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Abstract

Low Precision Preconditioning for Iterated Tikhonov Regularization
By Xiaoyun Gong

Mixed precision arithmetic has gained significant interest in recent years, given
its ability to reduce memory cost and accelerate computation while maintaining ac-
curacy. Many mixed precision algorithms have been designed for solving large-scale,
well-conditioned linear systems that arise in various scientific applications. Iterative
refinement is a common scheme in the design of such algorithms. In this thesis, we
aim to extend mixed precision to ill-conditioned problems using variations of iterated
Tikhonov as regularization. Several numerical experiments are conducted on appli-
cations from signal and image processing, and the results are compared with those
obtained from standard methods, such as CGLS and Hybrid LSQR. Analysis of the
results show that the method is able to produce solutions of comparable quality to
the standard methods, but at a significantly lower computational cost.
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Chapter 1

Introduction

Inverse problems arise in many areas of science and engineering, where people hope to

recover unknown information from indirect measurements. These problems often in-

volve solving large-scale linear systems, which can be computationally expensive and

prone to accumulation of errors, especially when dealing with noisy data. Using an

iterative method is often a popular way for solving such problems. On the other hand,

low precision arithmetic has gained significant interest in recent years due to advances

in computer architecture and growing demands in scientific computation, as well as

hardware support. It has been shown to be particularly useful in solving large-scale,

well-conditioned linear systems that arise in various application fields, including en-

gineering, physics, and data science. This is because low precision arithmetic reduces

the memory cost and accelerates computation through reducing the number of bits

used to represent the numbers in the computer. Therefore people have been exploring

the potential of combining low precision arithmetic with iterative methods to tackle

those increasingly large scale computational problems. Mixed precision algorithms

have been developed that leverage the benefits of low precision arithmetic, such as

faster computation and lower memory cost, while still maintaining the accuracy of

high precision arithmetic. A comprehensive review of mixed precision algorithms in

numerical linear algebra can be found in [16]. Many works have been done that merge
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this idea with iterative refinement, which will be discussed in more details in Chapter

2. For example, in [5], Carson and Higham proposed a three-precision algorithm for

solving nonsingular linear systems with iterative refinement. Through efficient half

precision implementation, they demonstrated that the algorithm could achieve both

faster computation and even improved accuracy.

Although low precision arithmetic has been studied extensively in well-conditioned

linear systems, to our knowledge little work has been done on its application to

ill-posed problems. Iterative refinement has been shown to be effective for well-

conditioned linear systems, but for solving ill-conditioned problems, regularization

is necessary to balance signal and noise. Common techniques for regularization in-

clude truncated singular value decomposition (TSVD) and Tikhonov regularization.

Therefore, we aim to extend the work on iterative refinement to iterated Tikhonov

regularization as a natural starting point for developing mixed-precision algorithms

for ill-posed problems. More specifically, our focus is on the iterated Tikhonov scheme

and its variations, including Donatelli and Hanke’s scheme proposed in [8]. Our ap-

proach is mainly inspired by mixed precision in iterative refinement, which involves

treating a low precision matrix as a computationally efficient approximation that is

sufficiently close to the original one, thus improving computational efficiency while

maintaining accuracy.

In Chapter 2, we give a brief overview of inverse problems and regularization tech-

niques, along with low precision arithmetic. In Chapter 3, we delve deeper into one

particular type of regularization, iterated Tikhonov, and review some of its variations.

Additionally, we discuss the motivation behind our approach and derive the value of

the paramter for a spectral equivalence condition, which is used in numerical experi-

ments in Chapter 4. The experiments include a spectra signal deconvolution problem

and an image deblurring problem, and outcomes are analyzed and summarized in

Chapter 5.
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Chapter 2

Background

In this chapter we provide some necessary background before we move on to later

chapters. Specifically, this chapter covers important topics such as inverse problems,

regularization, and low-precision arithmetic.

2.1 Inverse Problems and Regularization

Inverse problems refer to problems that use outside measurements to acquire infor-

mation about internal or hidden data [14]. Two problems are inverses of each other

if the formulation of one problem involves the other one [18]. Distinctions of “for-

ward problem” versus “backward problems” are sometimes blurred. For historical

reasons, one of the two problems is better studied, making the less-studied one the

inverse/backward problem. As illustrated in Figure 2.1, the forward problem inputs

x through the model to obtain b. While for the backward problem, there are two

possibilities: (1) Given b and the model, we want to recover the input x; (2) Given

input x and output b, we hope to reconstruct the model in between. In real world

problems there is often a natural distinction between the two [15]. Inverse prob-

lems arise in many application fields, such as geophysical sciences, medical imaging,

and many other aspects of engineering. Seismic inversion is one such example where
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the objective is to deduce the physical characteristics of the subsurface by analyzing

seismic measurements. In this case, output measurements and the model, which is

determined by the measuring tools, are given, and the goal is to estimate the input.

Figure 2.1: forward and backward problems

Inverse problems can be linear or non-linear depending on the formulation and

assumptions of the actual problem. In this thesis we only consider linear inverse

problems, which occur frequently in applications of tomography [2], radar [26], sonar

[23], optical imaging [11], particle sizing [22] and so on. Such problems often involve

solving a linear system with noise on the observed data

Ax = b = bexact + e,

where A is a large-scale, typically ill-conditioned matrix and b is a vector output

blended with noise e. In this case we are solving a backward problem of type (1), and

the matrix A here is the model.

Direct methods such as LU factorization, Choleskly factorization and QR factor-

ization can be used to calculate a naive solution to the problem Ax = b. However

the naive solution obtained is often corrupted by noise due to the ill-conditioning of

matrix A. Consequently, regularization methods are often needed to balance signal

and noise. Yet still, for large scale problems, the cost for factorization is computa-

tionally expensive and takes up too much storage. Direct methods also fail to take

advantage of the sparsity pattern of the matrix as most direct factorizations do not

preserve sparsity, which further increases storage burden.
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An iterative method is naturally a better choice in this case, as it only requires

matrix-vector products and vector operations. For sparse matrices that have a lot

of zero entries, matrix-vector multiplication would be very efficient and therefore

speeds up the process. Fast matrix-vector multiplication can also be done for certain

structured matrices, such as circulant matrices, Toeplitz matrices, and matrices that

can be decomposed into a sum of Kronecker products. We can also incorporate

regularization into the iterative method to lead to more stable approximate solutions

[14].

Below we describe several commonly-used regularization methods.

2.1.1 Truncated SVD

The Truncated Singular Value Decomposition (TSVD) approximates the matrix A

with a close lower rank version of itself that replaces small singular values with zeros

to reduce the effect of noise on the final solution.

Consider the SVD of matrix A:

A = UΣV T

where U and V are orthogonal matrices whose columns are, respectively, the left and

right singular vectors of A, and the diagonal elements of Σ are the singular values of

A ordered from largest to smallest as follows:

σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · = σn = 0,

where r is the rank of A.

If we take a direct approach to get the solution in the case A is a nonsingular
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matrix, we have:

A−1b = A−1bexact + A−1e

= V Σ−1UT bexact + V Σ−1UT e

= xexact +
n∑

i=1

uT
i e

σi

vi.

Notice for small σi, the term
uT
i e

σi
vi in the error term could be large. Therefore the

idea of TSVD is to truncate part of SVD of A that has small singular values. The

original problem is replaced by inverting the first k singular components of A, and

the solution becomes:

xk =
k∑

i=1

uT
i b

exact

σi

vi +
k∑

i=1

uT
i e

σi

vi.

We can also write it as

xk =
n∑

i=1

ϕ
[k]
i

uT
i b

σi

vi

where the filter factors ϕ
[k]
i are

ϕ
[k]
i =


0, i > k

1, i ≤ k

.

In this way, we control the effect of noise on the solution at the expense of sac-

rificing part of the information about the real solution. The bias we introduced by

TSVD is:
n∑

i=k+1

uT
i b

exact

σi

vi =
n∑

i=k+1

vTi x
exactvi

When the discrete Picard condition is satisfied, |vTi xexact| are typically small com-

pared to xexact [14].

The truncation parameter k is based on how much we weigh noise against bias.

The choice of k is determined by the behavior of the noisy coefficients uT
i b = uT

i b
exact+
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uT
i e as well as the size of singular values. We only want to include the SVD component

when its contribution to the real solution is thought to outweigh its noise. Selective

SVD further extends the idea by selecting the SVD components instead of choosing

a cut-off point. It keeps track of the size of
uT
i b

σi
so that small values are discarded as

they are more likely to contain more noise than information [14].

2.1.2 Tikhonov Regularization

The inverse solution can also be computed by solving a least squares problem of the

form

min
x

||Ax− b||2 (2.1)

Tikhonov Regularization includes a regularization term to the original least squares

problem:

min
x

{||Ax− b||22 + λ2||x||22} (2.2)

where the regularization parameter λ balances the residual term ||Ax − b||22 and the

regularization term ||x||22.

We can rewrite the Tikhonov problem as a least squares problem

min
x

∥∥∥∥∥∥∥
A

λI

x−

b

0


∥∥∥∥∥∥∥
2

,

and the solution to this least squares problem can be written as

xλ = (ATA+ λ2I)−1AT b. (2.3)

To see why Tikhonov regularization is effective, observe that if we substitute the
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singular value decomposition, A = UΣV T , into the expression for xλ, we have

xλ = ((UΣV T )TUΣV T + λ2I)−1(UΣV T )T b

= (V Σ2V T + V λ2V T )−1V ΣUT b

= V (Σ2 + λ2I)−1V TV ΣUT b

= V (Σ2 + λ2I)−1ΣUT b.

Then we expand the matrix multiplications column-wise and we get:

xλ =
n∑

i=1

ϕ
[λ]
i

uT
i b

σi

vi

where the filter factors ϕ
[λ]
i are

ϕ
[λ]
i =

σ2
i

σ2
i + λ2

.

Notice that for moderately small values of λ (e.g. λ = 10−3), the filter factor

ϕ
[λ]
i is approximately equal to 0 for tiny singular values and approximately equal to

1 for larger singular values. It therefore acts like a filter by decreasing the effects of

magnifying noise in b when divided by tiny singular values.

The advantage of Tikhonov regularization is that it can be easily implemented in

large scale problems, where we only need to reformulate the matrix A into

A

λI


and the right hand side b into

b

0

. And then we can apply iterative methods on the

new problem. Tikhonov regularization has similar behavior as the truncated SVD

method.
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2.1.3 Iterated Tikhonov Regularization

The iterated Tikhonov method applies tikhonov regularization to the residual in each

iteration to further refine the obtained result. It belongs to a more general class

of iterative method called iterative refinement. Iterative refinement was designed to

reduce the accumulation of numerical errors when solving a liear system by iteratively

correcting the solution x using its residual. Specifically, in the mth iteration, three

steps are performed:

1. compute the residual rm = b− Axm,

2. solve Ahm = rm

3. add the correction xm+1 = xm + hm

When b = bexact (no noise on the right hand side) and computation has no round-

off errors, the process would converge to the correct solution [20] [24].

Iterative Tikhonov adds regularization during step (2) in each iteration to reduce

the effect of noise contained in b. Again we replace the original least squares problem

with a penalty minimized version:

min
x

{||Ax− b||22 + λ2||x− x∗||22} (2.4)

where λ is the regularization parameter and x∗ is an approximation of the real solution

from prior knowledge. When such x∗ is not available, it can be set to zero [3].

For Tikhonov regularization in general form, a regularization matrix is added to

the minimization problem:

min
x

{||Ax− b||22 + λ2||L(x− x∗)||22} (2.5)

Here L is the regularization matrix that satisfies N (L)∩N (A) = {0} where N (L)
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and N (A) are null spaces of L and A. In this thesis we set L to be the identity matrix

and x∗ to be zero.

After obtaining a solution x0 to the minimization problem 2.4, we then hope to

get an approximation of the error for x0 by considering another Tikhonov regularized

minimization problem with the residual on the right hand side:

min
h

{||Ah− r0||22 + λ2||h||22} (2.6)

where r0 = b− Ax0. Symbolically, we have

h = (ATA+ λ2I)−1AT r0 (2.7)

And a refined approximation of the solution is obtained by moving x0 in the

direction of the approximated error:

x1 = x0 + h

This repeated process of refining the solution using the residual defines the iterated

Tikhonov method [9] [3]. The following algorithm describes the method:

Algorithm 1 Iterated Tikhonov

1: Initialize x0 = initial guess
2: for k = 0, 1, . . . do
3: rk = b− Axk

4: if ||rk||2 <tol then
5: exit
6: end if
7: xk+1 = xk + (ATA+ λI)−1AT rk
8: end for

Choosing the regularization parameter λ determines how sensitive the solution is

to the error e in b and how close the solution is to xexact. If the regularization param-

eter in each iteration is the same, the method is said to be stationary, otherwise it
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is non-stationary. A classical choice in the non-stationary case is to use a decreasing

geometric sequence of values, which has a linear convergence rate for certain adap-

tive choices of λ as established by Brakhage. Other choices include a nondecreasing

sequence of regularization parameters proposed by Donatelli [7].

2.2 Low Precision Arithmetic

Floating point formats are engineered to store and represent numbers in computers.

Most computer processors use double-precision binary floating point arithmetic, which

represents floating-point numbers with 64 bits. The formats are established by IEEE,

which specify the number of bits assigned to the sign, exponent, and mantissa. Some

most common formats include double precision (one signed bit, 11 bit for exponent,

52 bit for mantissa), single precision (one signed bit, 8 bit for exponent, 23 bit for

mantissa) and half precision (one signed bit, 5 bit for exponent, 10 bit for mantissa)

as shown in Figure 2.2.

Figure 2.2: Floating point formats for double, single and half precision.

Low/mixed precision computation is becoming increasingly popular in fields such

as deep learning, gaming, and other large-scale modelling. In deep learning where the

number of parameters can be huge, low precision training is used to boost the perfor-

mance and power efficiency of deep learning hardware [21]. Hubara et al. introduced

a method to train Quantized Neural Networks using weights and activations at 1-bit
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precision that yields prediction accuracy comparable to their 32-bit counterparts [17].

Mixed precision versions of matrix factorization algorithms have also been developed.

For example, Abdulah et al. presented a mixed-precision tile algorithm for Cholesky

factorization that is 1.6X faster while maintaining necessary accuracy [1]. On the

other hand, Yamazaki et al. used mixed precision to enhance the stability of CholQR

by raising some crucial intermediate steps to higher precision [25].

Benefits of computing in low/mixed precision include requiring fewer resources

for both processing and memory storage, as well as less power consumption and re-

duced computation time. For many algorithms, mixed precision has proved to achieve

similar final accuracy with large speed-up and savings. In a word, mixed precision

methods benefit algorithms that are limited by either computation or bandwidth

[12].
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Chapter 3

Modified Iterated Tikhonov

In this chapter, we go deeper into the iterated Tikhonov method to review some of

its variations. At the end, we introduce our approach, which seeks to extend the

research on iterative refinement in low precision to ill-posed problems using iterated

Tikhonov regularization.

3.1 Replacing the Original Matrix with a Close

Approximation

3.1.1 Algorithm Overview

In [8], Donatelli and Hanke introduced an iterative scheme similar to the iterated

Tikhonov regularization method. In the proposed scheme, the original operator is

replaced by an approximation that is close enough to the original operator but can

speed up calculation due to its special properties.

Again we consider the ill-posed problem:

Ax = bexact (3.1)
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where A : X → Y is a linear operator mapping from X to Y .

An approximation C of A is constructed under a closeness assumption (i.e. spec-

tral equivalence condition)

||(C − A)z|| ≤ ρ||Az||, z ∈ X (3.2)

for some 0 < ρ < 1
2
.

The difference between this method and the Tikhonov method is that the calcu-

lation of the residual correction step is based on C instead of the original matrix A to

speed up computation. Again assume that the right hand side bexact is blended with

noise and the noisy approximation b satisfies

||b− bexact|| ≤ δ (3.3)

In each step, we compute

hn = min
h

{||Ch− rn||22 + λ2
n||h||22}, rn = b− Axn (3.4)

which is equivalent to computing hn = CT (CCT + λ2
nI)

−1rn.

Then we update the solution

xn+1 = xn + hn. (3.5)

The complete algorithm is described in Algorithm 2.

Donatelli and Hanke proved that when there is no noise (δ = 0), the sequence of

solutions obtained by the method converges to the solution of (3.1) that is closest to

the initial guess x0.
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Algorithm 2 Iterative scheme by Donatelli and Hanke

1: Initialize x0, and set r0 = b − Ax0. Choose τ = (1 + 2ρ)/(1 − 2ρ) with ρ from
(3.2). Fix q ∈ (2ρ, 1)

2: while ||rn|| > τδ, let τn = ||rn||/δ do
3: hn = CT (CCT + λ2

nI)
−1rn

4: where λn is such that ||rn − Chn|| = qn||rn||, qn = max{q, 2ρ+ (1 + ρ)/τn}
5: xn+1 = xn + hn

6: rn+1 = b− Axn+1

7: end while

3.1.2 Circulant Approximation and Fast Fourier Transform

For image deblurring problems, a suitable choice of C can be a circulant matrix

or BCCB (block circulant with circulant blocks) matrix. Circulant matrix refers to

matrices where each row is a circular shift of the previous row. It is a special type

of Toeplitz matrix. One favorable property of such matrices is that they can be

diagonalized as

C = FHΛF

where F is the Fourier transform matrix and is unitary (i.e. FHF = FFH = I).

Both F and FH are symmetric. Similar diagonalization exists for a BCCB matrix

where the F becomes the 2D Fourier transform matrix.

Matrix vector multiplication with F is fast when using an FFT (fast fourier trans-

form). There are many algorithms to implement FFT, one of the most commonly

used is the Cooley–Tukey algorithm that gives result in less than 2n log2 n operations

[6], which is a huge reduction compared with n(2n− 1) operations for multiplication

with a generic matrix. The algorithm goes through a repeatedly divide and conquer

process where the original problem is recursively broken down into sub-problems.

The most well known use is the radix-2 case where the transform is divided into two

transforms with size half the original transform. There are also mixed-radix cases

that extends to transforms that are not a power of two.

Using a circulant matrix or BCCB matrix therefore makes the algorithm faster,
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especially for large scale problems where computation can be reduced significantly.

In fact, the only information we need is the eigenvalues on the diagonal of Λ, which

can be easily computed by applying discrete Fourier transform to the first column of

the matrix and scale it by a factor of
√
n:

diag(Λ) =
√
nFC(:, 1) (3.6)

where n is the size of A. This can be verified if we plug in C(:, 1) = FHD1F (:, 1).

Again, we can compute the eigenvalues using FFT with a time complexity of

O(n log n). In contrast, a general eigenvalue algorithm, such as the QR algorithm

for Hessenberg matrices, typically has a cost of O(n2) per iteration. Therefore for

circulant or BCCB matrices, the computation in equation (3.4) can be performed

easily and with high efficiency.

3.2 Arnoldi-based Preconditioner

Buccini et al. proposed another variant of Tikhonov regularization method using a

few steps of the Arnoldi process [4]. The problem setting is a little different from the

general problem 2.1 in that the matrix A is such that matrix-vector products Aw can

be evaluated inexpensively while ATw cannot.

3.2.1 Arnoldi Process

Arnoldi Process is one of the Krylov subspace methods that project the problem

onto the Krylov subspace Km(A, v) = span{v,Av,A2v, . . . , Am−1v}. It computes an

orthogonal basis of Km and can be used to find eigenvalues of the matrix A. The

algorithm is described below:
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Algorithm 3 Arnoldi Process

1: Initialize ||v1||2 = 1
2: for j = 0, 1, 2, . . . ,m do
3: w = Avj
4: for i = 0, 1, 2, . . . , j do
5: hi,j = w · vi
6: w = w − hi,jvi
7: end for
8: hj+1,j = ||w||2
9: vj+1 = w/hj+1,j

10: end for

We can see the matrices have the following relationship:

AVm = Vm+1Hm+1. (3.7)

After block operation, we can further write

AVm = VmHm + hm+1,mvm+1e
T
m.

Multiply both sides by V T
m on the left and we get

V T
mAVm = Hm + hm+1,mV

T
m vm+1e

T
m = Hm

where Vm is a matrix with orthogonal columns that span the Krylov subspace formed

by A and v, and Hm is an upper Hessenberg.

3.2.2 Iterated Arnoldi-Tikhonov Method

The iterated Arnoldi-Tikhonov Method (IAT) proposed by Buccini et al. follows

the iterated Tikhonov scheme. At each iteration, Tikhonov regularization is added

and a correction vector is calculated from the current residual as in equation (2.7).

However, the original matrix A here is substituted by the pth step of the decomposition
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obtained from the Arnoldi process as in equation (3.7). Then, the correction vector

hk becomes:

hk = AT (AAT + λ2I)−1rk

= (Vp+1Hp+1V
T
p )T (Vp+1Hp+1V

T
p (Vp+1Hp+1V

T
p )T + λ2I)−1rk

= (VpH
T
p+1V

T
p+1)(Vp+1(Hp+1H

T
p+1 + λ2I)V T

p+1)
−1rk

= VpH
T
p+1(Hp+1H

T
p+1 + λ2I)−1V T

p+1rk

= Vp(H
T
p+1Hp+1 + λ2I)−1HT

p+1V
T
p+1rk.

(3.8)

Replacing A with Vp+1Hp+1V
T
p satisfies the spectral equivalence condition in equa-

tion (3.2) automatically since they are essentially the same matrix.

3.3 Replacing the Original Matrix with a Low Pre-

cision Version

In this thesis, we approximated the original matrix A with a lower precision version

of itself. In other words, in the scheme by Donatelli and Hanke, the approximation

C of A here is A in low precision. We used the Conjugate Gradient algorithm for

Least Squares (CGLS) with Tikhonov regularization for the computation to calculate

the correction vector h in each iteration, and computations are all performed in low

precision. The motivations behind this are:

• Though it might require more iterations to converge, computing in low precision

can potentially reduce memory costs and speed up computation.

• The major difficulty for low precision (especially half precision) to reach a good

solution in such problems is that overflow can occur easily due to the limited

number of bits allocated to the exponent. Roundoff errors can also accumulate

due to the limited number of bits allocated to the mantissa. Iterated Tikhonov



19

divides its iterations into multiple steps, where each step contains fewer sub-

iterations. In this way the accumulation of round-off errors gets cut off when a

new step starts, allowing the method to run more iterations and further refine

the solution.

In both [19] and [13], the authors demonstrated with numerical experiments that

the number of floating point operations per second of half and single precision is

about 4× and 2× that of double precision. We use this result in the Chapter 4 when

comparing the computational cost of different methods.

We now want to check the spectral equivalence condition in equation (3.2). We

hope to find an upper bound for the ρ such that

ρ = max
z∈X

||(C − A)z||
||Az||

(3.9)

where A is the original matrix stored in double precision and C is lower precision

version of A. We assume A has full column rank because otherwise the null space

of A would be non-empty. If we take z ∈ N (A), the denominator ||Az|| would be 0,

making ρ not bounded.

In general, when we can write H = MHM for some invertible matrix M , we have:

max
x

xHGx

xHHx
= max

x

xHGx

xHMHMx

Consider Mx = b, and assuming M is invertible, x = M−1b, then we can further

rewrite:

max
x

xHGx

xHHx
= max

b

(M−1b)HG(M−1b)

bHb

= max
b

bH(M−HGM−1)b

bHb

= largest eigenvalue of M−HGM−1
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3.3.1 General Case When A is a Real Square Matrix

With consistency of 2-norm, we have:

ρ2 = max
z

||(C − A)z||22
||Az||22

= max
z

zT (C − A)T (C − A)z

zTATAz

= largest eigenvalue of A−T (C − A)T (C − A)A−1

= largest eigenvalue of ((C − A)A−1)T (C − A)A−1

= (largest sigular value of (C − A)A−1)2

= ||(C − A)A−1||22

= ||CA−1 − I||22

= ||A−TCT − I||22.

(3.10)

The next theorem [3.3.1] is useful for our analysis.

Theorem 3.3.1. Let Ax = b and (A +∆A)y = (b +∆b) where ||∆A|| ≤ ϵ||E|| and

||∆b|| ≤ ϵ||eb||, and assume that ϵ||A−1||||E|| < 1. Then

||x− y||
||x||

≤ ϵ||A−1||||A||
1− ϵ||A−1||||E||

(
||eb||
||b||

+
||E||
||A||

)
.

We use a slight variation of the theorem above when ∆b = 0 and x becomes a

matrix instead of a vector. Let AX = B and (A+∆A)Y = B where ||∆A|| ≤ ϵ||E||,

and assume that ϵ||A−1||||E|| < 1. From (A+∆A)(Y −X) = B−B−∆AX = −∆AX,
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we get Y −X = −(A+∆A)−1∆AX. Then we can write the relative error as

||X − Y ||
||X||

≤ ||(A+∆A)−1∆A||||X||
||X||

= ||(A+∆A)−1∆A||

= ||(I + A−1∆A)−1A−1∆A||

≤ ||(I + A−1∆A)−1||||A−1∆A||

≤ 1

1− ||A−1∆A||
||A−1∆A||

≤ ϵ||A−1E||
1− ϵ||A−1E||

.

(3.11)

Back to the problem of finding a bound for ρ, let Y = A−TCT , we can write

ρ = ||Y − I||2.

Here we can view this as a perturbation problem with the original system be

CTX = CT and the perturbed system be ATY = CT . Obviously the real solution is

X = I.

To calculate the ϵ that quantifies the perturbation amount, we start from the

relationship in Frobenius norm

||A− C||F ≤ 2−p||A||F

where p represents the number of mantissa bits in the current precision. This is

because for every entry in the matrix we have |cij − aij| ≤ 2−p|aij|. Therefore for the

2-norm we can derive the following relationship:

||A− C||2 ≤ 2−p
√
n||A||2

since for any matrix A of size n× n, ||A||F/
√
n ≤ ||A||2 ≤ ||A||F .
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We then rewrite it in terms of relative difference with respect to C:

||A− C||2 − 2−p
√
n||C||2 ≤ 2−p

√
n(||A||2 − ||C||2)

||A− C||2 − 2−p
√
n||C||2 ≤ 2−p

√
n||A− C||2

||A− C||2 ≤
2−p

√
n

1− 2−p
√
n
||C||2

||AT − CT ||2 ≤
2−p

√
n

1− 2−p
√
n
||CT ||2

(3.12)

given 1− 2−p
√
n > 0, which is always true for n < 220 for half precision (i.e. p = 10).

Plugging E = CT and ϵ = 2−p√n
1−2−p

√
n
back into equation (3.11), we get

||X − Y ||2
||X||2

≤ ϵ||C−TCT ||2
1− ϵ||C−TCT ||2

=

2−p√n
1−2−p

√
n

1− 2−p
√
n

1−2−p
√
n

.

Therefore we finally get

ρ = ||Y − I||2 =
||X − Y ||2

||X||2
≤

2−p√n
1−2−p

√
n

1− 2−p
√
n

1−2−p
√
n

.

3.3.2 Case When A is Circulant/Block Circulant with Cir-

culant Blocks (BCCB)

Circulant/Block Circulant with Circulant Blocks (BCCB) can be diagonalized by

the discrete Fourier transform. Notice that a circulant matrix remains circulant in

different precision levels. Additionally, when we subtract one circulant matrix from

another circulant matrix, the result is still a circulant matrix. This same property

holds true for BCCB matrices.

Let the matrices be diagonalized as A = FHD1F and C = FHD2F . Using the

special diagonolization of circulant/BCCB matricies, we can simplify the original
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equation as

ρ2 = max
z

||(C − A)z||22
||Az||22

= max
z

||(FH(D2 −D1)F )z||22
||(FHD1F )z||22

= max
z

||(D2 −D1)Fz||22
||D1Fz||22

Let x = Fz, then we can write

ρ2 = max
z

||(D2 −D1)Fz||22
||D1Fz||22

= max
x

||(D2 −D1)x||22
||D1x||22

= max
x

xH(D2 −D1)
H(D2 −D1)x

xHDH
1 D1x

= largest eigenvalue of D−H
1 (D2 −D1)

H(D2 −D1)D
−1
1

= max

{
|D2(i, i)−D1(i, i)|2

|D1(i, i)|2
: i = 1, 2, . . . , n

}
(3.13)

3.3.3 Case When A is not Square but is Real

Let the singular value decomposition of A be A = UΣV T , we have

ATA = (UΣV T )TUΣV T = V ΣTΣV T .

Since A has full column rank, we can write

Σ =

Σ1

0


where Σ1 is a diagonal matrix with singular values of A on the diagonal. Plug into
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the previous equation and we have

ATA = V

[
ΣT

1 0

]Σ1

0

V T = V ΣT
1Σ1V

T = (Σ1V
T )TΣ1V

T = P TP

where P = Σ1V
T is an invertible square matrix, and P have the same Frobenius

norm and 2-norm as A. Similarly we can write C−A = Q with Q being an invertible

square matrix that preserves the frobenius norm and 2-norm. Now we can proceed

as in the square case:

ρ2 = max
z

||(C − A)z||22
||Az||22

= max
z

zTQTQz

zTP TPz

= largest eigenvalue of P−TQTQP−1

= ||QP−1 − I||22.

(3.14)

Therefore similar to the square case, we have

ρ ≤
2−p√n

1−2−p
√
n

1− 2−p
√
n

1−2−p
√
n

.
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Chapter 4

Numerical Experiments

In this section, we test the modified algorithm with some numerical experiments. We

then compare it with some standard method such as CGLS and Hybrid LSQR on the

accuracy of the solution as well as computational cost. In each refinement step, we

carefully control the number of iterations CGLS runs when computing the correction

vector h because computing in low precision is more likely to overflow/underflow.

Our goal is to extract as much information as possible from the current residual while

avoiding occurance of overflow/underflow that would cause NaNs in the next round.

The criteria for choosing when to stop the iteration are: if (1) ”Inf” occurred during

the calculation of the current CGLS iteration, (2) we observe a sudden large increase

in residual norm in the inner iteration (more than 50% increase), or (3) we observe

a sudden large increase in residual norm in the outer iteration (more than 100%

increase), we stop the iteration and return result from the previous iteration. In this

way, the iterated refinement process can continue improving the solution.

4.1 Spectra Test Problem

We first tried a small spectra problem of size 64 × 64 and applied 1%, 0.1% and

10% Gaussian noise respectively to the observed right hand side b. We obtained an
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appropriate Tikhonov regularization parameter for the first outer iteration with the

Hybrid LSQR algorithm, then we used a decreasing geometric sequence to form the

regularization parameters for later iterations. We set the common ratio to be 0.8.

The real solution to the problem is plotted below in Figure 4.1. And in Figure 4.2

we plot the singular values of the matrix associated with this problem. We can see

the singular values are decaying very quickly and the smallest ones are very close to

zero, indicating the matrix is very ill-conditioned.

Figure 4.1: Real solution of size 64
spectra problem.

Figure 4.2: Singular values of ma-
trix A.

4.1.1 Results

We first set the noise level to be 1% and ran the modified algorithm with the inner

iteration for calculating the correction vector h in half precision. As a comparison,

we show the best estimates obtained by CGLS and Hybrid LSQR in double precision.

All three methods share the same Tikhonov regularization parameter.

We can see the solutions by the three methods are highly similar. Despite con-

taining some noise as shown by the fluctuations, all three solutions accurately capture

the overall pattern of the true solution by recovering the three larger “peaks.” Figures

4.6 and 4.7 show the relative error norm and the relative residual norm for the three

methods, with CGLS and Hybrid LSQR running in double precision, and iterated
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Figure 4.3: CGLS in dou-
ble precision, 1% noise.

Figure 4.4: Iterated
Tikhonov in half precision,
1% noise.

Figure 4.5: Hybrid LSQR
in double precision, 1%
noise.

Tikhonov running in half precision for the refinement step.

Figure 4.6: Relative error norm for
spectra problem, 1% noise.

Figure 4.7: Relative residual norm for
spectra problem, 1% noise.

The relative error norm of CGLS drops and then gradually converges, reaching

its lowest value of 0.2841 at the 29th iteration. Best solution from Hybrid LSQR has

a slightly better quality with a relative error norm of 0.2675 at the 59th iteration.

However at the stopping iteration (30th iteration), it had a much higher error norm

of 0.2967. We allowed the method to continue running even after it met the stop-

ping criteria, and no overflow occurred during the iterations. Nevertheless, the error

norm increased midway through the iterations while the residual norm continued to

decrease. For the iterated Tikhonov method, we are only plotting the error norm

and residual norms at the end of each outer iteration. The results of the inner it-
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erations are not displayed except for the first iteration. This is because each inner

iteration is solving a different linear system to compute a correction step based on

the current residual and is not directly working on the original problem. For this test

problem, the method completed three outer iterations before coming to a stop, with

25, 25, 21 CGLS iterations respectively. It gave a relative error norm of 0.2615 by the

time it satisfied the stopping criteria, which is the lowest of all three methods. The

relative residual norms for CGLS with Tikhonov regularization and Hybrid LSQR

kept decreasing smoothly as we run more iterations, with the residual norm of CGLS

converging to a slightly higher value. Meanwhile, although the residual norm for it-

erated Tikhonov initially followed a decreasing trend and reached a value comparable

to Hybrid LSQR by the end, it increased towards the end of the first outer iteration

and eventually caused an overflow. We observe that the error norm exhibits a similar

trend. Given the sharp increase in relative residual norm, it is natural to expect

that stopping criteria (2) would halt the iteration before the error norm escalated.

However, inside the inner iteration, computation is performed in low precision and

the residual norm calculated with respect to the low precision version of the problem

did not experience a change large enough to stop the iteration. Instead, overflow in

this case helped ended the iteration, inadvertently preventing the error from further

increase. And we can see later the refinement steps did make a good improvement

on the result by reducing the error norms.

4.1.2 Computation Cost

We compare the computation cost of using the modified iterated Tikhonov method

with correction step in half precision and directly using CGLS in double precision.

In both methods, matrix-vector multiplications are the steps that require the most

computations. Therefore we disregard the remaining operations such as inner prod-

uct calculations and subtractions between vectors, as they are negligible in terms of
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computation cost. We know each CGLS iteration involves two matrix-vector multi-

plications. So the total number of such operations for direct CGLS is 29 × 2 = 58

operations in double precision, which is equivalent to 58 × 4 = 232 operations in

half precision. While for the iterated Tikhonov method, besides the inner iteration

of CGLS, in each outer iteration there is a matrix-vector multiplication in double

precision when calculating the residual. So it has (25+25+21)× 2 = 142 operations

in half precision and two matrix-vector multiplications in double precision, making

a total of 150 operations in half precision. This is less than the computation cost of

direct CGLS, and achieves even better accuracy.

4.1.3 Other Noise Levels

In order to see how noise level affects the performance of the modified method, we

performed similar experiments with 0.1% and 10% noise on the observed data. Figures

4.8, 4.10, and 4.12 show the solution from the three methods at noise level of 10%,

and Figures 4.9, 4.11, and 4.13 show the solution from the three methods at noise

level of 0.1%.

Again, the three methods yield similar results. At 10% noise level, they all man-

aged to capture the three “peaks”, though two of the peaks are not clearly distin-

guishable as the results at lower noise level. To take a closer look at their differences,

we plotted the error norm below. The error norms at 10% noise level is plotted with

number of iterations on a logarithmic scale for the sake of clarity, as Hybrid LSQR

runs much more iterations compared to the other two methods.

At 10% noise level, the relative residual norm has a similar trend as the 1% noise

level, with all three residual norms decreasing and CGLS being slightly larger. In

terms of relative error norm, CGLS with Tikhonov regularization reached its best

solution at the 22th iteration with an error norm of 0.5389; Hybrid LSQR took 260

iterations to reach its best solution that has an error norm of 0.5147, the lowest of all
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Figure 4.8: CGLS in dou-
ble precision, 10% noise.

Figure 4.9: CGLS in dou-
ble precision, 0.1% noise.

Figure 4.10: Iterated
Tikhonov in half precision,
10% noise.

Figure 4.11: Iterated
Tikhonov in half precision,
0.1% noise.

Figure 4.12: Hybrid LSQR
in double precision, 10%
noise.

Figure 4.13: Hybrid LSQR
in double precision, 0.1%
noise.

three methods. However, at the stopping iteration of Hybrid LSQR (the 8th iteration),

the error norm is 0.5568. After 20 inner CGLS iterations, iterated Tikhonov achieved

a relative error norm of 0.5373 with only one outer iteration. The method did not un-

dergo any refinement steps due to the presence of relatively large noise in the observed

right hand side, which caused the method to terminate early to avoid being influenced

by noise. Interestingly, running the CGLS in half precision and double precision does

not have much difference in the quality of the result. This is reasonable as the right

hand side already contains a lot of noise, making the round-off errors introduced by

low precision computation insignificant. Regarding computational costs, it is appar-

ent that iterated Tikhonov takes approximately one-fourth of the computational cost

required by CGLS in double precision.

At 0.1% noise level, all three methods have relative residual norm decreasing to-
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Figure 4.14: Relative error norm for
spectra problem, 10% noise.

Figure 4.15: Relative error norm for
spectra problem, 0.1% noise.

Figure 4.16: Relative residual norm for
spectra problem, 10% noise.

Figure 4.17: Relative residual norm for
spectra problem, 0.1% noise.

wards zero. The optimal solution (achieved at the 38th iteration) obtained by CGLS

has a relative error norm as small as 0.1772. Meanwhile, Hybrid LSQR generated a

solution of comparable quality, with an error norm of 0.1753, though at a significantly

later stage (at the 181st iteration). At the stopping iteration of Hybrid LSQR (44th

iteration), the solution had a relative error norm of 0.1920. In this test case, iter-

ated Tikhonov is comparatively less competitive than the other two methods. This

is evident from the plotted solution displayed in Figure 4.11, where the solution ex-

hibits greater oscillations near the peaks. In terms of relative error norms, iterated

Tikhonov has a higher error norm of 0.2184. We can see its error norm follows a
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similar decreasing trend at first and then remains above the other two methods. The

iterative refinement is still effective in this case. Thirteen outer iterations are run in

total, with 23, 22, 19, 15, 9, 8, 14, 11, 4, 6, 4, 1, and 1 iterations respectively. The

relative error norm kept decreasing throuhgout the refinement steps. Nevertheless,

iterated Tikhonov is not a good option in this case where noise is small.

4.2 Image Deblurring Test Problem

We also conducted numerical experiments on an image deblurring problem using the

IRtools package [10]. The true image is a picture of the Hubble space telescope, and

the observed data is corrupted by Gaussian blurring. The matrix associated with the

test problem has size 4096× 4096. We set the noise level to be 1% and common ratio

for the geometric sequence of Tikhonov regularization paramter to be 0.8 as in the

spectra problem. Again, we obtained the first Tikhonov parameter from the Hybrid

LSQR algorithm. The true solution (the original image) and the observed right hand

side (the blurred image) are plotted below in Figure 4.18 and 4.19.
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Figure 4.18: Real solution (size
64).
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Figure 4.19: Blurred right hand
side (size 64).
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4.2.1 Results

We present a comparison of the optimal estimations obtained by CGLS and Hybrid

LSQR in double precision with that of the modified iterated Tikhonov with the cor-

rection step in half precision. The images after deblurring using the three methods

are illustrated below.
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Figure 4.20: CGLS in dou-
ble precision, 1% noise.
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Figure 4.21: Iterated
Tikhonov in half precision,
1% noise.
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Figure 4.22: Hybrid LSQR
in double precision, 1%
noise.

We can see the solution given by Hybrid LSQR and iterated Tikhonov are slightly

better than that of CGLS as they have sharper boundaries. However again this is

because we are running the algorithms nonstop for a maximum of 300 iterations to

show the best estimate. It takes Hybrid LSQR 282 iterations to reach this outcome.

In fact, if we examine the solution attained when the algorithm meets its stopping

criteria, its result is actually worse than that of CGLS. We plotted the relative error

norm and relative residual norm below in Figures 4.23 and 4.24.

The error norms have a similar pattern as the spectra problem. The relative error

norm of CGLS with Tikhonov regularization at the best estimate is 0.3685, which

occurs at the 82nd iteration. Hybrid LSQR attains its best solution at the 293rd

iteration, with a relative error norm of 0.3392. While at the stopping iteration (29th

iteration), the error norm is 0.3710. Again, for iterated Tikhonov, we plot the error

norms and residual norms in relation to the total number of iterations, displaying
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Figure 4.23: Relative error norm for
deblurring problem, 1% noise.

Figure 4.24: Relative residual norm for
deblurring problem, 1% noise.

only the results for each outer iteration for refinement steps. The method ran 3 outer

iterations before meeting the stopping criteria, and the number of iterations for the

correction step for each outer iteration are 26, 17, and 7 respectively. We can see that

the error norm continues to decrease, and by the 50th iteration, it reaches a relative

error norm of 0.3523 and comes to a stop. This gives a deblurred image of better

quality compared to those obtained by CGLS and Hybrid LSQR at their stopping

positions. This is evident from Figure 4.23 that the error norm for iterated Tikhonov

decreases the fastest. We observed from Figure 4.24 that at the end of the first outer

iteration, the relative residual norm had a tendency to increase towards the end of

the first outer iteration, just before we terminated the iteration. This behavior is in

line with criterion (2), which prevents sudden changes in the residual norm. In this

particular example, the criterion is effective in ensuring a smooth decrease in error

norm.

4.2.2 Computation Cost

Obviously the computation cost of the modified iterated Tikhonov method is signif-

icantly lower than that of CGLS as it runs fewer iterations, and a large portion of

the computation is performed in half precision. Specifically, in terms of matrix-vector
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multiplication which consumes the most computation, CGLS requires 82 × 2 = 164

operations in double precision. This is equivalent to 164× 4 = 656 operations in half

precision. Iterated Tikhonov takes (26+17+7)×2 = 100 operations in half precision

and 2 operations in double precision, which in total is 108 operations. Compared

with CGLS, the iterated Tikhonov takes significantly lower cost while maintaining a

better solution.

4.2.3 Other Noise Levels

As with the spectra problem, we conducted experiments and compared the perfor-

mance of the three methods with noise levels of 0.1% and 10% on the right hand side.

The resulting deblurred images are presented below.

We can see at 10% noise level, none of the three methods performed well in

deblurring the image to a visually clear image. We can only recognize the contour of

the telescope, with no additional details. Out of the three methods, Hybrid LSQR

exhibits slightly better details. More details are recovered at 0.1% noise level and the

difference among the three resulting images is less obvious compared to the spectra

test problem. We then examine the trend of relative error of the three methods.

At the 10% noise level, the relative error norm of CGLS with Tikhonov regulariza-

tion reached its optimal value of 0.4257 at the 36th iteration. Again we allow Hybrid

LSQR to run a maximum of 300 iterations, and after 107 iterations, it achieved the

best solution with a relative error norm of 0.3951. At the stopping iteration (the

7th iteration), Hybrid LSQR had a higher error norm of 0.4329, as in previous test

problems. On the other hand, iterated Tikhonov achieved a relative error norm of

0.4214 after only one outer iteration that has 14 inner CGLS iterations. The method

terminated early and no refinement steps were taken, and it reached even better level

of deblurring quality with less than one-fourth of the computational cost required

by CGLS in double precision. We observed that after reaching the stopping criteria
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Figure 4.25: CGLS in dou-
ble precision, 10% noise.
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Figure 4.26: CGLS in dou-
ble precision, 0.1% noise.
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Figure 4.27: Iterated
Tikhonov in half precision,
10% noise.
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Figure 4.28: Iterated
Tikhonov in half precision,
0.1% noise.
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Figure 4.29: Hybrid LSQR
in double precision, 10%
noise.
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Figure 4.30: Hybrid LSQR
in double precision, 0.1%
noise.

for this problem, running CGLS with additional iterations leads to minimal changes

in both the error norm and residual norm. In contrast, hybrid LSQR can keep on

improving the results. And the stopping criteria designed for iterated Tikhonov is

effective in finding a suitable time to stop the iteration before error blows up. Section

4.4 provides a more detailed discussion on this matter.

At a noise level of 0.1%, CGLS achieved the optimal solution at the 122nd iter-

ation with a relative error norm of 0.3318. Hybrid LSQR produced a solution with

comparable quality, with an error norm of 0.3265 at best iteration (the 282nd itera-

tion). At the stopping iteration (the 53rd iteration), Hybrid LSQR stopped with a

relative error norm of 0.3400. Unlike in the spectra test problem, iterated Tikhonov
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Figure 4.31: Relative error norm for
deblurring problem, 10% noise.

Figure 4.32: Relative error norm for
deblurring problem, 0.1% noise.

Figure 4.33: Relative residual norm for
deblurring problem, 10% noise.

Figure 4.34: Relative residual norm for
deblurring problem, 0.1% noise.

showed comparable deblurring quality to the other two methods in this particular

case. From Figure 4.32 we can see the resulting error norm is very close to that of

CGLS and LSQR. The relative error norm at the stopping iteration, which is also

the best solution, was 0.3388. It ran eight outer iterations, with corresponding inner

CGLS iterations of 1, 31, 23, 15, 9, 4, 3, and 1 respectively. Again, the computation

cost of iterated Tikhonov is significantly lower than that of CGLS as it is running

fewer CGLS iterations and the majority of the calculation is done in lower precision.

Compared with the poor solution at low noise level for the spectra problem, one pos-

sible explanation for iterated Tikhonov being able to get to a relatively good solution
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in this case is the considerably larger size of the problem. Even with double preci-

sion, round-off errors accumulate more significantly in larger problems. The iterative

nature of iterated Tikhonov which uses residual vectors calculated from the original

matrix during refinement steps enables it to recalibrate at every iteration. This could

contribute to its effectiveness.

4.3 Impact of matrix size

We hope to further investigate the relationship between the size of the matrix and the

quality of the solution. As we have already observed a drop in quality in the small

spectra problem and a relatively good quality in the larger image deblurring problem

at low noise level.

Figure 4.35: Relative error norm for
deblurring problem, 0.1% noise.

Figure 4.36: Relative residual norm for
deblurring problem, 10% noise.

From the plot we can see as the matrix size gets bigger, the performance of iterated

Tikhonov becomes closer or sometimes even better than that of CGLS. However

at small matrix size, iterated Tikhonov can have poor performance compared with

CGLS, especially when the noise level is small. This gap between CGLS and iterated

Tikhonov persists until the matrix size gets sufficiently large, and the gap tends to

narrow more quickly for problems with higher levels of noise.
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4.4 Sensitivity to the Stopping Criteria

In this section we hope to look at the criterion (2), (3) in the stopping criterion. Most

of the time the two criterion does not change the behavior of the solution too much.

They are expected to help the solution improve more smoothly through the iterative

refinements and force the method to come to a stop when the solution is moving in

a not helpful way.

Figure 4.37: Comparing relative error norm for spectra problem, 0.1% noise, with
and without criterion 2,3.

In the small spectra problem, the method is able to steadily enhance the solution

with criteria (2), (3). However it is possible for the error norm to decrease further if

the criteria were not in place. The convergence without criteria (2), (3) is unstable.

In fact, the error norm may even surpass its value at the beginning during the itera-

tions. Yet in the end it achieved a relative error norm that is better, though still not

comparable with standard methods.

We also tested this on the larger image deblurring problem and examined the

convergence trend for the problem at noise level 0.1% and 1%. We did not include

the results for a noise level of 10% because the method already halted by the residual

norm satisfying the stopping criteria before criteria (2) and (3) could be applied. We
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can see in the figures below that the criteria make the convergence more stable and

could potentially lead to a better result as in Figure 4.38, or a more stable convergence

as in Figure 4.39.

Figure 4.38: Comparing relative er-
ror norm for deblurring problem, 0.1%
noise, with and without criterion 2,3.

Figure 4.39: Comparing relative resid-
ual norm for deblurring problem, 1%
noise, with and without criterion 2,3.

4.5 Sensitivity of the Regularization Parameter

We hope to investigate the sensitivity of the iterated Tikhonov method to the choice

of regularization parameter. We tested on the image deblurring test problem used in

Section 4.1.1, and chose various parameter values ranging from 0 to 1. We did not

choose a parameter choice larger than 1 because both its infinity norm and 1-norm

has value 1, meaning the maximum of entry’s absolute value is no larger than 1.

We want to avoid choosing a regularization parameter that is too large as it may

overshadow the original matrix. In Figure 4.40, we plotted the resulting relative error

norms corresponding to each Tikhonov parameter, with the red dot indicating the

solution obtained by CGLS in double precision as a comparison.

We notice that the choice of regularization parameter does impact the quality of

the solution, but the impact is not significant in a reasonable neighbourhood around

the suitable parameter. Interestingly, the Tikhonov parameter determined by Hybrid
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Figure 4.40: Relative error norm vs Tikhonov parameter.

LSQR is not the optimal choice. It appears that a smaller Tikhonov parameter than

the one chosen by Hybrid LSQR provides a better solution. A possible explanation is

that low-precision computations can easily overflow, forcing the iteration to terminate

when NaNs occur. This can have a similar impact as regularization, though in a

“passive” manner. As a result, the extra regularization from Tikhonov regularization

could have less regularization power, making a parameter less than the regularization

parameter selected by methods in double precision a better choice.
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Chapter 5

Concluding Remarks

In this thesis, we explored the use of the iterated Tikhonov method for solving in-

verse problems with noisy right-hand sides, using low precision computation for the

correction step. Our approach is inspired by the iterative scheme proposed by Do-

natelli and Hanke in [8], which replaces the original matrix with a computationally

efficient approximation that is sufficiently close to the original one. In our case, the

approximated matrix is the one in low precision. We first derived a bound for the

spectral equivalence condition of matrices at different precision levels that is part

of the stopping criteria in the scheme. Then, we conducted numerical experiments

on a small spectra signal deconvolution test problem as well as an image deblurring

problem with varying levels of noise. Our results show that most of the time, the

method achieves similar results as direct CGLS with Tikhonov regularization and

Hybrid LSQR, but with significantly lower computational cost.

If the noise level is sufficiently high, iterated Tikhonov may terminate after the

first outer iteration and does not go through any refinement steps. This is equivalent

to directly running CGLS in low precision. Despite this, the resulting solution is

of similar quality to that obtained through high-precision CGLS. This is probably

because compared to the noise already present in the observed data, accumulation of
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round-off errors from low-precision computation becomes less significant.

When the noise level is low, iterated Tikhonov is able to run more refinement

steps to improve the solution. However, for small problems, the solution obtained

from iterated Tikhonov can be worse than other high-precision methods. This is

reasonable as using low precision computation naturally introduces more errors, which

is the major source of error given the noise is small. Furthermore, we observed that

the method can potentially converge to a better solution without stopping criteria

(2) and (3), though in an unstable way. This is likely due to the fact that in small

problems, we can allow the solution to temporarily veer in the wrong direction as we

can easily steer it back at the end of the iteration using residual with respect to the

original matrix as a calibration.

While for larger problems, iterated Tikhonov is capable of producing results of

similar quality as other methods. This is because truncation errors are inevitable in

computation, and they accumulate more rapidly with a larger matrix size, even in

high-precision calculations. However, despite performing the computation of correc-

tion vectors in low precision, iterated Tikhonov adjusts the refinement direction in

each step by calculating the residual in high precision. This approach allows iter-

ated Tikhonov to achieve similar quality results by performing continuous refinement

steps. Furthermore, the stopping criteria are much more effective in this case and

criteria (2) and (3) do help in ensuring a stable and good convergence. They are able

to stop the iteration before overfitting takes place.

The major advantage of the iterated Tikhonov method is that it requires lower

computational cost while still producing solutions as good as those of standard meth-

ods like CGLS and Hybrid LSQR. This method bypasses the challenge of over-

flow/underflow issues that can occur when running computations in low precision

by dividing the original iteration into refinement steps. The idea is to trade accuracy

for computational efficiency during the refinement steps and recalibrate the direction
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of solution between iterations, and thereby achieving satisfactory results at lower cost.

One potential problem for the iterated Tikhonov method is that it relies on other

techniques to determine a suitable Tikhonov regularization parameter to begin with.

So does CGLS. But one interesting aspect about iterated Tikhonov is that it is not

as sensitive to the choice of regularization parameter as CGLS computed in double

precision. This is due to the fact that half precision computation is highly suscepti-

ble to overflow. Therefore, even without the regularization parameter, the iteration

terminates much quicker than in double precision, which unintentionally serves as a

form of early stopping regularization.

Some future work includes running more experiments on machines that support

low precision to test the actual reduction in computation time. We also hope to

explore more effective methods for selecting the regularization parameter, including

implementing a low-precision version of hybrid LSQR.
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