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Abstract

Metabolomic patterns in second-trimester amniotic fluid and maternal
serum associated with fetal trisomy 21

By Susan Taylor Fischer

Introduction. Trisomy 21, otherwise known as Down syndrome, is a genetic disorder char-
acterized by the presence of three copies of chromosome 21 and is one of the most prevalent
chromosomal disorders in the United States. Trisomy 21 is associated with several medical
conditions and birth defects including cognitive impairment and congenital heart defects, yet
the biological mechanisms driving the presentation of associated phenotypes remain largely
unknown. Metabolomic analysis of a large set of paired second-trimester maternal serum
and amniotic fluid samples was performed with the objective of (i) further elucidating the
fetal metabolic fingerprint associated with trisomy 21 at mid-pregnancy and (ii) investigating
whether metabolic pathways dysregulated in trisomy 21 fetuses offer potential mechanisms
of disorder-associated phenotypes.

Methods. Untargeted, high-resolution metabolomic analysis using a dual liquid chromatog-
raphy setup was performed on 39 pairs of maternal serum and amniotic fluid samples from
trisomy 21 pregnancies and 81 control sample pairs. Discriminatory features were identified
in both biofluids using partial least squares discriminant analysis and variable importance
in projection scores after adjusting for covariates and used as input for metabolic pathway
enrichment analysis using the program Mummichog.

Results. Variable selection and subsequent pathway analysis of the amniotic fluid features
detected in this study produced a complex and extensive set of perturbations associated
with trisomy 21. While results indicated dysregulation of multiple pathways related to lipid
metabolism, nucleotide metabolism, and amino acid metabolism, vitamin B3 metabolism (p
= 0.001) was shown to be the most significantly affected pathway in amniotic fluid. Glycine,
serine, alanine, and threonine metabolism was significantly perturbed in both biological ma-
trices of trisomy samples.

Conclusions. Results revealed a broad array of metabolic perturbations in second-trimester
trisomy 21 amniotic fluid and offered novel insight into possible fetal origins of the cognitive
impairment and age-related neurodegeneration frequently observed with the disorder. The
untargeted analytical platform has laid a foundation for follow-up targeted studies to confirm
metabolic associations of interest and their role in phenotypic outcome pathogenesis.



Metabolomic patterns in second-trimester amniotic fluid and maternal
serum associated with fetal trisomy 21

By

Susan Taylor Fischer

B.S.
Georgia Institute of Technology

2013

Thesis Committee Chair: Tianwei Yu, Ph.D.
Reader: Judith L. Fridovich-Keil, Ph.D.
Reader: Stephanie L. Sherman, Ph.D.

A thesis submitted to the Faculty of the
Rollins School of Public Health of Emory University

in partial fulfillment of the requirements for the degree of
Master of Science in Public Health

in Biostatistics
2017



Acknowledgements

I am extremely grateful for the guidance, support, and encouragement provided by my
supervisors, Dr. Judith Fridovich-Keil and Dr. Stephanie Sherman, and my advisor, Dr.
Tianwei Yu, during the development of this thesis. I would also like to acknowledge the
staff of the Clinical Biomarkers Laboratory at Emory University, including Dr. Dean Jones,
Dr. Shuzhao Li, ViLinh Tran, Douglas Walker, and Dr. Karan Uppal, all of whom provided
invaluable feedback and technical support, as well as Dr. Charles Schwartz and Kim Stewart
of the Greenwood Genetic Center, without whom this study would not have been possible.
I would especially like to thank Dr. Loukia Lili for not only sharing her knowledge of this
field with me, but for her incredible patience and positivity while doing do. Lastly, I am so
grateful for the endless love and support of my family and my fiancé, David.
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1 Introduction

1.1 Problem Statement

Down syndrome (DS) is a genetic disorder characterized by the presence of a third chromo-

some 21, or trisomy 21. Technological advances in genomic analysis have opened the door

for detailed examination of perturbed gene expression patterns associated with disease con-

ditions of interest, including those associated with chromosomal abnormalities like trisomy

21 (Antonarakis, 2017). There is a growing literature on dysregulated biological pathways

associated with an extra chromosome 21, but much remains to be learned with respect to the

altered trisomy 21 fetal metabolism and its effects on known clinical conditions common to

individuals with DS. Recent studies of amniotic fluid samples have conducted targeted anal-

yses of metabolites with differential abundance among pregnancies with DS (Amorini et al.,

2012; Charkiewicz, Blachnio-Zabielska, Zbucka-Kretowska, Wolczynski, & Laudanski, 2015,

for example). However, there remains a need for studies aimed at defining the metabolome-

wide alterations in a developing fetus associated with trisomy 21 and DS-related outcomes.

Much of the current literature is limited by targeted quantification of select compounds,

low sample size, or the specific goal of establishing reliable prenatal diagnostic biomarkers.

Further investigation into the global metabolic consequences, both in the fetal and maternal

compartments, of trisomy 21 during the earlier stages of pregnancy is needed.

1.2 Purpose Statement

The purpose of this study is to investigate the extent of differential biochemical composition

between second-trimester amniotic fluid of fetuses with confirmed trisomy 21 compared to

selected euploid controls through untargeted, high-resolution metabolomic analysis. Discov-

ery of metabolite distributions unique to the trisomy 21 samples will then allow for mapping

of discriminatory features to known metabolic pathways. The paired maternal serum sam-
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ples allow investigation of the pronounced changes in the second-trimester fetal metabolomic

profile related to trisomy 21 status as possible results of maternal environmental exposures

or genetic variation. Also, any significantly enriched metabolic pathways in the amniotic

fluid of trisomy 21 fetuses relative to controls can be further examined within the context of

known DS-associated medical conditions, such as congenital heart defects (Freeman et al.,

2008).

1.3 Significance Statement

Considering DS is one of the most prevalent chromosomal disorders in the United States

(Parker et al., 2010), the results of this study will have important clinical implications. The

unique bank of paired maternal serum and amniotic fluid samples available in this study, in

combination with the untargeted analytic workflow employed, has potential to shed light on

previously undetected metabolic perturbations associated with trisomy 21 during a period

of particular developmental importance to a growing fetus. Furthermore, the outcomes ob-

served here will help shape future studies of the prenatal exposome exploring the relationship

between fetal and maternal environmental exposures. The next step in understanding how

environmental exposures explain the wide variation in trisomy 21-associated clinical conse-

quences will be informed by this study. Finally, the understanding of perturbed metabolic

pathways in trisomy 21 fetuses will help identify potential modes of intervention for DS-

associated conditions, including prevention of specific environmental exposures and possible

prenatal therapeutic treatments.

1.4 Definition of Terms

• The term “feature” refers to a unique ion resolved by liquid chromatography-mass

spectrometry, identified by mass-to-charge ratio and retention time. Feature intensity

is a measure of ion abundance in a given biological sample and is determined by

chromatographic peak integration (Go, Walker, Soltow, et al., 2015).
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2 Review of Literature

Trisomy 21 is a genetic disorder characterized by the presence of three copies of chromosome

21 instead of the standard homologous pair of two chromosomes. The terms trisomy 21 and

Down syndrome (DS) are often used interchangeably, while some prefer to distinguish DS

as the collective phenotypic consequence of complete or incomplete trisomy of chromosome

21 (Borelli et al., 2015). This phenotypic consequence encompasses a variety of physical

traits, medical conditions, and birth defects associated with DS, the most prominent being

cognitive impairment, hypotonia, and congenital heart defects (CHD) (Karmiloff-Smith

et al., 2016). Estimates from 2004-2006 national surveillance data across the United States

(US) estimated a DS prevalence of 1 in 691 live births, corresponding to an estimated annual

incidence count of approximately 6000 infants. Trisomy 21 is considerably more common

than other chromosomal anomalies, including trisomy of chromosomes 13 or 18 (Parker et

al., 2010). Worldwide live birth incidence estimates are lower than those found in the US,

fluctuating around 1 in every 1000 live births (“Genes and chromosomal diseases”, 2017).

As previously mentioned, DS is associated with a wide array of phenotypic features. To

identify genes associated with these features, investigators have examined the effect of the

full trisomy 21, while others have mapped features to specific chromosome regions among

more rare individuals who have only partial duplication of chromosome 21 (Korenberg et

al., 1994). While certain facial attributes, intellectual disability, and hypotonia are generally

characteristic of DS, there is marked heterogeneity in the presentation of many associated

characteristics. For example, a study from the National Down Syndrome Project reported

significant variability in atrioventricular septal defect incidence among different ethnic and

sex DS subpopulations (Freeman et al., 2008). Such variation in incidence and intensity of

DS-linked traits, along with phenotype-specific mapping to select subregions of chromosome

21, illustrate the challenge faced by researchers looking to elucidate the biological mechanisms
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of DS-associated phenotypes.

Gene expression studies and a limited but growing number of recent metabolomic analyses of

different biofluids from DS individuals have begun to address such questions. Gene expression

studies comparing second-trimester amniotic fluid cell-free fetal mRNA from individuals with

DS to reference samples from seven chromosomally-normal (euploid) controls pointed to

perturbations in several pathways (Hui et al., 2012; Slonim et al., 2009). In one study with

analysis showing particular emphasis on nervous system development, investigators found

many differentially expressed genes (Hui et al., 2012). For example, SOX11 is a transcription

factor that plays a critical role in the regulation of sensory neuron axonal growth and was

significantly down-regulated in fetuses with trisomy 21 compared to controls. In an earlier

study of the same samples, investigators identified pathways related to oxidative stress that

were perturbed in DS fetuses (Slonim et al., 2009). This conclusion is in agreement with

another study of lipid peroxidation markers in 10 DS and 79 control amniotic fluid samples

(Perrone et al., 2007). A review of evidence for altered protein expression in the fetal brain

of individuals with DS further noted elevated activity of the superoxide dismutase gene, a

gene mapped to chromosome 21 (Engidawork & Lubec, 2001). Despite the implication

of oxidative stress in DS pathology, further research explicating the molecular mechanisms

behind such pathway alterations and severe DS outcomes is needed.

Consistent with the findings above, a metabolomic investigation of maternal blood samples

from mothers with DS-positive fetuses taken during the first trimester identified several

potential DS biomarkers related to oxidative stress (Bahado-Singh et al., 2013). Analysis of

maternal biofluids is important for improving trisomy 21 screening protocols in the first and

second trimesters, which currently include measurement of select serum markers, such as

human chorionic gonadotropin and alpha-fetoprotein, coupled with ultrasound (Nicolaides,

2011). A targeted study of sphingolipids in both maternal plasma and amniotic fluid from

10 DS pregnancies indicated differential levels of certain ceramides in DS-positive samples
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(Charkiewicz et al., 2015). A metabolomic study of maternal urine collected during the

second trimester further revealed unique DS metabolic profiles related to energy, nucleotide,

and amino acid metabolism (Diaz et al., 2013). Thus, established metabolite biomarkers

from targeted and untargeted metabolomic studies of amniotic fluid and other biofluids

have provided a strong case for the potential value in additional high-resolution analyses

of a larger number of paired maternal serum and amniotic fluid samples from pregnancies

with DS. Importantly, amniotic fluid is a biological matrix that has been shown to strongly

correlate with fetal anomalies and malformations (Amorini et al., 2012).

The growing popularity of metabolomic approaches across many academic disciplines can be

attributed to multiple factors, including advances in liquid chromatography-mass spectrom-

etry (LC-MS) technology that have allowed for improved mass resolution and lowered costs

of analysis (Jones, 2016) and a desire for discovery of reliable disease biomarkers across a

variety of biofluid sample types. Untargeted metabolomics allows for the detection of large-

scale metabolic signatures associated with particular phenotypes. Use of these data as input

to pathway enrichment analysis programs such as Mummichog (Li et al., 2013) allows for

simultaneous feature annotation and pathway mapping by use of advanced computational

algorithms.

While advances in instrumentation have enabled high-quality quantification of metabolites,

there does not appear to be a common statistical approach deemed universally optimal for

untargeted metabolomics data. Even within the context of simple binary disease outcomes

like trisomy 21, the high dimensionality of the resulting data often requires application of

complex analytical techniques (Madsen, Lundstedt, & Trygg, 2010). As such, a variety of

univariate and multivariate statistical techniques have been used with the aim of identifying

metabolite biomarkers capable of reliably discriminating subjects with DS from their non-

DS counterparts. Here, the term univariate describes methods that analyze each feature

independently, whereby the technique is repeated for each feature, assumes independence
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between intensities of detected features, and requires correction for multiple testing. Multi-

variate methods are performed on the collective set of all detected features, or those remain-

ing following preprocessing. In contrast to exploratory unsupervised methods, supervised

multivariate methods incorporate knowledge of sample class or phenotypic identity to find

significantly associated features (Alonso, Marsal, & Julia, 2015).

Both linear regression and logistic regression are often employed in the context of binary

sample phenotypes, as these models can easily allow adjustment of data for potential con-

founders. Such univariate regression approaches do not, however, account for the possible

correlations among intensities of detected features (Tzoulaki, Ebbels, Valdes, Elliott, &

Ioannidis, 2014). Feature selection by means of partial least squares discriminant analysis

(PLSDA), a supervised, multivariate statistical technique that seeks to maximize the covari-

ance between class membership (e.g., DS case-control status) and the intensity profiles of the

samples (Wold, Sjostrom, & Eriksson, 2001), is among the most frequently used methods

in metabolomics for classification. Yet, its inability to adjust for any additional covariates

is a key limitation of the approach. It is for this reason that a combination of univariate

and multivariate statistical methods are often recommended in the metabolomics feature

selection process. In one proposed approach, adjusted feature intensities are first obtained

as residuals from linear regression models of relevant covariates and then used as input for

multivariate modeling (Grapov, 2013).
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3 Methodology

3.1 Study Samples

Paired amniotic fluid and maternal serum samples (n = 120) were obtained from the Green-

wood Genetic Center (GGC, Greenwood, SC, USA). Samples were collected from mothers in

the southeastern US who underwent prenatal screening during mid-pregnancy. The amniotic

fluid samples were collected during amniocentesis from fetuses with a confirmed trisomy 21

(T21) karyotype (47,XY,+21 or 47,XX,+21; n = 39) and fetuses with a confirmed normal

karyotype (46,XY or 46,XX; n = 81), with the latter set serving as control samples. Samples

were previously stored as GGC clinical lab discards.

Serum and amniotic fluid samples were collected on-site at the facility of the mother’s refer-

ring physician or laboratory and transported at ambient temperature to the prenatal testing

laboratory at GGC either same day or overnight. Appropriate blood collection vials were

used for maternal serum collection, including Becton-Dickinson (BD) red top vacutainer

tubes, BD vacutainer red/black top serum separator tubes (SST), and BD vacutainer gold

top SST. Standard BD plastic syringes were used for amniotic fluid sample collection, and

samples were transported in clear or amber polystyrene tubes to the GGC laboratory. Once

received, samples were inspected for correct identification, sample type, and sample con-

dition; each received a unique sample identification number in compliance with accession

protocols.

Maternal serum samples were received in the prenatal screening laboratory at GGC as either

isolated serum samples, removed from the red blood cell clot by centrifugation, or as clotted

whole blood samples. Whole blood samples were centrifuged at 2200 revolutions per minute

(rpm) for 10 minutes and the serum transferred to separate polypropylene vials for storage.

Serum samples were stored at 2-8◦C for up to 48 hours before diagnostic testing and then
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at -20◦C (± 10◦C) for long-term storage. Amniotic fluid samples received in the cytogenetic

laboratory were centrifuged at 1000 rpm for 10 minutes. The supernatant was removed and

frozen at -20◦C (± 10◦C) for additional clinical testing and long-term storage.

Upon selection for this study, the maternal serum and amniotic fluid samples were removed

from long-term storage, thawed, and transferred to new vials. Aliquots were refrozen and

shipped on dry ice to Emory University by overnight courier. Upon receipt, aliquots were

thawed and prepared for metabolomic analysis. No personally identifiable information was

provided for the samples. However, information on maternal age, gestational age at both

serum and amniotic fluid collection, sample collection year, maternal race/ethnicity, and

fetal gender was available.

3.2 High-resolution LC-MS

Sample preparation and treatment prior to LC-MS followed previously documented proto-

cols (Soltow et al., 2013). Analysis was performed by research specialists in the Clinical

Biomarkers Laboratory (CBL, Division of Pulmonary, Allergy and Critical Care Medicine,

Department of Medicine, Emory University, Atlanta, GA, USA). Serum samples were run

as triplicate aliquots on a Thermo Scientific LTQ Velos Orbitrap mass spectrometer. Dual

liquid chromatography allowed for data collection from HILIC and C18 columns. Analyses

were performed with positive electrospray ionization mode, an injection volume of 10 µL,

mass-to-charge ratio (m/z) scan range of 85 to 2000, and resolution of 60000 (full width at

half maximum).

Serum samples were randomly assigned to and run in batches of 20. Pooled reference plasma

samples were analyzed prior to and following each batch, enabling subsequent quality control

and metabolite quantification as described in a previous study (Go, Walker, Liang, et al.,

2015). Data extraction was performed with apLCMS (Yu, Park, Johnson, & Jones, 2009)

and xMSanalyzer (Uppal et al., 2013). Analysis of amniotic fluid samples was performed
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separate from analysis of serum samples but under identical protocols. Principal component

analysis (PCA) was used for batch effect evaluation (Yang et al., 2008), and batch correc-

tion was performed where necessary using ComBat (Johnson, Li, & Rabinovic, 2007) and

xMSanalyzer.

3.2.1 Feature Annotation

Resulting xMSanalyzer output was received from CBL, including data matrices of detected

ion features, defined by accurate mass m/z and retention time (RT, seconds), and corre-

sponding quantified ion intensities across samples. Identities of a subset of metabolites were

confirmed by comparison of m/z and RT to previously established CBL standards (Go,

Liang, et al., 2015; Go, Walker, Liang, et al., 2015; Jones et al., 2016).

As an initial investigation of the differences in the baseline metabolic makeup of the amniotic

fluid samples and that of the maternal serum samples, additional tentative matches for all

features to known metabolites in the Kyoto Encyclopedia for Genes and Genomes (KEGG)

database (Kanehisa & Goto, 2000) were generated using xMSannotator (Uppal, Walker,

& Jones, 2016). Search criteria restricted matches to two commonly observed adduct forms

under positive ionization mode ([M+H]1+, [M+Na]1+) at ±10 ppm mass tolerance. The

unique KEGG compound identifiers of metabolite matches were mapped using the online

tool KEGG Mapper to human reference pathways. These annotations were used strictly as

a preliminary overview of the global biochemical composition of each sample type (serum,

amniotic fluid). Interpretation is limited by exclusion of features not matched to any KEGG

compounds, exclusion of features not mapped to a human reference pathway, overrepresen-

tation of certain features matched to more than one KEGG compound, and classification of

certain compounds under several pathways.
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3.3 Statistical Analysis

Samples were assigned new identification numbers prior to statistical analysis. As no in-

formation on the presence or absence of DS-associated traits was available for subjects, all

results and conclusions here are presented within the context of fetal T21 as opposed to DS.

Additionally, all results and corresponding figures were generated in R (R Core Team, 2015)

unless otherwise indicated.

For each detected feature, the non-zero intensities of technical replicates were averaged and

then log2-transformed. Feature filtering was performed to retain only those with at least

50% non-missing values across all samples and at least 80% non-missing values within sam-

ples of either group (control, T21). PCA, an unsupervised learning method, was first per-

formed on the preprocessed feature intensity matrix. The top three components were used

to visualize the variation in feature intensity profiles across the study samples in a score

plot (Jolliffe, 2002). Samples that showed extreme separation from other data points in the

three-dimensional space were considered outliers and excluded from further analysis.

Clinical and demographic variables were summarized with descriptive statistics and com-

pared between control and T21 subjects using the two-sided Pearson’s Chi-squared test

for categorical variables (maternal race/ethnicity, fetal gender) and the two-sided t-test for

numerical variables (maternal age, gestational age at sample collection, collection year).

For covariates that differed significantly between groups (p < 0.05), their global effect on

metabolic profiles was investigated using the PCA model described above; score plots were

again used to visually assess whether the spatial clustering or separation of data points was

associated with the covariate(s) of interest.

Feature intensities in each of the four datasets (maternal serum [HILIC column, C18 column],

amniotic fluid [HILIC column, C18 column]) were then adjusted for potential confounders
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using a univariate regression approach. For each detected feature, a linear regression model

was constructed with log2-transformed intensity as the response variable and the relevant

covariate(s) that differed significantly between groups as predictors. The residuals were then

used to construct intensity matrices linearly corrected for confounder effects prior to feature

selection.

3.3.1 Feature Selection

Feature selection was conducted using partial least squares discriminant analysis (PLSDA),

a supervised, multivariate statistical technique that seeks to maximize the covariance be-

tween group membership and intensity profiles of the samples (Wold et al., 2001). Results

were visualized using two-dimensional score plots. The variable importance in projection

(VIP) scores were used to identify the set of m/z features within each dataset with greatest

contribution to the discriminatory model (Palermo, Piraino, & Zucht, 2009). These features

were selected on the basis of VIP ≥ 2 (Bogdanov et al., 2008). The prediction performance

of the PLSDA-selected features in accurately distinguishing the two groups was evaluated by

10-fold cross-validation (CV) and support vector machines (SVM); here, the discriminatory

features from the PLSDA model with VIP ≥ 2 were used to build the binary SVM classifier

prior to CV. The reduced intensity profiles corresponding to only the discriminatory features

selected by PLSDA were used as input for two-way, unsupervised hierarchical cluster anal-

ysis. To determine the extent of overlap in PLSDA-selected features between datasets, m/z

were compared using xMSanalyzer (Uppal et al., 2013) and a maximum difference threshold

of ±10 ppm for matches.

3.4 Pathway Enrichment Analysis

Pathway enrichment analysis and simultaneous annotation of discriminatory features was

performed using the Python program Mummichog (Li et al., 2013). For each sample

type (maternal serum, amniotic fluid), all m/z from HILIC and C18 analyses that met
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feature filtering thresholds were combined to form a larger, more comprehensive background

metabolome; this further established an enriched set of discriminatory features (VIP ≥ 2)

for both serum and amniotic fluid. This approach can provide improved confidence in path-

way selection when discriminatory features in the C18 and HILIC datasets are mapped to

the same metabolic pathway by increasing pathway overlap size. Mummichog was run us-

ing human reference pathways from MetaFishNet as the network model (Li et al., 2010).

Pathways with p < 0.05 were considered significantly enriched in association with fetal T21

status.

Mummichog output was further augmented by annotation of discriminatory features using

xMSannotator (Uppal et al., 2016), first obtaining putative matches to known metabolites

in the Human Metabolome Database (HMDB) (Wishart et al., 2007) on the basis of accu-

rate mass m/z with a mass error threshold of ±10 ppm. When searching HMDB, multiple

adducts were considered: [M+Na]1+, [M+H]1+, [M+H-H2O]1+, [M+ACN+H]1+, [M+2Na-

H]1+, [2M+H]1+, [M+2H]2+, [2M+Na]1+, [M+NH4]
1+, [2M+ACN+H]1+, [M+H-2H2O]1+,

[M+ACN+Na]1+. Using xMSannotator’s multilevel scoring algorithm to assign confidence

levels to all annotations, levels 2 (medium confidence) and 3 (high confidence) were accepted.

These annotations from xMSannotator, along with the confirmed metabolite matches iden-

tified in 3.2.1, were used to supplement Mummichog annotation of discriminatory features.
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4 Results

4.1 Global Metabolic Profiles in Serum and Amniotic Fluid

High-resolution LC-MS detected 7807 features (C18 chromatography) and 12884 features

(HILIC chromatography) in the maternal serum samples and 3828 and 8541 features, re-

spectively, in the amniotic fluid samples. Feature matching using m/z, with a mass error

threshold of ±10 ppm, provided a rough idea of metabolic coverage similarity across columns.

The majority of C18-detected m/z were also found by HILIC separation (63.2% of serum;

65.3% of amniotic fluid), while the majority of HILIC m/z were unique and not detected by

C18 separation (61.7% of serum; 70.8% of amniotic fluid). Similar feature matching between

HILIC maternal serum and HILIC amniotic fluid datasets (±10 ppm mass error threshold,

±30 second RT threshold) showed 3918 common to both matrices. Nearly half of all amni-

otic fluid features detected by HILIC chromatography (45.9%) overlapped those detected in

serum, and a similar proportion was seen for C18-detected features (44.8%).

As a preliminary exploration of the global metabolic differences between the second-trimester

serum and amniotic fluid samples under study, all detected m/z from the HILIC column were

searched against known compounds in the KEGG database and mapped to human reference

pathways in the KEGG database. HILIC-detected features were used due to greater coverage

of that column across both sample types, as described above. Tentative matches for 6366

unique KEGG compounds were found in serum. Among these compounds, 188 KEGG human

pathways were represented; specifically, 634 compounds were mapped to human metabolic

pathways. In the amniotic fluid, detected features were tentatively matched to 5988 unique

KEGG compounds; this set mapped to 200 distinct human pathways, and 648 compounds

were mapped to reference human metabolic pathways. Among metabolic pathways, results

showed baseline representation of amino acid and carbohydrate metabolism matches in the

amniotic fluid slightly exceeded that of maternal serum (Fig. 1). Serum matches indicated
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greater global representation of lipid metabolism, although this difference was again minimal.

Of the features detected in amniotic fluid by C18 and HILIC analysis, 3105 (81.1%)and 6362

(74.5%) passed the filtering criteria, that is they were present in (i) at least half of all samples

and (ii) ≥ 80% of all control samples or all T21 samples. Similar filtering of maternal serum

data retained 5861(75.1%) and 9376 (72.8%) C18 and HILIC features, respectively. Variation

in global metabolic profiles across samples was assessed by PCA score plots. As shown in Fig.

2A and Fig. 2B, T21 amniotic fluid samples did not cluster separately from control samples,

indicative of similarity in metabolic profiles at least on the global level. However, one sample

(S246, control) showing noticeable separation from other amniotic fluid samples in both C18

and HILIC models was identified as an outlier and excluded from further analysis.

4.2 Study Population

Characteristics of the study population (n = 119) following outlier removal are summarized

in Table 1. All maternal serum samples were collected during the second trimester (15.0-22.0

weeks gestation). The mean (± SD) gestational age at amniocentesis was 20.5 ± 3.1 weeks,

ranging between 15.7 and 31.7 weeks. As only four of 119 amniotic fluid samples (2/39

T21 samples; 2/80 control samples) qualified as early third-trimester, results are presented

within the framework of second trimester collection. On average, maternal serum collection

preceded amniocentesis by close to three weeks (mean 3.1 ± 2.7); however, for two control

subjects, amniotic fluid was collected one week prior to maternal serum collection.

Maternal race/ethnicity, fetal gender, gestational age at serum collection, gestational age

at amniotic fluid collection, and maternal age did not differ significantly between control

and T21 subjects (p > 0.05, Table 1). However, the T21 samples, collected between 2000

and 2014, were significantly older than the control set, collected between 2004 and 2014

(p = 0.01). This was due to a more limited supply of T21-postive GGC clinical discard

samples and a greater availability of more recent control discards. PCA score plots further
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revealed a noticeable association of amniotic fluid metabolic profiles with storage time after

stratifying by fetal T21 status (Fig. 3A and Fig. 3B). Feature intensities were therefore

adjusted for sample collection year by taking the residuals from linear regression models of

log2-transformed intensity against collection year.

4.3 Untargeted Metabolomic Analysis of Amniotic Fluid

4.3.1 Feature Selection

Two-dimensional PLSDA score plots of amniotic fluid samples are provided in Fig. 4A

(HILIC) and Fig. 4B (C18). Both models achieved adequate separation of control and T21

samples. A stringent cutoff of VIP ≥ 2 identified 125 (C18) and 220 (HILIC) discriminatory

features. Manhattan plots of all VIP scores (Fig. 5A and Fig. 5B) show that most of the

discriminatory features fell in the region of low molecular mass (<500 m/z). Using a mass

error threshold of ±10 ppm for matching, 27 common features were found between these two

sets of discriminatory features, representing 12.3% of the HILIC set and 21.6% C18 set (Fig.

6A).

The 10-fold CV analysis, performed outside of PLSDA using significant features to first

construct a SVM, assessed accuracy using balanced classification rate (BCR), an average

measure of classification accuracy in each group useful when group sample sizes are unbal-

anced. Both sets of PLSDA-selected features effectively distinguished the T21 and control

samples (Table 2). When sample labels were permuted and CV was repeated, the probability

of the SVM correctly classifying samples was comparable to pure chance (mean permuted

BCR = 50%).

Hierarchical cluster analysis (HCA) provided an alternate approach to visualizing similarity

in intensity profiles of significant features in amniotic fluid. As shown in Fig. 7, HCA of

HILIC discriminatory features resulted in two primary clusters, one with 92% T21 member-
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ship and the other with 94% control membership. Cluster membership was more heteroge-

neous in HCA of C18 discriminatory features (Fig. 8). Three primary clusters are evident

here: one consisting exclusively of control samples, one with 80% T21 membership, and

another containing a mix of T21 and control samples. When comparing chromatography

columns, the heat maps suggest that the HILIC-selected features show a more distinct and

consistent expression pattern in T21 amniotic fluid samples relative to controls than those

selected from the C18 dataset.

4.3.2 Pathway Analysis

Input of all 345 discriminatory features across columns to Mummichog for pathway analysis

yielded 19 enriched metabolic pathways in the amniotic fluid of T21 pregnancies (p < 0.05).

Those with at least four overlap metabolites (14) are presented in Table 3. In this table,

pathway size represents the total number of metabolites, regardless of VIP score, mapped

to a given pathway, while overlap size represents the number of those metabolites that were

found to be significant by PLSDA. Results showed dysregulation of multiple pathways related

to lipid metabolism (linoleate metabolism, fatty acid metabolism), nucleotide metabolism

(pyrimidine metabolism, purine metabolism), and amino acid metabolism in amniotic fluid of

T21 fetuses. Examples of perturbed amino acid pathways included methionine and cysteine

metabolism and glycine, serine, alanine, and threonine metabolism. The two pathways

showing greatest dysregulation in association with T21 were vitamin B3 metabolism (p =

0.001) and butanoate metabolism (p = 0.002).

A subset of representative features selected by PLSDA as best discriminating amniotic fluid

of T21 fetuses relative to controls (VIP ≥ 2) are provided in Table 4, where fold change (FC)

indicates difference in mean log2 intensity between T21 cases and controls. Positive FC values

indicate greater average abundance among T21 samples, and metabolite superscripts indicate

annotation source (confirmed identity, Mummichog, xMSannotator). Features matched by
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Mummichog to stearidonic acid were among the top 10 significant features by VIP score in

both chromatography columns, and features matched to palmitaldehyde were among the top

20 of both columns.

4.4 Untargeted Metabolomic Analysis of Maternal Serum

4.4.1 Feature Selection

The analytic workflow outlined above was repeated for metabolomic data derived from ma-

ternal sera. The PLSDA models yielded 324 (C18) and 502 (HILIC) features meeting the

significance threshold (VIP ≥ 2), and testing for overlap between chromatography columns

showed 44 common discriminatory features, representing 8.8% of the HILIC set and 13.6%

C18 set (Fig. 6B). The PLSDA score plots are included in Fig. 4C and Fig. 4D. In contrast to

the amniotic fluid models, both serum models failed to achieve complete separation of serum

samples from control and T21 pregnancies. Collectively, the features with greatest contri-

bution to the PLSDA models in maternal serum also showed poorer predictive ability under

10-fold CV analysis (Table 2) compared to those from amniotic fluid. These results indicate

an overall greater discriminatory power of selected amniotic fluid features in discerning fetal

T21 status than those identified in corresponding maternal serum.

HCA of log2 intensity profiles revealed variable expression patterns of selected serum features

within T21 samples (Fig. 9 and Fig. 10). However, both heat maps illustrate a unique and

homogenous expression pattern of PLSDA-selected features among a smaller subset of T21

maternal serum cases. It is particularly interesting that the majority of the T21 subjects

(13 of 15) whose sera clustered separately in the HILIC HCA were the same as those that

clustered separately from other T21 cases in the C18 HCA. This would suggest an underlying

connection, possibly genotypic, phenotypic, or environmental in nature, among this subset of

mothers with T21 pregnancies. Follow-up Mann-Whitney U tests showed that the 13 mothers

making up this unique cluster were significantly younger (median age = 27.0 ± 12.0) than
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the other mothers with T21 pregnancies (33.5 ± 12.8; p = 0.04) while their serum samples

were significantly older (median collection year = 2002 ± 3.0) than the others (2007 ± 4.8;

p < 0.01).

4.4.2 Pathway Analysis

Mummichog analysis of all 826 serum features with VIP ≥ 2 yielded 15 enriched metabolic

pathways in the maternal serum of T21 cases (p < 0.05), all of which contained at least four

overlap metabolites (Table 3). Results indicated particular dysregulation of many amino

acid pathways, the most affected being glycine, serine, alanine, and threonine metabolism

(p = 0.002). This pathway was also found to be perturbed in T21 amniotic fluid (p = 0.016),

and Mummichog results for this pathway in maternal serum are provided in Table 5. The

serum of mothers with T21 pregnancies, in particular, showed increased levels of confirmed

serine and threonine, while decreased levels of confirmed creatine were observed among cases.

The difference in abundance of these metabolites between groups was not large in magnitude,

however, as indicated by FC. In contrast, Mummichog annotations showed more pronounced

decreases in matches to choline, methionine, and glycolic acid. The discriminatory serum

metabolites mapped to this pathway, also referred to as the overlap metabolites, were largely

distinct from those seen in the amniotic fluid with the exception of serine, which instead

showed slightly lower abundance in T21 amniotic fluid relative to controls (Table 4).

The significantly enriched pathways in serum also overlapping those perturbed in the amni-

otic fluid samples of T21 subjects included butanoate metabolism, aspartate and asparagine

metabolism, and arginine and proline metabolism; maternal serum from T21 pregnancies

showed increased levels of confirmed proline (VIP = 2.64, FC = 0.62 [C18]). Among the dys-

regulated metabolic pathways unique to serum samples, T21 maternal serum had elevated

levels of confirmed tyrosine (VIP = 2.65, FC = 0.86 [C18]), lysine (VIP = 3.32, FC = 0.95

[HILIC]), and decreased levels of glycerophosphocholine (VIP 2.62, FC = -0.92 [HILIC]).
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5 Discussion

The growth of metabolomics in recent years has generated tremendous momentum in the

detection, identification, and quantification of endogenous compounds across a variety of

biological matrices. Such research is helping to establish a library of putatively normal

“reference” metabolic profiles to which samples with conditions of interest can then be com-

pared. The discovery of unique metabolic profiles holds great clinical importance not only

in its ability to improve diagnostic screening for complex diseases, but particularly in its po-

tential to illuminate the pathogenesis of developmental anomalies or unique morphological

characteristics, such as those with ubiquitous or even variable prevalence among people with

DS.

The data presented here are the result of an untargeted, high-resolution metabolomic analy-

sis of paired second-trimester maternal serum and amniotic fluid samples from fetuses with

and without confirmed trisomy of chromosome 21. This study was conducted in an effort to

further explore the metabolic fingerprint associated with T21 during the second trimester of

pregnancy. The first and second trimesters of pregnancy are a period of particular vulnerabil-

ity for a developing fetus due to continued organ development and an immature detoxification

system. Metabolomic profiling of amniotic fluid at this period of gestation can reveal fetal

exposure to environmental chemicals and xenobiotics transferred from the maternal system

via the placenta (Barr, Bishop, & Needham, 2007) and also serves as a suitable barometer

of fetal health and development status (Graca et al., 2009).

An initial comparison of features resolved by HILIC chromatography in amniotic fluid sam-

ples to those resolved in the corresponding maternal serum samples demonstrated consid-

erable overlap between the two biofluids. This observation makes sense given the sizable

contribution of maternal plasma solutes to amniotic fluid composition in the first half of preg-
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nancy. Fetal skin keratinization starts approximately half way through the second trimester

and concludes around 25 weeks, after which the greatest contributor to the amniotic fluid

composition is fetal urine (Underwood, Gilbert, & Sherman, 2005). Thus metabolic profiles

of the amniotic fluid samples here should indeed be a reflection of both maternally-derived

compounds as well as endogenous metabolites of the fetal compartment. Pathway mapping

indicated slightly greater background representation of metabolites related to amino acid

metabolism relative to maternal serum. A possible explanation may be offered by the pas-

sive diffusion of amino acids from fetal circulation into amniotic fluid through the permeable

skin barrier (Jauniaux, Gulbis, & Gerloo, 1999).

Feature selection and subsequent pathway enrichment analysis of the amniotic fluid metabolic

profiles in this study produced a complex and extensive set of perturbations associating with

T21 classification. The differential abundance of select confirmed metabolites, as well as

those annotated by Mummichog and xMSannotator, showed consistency with much of the

existing literature on metabolic biomarkers of T21. Amniotic fluid of T21 fetuses showed

decreased C16-Cer, as seen in a previous study of ceramides in 10 DS amniotic fluid sam-

ples taken at 15-18 weeks gestation (Charkiewicz et al., 2015). Furthermore, significant

enrichment of several amino acid pathways was observed. In accordance with the results of a

targeted assay of amino acids in T21 second-trimester amniotic fluid (Amorini et al., 2012),

the data similarly showed decreased levels of glutamate, valine, and ornithine among T21

cases; in contrast, taurine was found here to be elevated in association with T21. Certain

metabolites previously observed to be lower in concentration in amniotic fluid in associa-

tion with fetal malformations (e.g., central nervous system, cardiac, pulmonary), including

glucose, alanine, threonine, tyrosine, methionine, and phenylalanine (Graca et al., 2010),

were negatively associated with T21, although none met the VIP threshold for significance.

Considered collectively, these associations support in part the previous suggestions of dysreg-

ulated gluconeogenesis activity and the role of related amino acids in impaired fetal kidney
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and neuronal development (Amorini et al., 2012).

Vitamin B3 metabolism was shown to be the most affected pathway in T21 amniotic fluid,

with increased abundance of matches to alpha-D-ribose 1-phosphate and 1-methylnicotinamide

among cases. Possible implications include altered energy metabolism and/or oxidative phos-

phorylation in the T21 fetal compartment. Existing literature has begun to document pre-

liminary investigations into the association of nicotinate and nicotinamide metabolism with

neurodegenerative disorders like Alzheimer’s disease (AD) and Parkinson’s (Sauve, 2008).

AD, in particular, is highly over-represented in the adult DS population relative to non-DS

individuals and individuals with intellectual disabilities (Grieco, Pulsifer, Seligsohn, Skotko,

& Schwartz, 2015). A study of brain tissue from transgenic mice demonstrating the severe

neuropathology of AD showed increased levels of nicotinamide (Qin et al., 2006). When con-

sidered in conjunction with decreased levels of two confirmed phosphatidylcholines, a class of

compounds showing therapeutic promise in mitigating the severity of cognitive dysfunction

and combating the onset of AD among individuals with DS (Moon et al., 2010), results of

this study may provide particular insight into the fetal origins of the cognitive impairment

and age-related neurodegeneration frequently observed with DS.

5.1 Strengths and Limitations

Sample size represents a key strength of this analysis. A literature search of comparable

studies showed this sample set to be the largest collection of T21 amniotic fluid samples ever

used, to investigator knowledge, for metabolomic profiling, let alone analyzed in conjunc-

tion with paired maternal serum samples. Furthermore, while the synthesis of dual chro-

matography data adds complexity to analysis, the expanded coverage ability offers many

advantages. The differential detection coverage of columns, preferential detection of cer-

tain classes of chemicals between chromatography columns, and reduced cost of analysis

with a dual chromatography setup underscores the value of this approach in comprehensive
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metabolic profiling of the fetal exposome (Soltow et al., 2013; Jones, 2016).

While the volume of available T21 samples and employment of advanced LC-MS procedures

are notable strengths, this study also has important limitations. For example, serum and

amniotic fluid samples were run separately during LC-MS analysis, and this prevented the

calculation of metabolite ratios between paired maternal and fetal samples. Additional limi-

tations included incomplete demographic, maternal exposure, and clinical profiles of subjects

whose samples were analyzed. Such information might have revealed defining characteris-

tics of the subset of T21 mothers whose serum profiles clustered separately from other T21

subjects in HCA; it is currently unknown whether this clustering is the result of a clinically

important unmeasured covariate, temporal variations in serum profiles related to storage

time, or inconsistent sample collection or storage protocols. With respect to the amni-

otic fluid analysis, an important addition to the study would have been the inclusion of

birth outcome data, most demonstrably those related to known DS-associated birth defects.

Lastly, pathway enrichment analysis relied on putative annotations of many discriminatory

metabolites for which confirmed m/z and RT data were not available.

5.2 Future Directions

Pathway enrichment results from analysis of T21 amniotic fluid suggested dysregulation

of steroid hormone biosynthesis and showed pronounced difference in abundance of steroid

glucuronide matches between groups. Follow-up confirmation of these metabolite identities

by tandem mass spectrometry would help illuminate the role of steroid hormones in T21

fetal development (Kaludjerovic & Ward, 2012), possibly within the context of endocrine

abnormalities often observed in DS individuals (Campos & Casado, 2015). Results also in-

dicated perturbation of pathways related to lipid metabolism. Features mapped to linoleate

metabolism were increased in the amniotic fluid of T21 fetuses, while the FC of features

mapped to fatty acid pathways showed inconsistent directionality between T21 groups. Fu-
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ture targeted lipid profiling may elucidate the metabolic consequence of T21 in a developing

fetus within these pathways, as well as confirm the associations observed with select acyl-

carnitines.
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Appendix

I Tables

Table 1. Sample demographic and clinical information.

Fetal chromosomal constitution

All, n = 119a Control, n = 80 T21, n = 39 p-valueb

Maternal race/ethnicity [n (%)] 0.2785
African American 24 (20.2) 19 (23.8) 5 (12.8)
Caucasian 74 (62.2) 49 (61.2) 25 (64.1)
Other 21 (17.6) 12 (15.0) 9 (23.1)

Fetal gender [n (%)] 0.3013
Female 66 (55.5) 47 (58.8) 19 (48.7)
Male 66 (55.5) 47 (58.8) 19 (48.7)

Collection year, MS (median ± IQR) 2007 ± 4.0 2008 ± 5.0 2005 ± 4.5 0.0105
Collection year, AF (median ± IQR) 2007 ± 4.0 2008 ± 4.3 2005 ± 5.0 0.0113
Gestational age, MS [weeks, (mean ± SD)] 17.4 ± 1.6 17.3 ± 1.6 17.6 ± 1.6 0.4478
Gestational age, AF [weeks, (mean ± SD)] 20.5 ± 3.1 20.2 ± 2.9 21.1 ± 3.3 0.1388
Maternal age [years, (mean ± SD)] 30.7 ± 7.7 30.8 ± 7.8 30.4 ± 7.5 0.7661
a One sample (S246) with an extreme feature intensity profile was excluded.
b Two-sided Pearson’s Chi-squared test and t-test performed for nominal and continuous variables, respectively.

Abbreviations: T21, trisomy 21; MS, maternal serum; IQR, interquartile range; AF, amniotic fluid; SD,

standard deviation.

Table 2. PLSDA feature selection and predictive performance using SVM classifier.

10-fold CV BCR

Sample type Mode VIP ≥ 2 (n) Mean SD Permuted mean

Amniotic fluid C18 positive 125 87.31 8.85 50.18
Amniotic fluid HILIC positive 220 88.58 10.69 50.18
Maternal serum C18 positive 324 78.17 16.24 50.16
Maternal serum HILIC positive 502 75.37 15.96 50.19

Abbreviations: PLSDA, partial least squares discriminant analysis; SVM, support vector

machine; CV, cross-validation; BCR, balanced classification rate; VIP, variable importance

in projection; SD, standard deviation.
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Table 3. Enriched metabolic pathways with Mummichog p-value < 0.05 and at least four overlap
metabolites in amniotic fluid and maternal serum based on 345 and 826 discriminatory features,
respectively.

Amniotic fluid

Pathway Overlap size Pathway size p-value

Vitamin B3 (nicotinate and nicotinamide) metabolism 5 19 0.0010
Butanoate metabolism 5 24 0.0016
Linoleate metabolism 4 18 0.0023
Aspartate and asparagine metabolism 9 66 0.0027
Methionine and cysteine metabolism 7 49 0.0034
Androgen and estrogen biosynthesis and metabolism 8 59 0.0034
Pyrimidine metabolism 6 43 0.0053
Glycosphingolipid metabolism 4 26 0.0086
De novo fatty acid biosynthesis 4 28 0.0119
Fatty acid activation 4 29 0.0140
Glycine, serine, alanine and threonine metabolism 6 52 0.0159
Vitamin E metabolism 4 34 0.0296
Purine metabolism 5 47 0.0345
Arginine and proline metabolism 4 37 0.0445

Maternal serum

Pathway Overlap size Pathway size p-value

Glycine, serine, alanine and threonine metabolism 16 49 0.0017
Tryptophan metabolism 17 58 0.0027
Alanine and aspartate metabolism 7 19 0.0034
Hexose phosphorylation 6 18 0.0075
Tyrosine metabolism 20 81 0.0094
Arginine and proline metabolism 10 37 0.0107
Porphyrin metabolism 7 25 0.0150
Urea cycle/amino group metabolism 12 49 0.0188
Butanoate metabolism 6 22 0.0230
β-alanine metabolism 4 13 0.0266
Histidine metabolism 5 18 0.0283
Glycerophospholipid metabolism 10 42 0.0295
Aspartate and asparagine metabolism 14 64 0.0480
Lysine metabolism 6 25 0.0494
Drug metabolism - other enzymes 5 20 0.0496
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Table 4. Representative discriminatory features in second-trimester T21 amniotic fluid matched to
known metabolites by the annotation method indicated.

Metabolite Adduct Mode m/z RT (s) VIP FC

Palmitaldehydea M+Na[1+] HILIC 263.24 61 6.05 2.29
Palmitaldehydea M+Na[1+] C18 263.24 503 3.72 1.92
Stearidonic acida M+H[1+] HILIC 277.21 62 5.62 1.62
Stearidonic acida M+H[1+] C18 277.22 416 4.80 0.95
Pregnenolonea M+H+Na[2+] C18 170.12 181 4.55 0.92
Hexanoylglycineb M+H[1+] HILIC 174.11 63 4.03 1.04
2-Methoxyestrone 3-glucuronidea M+2H[2+] HILIC 239.11 61 3.21 -5.31
2-Methoxy-estradiol-17beta 3-glucuronidea M+2H[2+] HILIC 240.12 93 3.21 5.61
N1N12-Diacetylsperminec M+2H[2+] HILIC 144.12 305 3.13 0.72
N1N12-Diacetylsperminec M+H[1+] HILIC 287.24 305 2.92 0.63
N1N12-Diacetylspermineb M+H[1+] C18 287.24 42 2.73 0.42
N1N12-Diacetylsperminea M+2H[2+] C18 144.13 41 2.11 0.33
Acetyl-carnitined M+Na[1+] HILIC 226.10 129 2.78 3.82
Glutamatea M+H[1+] C18 148.06 45 2.72 -0.21
Valined M+H[1+] HILIC 118.09 196 2.53 -0.30
Estradiola M+H[1+] HILIC 273.18 63 2.51 0.79
Uridinea M+Na[1+] C18 267.06 408 2.49 0.15
Thyminea M+Na[1+] HILIC 149.03 271 2.49 0.45
Thyminea M+K[1+] HILIC 165.01 319 2.29 0.40
Acetylspermidinea M+H[1+] HILIC 188.17 298 2.48 0.65
PC(36:3)d M+H[1+] C18 784.59 558 2.46 -3.52
alpha-D-Ribose 1-phosphatea M+2H[2+] HILIC 116.02 393 2.41 0.36
Propionylcarnitineb M+H[1+] HILIC 218.14 165 2.40 0.54
Argininec M+H[1+] C18 175.12 43 2.38 -0.22
Gabapentinb M+H[1+] C18 172.13 379 2.37 0.21
Taurineb M+H[1+] C18 126.02 49 2.28 1.82
Taurinec 2M+H[1+] HILIC 251.03 160 2.19 0.48
Taurinea M+Na[1+] HILIC 148.00 158 2.17 0.40
Serineb M+H[1+] HILIC 106.05 215 2.28 -0.18
Nandroloneb M+H[1+] C18 275.20 407 2.22 2.03
3-Mercaptolactic acida M+K[1+] HILIC 160.97 208 2.19 0.13
Ornithinea M+Na[1+] HILIC 155.08 123 2.17 -2.36
Ceramide (d18:116:0)b M+H[1+] HILIC 538.52 59 2.15 -0.43
Proline betaineb M+H[1+] C18 144.10 45 2.15 1.98
PC(36:4)d M+H[1+] C18 782.57 569 2.13 -0.76
Porphobilinogenb M+H[1+] HILIC 227.10 135 2.13 -0.28
Butyric acida M+H[1+] HILIC 89.06 310 2.10 0.48
1-Methylnicotinamidea M[1+] HILIC 137.07 232 2.04 0.31
Decanoylcarnitineb M+H[1+] HILIC 316.25 132 2.03 0.41
a Putative annotation by Mummichog pathway analysis.
b Medium confidence (level 2) annotation by xMSannotator.
c High confidence (level 3) annotation by xMSannotator.
d Identity confirmed by comparison of m/z and retention time to previously established standards.

Abbreviations: T21, trisomy 21; RT, retention time; VIP, variable importance in projection; FC, fold change;

PC, phosphatidylcholine.
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Table 5. Mummichog pathway analysis results for enriched glycine, serine, alanine, and threonine
metabolism in second-trimester serum of mothers with T21 pregnancies.

m/z RT (s) Match name(s) Adduct Mode VIP FC

106.05 52 Serinea M+H[1+] C18 3.00 0.61
143.07 329 Choline M+K[1+] C18 2.94 -5.35
90.05 241 Sarcosine; alanine M+H[1+] HILIC 2.76 0.70
90.05 51 Sarcosine; alanine M+H[1+] C18 2.33 0.57
91.06 227 Sarcosine; alanine M(C13)+H[1+] HILIC 2.00 0.57
74.06 283 Aminoacetone M+H[1+] HILIC 2.61 0.85
88.06 292 Arginine M+2H[2+] HILIC 2.59 0.87
175.12 48 Arginine M+H[1+] C18 2.27 0.78
176.12 284 Arginine M(C13)+H[1+] HILIC 2.45 0.72
132.08 227 Creatinea M+H[1+] HILIC 2.50 -0.32
132.08 51 Creatinea M+H[1+] C18 2.47 -0.43
120.06 50 Threoninea M+H[1+] C18 2.38 0.58
172.04 180 Methionine M+Na[1+] HILIC 2.23 -3.41
159.01 426 D-Lactaldehyde M+HCOOK[1+] HILIC 2.23 -1.26
76.02 291 Glycolic acid M[1+] HILIC 2.22 -4.45
75.03 300 Glycine M[1+] HILIC 2.17 -2.89
201.09 117 Ornithine M+HCOONa[1+] HILIC 2.16 1.31
119.09 109 Betaine M(C13)+H[1+] C18 2.10 0.52
a Identity confirmed by comparison of m/z and retention time to previously established standards.

Abbreviations: T21, trisomy 21; RT, retention time; VIP, variable importance in projection; FC,

fold change.
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Fig. 1. KEGG mapping of serum and amniotic fluid features detected by HILIC chromatography
to pathways of amino acid, carbohydrate, and lipid metabolism. Only features tentatively matched
to known KEGG chemicals ([M+H]1+, [M+Na]1+, 10 ppm mass error) present in human reference
pathways were considered. Certain features may be overrepresented if matched to more than one
KEGG compound, and compounds may be classified under several metabolic pathways.
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A B

Fig. 2. Score plots of first three principal components from PCA models of amniotic fluid features
detected by HILIC chromatography (A) and C18 chromatography (B). Control samples (n = 81)
are shown in black, and T21 samples (n = 39) are shown in red. One outlier (S246, circled) was
identified in both columns. Abbreviations: PCA, principal component analysis; T21, trisomy 21.

A B

Fig. 3. Score plots of first three principal components from PCA models of amniotic fluid features
detected by both chromatography columns in control samples (A) and T21 samples (B). Samples
are colored according to year of amniotic fluid collection. Abbreviations: PCA, principal component
analysis; T21, trisomy 21.
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Fig. 4. Score plot of PLSDA model for the HILIC amniotic fluid dataset (A), C18 amniotic fluid
dataset (B), HILIC maternal serum dataset (C), and C18 maternal serum dataset (D). Components
are reflective of variation in adjusted feature intensities between sample classes. Abbreviations:
PLSDA, partial least squares discriminant analysis; T21, trisomy 21; comp, component.
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Fig. 5. (A) Manhattan plots of VIP scores from PLSDA amniotic fluid model (HILIC column)
as a function of m/z (left) and retention time (right). (B) Corresponding Manhattan plots for
C18 amniotic fluid features. The dashed line in each panel indicates selection cutoff (VIP ≥ 2).
Features positively associated with T21 are shown in red; features negatively associated are shown
in green. Abbreviations: VIP, variable importance in projection; neg, negative; pos, positive;
non-sig, non-significant; PLSDA, partial least squares discriminant analysis; T21, trisomy 21.
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Fig. 6. (A) Overlap of PLSDA-selected discriminatory features (VIP ≥ 2) in amniotic fluid across
chromatography columns. (B) Overlap of PLSDA-selected discriminatory features (VIP ≥ 2) in
maternal serum across chromatography columns. Abbreviations: PLSDA, partial least squares
discriminant analysis.
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Fig. 7. Heat map from two-way HCA of 220 PLSDA-selected metabolites (VIP ≥ 2) detected in
amniotic fluid by HILIC chromatography. Clustering of samples is shown on the top axis; clustering
of features is shown on the left axis. Cell shading represents row-standardized log2-transformed
feature intensity. Abbreviations: T21, trisomy 21; HCA, hierarchical cluster analysis; PLSDA,
partial least squares discriminant analysis; VIP, variable importance in projection.
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Fig. 8. Heat map from two-way HCA of 125 PLSDA-selected metabolites (VIP ≥ 2) detected in
amniotic fluid by C18 chromatography. Clustering of samples is shown on the top axis; clustering
of features is shown on the left axis. Cell shading represents row-standardized log2-transformed
feature intensity. Abbreviations: T21, trisomy 21; HCA, hierarchical cluster analysis; PLSDA,
partial least squares discriminant analysis; VIP, variable importance in projection.



40

−10 −5 0 5 10
Row Z−Score

Color Key

Sample

-6       -4      -2        0         2        4        6

Color Key

Row Z-Score

Control
T21

Sample Class

m
/z

 F
ea

tu
re

Fig. 9. Heat map from two-way HCA of 502 PLSDA-selected metabolites (VIP ≥ 2) detected
in maternal serum by HILIC chromatography. Clustering of samples is shown on the top axis;
clustering of features is shown on the left axis. Cell shading represents row-standardized log2-
transformed feature intensity. Abbreviations: T21, trisomy 21; HCA, hierarchical cluster analysis;
PLSDA, partial least squares discriminant analysis; VIP, variable importance in projection.
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Fig. 10. Heat map from two-way HCA of 324 PLSDA-selected metabolites (VIP ≥ 2) detected in
maternal serum by C18 chromatography. Clustering of samples is shown on the top axis; clustering
of features is shown on the left axis. Cell shading represents row-standardized log2-transformed
feature intensity. Abbreviations: T21, trisomy 21; HCA, hierarchical cluster analysis; PLSDA,
partial least squares discriminant analysis; VIP, variable importance in projection.


