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Abstract

Resonance asymptotics for asymptotically hyperbolic

manifolds with warped-product ends

By Pascal Philipp

We study the spectral theory of asymptotically hyperbolic manifolds with

ends of warped-product type. Our main result is an upper bound on the

resonance counting function, with a geometric constant expressed in terms

of the respective Weyl constants for the core of the manifold and the base

manifold defining the ends. As part of this analysis, we derive asymptotic

expansions of the modified Bessel functions of complex order.
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Chapter 1

Introduction

For the eigenvalues of the Laplacian on a compact Riemannian manifold of dimension d,

Weyl’s law states that

#{k :
√
λk ≤ r} = Wrd + o(rd), (1.1)

with a constant W that depends only on d and the volume of the manifold. The goal of

this dissertation is to find an upper bound of the form (1.1) for the counting function of the

discrete spectral data of a certain type of infinite-volume manifolds.

We will consider asymptotically hyperbolic manifolds with warped-product ends (X, g),

with dimX = n+ 1, n ≥ 1. By this we mean that X admits a decomposition

X = K tX0,

where X0 = (0, 1]× Σ with (Σ, h) a compact Riemannian manifold without boundary, and

K is a compact manifold with boundary ∂K ' Σ. The restriction of the smooth metric g

to X0 is of the form

g|X0
=
dx2 + h

x2
. (1.2)

We allow Σ to be disconnected, so that multiple ends can be considered without changing

the notation.

The projection x : X0 = (0, 1]×Σ→ (0, 1] can be continued smoothly onto K, and hence

we can think of it as a function on all of X. The effect of the division by x2 in (1.2) is

illustrated in Figure 1.1, and the general concept behind (1.2) is explained in Appendix A.

In particular, (X, g) is a conformally compact manifold and, moreover, asymptotically hy-

perbolic (see Appendix A for the definitions of these terms).
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x = 0 x = 1

Figure 1.1: An example for n = 1 for the compact Riemannian manifold (X,x2g) and
the boundary-defining function x are on the left. After removing the boundary ∂X and
dividing the metric by x2, we obtain the complete infinite-area Riemannian manifold (X, g).

dx2+dt2

x2

t

x

0 l

1

Figure 1.2: The hyperbolic plane with its metric. Identifying the dashed lines gives the
parabolic cylinder. If n = 1 and l = Vol Σ, then (1.2) is just the restriction of the hyperbolic
metric to the shaded area.

For a general conformally compact, asymptotically hyperbolic manifold, Joshi-Sá Barreto

[20] proved the existence of a product decomposition near infinity with a metric of the form

(1.2) where h = h(x, y, dy), meaning that h could also depend on x. Our restrictions amount

to having a fixed metric h independent of x.

In the n = 1 case, Σ is a circle, and the model X0 is isometric to the flared end of the

parabolic cylinder H2/〈z 7→ z + 1〉 (c.f. Figure 1.2). In higher dimensions X0 will generally

not have constant curvature.

The metric (1.2) is even in the sense introduced in Colin Guillarmou’s Ph.D. thesis [13]

(if we write points on X0 as (x, y) ∈ [0, 1] × Σ, then the flow from the boundary along
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gradx2g(x) is just the identity, and (1.2) in Definition 1.2 of [13] becomes

φ∗(x2g) = dt2 + h,

where h, which for g to be even needs to have only even powers of t in its Taylor expansion

at t = 0, is independent of t). Hence, the resolvent Rg(s) := (∆g − s(n − s))−1 admits a

meromorphic continuation to s ∈ C, with poles of finite rank, by Mazzeo-Melrose [24] and

Guillarmou [13]. We define the resonance set Rg to be the set of poles of Rg(s), repeated

according to multiplicity. The corresponding resonance counting function is

Ng(t) := #
{
ζ ∈ Rg :

∣∣ζ − n
2

∣∣ ≤ t} . (1.3)

In the general asymptotically hyperbolic setting, we know essentially nothing of the res-

onance set beyond the meromorphic continuation result that allows its definition. At this

level of generality, we have no bounds on Ng(t) and no existence results for Rg. The only

general information we have on the distribution of resonances is a result of Guillarmou [14]

that establishes exponentially thin resonance-free regions near the critical line Re s = n
2 . All

of the current resonance counting results for asymptotically hyperbolic metrics assume that

the sectional curvature is constant outside a compact set. Under this stronger assumption,

we have Ng(t) = O(tn+1), as well as a Poisson-type trace formula expressing the regularized

wave trace as a sum over the resonance set ([17, 8, 3]). These results will now be translated

to the asymptotically hyperbolic setting described above.

In order to state the first main theorem, we define the wave 0-trace as follows (as in

[19, 3]). The finite part of a function of ε that admits an expansion as ε → 0 in terms of

log ε and powers of ε is

FP
ε→0

[ m∑
j=1

ajε
−j + a′1 log ε+ a0 + o(1)

]
:= a0.

Let an operator A be given and assume that its integral kernel A(z, z′) with respect to dVg

is continuous. Then, if A(z, z) has an expansion for x → 0 in terms of powers of x, we

define

0-trA := FP
ε→0

∫
{x≥ε}

A(z, z)dVg(z),

where x is to be thought of as a function on all of X, so that K is containend in {x ≥ ε} for ε

sufficiently small. (The definition of the 0-trace depends on the boundary-defining function,
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but note that our choice ρ = x is somewhat canonical. Further we have that differences

arising from different choices of the boundary-defining function cancel out on the left side of

the relative formula in Theorem 1.1.) Now, the wave operator cos
(
t
√

∆g − n2

4

)
is singular

across the diagonal, and the above definition cannot be applied directly. However, the

regularized operator ∫ ∞
−∞

ϕ(t) cos
(
t

√
∆g − n2

4

)
dt,

for ϕ ∈ C∞0 (R) does have a smooth kernel, and hence the wave 0-trace below is to be

understood in a distributional sense.

Theorem 1.1. Assume (X, g) is an asymptotically hyperbolic manifold with warped-product

ends. Let ∆0 denote the Laplacian with Dirichlet boundary conditions on the model end

(X0, g), and R0 the corresponding resonance set. The difference of the regularized wave

traces satisfies

0-tr

[
cos

(
t

√
∆g − n2

4

)]
− 0-tr

[
cos

(
t

√
∆0 − n2

4

)]
=

1

2

∑
ζ∈Rg

e(ζ−n
2

)|t| − 1

2

∑
ζ∈R0

e(ζ−n
2

)|t|,

in the sense of distributions on R− {0}.

We define the scattering matrix Sg(s) of (X, g) as in [20]: For s 6= n
2 with Re s = n

2 and

for f ∈ C∞(∂X), there exists a unique solution u to (∆g − s(n− s))u = 0 of the form

u = xn−sF + xsG,

where F,G ∈ C∞(X) and F|∂X = f . Then, for s = n
2 + iy, y 6= 0, the scattering matrix is

defined by

Sg(s) : f 7→ g,

where g = G|∂X . This is a family of pseudodifferential operators on Σ = ∂X, and it extends

meromorphically to s ∈ C.

For asymptotically hyperbolic metrics, the relationship between resonances and poles

of the normalized scattering matrix Γ(s − n
2 )
(
Γ(n2 − s)

)−1
Sg(s) was established in [19,

6, 14]. In particular, Guillarmou [14] showed that Γ(s − n
2 )
(
Γ(n2 − s)

)−1
Sg(s) may have

‘conformal’ poles s ∈ n
2 −N which do not correspond to resonances. However, in the case of

asymptotically hyperbolic metrics of warped-product type, we will see that these conformal
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poles are ruled out in any dimension. Hence the multiplicities of scattering poles agree with

those of the resonance set, except possibly at the finitely many points s where s(n − s) is

an eigenvalue of ∆g.

One application of the Poisson formula of Theorem 1.1 is a Weyl asymptotic for the

relative scattering phase, which is defined as the logarithm of the Fredholm determinant of

Sg(s)S0(s)−1 on the critical line Re s = n
2 . Because of the connection between resonances

and scattering poles, we can follow [4] and use this asymptotic in conjunction with a contour

integral involving detSg(s)S0(s)−1 to produce a precise upper bound on the resonance

counting function.

To state the bound on the resonance counting function, we introduce the classical Weyl

constants for the compact manifolds K and Σ,

WK :=
Vol(K, g)

(4π)
n+1
2 Γ(n+3

2 )
, WΣ :=

Vol(Σ, h)

(4π)
n
2 Γ(n+2

2 )
.

With these definitions, we have the asymptotic (1.1) with W = WK and W = WΣ for the

counting functions of the eigenvalues of the Dirichlet Laplacian on (K, g) and, respectively,

the Laplacian on (Σ, h). For argα ∈ [0, π2 ], define

ρ(α) :=
√
α2 + 1 + α log

(
i

α+
√
α2 + 1

)
,

where we are using the principal branches of the square root and logarithm. Denote by

α0 ≈ 1.509 the point on the positive real axis satisfying Re ρ(α0) = 0, and let the curve γ

be defined as the portion of {Re ρ(α) = 0} that connects i and α0 (see Figure 6.1).

Theorem 1.2. For (X, g) an asymptotically hyperbolic metric with warped-product ends,

(n+ 1)

∫ a

0

Ng(t)

t
dt ≤

[
2WK + cnWΣ

]
an+1 + o(an+1), (1.4)

where the dimensional constant is

cn :=
2n

(n+ 1)π

∫
γ

|ρ′(α)|
|α|n+1 |dα|+

α−n0

n+ 1

+
n(n+ 1)

π

∫ π
2

−π2

∫ ∞
0

[−Re ρ(xei|θ|)]+
xn+2

dx dθ.

(1.5)

The integrated counting function that appears in (1.4) is common usage in applications
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of Jensen’s formula in complex analysis. The bound (1.4) implies a corresponding bound for

Ng(t), at the cost of an extra factor of e in the constant. However, if (1.4) is an asymptotic,

i.e. if we have equality modulo o(an+1) in (1.4), then it is equivalent to an asymptotic for

Ng(t) with the same constant.

This thesis is organized as follows. We start by computing the spectral operators of the

Dirichlet Laplacian on X0 (Ch. 2). The modified Bessel functions that appear in the explicit

formulas for the components of these operators will then be analyzed carefully (Ch. 3).

Then we will establish a suboptimal bound on the growth of Ng(t), using the Fredholm

determinant method (Ch. 4). This crude estimate then allows to apply the methods used

in the hyperbolic-near-infinity case in [3] to prove Theorem 1.1 (Ch. 5). For Theorem 1.2,

we first show that the counting function N0(t) for R0 satisfies the exact asymptotic

N0(t) =

[
2n

(n+ 1)π

∫
γ

|ρ′(α)|
|α|n+1 d |α|+

α−n0

n+ 1

]
WΣ t

n+1 +O
(
tn+ 1

3
)
,

(§6.1). Then we bound the relative scattering determinant (which is defined in Ch. 5) in

a subset of the half-plane {Re s > n
2 } (§6.2). Lastly, we use a relative counting formula to

obtain the sharper estimate for Ng(t) that is stated in Theorem 1.2 (§6.3).



Chapter 2

The model case

The model space is X0 := (0, 1]× Σ, where (Σ, h) is a compact n-dimensional Riemannian

manifold without boundary. The metric on X0 is the warped product

g0 :=
dx2 + h

x2
,

and for the corresponding Laplacian

∆0 = −(x∂x)2 + nx∂x + x2∆h,

we impose Dirichlet boundary conditions on {x = 1}. By the scale-invariance of the dx2

component of g0, imposing the boundary condition at some other value x = b would be

equivalent to rescaling h b2h.

The Laplacian ∆h on the compact manifold Σ has discrete spectrum and a complete

orthonormal basis of eigenfunctions. We index these eigenfunctions with the positive square

roots of the corresponding eigenvalues, that is

∆hφλ = λ2φλ.

Eigenvalues of higher multiplicity are allowed, even though this is not reflected in the above

notation. If we separate variables by setting w = u(x)φλ, the equation (∆0−s(n−s))w = 0

translates to the coefficient equation[
−(x∂x)2 + nx∂x + λ2x2 − s(n− s)

]
u = 0. (2.1)

7
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This is a modified Bessel equation, with the Bessel parameter given by

ν := s− n
2 .

To simplify formulas, we will be making this identification throughout this dissertation and

switch freely between s and ν.

The general solution to (2.1) is a linear combination of the terms x
n
2 I±ν(λx) for λ > 0

and x
n
2
±ν for λ = 0. As x→ 0 the Bessel function has asymptotic

Iν(λx) ∼ 1

Γ(ν + 1)

(
λx

2

)ν
, (2.2)

for ν /∈ −N. For future use we single out the ‘outgoing’ solutions

u+
λ (s;x) := x

n
2 Iν(λx) for λ > 0,

u+
0 (s;x) := xs,

which for ν /∈ −N have asymptotics proportional to xs as x→ 0. Solutions that satisfy the

boundary condition at x = 1 are given by

u0
λ(s;x) :=

π

2 sinπν
x
n
2
[
Iν(λ)I−ν(λx)− I−ν(λ)Iν(λx)

]
for λ > 0,

u0
0(s;x) :=

1

2ν

[
xn−s − xs

]
.

The prefactor in u0
λ(s) (λ > 0) is included to cancel zeros that would otherwise occur at

ν ∈ Z, where we have the symmetry I−ν(z) = Iν(z). In terms of the second standard

solution Kν(z) of the modified Bessel equation, which is defined by (3.11), we have

u0
λ(s;x) = x

n
2
[
Iν(λ)Kν(λx)−Kν(λ)Iν(λx)

]
, λ > 0.

Similarly, the factor (2ν)−1 in u0
0(s) cancels the zero that would otherwise occur at s = n

2 .

For later use, recall Euler’s reflection formula,

π

sinπν
= Γ(ν)Γ(1− ν).

We can now express the model resolvent, Poisson kernel, and scattering matrix in terms

of the solutions u+
λ and u0

λ. The construction of the resolvent or Green’s function in the

following section is a standard computation.
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2.1 Resolvent

We write points on the model ends as z = (x,w) ∈ (0, 1] × Σ, and, using the orthonormal

basis {φλ}|λ2∈σ(∆h) of L2(Σ), our ansatz for the kernel of the model resolvent is

R0(s;x, ω, x′, ω′) :=
∑
λ

aλ(s;x, x′)φλ(ω)φλ(ω′). (2.3)

In order to find this integral kernel with respect to the Riemannian volume measure of X0,

we note that

dVg(z) = x−(n+1) dx dVh(w), (2.4)

and that the defining property of the resolvent is

(
∆0 − s(n− s)

)
R0(s) = I. (2.5)

Applying (2.5) to v(x)φλ(w), where v ∈ C∞0 ((0, 1]), leads to[
−(x∂x)2 + nx∂x + λ2x2 − s(n− s)

]
aλ(s;x, x′) = xn+1δ(x− x′). (2.6)

The functions aλ will further need to satisfy the boundary conditions aλ(s; 1, x′) = 0 and,

for ν /∈ −N, aλ(s;x, x′) ∼ c(s, x′)xs as x → 0. The reasoning behind the latter condition

will be explained at the end of this section.

In order to conform to (2.6), we set

aλ(s;x, x′) = Aλ(s)

u+
λ (s;x)u0

λ(s;x′) x ≤ x′

u0
λ(s;x)u+

λ (s;x′) x ≥ x′,
(2.7)

where the constants Aλ(s) are to be determined. Note that the boundary conditions for aλ

are met. The kernels (2.7) are symmetric, continuous, and smooth away from the diagonal

with [
−(x∂x)2 + nx∂x + λ2x2 − s(n− s)

]
aλ(s;x, x′) = 0 for x 6= x′. (2.8)

Now fix x′ ∈ (0, 1] and define the distribution ωx′ on (0, 1] by integration with respect to x

against the left hand side of (2.6). Integration by parts shows that ωx′ has order at most

2, and (2.8) means that it is supported on {x′}. Hence ωx′ is of the form

ωx′ = c0δx′ + c1δ
(1)
x′ + c2δ

(2)
x′ ,



10

where δ
(k)
x′ (ψ) = ψ(k)(x′). It remains to choose Aλ(s) so that c0 = (x′)n+1, and to show that

c1 = c2 = 0.

For ε′ > 0 sufficiently small so that x′−ε′ > 0, and for any test function ψ ∈ C∞0 ((0, 1+ε′])

we have

ωx′(ψ) =

∫ x′+ε

x′−ε

[
− xn+1∂x

(
x1−n∂xaλ(s;x, x′)

)
+
(
λ2x2 − s(n− s)

)
aλ(s;x, x′)

]
ψ(x) dx,

(2.9)

for any ε ∈ (0, ε′). (The coefficient functions aλ are well-defined for x > 1 and (2.8) is valid

there as well; we can make use of this in order to deal with the case x′ = 1 simultaneously.)

Note that ∂xaλ(s;x, x′) is defined away from x′ and bounded in a neighborhood of x′. Hence,

if ψ0 is constantly equal to 1 in a neighborhood of x′, letting ε→ 0 in (2.9) gives

c0 = lim
ε→0

∫ x′+ε

x′−ε
−xn+1 ∂x

(
x1−n∂xaλ(s;x, x′)

)
dx

= −Aλ(s) (x′)2W
[
u+
λ (s;x), u0

λ(s;x)
]
|x=x′

,

where W denotes the Wronskian. Using the definition of the solutions u+
λ (s) and u0

λ(s) and

the formula for the Wronskian of Iν(z) and Kν(z) (see, for example [27, (10.28.2)]), we find

Aλ(s) :=
1

Iν(λ)
for λ > 0,

A0(s) := 1.

(2.10)

Applying (2.9) to (x− x′)ψ0, we obtain

c1 = − lim
ε→0

∫ x′+ε

x′−ε

(
xn+1(x− x′)

)
∂x
(
x1−n∂xaλ(s;x, x′)

)
dx

= − lim
ε→0

ε
[
(x′ + ε)2 ∂xaλ(s;x′ + ε, x′) + (x′ − ε)2 ∂xaλ(s;x′ − ε, x′)

]
= 0,

and c2 = 0 follows similarly. Hence the definitions (2.10), (2.7) and (2.3) indeed give the

resolvent on the model end X0.

From the explicit formulas for aλ(s;x, x′) we can read off the model resonance set,

R0 =
⋃

λ2∈σ(∆h)
λ 6=0

{
s ∈ C : Is−n

2
(λ) = 0

}
. (2.11)
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Figure 2.1: Resonance plot for the model case X0 = (0, 1]×S2. The thin lines indicate the
spherical harmonic mode l, starting from l = 1 in the bottom right corner. The multiplicity
on each line is 2l + 1.

For any asymptotically hyperbolic metric, resonances with Re s ≥ n
2 could only lie in the

interval [n2 , n], by the positivity of the Laplacian and the absence of embedded eigenvalues

([23]). Since it is clear from the classical power series definition that Iν(z) > 0 for z > 0

and ν ≥ 0, the resonance set R0 lies completely in the half-plane Re s < n
2 . An example

of the model resonance set is shown in Figure 2.1 (self-adjointness implies a conjugation

symmetry across the real axis).

We conclude the discussion of the resolvent with a justification of our choice to use u0
λ(s)

and u+
λ (s), rather than u0

λ(s) and u+
λ (n− s), for its construction. From (2.4) we derive that

xs ∈ L2(X0) for Re s > n
2 . Consequently

R0(s) : L2(X0)→ L2(X0) for Re s > n
2 ,

and we see that the condition aλ(s;x, x′) ∼ c(s, x′)xs at x = 0 amounts to choosing {Re s >
n
2 } to be the physical half-plane of the modified resolvent R(s) = (∆0 − s(n− s))−1.

2.2 Poisson operator

The Poisson operator E0(s) maps functions on Σ to solutions of (∆0 − s(n − s))u = 0 on

X0. These solutions are not actually eigenfunctions, since they do not lie in L2(X0), and

we call them generalized eigenfunctions. The kernel of E0(s) is obtained from the resolvent
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by setting

E0(s; z, ω′) := lim
x′→0

x′
−s
R0(s; z, z′),

where z′ = (x′, ω′). We can thus derive from (2.3) the decomposition

E0(s;x, ω, ω′) =
∑
λ

bλ(s;x)φλ(ω)φλ(ω′),

where

bλ(s;x) = lim
x′→0

x′
−s
aλ(s;x, x′)

= Aλ(s)u0
λ(s;x) lim

x′→0

[
x′
−s
u+
λ (s;x′)

]
.

By the asymptotic (2.2) and for ν /∈ −N0, this reduces to

bλ(s;x) =
1

Γ(ν + 1)

(
λ

2

)ν u0
λ(s;x)

Iν(λ)
for λ 6= 0,

b0(s;x) =
1

2ν

[
xn−s − xs

]
.

(2.12)

One can check that given f ∈ C∞(Σ), we have

(
∆0 − s(n− s)

)
E0(s)f = 0.

This corresponds to the action of the classical Poisson operator for bounded domains. How-

ever, while the classical Poisson operator produces solutions with prescribed boundary data

f , E0(s) maps to functions with a certain asymptotic behavior as x→ 0. This asymptotic

behavior is the subject of the next section.

2.3 Scattering matrix

The scattering matrix S0(s) is derived from the Poisson operator through a two-part asymp-

totic. For f ∈ C∞(Σ) and ν /∈ Z we have

(2s− n)E0(s)f ∼ xn−sf + xsS0(s)f, (2.13)

as x→ 0. In the language of time-independent scattering theory, the terms with xn−s and

xs in (2.13) are called the incoming and the outgoing part respectively. S0(s) is diagonalized

by the eigenfunctions {φλ}|λ2∈σ(∆h), and we will use [S0(s)]λ to denote the corresponding
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eigenvalues.

From (2.12), we find that for ν /∈ Z we have

[S0(s)]λ =

(
λ

2

)2ν Γ(−ν)

Γ(ν)

I−ν(λ)

Iν(λ)
for λ 6= 0,

[S0(s)]0 = −1.

(2.14)

By meromorphic continuation (2.14) extends to ν ∈ Z, where the Gamma factors cause

zeros and poles. The formulas (2.14) reflect the general symmetry S(n− s) = S(s)−1 of the

scattering matrix. The factors Γ(−ν)/Γ(ν) appear in each eigenvalue λ > 0, and hence give

rise to infinite-order zeros and poles of S0(s). Joshi-Sá Barreto [20] showed that Γ(−ν)/Γ(ν)

is contained as a factor in the scattering matrix of any asymptotically hyperbolic manifold.

The scattering poles of (X0, g0) are defined as the poles of the normalized scattering

matrix,

S̃0(s) :=
Γ(s− n

2 )

Γ(n2 − s)
S0(s).

In general, the set of scattering poles can differ from the resonance set at the points s ∈ n
2−N

and at the finite number of points s so that s(n− s) ∈ σp(∆) ⊂ (0, n
2

4 ). For the model case,

since I−ν(z) 6= 0 for Re ν < 0 and z > 0, as noted above, we see that the set of scattering

poles is also given by R0. Hence we have seen through explicit computations that S0(s) does

not have any of the ‘conformal’ poles mentioned in the introduction. Since their presence

depends only on the structure of the metric at infinity, the same is true for the scattering

matrix of (X, g).



Chapter 3

Bessel function estimates

Our arguments rely in large part on precise estimates for the model spectral operators

discussed in Chapter 2. This means we need approximations of the Bessel functions Iν(z)

and Kν(z) when both ν and z are large. The estimates given here follow from general

techniques developed in Olver [28]. We need asymptotics for Re ν ≥ 0. By the conjugation

symmetry, Iν̄(z) = Iν(z) for real z, it suffices to consider ν in the first quadrant. To develop

the asymptotics we will use λ as the large parameter, setting ν = λα and z = λx.

The asymptotic formulas below are essentially derived from a Liouville transformation

that takes the modified Bessel equation into a form similar to the Airy equation. The

function u(x) =
√
λx I±λα(λx) satisfies the differential equation

∂2
xu =

[
λ2f(α, x) + g(x)

]
u, (3.1)

where

f(α, x) :=
α2 + x2

x2
, g(x) := − 1

4x2
.

In the following we consider λ > 0, argα ∈ [0, π2 ], and x ∈ R+ := (0,∞).

Our goal is to understand the behavior of u for large λ, and hence the zeros of f are

considered to be turning points for this equation. The turning point with α in the first

quadrant occurs at α = ix. To accomplish the Liouville transformation, we introduce

ρ(α, x) :=
√
α2 + x2 + α log

(
ix

α+
√
α2 + x2

)
. (3.2)

As noted above, we can restrict our attention to α in the first quadrant, so ρ(α, x) is well-

defined using principal branches. (For the sake of comparison, we note that ρ is related to

14
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α
ρ

ζ

Figure 3.1: Illustration of the dependence of ρ and ζ on α, for argα ∈ [0, π2 ].

the ξ introduced in [28, §10.7.3] by ρ = αξ(x/α) + iαπ/2.) We then set

ζ := (3
2ρ)

2
3 , (3.3)

using the [0, 2π) branch of log to define the power. With α in the first quadrant, ρ and ζ

occupy the sectors arg ρ ∈ [0, 3π
2 ] and arg ζ ∈ [0, π], as illustrated in Figure 3.1. The turning

point at α = ix corresponds to the corner at ρ = 0. The change of variables from ρ to ζ

resolves this singularity.

By these definitions of ζ and f , we have

∂ζ =
( ζ
f

) 1
2
∂x.

Hence, for w = (fζ−1)
1
4u, the equation (3.1) for u transforms to

∂2
ζw =

(
λ2ζ + φ

)
w. (3.4)

The error term is given by

φ(α, x) :=
ζg

f
− 1

4
∂2
x

( ζ
f

)
+

3

16

( ζ
f

)−1(
∂x
ζ

f

)2

=
5

16

1

ζ2
+ ζ

4α2x2 − x4

4(α2 + x2)3
.

(3.5)

Without the error term, (3.4) would be the Airy equation, and we will show that any

solution of (3.4) can be represented as an Airy function plus an error we can control. This

leads to the following:
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Proposition 3.1. There exists a constant M > 0 such that for λ |α| ≥M we have

Iλα(λx) = 2
1
2λ−

1
3 (−i)λαe−

πi
6

(
ζ

α2 + x2

) 1
4

Ai
(
e−

2πi
3 λ

2
3 ζ
) [

1 +O
(
(λ |α|)−

2
3
)]
,

Kλα(λx) = 2
1
2πλ−

1
3 iλα

(
ζ

α2 + x2

) 1
4 [

Ai
(
λ

2
3 ζ
)

+ 〈λ
2
3 ζ〉−

1
4 e−λRe ρO

(
(λ |α|)−

2
3
)]
,

uniformly for argα ∈ [0, π2 ] and x ∈ R+.

The proof of Propositon 3.1 will be deferred to the end of this chapter. The slightly more

complicated form of the asymptotic expansion of the K-Bessel function is due to the zeros

of the Airy function on the negative real axis.

3.1 Applications of Proposition 3.1

For the estimates below, it is convenient to rescale ρ to

ψ(ν, λx) := λρ(α, x)

=
√
ν2 + λ2x2 + ν log

(
iλx

ν +
√
ν2 + λ2x2

)
.

(3.6)

We can now combine Proposition 3.1 with the basic Airy function estimates recalled in

Appendix B. In the I-Bessel case, (B.1) applies for all α in the first quadrant. For the

K-Bessel function, we also need (B.3). This yields the following:

Corollary 3.2. For arg ν ∈ [0, π2 ], λ > 0, and x ∈ R+, with ν sufficiently large, we have

Iν(λx) =
1√
2π

(ν2 + λ2x2)−
1
4 e−iπν/2eψ

[
1 +O(ψ−1) +O(ν−

2
3 )
]
. (3.7)

(Recall that ψ = 0 for ν = iλx.)

Similarly, for ν sufficiently large and arg(ν−iλx) ≤ π
2 −ε (which implies arg ζ ∈ [0, π−δ]

for some δ depending on ε),

Kν(λx) =

√
π

2
(ν2 + λ2x2)−

1
4 eiπν/2e−ψ

[
1 +O(ψ−1) +O(ν−

2
3 )
]
. (3.8)

If arg(ν − iλx) ∈ [π2 − ε,
π
2 ], then (3.8) is replaced by

Kν(λx) =

√
π

2
(ν2 + λ2x2)−

1
4 eiπν/2

[(
e−ψ + ieψ

)(
1 +O(ψ−1)

)
+ e−ψO(ν−

2
3 )
]
.
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(Under this condition, Reψ ≤ 0, so the extra term ieψ is O(1) and does not affect upper

bounds for Kν .)

These estimates do not apply near the ‘turning point’ ν = iλx of the transformed Bessel

equation, where ψ = 0. We use the symbol � to indicate that the absolute value of the ratio

of the two sides is bounded above and below by non-zero constants that do not depend on

the variables (and similarly: � and �).

Corollary 3.3. For arg ν ∈ [0, π2 ] and x in a compact interval of R+, suppose that ν is

close to iλx in the sense that |ψ| < c∗ with c∗ sufficiently small. Under these conditions,

for |ν| sufficiently large we have

Iν(λx) � (λx)−
1
3 e−iπν/2,

Kν(λx) � (λx)−
1
3 eiπν/2.

(3.9)

Proof. To estimate near the turning point, suppose that α = ix + η with Re η ≥ 0, and

ν = λα as above. For η sufficiently small and x > 0 we have

ρ =
2
√

2

3
x−

1
2 (iη)

3
2 (1 +O(η)). (3.10)

This means ψ � λx−
1
2 η

3
2 , so that |ψ| ≤ c∗ corresponds to |η| � λ−

2
3x

1
3 with a constant

that depends only on c∗. In particular, for any choice of c∗, (3.10) applies if λ is sufficiently

large.

Consider the estimates of Proposition 3.1, and note that the assumption |ψ| ≤ c∗ means

that |λ
2
3 ζ| is bounded by some constant depending only on c∗. Hence by our choice of c∗

we can ensure that λ
2
3 ζ avoids the first zero of the Airy function, so that the Airy function

factors in Proposition 3.1 are bounded away from zero. We also note that

ζ

α2 + x2
� x−

4
3 ,

for η sufficiently small. The estimates then follow immediately from Proposition 3.1.

In addition to the estimates given above for Iν , Kν , which extend to Re ν ≥ 0 by conjuga-

tion, we will need to be able to control the ratio I−ν/Iν . This ratio appears, for example, in

the scattering matrix. We can derive the necessary estimates from the results above using

the identity

I−ν(z) = Iν(z) +
2 sinπν

π
Kν(z). (3.11)
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ψ

iπλα0/2

λ

iλx

ν

Imψ ≤ 0

Reψ < −b∗
Imψ ≥ 0

Reψ > b∗

Figure 3.2: Regions for the estimates in Lemmas 3.4 and 3.5. The red zone contains the
non-trivial zeros of I−ν(λx).

We first consider estimates away from the zeros of I−ν(λx).

Lemma 3.4. Assume that arg ν ∈ [0, π2 ], λ > 0, x is restricted to a compact interval of R+,

and |ν| ≥ M , with M sufficiently large. There exist constants δ > 0 and c∗ > b∗ > 0 such

that:

(i) For either Reψ > b∗ or |ψ| < c∗,

I−ν(λx)

Iν(λx)
� 1. (3.12)

(ii) For Imψ ≥ 0, Reψ < −b∗ and (for the lower bound) d(ν,N0) ≥ δ,

I−ν(λx)

Iν(λx)
� e−2ψ. (3.13)

(iii) For Imψ ≤ 0 (which occurs only when Reψ ≤ 0 also),

I−ν(λx)

Iν(λx)
� e−2ψ. (3.14)

The constants in (3.12), (3.13), and (3.14) depend only on M , c∗, b∗, and δ.
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Proof. By (3.11) we need to estimate

I−ν(z)

Iν(z)
= 1 +

2 sinπν

π

Kν(z)

Iν(z)
. (3.15)

The approximations of Proposition 3.1 lead to

I−ν(λx)

Iν(λx)
= 1 + e

2πi
3
(
1− e2πiν

)[Ai
(
(3

2ψ)
2
3

)
+ 〈(3

2ψ)
2
3 〉−

1
4 e−ψ O(ν−

2
3 )
]

(
1 +O(ν−

2
3 )
)

Ai
(
e−

2πi
3 (3

2ψ)
2
3

) . (3.16)

(i) For Imψ � λ (which is implied by |ψ| < c∗ and by Imψ ≤ 0), we can drop the term

e2πiν in (3.16), and applying (B.2) to Ai
(
(3

2ψ)
2
3

)
in the denominator yields

I−ν(λx)

Iν(λx)
= e

πi
3

Ai
(
e−

4πi
3 (3

2ψ)
2
3

)
+ 〈(3

2ψ)
2
3 〉−

1
4 e−ψO(ν−

2
3 )

Ai
(
e−

2πi
3 (3

2ψ)
2
3

) [
1 +O(ν−

2
3 )
]

+O(ν−
2
3 ). (3.17)

Since Ai(0) 6= 0, the asymptotic (3.12) for |ψ| < c∗ follows if c∗ is sufficiently small.

In the case Reψ > b∗, we have for the arguments of the Airy functions in Proposition 3.1

that

arg(e−
2πi
3 λ

2
3 ζ) ∈ [−2π

3 ,−
π
3 ], arg(λ

2
3 ζ) ∈ [0, π3 ].

Hence, when applying (B.1) in the derivation of (3.7) and (3.8), we can use ε = π
3 and

ε = 2π
3 (c.f. Appendix B) to obtain the constants 0.79 and 0.12 for the bounds on the

respective O(ψ−1) error terms. Then (3.7) and (3.8) show that for |ψ| ≥ c∗,Reψ > b∗ and

|ν| ≥M we have ∣∣∣∣2 sinπν

π

Kν(λx)

Iν(λx)

∣∣∣∣ < e−2b∗
∣∣∣1 +O(ν−

2
3 )
∣∣∣ c∗ + 0.12

c∗ − 0.79
,

and, comparing to (3.15), the claim follows if b∗ is sufficiently large. Since the first zero of

Ai(w) occurs at w ≈ −2.338, we conclude that b∗ < c∗ can be satisfied.

(ii) For |ψ| ≥ c∗, Imψ ≥ 0, Reψ < −b∗, Corollary 3.2 gives

2 sinπν

π

Kν(λx)

Iν(λx)
= i(1− e2πiν)e−2ψ

(
1 +O(ν−

2
3 )
)(

1 +O(ψ−1)
)
,

where the 1 + O(ψ−1) error is the ratio of the corresponding terms in (3.8) and (3.7), and

is bounded below by (c∗ − 0.79)/(c∗ + 0.12). Hence, if Reψ < −b∗ and provided δ is not

too small, the K/I term dominates (3.15).
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(iii) Under the assumption Imψ ≤ 0, the arguments of the Airy functions in (3.17) lie in

|argw| ≤ 2π
3 . We apply (B.1) to obtain

I−ν(λx)

Iν(λx)
= ie−2ψ

(
1 +O(ψ−1) +O(ν−

2
3 )
)

+O(ν−
2
3 ).

For |ψ| ≥ c∗ and M sufficiently large, the multiplicative error term is bounded below by

(c∗ − 0.79)/(c∗ + 0.12). This completes the proof.

Lemma 3.4 leaves out a region where |ψ| ≥ c∗, Imψ ≥ 0 and |Reψ| ≤ b∗, as illustrated

in Figure 3.2. In this zone lower bounds are more delicate because it contains a non-trivial

portion of the zero set

Zλx := {ν : I−ν(λx) = 0} .

Lemma 3.5. Assume that arg ν ∈ [0, π2 ], x is restricted to a compact interval of R+, and

|ν| ≥ M , with M large enough that the estimates from Proposition 3.1 apply, and that

Imψ ≥ 0 and |Reψ| ≤ b∗. Then ∣∣∣∣I−ν(λx)

Iν(λx)

∣∣∣∣ ≤ CM,b∗ .

If in addition we assume that d(ν,Zλx) ≥ 〈ν〉−β for some β > 0, then

log

∣∣∣∣I−ν(λx)

Iν(λx)

∣∣∣∣ ≥ −cM,β |ν| log |ν| .

Proof. By the estimates in Lemma 3.4, we can see that for |ν| ≥ M with M sufficiently

large, ∣∣∣∣I−ν(λx)

Iν(λx)

∣∣∣∣ = O(1),

for ν on the boundary of the region in question, with constants that are independent of ν

and λ. The upper bound follows immediately.

For the lower bound we apply the minimum modulus theorem in the form [21, Thm 1.11]

to f(ν) := Iν(λx)/I0(λx) (normalized so f(0) = 1). For η > 0 sufficiently small and m > 0

fixed, inside the disk |ν| ≤ mλ, but excluding a set of disks whose radii sum to at most

4mηλ, we have

log

∣∣∣∣Iν(λx)

I0(λx)

∣∣∣∣ > −(3 + log
3

2η

)
log

(
sup

|z|=2meλ

∣∣∣∣Iz(λx)

I0(λx)

∣∣∣∣
)
. (3.18)
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Since

|Reψ(ν, λx)| = O(λ), for |ν| ≤ Cλ,

we can apply Corollary 3.2 (or Corollary 3.3 in case 2me is close to 1) and (3.11) to deduce

that for any m > 0,

log |Iν(λx)| ≤ Cmλ, for |ν| ≤ 2meλ,

for λ sufficiently large. For the I0 term the standard Bessel function asymptotic gives

I0(λx) ∼ (2πλx)−1/2eλx. Combining these estimates with (3.18) thus gives a lower bound

log |Iν(λx)| > −cm(1 + log η−1)λ, (3.19)

for |ν| ≤ mλ, excluding a set of disks whose radii sum to at most 4mηλ.

Now we wish to apply the estimate to the region described in the lemma, in which |ν| � λ
and d(ν,Zλx) ≥ 〈ν〉−β. We can fix m independently of λ and choose η = κλ−β−1. For κ

sufficiently small, the hypotheses of (3.19) will be satisfied for all ν, λ in the region of

interest. For λ sufficiently large, the claimed lower bound then follows from (3.19), with

the extra log |ν| coming from the variable choice of η.

3.2 Proof of Proposition 3.1

We begin by making an ansatz for solutions to (3.4), in the form

wσ := Ai
(
λ

2
3 e

2πiσ
3 ζ
)

+ hσ(λ, α, x), (3.20)

for σ ∈ {−1, 0, 1}. The differential equations for the error terms follow directly from (3.4),

(∂2
ζ − λ2ζ)hσ = φ

[
hσ + Ai

(
λ

2
3 e

2πiσ
3 ζ
)]
. (3.21)

Our goal is to derive bounds on hσ from this equation.

Step 1. To determine the appropriate boundary conditions for (3.21), we need to identify

the modified Bessel functions I and K with the wσ in the ansatz (3.20). As |z| → ∞,

the Airy function Ai(z) decreases exponentially in the sector |arg z| < π
3 , and it increases

exponentially for |arg z| ∈ (π3 , π). Note that ρ ∼ x for x → ∞, and consequently |ζ| → ∞
with arg ζ → 0 in this limit. Kλα(λx) decays exponentially for x→∞. Hence the equation

(
fζ−1

) 1
4
√
xKλα(λx) = cK(λ, α)wσ(λ, α, x), (3.22)
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implies σ = 0 as well as the boundary condition

h0 = O(x−2) for x→∞.

On the other hand, if Reα > 0, then Iλα(λx) → 0 as x → 0, and for Reα = 0 we have

Iλα(λx) = O(1). For x → 0 we have ρ ∼ α log x, and consequently x → 0 takes ζ → ∞ in

the sector
[

2π
3 , π

]
. This shows that we need σ = −1 in (3.20) for an approximation of the

I-Bessel function.

As the two cases are quite similar, in the following we will present the detailed arguments

only for the case σ = 0. We then indicate briefly how to handle the σ = −1 case at the end.

Step 2. The next step is to transform the equation (3.21) with σ = 0 into an integral

equation. Note that for the homogeneous version of (3.21) we can use the independent

solutions

Ai
(
λ

2
3 ζ
)
, Ai

(
λ

2
3 e−

2πi
3 ζ
)
.

From the well-known formula for the Wronskian of Airy functions (see, e.g. [27, (9.2.8)]),

we have

W
[
Ai(z),Ai(e±

2πi
3 z)

]
=

1

2π
e∓

iπ
6 .

If we apply the method of variation of parameters to (3.21), treating the entire right-hand

side as the source term, and taking into account the boundary condition h0(x) = O(x−2)

as x→∞, then the result is a recursive integral equation,

h0(λ, α, x) =
−2π

e
iπ
6 λ

2
3

∫ ∞
x

K(x, y)φ(y)
[
h0(λ, α, y) + Ai

(
λ

2
3 ζ(y)

)]√f(y)

ζ(y)
dy, (3.23)

where

K(x, y) := Ai
(
λ

2
3 ζ(y)

)
Ai
(
λ

2
3 e−

2πi
3 ζ(x)

)
−Ai

(
λ

2
3 e−

2πi
3 ζ(y)

)
Ai
(
λ

2
3 ζ(x)

)
.

Step 3. We next want to estimate the kernel appearing in the integral equation (3.23),

so that we can apply the method of successive approximations as outlined in Appendix C.

Note that (B.1) and (B.3) imply a global upper bound,

|Ai(w)| ≤ C〈w〉−
1
4 exp

(
− Re

[
2
3w

3
2
])
,

valid for all w ∈ C. This estimate and the monotonicity of Re ρ(α, . ) imply that for x ≤ y
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we have

|K(x, y)| ≤ p(x)q(y),

where

p(x) = p(λ, α, x) = 〈λ
2
3 ζ(α, x)〉−

1
4 e−λRe ρ(α,x),

q(y) = q(λ, α, y) = c〈λ
2
3 ζ(α, y)〉−

1
4 eλRe ρ(α,y).

The supremum

κ := sup
x∈R+

p(x)q(x),

is bounded independently of λ and α.

Applying the method of successive approximations from Appendix C to the integral

equation (3.23) leads to an estimate of the error h0 in the ansatz (3.20). The supremum

κ̃ := sup
y∈R+

q(y)
∣∣∣Ai
(
λ2/3ζ(y)

)∣∣∣ ,
is bounded independently of λ and α, and hence we have

|h0(x)| ≤ p(x)
κ̃

κ

[
exp(κΦ(x))− 1

]
, (3.24)

where

Φ(x) := cλ−
2
3

∫ ∞
x

∣∣∣(φf 1
2 ζ−

1
2
)
(α, t)

∣∣∣ dt,
with φ given by (3.5).

Step 4. From (3.24) we see that for a uniform error bound it suffices to estimate the

integral

M(α) :=

∫ ∞
0

∣∣∣(φf 1
2 ζ−

1
2
)
(α, x)

∣∣∣ dx. (3.25)

Before showing that the integral converges, we analyze the dependence of the integrand on

|α|. First observe that ζ(α, x) = α
2
3 ζ(1, xα), so that from (3.5) we can see that φ scales as

φ(α, x) = α−
4
3φ(1, xα).

Substituting z = x
α , we obtain∫ ∞

0

∣∣∣(φf 1
2 ζ−

1
2
)
(α, x)

∣∣∣ dx = |α|−
2
3

∫
{arg z=− argα}

∣∣∣(φf 1
2 ζ−

1
2
)
(1, z)

∣∣∣ d |z| . (3.26)
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Recall the definition (3.2) of ρ = 2
3ζ

3
2 . For δ > 0 sufficiently small we have

ρ(1, z) �


z |z| ≥ 1

2 , |z + i| ≥ δ

− log z |z| ≤ 1
2

|z + i|
3
2 |z + i| ≤ δ,

(3.27)

where z lies in the fourth quadrant of the complex plane, arg z ∈ [−π
2 , 0]. The behavior

close to z = −i is found via a Taylor expansion. We now consider the contributions of the

regions in (3.27) to the integral on the right hand side of (3.26) separately. Let θ = − argα.

Denote by J1 the set {z ∈ C : arg z = θ, |z| ≥ 1
2 , |z + i| ≥ δ}. With the definitions of ζ

and f , and the formula (3.5) for φ, we find∫
J1

∣∣∣(φf 1
2 ζ−

1
2
)
(1, z)

∣∣∣ d |z| ≤ c∫ ∞
1
2

|z|−
5
3 d |z| <∞,

independently of θ.

The contribution of J2 := {arg z = θ, |z| ≤ 1
2} to the integral is bounded by

c1

∫ 1
2

0
|z|−1 (− log |z|)−

5
3 d |z|+ c2

∫ 1
2

0
|z|
(

log2 |z|+ π2

4

) 1
6 d |z| <∞.

The third and final region to consider is J3 := {arg z = θ, |z + i| ≤ δ} The integrand of

(3.26) is bounded near z = −i, and hence the contribution from J3 is uniformly bounded

as well.

We conclude from these estimates that

M(α) = O
(
|α|−

2
3
)
. (3.28)

By (3.24) we find that for λ |α| sufficiently large,

|h0(x)| ≤ c(λ |α|)−
2
3 p(x).

After comparing to the ansatz (3.22), we have now established that

Kλα(λx) = cK(λ, α)
( ζ

α2 + x2

) 1
4
[
Ai
(
λ

2
3 ζ
)

+ p(x)O
(
(λ |α|)−

2
3
)]
. (3.29)

Step 5. It remains to fix the constant cK from (3.22), i.e. to compare the behavior for
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x→∞ on the left and on the right of this equation. As x→∞,

ρ(α, x) = x+ α log i+O(x−1),

so that (
ζ

α2 + x2

) 1
4

Ai
(
λ

2
3 ζ
)
∼ x−

1
2

2π
1
2

λ−
1
6 e−λ(x+α log i),

as x→∞. On the other hand,

Kλα(λx) ∼
( π

2λx

) 1
2
e−λx,

as x→∞. We conclude that

cK(λ, α) = 2
1
2πλ−

1
3 eλα log i. (3.30)

The combination of (3.29) and (3.30) completes the proof of the K-Bessel asymptotic

in Propostion 3.1. As we noted above, the I-Bessel estimate follows from very similar

arguments with σ = −1. In this case the integral for the error term is

h−1(λ, α, x) =
2π

e
iπ
6 λ

2
3

∫ x

0
K(x, y)φ(y)

[
h−1(λ, α, y) + Ai

(
λ

2
3 e−

2πi
3 ζ(y)

)]√f(y)

ζ(y)
dy.

The key difference is that range of integration now starts from 0, but the method of suc-

cessive approximations applies in the same way. From (3.28) we can derive

Iλα(λx) = cI(λ, α)

(
ζ

α2 + x2

) 1
4

Ai
(
e−

2πi
3 λ

2
3 ζ
) [

1 +O
(
(λ |α|)−

2
3
)]
. (3.31)

To compute cI(λ, α), we note that as x→ 0,

ρ(α, x) = α log x+ α+ α log
i

2α
+O(x2).

With α in the first quadrant, x→ 0 takes e−
2πi
3 ζ →∞ in the sector (0, π3 ). In this limit,

(
ζ

α2 + x2

) 1
4

Ai
(
e−

2πi
3 λ

2
3 ζ
)
∼ α−

1
2

2π
1
2

e
πi
6 λ−

1
6 eλ[α log x+α+α log i

2α
].
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Comparing this to the asymptotic

Iλα(λx) ∼ 1

Γ(λα+ 1)

(
λx

2

)λα
,

as x→ 0, we find that

cI(λ, α) =
2π

1
2

Γ(λα+ 1)

(
λ

2

)λα
α

1
2 e−

πi
6 λ

1
6 e−λ[α+α log i

2α
].

In conjunction with (3.31) and Stirling’s formula,

Γ(ν + 1) =
√

2π e(ν+ 1
2

) log ν−ν(1 +O(ν−1)), for |arg ν| ≤ π − ε, (3.32)

this completes the proof for the I-Bessel case.



Chapter 4

Resonance order of growth

For an asymptotically hyperbolic manifold (X, g) with warped-product ends, the model

estimates of the previous chapters lead to a growth estimate on the resonance counting

function Ng(t). The basic technique is the Fredholm determinant method of Melrose [25,

26], as adapted to the hyperbolic setting by Guillopé-Zworski [18]. Indeed, the only real

difference in our proof from that of [18] lies in the model estimates proven in Chapter 2.

Let R0(s) denote the resolvent for the model end X0 = (0, 1] × Σ, as studied in Chap-

ter 2. The resonance set R0 was identified explicitly in (2.11), and we let N0(t) denote the

corresponding counting function. In Proposition 6.3 we will show that

N0(t) ∼ c tn+1, (4.1)

and compute the constant explicitly. The main goal of this chapter is to prove the following:

Proposition 4.1. Let (X, g) be a conformally compact manifold with asymptotically hyper-

bolic warped-product ends. Then the resonance counting function satisfies

Ng(t) = O((t log t)n+1).

The bound in Proposition 4.1 is not optimal and will be refined later in Chapter 6.

4.1 Spectral operator estimates

Our first step is to apply the estimates from Chapter 3 to the formulas for the model

resolvent, Poisson operator, and scattering matrix from Chapter 2. For the resolvent, we

only need estimates in the physical half-plane, Re s ≥ n
2 . Throughout this section we will

27
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make use of functions in C∞0 (0, 1) as cutoff functions on X0 that depend only on the x

variable.

Proposition 4.2. Suppose χ1, χ2 ∈ C∞0 (0, 1) are cutoff functions with disjoint supports

and σ ≥ 0. Then for Re(s− n
2 ) ≥ ε, we have

‖χ1R0(s)χ2‖L(H0,Hσ) ≤ Cε,σ〈s〉
−1+σ.

For 0 ≤ Re(s− n
2 ) ≤ ε, with

∣∣s− n
2

∣∣ ≥ ε, we have

‖χ1R0(s)χ2‖L(H0,Hσ) ≤ Cε,σ〈s〉
− 2

3
+σ.

Proof. By a standard argument involving resolvent identities, it suffices to prove the esti-

mates for σ = 0 (see, e.g. [2, Lemma 9.8]).

The first bound depends only on the location of the spectrum. Since there is no discrete

spectrum by (2.11) and the remark following, we have σ(∆0) = [n
2

4 ,∞). From the spectral

theorem and the fact that

d(s(n− s), σ(∆0)) =


∣∣s− n

2

∣∣2 Re(s− n
2 ) ≥ |Im s|

2
∣∣Re(s− n

2 ) Im s
∣∣ Re(s− n

2 ) ≤ |Im s| ,

we find that

‖R0(s)‖ ≤ Cε〈s〉−1,

for Re s ≥ n
2 + ε.

For the bound near the critical line we turn to the decomposition (2.3). Since the cut-

offs yield a smoothing operator with compactly supported coefficients, it suffices to obtain

pointwise estimates of the coefficients aλ. By symmetry we need only consider x1 < x2, in

which case we have

aλ(s;x1, x2) =
π

2 sinπν
(x1x2)

n
2 Iν(λx1)

[
I−ν(λx2)− I−ν(λ)

Iν(λ)
Iν(λx2)

]
, (4.2)

or, using (3.11),

aλ(s;x1, x2) = (x1x2)
n
2 Iν(λx1)

[
Kν(λx2)− Kν(λ)

Iν(λ)
Iν(λx2)

]
. (4.3)

Here ν := s− n
2 as always.

We may assume that |ν| ≥M such that the estimates of Proposition 3.1 apply. First we
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consider the case away from the turning point. That is, we assume |ψ| ≥ c∗ for any of the

values x = 1, x1 or x2. By the analysis used in the proof of Corollary 3.3, this corresponds

to an assumption that |ν − iλx| ≥ cλ
1
3 , for x = 1, x1, and x2. Then we can apply (3.7) and

(3.8) directly in (4.3), giving the estimate

|aλ(s;x1, x2)| ≤ C
∣∣ν2 + (λx1)2

∣∣− 1
4
∣∣ν2 + (λx2)2

∣∣− 1
4

×
(
eRe[ψ(ν,λx1)−ψ(ν,λx2)] + eRe[ψ(ν,λx1)+ψ(ν,λx2)−2ψ(ν,λ)]

)
.

(4.4)

Since

∂xψ(ν, λx) =

√
ν2 + λ2x2

x
,

we observe that Reψ is an increasing function of x for Re ν ≥ 0. Thus the final expression in

(4.4) is O(1). The worst-case scenario for the estimate of the prefactors is |ν − iλxj | � cλ
1
3 ,

in which case
∣∣ν2 + (λxj)

2
∣∣ � |ν| 43 . Under these assumptions we conclude that

|aλ(s;x1, x2)| = O(〈s〉−
2
3 ),

uniformly in λ.

If ν is near the turning point with respect to any of x = 1, x1, or x2, then we use the

corresponding estimates from (3.9) for those terms. As an example, suppose ν lies near the

turning point for x2 but not for x1 or 1. Then (4.4) becomes

|aλ(s;x1, x2)| ≤ C
∣∣ν2 + (λx1)2

∣∣− 1
4 |λx2|−

1
3

(
eRe[ψ(ν,λx1)] + eRe[ψ(ν,λx1)−2ψ(ν,λ)]

)
.

For the first term in brackets we note that ν = iλx2+O(λ
1
3 ) and the fact that |iλx1 − iλx2| �

λ imply Im ν > λx1 for ν sufficiently large. This gives Reψ(ν, λx1) ≤ 0 (see Figure 4.1) and

similarly we find Reψ(ν, λ) > 0. Hence the bracketed term is O(1) and the claim follows

for ν near the turning point for x2. The cases where ν is close to iλ and iλx1 are very

similar.

We turn next to estimates of the Poisson operator, which is quite straightforward in the

physical half-plane.

Proposition 4.3. For χ ∈ C∞0 (0, 1) and Re s ≥ n
2 ,

µk(χE0(s)) ≤ Cec1〈s〉−c2k1/n ,

where µk denotes the k-th singular value. The same estimate holds if χ is replaced by a
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0 5 10 15

0

2

4

6

8

10

Reψ(ν, iλx1) < 0

Reψ(ν, iλx1)
> 0

Reψ(ν, iλ) > 0

Reψ(ν, iλ) < 0

Figure 4.1: The lines Reψ(ν, iλx) = 0 for x = x1, x2, 1 (here: λ = 10, x1 = 0.6, x2 =
0.8). Comparing to Figure 3.2, we see that ν close to iλx2 gives Reψ(ν, iλ) > 0 and
Reψ(ν, iλx1) < 0.

radial differential operator with coefficients in C∞0 (0, 1).

Proof. Since the cutoff depends only on x, the operator (χE0(s))∗χE0(s) is diagonal with

respect to the eigenfunctions φλ, with eigenvalues given by∫
|χ(x)bλ(s;x)|2 dx

xn+1
, (4.5)

for λ2 ∈ σ(∆h). Up to a possible change of ordering, these values correspond with the set

of values of µk(χE0(s))2.

To analyze the asymptotics, we set ν = s − n
2 and use the conjugation symmetry to

restrict our attention to Im ν ≥ 0. We assume that |ν| ≥ M with M large enough that

Proposition 3.1 applies. From (2.12) and (3.11) we can write

bλ(s;x) =
(λ/2)ν

Γ(ν + 1)
x
n
2

[
Kν(λx)− Kν(λ)

Iν(λ)
Iν(λx)

]
, (λ > 0). (4.6)

Assuming M is sufficiently large, Corollary 3.2 (along with Corollary 3.3 if either ψ(ν, λx)

or ψ(ν, λ) is close to zero) shows that the Kν(λx) term dominates in (4.6). The key point

is that x < 1 and Reψ(ν, λx) is a increasing function of x. Thus for |ν| ≥M and λ > 0 we



31

have

|bλ(s;x)| ≤ C
∣∣∣∣ (iλ/2)ν

Γ(ν + 1)

∣∣∣∣ e−Reψ(ν,λx). (4.7)

Applying Stirling’s formula, (3.32), then yields

log |bλ(s;x)| ≤ Re

[
−ν log

(
2xν

ν +
√
ν2 + λ2x2

)
+ ν −

√
ν2 + λ2x2 − 1

2 log ν

]
+O(1). (4.8)

If λx� |ν| then this estimate reduces to

log |bλ(s;x)| ≤ −λx+O

(
|ν| log

λ

|ν|

)
.

Hence, for λ ≥ m |ν| with m sufficiently large, we have

log |bλ(s;x)| ≤ −cλ.

On the other hand, for λ < m |ν|, (4.8) clearly shows that

log |bλ(s;x)| = O(〈s〉).

The result follows from the formula (4.5) for the eigenvalues of (χE0(s))∗χE0(s) and the

Weyl asymptotic for the values of λ2 ∈ σ(∆h).

To extend the estimates to include radial derivatives is a straightforward exercise using

(4.6) and the identities

∂xIν(λx) = λIν+1(λx) +
ν

x
Iν(λx),

∂xKν(λx) = −λKν+1(λx) +
ν

x
Kν(λx).

The extension of Proposition 4.3 to the non-physical plane is complicated by the presence

of poles at the resonances. For this purpose it is most convenient to use the scattering

matrix, because the scattering matrix is already diagonalized.

Proposition 4.4. For Re s ≤ n
2 , d(s,R0) ≥ 〈s〉−β, and d(s, n2 −N0) ≥ δ, with β, δ > 0, we

have

‖S0(s)‖ ≤ eC〈s〉 log〈s〉.

Proof. Since our Bessel asymptotics are restricted to Re ν ≥ 0, it is convenient to produce
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a lower bound of S0(s) in the region Re s ≥ n
2 and then exploit the symmetry S0(n− s) =

S0(s)−1. By the conjugation symmetry, S0(s) = S0(s), we are free to restrict our attention

to the quadrant arg ν ∈ [0, π2 ], and we can further assume |ν| ≥M .

Consider the eigenvalue computed in (2.14),

[S0(n− s)]λ =

(
λ

2

)−2ν Γ(ν)

Γ(−ν)

Iν(λ)

I−ν(λ)
. (4.9)

Applying Lemmas 3.4 and 3.5 to (4.9), we find that for |ν| ≥M , arg ν ∈ [0, π2 ], d(ν, n2−R0) ≥
〈ν〉−β, and d(ν,N0) ≥ δ we have

∣∣∣∣ Iν(λ)

I−ν(λ)

∣∣∣∣ �
eC〈ν〉 log〈ν〉 |Reψ| ≤ b, |ψ| ≥ c

1 otherwise,
(4.10)

with constants that depend only on b, c, β, and δ. Using Stirling’s formula and the Euler

reflection formula, we find that

log
Γ(ν)

Γ(−ν)
= 2ν log ν − (2 + iπ)ν +O(1),

for arg ν ∈ [0, π2 ] with d(ν,N0) ≥ δ. The claimed estimate follows by applying these estimates

to (4.9).

Using the standard identity

E0(s) = −E0(n− s)S0(s), (4.11)

we can estimate

µk(χE0(s)) ≤ µk(χE0(n− s)) ‖S0(s)‖ .

Hence Propositions 4.3 and 4.4 together give us the:

Corollary 4.5. For χ ∈ C∞0 (0, 1), Re s ≤ n
2 with d(s,R0) ≥ 〈s〉−β, and d(s, n2 − N0) ≥ δ,

µk(χE0(s)) ≤ Cec1〈s〉 log〈s〉−c2k1/n .

The same estimate holds if χ is replaced by a radial differential operator with coefficients in

C∞0 (0, 1).
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4.2 Resonance counting estimate

Choose smooth cutoff functions χk ∈ C∞0 (X), such that

χk =


1 on K

1 in X0 when x ≥ 2−k

0 in X0 when x ≤ 2−(k+1).

(In other words, the cutoffs are nested and their derivatives have disjoint supports.) For

some fixed s0 with Re s0 large we define the parametrix,

M(s) := χ2Rg(s0)χ1 + (1− χ0)R0(s)(1− χ1),

as a meromorphic function of s ∈ C. This satisfies

(∆g − s(n− s))M(s) = 1− L(s), (4.12)

with the error term

L(s) := −[∆, χ2]Rg(s0)χ1 + [s(n− s)− s0(n− s0)]χ2Rg(s0)χ1

+ [∆, χ0]R0(s)(1− χ1).
(4.13)

Note that χ3L(s) = L(s). Using this and applying the resolvent to (4.12), we can write

M(s)χ3 = Rg(s)χ3(1− L(s)χ3).

Because the resolvent is a pseudodifferential operator of order −2, L(s)χ3 is a pseudod-

ifferential operator of order −1 with compactly supported coefficients. In dimension n+ 1,

a pseudodifferential operator of order −m will be trace class for m > n + 1 (see e.g. [2,

Prop. A.26]). Thus, (L(s)χ3)n+2 is a trace class operator and we can define the Fredholm

determinant

D(s) := det
[
1− (L(s)χ3)n+2

]
. (4.14)

From Vodev [31, Appendix], we obtain the following:

Lemma 4.6. The resonance set Rg (counted with multiplicities) is contained within the

union of the set of zeros of D(s) and n+ 2 copies of the set R0.

The proof of the Lemma is essentially identical to that of [2, Cor. 9.3].
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Lemma 4.7. For β, δ > 0, suppose that d(s,R0) ≥ 〈s〉−β and d(s, n2 − N0) ≥ δ. Then for

ε > 0 sufficiently small we have

log |D(s)| ≤


C〈s〉n+1 for Re s− n

2 ≥ ε

C(〈s〉 log〈s〉)n+1 for Re s− n
2 ≤ −ε

C(〈s〉 log〈s〉)n+ 4
3 for

∣∣Re s− n
2

∣∣ ≤ ε.
Proof. To estimate the growth of D(s), we separate

L(s)χ3 = T0 + T1(s) + T2(s),

corresponding to the three terms on the right-hand side of (4.13). All terms are compactly

supported, and T2(s) is smoothing and therefore trace class.

To break up the determinant estimates we can use [18, Lemma 6.1], which says that for

compact operators A,B in the p-th Schatten class,

|det(1 + (A+B)p)| ≤ det(1 + 2p−1 |A|p)2p det(1 + 2p−1 |B|p)2p. (4.15)

This estimate is based on the Weyl inequality for determinants in terms of singular values,

log |det(1 +A)| ≤
∞∑
k=1

µk(A), (4.16)

which we will also need to make use of below. By applying (4.15) twice to the formula for

D(s), with p = n+ 2, we deduce the bound

|D(s)| ≤ det
(
1 + C0 |T0|n+2)2n+4

× det
(
1 + C1 |T1(s)|n+2)(2n+4)2

det
(
1 + C2 |T2(s)|

)(2n+4)2
.

(4.17)

The high powers here don’t trouble us, because the estimate we are seeking is exponential.

The first term on the right in (4.17) is just a constant. To estimate the second term, we

note that T1(s) is quadratic in s,

T1(s) = [s(n− s)− s0(n− s0)]χ2Rg(s0)χ1.

Since Rg(s0) has order −2, T1(s)n+2 is a pseudodifferential operator of order −2(n + 2),

with compactly supported coefficients. We therefore have a bound on the singular values
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(see e.g. [2, Prop. A.26]),

µk(T1(s)n+2) ≤ C〈s〉2(n+2)k−
2(n+2)
n+1 .

Thus by (4.16),

det
(
1 + C1 |T1(s)|n+2) ≤ ∞∏

k=1

(
1 + C

(〈s〉n+1

k

)γ)
,

where γ := 2(n+ 2)/(n+ 1). We can then estimate

log det
(
1 + C1 |T1(s)|n+2) ≤ C ∫ ∞

1
log

(
1 + C

(〈s〉n+1

x

)γ)
dx = O(〈s〉n+1).

Finally, the proof comes down to a growth estimate on

det
(
1 + C2 |T2(s)|

)
,

where

T2(s) := [∆, χ0]R0(s)(χ3 − χ1).

From Proposition 4.2 we can use comparison to eigenvalues of the Laplacian on a compact

domain (see [2, §9.4] for details) to derive the bound

µk(T2(s)) ≤ C min
{
k−2〈s〉2(n+1), 1

}
,

for Re(s− n
2 ) ≥ ε. We can then apply the Weyl determinant estimate (4.16) to deduce

log det
(
1 + C2 |T2(s)|

)
= O(〈s〉n+1). (4.18)

(See e.g. the proof of [2, Lemma 9.12].) Similarly, for 0 ≤ Re(s− n
2 ) ≤ ε (assuming ε < 1/6),

Proposition 4.2 yields

log det
(
1 + C2 |T2(s)|

)
≤ C〈s〉n+ 4

3 . (4.19)

To obtain bounds for Re(s− n
2 ) ≤ 0, we appeal again to the estimate (4.15) to write

det(1 + 2 |T2(n− s)|) ≤ det(1 + 2 |T2(s)|)2 det(1 + 2 |T2(s)− T2(n− s)|)2. (4.20)

The first determinant on the right has already been dealt with. As for the second, we can

use the identity

R0(s)−R0(n− s) = (2s− n)E0(s)E0(n− s)t, (4.21)
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(c.f. [2, eq. (7.33)]) to reduce this to a determinant involving

T2(s)− T2(n− s) = (2s− n)[∆, χ0]E0(s)E0(n− s)t(χ3 − χ1).

By Corollary 4.5, assuming d(s,R0) ≥ 〈s〉−β, and d(s, n2 − N0) ≥ δ, we find that

µk(T2(s)− T2(n− s)) ≤ Cec1〈s〉 log〈s〉−c2k1/n .

In particular,

‖T2(s)− T2(n− s)‖ = µ0(T2(s)− T2(n− s)) ≤ Cec1〈s〉 log〈s〉.

This time we can exploit the Weyl determinant estimate (4.16) in the form

|det(1 +A)| ≤ (1 + ‖A‖)m exp

( ∞∑
k=m+1

µk(A)

)
,

with m = (c1〈s〉 log〈s〉/c2)n. This yields

log det(1 + 2 |T2(s)− T2(n− s)|) = O((〈s〉 log〈s〉)n+1).

By applying this estimate to the second factor in (4.20), and using (4.18) and (4.19) for the

first factor, we can thereby deduce that (4.19) holds for −ε ≤ Re(s − n
2 ) ≤ 0 and (4.18)

holds for Re(s− n
2 ) ≤ −ε with d(s,R0) ≥ 〈s〉−β, and d(s, n2 − N0) ≥ δ.

Proof of Proposition 4.1. To complete the argument, let R0 denote the set of resonances of

X0. By the asymptotic (4.1), we can form the Weierstrass product,

H0(s) :=
∏
ζ∈R0

(
1− s

ζ

)
exp

[
s

ζ
+ · · ·+ 1

n+ 1

(
s

ζ

)n+1
]
.

Lindelöf’s Theorem (see e.g. [1, Thm. 2.10.1]) shows that the associated entire function

g0(s) = H0(s)H0(eiπ/(n+1)s),

is of finite type, so that

log |g0(s)| ≤ C〈s〉n+1. (4.22)
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From (4.13) we can see the poles of D(s) are contained within some finite number of

copies of R0. Hence, for some N > 0, the function h(s) := g0(s)ND(s) will be entire. Using

(4.22) we can apply the bounds from Lemma 4.7 to h(s). And since h(s) is entire, we can

use the maximum modulus theorem to fill in the missing disks around R0 and n
2 −N0, and

the Phragmén-Lindelöf theorem to extend the stronger bound into the strip at Re s = n
2 .

The result is that

log |h(s)| ≤ C(〈s〉 log〈s〉)n+1,

for all s ∈ C. Since, by Lemma 4.6, the zero set of h(s) contains Rg, the claimed counting

estimate follows from Jensen’s formula.



Chapter 5

Poisson formula

To establish the Poisson formula for resonances, we need to introduce the relative scattering

determinant. Let Sg(s) and S0(s) denote the scattering matrices associated to (X, g) and

the background manifold (X0, g0), respectively. By (4.12) we have the relation

M(s) = Rg(s)−Rg(s)L(s), (5.1)

from which we can derive, by taking boundary limits on the right and left, that

S0(s) = Sg(s)− (2s− n)Eg(s)
t[∆, χ0]E0(s). (5.2)

This shows in particular that Sg(s)S0(s)−1 − 1 is smoothing and hence trace class on Σ.

Thus we can define the relative scattering determinant,

τ(s) := detS0(s)−1Sg(s).

By the order bound of Proposition 4.1, we can define the Weierstrass product,

Hg(s) :=
∏
ζ∈Rg

(
1− s

ζ

)
exp

[
s

ζ
+ · · ·+ 1

n+ 1

(
s

ζ

)n+1
]
,

and we recall that H0(s) was defined as the corresponding product over R0.

Proposition 5.1. The relative scattering determinant admits a Hadamard factorization of

the form

τ(s) = eq(s)
Hg(n− s)
Hg(s)

H0(s)

H0(n− s)
, (5.3)

38
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with q(s) a polynomial of order at most n+ 1.

Proof. To work out the divisor of τ(s), we can appeal to the theory developed by Gohberg-

Sigal [11, §4–5] to deduce that

Resζ
τ ′

τ
(s) = tr Resζ

[
S′g(s)Sg(s)

−1
]
− tr Resζ

[
S′0(s)S0(s)−1

]
.

Letting mg(ζ) denote the multiplicity of a resonance at ζ, we have the relation

− tr Resζ
[
S′g(s)Sg(s)

−1
]

= mg(ζ)−mg(n− ζ) +
∑
k∈N

(
1n/2−k(ζ)− 1n/2+k(ζ)

)
dk, (5.4)

where dk is the dimension of the kernel of the k-th conformal Laplacian on (Σ, h). This result

is due to Guillarmou [14] (with earlier partial results by [6, 12, 19], and with a restriction

that was later removed in [16]).

Since the dk cancel between the Sg(s) and S0(s) terms, we obtain

Resζ
τ ′

τ
(s) = mg(n− ζ)−mg(ζ) +m0(ζ)−m0(n− ζ).

This proves the claimed formula with q(s) an entire function. It remains to show that q(s)

is a polynomial and bound its order.

Using the parametrix formula (4.12) and the fact that χ3L(s) = L(s) we can rewrite the

identity (5.1) as

M(s) = Rg(s)−M(s)(1− L(s)χ3)−1L(s).

The corresponding scattering matrix identity is

S0(s) = Sg(s)− (2s− n)E0(s)t(1− χ1)(1− L(s)χ3)−1[∆, χ0]E0(s).

Using the identity (4.11), the relative scattering determinant is thus given by

τ(s) = det
(

1− (2s− n)E0(n− s)t(1− χ1)(1− L(s)χ3)−1[∆, χ0]E0(s)
)
. (5.5)

The L(s)χ3 term we write as

(1− L(s)χ3)−1 =
(
1 + L(s)χ3 + · · ·+ (L(s)χ3)n+1

) (
1− (L(s)χ3)n+2

)−1
.
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Using Proposition 4.2, the identity (4.21), and Corollary 4.5, we have

∥∥1 + · · ·+ (L(s)χ3)n+1
∥∥ = O(eC〈s〉).

Since (L(s)χ3)n+2 is trace class we can use a resolvent estimate from Gohberg-Krein [10]

(see also [2, Thm. A.23]) to obtain the estimate

∥∥(1− (L(s)χ3)n+2)−1
∥∥ ≤ det(1 + |L(s)χ3|n+2)

D(s)
,

where D(s) is the determinant (4.14). Lemma 4.7 gives the upper bound

log |D(s)| = O
(

(〈s〉 log〈s〉)n+ 4
3

)
,

for d(s,R0) ≥ 〈s〉−β and d(s, n2 −N0) ≥ δ. We can clearly derive the corresponding estimate

for log det(1 + |L(s)χ3|n+2) by the same argument. The minimum modulus theorem [30,

8.7.1] shows that if we assume that β > n + 4/3, then the upper bound for D(s) implies

the lower bound

− log |D(s)| = O(〈s〉n+ 4
3

+ε),

for ε > 0, d(s,R0) ≥ 〈s〉−β and d(s, n2 − N0) ≥ δ. So our estimate becomes

∥∥(1− L(s)χ3)−1
∥∥ ≤ eC〈s〉m , (5.6)

for m > n+ 4
3 and d(s,R0) ≥ 〈s〉−β and d(s, n2 − N0) ≥ δ.

Returning to (5.5), after combining (5.6) with the singular values estimates for the E0(s)

terms from Corollary 4.5, we can use the Weyl determinant estimate to deduce that

log |τ(s)| = O(〈s〉(n+1)m),

for m > n+ 4
3 and d(s,R0) ≥ 〈s〉−β and d(s, n2 −N0) ≥ δ. This implies at least that q(s) is

polynomial, although with an order possibly much higher than claimed.

Once q(s) is known to be polynomial, the fact that its maximal order is n + 1 follows

by examining the asymptotics of the relative heat trace as in [3, Prop. 7.2]. We will not

include those details here, because in Proposition 6.5 in the next chapter we will establish

much sharper estimates on the growth of log τ(s) for
∣∣arg(s− n

2 )
∣∣ ≤ π

2 − ε. Those estimates

imply in particular that q(s) has order at most n+ 1.
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The Poisson formula follows from Proposition 5.1, by the same analysis developed for

the surface case by Guillopé-Zworski [19]. In the case considered here we could follow

exactly the argument in Borthwick [3, §8]. The factorization of Proposition 5.1 which is

our starting point here was given in that paper by [3, Prop. 7.2]. (See also the detailed

expository account of this same argument in [2, §11].) The crucial step is a Birman-Krein

type formula that relates the derivative of the scattering determinant to the 0-traces of the

spectral measures,

−∂s log τ(s) = (2s− n)
(

0-tr[Rg(s)−Rg(n− s)]− 0-tr[R0(s)−R0(n− s)]
)
. (5.7)

In the present context this follows immediately from a result of Guillarmou [15, Thm. 3.10],

which shows that each 0-trace on the right is given by the Kontsevich-Vishik trace of the

logarithmic derivative of the corresponding scattering matrix. When we take the difference

of these two formal traces, we recover the actual trace of the logarithmic derivative of the

relative scattering matrix.

The traces on the right in (5.7) are the Fourier transforms of regularized wave traces.

Proposition 5.1 gives an explicit formula for the left side and shows that it is a tempered

distribution. Taking the Fourier transform of (5.7) (as in [3, Thm. 1.2], for example), yields

the proof of the Poisson formula stated in Theorem 1.1.

Finally we consider the asymptotics of the scattering phase,

σ(t) :=
i

2π
log τ(n2 + it), (5.8)

with branches chosen so that σ(t) is continuous. By the properties of the scattering matrix,

σ(t) is a real-valued odd function of t ∈ R. Using the analysis of the big singularity of the

wave traces at t = 0, developed in the asymptotically hyperbolic case by Joshi-Sá Barreto

[20], and the method from Guilopé-Zworski [19, Thm. 1.5], we can derive the:

Corollary 5.2. Assume (X, g) is asymptotically hyperbolic metric with warped-product

ends, with core K. As t→ +∞,

σ(t) = WKt
n+1 +O(tn),

where WK is the Weyl constant

WK :=
(4π)−

n+1
2

Γ(n+3
2 )

Vol(K, g).
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As a final remark, we note that because the Poisson formula of Theorem 1.1 includes the

resonances of the background metric g0, it does not lead to a lower bound for resonances

along the lines of [19] or [3]. The technique used in those arguments, based on the big

singularity of the wave trace at t = 0, would produce a lower bound only for the sum

Ng(t) + Ng0(t), as in [5, Cor. 3.2]. The results of §6.1 will show that Ng0(t) saturates the

resonance bound, and so the joint lower bound yields no information on Ng(t).



Chapter 6

Sharp upper bounds

In this chapter we will refine the crude counting estimate of Proposition 4.1 into the proof of

Theorem 1.2. The first step is to compute the asymptotic constant of the counting function

for the model space (X0, g). This amounts to counting zeros of Bessel functions, a similar

argument to a calculation of Stefanov [29].

Proposition 5.1 shows how the divisor of the relative scattering determinant τ(s) is de-

termined by the resonance sets Rg and R0. Using a contour integral as in [4, Prop. 3.2], we

obtain the formula (which is due to Froese [9]):

Proposition 6.1. As a→∞,

∫ a

0

Ng(t)−N0(t)

t
dt = 2

∫ a

0

σ(t)

t
dt+

1

2π

∫ π
2

−π2

log
∣∣∣τ(n2 + aeiθ)

∣∣∣ dθ +O(log a).

The asymptotic for the scattering phase σ(t) was given in Corollary 5.2. Hence for the

application of Proposition 6.1 we must establish the asymptotic for N0(t) and estimate

|τ(s)| for Re s ≥ n
2 .

6.1 Asymptotic counting for the model space

The resonances of the model space were identified explicitly in (2.11) as zeros of Iν(λ), where

ν := s− n
2 and λ2 ∈ σ(∆h). In this section we will use the Bessel function asymptotics from

Chapter 3 to work out the constant in the asymptotic that we claimed for the model space

counting function N0(r) in (4.1).

Since our Bessel function asymptotics assume that Re ν ≥ 0, we will study the zeros

43
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through the reflection formula,

I−ν(λ) = Iν(λ) +
2 sinπν

π
Kν(λ). (6.1)

There are two distinct sources of zeros of I−ν(λ). For |ν| � λ, the Kν(λ) term is dominant

in (6.1). Thus I−ν(λ) has some zeros which are perturbations of the integer points where

sinπν = 0. We refer to these as ‘trivial’ zeros, as they are quite easy to count. Note that

because the trivial zeros are perturbations of simple zeros, and the zero set of I−ν(λ) has a

conjugation symmetry, the trivial zeros must remain on the real axis. They can never occur

precisely at an integer, however, since I−k(z) = Ik(z) for k ∈ Z, and Ik(z) > 0 for z > 0.

The ‘non-trivial’ zeros of I−ν(λ) occur within the highlighted zone shown in Figure 3.2

(and its reflection by conjugation, of course). Within this zone and away from the real axis,

the approximation (3.17) is valid, and the zeros are approximately given by solutions of the

equation

Ai
(
e

2πi
3 (3

2ψ)2/3
)

= 0, (6.2)

where ψ = ψ(ν, λ), as defined in (3.6). Since we fix x = 1 for the applications in this

chapter, we define ρ(α) := ρ(α, 1) and recall the definition,

ρ(α) :=
√
α2 + 1 + α log

(
i

α+
√
α2 + 1

)
, (6.3)

and the relationship ψ(ν, λ) = λρ(α), where ν = λα. Within the zone that contains the

non-trivial zeros, the corresponding values of ψ are close to the positive imaginary axis.

Hence we can apply the approximation (B.3) to reduce (6.2) to a simpler equation

cosh
(
λρ(α)− iπ4

)
= 0. (6.4)

Our strategy will be to count the solutions of (6.4) and then control the distances between

these solutions and the true zeros, for which I−λα(λ) = 0.

We will count the solutions of (6.4) that lie on

γ :=
{
α : Re ρ(α) = 0, argα ∈ [0, π2 ]} − {iy : y > 1},

and then relate the corresponding counting function to N0(r). Let α0 denote the real

solution to Re ρ(α) = 0. The curve γ is shown in Figure 6.1; it corresponds to the center of

the highlighted zone in Figure 3.2. Note that the actual resonance lines in Figure 2.1 are
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Figure 6.1: The curve γ containing solutions of (6.4).

well approximated by the reflections of γ across the imaginary axis, scaled by the square

roots λ of the eigenvalues.

Let WΣ denote the Weyl constant for the compact manifold (Σ, h),

WΣ :=
Vol(Σ, h)

Γ(n2 + 1)(4π)n/2
,

defined by the asymptotic,

#
{
λ2 ∈ σ(∆h) : λ ≤ r

}
= WΣ · rn +O(rn−1). (6.5)

If we index the square roots of the eigenvalues of ∆h as 0 = λ0 < λ1 ≤ λ2 ≤ . . . , we can

define an integer-valued function m = m(r) on R+ by demanding

λm ≤ r and λm+1 > r.

Then, since m+ 1 = #{k : λk ≤ r}, the Weyl law (6.5) leads to

(
m

WΣ

) 1
n

=
[
rn +O(rn−1)

] 1
n = r +O(1).

This gives the asymptotic formula

λk = W
− 1
n

Σ k
1
n +O(1), (6.6)

for the eigenvalues of ∆h.

Lemma 6.2. Let M(r; θ1, θ2) denote the number of zeros of (6.4) for |ν| ≤ r, arg ν ∈



46

[θ1, θ2), and λ2 ∈ σ(∆h)− {0}. For 0 ≤ θ1 < θ2 ≤ π
2 this count satisfies the asymptotic

M(r; θ1, θ2) =
nWΣ

(n+ 1)π
rn+1

∫
γ|[θ1,θ2]

|ρ′(α)|
|α|n+1 |dα|+O(rn), (6.7)

where γ is parametrized by θ = argα.

Proof. For any λ, the zeros of (6.4) with Reα > 0 lie on the curve γ. Note that the

zeros of (6.4) with Reα = 0 are not included in the count M(r; θ1,
π
2 ). As an alternative

parametrization of γ, define γ̃(t) implicitly by

ρ(γ̃(t)) = iπt.

The constant α0 ≈ 1.509 is the value of α at which the curve γ intersects the real axis. For

any real α, ρ(α) has imaginary part π
2α. Hence we have ρ(α0) = iπ

2 α0, and the domain of

γ̃ is seen to be t ∈ [0, α0
2 ].

For 0 ≤ θ1 < θ2 ≤ π
2 , let t1 and t2 be the corresponding parameters so that γ(θj) = γ̃(tj).

For fixed λ, the number of zeros of (6.4) with argα ∈ [θ1, θ2) is given exactly by the number

of points in λ(t2, t1] ∩ (N− 1
4). We can thus estimate the number of zeros in this range as

λ(t1 − t2) +O(1), (6.8)

where the error term is bounded by ±1.

Now consider the full count, summed over λ. The number of λ’s for which γ intersects

{|α| ≤ r/λ} is O(rn) by the Weyl law, so that by applying (6.8) for each λ and summing

the errors we obtain

M(r; θ1, θ2) = M̃(r; θ1, θ2) +O(rn), (6.9)

where

M̃(r; θ1, θ2) :=
∑
λ

λ `
(
γ̃−1

[
γ|[θ1,θ2] ∩ {|α| ≤ r

λ}
])
.

For some fixed θ and small ∆θ, we define t and ∆t by γ̃(t) = γ(θ) and γ̃(t − ∆t) =

γ(θ + ∆θ). Then we can estimate∣∣∣∣∣∣M̃(r; θ, θ + ∆θ)−
∑

λ|γ(θ)|≤r

λ∆t

∣∣∣∣∣∣ ≤
∑

r/|γ|max≤λ≤r/|γ|min

λ∆t,

where the extrema of |γ| are taken over the sector argα ∈ [θ, θ+ ∆θ]. Since |γ|max − |γ|min
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is bounded by c∆θ, the Weyl law implies that the number of terms in the sum on the right

hand side of the above inequality is O(rn∆θ). Hence we can write

M̃(r; θ, θ + ∆θ) =
∑

λ≤r/|γ(θ)|

λ∆t +O(rn+1∆t∆θ).

Using the eigenvalue asymptotics (6.6), we find

∑
λ≤r/|γ(θ)|

λ =
nWΣ

n+ 1

(
r

|γ(θ)|

)n+1

+O(rn).

Since |∆t| ≤ c |∆θ|, we conclude

M̃(r; θ, θ + ∆θ) =
nWΣ

n+ 1

(
r

|γ(θ)|

)n+1

∆t+O(rn∆t) +O(rn+1(∆θ)2). (6.10)

We now choose a partition of the interval [θ1, θ2] and sum up the corresponding equations

(6.10). Letting |∆θ| → 0, the first term of (6.10) becomes an integral with respect to t.

The second term becomes O(rn) after summing, the constant for its bound changing by a

factor of |t1 − t2| ≤ α0
2 . The rightmost term in (6.10) vanishes. Then (6.9) gives

M(r; θ1, θ2) =
nWΣ

n+ 1
rn+1

∫ t1

t2

1

|γ̃|n+1 dt+O(rn).

The final step is to note that (ρ ◦ γ̃)′(t) = iπ, so that the change of variables from t to

arclength is accounted for by introducing a factor of |ρ′| /π.

Proposition 6.3. The resonance counting function N0 for the model space X0 satisfies the

asymptotic

N0(r) =

[
2nWΣ

(n+ 1)π

∫
γ

|ρ′(α)|
|α|n+1 d |α|+

WΣ

n+ 1
α−n0

]
rn+1 +O

(
rn+ 1

3
)
, (6.11)

where WΣ is the Weyl constant for (Σ, h), γ = {α : Re ρ(α) = 0}− {iy : y > 1}, and α0 is

the real solution to Re ρ(α) = 0.

Proof. From Lemma 3.4 we know that the non-trivial zeros of I−ν(λ) in Im ν ≥ 0, |ν| ≥M ,

where M is sufficiently large, are contained in the region

Sλ := {arg ν ∈ [0, π2 ] : Imψ ≥ 0, |Reψ| ≤ b∗} ∩ {|ν| ≥M}.
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(The strip {Imψ( . , λ) ≥ 0, |Reψ( . , λ)| ≤ b∗} contains the highlighted zone of Figure 3.2,

its center is λγ; Sλ is empty for λα0(1 + ε) < M and Sλ is not affected by the intersection

with {|ν| ≥M} for λ sufficiently large.) From Corollary 3.2 and (3.11) we deduce that for

ψ and ν sufficiently large we have

I−ν(λ)

Iν(λ)
− (1 + ie−2ψ) = ie−2ψ

[
O(ψ−1) +O(ν−

2
3 )− e2iπν

]
, (6.12)

for ν ∈ Sλ. Note that the zeros of the function

1 + ie−2ψ = 2e−ψ+iπ
4 cosh

(
ψ − iπ4

)
,

in (6.12) correspond precisely to the solutions of (6.4). The width of the strip Sλ in the

ν-plane, where by ‘width’ we mean the lengths of intersections with curves Imψ = const,

is O(λ
1
3 ) close to the turning point ν = iλ, and O(1) close to λα0.

We will now prepare to apply Rouché’s theorem to the functions on the left hand side of

(6.12). Let νλ,m denote the solution of (6.4) for which

ψ(νλ,m) = iπ(m− 1
4),

with m ∈ N ∩ [1
4 ,

1
4 + λα0

2 ]. Define γλ,m to be the contour obtained from the lines

{Reψ = b}, {Reψ = −b}, {Imψ = π(m− 3
4)}, {Imψ = π(m+ 1

4)},

in the ν-plane. Then each νλ,m lies within γλ,m, and we have that on γλ,m∣∣∣e−2ψ
∣∣∣ ≤ β ∣∣∣1 + ie−2ψ

∣∣∣ ,
where the constant β depends only on b∗.

In order to control the right hand side of (6.12) we define for σ, τ > 0 the region

Γσ,τ :=
{
ν : Im ν ≥ τ, Re ν ≥ σ(Im ν)1/3

}
.

Recall from the proof of Corollary 3.3 that for some small δ > 0 we have

ψ � λ−
1
2 (ν − iλ)

3
2 for |ν − iλ| < δλ.

Outside that half-disc, |ψ| is bounded from below by the values on its boundary, i.e. by cλ



49

(see Figure 3.2 for the mapping properties of ψ). For ν ∈ {|ν − iλ| < δλ} ∩ Γσ,τ we have

|ψ| � σ
3
2 .

Hence, by letting both σ and τ be large enough, (6.12) yields∣∣∣∣I−ν(λ)

Iν(λ)
− (1 + ie−2ψ)

∣∣∣∣ < 1

β

∣∣∣e−2ψ
∣∣∣ ,

on Sλ ∩ Γσ,τ .

Rouché’s theorem now implies that for λ sufficiently large, I−ν(λ) has exactly one zero

within every γλ,m that is contained in Γσ,τ . After increasing σ and τ we have that for

λ sufficiently large, I−ν(λ) has exactly one zero within every γλ,m that intersects Γσ,τ .

Moreover, there are no other zeros in Γσ,τ since the contours γλ,m cover the regions Sλ. The

diameters of the γλ,m are O(λ1/3) with a constant that depends only on b∗. Consequently,

#
{
ζ ∈ R0 :

∣∣ζ − n
2

∣∣ ≤ r, −ζ ∈ Γσ,τ
}
≤M(r + µr1/3; 0, π2 ) +O(rn)

= M(r; 0, π2 ) +O
(
rn+

1
3
)
.

(6.13)

for some constant µ, where the O(rn) error term in the middle expression is caused by

contours γλ,m that intersect ∂Γσ,τ . We now claim that for λ sufficiently large, the number

of zeros of I−ν(λ) in Sλ−Γσ,τ is uniformly bounded by a constant depending only on σ and

on τ . We postpone the proof of this detail to the next paragraph and continue the counting

argument first. After noting that M(r − µr1/3; θ1, θ2) provides an asymptotic lower bound

for (6.13) for all 0 < θ1 < θ2 <
π
2 , we conclude

#
{
ζ ∈ R0 :

∣∣ζ − n
2

∣∣ ≤ r, Im ζ 6= 0
}

= 2M(r; 0, π2 ) +O
(
rn+

1
3
)
.

For fixed λ sufficiently large, the zeros of I−ν(λ) outside Γσ,τ are contained in two com-

ponents of Sλ. We skip the easier case, the component that is near λα0, and concentrate

on Sλ − Γσ,0. Let c∗ be the constant from Lemma 3.4. Since we have no zeros for ν with

|ψ| < c∗, we consider the region

R = {ψ ∈ C : |ψ| ≥ c1, Imψ ≤ c2,−b∗ ≤ Reψ ≤ b∗},

in the ψ-plane, where c1 ∈ (b∗, c∗) and c2 = m − 3
4 ,m ∈ N, is chosen so that the preimage

of R under ψ( . , λ) overlaps with Γσ,0. Note that both Ai
(
(3

2ψ)
2
3

)
and Ai

(
e−

2πi
3 (3

2ψ)
2
3

)
are
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� 1 on R. Applying Proposition 3.1 and Stirling’s formula to the reflection formula (6.1),

we obtain
I−ν(λ)

Iν(λ)
= 1 + e

2πi
3

Ai
(
(3

2ψ)
2
3

)
Ai
(
e−

2πi
3 (3

2ψ)
2
3

)[1 +O
(
ν−

2
3
)]
,

where the error term is an analytic function in a neighborhood of R. The function

1 + e
2πi
3

Ai
(
(3

2ψ)
2
3

)
Ai
(
e−

2πi
3 (3

2ψ)
2
3

) ,
on R has a limited number of zeros and does not depend on λ. Hence, by Rouché’s theorem,

the number of zeros of I−ν(λ) outside Γσ,0 is bounded uniformly in λ.

It remains to show that the contribution of the trivial zeros to the counting function is

given by the second term in the constant claimed in (6.11). By factoring out 2
πKν(λ) on

the right hand side of (6.1), and applying the asymptotics of Corollary 3.2, we obtain

I−ν(λ) =
2

π
Kν(λ)

[
sin(πν)− 1

2
ei2πνe2ψ

(
1 +O(λ−1)

)]
.

There exist positive constants c and ε such that

Re ρ(α) ≤ −c(α− α0),

for real α ≥ (1− ε)α0. Hence for real ν sufficiently large with ν ≥ λ(1− ε)α0, we have

I−ν(λ) =
2

π
Kν(λ)

(
sinπν +O

(
e−2c(ν−λα0)

))
.

This gives

#
{
ζ ∈ R0 :

∣∣ζ − n
2

∣∣ ≤ r, Im ζ = 0
}

=

brc∑
m=1

#{λα0 ≤ m}+O(rn).

Estimating the sum using Weyl’s law (6.5) completes the proof.

From the proof of Proposition 6.3 we observe that in the model case we have a resonance-

free region with boundary given by a cube-root: for some small σ,

R0 ∩
{
s ∈ C : Re(s− n

2 ) ≥ −σ |Im s|1/3
}

= ∅.
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6.2 Estimate of the scattering determinant

The goal of this section is to find an upper bound for log |τ(s)| with s in a sufficiently big

subset of {Re s > n
2 , Im s ≥ 0}.

For some small η > 0, let xj = 1 − ηj for j = 0, 1, 2, 3. We choose cutoff functions

χj ∈ C∞((0, 1]) so that χj(x) = 1 for x ≥ xj and χj(x) = 0 for x ≤ xj+1. With the model

Poisson operator E0(s) defined as in §2.2, we can express the relative scattering determinant

as

τ(s) = det
(
1 + (2s− n)E0(s)t[∆0, χ2]R(s)[∆0, χ1]E0(n− s)

)
.

Since the derivations of this identity and of Lemma 6.4 follow [4, Lemmas 4.1 and 5.2]

closely, we omit the proofs.

Lemma 6.4. For Re s ≥ n
2 with d(s(n− s), σ(∆g)) ≥ ε, the relative scattering determinant

can be estimated by

log |τ(s)| ≤
∑

λ2∈σ(∆h)

log
(
1 + Cκλ(s)

)
, (6.14)

where

κ2
λ(s) = |2s− n|2

∫ x1

x2

x−(n+1)|bλ(n− s, x)|2 dx
∫ x2

x3

x−(n+1)|bλ(s, x)|2 dx,

with the coefficients bλ(s;x) as defined in (2.12), and where the constant C depends only on

η and ε.

Using the identity

E0(s) = −E0(n− s)S0(s),

we find

κλ(s) ≤
∣∣∣∣ Iν(λ)

I−ν(λ)

∣∣∣∣ ∣∣∣∣ ν (λ2)−2ν Γ(ν)

Γ(−ν)

∣∣∣∣ ∫ x1

x3

x−(n+1) |bλ(s, x)|2 dx, (6.15)

for k > 0. Define the following set of radii a, for which the corresponding circles stay away

from the zeros of the scattering matrix in the sense of Proposition 4.4.

Λ :=
{
a ∈ R+ : min

θ
d(aeiθ, n2 −R0) ≥ 〈a〉−β, d(a,N0) ≥ δ

}
,

where β > n+ 1 and δ > 0. Then, for |ν| ∈ Λ, we have control of Iν/I−ν(λ) by (4.10). The

requirement for Lemma 6.4, that d(s(n− s), σ(∆g)) ≥ ε, will be satisfied if |θ| ≤ π
2 − εa

−2

for ν = aeiθ with a sufficiently large. With these two restrictions we obtain:
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Proposition 6.5. For a ∈ Λ we have

log
∣∣∣τ(n2 + aeiθ)

∣∣∣ ≤ B(θ)an+1 + o(an+1),

uniformly for |θ| ≤ π
2 − εa

−2, with

B(θ) := 2nWΣ

∫ ∞
0

[−Re ρ(xei|θ|)]+
xn+2

dx,

where WΣ is the Weyl constant for ∆h and [·]+ denotes the positive part.

Proof. We let ν = s − n
2 as always and we use the conjugation symmetry to restrict our

attention to Im ν ≥ 0. Recall that Re ρ(α, x) is monotonically increasing in x. For |ν| ≥M ,

where M is the constant from Proposition 3.1, (4.7) and (6.15) give

κλ(s) ≤ C e−2λRe ρ(α,x3)gλ(ν), (6.16)

for λ > 0, α = ν
λ , and

gλ(ν) :=

∣∣∣∣ Iν(λ)

I−ν(λ)

∣∣∣∣ .
Given ν = aeiθ, we split the sum (6.14) according to the sign of Re ρ( νλ , x3). The sum

over λ with Re ρ(α, x3) < 0 is finite and we further divide it into contributions from the

Poisson kernel and from the scattering matrix. Since the λ = 0 term in the sum (6.14) is

O(a), we can write

log |τ(s)| ≤ ΣL + ΣP + ΣS +O(a),

where

ΣL :=
∑

Re ρ(α,x3)≥0

log
(
1 + Ce−2λRe ρ(α,x3)gλ(ν)

)
,

ΣP :=
∑

Re ρ(α,x3)<0

2λRe[−ρ(α, x3)],

ΣS :=
∑

Re ρ(α,x3)<0

log(1 + Cgλ(ν)).

Let us now index the spectrum {λ > 0} by λk, k ∈ N. Define the constant ω = W
−1/n
Σ ,

so that λk ∼ ωk1/n by Weyl’s law. Also define the function A(θ) and constants q,Q > 0 by

Re ρ(A(θ)eiθ, x3) = 0, qωk1/n ≤ λk ≤ Qωk1/n.
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First we show that ΣL contributes only of lower order. For a sufficiently large, the factors

gλ(ν) in ΣL are bounded by Lemma 3.4, and therefore we have

ΣL ≤ C
∑

exp
(
−2λk[Re ρ(α, x3)]+

)
,

where the sum is for k from b( a
QωA(θ))nc to ∞. The monotonicity in x of Re ρ(α, x) yields

ΣL ≤ C
∑

exp
(
−2[Re ρ(aeiθ, qωk1/nx3)]+

)
.

Switching to an integral over k and substituting x = a
ωk1/n

, we find

ΣL ≤ Can
∫ QA(θ)

0

1

xn+1
exp
(
−2a

x
[Re ρ

(
xeiθ, qx3

)
]+

)
dx+O(1).

Since ρ(0, qx3) > 0, the integral exists, and the fact that the integrand is decreasing in a

shows that ΣL = O(an).

For an estimate of ΣP , define numbers µk with λk = (1 + µk)ωk
1/n for all k. Then

2λk[−Re ρ(α, x3)]+ = 2ωk1/n
[
−Re ρ

(
a

ωk1/n
eiθ, (1 + µk)x3

)]
+
.

The number of µk with absolute value greater than η/x3 is finite and independent of a.

The corresponding terms in the sum ΣP are O(a). For all other k we have (1 + µk)x3 ≥
x3 − η =: x4 and hence, by monotonicity of Re ρ and letting x = a

ωk1/n
as above,

ΣP ≤
∑

2ωk1/n[−Re ρ(xeiθ, x4)]+ +O(a),

where the sum is for k from 1 to d( a
qωA(θ))ne. Switching to the corresponding integral over

x, we find

ΣP ≤
2n

ωn

∫ ∞
0

[−Re ρ(xeiθ, x4)]+
xn+2

dx · an+1 +O(a).

With a simple change of variables we can scale the x4 out of the integral, yielding

ΣP ≤ x−n4 B(θ)an+1 +O(a). (6.17)

The number of terms in the sum ΣS is, as for ΣP , less than d( a
qωA(θ))ne. Most of them are

bounded by Lemma 3.4, and Lemma 3.5 states that the remaining terms, those for which
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ν is in the highlighted zone of Figure 3.2, are O(a log a) for a ∈ Λ. More precisely:

ΣS ≤ O(an) +K(ν) c a log a, (a ∈ Λ), (6.18)

where, with b∗ being the constant from Lemma 3.4,

K(ν) = #
{
k > 0 : Imψ(ν, λk) ≥ 0, |Reψ(ν, λk)| ≤ b∗}. (6.19)

Now suppose that for fixed ν we have µ1, µ2 with

Reψ(ν, µ1) = −b∗, Reψ(ν, µ2) = +b∗,

where the condition on µ1 is replaced by Imψ(ν, µ1) = 0 for arg ν close to π
2 . We observe

that K(ν) is given by the number of eigenvalues λk between µ1 and µ2. Since the width of

the region

{ν : |Reψ(ν, µ)| ≤ b∗, Imψ(ν, µ) ≥ 0},

in the ν-plane is O(ν1/3) uniformly in θ = arg ν, we can estimate

K(ν) ≤WΣ

((
a

|γ(θ)|
+ ca1/3

)n
−
(

a

|γ(θ)|
− ca1/3

)n)
+O(an−1).

This shows K(ν) = O(an−2/3), and from (6.18) we obtain ΣS = O(an+1/3 log a).

We conclude

log
∣∣∣τ(n2 + aeiθ)

∣∣∣ ≤ x−n4 B(θ)an+1 + Cε,η a
n+1/3 log a,

where the constant might blow up as η → 0. This gives

lim sup
a→∞

[
log
∣∣τ(n2 + aeiθ)

∣∣
an+1

−B(θ)

]
≤ (x−n4 − 1)B(θ),

which, by letting x4 → 1, completes the proof.
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6.3 Completing the sharp estimate

Proof of Theorem 1.2. With the asymptotics of the scattering phase, as stated in Corol-

lary 5.2, the relative counting formula from Proposition 6.1 becomes

(n+ 1)

∫ a

0

Ng(t)−N0(t)

t
dt = 2WKa

n+1 +
n+ 1

2π

∫ π
2

−π2

log
∣∣∣τ(n2 + aeiθ)

∣∣∣ dθ + o(an+1).

We can then apply the asymptotic for N0(t) from Proposition 6.3 and the scattering de-

terminant estimate from Proposition 6.5. Comparing the result to (1.5) shows that for

Theorem 1.2 it remains to show that the contribution of∫
π
2−εa

−2≤|θ|≤π2

log
∣∣∣τ(n2 + aeiθ)

∣∣∣ dθ,
is of lower order. If we assume a ∈ Λ then by the Hadamard factorization (5.3) of τ and

the Minimum Modulus Theorem [30, Thm. 8.71], we have the estimate∣∣∣τ(n2 + aeiθ)
∣∣∣ ≤ Cε exp

(
an+1+ε

)
,

for any ε > 0, provided β > n+ 1 in the definition of Λ. This implies∫
π
2−εa

−2≤|θ|≤π2

log
∣∣∣τ(n2 + aeiθ)

∣∣∣ dθ = O(an−1+ε),

which suffices to complete the proof.



Appendix A

Asymptotics of the sectional

curvatures

Let (N,h) be a compact Riemannian manifold with non-empty boundary and denote by M

the interior of N . The metric on the cotangent bundle of (N,h) is

|df |2h := fih
ijfj = |grad f |2h .

We call a smooth and non-negative function ρ on N a boundary-defining function if

ρ−1(0) = ∂N and dρ 6= 0 on ∂N.

Given such a function ρ, we can define a non-compact Riemannian manifold (M, g) by

setting

g := ρ−2 h. (A.1)

The measurement of angles is not affected by (A.1), and hence we call (A.1) a conformal

change and the manifold (M, g) is called conformally compact. The following standard fact

about the curvatures of such manifolds has first been noted in Rafe Mazzeo’s dissertation

[22].

Proposition A.1. The manifold (M, g) as defined above is complete and its sectional cur-

vatures have the asymptotic behavior

secg → −|dρ|2h as ρ→ 0.
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For instance, let D stand for the open unit disk in R2. Then D with the metric

4
(
dx2 + dy2

)
(1− x2 − y2)2

,

is the Poincaré disk model of the hyperbolic plane H2. Multiplying this metric with the

square of

ϕ := 1
2

(
1− x2 − y2

)
, (A.2)

we obtain the standard Euclidean metric, which extends to a smooth metric on the closed

unit disk. Since ϕ is a boundary-defining function for (D, dx2 + dy2), we conclude that H2

is conformally compact. Proposition A.1 further states that the sectional curvatures of H2

approach −1 at infinity.

In general, |dρ|h can vary along the boundary ∂N . Hence, by Proposition A.1, the limits

of the sectional curvatures of (M, g) lie in some compact interval of (−∞, 0). If those limits

are the same and equal to −1 for all possible paths escaping to infinity, then the conformally

compact manifold is called asymptotically hyperbolic.

We end this review of conformal compactness with the construction of a class of boundary-

defining functions that always yield asymptotically hyperbolic manifolds. Given a compact

manifold (N,h) with non-empty boundary, there exists ε > 0 such that the mapping

{p ∈ N : dh(p, ∂N) ≤ ε} → [0, ε]× ∂N

p 7→
(
dh(p, ∂N), q

)
,

where q is the unique point on ∂N with dh(p, q) = dh(p, ∂N), is well-defined and a diffeo-

morphism. Hence one possible choice for ρ would be to define

ρ(p) := dh(p, ∂N),

in a neighborhood of ∂N , and then continue this function smoothly and positively onto

the remainder of N . In this case, ρ is a Riemannian submersion in a neighborhood of the

boundary, and (A.1) gives rise to an asymptotically hyperbolic manifold. Note that the

boundary-defining function x in (1.2) is of that form (while (A.2) is not).



Appendix B

Asymptotic behavior of the Airy

function

The Airy function has zeros only on the negative real axis, with the first at w ≈ −2.338.

For large arguments we can derive the Airy function asymptotics (following [28, §4.4.1])

from the integral representation

Ai(w) =
1

2π
e−ξ

∫ ∞
0

e−
√
wt cos(1

3 t
3
2 ) t−

1
2 dt,

for |argw| < π, where

ξ := 2
3w

3
2 .

Hence, if we pull out the leading term by setting

Ai(w) =
1

2π
1
2

w−
1
4 e−ξ

[
1 +R(w)

]
,

the remainder term is given exactly by

R(w) =
w

1
4

π
1
2

∫ ∞
0

e−
√
wt
[
cos(1

3 t
3
2 )− 1

]
t−

1
2 dt.
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This is now easy to estimate by applying Taylor’s theorem to the cosine term at t = 0. The

result is that for w = reiθ, with r > 0 and |θ| < π,

|R(w)| ≤ r
1
4

π
1
2

∫ ∞
0

e−
√
r cos(θ/2)t 1

18
t
5
2 dt

=
5

48

r−3/2

[cos(θ/2)]7/2
.

For |argw| ≤ π − ε, this gives the uniform estimate

Ai(w) =
1

2π
1
2

w−
1
4 e−ξ

[
1 +O(|ξ|−1)

]
, (B.1)

with the constant in the error term bounded by 5
72(sin ε/2)−

7
2 .

We can also develop asymptotics near the negative real axis using the identity

Ai(w) = e
πi
3 Ai(e−

2πi
3 w) + e−

πi
3 Ai(e−

4πi
3 w). (B.2)

From (B.1) this yields

Ai(w) =
1

2π
1
2

w−
1
4

(
e−ξ + ieξ

) [
1 +O(|w|−

3
2 )
]
, (B.3)

uniformly for argw ≥ π
3 + ε.



Appendix C

The method of successive

approximations

Consider the recursive integral equation

h(x) =

∫ ∞
x

K(x, y)φ(y)
[
h(y) + f(y)

]
dy, (C.1)

where all functions appearing are complex-valued and measurable on R+. We obtain a

formal solution for (C.1) in the form

h(x) :=

∞∑
j=1

hj(x), (C.2)

by setting

hj(x) :=

∫ ∞
x

K(x, y)φ(y)hj−1(y) dy, j ∈ N, (C.3)

where h0 := f .

Suppose that there are positive functions p and q such that

|K(x, y)| ≤ p(x)q(y),

for x ≤ y, and that

κ̃ := sup
y∈R+

q(y) |f(y)| <∞,

κ := sup
y∈R+

p(y)q(y) <∞.
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Suppose further that the integral

Φ(x) :=

∫ ∞
x
|φ(y)| dy,

converges for all x > 0.

Then from (C.3) we obtain the estimates

|hj(x)| ≤ p(x)
κ̃

κ

(
κΦ(x)

)j
j!

,

for j ∈ N. Consequently, the formal series (C.2) converges absolutely under these hypotheses

and satisfies

|h(x)| ≤ p(x)
κ̃

κ

[
exp

(
κΦ(x)

)
− 1
]
.
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