

forms for I(β) and U(β) are used for the Fisher scoring algorithm mentioned in Section 3.7.1.

Notes on Posterior Contraction

Linero [71] provides a theoretical base for the posterior contraction of the RJMCMC BART

methodology for several models classes under certain conditions on the function of interest

β(·) and the BART prior. One such class is those models belonging to an exponential family.

Here, we show that CL-BART fits into this class of models through its connection to the

multinomial likelihood. In showing this, we suggest that CL-BART has similar contraction

properties outlined in the source reference.

Recall that the conditional logistic regression likelihood for a stratum (individual) in a

case-crossover analysis corresponds to the joint probability of observing the case at a single

time point. We can rewrite the contribution of single individual to the total conditional

likelihood provided in (3.4) as follows:

Lc
i(β) =

∏
j∈Wi

(
exp

{
wT

ijγ + βxij
}∑

j∈Wi
exp

{
wT

ijγ + βxij
})yij

= exp

(∑
j∈Wi

[(
yijw

T
ijγ + βxij

)
− yij log

∑
j∈Wi

exp (wT
ijγ + βxij)

])

= exp

(∑
j∈Wi

yij(w
T
ijγ + βxij)− log

∑
j∈Wi

exp (wT
ijγ + βxij)

)

= exp

(
β
∑
j∈Wi

yijxij − log
∑
j∈Wi

exp (wT
ijγ + βxij) +

∑
j∈Wi

yijw
T
ijγ

)
.

(3.25)

Equation (3.25) has the form of an 1-dimensional exponential family with sufficient statistic∑
j∈Wi

yijxij, natural parameter β, and b(β) = log
∑

j∈Wi
exp (wT

ijγ + βxij). We can verify

some properties of the exponential form of the conditional data likelihood. The conditional
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expectation is given by:

E

[∑
j∈Wi

Yijxij |
∑
j∈Wi

Yij = 1

]
= b′(β) =

∑
j∈Wi

xij exp
{
wT

ijγ + βxij
}∑

j∈Wi
exp

{
wT

ijγ + βxij
} =

∑
j∈Wi

xijp
c
ij,

and the conditional variance is given by:

Var c

[∑
j∈Wi

Yijxij

]
= Var

[∑
j∈Wi

Yijxij |
∑
j∈Wi

Yij = 1

]

= b′′(β)

=

(∑
j∈Wi

exp (θij)
)(∑

j∈Wi
x2ij exp (θij)

)
−
(∑

j∈Wi
xij exp (θij)

)2
(∑

j∈Wi
exp (θij)

)2
=
∑
j∈Wi

x2ijp
c
ij −

(∑
j∈Wi

xijp
c
ij

)2

,

where θij = wT
ijγ + βxij and p

c
ij is as defined in (3.3). Note the conditional expectation and

variance match the derivations in Section 3.7.1.

Suitable bounds for the Kullback-Leibler divergence from Lc
i(β) to L

c
i(β +∆), such as

those derived in the supplemental material of Linero [71], may be used to satisfy the model

condition outlined therein.
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3.7.2 Additional Simulation Materials

Table 3.5: Extended CART Simulation Results - BART Predictions

Type T a kb (αT , βT )
c Biasd RMSEd Coveraged Widthd

Oracle 0.002 (0.001) 0.036 (0.001) 0.940 (0.017) 0.144 (0.000)

CL-BART 1 0.1 (0.5, 3) -0.001 (0.001) 0.070 (0.002) 0.766 (0.030) 0.170 (0.002)
CL-BART 1 0.1 (0.95, 2) -0.001 (0.001) 0.069 (0.001) 0.813 (0.028) 0.189 (0.003)
CL-BART 1 0.5 (0.5, 3) 0.000 (0.001) 0.069 (0.002) 0.771 (0.030) 0.168 (0.002)
CL-BART 1 0.5 (0.95, 2) 0.000 (0.001) 0.069 (0.001) 0.807 (0.028) 0.189 (0.003)
CL-BART 1 1.0 (0.5, 3) 0.000 (0.001) 0.068 (0.001) 0.762 (0.030) 0.164 (0.002)
CL-BART 1 1.0 (0.95, 2) 0.000 (0.001) 0.067 (0.001) 0.819 (0.027) 0.187 (0.003)

CL-BART 5 0.1 (0.5, 3) 0.002 (0.001) 0.058 (0.001) 0.862 (0.024) 0.174 (0.002)
CL-BART 5 0.1 (0.95, 2) 0.001 (0.001) 0.055 (0.001) 0.938 (0.017) 0.214 (0.002)
CL-BART 5 0.5 (0.5, 3) 0.002 (0.001) 0.059 (0.001) 0.856 (0.025) 0.174 (0.002)
CL-BART 5 0.5 (0.95, 2) 0.001 (0.001) 0.056 (0.001) 0.937 (0.017) 0.213 (0.002)
CL-BART 5 1.0 (0.5, 3) 0.002 (0.001) 0.059 (0.001) 0.856 (0.025) 0.173 (0.002)
CL-BART 5 1.0 (0.95, 2) 0.002 (0.001) 0.056 (0.001) 0.933 (0.018) 0.211 (0.002)

CL-BART 10 0.1 (0.5, 3) 0.002 (0.001) 0.059 (0.001) 0.882 (0.023) 0.185 (0.002)
CL-BART 10 0.1 (0.95, 2) 0.001 (0.001) 0.058 (0.001) 0.950 (0.015) 0.235 (0.002)
CL-BART 10 0.5 (0.5, 3) 0.002 (0.001) 0.059 (0.001) 0.883 (0.023) 0.184 (0.002)
CL-BART 10 0.5 (0.95, 2) 0.002 (0.001) 0.058 (0.001) 0.952 (0.015) 0.236 (0.002)
CL-BART 10 1.0 (0.5, 3) 0.002 (0.001) 0.059 (0.001) 0.879 (0.023) 0.183 (0.002)
CL-BART 10 1.0 (0.95, 2) 0.002 (0.001) 0.058 (0.001) 0.952 (0.015) 0.235 (0.002)

CL-BART 25 0.1 (0.5, 3) 0.002 (0.001) 0.060 (0.001) 0.900 (0.021) 0.199 (0.002)
CL-BART 25 0.1 (0.95, 2) 0.002 (0.001) 0.063 (0.001) 0.955 (0.015) 0.261 (0.001)
CL-BART 25 0.5 (0.5, 3) 0.002 (0.001) 0.059 (0.001) 0.902 (0.021) 0.200 (0.002)
CL-BART 25 0.5 (0.95, 2) 0.002 (0.001) 0.064 (0.001) 0.959 (0.014) 0.266 (0.001)
CL-BART 25 1.0 (0.5, 3) 0.002 (0.001) 0.059 (0.001) 0.907 (0.021) 0.199 (0.002)
CL-BART 25 1.0 (0.95, 2) 0.002 (0.001) 0.063 (0.001) 0.960 (0.014) 0.266 (0.001)

CL-BART 50 0.1 (0.5, 3) 0.002 (0.001) 0.061 (0.001) 0.908 (0.020) 0.208 (0.001)
CL-BART 50 0.1 (0.95, 2) 0.002 (0.001) 0.069 (0.001) 0.953 (0.015) 0.279 (0.001)
CL-BART 50 0.5 (0.5, 3) 0.002 (0.001) 0.061 (0.001) 0.912 (0.020) 0.209 (0.001)
CL-BART 50 0.5 (0.95, 2) 0.002 (0.001) 0.069 (0.001) 0.957 (0.014) 0.284 (0.001)
CL-BART 50 1.0 (0.5, 3) 0.002 (0.001) 0.060 (0.001) 0.916 (0.020) 0.210 (0.001)
CL-BART 50 1.0 (0.95, 2) 0.002 (0.001) 0.069 (0.001) 0.958 (0.014) 0.286 (0.001)

a T : Number of trees.
b k: Numerator of scale parameter for half-Cauchy hyper-prior.
c (αT , βT ): Hyperparameters for tree depth prior.
d Monte Carlo mean and standard errors across 200 simulations reported.
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Table 3.6: Extended CART Simulation Results - Confounder Estimates (Bias)

Bias × 1,000d

Type T a kb (αT , βT )
c γ1 γ2 γ3 γ4 γ5

Oracle 6.54 (4.49) -11.05 (4.77) 1.59 (5.10) -3.90 (4.65) -0.46 (4.69)

CL-BART 1 0.1 (0.5, 3) 5.60 (4.51) -11.30 (4.78) 1.56 (5.13) -3.85 (4.66) -0.06 (4.65)
CL-BART 1 0.1 (0.95, 2) 5.68 (4.49) -11.56 (4.80) 2.08 (5.10) -4.17 (4.66) 0.16 (4.66)
CL-BART 1 0.5 (0.5, 3) 5.96 (4.50) -11.90 (4.79) 1.55 (5.09) -4.39 (4.67) 0.31 (4.70)
CL-BART 1 0.5 (0.95, 2) 5.53 (4.48) -11.76 (4.75) 1.56 (5.10) -3.80 (4.66) 0.22 (4.69)
CL-BART 1 1.0 (0.5, 3) 6.56 (4.48) -11.50 (4.77) 1.46 (5.11) -4.22 (4.65) -0.06 (4.64)
CL-BART 1 1.0 (0.95, 2) 6.06 (4.51) -11.43 (4.80) 1.30 (5.09) -3.48 (4.66) 0.07 (4.63)

CL-BART 5 0.1 (0.5, 3) 5.63 (4.49) -10.93 (4.79) 1.64 (5.10) -4.34 (4.65) -0.38 (4.71)
CL-BART 5 0.1 (0.95, 2) 5.90 (4.50) -11.43 (4.76) 1.77 (5.11) -4.02 (4.65) 0.20 (4.69)
CL-BART 5 0.5 (0.5, 3) 6.17 (4.48) -11.10 (4.81) 1.59 (5.11) -3.98 (4.65) 0.02 (4.70)
CL-BART 5 0.5 (0.95, 2) 5.43 (4.50) -11.48 (4.76) 1.42 (5.15) -3.74 (4.65) 0.76 (4.69)
CL-BART 5 1.0 (0.5, 3) 6.24 (4.50) -11.31 (4.77) 1.55 (5.10) -3.71 (4.67) 0.30 (4.69)
CL-BART 5 1.0 (0.95, 2) 5.86 (4.50) -11.22 (4.79) 1.81 (5.11) -3.64 (4.67) 0.02 (4.68)

CL-BART 10 0.1 (0.5, 3) 6.11 (4.46) -11.37 (4.78) 0.80 (5.11) -4.06 (4.69) 0.25 (4.67)
CL-BART 10 0.1 (0.95, 2) 5.95 (4.51) -11.78 (4.80) 1.62 (5.13) -4.00 (4.63) 0.69 (4.71)
CL-BART 10 0.5 (0.5, 3) 6.28 (4.49) -11.31 (4.80) 1.78 (5.11) -4.04 (4.65) 0.53 (4.71)
CL-BART 10 0.5 (0.95, 2) 5.44 (4.49) -11.57 (4.79) 0.75 (5.13) -4.04 (4.66) 0.74 (4.71)
CL-BART 10 1.0 (0.5, 3) 6.16 (4.49) -11.39 (4.79) 1.35 (5.14) -4.21 (4.64) 0.21 (4.67)
CL-BART 10 1.0 (0.95, 2) 5.54 (4.49) -11.01 (4.82) 1.86 (5.08) -3.93 (4.69) 0.96 (4.69)

CL-BART 25 0.1 (0.5, 3) 5.78 (4.51) -11.56 (4.79) 1.64 (5.11) -3.41 (4.64) 0.21 (4.71)
CL-BART 25 0.1 (0.95, 2) 5.80 (4.50) -10.96 (4.81) 1.66 (5.13) -3.94 (4.68) 0.84 (4.72)
CL-BART 25 0.5 (0.5, 3) 6.25 (4.51) -11.64 (4.78) 1.59 (5.13) -3.80 (4.68) 0.23 (4.71)
CL-BART 25 0.5 (0.95, 2) 5.19 (4.53) -11.45 (4.78) 1.54 (5.10) -3.87 (4.66) 0.44 (4.73)
CL-BART 25 1.0 (0.5, 3) 5.71 (4.49) -11.49 (4.80) 1.72 (5.14) -3.69 (4.67) 0.34 (4.70)
CL-BART 25 1.0 (0.95, 2) 5.65 (4.51) -11.34 (4.79) 1.97 (5.13) -3.98 (4.63) 0.86 (4.72)

CL-BART 50 0.1 (0.5, 3) 5.58 (4.50) -11.22 (4.80) 1.60 (5.14) -3.79 (4.66) 0.21 (4.71)
CL-BART 50 0.1 (0.95, 2) 5.64 (4.56) -11.51 (4.78) 1.70 (5.11) -3.64 (4.68) 1.06 (4.68)
CL-BART 50 0.5 (0.5, 3) 5.86 (4.49) -11.21 (4.80) 1.01 (5.09) -3.96 (4.68) -0.27 (4.74)
CL-BART 50 0.5 (0.95, 2) 5.97 (4.53) -11.80 (4.77) 1.47 (5.11) -3.61 (4.68) 1.16 (4.68)
CL-BART 50 1.0 (0.5, 3) 5.87 (4.55) -11.56 (4.82) 1.30 (5.11) -3.64 (4.64) 0.40 (4.69)
CL-BART 50 1.0 (0.95, 2) 5.33 (4.50) -11.11 (4.78) 1.50 (5.13) -3.90 (4.67) 0.21 (4.74)

a T : Number of trees.
b k: Numerator of scale parameter for half-Cauchy hyper-prior.
c (αT , βT ): Hyperparameters for tree depth prior.
d Monte Carlo mean and standard errors across 200 simulations reported.
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Table 3.7: Extended CART Simulation Results - Confounder Estimates (Coverage)

Coveraged

Type T a kb (αT , βT )
c γ1 γ2 γ3 γ4 γ5

Oracle 0.95 0.93 0.92 0.95 0.95

CL-BART 1 0.1 (0.5, 3) 0.94 0.93 0.92 0.95 0.94
CL-BART 1 0.1 (0.95, 2) 0.96 0.93 0.92 0.93 0.95
CL-BART 1 0.5 (0.5, 3) 0.94 0.92 0.91 0.94 0.93
CL-BART 1 0.5 (0.95, 2) 0.95 0.94 0.92 0.94 0.95
CL-BART 1 1.0 (0.5, 3) 0.96 0.93 0.91 0.94 0.94
CL-BART 1 1.0 (0.95, 2) 0.93 0.92 0.92 0.94 0.94

CL-BART 5 0.1 (0.5, 3) 0.95 0.93 0.92 0.94 0.94
CL-BART 5 0.1 (0.95, 2) 0.95 0.94 0.92 0.95 0.96
CL-BART 5 0.5 (0.5, 3) 0.95 0.92 0.92 0.95 0.94
CL-BART 5 0.5 (0.95, 2) 0.94 0.93 0.92 0.94 0.94
CL-BART 5 1.0 (0.5, 3) 0.94 0.94 0.92 0.95 0.92
CL-BART 5 1.0 (0.95, 2) 0.94 0.94 0.92 0.94 0.93

CL-BART 10 0.1 (0.5, 3) 0.95 0.92 0.90 0.94 0.95
CL-BART 10 0.1 (0.95, 2) 0.95 0.92 0.90 0.95 0.94
CL-BART 10 0.5 (0.5, 3) 0.93 0.93 0.92 0.93 0.95
CL-BART 10 0.5 (0.95, 2) 0.94 0.93 0.92 0.94 0.94
CL-BART 10 1.0 (0.5, 3) 0.95 0.92 0.91 0.94 0.95
CL-BART 10 1.0 (0.95, 2) 0.95 0.93 0.91 0.94 0.95

CL-BART 25 0.1 (0.5, 3) 0.95 0.94 0.92 0.94 0.95
CL-BART 25 0.1 (0.95, 2) 0.95 0.94 0.91 0.93 0.94
CL-BART 25 0.5 (0.5, 3) 0.94 0.93 0.92 0.93 0.95
CL-BART 25 0.5 (0.95, 2) 0.95 0.92 0.92 0.94 0.95
CL-BART 25 1.0 (0.5, 3) 0.95 0.94 0.92 0.95 0.94
CL-BART 25 1.0 (0.95, 2) 0.94 0.93 0.90 0.94 0.94

CL-BART 50 0.1 (0.5, 3) 0.94 0.92 0.90 0.94 0.95
CL-BART 50 0.1 (0.95, 2) 0.94 0.93 0.92 0.94 0.96
CL-BART 50 0.5 (0.5, 3) 0.95 0.93 0.90 0.94 0.94
CL-BART 50 0.5 (0.95, 2) 0.95 0.93 0.91 0.93 0.94
CL-BART 50 1.0 (0.5, 3) 0.93 0.94 0.92 0.95 0.94
CL-BART 50 1.0 (0.95, 2) 0.95 0.93 0.92 0.94 0.93

a T : Number of trees.
b k: Numerator of scale parameter for half-Cauchy hyper-prior.
c (αT , βT ): Hyperparameters for tree depth prior.
d 95% credible interval coverage across 200 simulations.
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Figure 3.6: Extended CART Simulation Variable Importance: Plot of observed
split proportions across 200 simulations (Monte Carlo mean and 95% uncertainty interval
presented).
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Figure 3.7: WAIC for CART Simulation: Relative WAIC for each simulation setting
across 200 simulations (Monte Carlo mean and 95% uncertainty intervals presented). BART
included for reference to demonstrate the effect of the Dirichlet prior on covariate selection.
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Figure 3.8: CART Simulation Runtime: Average time taken to run one CL-BART chain
across 200 simulations. All models were run using 1 CPU on the high performance computing
cluster at the Rollins School of Public Health, Emory University.
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Table 3.8: Extended Friedman Simulation Results - BART Predictions

Type T a kb (αT , βT )
c Biasd RMSEd Coveraged Widthd

Oracle -0.001 (0.001) 0.040 (0.001) 0.949 (0.016) 0.160 (0.000)

CL-BART 5 0.1 (0.5, 3) -0.001 (0.001) 0.169 (0.001) 0.740 (0.031) 0.387 (0.003)
CL-BART 5 0.1 (0.95, 2) -0.001 (0.001) 0.164 (0.001) 0.804 (0.028) 0.430 (0.003)
CL-BART 5 0.5 (0.5, 3) -0.001 (0.001) 0.170 (0.001) 0.740 (0.031) 0.390 (0.003)
CL-BART 5 0.5 (0.95, 2) -0.001 (0.001) 0.164 (0.001) 0.807 (0.028) 0.434 (0.003)
CL-BART 5 1.0 (0.5, 3) -0.001 (0.001) 0.171 (0.001) 0.737 (0.031) 0.388 (0.003)
CL-BART 5 1.0 (0.95, 2) -0.001 (0.001) 0.165 (0.001) 0.801 (0.028) 0.431 (0.002)

CL-BART 10 0.1 (0.5, 3) -0.001 (0.001) 0.151 (0.001) 0.846 (0.026) 0.435 (0.002)
CL-BART 10 0.1 (0.95, 2) -0.001 (0.001) 0.142 (0.001) 0.914 (0.020) 0.498 (0.002)
CL-BART 10 0.5 (0.5, 3) -0.001 (0.001) 0.151 (0.001) 0.845 (0.026) 0.437 (0.002)
CL-BART 10 0.5 (0.95, 2) -0.001 (0.001) 0.143 (0.001) 0.915 (0.020) 0.502 (0.002)
CL-BART 10 1.0 (0.5, 3) -0.001 (0.001) 0.152 (0.001) 0.842 (0.026) 0.436 (0.002)
CL-BART 10 1.0 (0.95, 2) -0.001 (0.001) 0.144 (0.001) 0.914 (0.020) 0.502 (0.002)

CL-BART 25 0.1 (0.5, 3) -0.001 (0.001) 0.138 (0.001) 0.913 (0.020) 0.477 (0.002)
CL-BART 25 0.1 (0.95, 2) -0.001 (0.001) 0.129 (0.001) 0.967 (0.013) 0.560 (0.002)
CL-BART 25 0.5 (0.5, 3) -0.001 (0.001) 0.138 (0.001) 0.915 (0.020) 0.479 (0.002)
CL-BART 25 0.5 (0.95, 2) -0.001 (0.001) 0.130 (0.001) 0.967 (0.013) 0.564 (0.002)
CL-BART 25 1.0 (0.5, 3) -0.001 (0.001) 0.138 (0.001) 0.914 (0.020) 0.480 (0.002)
CL-BART 25 1.0 (0.95, 2) -0.001 (0.001) 0.130 (0.001) 0.967 (0.013) 0.568 (0.002)

CL-BART 50 0.1 (0.5, 3) -0.001 (0.001) 0.132 (0.001) 0.942 (0.017) 0.503 (0.002)
CL-BART 50 0.1 (0.95, 2) -0.001 (0.001) 0.126 (0.001) 0.977 (0.011) 0.583 (0.003)
CL-BART 50 0.5 (0.5, 3) -0.001 (0.001) 0.132 (0.001) 0.943 (0.016) 0.506 (0.002)
CL-BART 50 0.5 (0.95, 2) -0.001 (0.001) 0.126 (0.001) 0.978 (0.010) 0.590 (0.003)
CL-BART 50 1.0 (0.5, 3) -0.001 (0.001) 0.133 (0.001) 0.943 (0.016) 0.509 (0.002)
CL-BART 50 1.0 (0.95, 2) -0.001 (0.001) 0.127 (0.001) 0.978 (0.010) 0.596 (0.003)

CL-BART 100 0.1 (0.5, 3) -0.001 (0.001) 0.128 (0.001) 0.955 (0.015) 0.520 (0.002)
CL-BART 100 0.1 (0.95, 2) -0.001 (0.001) 0.126 (0.001) 0.979 (0.010) 0.591 (0.003)
CL-BART 100 0.5 (0.5, 3) -0.001 (0.001) 0.129 (0.001) 0.956 (0.014) 0.523 (0.002)
CL-BART 100 0.5 (0.95, 2) -0.001 (0.001) 0.126 (0.001) 0.980 (0.010) 0.596 (0.003)
CL-BART 100 1.0 (0.5, 3) -0.001 (0.001) 0.129 (0.001) 0.958 (0.014) 0.529 (0.002)
CL-BART 100 1.0 (0.95, 2) -0.001 (0.001) 0.126 (0.001) 0.980 (0.010) 0.600 (0.003)

a T : Number of trees.
b k: Numerator of scale parameter for half-Cauchy hyper-prior.
c (αT , βT ): Hyperparameters for tree depth prior.
d Monte Carlo mean and standard errors across 200 simulations reported.
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Table 3.9: Extended Friedman Simulation Results - Confounder Estimates (Bias)

Bias × 1,000d

Type T a kb (αT , βT )
c γ1 γ2 γ3 γ4 γ5

Oracle 2.28 (4.36) -0.76 (4.37) -4.09 (4.70) 0.58 (4.57) 4.06 (4.58)

CL-BART 5 0.1 (0.5, 3) -0.80 (4.37) -1.52 (4.38) -4.99 (4.73) 1.60 (4.57) 7.05 (4.63)
CL-BART 5 0.1 (0.95, 2) -0.60 (4.35) -2.09 (4.36) -3.54 (4.72) 1.59 (4.61) 7.94 (4.60)
CL-BART 5 0.5 (0.5, 3) -1.02 (4.37) -1.24 (4.38) -4.46 (4.72) 1.28 (4.59) 7.07 (4.57)
CL-BART 5 0.5 (0.95, 2) -0.84 (4.34) -1.05 (4.40) -4.34 (4.70) 1.66 (4.59) 8.28 (4.58)
CL-BART 5 1.0 (0.5, 3) -0.94 (4.32) -1.18 (4.41) -4.18 (4.71) 1.29 (4.58) 7.10 (4.58)
CL-BART 5 1.0 (0.95, 2) -1.07 (4.34) -1.51 (4.38) -3.99 (4.70) 1.60 (4.56) 7.83 (4.59)

CL-BART 10 0.1 (0.5, 3) -0.22 (4.38) -1.02 (4.39) -4.29 (4.73) 0.97 (4.55) 7.36 (4.61)
CL-BART 10 0.1 (0.95, 2) -1.04 (4.39) -1.91 (4.36) -4.32 (4.77) 1.45 (4.65) 7.76 (4.63)
CL-BART 10 0.5 (0.5, 3) -0.10 (4.39) -1.33 (4.39) -4.51 (4.71) 1.30 (4.58) 7.27 (4.58)
CL-BART 10 0.5 (0.95, 2) -1.14 (4.40) -1.66 (4.42) -3.49 (4.72) 1.21 (4.60) 8.18 (4.64)
CL-BART 10 1.0 (0.5, 3) -0.80 (4.37) -2.03 (4.42) -4.25 (4.75) 0.99 (4.60) 7.55 (4.58)
CL-BART 10 1.0 (0.95, 2) -0.48 (4.36) -1.40 (4.41) -4.42 (4.73) 1.53 (4.58) 8.01 (4.60)

CL-BART 25 0.1 (0.5, 3) -0.60 (4.38) -1.47 (4.39) -3.96 (4.71) 1.32 (4.60) 7.63 (4.61)
CL-BART 25 0.1 (0.95, 2) -1.45 (4.39) -1.53 (4.43) -4.77 (4.71) 1.15 (4.64) 8.07 (4.61)
CL-BART 25 0.5 (0.5, 3) -0.49 (4.38) -1.26 (4.42) -3.86 (4.71) 1.56 (4.60) 7.54 (4.59)
CL-BART 25 0.5 (0.95, 2) -1.58 (4.36) -2.28 (4.41) -3.82 (4.72) 1.86 (4.62) 8.86 (4.61)
CL-BART 25 1.0 (0.5, 3) -0.76 (4.41) -1.95 (4.36) -4.58 (4.72) 1.59 (4.58) 7.23 (4.62)
CL-BART 25 1.0 (0.95, 2) -1.59 (4.39) -1.94 (4.41) -3.88 (4.74) 1.81 (4.59) 8.62 (4.60)

CL-BART 50 0.1 (0.5, 3) -0.23 (4.41) -1.84 (4.36) -3.92 (4.74) 1.69 (4.60) 7.60 (4.59)
CL-BART 50 0.1 (0.95, 2) -1.72 (4.40) -1.93 (4.37) -3.87 (4.76) 1.98 (4.62) 8.86 (4.62)
CL-BART 50 0.5 (0.5, 3) -0.42 (4.40) -1.96 (4.42) -4.27 (4.75) 1.36 (4.63) 7.88 (4.67)
CL-BART 50 0.5 (0.95, 2) -1.77 (4.37) -1.34 (4.43) -4.08 (4.70) 1.80 (4.63) 9.19 (4.64)
CL-BART 50 1.0 (0.5, 3) -1.09 (4.41) -2.00 (4.41) -3.96 (4.70) 1.51 (4.60) 7.98 (4.65)
CL-BART 50 1.0 (0.95, 2) -1.91 (4.37) -1.72 (4.41) -4.13 (4.75) 1.79 (4.64) 8.58 (4.66)

CL-BART 100 0.1 (0.5, 3) -0.88 (4.38) -2.29 (4.40) -4.21 (4.72) 0.85 (4.60) 7.15 (4.60)
CL-BART 100 0.1 (0.95, 2) -1.58 (4.39) -1.89 (4.41) -3.95 (4.75) 1.34 (4.61) 8.48 (4.66)
CL-BART 100 0.5 (0.5, 3) -0.56 (4.40) -1.71 (4.39) -4.21 (4.73) 1.48 (4.62) 7.76 (4.59)
CL-BART 100 0.5 (0.95, 2) -1.26 (4.37) -1.50 (4.42) -4.26 (4.73) 1.55 (4.61) 8.66 (4.62)
CL-BART 100 1.0 (0.5, 3) -1.11 (4.39) -1.81 (4.40) -3.87 (4.69) 1.20 (4.64) 8.17 (4.64)
CL-BART 100 1.0 (0.95, 2) -2.09 (4.41) -1.98 (4.42) -4.07 (4.73) 2.08 (4.62) 9.33 (4.62)

a T : Number of trees.
b k: Numerator of scale parameter for half-Cauchy hyper-prior.
c (αT , βT ): Hyperparameters for tree depth prior.
d Monte Carlo mean and standard errors across 200 simulations reported.
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Table 3.10: Extended Friedman Simulation Results - Confounder Estimates (Coverage)

Coveraged

Type T a kb (αT , βT )
c γ1 γ2 γ3 γ4 γ5

Oracle 0.98 0.96 0.92 0.95 0.96

CL-BART 5 0.1 (0.5, 3) 0.97 0.96 0.92 0.93 0.94
CL-BART 5 0.1 (0.95, 2) 0.98 0.96 0.93 0.93 0.96
CL-BART 5 0.5 (0.5, 3) 0.97 0.97 0.93 0.93 0.95
CL-BART 5 0.5 (0.95, 2) 0.97 0.96 0.94 0.95 0.94
CL-BART 5 1.0 (0.5, 3) 0.98 0.96 0.93 0.93 0.94
CL-BART 5 1.0 (0.95, 2) 0.98 0.95 0.92 0.94 0.96

CL-BART 10 0.1 (0.5, 3) 0.98 0.96 0.92 0.95 0.95
CL-BART 10 0.1 (0.95, 2) 0.97 0.96 0.92 0.93 0.95
CL-BART 10 0.5 (0.5, 3) 0.97 0.96 0.92 0.93 0.95
CL-BART 10 0.5 (0.95, 2) 0.97 0.95 0.92 0.93 0.94
CL-BART 10 1.0 (0.5, 3) 0.97 0.96 0.94 0.93 0.95
CL-BART 10 1.0 (0.95, 2) 0.97 0.95 0.92 0.93 0.95

CL-BART 25 0.1 (0.5, 3) 0.98 0.97 0.92 0.93 0.96
CL-BART 25 0.1 (0.95, 2) 0.97 0.96 0.92 0.94 0.94
CL-BART 25 0.5 (0.5, 3) 0.97 0.97 0.92 0.93 0.95
CL-BART 25 0.5 (0.95, 2) 0.97 0.96 0.93 0.94 0.95
CL-BART 25 1.0 (0.5, 3) 0.97 0.96 0.92 0.93 0.95
CL-BART 25 1.0 (0.95, 2) 0.98 0.96 0.92 0.92 0.95

CL-BART 50 0.1 (0.5, 3) 0.96 0.96 0.92 0.94 0.95
CL-BART 50 0.1 (0.95, 2) 0.97 0.96 0.93 0.94 0.95
CL-BART 50 0.5 (0.5, 3) 0.97 0.96 0.92 0.94 0.95
CL-BART 50 0.5 (0.95, 2) 0.97 0.96 0.92 0.93 0.95
CL-BART 50 1.0 (0.5, 3) 0.97 0.95 0.93 0.94 0.94
CL-BART 50 1.0 (0.95, 2) 0.97 0.96 0.92 0.92 0.96

CL-BART 100 0.1 (0.5, 3) 0.97 0.96 0.93 0.94 0.95
CL-BART 100 0.1 (0.95, 2) 0.97 0.96 0.92 0.95 0.96
CL-BART 100 0.5 (0.5, 3) 0.96 0.95 0.92 0.93 0.95
CL-BART 100 0.5 (0.95, 2) 0.97 0.95 0.94 0.93 0.95
CL-BART 100 1.0 (0.5, 3) 0.97 0.96 0.92 0.94 0.94
CL-BART 100 1.0 (0.95, 2) 0.97 0.96 0.93 0.93 0.96

a T : Number of trees.
b k: Numerator of scale parameter for half-Cauchy hyper-prior.
c (αT , βT ): Hyperparameters for tree depth prior.
d 95% credible interval coverage across 200 simulations.
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Figure 3.9: Extended Friedman Simulation Variable Importance: Plot of observed
split proportions across 200 simulations (Monte Carlo mean and 95% uncertainty interval
presented).
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Figure 3.10: WAIC for Friedman Simulation: Relative WAIC for each simulation setting
across 200 simulations (Monte Carlo mean and 95% uncertainty intervals presented).
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Figure 3.11: Partial Dependence Plots for Friedman Simulation: Posterior mean
estimates of the partial dependence function for each covariate across 200 simulations with
(T, k, αT , βT ) = (100, 1, 0.95, 2) (simulation mean and 95% quantile intervals presented).
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Figure 3.12: Friedman Simulation Runtime: Average time taken to run one CL-BART
chain across 200 simulations. All models were run using 1 CPU on the high performance
computing cluster at the Rollins School of Public Health, Emory University.
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3.7.3 Additional Application Materials

List of Comorbid Condition Diagnosis Codes

We used both primary and secondary International Classification of Diseases (ICD) diagnosis

codes to identify AD ED visits and comorbid conditions including chronic kidney disease,

chronic obstructive pulmonary disease, congestive heart failure, depression, diabetes, hyper-

tension, and hyperlipidemia. The exact codes are provided in Table 3.11. ICD-9 codes are

used for records observed prior to October 1, 2015.



79

T
a
b
le

3
.1
1
:
L
is
t
o
f
In
te
rn
a
ti
o
n
a
l
C
la
ss
ifi
ca
ti
o
n
o
f
D
is
ea
se
s
(I
C
D
)

C
o
d
es

u
se
d
to

id
en
ti
fy

A
lz
h
ei
m
er
’s

D
is
ea
se

E
m
er
ge
n
cy

D
ep

ar
tm

en
t

V
is
it
s
a
n
d
C
o
m
o
rb
id

C
o
n
d
it
io
n
s

C
on

d
it
io
n

IC
D
-9

C
o
d
es

IC
D
-1
0
C
o
d
es

A
lz
h
ei
m
er
’s

D
is
ea
se

33
1.
0

G
3
0
.0
,
G
3
0
.1
,
G
3
0
.8
,
G
3
0
.9

C
h
ro
n
ic
K
id
n
ey

D
is
-

ea
se

0
1
6
.0
0
,
0
1
6
.0
1
,
0
1
6
.0
2
,
0
1
6
.0
3
,
0
1
6
.0
4
,
0
1
6
.0
5
,

0
1
6
.0
6
,
0
9
5
.4
,
1
8
9
.0
,
1
8
9
.9
,
2
2
3
.0
,
2
3
6
.9
1
,

2
4
9
.4
0
,
2
4
9
.4
1
,
2
5
0
.4
0
,
2
5
0
.4
1
,
2
5
0
.4
2
,
2
5
0
.4
3
,

2
7
1
.4
,
2
7
4
.1
0
,
2
8
3
.1
1
,
4
0
3
.0
1
,
4
0
3
.1
1
,
4
0
3
.9
1
,

4
0
4
.0
2
,
4
0
4
.0
3
,
4
0
4
.1
2
,
4
0
4
.1
3
,
4
0
4
.9
2
,
4
0
4
.9
3
,

44
0.
1,

44
2.
1,

57
2.
4,

58
0.
0,

58
0.
4,

58
0.
81

,
58

0.
89

,
58

0.
9,

58
1.
0,

58
1.
1,

58
1.
2,

58
1.
3,

58
1.
81

,
58

1.
89

,
58

1.
9,

58
2.
0,

58
2.
1,

58
2.
2,

58
2.
4,

58
2.
81

,
58

2.
89

,
5
8
2
.9
,
5
8
3
.0
,
5
8
3
.1
,
5
8
3
.2
,
5
8
3
.4
,
5
8
3
.6
,
5
8
3
.7
,

58
3.
81

,
58

3.
89

,
58

3.
9,

58
4.
5,

58
4.
6,

58
4.
7,

58
4.
8,

5
8
4
.9
,
5
8
5
.1
,
5
8
5
.2
,
5
8
5
.3
,
5
8
5
.4
,
5
8
5
.5
,
5
8
5
.6
,

5
8
5
.9
,
5
8
6
,
5
8
7
,
5
8
8
.0
,
5
8
8
.1
,
5
8
8
.8
1
,
5
8
8
.8
9
,

5
8
8
.9
,
5
9
1
,
7
5
3
.1
2
,
7
5
3
.1
3
,
7
5
3
.1
4
,
7
5
3
.1
5
,

7
5
3
.1
6
,
7
5
3
.1
7
,
7
5
3
.1
9
,
7
5
3
.2
0
,
7
5
3
.2
1
,
7
5
3
.2
2
,

75
3.
23
,
75
3.
29
,
7
9
4
.4

A
18

.1
1,

A
52

.7
5,

B
52

.0
,
C
64

.1
,
C
64

.2
,
C
64

.9
,
C
68

.9
,
D
30

.0
0,

D
3
0
.0
1
,
D
3
0
.0
2
,
D
4
1
.0
0
,
D
4
1
.0
1
,
D
4
1
.0
2
,
D
4
1
.1
0
,
D
4
1
.1
1
,

D
4
1
.1
2
,
D
4
1
.2
0
,
D
4
1
.2
1
,
D
4
1
.2
2
,
D
5
9
.3
,
E
0
8
.2
1
,
E
0
8
.2
2
,

E
0
8
.2
9
,
E
0
8
.6
5
,
E
0
9
.2
1
,
E
0
9
.2
2
,
E
0
9
.2
9
,
E
1
0
.2
1
,
E
1
0
.2
2
,

E
1
0
.2
9
,
E
1
0
.6
5
,
E
1
1
.2
1
,
E
1
1
.2
2
,
E
1
1
.2
9
,
E
1
1
.6
5
,
E
1
3
.2
1
,

E
1
3
.2
2
,
E
1
3
.2
9
,
E
7
4
.8
,
I1
2
.0
,
I1
2
.9
,
I1
3
.0
,
I1
3
.1
0
,
I1
3
.1
1
,

I1
3
.2
,
I7
0
.1
,
I7
2
.2
,
K
7
6
.7
,
M
1
0
.3
0
,
M
1
0
.3
1
1
,
M
1
0
.3
1
2
,

M
1
0
.3
1
9
,
M
1
0
.3
2
1
,
M
1
0
.3
2
2
,
M
1
0
.3
2
9
,
M
1
0
.3
3
1
,
M
1
0
.3
3
2
,

M
1
0
.3
3
9
,
M
1
0
.3
4
1
,
M
1
0
.3
4
2
,
M
1
0
.3
4
9
,
M
1
0
.3
5
1
,
M
1
0
.3
5
2
,

M
1
0
.3
5
9
,
M
1
0
.3
6
1
,
M
1
0
.3
6
2
,
M
1
0
.3
6
9
,
M
1
0
.3
7
1
,
M
1
0
.3
7
2
,

M
10

.3
79

,
M
10

.3
8,

M
10

.3
9,

M
32

.1
4,

M
32

.1
5,

M
35

.0
4,

N
00

.0
,

N
0
0
.1
,
N
0
0
.2
,
N
0
0
.3
,
N
0
0
.4
,
N
0
0
.5
,
N
0
0
.6
,
N
0
0
.7
,
N
0
0
.8
,

N
0
0
.9
,
N
0
0
.A

,
N
0
1
.0
,
N
0
1
.1
,
N
0
1
.2
,
N
0
1
.3
,
N
0
1
.4
,
N
0
1
.5
,

N
0
1
.6
,
N
0
1
.7
,
N
0
1
.8
,
N
0
1
.9
,
N
0
1
.A

,
N
0
2
.0
,
N
0
2
.1
,
N
0
2
.2
,

N
0
2
.3
,
N
0
2
.4
,
N
0
2
.5
,
N
0
2
.6
,
N
0
2
.7
,
N
0
2
.8
,
N
0
2
.9
,
N
0
2
.A

,
N
0
3
.0
,
N
0
3
.1
,
N
0
3
.2
,
N
0
3
.3
,
N
0
3
.4
,
N
0
3
.5
,
N
0
3
.6
,
N
0
3
.7
,

N
0
3
.8
,
N
0
3
.9
,
N
0
3
.A

,
N
0
4
.0
,
N
0
4
.1
,
N
0
4
.2
,
N
0
4
.3
,
N
0
4
.4
,

N
0
4
.5
,
N
0
4
.6
,
N
0
4
.7
,
N
0
4
.8
,
N
0
4
.9
,
N
0
4
.A

,
N
0
5
.0
,
N
0
5
.1
,

N
0
5
.2
,
N
0
5
.3
,
N
0
5
.4
,
N
0
5
.5
,
N
0
5
.6
,
N
0
5
.7
,
N
0
5
.8
,
N
0
5
.9
,

N
0
5
.A

,
N
0
6
.0
,
N
0
6
.1
,
N
0
6
.2
,
N
0
6
.3
,
N
0
6
.4
,
N
0
6
.5
,
N
0
6
.6
,

N
0
6
.7
,
N
0
6
.8
,
N
0
6
.9
,
N
0
6
.A

,
N
0
7
.0
,
N
0
7
.1
,
N
0
7
.2
,
N
0
7
.3
,

N
0
7
.4
,
N
0
7
.5
,
N
0
7
.6
,
N
0
7
.7
,
N
0
7
.8
,
N
0
7
.9
,
N
0
7
.A

,
N
0
8
,

N
13
.1
,
N
13
.2
,
N
13
.3
0,

N
13
.3
9,

N
14
.0
,
N
14
.1
,
N
14
.2
,
N
14
.3
,

N
1
4
.4
,
N
1
5
.0
,
N
1
5
.8
,
N
1
5
.9
,
N
1
6
,
N
1
7
.0
,
N
1
7
.1
,
N
1
7
.2
,

N
17

.8
,
N
17

.9
,
N
18

.1
,
N
18

.2
,
N
18

.3
,
N
18

.3
0,

N
18

.3
1,

N
18

.3
2,

N
1
8
.4
,
N
1
8
.5
,
N
1
8
.6
,
N
1
8
.9
,
N
1
9
,
N
2
5
.0
,
N
2
5
.1
,
N
2
5
.8
1
,

N
2
5
.8
9
,
N
2
5
.9
,
N
2
6
.1
,
N
2
6
.9
,
Q
6
1
.0
2
,
Q
6
1
.1
1
,
Q
6
1
.1
9
,

Q
6
1
.2
,
Q
6
1
.3
,
Q
6
1
.4
,
Q
6
1
.5
,
Q
6
1
.8
,
Q
6
2
.0
,
Q
6
2
.2
,
Q
6
2
.1
0
,

Q
6
2
.1
1
,
Q
6
2
.1
2
,
Q
6
2
.3
1
,
Q
6
2
.3
2
,
Q
6
2
.3
9
,
R
9
4
.4

(c
o
n
ti
n
u
ed

..
.)



80

T
a
b
le

3
.1
1
:
L
is
t
o
f
In
te
rn
a
ti
o
n
a
l
C
la
ss
ifi
ca
ti
o
n
o
f
D
is
ea
se
s
(I
C
D
)

C
o
d
es

u
se
d
to

id
en
ti
fy

A
lz
h
ei
m
er
’s

D
is
ea
se

E
m
er
ge
n
cy

D
ep

ar
tm

en
t

V
is
it
s
a
n
d
C
o
m
o
rb
id

C
o
n
d
it
io
n
s.

(c
o
n
ti
n
u
ed
)

C
on

d
it
io
n

IC
D
-9

C
o
d
es

IC
D
-1
0
C
o
d
es

C
h
ro
n
ic

O
b
st
ru
c-

ti
v
e

P
u
lm

o
n
a
ry

D
is
ea
se

49
1,

49
2,

49
6

J
4
1
,
J
4
2
,
J
4
3
,
J
4
4

C
o
n
g
es
ti
v
e

H
ea
rt

F
ai
lu
re

42
8

I4
2
,
I5
0
,
I5
1

D
ep
re
ss
io
n

2
9
6
.2
0
,
2
9
6
.2
1
,
2
9
6
.2
2
,
2
9
6
.2
3
,
2
9
6
.2
4
,
2
9
6
.2
5
,

2
9
6
.2
6
,
2
9
6
.3
0
,
2
9
6
.3
1
,
2
9
6
.3
2
,
2
9
6
.3
3
,
2
9
6
.3
4
,

2
9
6
.3
5
,
2
9
6
.3
6
,
2
9
6
.5
1
,
2
9
6
.5
2
,
2
9
6
.5
3
,
2
9
6
.5
4
,

2
9
6
.5
5
,
2
9
6
.5
6
,
2
9
6
.6
0
,
2
9
6
.6
1
,
2
9
6
.6
2
,
2
9
6
.6
3
,

2
9
6
.6
4
,
2
9
6
.6
5
,
2
9
6
.6
6
,
2
9
6
.8
9
,
2
9
8
.0
,
3
0
0
.4
,

30
9.
1,

31
1

F
3
1
.3
0
,
F
3
1
.3
1
,
F
3
1
.3
2
,
F
3
1
.4
,
F
3
1
.5
,
F
3
1
.6
0
,
F
3
1
.6
1
,

F
3
1
.6
2
,
F
3
1
.6
3
,
F
3
1
.6
4
,
F
3
1
.7
5
,
F
3
1
.7
6
,
F
3
1
.7
7
,
F
3
1
.7
8
,

F
3
1
.8
1
,
F
3
2
.0
,
F
3
2
.1
,
F
3
2
.2
,
F
3
2
.3
,
F
3
2
.4
,
F
3
2
.5
,
F
3
2
.9
,

F
3
3
.0
,
F
3
3
.1
,
F
3
3
.2
,
F
3
3
.3
,
F
3
3
.4
0
,
F
3
3
.4
1
,
F
3
3
.4
2
,
F
3
3
.8
,

F
3
3
.9
,
F
3
4
.1
,
F
4
3
.2
1
,
F
4
3
.2
3

D
ia
b
et
es

24
9,

25
0

E
0
8
,
E
0
9
,
E
1
0
,
E
1
1
,
E
1
2
,
E
1
3

H
y
p
er
li
p
id
em

ia
27
2.
0,

27
2.
1,

27
2
.2
,
2
7
2
.3
,
2
7
2
.4

E
7
8
.0
,
E
7
8
.0
0
,
E
7
8
.0
1
,
E
7
8
.1
,
E
7
8
.2
,
E
7
8
.3
,
E
7
8
.4
,
E
7
8
.4
1
,

E
7
8
.4
9
,
E
7
8
.5

H
y
p
er
te
n
si
on

40
1,

40
2,

40
3,

40
4
,
4
0
5

I1
0
,
I1
1
,
I1
2
,
I1
3
,
I1
5



81

Figure 3.13: Distribution of Individual Exposure Effects for the Alzheimer’s Disease
Application: Density plots demonstrating the heterogeneity in point estimates of individual
conditional exposure effects.
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Table 3.13: Marginal Partial Dependence Estimates for the Alzheimer’s Disease Application
(Overall)

Covariate exp
(
β̄DPD

)a
Hispanic 0.99 (0.95, 1.02)
Non-Hispanic White 0.98 (0.95, 1.01)
Non-Hispanic Black 1.01 (0.97, 1.07)
Non-Hispanic Asian and Pacific Islander 1.02 (0.99, 1.07)
Non-Hispanic Other 0.99 (0.94, 1.05)

Female 1.00 (0.98, 1.02)

CHF 0.99 (0.96, 1.02)
CKD 1.05 (1.01, 1.08)
COPD 0.99 (0.95, 1.02)
Depression 0.99 (0.96, 1.02)
Diabetes 1.00 (0.98, 1.03)
Hypertension 0.99 (0.96, 1.01)
Hyperlipidemia 1.01 (0.99, 1.04)
a β̄DPD: Difference in marginal partial average exposure effects.

Posterior mean and 95% credible interval presented.

Race/ethnicity covariates are mutually exclusive and one-hot encoded.
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Table 3.14: Marginal Partial Dependence Estimates for the Alzheimer’s Disease Application
(Stratified Analysis)

Subgroup Covariate exp
(
β̄DPD

)a
Female 0.99 (0.93, 1.02)
CHF 0.99 (0.92, 1.04)
CKD 1.06 (0.99, 1.20)
COPD 1.00 (0.94, 1.07)
Depression 1.01 (0.95, 1.08)
Diabetes 0.98 (0.92, 1.02)
Hypertension 0.99 (0.93, 1.02)

Hispanic

Hyperlipidemia 1.00 (0.96, 1.05)

Female 1.00 (0.99, 1.02)
CHF 1.00 (0.96, 1.01)
CKD 1.01 (0.99, 1.04)
COPD 1.00 (0.96, 1.02)
Depression 0.99 (0.96, 1.02)
Diabetes 1.00 (0.97, 1.02)
Hypertension 1.00 (0.98, 1.01)

Non-Hispanic White

Hyperlipidemia 1.01 (0.99, 1.04)

Female 1.01 (0.93, 1.10)
CHF 1.01 (0.91, 1.13)
CKD 1.05 (0.96, 1.17)
COPD 0.93 (0.79, 1.04)
Depression 0.97 (0.81, 1.11)
Diabetes 1.06 (0.98, 1.19)
Hypertension 0.85 (0.74, 1.00)

Non-Hispanic Black

Hyperlipidemia 1.01 (0.94, 1.12)

Female 1.02 (0.97, 1.11)
CHF 1.03 (0.96, 1.15)
CKD 1.02 (0.96, 1.13)
COPD 1.00 (0.91, 1.09)
Depression 0.99 (0.87, 1.06)
Diabetes 1.04 (0.98, 1.13)
Hypertension 1.01 (0.94, 1.08)

Non-Hispanic Asian and Pacific Islander

Hyperlipidemia 1.01 (0.95, 1.07)

Female 0.94 (0.78, 1.04)
CHF 1.02 (0.90, 1.22)
CKD 1.09 (0.93, 1.35)
COPD 1.00 (0.84, 1.19)
Depression 1.03 (0.89, 1.22)
Diabetes 0.96 (0.79, 1.05)
Hypertension 1.00 (0.91, 1.14)

Non-Hispanic Other

Hyperlipidemia 0.96 (0.82, 1.05)

a β̄DPD: Difference in marginal partial average exposure effects.

Posterior mean and 95% credible interval presented.
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Figure 3.14: Lower-dimensional CART summaries for the Alzheimer’s Disease Ap-
plication: CART diagrams of lower-dimensional summaries for CL-BART model predictions
(log odds ratio scale).
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Table 3.15: Lower Dimensional CART Summary Partial Dependence for the Alzheimer’s
Disease Application

Subgroup CHF CKD COPD DEP DIAB HT HLD exp
(
β̄PD

)a
Pr

(
β̄PD > 0

)
R2 b

- - 1.01 (0.98, 1.05) 0.80 0.41
+ - 1.05 (1.01, 1.09) 1.00 0.41
+ + 1.05 (1.01, 1.10) 0.99 0.41
- + - 1.00 (0.96, 1.03) 0.41 0.41O

v
er
a
ll

- + + 1.01 (0.97, 1.04) 0.62 0.41

+ + 1.02 (0.94, 1.13) 0.65 0.89
- + 1.04 (0.96, 1.17) 0.74 0.89

- + + 0.96 (0.85, 1.03) 0.20 0.89
- + - 0.97 (0.88, 1.04) 0.27 0.89
- - + 0.98 (0.90, 1.04) 0.28 0.89

H
IS
P

- - - 0.99 (0.92, 1.06) 0.40 0.89

+ - 1.01 (0.97, 1.05) 0.69 0.09
- - 1.01 (0.98, 1.05) 0.79 0.09
+ + 1.02 (0.98, 1.06) 0.75 0.09N

H
W

- + 1.02 (0.99, 1.07) 0.84 0.09

+ - 1.27 (1.04, 1.53) 0.99 0.79
+ - + 0.95 (0.77, 1.11) 0.29 0.79
- - + 1.02 (0.90, 1.17) 0.63 0.79
+ + + 1.02 (0.84, 1.20) 0.56 0.79
- + + 1.09 (0.96, 1.25) 0.88 0.79
+ - - 1.13 (0.92, 1.39) 0.89 0.79

N
H
B

- - - 1.22 (1.02, 1.43) 0.99 0.79

- - - 0.97 (0.86, 1.07) 0.25 0.71
+ - - 0.99 (0.88, 1.13) 0.40 0.71
- + - 0.99 (0.89, 1.11) 0.41 0.71
+ + - 1.01 (0.90, 1.16) 0.53 0.71
- - + 1.00 (0.89, 1.12) 0.48 0.71
+ - + 1.03 (0.91, 1.21) 0.65 0.71
- + + 1.02 (0.91, 1.16) 0.62 0.71

N
H
A
P
I

+ + + 1.05 (0.93, 1.23) 0.74 0.71

+ - 1.01 (0.80, 1.27) 0.46 0.39
- + + 0.86 (0.63, 1.05) 0.10 0.39
- + - 0.90 (0.69, 1.08) 0.16 0.39
- - + 0.90 (0.71, 1.09) 0.16 0.39
- - - 0.94 (0.76, 1.11) 0.24 0.39
+ + + 0.93 (0.72, 1.17) 0.25 0.39

N
H
O

+ + - 0.97 (0.76, 1.19) 0.34 0.39

a β̄PD: Partial average exposure effect. Posterior mean and 95% credible interval presented.
b Summary R2.

HISP: Hispanic, NHW: Non-Hispanic White, NHB: Non-Hispanic Black, NHAPI: Non-Hispanic Asian and

Pacific Islander, NHO: Non-Hispanic Other.
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Figure 3.15: Trace Plots for Selected Parameters: Trace plots for each subgroup.
Parameters from top to bottom include: σµ (leaf node prior standard deviation), β̄ (average
exposure effect, on the log scale), and the average number of nodes across all trees.
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Table 3.16: Alzheimer’s Disease Application CL-BART Model Runtimes

Subgroup Sample Size Runtimea

Overall 71,020 150.77
Hispanic 11,959 6.28
Non-Hispanic White 46,019 34.48
Non-Hispanic Black 5,635 3.77
Non-Hispanic Asian and Pacific Islander 5,521 3.11
Non-Hispanic Other 1,886 1.08

a Time taken to run one chain of a 25-tree CL-BART model (sub-
groups) or 100-tree CL-BART model (overall), in hours. All models
were run using 1 CPU on the high performance computing cluster
at the Rollins School of Public Health, Emory University.
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Chapter 4

Modeling Joint Health Effects of

Environmental Exposure Mixtures

using BART

4.1 Introduction

Asthma affected an estimated 25 million (7.7%) individuals in the United States in the year

2021 per the National Health Interview Survey [21]. In that same year, the Healthcare Cost

and Utilization Project estimated a total of 5.8 million asthma-related emergency department

(ED) visits, of which 1.4 million required hospitalization and 930,000 listed asthma as the

primary diagnosis [1]. In this work we are interested in studying the marginal and joint

associations between elevated concentrations of multiple airborne chemical pollutants on

asthma-related ED visit rates in Atlanta, Georgia.

Previous studies of Atlanta and other U.S. cities have found harmful associations between
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asthma-related ED visits and environmental pollutants such as fine particulate matter of equal

to or less than 2.5µm in diameter (PM2.5), nitrogen dioxide (NO2), ozone (O3), and carbon

monoxide (CO), among others [98, 55, 115, 2, 99, 86, 11]. The majority of these studies

analyze exposures individually due to the challenges associated with modeling mixtures of

correlated exposures. However, studies do often stratify analyses to study effect modification.

For example, O’Lenick et al. [86] reported that neighborhood-level socioeconomic status

may affect the association between between air pollution and pediatric asthma morbidity.

Additionally, some studies have also reported modification of the effect of ozone on mortality

by temperature [112].

Modeling of environmental mixtures is often framed in one of two ways: targeting

a restricted class of research questions using easily interpretable parametric models, or

estimating the true exposure-response surface with fancier (but less interpretable) models

based on Gaussian processes, regression tree ensembles, etc. The former includes summary

index approaches such as quantile g-computation [58] and weighted quantile sum [19], while

the latter encompasses tools like Bayesian kernel machine regression (BKMR) [13], and

more recently treed distributed lag mixture models (TDLMM) [80] and multiple exposure

distributed lag models [5]. BKMR is most useful for estimating smooth exposure-response

functions containing interactions and nonlinearities, while the latter two focus primarily on

interaction and lagged effects over discrete time intervals. In our review, existing methods

typically address at most two of 1) nonlinearity, 2) interaction, or 3) lagged effects (see Wilson

et al. [114] for an approach which seeks to address all three). We propose using soft Bayesian

additive regression trees (BART) [73] as an alternative to the BKMR approach for estimating

interactions and nonlinearities. While soft BART is computationally slower than traditional

BART, the tree-based approach is more feasible than BKMR when working with datasets
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with a large number of observations, as in the motivating Atlanta dataset.

Following the fit of a mixture model, summarization of the estimated exposure-risk

function with respect to one or two exposures often involves fixing the other exposures within

the mixture to some quantile, or perhaps makes use of partial dependence statistics [36].

These approaches tend to extrapolate to implausible mixture levels in the estimation process,

particularly in the context of correlated exposures. We propose using accumulated local

effects [6] as an alternative approach that avoids this issue and has other benefits as well.

The main contribution of this work is to leverage a modeling approach based on Bayesian

regression tree ensembles and subsequent summarization strategy for evaluating the effects

of multi-pollutant mixtures on asthma morbidity in the city of Atlanta. We introduce the

data for this application in Section 4.2 and outline the methodology in Section 4.3. We then

demonstrate the utility of the proposed approach though a simulation study (Section 4.4)

before finally presenting our main findings from the application (Section 4.5) and discussing

areas of future work (Section 4.6).

4.2 Data

4.2.1 Health Data

Patient-level billing records for ED visits to hospitals in the metropolitan Atlanta area

from 2011-2018 were obtained from the Georgia Hospital Association. These data included

admission date, billing address, International Classification of Disease (ICD) version 9 or 10

discharge diagnosis codes, and various patient characteristics. We restricted the ED visit

data to only include visits containing an asthma diagnosis (ICD-9 code 493; ICD-10 code

J45) and occurring during Atlanta’s warm season (April-October). These visits were then
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aggregated by ZIP code and date for the analysis. These data have previously been used for

various asthma and air pollution association studies [98, 99, 86, 62, 11].

4.2.2 Air Pollution Data

Air pollution concentration data are collected daily and include fine particulate matter with

diameter 2.5µm and smaller (PM2.5, 24-hr average, µm/m3), ozone (O3, 8-hr max, ppm),

nitrogen dioxide (NO2, 1-hr max, ppb), and carbon monoxide (CO, 1-hr max, ppb). The

estimates are derived from the data fusion model described by Senthilkumar et al. [93], which

utilized simulations from the Community Multiscale Air Quality Model and monitoring data

from the Environmental Protection Agency’s Air Quality System database. The data product

is available at a 12km gridded spatial resolution and is linked to each ZIP code based on

area-weighted averaging.

4.2.3 Other Data

Maximum daily temperature is obtained from Daymet [104]. The 1km gridded product

was spatially averaged within each ZIP code, and linked to the ED visit data by both date

and ZIP code. Annual ZIP code-level estimates of total population and the percent of the

population below the poverty level are obtained from the 5-year American Community Survey

for years 2011-2018.
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4.3 Methods

4.3.1 Soft BART

Bayesian additive regression trees (BART) is a nonparametric machine learning approach

which approximates complicated functions using sums of shallow Bayesian decision trees [25].

In this sense, the approach is similar to boosting from the machine learning literature. In recent

years BART has soared in popularity due to its performance on prediction, classification,

and causal inference tasks [51]. Ultimately, BART is a tree-based approach that can only

approximate smooth functions with rigid fits. Linero and Yang [73] propose a soft version

of BART, which adapts to smooth functions better than traditional BART by swapping

traditional decision trees for soft decision trees [122]. In a soft decision tree, the prediction

for an observation is a weighted average of all of the leaf node parameters, where the weights

are defined as the probability an observation is mapped to each leaf node as determined by,

say, a logistic gating function [73]. When compared to the deterministic predictions obtained

from a traditional decision tree, this has the effect of smoothing over the otherwise rigid

decision rules that form the binary tree. Since we generally expect the exposure-risk surface

to be smooth, we opt to use this version of BART in our implementation. For more details

on soft BART, see Section 2.1.3.
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4.3.2 Negative Binomial Regression with BART

The model we propose is:

Yij | θij ∼ Poisson(θij) (4.1)

θij ∼ Gamma(ξ, exp (ηij)) (4.2)

ηij = log(Popij) +wT
ijγ + f(xij) + νi, (4.3)

where Yij and θij represent the actual and expected asthma-related ED counts in region

i on day j, respectively, for i = 1, . . . , I and j = 1, . . . , J . The log expected counts are

offset by Popij, the population of region i at time j, and the overdispersion in the counts is

represented by ξ. Potential confounders such as federal holidays and socioeconomic factors

are represented by the Pw× 1 vector wij , while all exposures are represented by Px× 1 vector

xij . To account for additional unexplained variation in the counts due to location we include

a ZIP-code specific random intercept νi.

The confounders are modeled linearly (or parametrically using splines) with regression

coefficients given by the Pw×1 vector γ, following previous studies. The exposures are modeled

using soft BART [73]. Specifically, in Equation (4.3) we use f(xij) =
∑T

t=1Tree(xij; Tt,Mt).

The {Tt,Mt}Tt=1 parameters correspond to the tree structures and scalar-valued leaf node

parameters associated with the soft BART model, and “Tree” is the function which maps a

set of exposures xij to its prediction from a single soft decision tree. Our approach is similar

to that used in Mutiso et al. [83], with the main difference being that we substitute the

BKMR, which uses Gaussian processes, for soft BART.
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4.3.3 Model Estimation

To reiterate, the log predictor for the model we propose is ηij = log(Popij) + wT
ijγ +∑T

t=1 Tree(xij ; Tt,Mt)+νi. The parameters in this component include γ, {Tt,Mt}Tt=1, and ν.

To estimate these parameters, along with the dispersion parameter ξ, we adopt a Markov-chain

Monte Carlo (MCMC) algorithm whose details are described in this section.

Negative Binomial Representation

The hierarchical Poisson-gamma model provided in (4.1) and (4.2) can be shown to have a

marginal negative binomial distribution with density given by (4.4)

p(yij | ξ, ηij) =
Γ(yij + ξ)

Γ(yij + 1)Γ(ξ)
(1− pij)ξp

yij
ij ∝ (1− pij)ξp

yij
ij , (4.4)

where

pij =
exp (ηij)

1 + exp (ηij)
. (4.5)

The mean (4.6) and variance (4.7) may be obtained in a straightforward fashion by applying

the laws of total expectation and total variance to the hierarchical model.

E [Yij] = E [E (Yij | θij)] = E [θij] = ξ exp (ηij). (4.6)

Var [Yij] = Var [E(Yij | θij)] + E [Var (Yij | θij)]

= Var [θij] + E [θij]

= ξ exp (2ηij) + ξ exp (ηij)

= ξ exp (ηij) [1 + exp (ηij)] .

(4.7)
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Since Var [Yij] > E [Yij], it is clear that ξ is exclusively modeling overdispersion. The

marginal likelihood of all of the observed data can be written as in (4.8).

p(y | ξ,η) ∝
I∏

i=1

J∏
j=1

(1− pij)ξp
yij
ij =

I∏
i=1

J∏
j=1

{exp(ηij)}yij

{1 + exp(ηij)}yij+ξ
. (4.8)

Pólya-Gamma Data Augmentation

BART (and by extension, soft BART), has been extended to many different outcome types

since the original model was proposed, however these extensions typically require conditional

conjugacy between the outcome distribution and prior distribution on the individual leaf node

parameters to facilitate the sampling of tree structures. Since the negative binomial likelihood

in (4.8) does not itself admit a conditionally conjugate prior, we adopt the framework proposed

by Pillow and Scott [88]. Specifically, we augment the outcome Yij with latent weights ωij

sampled from a Pólya-gamma (PG) distribution [89].

If ω ∼ PG(b, 0), then for any choice of a, we have the following result:

(eη)a

(1 + eη)b
= 2−beκη

∫ ∞

0

e−ωη2/2p(ω)dω, (4.9)

where κ = a− b/2. This follows from the definition of PG random variables [89]. Substituting

(4.8) into the LHS of this result gives (4.10)

p(y | ξ,η) ∝
I∏

i=1

J∏
j=1

exp (κijηij)

∫ ∞

0

exp (−ωijη
2
ij/2)p(ωij | yij + ξ, 0)dωij, (4.10)

where κij =
yij−ξ

2
. If we condition on ωij, the expectation (integral) in (4.10) can be ignored,

and after completing the square we may obtain the following form for the data augmented
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data likelihood:

p(y | ξ,η,ω) ∝
I∏

i=1

J∏
j=1

exp (κijηij)× exp (−ωijη
2
ij/2)

∝
I∏

i=1

J∏
j=1

exp

{
−ωij

2

(
yij − ξ
2ωij

− ηij
)2
}
,

(4.11)

where ω = (ω11, . . . , ω1J , . . . , ωI1, . . . , ωIJ)
T . Thus, if we independently draw ωij ∼ PG(yij +

ξ, ηij), then the latent outcome y∗ij =
yij−ξ

2ωij
is normally distributed with mean ηij and variance

1/ωij. It follows that the vector of latent outcomes y∗ ∼ MVN(η,Ω−1), where Ω = diag(ω).

This leads to a convenient Gibbs sampler based on the Bayesian backfitting approach of

Hastie and Tibshirani [49] for updating γ, {Mt}Tt=1, and ν, when multivariate normal prior

distributions are chosen. The full forms of these conjugate updates are provided in the

Chapter 4 Supplemental Materials.

Updating BART Parameters

In BART, new tree structures are sampled from their marginal distribution and updated

using a Metropolis-Hastings (M-H) step by first integrating out the leaf node parameters

as described in Section 2.1.3. The tree structures themselves are proposed from a so-

called branching process prior, which modify the existing structures from the previous

iteration [25, 90]. A detailed explanation of how this approach works with weights, such

as those introduced by the Pólya-gamma data augmentation scheme, is outlined in Bleich

and Kapelner [12]. The tree prior used for soft BART is more involved, optionally including

hyperparameters and hyperpriors responsible for the degree of smoothness and/or sparsity,

but the general concept is the same. One of the benefits of BART is that default priors tend

to work well in a variety of circumstances. We use default priors for updating {Tt,Mt}Tt=1
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as detailed in Linero and Yang [73]. In our implementation, the sampling of BART-related

parameters is facilitated by the drop-in C++ module available in the SoftBart R package

https://github.com/theodds/SoftBART.

A Spatial CAR Prior for ZIP Code Random Intercepts

We assign a mean-zero Besag proper conditional autoregressive (CAR) prior [10] for the ZIP

code-level random intercepts ν = (ν1, . . . , νI)
T . In mathematical terms, ν ∼ MVN(0,Σν)

with Σν = τ 2(D− ρA)−1, where A is the I × I first-order adjacency matrix, and D is the

I × I diagonal matrix containing the number of neighbors for each region. This allows for a

portion of the variability in the response unexplained by the predictors to be attributed to

unmeasured spatial factors. We assign an inverse gamma and discrete uniform hyperprior to

τ 2 and ρ, respectively.

Updating the Dispersion Parameter

Lastly, we update the dispersion parameter ξ using the conjugate sampling routine described

by Zhou et al. [121]. This technique relies on expressing the Yij ∼ NB(ξ, pij) marginal

distribution as a compound Poisson distribution. The details for this step and the others

described in this section are outlined in Section 4.7.1 of the Chapter 4 Supplementary

Materials. A summary of a single MCMC iteration is provided in Algorithm 4.5.

4.3.4 Model Interpretation via Accumulated Local Effects

When using flexible methods which target the response surface directly, interpretation of

the resulting fit requires just as much thought as the estimation itself. In the environmental

mixtures setting, it is common to focus on the marginal effect of a single exposure on the

https://github.com/theodds/SoftBART
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Algorithm 4.5 One MCMC Iteration of the Spatial Soft BART Negative Binomial Algorithm

1: Input: D = {y,W,X,Z,Population,D,A} ,γ,ν, τ 2, ρ, {Tt,Mt}Tt=1 , ξ, ατ , βτ , αξ, βξ
2: for i = 1, . . . , I and j = 1, . . . , J do
3: Draw ωij ∼ PG(yij + ξ, ηij).

4: Compute y∗ij =
yij−ξ

2ωij
.

5: end for
6: Form Ω = diag(ω11, . . . , ω1,J , . . . , ωI1, . . . , ωIJ).
7: Draw γ ∼ MVN

(
µ∗

γ,Σ
∗
γ

)
, where µ∗

γ and Σ∗
γ are defined as in Section 4.7.1.

8: Draw ν ∼ MVN(µ∗
ν ,Σ

∗
ν), where µ∗

ν and Σ∗
ν are defined as in Section 4.7.1.

9: Draw τ 2 ∼ IG
(
ατ + I/2, βτ + νT (D− ρA)ν)/2

)
.

10: Draw ρ from its discrete posterior distribution described in Section 4.7.1.
11: for t = 1, . . . , T do
12: Propose/update Tt,Mt, and any associated hyperparameters governing the degree of

smoothness and/or sparsity as described in Linero and Yang [73].
13: end for
14: Draw Lij ∼ CRT(ξ, yij) for i = 1, . . . , I, j = 1, . . . , J .

15: Draw ξ ∼ Gamma
(
αξ +

∑I
i=1

∑J
j=1 Lij, βξ −

∑I
i=1

∑J
j=1 ln(1− pij)

)
.

outcome by evaluating the exposure-response function at several levels of the chosen exposure

and plotting the result. This strategy can also be used for studying the joint effects of two

exposures using, say, contour plots. Analyzing or visualizing joint effects of more than two

continuous exposures is rather difficult, and thus is not as common. Mathematically, if we

are we are interested in evaluating the effect of Xp on a fitted exposure-response function f̂ ,

we evaluate f̂ (xp | X−p) for several values xp in the observed range of Xp.

In settings where there are more than two exposures, a decision must be made regarding

the treatment of the exposures that aren’t of interest, X−p, when evaluating the exposure-

response function for 1-2 exposures of interest Xp. As outlined in Section 2.2, there are a few

options for this. A common choice is to set X−p to some fixed values (e.g., their observed

medians) while varying Xp. In fact, one might set X−p to multiple values (e.g., their medians

and 95th percentiles), and plot f̂ (xp | X−p) for each setting. This approach is not ideal since

the exposure-response function ultimately depends on the selected values for X−p, of which
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there are many choices for each exposure in the model - none of which are the perfect choice,

and many of which are poor choices.

Another option is to calculate partial dependence (PD) functions [36]. PD functions target

the average exposure effect across the marginal distribution of the observed data, setting X−p

to their observed values xij,−p, i = 1, . . . , I, j = 1, . . . , J . In this manner, PD functions avoid

having to make a choice regarding the values of X−p, and the resulting estimates naturally

incorporate the variability in X−p across specified values of Xp. One of the major limitations

of PD functions is that they are computationally burdensome, requiring evaluations of f̂ for

every observation in the study at every value considered for Xp.

Both the fixed-value and PD approaches run the risk of extrapolating when evaluating

f̂ (xp | X−p), particularly if the exposures are correlated (which they often are). By this we

mean that some of the evaluations of f̂ (xp | X−p) are made on implausible exposure profiles.

This is a general issue for assessing covariate effects in black-box supervised learning models.

One approach that has been proposed to combat this issue is accumulated local effects (ALE,

[6]). The estimands for the partial effect of a single exposure Xp at some level xp for each of

the three approaches are provided in (4.12), (4.13), and (4.14).

fp,F ixed(xp) ≡ E
[
f̂ (xp,x−p)

]
(4.12)

fp,PD(xp) ≡ E
[
f̂ (xp,X−p)

]
(4.13)

fp,ALE(xp) ≡
∫ xp

xmin,p

E

[
∂f̂

∂Xp

(Xp,X−p) | Xp = x′p

]
dx′p (4.14)
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The quantities in (4.12) and (4.13) are estimated using (4.15) and (4.16), respectively.

f̂p,F ixed(xp) = f (xp,x−p) . (4.15)

f̂p,PD(xp) =
1

IJ

∑
i,j

f̂ (xp,xij,−p) . (4.16)

Estimation of the uncentered ALE main effect of Xp is a bit more involved. We first

rewrite the estimand using the limit definition of a derivative as in (4.17).

fp,ALE(xp) ≡ lim
K→∞

kKp (xp)∑
k=1

E
[
f̂
(
xKk,p,X−p

)
− f̂

(
xKk−1,p,X−p

)
| Xp ∈

(
xKk−1,p, x

K
k,p

]]
, (4.17)

where K is the number of intervals in the range of Xp over which local effects are estimated.

The kth interval is defined as
(
xKk−1,p, x

K
k,p

]
, and kKp (xp) is the interval associated with the

value of interest xp. The estimator of the uncentered ALE main effect is given by (4.18)

f̂p,ALE(xp) =

kKp (xp)∑
k=1

1

Nk

∑
i,j:xij,p∈(xK

k−1,p,x
K
k,p]

[
f̂
(
xKk,p,xij,−p

)
− f̂

(
xKk−1,p,xij,−p

)]
, (4.18)

where Nk is the number of observations having Xp ∈
(
xKk−1,p, x

K
k,p

]
.

Usually we wish to estimate any of these functions for M values in the range of Xp. For

estimation purposes, (4.15) requires M evaluations of f̂ at (xp,x−p) (one at each of the M

values of interest), while (4.16) requires M evaluations of f̂ at (xp,xij,−p) for all i, j (MIJ

total evaluations). In contrast, the estimator in (4.18) requires two evaluations of f̂ for all

i, j – one at
(
xKk,p,xij,−p

)
and one at

(
xKk−1,p,xij,−p

)
– such that xij,p ∈

(
xKk−1,p, x

K
k,p

]
, for a

total of 2IJ total evaluations. The latter is a result of approximating ∂f̂
∂Xp

with small finite

differences. An illustration for the ALE computation has been included in Section 2.2.3. For
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more information regarding ALE computation, we refer the reader to Apley and Zhu [6].

When using a Bayesian approach, each of (4.15), (4.16), and (4.18) would be evaluated for

each sample from the posterior distribution. This allows one to obtain pointwise posterior

means and uncertainty estimates at each of the M values of interest.

The primary benefits of using ALE over the other approaches are threefold: 1) effects of

correlated exposures are isolated by targeting the partial derivative of f̂ , 2) estimates are

only informed by predictions on plausible exposure profiles since averaging is done using

the conditional distribution (i.e., no extrapolation), and 3) the computation is relatively

fast compared to PD functions since only two predictions are needed for each observation,

regardless of the number of levels of Xp being considered. Since it is common to consider 40

or more values of Xp, the last point is a significant advantage to using ALE.

4.4 Simulation Study

To evaluate the proposed approach, specifically to different BART specifications, we conduct

a brief simulation study. We use the populations and locations of the 128 ZIP codes from the

first year (2011) of the application. We set confounder effects γ = (−2,−1, 1, 2)T and the

true exposure-risk surface function to f(X) = −10 + f0(X)
5

, where f0(X) = 10 sin(X1X2) +

20(X3 − 0.5)2 + 10X4 + 5X5 is the benchmark function proposed in Friedman [35]. While

this surface only depends on five exposures, we generate five additional noise exposures (ten

total exposures) to assess the performance in settings where not all exposures are important.

Spatial random effects are sampled from a proper CAR prior with ρ = 0.9 and τ 2 = 0.3.

For i = 1, . . . , 128 regions and j = 1, . . . , 300 observations, we simulate outcomes using the

following data generating process:
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1. Generate Wij,1,Wij,2,Wij,3,Wij,4
i.i.d.∼ Uniform(0, 1).

2. Generate Xij ∼ MVN(010×1,Σ10×10), where Σ[1:5,1:5] matches the observed correlation

matrix of PM2.5, NO2, O3, CO, and maximum temperature from the application. Only

the first five exposures are used to generate the outcome. All values are scaled to [0, 1]

using min-max normalization.

3. Sample Yij ∼ NB
(
ξ = 1, pij =

eηij

1+eηij

)
where ηij = log

(
Popij

)
+wT

ijγ + f(xij) + νi

We consider ensembles of size T = {10, 25, 50, 100}, both hard and soft decision rules,

and both the classic and sparse branching processes [70]. Each setting is repeated 200 times.

The average bias, root mean squared error (RMSE), and 95% credible interval coverage for

f(X) are presented in Table 4.1, along with Monte Carlo standard error estimates.

Soft BART had excellent bias, coverage, and RMSE even when few trees were used. When

many trees were used (T = 100), performance of traditional BART improved, but was still

worse than soft BART in terms of coverage and RMSE. In general, increasing the number of

trees beyond 25 did not appear to improve the performance of soft BART. Additionally, using

the sparse branching process prior mostly resulted in improved coverage and reduced RMSE

(Table 4.1). This suggests the sparsity-inducing Dirichlet prior was effective at identifying

the important exposures and avoiding tree splitting rules based on the noise exposures.

We present simulation results for the marginal ALE plots for each exposure using the

T = 25 soft, sparse trees setting in Figure 4.1. On average across simulations, the true

functional forms of the five important exposures is recovered remarkably well. The null effects

of the noise exposures are also accurately captured, primarily due to the ensembles avoiding

splitting on these covariates entirely. Similar results for the pairwise ALE plots are included

in Figures 4.9 and 4.10 in the Chapter 4 Supplementary Materials.
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Table 4.1: Soft BART Simulation Results - BART Predictions.

T a Softb Sparsec Bias ×10 (MCSE) Coverage (MCSE) RMSE ×10 (MCSE)

10 0.11 (0.0138) 0.88 (0.0229) 1.17 (0.0050)
10 ✓ 0.11 (0.0142) 0.96 (0.0143) 1.06 (0.0043)
10 ✓ 0.02 (0.0139) 0.91 (0.0207) 0.41 (0.0065)
10 ✓ ✓ 0.02 (0.0137) 0.92 (0.0188) 0.41 (0.0061)

25 0.05 (0.0141) 0.78 (0.0293) 0.98 (0.0037)
25 ✓ 0.05 (0.0138) 0.89 (0.0221) 0.89 (0.0039)
25 ✓ 0.01 (0.0139) 0.94 (0.0167) 0.39 (0.0056)
25 ✓ ✓ 0.01 (0.0137) 0.95 (0.0155) 0.37 (0.0056)

50 0.02 (0.0136) 0.81 (0.0279) 0.89 (0.0035)
50 ✓ 0.02 (0.0139) 0.88 (0.0228) 0.82 (0.0037)
50 ✓ 0.01 (0.0137) 0.95 (0.0147) 0.42 (0.0050)
50 ✓ ✓ 0.02 (0.0140) 0.96 (0.0140) 0.37 (0.0054)

100 0.01 (0.0140) 0.88 (0.0233) 0.85 (0.0035)
100 ✓ 0.01 (0.0137) 0.92 (0.0188) 0.77 (0.0037)
100 ✓ 0.02 (0.0138) 0.96 (0.0131) 0.46 (0.0047)
100 ✓ ✓ 0.01 (0.0136) 0.96 (0.0130) 0.39 (0.0054)

CrI: Bayesian posterior credible interval.

MCSE: Monte Carlo Standard Error.
a T : Number of trees.
b Soft BART used [73].
c Sparse branching process used [70].
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Figure 4.1: ALE Main Effects for the Soft BART Simulation Study: Depicted are
the main effect ALEs from the simulation study with T = 25 soft, sparse trees setting. The
solid black line represents the pointwise average ALE posterior mean, and the gray ribbon
represents the average 95% posterior credible interval (CrI) bounds across 200 simulations.
ALEs are calculated using K = 40 quantile intervals for each exposure.
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In addition to the excellent performance on the recovery of f , estimates for γ, ξ, τ 2, ρ,

and ν were also generally unbiased and exhibited reasonable 95% credible interval coverage

(see Table 4.2 and Figures 4.6, 4.7, and 4.8 in the Chapter 4 Supplementary Materials).

4.5 Application: Asthma and Air Pollution in Atlanta,

Georgia

4.5.1 Descriptive Statistics

We observed 478,311 asthma-related ED visits from 219,136 daily counts during the warm

season in Atlanta from 2011-2018. These visits came from 128 ZIP codes from Clayton,

DeKalb, Gwinnett, Fulton, and Cobb counties. The number of asthma-related ED visits was

relatively stable year-over-year during this time frame, but in general more visits are observed

at either end of the warm season (April and October), and occasionally coincide with federal

holidays as well (see Figure 4.12 in the Chapter 4 Supplementary Materials). To account for

potential confounding by these factors, we included an indicator variable representing federal

holidays and a natural cubic spline on the day-of-year with 7 degrees of freedom per year (one

per each warm season month). Given the previous findings of O’Lenick et al. [86] suggesting

the importance of socioeconomic status in this same dataset, we also include the annual ZIP

code-level percent below the poverty threshold as a time-varying linear confounder.

4.5.2 Model Considerations

We consider four chemical exposures PM2.5, NO2, O3, and CO, as well as a meteorological

exposure in maximum temperature. Each of these are recorded daily and included as 3-day
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moving averages. We fit soft BART ensembles of 10, 25, 50, and 100 trees for each of the

five primary exposures individually and as a mixture. We run each model for 5,000 burn-in

iterations, and then draw 1,000 posterior samples using a thinning interval of 10 iterations

(15,000 total MCMC iterations).

4.5.3 Results

For each model, we compute the Widely Applicable Information Criterion (WAIC) as an

approximation to leave-one-out cross-validation [108, 40]. The results are plotted in Figure

4.2. For the single-exposure models, the WAIC is lowest for NO2 and CO, suggesting that

these two exposures are the most predictive of asthma-related ED visits when considered

individually. As suspected, the mixture model containing all five exposures had a much lower

WAIC than any of the single-exposure models. While increasing the ensemble size beyond 25

trees does not appear to improve the WAIC for any of the single-exposure models, larger

ensembles may lead to some improved performance of the mixture model in terms of WAIC.

However, when summarizing results of the mixture models with larger ensembles, we found

the main findings to be generally similar to the fit with 25 trees. Due to this finding and for

the sake of an even comparison, we will consider only the 25-tree single-exposure and mixture

models in this section.

A popular approach for assessing the overall mixture effect is to evaluate the exposure-risk

surface at a range of exposure values. For instance, one might plot the fitted exposure-risk

function while simultaneously setting all exposures to specific quantiles (see Figure 4.3).

Using this strategy, the overall mixture effect suggests a decreasing risk of asthma-related ED

visits with increased exposure levels. One challenge with this approach is that it is difficult

to assess the contribution of each individual exposure to the overall mixture effect. A larger
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Figure 4.2: WAIC for Single-Exposure and Mixture Models for the Asthma
Application: Results for all 25-tree Soft BART models fit to the asthma-related emergency
department visit data.

issue is that these exposure profiles are not particularly realistic. The observed pairwise

proportions of exposures across all ZIP code days belonging to the same decile range from

just 10% (NO2 and temperature, CO and temperature) to 23% (NO2 and CO). Meanwhile,

just 0.06% of all ZIP code days had all five exposures in the same decile. This observation

underlines the need to evaluate the exposure-risk function in a more realistic manner.

Alternatively, we can avoid extrapolation in our assessment of the mixture effect by

referencing the ALE. Estimates of each exposure’s ALE shift slightly in the mixture model

compared to their single-exposure models (Figure 4.4). Most notably, the largely null effect

of O3 shifts to harmful in the mixture model. Additionally, in the mixture model, PM2.5 has

a borderline harmful main effect, NO2 has a strong negative association with ED visits, and

CO and temperature have some upside-down “U-shaped” relationship with ED visits (Figure

4.4).
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Figure 4.3: Estimated Air Pollution Mixture Effect for the Asthma Application:
Posterior means and 95% posterior credible interval (CrI) for the estimated relative risk of
an asthma-related emergency department visits when all exposures are simultaneously set to
the same decile. Estimates are relative to the exposure profiles corresponding to the overall
average risk.
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Figure 4.4: Main Effect ALE for Single-Exposure and Mixture Models for the
Asthma Application: Estimated main effect ALE for single-exposure models (blue) and
for each exposure in the mixture model (red). Plots are centered so that one on the y-axis
represents an average risk level. ALEs are calculated using K = 40 quantile intervals for each
exposure. Plots are trimmed so that only the central 95% of each exposure is displayed.
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Figure 4.5: Mixture Model Pairwise ALEs for the Asthma Application: Depicted
are the pairwise second-order ALE for each chemical exposure with maximum temperature
for the mixture model with T = 25, with the corresponding main effect ALEs added on. The
top row includes the posterior mean ALE for all observed pairwise combinations, while the
bottom row plots horizontal slices at the first and third quartiles of maximum temperature
along with 95% credible intervals. ALEs are calculated using K = 40 quantile intervals for
each exposure. Plots are trimmed so that only the central 95% of each exposure is displayed.

In the mixture model, the exposures may interact with one another as well. Here we focus

on the potential joint effects of each chemical exposure with temperature, but the resulting fit

also showed some interaction among the chemical exposures (see Figure 4.15 in the Chapter 4

Supplementary Materials). In Figure 4.5, we note that the estimated ALE for each pollutant

depends on temperature to some extent. For instance, the negative association between NO2

and ED visits is more pronounced at lower temperatures. The positive association between

O3 and ED visits is more pronounced at lower temperatures, unless the O3 concentration is

very high. We also note that the estimated risk associated with PM2.5 only appears to differ

with temperature for lower PM2.5 concentrations, while the reverse is true for CO.
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4.6 Discussion

In summary, we show through a simulation study and real data application that BART

(specifically soft BART) can be used for estimating complex mixture exposure-risk surfaces in

the context of count responses, such as visits to an emergency department. Additionally, we

have demonstrated the utility of ALE for analyzing marginal and joint effects of 1-2 exposures

in the presence of other exposures. Plots such as those included in Figures 4.4 and 4.5 are

straightforward to interpret individually since the ALE estimation process only averages over

plausible exposure profiles supported by the data.

Our application findings regarding asthma-related emergency department visits are also

interesting. The exposure concentration required to achieve above average risk may depend

on the temperature. We observed interaction between ozone and temperature - specifically a

stronger ozone effect at cooler warm-season temperatures. While the analysis framework we

have proposed is not causal in nature, we hypothesize that modification of chemical exposure

effects by temperature could be related to individual-level behavior - e.g., people may be

less likely to experience the effects of air pollution on very hot days where they are more

inclined to stay indoors. We also found a strong negative association between NO2 and ED

visits, which stands in contrast to some findings regarding NO2 and respiratory outcomes.

Due to the dense tree canopy and high traffic emissions in Atlanta, NO2 and volatile organic

compounds are a precursor to ozone, and higher NO2 levels may be reflective of warmer days

with lower ozone pollution.

One current limitation of our methodology is the ability to formally detect lagged effects.

Since in our application we are focused on short-term effects, using 3-day moving averages for

the daily exposures is sufficient. In general it is difficult to simultaneously estimate nonlinear,
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interaction, and lagged effects in mixture modeling. Regardless of the specific model selected,

we find it important to consider exposures as a mixture rather than individually both when

it comes to estimating the exposure-response surface and interpreting the resulting fit.

Our modeling approach is also computationally demanding. Drawing Pólya-gamma latent

variables for every observation in the data augmentation step and updating the soft BART

ensemble takes time. The model shared in the application took approximately 20 hours to

fit and summarize. While this is a long time, Gaussian process based modeling approaches

(e.g. BKMR) would be infeasible given the sample size of 220,000. A BART ensemble using

traditional “rigid” trees would also fit faster than soft BART, but may also require a greater

number of trees to achieve comparable performance.

4.7 Supplementary Materials

4.7.1 Soft BART Negative Binomial Algorithm Details

The Bayesian model described in Section 4.3 is fit with a Markov chain Monte Carlo algorithm.

Additional details for certain step in Algorithm 4.5 are described here.
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Updating γ

Let rγij = y∗ij − log
(
Popij

)
−
∑T

t=1Tree(xij; Tt,Mt) − νi, and define rγ = (rγ11, . . . , r
γ
IJ)

T .

Then, assuming π(γ) = MVN(γ | b,Σγ), we derive the posterior distribution for γ as:

π(γ | y,η,ω, ξ) ∝ π(γ)× p(rγ | γ,Ω)

∝ exp

{
−1

2
(γ − b}T Σ−1

γ (γ − b)

}
× exp

{
−1

2
(Wγ − rγ)T Ω (Wγ − rγ)

}
∝ exp

[
−1

2

{
(γ − b)TΣ−1

γ (γ − b) + (Wγ − rγ)T Ω (Wγ − rγ)
}]

∝ Normal
(
µ∗

γ,Σ
∗
γ

)
(4.19)

where Σ∗
γ =

(
Σ−1

γ +WTΩW
)−1

and µ∗
γ = Σ∗

γ

(
Σ−1

γ b+WTΩrγ
)
.

Updating ν

Let rνij = y∗ij − log
(
Popij

)
−wT

ijγ −
∑T

t=1Tree(xij; Tt,Mt), and define rν = (rν11, . . . , r
ν
IJ)

T .

Recall that we assume a proper CAR prior for ν, i.e. ν ∼ MVN(0,Σν) where Σν =

τ 2(D−ρA)−1. A is the I× I first-order adjacency matrix, and D is the I× I diagonal matrix

containing the number of neighbors for each region. Let Xν be the IJ × I design matrix such

that Xνν is the IJ × 1 vector of spatial random effects allocated to each observation in the
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dataset. We derive the posterior distribution for ν as:

π(ν | y,η,ω, ξ) ∝ π(ν)× p(rν | ν,Ω)

∝ exp

(
−1

2
νTΣ−1

ν ν

)
× exp

{
−1

2
(Xνν − rν)T Ω (Xνν − rν)

}
∝ exp

[
−1

2

{
νTΣ−1

ν ν + (Xνν − rν)T Ω (Xνν − rν)
}]

∝ Normal (µ∗
ν ,Σ

∗
ν)

(4.20)

where Σ∗
ν =

(
Σ−1

ν +XT
νΩXν

)−1
and µ∗

ν = Σ∗
νX

T
νΩrν .

Updating τ 2

Assuming π(τ 2) = Inverse-Gamma (τ 2 | ατ , βτ ), the posterior distribution of τ 2 is derived as:

π(τ 2 | ν) ∝ π(τ 2)× p(ν | τ 2)

∝ βτ
ατ

Γ(ατ )
(τ 2)−ατ−1 exp

(
−βτ
τ 2

)
× 1√

det (Σν)
× exp

(
−1

2
νTΣ−1

ν ν

) (4.21)

If we assume Σν = τ 2(D− ρA)−1, as is the case when using a proper CAR prior for ν,

then we have:

π(τ 2 | ν) ∝
(
τ 2
)−(ατ+

I
2)−1

exp

[
− 1

τ 2

{
βτ +

νT (D− ρA)ν

2

}]
∝ Inverse-Gamma

(
ατ +

I

2
, βτ +

νT (D− ρA)ν

2

) (4.22)

where the above uses the result that for constant c and square matrix HN×N , we have

det (cH) = cN det (H).
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Updating ρ

For updating ρ, we assign a discrete uniform prior over 1,000 values between 0 and 1 (i.e.,

ρ ∼ Unif
{

0
999
, . . . , 999

999

}
). Since this prior assigns equal probability to all values in its support,

the full conditional distribution for ρ is proportional to the density of the random effects

(4.23).

π
(
ρ | ν, τ 2

)
∝ π (ρ)× p

(
ν | ρ, τ 2

)
∝ p

(
ν | ρ, τ 2

)
(4.23)

Recall that we assume a proper CAR prior for ν. In other words, ν ∼ MVN(0,Σν),

where Σν = τ 2(D− ρA)−1. Thus, the log density of p(ν | τ 2, ρ) is given by

log π
(
ν | τ 2, ρ

)
∝ 1

2
log |τ 2(D− ρA)−1| − 1

2τ 2
νT (D− ρA)ν

∝ 1

2
log |D− ρA|+ ρ

2τ 2
νTAν

=
1

2
log |D(I− ρD−1A)|+ ρ

2τ 2
νTAν

∝ 1

2
log |I− ρD−1A|+ ρ

2τ 2
νTAν

=
1

2

I∑
i=1

log(1− ρλi) +
ρ

2τ 2
νTAν

(4.24)

where λi is the i
th eigenvalue of D−1A. The first term in the final expression may be

calculated ahead of time for all candidate values of ρ so that only the second term needs to

be updated during the MCMC. New values of ρ can be sampled from the discrete distribution

with probabilities proportional to the computed values of (4.24) for all 1,000 prior values of

ρ. Alternatively, an intrinsic CAR prior may be used, where ρ if fixed to 1 throughout the

MCMC algorithm. In many applications the posterior distribution of ρ will be concentrated

around 1, but using the approach detailed here will provide more flexibility when that is not

the case.
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Updating ξ

The final update in the MCMC algorithm is for the (over)dispersion parameter ξ. We perform

this update using the conjugate sampling routine described in [121]. This technique relies

on expressing the Yij ∼ NB(ξ, pij) marginal distribution as a compound Poisson distribution

(4.25).

yij =

Lij∑
m=1

lm

Lij ∼ Poisson(−ξ ln(1− pij)) (4.25)

Given yij and ξ, Lij follows a Chinese Restaurant Table (CRT) distribution whose

samples can be generated as Lij =
∑yij

m=1 lm where lm ∼ Bernoulli
(

ξ
ξ+m−1

)
. If we assign a

Gamma(αξ, βξ) prior for ξ, the full conditional distribution for ξ is derived as:

π(ξ | p) ∝ π(ξ)
I∏

i=1

J∏
j=1

p(Lij | ξ, pij)

=
β
αξ

ξ

Γ(αξ)
ξαξ−1 exp (−ξβξ)×

I∏
i=1

J∏
j=1

{−ξ ln(1− pij)}Lij exp {ξ ln(1− pij)}
Lij!

∝ ξαξ−1 exp (−ξβξ)× ξ
∑∑

Lij exp

{
ξ

I∑
i=1

J∑
j=1

ln(1− pij)

}

= ξαξ+
∑∑

Lij−1 exp

[
−ξ

{
βξ −

I∑
i=1

J∑
j=1

ln(1− pij)

}]

∝ Gamma

(
αξ +

I∑
i=1

J∑
j=1

Lij, βξ −
I∑

i=1

J∑
j=1

ln(1− pij)

)
.

(4.26)

See Zhou et al. [121] for further details regarding this procedure.
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4.7.2 Implementation Details

We fit Soft BART models using the drop-in C++ module from the SoftBart R package. This

module allows you to customize your own Gibbs samplers using BART. Here we have supplied

an example of an R function one might use to fit the models described in this chapter.

# inputs:

# - w: IJ x P_w matrix of confounders

# - y: IJ x 1 vectors of counts

# - x: IJ x P_x matrix of exposures

# - offset: IJ x 1 vector of population offsets

# - x_nu: spatial random effects design matrix

# - A: spatial adjaceny matrix

# - num_tree: number of trees for BART ensemble

run_mcmc <- function (w, y, x, offset , x_nu , A,

num_tree = 20, num_burn = 5000, num_save = 1000) {

# Sample sizes and dimensions

n <- length(y); ns <- nrow(A); p_w <- ncol(w); p_x <- ncol(x)

D <- diag(rowSums(A))

# Initialize parameters for MCMC sampler

G <- numeric(n) # BART predictor

gamma <- numeric(p_w) # Confounder regression coefficients

xi <- 1 # Dispersion parameter

nu <- rnorm(ns) # Spatial random effects

tau2 <- 1 / rgamma(1, 0.1 + ns / 2, 0.1 + (1 / 2))

rho <- 0.9

# Linear predictor

fixeff <- as.numeric(w %*% gamma)

raneff <- as.numeric(x_nu %*% nu)

eta <- offset + fixeff + G + raneff

# Pre -calculate discrete prior distribution for rho

lambda <- eigen(solve(D) %*% A, only.values = TRUE)$values
rho_vals <- q(seq(1e-4, 1-1e-4, length.out = 1000), 1, 1)

rho_ll0 <- sapply(rho_vals , \(x) 0.5 * sum(log(1 - x * lambda)),

simplify = TRUE)

# Specify fixed effect prior distribution

b <- rep(0, p_w); B <- diag(p_w) * 1e4; B_inv <- diag(1 / diag(B))

# Create BART objects

bart_hypers <- SoftBart :: Hypers(X = x, Y = G, sigma_hat = 1,

num_tree = num_tree)

bart_opts <- SoftBart ::Opts(update_sigma = FALSE , num_burn = num_burn ,

num_save = num_save)

sampler <- SoftBart :: MakeForest(hypers = bart_hypers , opts = bart_opts)
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# Run sampler

for (k in seq_len(num_burn + num_save)) {

# Step 1) Sample latent Polya -Gamma random variables

omega <- jrpg::jrpg(y + xi , eta)[,1]

# Convert to Gaussian form

y_star <- (y - xi) / (2 * omega) # y_star ~ N(eta , diag(1 / omega))

# Update spatial weight matrices

D_rho_A <- spam::as.spam(D - rho * A)

# Step 2) Update spatial random effects

r_nu <- y_star - offset - fixeff - G

nu_Sigma <- spam:: solve(spam:: crossprod.spam(x_nu * sqrt(omega)) + (1

/ tau2) * (D_rho_A))

nu_mu <- nu_Sigma %*% spam:: crossprod.spam(x_nu , omega * r_nu)

nu <- mvtnorm :: rmvnorm(n = 1, mean = nu_mu , sigma = nu_Sigma)[1,]

nu <- nu - mean(nu)

raneff <- as.numeric(x_nu %*% nu)

# Step 3) Update spatial random effects variance

tau2 <- 1 / rgamma(1, 0.1 + ns / 2, 0.1 + (nu %*% (D_rho_A) %*% nu)/2)

# Step 4) Update spatial random effects correlation

rho_ll <- rho_ll0 + rho_vals / (2*tau2) * as.numeric(nu %*% A %*% nu)

rho <- sample(rho_vals , size = 1, prob = exp(rho_ll - max(rho_ll)))

# Step 5) Update fixed effects

r_gamma <- y_star - offset - G - raneff

gamma_Sigma <- solve(B_inv + crossprod(w * sqrt(omega)))

gamma_mu <- gamma_Sigma %*% (B_inv %*% b + crossprod(w, omega * r_

gamma))

gamma <- mvtnorm :: rmvnorm(n = 1, mean = gamma_mu, sigma = gamma_Sigma)

[1,]

fixeff <- as.numeric(w %*% gamma)

# Step 6) Update BART

r_G <- y_star - offset - fixeff - raneff

G <- sampler$do_gibbs_weighted(x, r_G, omega , x, 1)[1,]

# Update linear predictor

eta <- offset + fixeff + G + raneff

# Update dispersion parameter

l <- sapply (1:n, function (i) sum(rbinom(y[i], 1, round(xi / (xi + 1:y

[i] - 1), 6))))

q <- pmin (0.9999 , 1 / (1 + exp(eta))) # 1 - Pr(success)

xi <- rgamma(1, 0.01 + sum(l), 0.01 - sum(log(q)))

}

}
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4.7.3 Additional Simulation Materials

Figure 4.6: Soft BART Simulation Results - Confounder Estimates: Simulation
average bias and 95% credible interval coverage for the four linearly modeled parameters.
Estimates are plotted as the simulation mean +/- 1.96× the simulation Monte Carlo standard
error.
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Figure 4.7: Soft BART Simulation Results - Global Parameters Estimates: Simula-
tion average bias and 95% credible interval coverage for global parameters. Estimates are
plotted as the simulation mean +/- 1.96× the simulation Monte Carlo standard error.
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Figure 4.8: Soft BART Simulation Results - Spatial Random Effects: Simulation
average bias, 95% credible interval coverage, and root mean squared error (RMSE) for spatial
random effects. Estimates are plotted as the simulation mean +/- 1.96× the simulation
Monte Carlo standard error.
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Figure 4.9: Pairwise ALE Interaction Effects for the Soft BART Simulation Study:
Depicted are the ALE interaction (second-order only) effects from the simulation study with
T = 25, soft, sparse trees. Plot (a) displays the simulation average posterior mean at each
grid cell, while (b) displays the truth calculated per the data generating process based on
Friedman [35] for comparison. ALEs are calculated using K = 40 quantile intervals for each
exposures. Plots are trimmed so that only the central 95% of each exposure is displayed.
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Figure 4.10: Pairwise ALE Joint Effects for the Soft BART Simulation Study:
Depicted are the ALE pairwise joint effects (main effects + second-order effects) from the
simulation study with T = 25, soft, sparse trees. Plot (a) displays the simulation average
posterior mean at each grid cell, while (b) displays the truth calculated per the data generating
process based on Friedman [35]. ALEs are calculated using K = 40 quantile intervals for
each exposures. Plots are trimmed so that only the central 95% of each exposure is displayed.
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4.7.4 Additional Application Materials

Figure 4.11: Annual ZIP Counts of Asthma-Related Emergency Department Visits in
Metropolitan Atlanta by ZIP Code, 2011-2018 Warm Season

Figure 4.12: Aggregated Daily Counts of Asthma-Related Emergency Department
Visits in Metropolitan Atlanta, 2011-2018 Warm Season: Counts of ED visits with
asthma as the primary diagnosis are shown in red, while visits with any asthma diagnosis are
shown in blue. All counts are aggregated over ZIP code.
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Figure 4.13: Temporal Trends in Risk of Asthma-Related Emergency Department
Visits in the Asthma Application: Depicted is the estimated day-of-year spline (posterior
mean +/- 95% credible interval) from the 25-tree mixture model fitted to the Atlanta asthma-
related emergency department data.
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Figure 4.14: Spatial Trends in Risk of Asthma-Related Emergency Department
Visits in the Asthma Application: Depicted are the posterior means of the spatial
random effects from the 25-tree mixture model fitted to the Atlanta asthma-related emergency
department data.
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Figure 4.15: All Mixture Model Pairwise ALEs for the Asthma Application:
Depicted are all of the pairwise second-order ALEs for the mixture model with T = 25,
with the corresponding main effect ALEs added on. The posterior means for each observed
pairwise combination of exposures are plotted in (a), while (b) indicates whether or not the
corresponding pointwise 95% credible intervals contain 0. ALEs are calculated using K = 40
quantile intervals for each exposure. Plots are trimmed so that only the central 95% of each
exposure is displayed.
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Chapter 5

Spatially Varying Coefficient Models

for Estimating Heterogeneous Mixture

Effects

5.1 Introduction

In 2022, the National Center for Health Statistics reported that an estimated 8.60% of infants

born in the United States had low birth weight (less than 2,500 grams) [87]. Low birth

weight has a strong association with infant mortality and morbidity. In the same year, infant

mortality rate in the United States was 42.36 per 1,000 live births among low birth weight

infants, compared to just 2.10 per 1,000 live births among infants greater than 2,500 grams

[32]. Identifying risk factors of reduced birth weight, particularly those due to modifiable

environmental risk factors, is an important research priority.

In environmental and perinatal epidemiology, there is a rich literature supporting the
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associations between various air pollutants and birth outcomes including, but not limited to,

reduced birth weight [61, 66, 97, 101]. These studies have commonly identified associations

between low birth weight and elevated concentrations of PM2.5, nitrogen dioxide, sulfur

dioxide, ozone, and carbon monoxide, among others. We have previously reported these

associations in Atlanta, Georgia [28, 100].

In the past, studies of association between air pollution and health outcomes have utilized

single-exposure models. While useful, these models may be inadequate for describing the

combined effect of multiple air pollutants that individuals are simultaneously exposed to.

In recent years, research has shifted toward developing and applying mixture models that

attempt to quantify this joint association between multiple exposures and health. Of the

many modeling strategies introduced, quantile g-computation (QGCOMP) proposed by Keil

et al. [58] has been the most widely used approach in population-based epidemiologic studies.

QGCOMP is favored for its simple definition, computational speed and interpretation of the

overall mixture effect, as well as its straightforward implementation via the well-maintained

qgcomp R package [57].

In many studies of environmental mixtures where QGCOMP or alternative approaches

might be used, it is common to have health and exposure data acquired from a large

geographical study region. While compiling data from all regions within the study area

increases sample size and the ability to detect small mixture effects, it also provides an

opportunity to explore spatial heterogeneity in health effects.

In this work, we consider a varying coefficient model based on Bayesian additive regres-

sion trees (BART) [25, 30] to estimate spatially heterogeneous mixtures effects within the

QGCOMP framework. BART is a flexible modeling approach that has consistently performed
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well on a variety of prediction, classification, and causal inference tasks [25, 51, 46]. An

additional benefit of using BART is that, unlike most other machine learning models, BART is

fully Bayesian and thus offers natural uncertainty quantification via the posterior distribution.

We conduct a simulation study to evaluate the method in the presence of spatially varying

mixture effects, and then apply the method to an analysis of birth weight from vital records

in the state of Georgia.

5.2 Data

5.2.1 Air Pollution Data

We considered five air pollutants: fine particulate matter with diameter 2.5 µm and smaller

(PM2.5, 24-hr average, µm/m3), nitrogen dioxide (NO2, 1-hr max, ppb), sulfur dioxide (SO2,

1-hr max, ppb), ozone (O3, 8-hr max, ppm), and carbon monoxide (CO, 1-hr max, ppb).

Daily estimates of the concentrations of each pollutant were derived from a data fusion model

which utilized simulations from the Community Multiscale Air Quality Model and monitoring

data from the Environmental Protection Agency’s Air Quality System database [93]. The

original data product is available at a 12km x 12km gridded spatial resolution. We used

area-weighted averaging to obtain exposures at the ZIP code level.

5.2.2 Health Data

We obtained birth records from the Office of Health Indicators for Planning of the Georgia

Department of Public Health. We restricted the data to only include singleton pregnancies
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with gestational age greater than 27 weeks and an estimated date of conception between

January 1st, 2005 and December 31st, 2016. There were a total of 1,468,531 births meeting

this criteria. Additional covariates collected on the birth mothers included age (years), race,

level of educational attainment, marital status, and parity. Pregnancy-wide air pollution

exposures were estimated by linking maternal residential address ZIP code and calculating

the average concentration of each pollutant from the date of conception to the date of birth.

5.3 Methods

5.3.1 Review of Quantile g-Computation for Mixture Modeling

The goal of QGCOMP, like its predecessor weighted quantile sum (WQS), is to provide a

more interpretable mixture effect. For this reason, QGCOMP is sometimes referred to as

a summary index method. This stands in contrast to response surface methods, such as

Bayesian kernel machine regression (BKMR), which provide a more flexible approach to

modeling complex exposure-response surfaces, but generally are not as easily implemented or

interpreted.

In the QGCOMP framework, the target parameter(s) quantify the expected change in

the outcome due to an increase of one quantile in all exposures of interest. Because the

implementation of QGCOMP leverages model fitting procedures from standard regression

models, it can be run efficiently and has been extended to a variety of models. This is

particularly important for studies which make use of administrative datasets, for which

computationally burdensome methods such as BKMR are impractical.
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The linear and additive conditional model for QGCOMP is given by (5.1):

Yi = β0 + xT
i β +wT

i γ + ϵi ϵi
i.i.d.∼ N(0, σ2), (5.1)

where Yi is some continuous outcome (e.g., birth weight), and xi is a Px×1 vector of quantized

exposures for observation i. Here, the term quantized exposure refers to an originally

continuous exposure whose values have been recoded to 0, 1, . . . , Q− 1, where the new value

represents which of the Q quantiles the original observed value belonged to. The model may

also include wi, a Pw× 1 vector containing confounders for adjustment for observation i (note

these are not generally quantized). Thus, each element of β = (β1, . . . , βPx)
T represents the

expected change in the outcome for a one quantile increase in the corresponding exposure,

while the elements of γ retain typical interpretations for regression coefficients.

The reasoning behind this treatment of the exposures of interest is to define a mixture

effect as Ψ =
∑Px

p=1 βp. When the model is linear and additive in terms of the quantized

exposures, Ψ represents the expected change in the outcome for a one quantile increase in

every exposure simultaneously. In this scenario, Ψ also coincides with the slope parameter

from a simple linear marginal structural model (MSM) in which the sole predictor, denoted

Sq, represents the quantized exposure mixture. Specifically, Sq takes on values 0, . . . , Q− 1,

corresponding to when all quantized exposures are simultaneously set to 0, . . . , Q− 1. When

framing the problem in this manner, Ψ may alternatively be estimated via g-computation

with the joint exposure quantile Sq. Under certain identifiability assumptions, Ψ might be

interpreted as a causal parameter [58].

In this work we focus on the linear and additive model (5.1), but in general, QGCOMP is
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not restricted to models which are linear and additive in the quantized exposures. However,

if interactions or nonlinearities are included between or among exposures, Ψ is no longer

simply the sum of the regression coefficients corresponding to the quantized exposures. This

is because the effect of increasing an exposure by a quantile will either depend on the baseline

value of the exposure, or the value of another exposure in the case of interaction. Different

specifications for the MSM are also possible, with the current version of the qgcomp R package

supporting polynomial functions of Sq.

5.3.2 Review of Spatially Varying Coefficient Models

Many spatially varying coefficient models have been proposed over the years. Casetti [20]

originally described an expansion method for generating improved models by taking the

parameters from an initial model and making them a function of variables. Later the

geographically weighted regression (GWR) [34] and spatially varying coefficient (SVC) [39]

models were proposed. GWR is a frequentist approach that involves estimating a separate

weighted least squares regressions at each location, where the weights are determined by

proximity between locations as measured by some kernel function. The SVC model is a

Bayesian approach which places Gaussian process (GP) priors on the individual regression

coefficients, where again a kernel function is used to estimate the distance between observations.

Comparisons of the two approaches have found similar performance in many settings, but note

that GWR may occasionally struggle in the presence of correlated covariates [110, 111, 33].

The SVC model provides a richer framework for making predictions on new spatial locations

and drawing inference for all model parameters, however has large computational overhead
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given the use of GP priors, and in simpler settings it may be unnecessarily flexible. An

alternative to GP priors for the regression coefficients in applications with areal data are

conditional autoregressive (CAR) priors [10]. These reduce the dimension of the coefficients

to the number of unique spatial locations and thus are more computationally convenient.

Tangential to these approaches are methods for detecting spatial clusters in varying

coefficient models. These methods include formal Monte Carlo hypothesis testing for clustering

[63, 64], spatially explicit penalized objective functions [65], and even tree-structured clustering

of regression coefficients [9]. Recently, estimation of clustered spatially varying coefficients

has made use of spanning trees [65, 67, 30]. Not to be confused with the binary trees that

serve as the base learners in a BART model, spanning trees are rooted in graph theory and

refer to efficient, non-cyclical paths through a network of vertexes. In the context of areal

spatial units, these vertexes are often taken to be centroids of counties, ZIP codes, or other

types of regions.

5.3.3 Spatially Varying Quantile g-Computation with BART

We propose allowing the individual exposure coefficients β to vary across space, which in

turn implies the mixture effect Ψ also varies across space. The result is the following model:

Yi = β0(zi) +
Px∑
p=1

βp(zi)xi,p +wT
i γ + ϵi ϵi

i.i.d.∼ N(0, σ2), (5.2)

where the intercept and quantized exposure coefficients depend on the spatial location

of observation i, zi. The local mixture effect specific to location z is then defined as

Ψ(z) =
∑Px

p=1 βp(z).
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There are a few reasons allowing for a spatially varying air pollutant mixture effect is

warranted. For example, the mixture of PM2.5 components may be different spatially due to

differences in local emission sources and meteorology. Spatially varying population character-

istics that impact the relationships between personal exposure and ambient concentration

may also result in effect heterogeneity. When the target estimand is the overall mixture effect,

differences may also be attributable to specific exposure levels due to a nonlinear exposure-

response relationship. For example, NO2 may be a more important component in the mixture

for regions near highways where levels are high. Additionally, if the true exposure-response

surface contains any interactions, then the effects of individual exposures and the overall

mixture effect is likely different in regions with different exposure concentrations. Allowing

for spatially varying weights allows for capturing locally linear mixture effects, even when

the overall mixture effect is more complex.

The spatially varying intercept and exposure coefficients in model (5.2) can be estimated

in various ways; we suggest using BART priors for each of these parameters. Deshpande et al.

[30] recently developed a varying coefficient BART (VCBART) model and demonstrated its

use for studying time series of crime rates across census tracts in Philadelphia, Pennsylvania.

When supplied with a list of which sub-regions are spatially adjacent to one another (i.e.,

share a border), VCBART uses efficient proposal mechanisms based on sampling spanning

trees to repeatedly subdivide the study area into contiguous sub-regions which the data

suggest are heterogeneous (see Figure 5.1) [29]. This process is done separately for each of

the spatially varying parameters in model (5.2), which allows for different spatial clusters

for each mixture component. We will henceforth refer to the SVC model with parameters

estimated using VCBART as SVC BART.
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Figure 5.1: An Illustration of the SVC BART Spatial Branching Process Applied
to Georgia Counties: In panel (a), edges are drawn between centroids of adjacent counties.
In panel (b), a random spanning tree is drawn from the graph in panel (a). In panel (c),
three groups of contiguous counties are formed by randomly deleting two edges from the
spanning tree in panel (b).

Estimation of the SVC BART model is carried out using Markov chain Monte Carlo

(MCMC), with each sample from the posterior distribution partitioning the study area

differently. The posterior distribution of mixture effects might then be summarized for

each location using their posterior means and 95% credible intervals. BART priors function

similarly to boosting, as each tree contributes a small portion to the overall output, allowing

for fine tuning of the spatial branching process. Consistent with other BART implementations,

regularization priors are used to encourage homogeneity across the entire study area to prevent

over-fitting. In general, BART priors are more computationally feasible than Gaussian process

priors in large sample sizes, while retaining much of the same flexibility.
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Figure 5.2: True Spatially Varying Parameter Surfaces for the Spatial QGCOMP
Simulation Study: Spatially varying intercept (β0), regression coefficients (β1-β6), and
overall mixture effect (Ψ) surfaces used for the simulation study. All are defined on a 10 x 10
grid.

5.4 Simulation Study

In this section we evaluate the ability of SVC BART to estimate the spatially varying

parameters of model (5.2). We generate a spatially varying intercept, β0(z), and six spatially

varying regression coefficients, β1(z), ..., β6(z), across a 10 x 10 grid using various smooth and

rigid functions (see Section 5.7.1 of the Chapter 5 Supplementary Materials for details of the

functions). The surfaces are plotted in Figure 5.2, along with the true mixture effect Ψ(z).

For the simulation, the exposures are generated from a mean zero multivariate normal

distribution with covariance ρJ6 + (1− ρ)I6 (i.e., with an exchangeable correlation structure).

Each of the exposures is then quantized using Q = 4 quantile bins. Finally, the outcome is

drawn from a normal distribution with some noise variance σ2. Parameters varied during

the simulation study include the sample size within each grid cell (n ∈ {10, 50, 100, 250}),

the degree of correlation between exposures (ρ ∈ {0.0, 0.5, 0.8}), and the amount of noise
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(σ ∈ {0.1, 1}). Each parameter setting is run for B = 200 unique datasets.

We fit all SVC BART models for the simulation using the VCBART R package publicly

available on GitHub (https://github.com/skdeshpande91/VCBART). The default hyperpa-

rameter settings from the package are used, including 50 trees per BART ensemble. Each

model is run for 2,000 MCMC iterations, discarding the first 1,000 samples as burn-in. The

most natural comparison might be the SVC GP model, which uses GP priors in place of

BART priors [39]. Others have described the connection between BART and GP priors

[69]. However, due to the computational burden presented by GP priors, studies of areal

data often make use of CAR priors [10]. For this reason, we compare SVC BART to a

model with proper Besag CAR priors on the intercept and each of the regression coefficients

(SVC CAR). We fit these models using the integrated nested Laplace approximation (INLA)

available in the INLA R package and simulate 1,000 draws from the posterior distribution

(https://www.r-inla.org).

To evaluate the models, we compute the global average 95% posterior credible interval

coverage and root mean squared error (RMSE) for the 100 mixture effects (one for each grid

cell). These quantities describe the average performance of the model across all grid cells

and are calculated as in (5.3) and (5.4), where Ψ̂(z), Ψ̂(z)0.025, and Ψ̂(z)0.975 are the mean,

2.5th percentile, and 97.5th percentile of the posterior distribution of the estimated mixture

effect at location z, and I is an indicator function.

̂Coverage =
1

B

B∑
b=1

(
1

100

∑
z

I
[
Ψ(z) ∈ [Ψ̂(z)0.025, Ψ̂(z)0.975]

])
(5.3)

R̂MSE =
1

B

B∑
b=1

(
1

100

∑
z

[
Ψ(z)− Ψ̂(z)

]2)
(5.4)

https://github.com/skdeshpande91/VCBART
https://www.r-inla.org
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Figure 5.3: Spatial QGCOMP Simulation Results - Global Mixture Effect: Global
average 95% credible interval coverage and RMSE for the local mixture effects using SVC
CAR and SVC BART models in the simulation study.

Figure 5.3 contains a summary of the simulation results for both the SVC CAR and SVC

BART models. As the sample size increases, global coverage tends toward 95% and RMSE

decreases for both models. The CAR model has slightly better RMSE in small samples, but

the difference is negligible in the n = 250 setting. In general, better global coverage and

RMSE is observed when exposures exhibit stronger correlation. Despite this, the individual

performance on any one of the spatially varying coefficients may decrease with increasing

correlation (see Figure 5.8 in the Chapter 5 Supplementary Materials).

While the global statistics suggest the two models are performing at a somewhat similar

level, there are differences in each model’s ability to estimate the local mixture effects for

each grid cell. The 95% credible interval coverage for the local mixture effects is shown
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Figure 5.4: Spatial QGCOMP Simulation Results - Local Mixture Effect Coverage:
95% credible interval coverage for local mixture effects Ψ(z) when sample size per cell is 10,
50, 100, and 250. Fixed settings: ρ = 0, σ = 1.

in Figure 5.4 for the high noise setting (σ = 1) with uncorrelated exposures (ρ = 0). The

coverage for SVC CAR is very poor for many of the cells in the lowest sample size (n = 10),

but improves some as the sample size increases. On the other hand, SVC BART generally

has better coverage across all grid cells, with near 95% coverage even in small sample sizes.

Spatial patterns of poor coverage for local mixture effects might be attributable to poor

coverage for one or more of the constituent local exposure coefficients. We found that the

SVC CAR model struggles most with the spatial patterns used to generate β1, β2, and β6 (see

Figure 5.10 in the Chapter 5 Supplementary Materials for simulation average coverage for

each spatially varying coefficient for the n = 100 setting, corresponding to the third column

of Figure 5.4). These surfaces contain some of the sharpest contrasts between neighboring

cells, which presents difficulties for models which rely on spatial smoothing. SVC BART also

struggles to capture the two hot spots in the β6 surface, but not to the same extent as the
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SVC CAR model, and generally has as good or better coverage across the other parameters.

These results suggest that SVC BART may be preferable to SVC CAR in settings with

high-noise or small local sample sizes. In general, we found that as ρ increases, coverage and

bias for Ψ(z) improves or changes little, while coverage and bias for the spatially varying

regression parameters worsens. The latter was particularly noticeable for the SVC CAR

model. We also noticed that coverage for the SVC CAR model was substantially worse in

the high noise variance setting, whereas the amount of noise had little effect on coverage for

SVC BART.

5.5 Application: Reduced Birth Weight and Air Pollu-

tion in Georgia

5.5.1 Descriptive Statistics

In an application of SVC BART, we analyzed 1,468,531 live singleton births to mothers

residing in Georgia with an estimated conception date between January 1st, 2005 and

December 31st, 2016. In this sample, the majority of mothers were white (58.1%), and in

terms of educational attainment about half (50.7%) reported at least some college experience.

Additional demographic information is provided in Table 5.1.

5.5.2 Model Considerations

We fit an SVC BART model with the default 50-trees-per-ensemble setting and set aside 2,000

posterior samples after discarding the first 2,000 as burn-in. A spatially varying intercept, as



144

Table 5.1: Maternal Demographic Characteristics

Characteristic N %

Race
White 853,575 58.1
Black 505,304 34.4
Asian or Pacific Islander 58,706 4.0
American Indian or Alaskan Native 2,460 0.2
Other 48,486 3.3

Ethnicity
Non-Hispanic 1,252,268 85.3
Hispanic 216,263 14.7

Age
Less than 25 years 519,590 35.4
25-31 years 568,344 38.7
More than 31 years 380,597 25.9

Education
Less than 9th grade 73,584 5.0
9th-11th grade 204,226 13.9
12th grade 446,449 30.4
Some college 744,272 50.7
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well as spatially varying coefficients for quantized versions of PM2.5, NO2, SO2, O3, and CO

were included. For this analysis, we chose to quantize each exposure into 10 quantile bins,

i.e., deciles. Additional covariates modeled using fixed effects included estimated conception

date, gestational age, tobacco use, and the parity, age, race, ethnicity, level of educational

attainment, and marital status of the mother. We also adjusted for socioeconomic status

using Census tract-level estimates of the percentage below the poverty level. The continuous

covariates age, tract poverty level, and conception date were modeled used natural cubic

splines with 5 degrees of freedom, while gestational age was modeled using indicator variables

for the number of weeks.

5.5.3 Results

As previously mentioned, one of the reasons a spatially varying coefficient model might be

appropriate for this analysis is that pollutant concentrations may vary across space. We

calculated the average (mean) pregnancy-wide concentration of each pollutant within each

Georgia county. The distribution of these county-level averages are summarized in Table 5.2.

Most notably, mothers in counties at the 90th percentile of NO2 and SO2 were, on average,

exposed to more than double the concentration of these pollutants compared to mothers in

counties at the 10th percentile. Figure 5.5 displays the median pregnancy-wide pollutant

concentrations for each county, after the exposures have been quantized into deciles. While

pollutant concentration typically varies seasonally, some trends are clear, such as CO and

NO2 concentrations being highest in the Atlanta metropolitan area, and NO2 following the

path of Interstate 75.
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Table 5.2: Percentiles of County-level Mean Pregnancy-wide Pollutant Exposures

Percentile

Pollutant 10th 25th 50th 75th 90th

24-hr average PM2.5 (µm/m3) 9.00 9.59 10.22 10.65 10.65
1-hr max NO2 (ppb) 4.40 5.12 6.60 9.53 9.53
1-hr max SO2 (ppb) 1.90 2.25 3.14 3.99 3.99
8-hr max O3 (ppb) 38.98 39.66 40.50 41.22 41.22
1-hr max CO (ppb) 0.30 0.31 0.33 0.37 0.37

Figure 5.5: Spatial Distribution of Quantized Air Pollutants: Five maps depicting the
county-level median pregnancy-wide concentration for each air pollutant after having been
quantized into deciles.
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Posterior means of the mixture effects using the SVC BART model are plotted in Figure

5.6. In general, we found stronger negative mixture effects in counties making up the central

and eastern portion of the state. For a one decile increase in all five exposures, the county-

specific estimates range from an expected reduction in birth weight of -16.65 grams (95%

CrI: -33.93, -0.40) in Decatur county to an increase of 13.28 grams (95% CrI: 0.06, 27.19) in

Wheeler county. Of the counties with 95% credible intervals that exclude zero, 17/23 are in a

negative direction. A forest plot of these 23 county-level mixture effects is provided in Figure

5.11 of the Chapter 5 Supplementary Materials.

As a comparison, we also estimated a common mixture effect using a linear model with

only a spatial CAR random intercept and no spatially varying coefficients. This common

mixture effect was estimated to be a reduction of -1.81 grams (95% CrI: -2.84, -0.70) per decile

increase in all pollutants. This estimate is slightly attenuated compared to a weighted average

of the local mixture effects from the SVC BART model (reduction of 2.27 grams). SVC

BART outperformed the CAR random intercept model, as well as an SVC CAR model akin

to that which was fit in the simulation study, in terms of the Widely Applicable Information

Criterion [108] (see Table 5.3 in the Chapter 5 Supplemental Materials). In fact, both

CAR models (random intercept and SVC) performed worse than a non-spatial ordinary

least-squares regression in terms of WAIC. Locally, SVC BART ranked the best in terms

of in-sample RMSE for nearly all counties, and ranked the best in terms of out-of-sample

performance (approximated using WAIC) for the greatest number of counties compared to

other approaches (see Figure 5.12 of the Chapter 5 Supplementary Materials).

In Figure 5.7, we plot the estimated local mixture effects against county-level summaries of

the exposures and confounders included in the SVC BART model. For the most part, there is
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Figure 5.6: County-Level Mixture Effects for the Birth Weight Application: The
posterior means of the local mixture effects Ψ(z) estimated using SVC BART are displayed.
Counties marked with a “–” have a 95% credible interval entirely below zero, and counties
marked with a “+” have a 95% credible interval entirely above zero.
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no discernible pattern in the estimated mixture effects when compared to the confounders. In

terms of the exposures, for CO and NO2, the local mixture effects tend to shift in the negative

direction as the level of exposure increases at the lower end of the observed concentrations.

5.6 Discussion

We describe varying coefficient models as a useful extension to the popular QGCOMP method

to account for when heterogeneous exposure-response relationships are present in the data.

We have shown through simulation and an analysis of birth records in Georgia how one might

estimate spatially varying parameters in such a model via a Bayesian approach which uses

CAR or BART priors. In our analysis of birth records, we found that for many Georgia

counties there exists an association between elevated concentrations of a mixture of PM2.5,

NO2, SO2, O3, and CO and reduced birth weight.

A limitation of the analysis is the measurement of exposures. Not only is there potential

for error in the exposure measurements themselves, but the mechanism by which we assign

pregnancy-averaged pollutant concentrations to each mother is imperfect. The residential

address on file may not be reflective of where the mother spent most her time during

the pregnancy, and even when it is, the amount of exposure two individuals from the same

neighborhood experience could be very different due to unmeasured factors such as occupation

or personal lifestyle behaviors. Additionally, the mixture effect definition in QGCOMP is

not always of interest. QGCOMP runs the risk of extrapolating to unseen exposure profiles

during the estimation process, and so even when exposures are measured accurately, the

method may not always be reliable.
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Figure 5.7: Scatter Plots of Local Mixture Effects by Covariates: Posterior means
and 95% credible intervals for the local mixture effects Ψ(z) estimated using SVC BART are
plotted on the y-axis, and selected county-level average exposures and other covariates are
plotted on the x-axis. A smooth loess curve is overlaid.
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Generally, ambient air pollution contributes little explanatory power for birth weight.

The R2 value for the SVC BART model in the application is 39.90%. It is possible that all or

some subset of these pollutants may be more informative if averaged during a critical window

of the pregnancy instead of the entire duration. Previous studies have observed different

associations between air pollution and birth weight in Atlanta, Georgia for specific months

or trimesters of pregnancy [28, 100]. Various data driven methods have been developed for

identifying windows of pregnancy particularly susceptible to air pollution, including some

based on BART [113, 22, 80, 81]. On a similar note, spatially varying distributed lag models,

such as the one proposed in Warren et al. [107], might be another QGCOMP extension worth

exploring.

BART is not the only option for fitting the SVC regression, as any of the models described

in Section 5.3.2 might be useful. In terms of the methods we have considered, SVC BART is

more computationally burdensome than the SVC CAR model, particularly when an efficient

implementation like INLA is used. This is due to the overhead required for managing tree

structures. However, we have found that this tree-based approach is advantageous over the

SVC CAR model to estimate local mixture effects, particularly in high-noise settings such as

our birth weight analysis. Also, we only consider a spatially varying coefficient model for

areal data, but alternative approaches that use GP priors [39] or a mixture of BART and

GP priors [77] might perform well for estimating smooth mixture effects over a region from

point-referenced data, with the main limitation being computational burden.

In this work, we focused on a spatially heterogeneous approach to quantile g-computation

that made use of SVC BART’s graph-structured branching process. However, in practice

one could also use the traditional BART branching process to model heterogeneity in the
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exposure coefficients as a function of demographic or clinical covariates as we have done in

Chapter 3. For instance, Darrow et al. [28] reported higher estimates of the associations

between various pollutants and birth weight for Hispanic and Non-Hispanic Black infants

compared to Non-Hispanic White infants. The current implementation of the VCBART R

package requires the BART ensembles to all use the same set of covariates, and a future

extension would also be to select different covariates for each exposure.

Finally, while we have restricted our attention to the Gaussian regression setting, it is also

worth noting that the QGCOMP framework has been implemented for binary, count, and

survival outcomes, with the resulting interpretations changing to those used for logistic/probit,

Poisson, and Cox proportional hazards regression, respectively. While BART has been

extended to these settings [25, 82, 14, 96], developing VCBART models is nontrivial.
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5.7 Supplementary Material

5.7.1 Additional Simulation Materials

For the simulation study in Section 5.4, we generate a spatially varying intercept and six

spatially varying regression coefficients across a 10 x 10 grid using the following functions:

β0(x, y) = 100ϕ
(
(x, y)T | (5.5, 5.5)T , 20I2

)
(5.5)

β1(x, y) = 0.50× I [x > 5] (5.6)

β2(x, y) = −0.25× I [y > 5] (5.7)

β3(x, y) = − exp (−|x− 5.5|) (5.8)

β4(x, y) = exp (−|y − 5.5|) (5.9)

β5(x, y) = 50× ϕ
(
(x, y)T | (1, 1)T , 10I2

)
(5.10)

β6(x, y) = 4×
[
ϕ
(
(x, y)T | (7.5, 7.5)T , I2

)
+ ϕ

(
(x, y)T | (2.5, 2.5)T , I2

)]
(5.11)

where x and y correspond to the integer dimensions of the cells in the grid, ϕ is the probability

density function of a bivariate normal distribution, I is an indicator function, and I is a

diagonal identity matrix.



154

Figure 5.8: Spatial QGCOMP Simulation Results - Global Performance for All
Spatially Varying Parameters (High Noise Setting): Global average 95% credible
interval coverage and root mean squared error (RMSE) for the local mixture effects Ψ(z) and
individual exposure coefficients. Fixed settings: σ = 1.
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Figure 5.9: Spatial QGCOMP Simulation Results - Global Performance for All
Spatially Varying Parameters (Low Noise Setting): Global average 95% credible
interval coverage and root mean squared error (RMSE) for the local mixture effects Ψ(z) and
individual exposure coefficients. Fixed settings: σ = 0.1.

Figure 5.10: Spatial QGCOMP Simulation Results - Local Coverage for All Spatially
Varying Parameters: 95% credible interval coverage for all spatially varying regression
coefficients. Fixed settings: n = 100, ρ = 0, σ = 1.
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5.7.2 Additional Application Materials

Figure 5.11: Notable Local Mixture Effects for the Birth Weight Application: Local
mixture effects estimated using SVC BART. Only the 23 counties with 95% posterior credible
intervals excluding zero are shown.
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Table 5.3: WAIC for Candidate Models for the Birth Weight Application

Model WAIC

SVC BART 21,937,450
Ordinary Least Squares Regression 21,939,763
Spatial Random Intercept (CAR) 21,943,089
SVC CAR 21,943,136

WAIC: Widely applicable information criterion.

Figure 5.12: Local RMSE and WAIC Rank for Candidate Models for the Birth
Weight Application: Lower rank corresponds to lower values and hence better performance.
In-sample performance is measured using RMSE, while WAIC is used as an approximation
for out-of-sample performance.
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Chapter 6

Conclusion

6.1 Summary of Contributions

This dissertation advances the application of Bayesian nonparametric models in environmental

health research by extending Bayesian Additive Regression Trees (BART) to address key

challenges in estimating exposure-response relationships. Across three distinct study designs,

this work demonstrates how BART can improve flexibility, interpretability, and inference in

settings where traditional parametric models face limitations.

First, a varying coefficient BART model was introduced to estimate individual-level

exposure-response relationships for acute exposures and binary health outcomes within the

case-crossover design. By incorporating patient-specific covariates, this approach provides

a data-driven assessment of vulnerability to environmental stressors, which is particularly

relevant for studying populations with underlying health conditions.

Next, a negative binomial BART framework was implemented for modeling count-based

health outcomes in environmental mixture studies. By leveraging data augmentation, this
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approach supports flexible estimation of smooth exposure-risk surfaces while accounting for

spatial, temporal, and covariate confounding. Beyond methodological advances, this work

highlights the challenges associated with interpreting mixture models and describes the use

of accumulated local effects as a tool for improving interpretability.

Finally, this work contributes to the growing literature on spatially varying mixture effects

by extending quantile g-computation to account for heterogeneity across diverse geographic

regions. By utilizing a spatially explicit varying coefficient BART model, this approach

relaxes the assumption of a common mixture effect, allowing for location-specific insights

that may be useful for public health decision-making.

Collectively, these contributions broaden the scope of Bayesian tree-based methods in

environmental health applications.

6.2 Future Directions

The discussions at the end of Chapters 3, 4, and 5 provide suggestions for future work relating

to the specific methods presented in this dissertation. More generally, BART has potential

for an expanded role in environmental health research.

6.2.1 Exposure Modeling

The work presented in this dissertation focuses exclusively on modeling associations between

one or more environmental exposures and various health outcomes. BART has proven useful

for us and for many others for this task. While significant, health outcome modeling only

represents a portion of the statistical challenges faced in environmental health. In our work
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we take exposure data as a known quantity, when it is often the case that the exposures we

work with are estimated using sophisticated models of their own. Tree-based models such as

random forests tend to perform well for exposure modeling [93], so future work might explore

applying BART in this setting.

6.2.2 Causal Inference for Environmental Mixtures

One of the areas BART shines most is the estimation of (conditional) average treatment

effects in various populations of interest [52, 31, 46]. Bayesian nonparametric models like

BART offer a highly flexible interface for estimating these effects [85, 4, 72].

A key challenge in applying BART to causal inference problems in environmental health is

defining the treatment variable in a meaningful way. When it comes to studies of environmental

exposure mixtures, there are multiple continuous exposures. Summary index methods such

quantile g-computation attempt to simplify the definition of a mixture effect, but this definition

is not without its faults. New causal inference frameworks might consider environmental

mixtures as a multivariate treatment, where shifts in the individual exposures define causal

effects within a statistical model. A more policy-relevant approach would define the treatment

in terms of external interventions on one or more of the exposures constituting the mixture.

A fundamental challenge in environmental epidemiology is that both association and

causal inference studies depend critically on accurate exposure measurement. Exposure

assignments are often estimated using environmental models rather than directly observed

at the individual level. The process of linking exposures to individuals – whether through

ambient monitoring, geospatial interpolation, or modeled predictions – introduces error. This
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measurement error can lead to bias, increased variability, or even spurious causal conclusions,

particularly when exposures are estimated at coarse spatial or temporal resolutions.

6.3 Software

Several R packages were developed to conduct the analyses discussed in this dissertation.

All packages are available along with vignettes/tutorials on GitHub (https://github.com/

jacobenglert).

• clbart: Conditional Logistic Regression with BART. Implements the CL-BART ap-

proach from Chapter 3.

• jrpg: Just Random Pólya-Gamma Variables. Facilitates sampling of latent variables

for the Gibbs sampler in Chapter 4.

• pdpd: Partial Dependence for Posterior Distributions. Calculates partial dependence

and accumulated local effects statistics for Bayesian regression models.

• VCBART*: Varying Coefficient Bayesian Additive Regression Trees. Fits the spatially

varying coefficient model from Chapter 5. *Note that as of the time of dissertation

submission, this is a fork of the original VCBART package available at https://github.

com/skdeshpande91/VCBART that allows for modeling a subset of covariates without

traditional fixed regression coefficients.

Code for implementing the Soft BART Gibbs sampler in Chapter 4 is provided in the

Chapter 4 Supplementary Materials.

https://github.com/jacobenglert
https://github.com/jacobenglert
https://github.com/skdeshpande91/VCBART
https://github.com/skdeshpande91/VCBART
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Appendix A

Appendix

A.1 Selection of Controls in the Case-Crossover Design

The case-crossover design used in Chapter 3 is a default choice for analyzing data where only

cases (or events) are observed and estimating short-term associations of acute exposure on

(relatively) rare events is a priority. The general concept of the design is that if the event were

experienced on a given day, then it was likely not experienced on other days near in time.

Under this assumption, a referent window of controls is selected for each event, essentially

matching the events to themselves. The selection of the referent window is very important to

ensure bias due to time trend and seasonality is properly controlled and adjusted for [18, 53].

Consider we observe an event on Tuesday, March 18th, 2025. Some popular strategies for

selecting control days are illustrated in Figure A.1. In Figure A.1a, one control observation

is selected exactly one week prior to the event. This is a unidirectional scheme. This

scheme does not adequately control for time trend. The symmetric bidirectional scheme is

illustrated in Figure A.1b. This scheme selects two control days for the observation, exactly
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one week before and after the event occurred. This strategy controls for bias due to time

trend and day of the week. Both the unidirectional and symmetric bidirectional schemes are

nonlocalizable, meaning that they suffer from overlap bias as a result of there not being an

unbiased estimating equation when restricting to the referent windows. This is important

to because researchers often prefer to use conditional logistic regression to avoid needing to

adjust for confounders which are matched on (e.g., the v covariates in (3.2)). In both of

these designs, the index time point for the event is known given the referent window [54].

Another option is the semi-symmetric bidirectional scheme, which randomly selects one

of the control days given by the symmetric bidirectional scheme for each event. This results

in a localizable design, meaning an unbiased estimating equation exists. However, such a

design is nonignorable, meaning that conditional logistic regression cannot be used blindly.

The actual unbiased estimating equation depends on how the controls were selected and thus

requires additional modification [53, 54].

Figure A.1c and A.1d depict the full stratum bidirectional and time-stratified schemes.

Both of these are localizable and ignorable, meaning that unbiased inference can be made

using the standard conditional logistic regression estimating equations using only the referent

windows. Both control for time trend and day of the week. Generally speaking, these

approaches avoid overlap bias because the referent windows represent disjoint strata. This

property allows for simplification in the estimating equations because summations can be

expressed over strata as opposed to all index time points. The time-stratified scheme is

preferred because it also controls for seasonality and introduces far fewer control days to the

analysis. The strata in Figure A.1d matches control days to event days based on day of the

week, month, and calendar year, but other approaches are also possible.
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Figure A.1: Common Referent Window Selection Schemes for the Case-Crossover
Design: Illustrated are the (a) unidirectional, (b) symmetric bidirectional, (c) full stratum
bidirectional, and (d) time-stratified schemes.
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A.2 Bayesian Computation

A.2.1 Metropolis-Hastings Algorithm

The Metropolis-Hastings (M-H) [78, 50] algorithm is a Markov chain Monte Carlo method

used to generate samples of a parameter, θ from some target distribution, p(θ). To generate a

sample from p(θ), start with some initial value θ. Then sample a value of θ′ from a proposal

distribution denoted q(θ′ | θ). Finally, accept this proposed value as a sample from the target

distribution with probability min(1, r), where r is defined as in (A.1).

r =
p(θ′)q(θ | θ′)
p(θ)q(θ′ | θ)

(A.1)

If the proposed value is accepted, update the current value of θ to θ′. Otherwise, do not

change the current value of θ. This process can be repeated S times to generate a sample of

S observations from the target distribution p(θ). This procedure is formalized in Algorithm

A.6. Depending on the quality of the starting value and proposal distribution, some amount

of initial draws may need to be discarded as burn-in samples.

Algorithm A.6 Metropolis-Hastings Algorithm

1: Initialize θ(0) (starting point)
2: for s = 1 to S do
3: Sample θ′ from proposal distribution q(θ′|θ(s−1))
4: Compute acceptance ratio:

r =
p(θ′)

p(θ(s−1))
× q(θ(s−1)|θ′)
q(θ′|θ(s−1))

5: Set θ(s) =

{
θ′ with probability min(1, r)

θ(s−1) otherwise

6: end for
7: Return {θ(s)}Ss=1
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In the context of Bayesian inference, the posterior distribution serves as the target

distribution. Mathematically speaking, p(θ) = π(θ | D) ∝ p(D | θ)π(θ), where π(θ) is the

prior distribution for θ and p(D | θ) is the likelihood of the data given the current value

of θ. The choice of proposal distribution is up to the researcher. It is common to specify

a symmetric proposal distribution, i.e. q(θ′ | θ) = q(θ | θ′). This causes the proposal

distribution to cancel out in the calculation of the acceptance probability. Examples of this

might include a uniform distribution or a normal distribution centered at the parameter

upon which q is conditioned. Despite this cancellation, the specification of the proposal

distribution is quite important as it determines the step size used when exploring the posterior

distribution. It may be necessary to tune some hyperparameters of the proposal distribution,

such as the variance in a normal distribution, to achieve some desired proportion of accepted

proposals.

A.2.2 Reversible Jump Metropolis-Hastings Algorithm

The M-H algorithm is useful for updating a single parameter or a group of parameters (e.g.,

a vector of regression coefficients). In some cases it is desirable to have an algorithm that

explores not only the posterior distribution of a set of parameters, but also the dimension

of the parameters in question. This is particularly relevant for tree-based models such as

BART, where the number of parameters required to adequately model the data is unknown.

Every time a tree structure is modified, it can be viewed as changing the model itself to

an entirely different model with the same number of, more, or less parameters, each with

potentially new meaning. Green [44] and Godsill [43] introduce and expand upon a M-H
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algorithm that is capable of exploring the posterior distribution of models, in addition to

the posterior distribution of parameters. This approach is known as reversible jump Markov

chain Monte Carlo.

Godsill [43] discusses the reversible jump sampler in terms of a Metropolis-Hastings

proposal in the composite model space. Here, the composite model space refers to the set

of all potential parameters and models in the target distribution. In this case, the model

itself is also a parameter of target distribution p(k, θ) being sampled from. The proposal

distribution q then proposes model a new model structure k′ and new parameter θ′. The

proposal distribution can be factored as in (A.2).

q(k′, θ′ | k, θ) = q1(k
′ | k)q2(θ′k′ | θk)p(θ′−k′ | θ′k′ , k′) (A.2)

Essentially, the structural component of the proposal from k to k′ depends only on the

current structure k, and the parameter proposal from θk to θ′k′ depends only on the current

parameters θk used in the current model k. Finally, p(θ′−k′ | θ′k′ , k′) is the so-called pseudo-

prior over the parameters in the composite model space not present within the proposed

model k′. This last component is required because not all parameters in the composite model

space are used in every model state.

The reversible jump M-H acceptance ratio is calculated as in (A.3).

r =
p(k′, θ′ | D)
p(k, θ | D)

× q(k, θ | k′, θ′)
q(k′, θ′ | k, θ)

=
p(k′, θ′k′ | D)p(θ′−k′ | θ′k′ , k′)
p(k, θk | D)p(θ−k | θk, k)

× q1(k | k′)q2(θk | θ′k′)p(θ−k | θk, k)
q1(k′ | k)q2(θ′k′ | θk)p(θ′−k′ | θ′k′ , k′)

=
p(k′, θ′k′ | D)
p(k, θk | D)

× q1(k | k′)q2(θk | θ′k′)
q1(k′ | k)q2(θ′k′ | θk)

(A.3)
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Note that for the posterior (target) distribution in the numerator and denominator,

the parameters which are excluded from the model are factored out into their respective

pseudo-priors. The result is that all pseudo-priors cancel out in the ratio, so that only the

posterior density (up to a constant) need to be computed in addition to the proposal densities.

The algorithm is provided in Algorithm A.7.

Algorithm A.7 Reversible Jump Metropolis-Hastings Algorithm

1: Initialize k(0), θ(0) (starting point)
2: for s = 1 to S do
3: Sample k′ from proposal distribution q1(k

′|k(s−1))
4: Sample θ′ from proposal distribution q2(θ

∗|θ(s−1))
5: Compute acceptance ratio:

r =
p(k′, θ′k′ | D)
p(k, θk | D)

× q1(k | k′)q2(θk | θ′k′)
q1(k′ | k)q2(θ′k′ | θk)

6: Set k(s) =

{
k′ with probability min(1, r)

k(s−1) otherwise

7: (Optionally) Sample θ(s) targeting its full conditional distribution.
8: end for
9: Return {θ(s)}Ss=1

The proposal distribution q1 and q2 are very important. q1 is very structural in nature.

For BART, this includes the probability of selecting a specific node to GROW, PRUNE or

CHANGE, and the probability for selecting the new decision rule. Naturally, this depends

on the current model state k. For q2, the decision is also quite involved. For the reversible

jump sampler in Chapter 3, a Laplace approximation is used. If q2 does not effectively target

the full conditional of θ, then an additional M-H step or adaptive rejection sampling (ARS)

step might be required. If the full conditional distribution for θ is available in closed form,

one could use this for q2, in which case cancellation would occur with the posterior density

resulting in a standard M-H proposal using the marginal distribution p(k | D) as the target
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distribution. This is exactly how the original BART algorithm samples model states (tree

structures) (see (2.6)).

A.2.3 Gibbs Sampling

Gibbs sampling [41] can be viewed as a special case of the M-H algorithm, where the proposal

distribution q is the full conditional distribution for the parameter θ. When this is the case,

we can derive the acceptance ratio as in (A.4).

r =
p(θ′)q(θ | θ′)
p(θ)q(θ′ | θ)

=
π(θ′ | D)π(θ | D)
π(θ | D)π(θ′ | D)

= 1 (A.4)

This result means that the proposal is always accepted. This type of sampling is most

efficient when the full conditional distribution is available in closed form such that π(θ | D)

can be sampled from directly, as is the case when conjugate priors to the data likelihood are

used. Gibbs sampling is particularly useful for sampling from a joint posterior distribution

of multiple parameters. In this case, the parameters are updated sequentially, where the

effective target distribution at each step is the full conditional distribution of the parameter

being updated, given the current state of the other parameters in the model. While some

burn-in period may still be necessary, proposal tuning is not required.

A.2.4 Adaptive Rejection Sampling

Gibbs samplers are generally the most efficient for obtaining samples from posterior distribu-

tions, but their implementation is only straightforward when the posterior distribution has a

recognizable closed form that can be sampled from directly. When this isn’t the case, the



170

M-H algorithm usually performs well in its place. However, the M-H algorithm requires a

good proposal distribution, which may not be easy to specify for certain densities or may

require extensive tuning. This is where sampling approaches such as adaptive rejection

sampling (ARS) come into play. Such methods directly target the posterior distribution, like

conjugate Gibbs samplers, but instead use known properties of the target density to construct

an envelope from which samples may be obtained. ARS requires the target density p(θ) to

be log-concave (i.e. ∂2

∂θ2
log p(θ) < 0), continuous, and differentiable. For such densities, i.i.d.

samples may be obtained using Algorithm A.8.

Algorithm A.8 Adaptive Rejection Sampling (ARS) Algorithm

1: Input: Target log-density h(θ) ∝ log p(θ) and initial support points Θ.
2: Compute the initial piecewise linear upper hull h̄(θ) and lower hull h(θ) using h(θ) and

(potentially) h′(θ) at each θ ∈ Θ.
3: Initialize: Sample set S = ∅.
4: while |S| < S do
5: Sample θ′ from the normalized exponential of the piecewise linear upper hull h̄(θ).
6: Sample U ∼ Uniform(0,1).
7: if U ≤ exp

(
h(θ′)− h̄(θ′)

)
then

8: Accept θ′ and add it to S.
9: else
10: if U ≤ exp

(
h(θ′)− h̄(θ′)

)
then

11: Accept θ∗ and add it to S.
12: end if
13: Add θ′ to the set of support points Θ.
14: Reconstruct h̄(θ) and h(θ) using all support points in Θ.
15: end if
16: end while
17: Return S.

Note how in Algorithm A.8, the log-density h(θ) need only be evaluated if the initial

acceptance condition in step 7 fails (this evaluation occurs in step 10). Since this evaluation

has already occurred, updating the lower and upper hulls is a quick adjustment. ARS is

adaptive in the sense that the envelope approximation to h improves whenever the squeeze
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sampling step fails to accept the proposed value.

There are multiple options for specifying the lower and upper hulls. If the derivative of

h(θ) is known, then tangent lines to h(θ) may be drawn at each of the support points and

connected in a piecewise fashion to from the upper hull h̄(θ). Without using the derivative,

secant lines between each pair of support points may be drawn and their portions above h(θ)

can be connected to form a piecewise upper hull. In either case, the lower hull h(θ) can be

formed by forming a piecewise linear function between points (θ, h(θ)) for all θ ∈ Θ.

A.3 Bayesian Model Comparison

A.3.1 Widely Applicable Information Criterion

The widely applicable information criterion (WAIC) is commonly used as a metric for

comparing Bayesian models [108, 40]. It is calculated as in (A.5)

WAIC(y,Θ) = −2 (lppd− pWAIC) , (A.5)

where

lppd =
N∑
i=1

logEθ [p(yi | θ)] (A.6)

and

pWAIC =
N∑
i=1

Var θ [log p(yi | θ)] (A.7)

Once S posterior samples have been generated, these quantities can be estimated with
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(A.8) and (A.9)

ˆlppd =
N∑
i=1

log

(
1

S

∑
s=1

p
(
yi | θ(s)

))
(A.8)

ˆpWAIC =
N∑
i=1

 1

S

∑
s=1

(
log p

(
yi | θ(s)

))2 −( 1

S

∑
s=1

log p
(
yi | θ(s)

))2
 (A.9)

The WAIC is asymptotically equivalent to leave-one-out cross-validation [40]. This is

particularly useful when working with computationally expensive Bayesian models on large

datasets because it removes the need to manually cross-validate.

Since the WAIC is a sum over all observation, on might also reference the average pointwise

WAIC for individual observations or groups of observations to evaluate model performance

on subsets of the data.

A.4 Conditional Autoregressive Models for Spatial Data

Originally devised by Besag [10], conditional autoregressive (CAR) models are widely used

in spatial statistics to model areal spatially-referenced data. These models refer to those

which use CAR prior distributions to model spatially dependent random effects such as those

present in Chapters 4 and 5. The areal units may represent different political or geographical

boundaries such as ZIP codes and counties. These models capture spatial dependence by

specifying conditional distributions for each spatial unit given its neighbors, thus allowing for

nearby regions to be more similar than regions far apart.

Let ν = (ν1, ν2, . . . , νN )
T represent spatially indexed random effects over N regions. Define

A as the N × N spatial adjacency matrix with element Aij representing the connection

between regions i and j (usually 1 if i and j are neighbors, 0 otherwise). Diagonal elements
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of A are usually set to 0 as well. We also define D = diag(A1+, . . . , AN+), where Ai+ is the

number of connected neighbors for area i.

Model Specification

The CAR model defines the distribution of νi conditional on its neighbors as in (A.10)

νi | ν−i ∼ Normal

(
ρ

1

Ai+

N∑
j=i

Aijνj,
τ 2

Ai+

)
, (A.10)

where ρ is the spatial autocorrelation parameter and τ 2/Ai+ is the conditional variance. This

model suggests the conditional mean of νi is equal to the mean of its neighbors under perfect

spatial autocorrelation (ρ = 1), while the conditional variance is proportional to the number

of neighboring units.

The full joint distribution implied by the CAR model is multivariate normal:

ν ∼ Normaln(0, τ
2(D− ρA)−1). (A.11)

In this dissertation, we exclusively use proper CAR models with 0 < ρ < 1. For ρ = 1,

the joint distribution is improper because D−A is not invertible. Models which fix ρ = 1 are

sometimes called intrinsic CAR models, and while the joint distribution is not valid, these

may still be used as a prior for random effects in Bayesian models.
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A.5 Updating the BART Terminal Node Prior Variance

In the original BART model, the outcome y is scaled to lie in the interval [−0.5, 0.5] prior to

training the model. Recall the prior on terminal node parameters π(µtl) = Normal(µµ, σ
2
µ).

This in turn implies that the prior over
∑T

t=1Tree(x; Tt,Mt) is Normal(Tµµ, Tσ
2
µ). To

encourage the range of predictions to fall within k standard deviations, we specify the prior

by solving for σ2
µ (and µµ) using the following equations:

Tµµ − 2kσµ
√
T = ymin

Tµµ + 2kσµ
√
T = ymax

Solving for µµ and σµ gives:

µµ =
ymin + ymax

2T
and σµ =

ymax − ymin

2k
√
T

In these equations, k is typically set to 2, indicating prior belief that 95% of predictions

will fall within the interval (ymin, ymax). When ymin and ymax are known a priori to be, say,

-0.5 and 0.5, then the result simplifies to µµ = 0 and σµ = 1
2k

√
T
.

The challenge with using BART as a single component of more complicated models, such

as the ones presented in this dissertation, is that there is no observed y to inform these

calculations. In Chapter 3, the true range of heterogeneous exposure effects is unknown and in

Chapter 4, the BART model is trained on latent (unobserved) variables, making it impossible

to determine the range of values ahead of time. In these settings, it is beneficial to introduce

a hyperprior distribution over σ2
µ. The goal for the rest of this section is to describe options
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for estimating σµ. While we ended up choosing the method in Section A.5.2, we provide all

strategies that were tried in case they become useful for future BART implementations.

A.5.1 Inverse-Gamma Approach

σ2
µ ∼ IG(α, β)

A natural first step is specifying an inverse-gamma hyperprior for σ2
µ since it is conditionally

conjugate to the prior for σ2
µ. This results in the following:

[
σ2
µ | −

]
∼ IG

(
α +

∑T
t=1 | L(Tt) |

2
, β +

∑T
t=1

∑
l∈L(Tt)(µtl − µµ)

2

2

)

where | L(Tt) | is the number of leaf nodes in Tt. As it turns out, this specification can be

very sensitive to how the hyperparameters α and β are specified.

A.5.2 Half-Cauchy Approach

σµ ∼ C+
(
0,

k√
T

)

This approach was suggested in Linero [71]. It is also what is used in Linero [70], and

what we use for Chapters 3 and 4. The prior has median k√
T
. The general strategy is as

follows:

• First, we make a proposal on the precision (τ) scale. Assuming a flat prior over τ , we
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propose from the full conditional

τ ∼ Ga

(
1 +

∑T
t=1 | L(Tt) |

2
,

∑T
t=1

∑
l∈L(Tt)(µtl − µµ)

2

2

)

• Since the proposal was done on the precision scale, we must adjust the prior to also

be on the precision scale. Since σµ = g(τ) where g(x) = x−1/2, by the method of

transformation we have:

π(τ) = π(g(τ)) | g′(τ) |= C+
(
σµ | 0,

k√
T

)
1

2
σ3
µ

• The M-H ratio is given by:

r =
C+
(
σ′
µ | 0, k√

T

)
(σ′

µ)
3

C+
(
σµ | 0, k√

T

)
σ3
µ

thanks to perfect cancellation between the likelihoods and proposal densities.

A.5.3 Marginal Half-Cauchy Approach

Consider the hierarchical representation:

[
σ2
µ | σ0

]
∼ IG

(
1

2
,
1

σ0

)

[σ0] ∼ IG

(
1

2
,
1

C2

)

It follows that marginally, σµ ∼ C+(0, C). In agreement with the direct half-Cauchy prior
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in the previous section, it makes sense to set C = k√
T
. The benefit of this specification is

that a convenient two-stage Gibbs sampler is available.

[σ0 | −] ∼ IG

(
1,

1

C2
+

1

σ2
µ

)

[
σ2
µ | −

]
∼ IG

(∑T
t=1 | L(Tt) | +1

2
,

∑T
t=1

∑
l∈L(Tt)(µtl − µµ)

2

2
+

1

σ0

)

A.5.4 Horseshoe Approach

The horseshoe prior applies both global and local (tree-specific) shrinkage, so the prior on

terminal nodes can be expressed as:

µtl ∼ Normal(µµ, ω
2τ 2t )

[ω] ∼ C+(0, C)

[τt] ∼ C+(0, 1)

We can apply the same method above to obtain a Gibbs sampler for the updates. The

priors can be rewritten as follows:

[
ω2 | ω0

]
∼ IG

(
1

2
,
1

ω0

)
[ω0] ∼ IG

(
1

2
,
1

C2

)
[
τ 2t | τt0

]
∼ IG

(
1

2
,
1

τt0

)
[τt0] ∼ IG

(
1

2
, 1

)

Mork and Wilson [79] set C = 1, however their model differs from the model in Chapter
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3 in that there is also residual variance to consider. Without this consideration, it may once

again prove beneficial to set the value to k√
T
. The updates proceed from the full conditional

distributions as follows:

[τt0 | −] ∼ IG

(
1, 1 +

1

τ 2t

)

[τt | −] ∼ IG

(
| L(Tt) | +1

2
,

∑
l∈L(Tt)(µtl − µµ)

2

2ω2
+

1

τt0

)

[ω0 | −] ∼ IG

(
1,

1

C2
+

1

ω2

)

[ω | −] ∼ IG

(∑T
t=1 | L(Tt) | +1

2
,

∑T
t=1

∑
l∈L(Tt)(µtl − µµ)

2/τ 2t

2
+

1

ω0

)

These parameters can all be updated after the other updates of tree structures and

parameters have been completed.

A.5.5 Inverse-Gamma Approach (k)

Suppose σ2
µ =

(
k√
T

)
. Since we know that σ2

µ should probably be scaled by T , we can instead

place an inverse-gamma prior on k. This approach is otherwise identical to that presented in

Section A.5.1. If the prior is

k2 ∼ IG(α, β),



179

the full conditional is given by:

[
k2 | −

]
∼ IG

(
α +

∑T
t=1 | L(Tt) |

2
, β +

T
∑T

t=1

∑
l∈L(Tt)(µtl − µµ)

2

2

)

After updating k, we can set σ2
µ =

(
k√
T

)
. α and β can be chosen to encourage values of

k to be in the interval [0.1, 1] as suggested by Linero [71].

A.5.6 Marginal Half-Cauchy Approach (k)

Similar to the previous section, we can also specify a marginal half-Cauchy prior for k. The

hierarchical prior of the form:

[
k2 | k0

]
∼ IG

(
1

2
,
1

k0

)
[k0] ∼ IG

(
1

2
,
1

C2

)

implies k ∼ C+(0, C). The full conditional distributions are given by:

[k0 | −] ∼ IG

(
1,

1

C2
+

1

k2

)
[
k2 | −

]
∼ IG

(∑T
t=1 | L(Tt) | +1

2
,
T
∑T

t=1

∑
l∈L(Tt)(µtl − µµ)

2

2
+

1

k0

)
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