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Abstract 

 

Identifying air pollution mixtures and investigating their associations with pediatric 

asthma in a time-series framework 

By Katherine Gass 

 

Every time we take a breath outside we inhale a mixture of different pollutants; 

however, examining the associations between these pollutant mixtures and health 

endpoints is challenging.  This dissertation uses different methodological approaches to 

understand the associations between air pollution mixtures and emergency department 

visits for pediatric asthma.  Time series with daily counts of emergency department visits 

for any diagnosis of asthma or wheeze among pediatric patients were obtained from 

hospitals in metropolitan Atlanta (1999-2010), Dallas (2006-09) and St. Louis (2001-07).  

Daily measurements of ambient concentrations of ozone, carbon monoxide, nitrogen 

dioxide, and particulate matter <2.5 μm in diameter (PM2.5) were obtained from monitors 

in all three metropolitan areas.  In addition, daily estimates of PM2.5 source 

concentrations were made available for Atlanta using a Bayesian-based ensemble source 

apportionment technique.   

A modified classification and regression tree algorithm was developed to enable 

the identification of multipollutant joint effects.  This algorithm was then used to 

determine the multipollutant joint effects associated with pediatric asthma in Atlanta, as 

well as the common multipollutant joint effects identified in Atlanta, Dallas and St. 

Louis.  These analyses found certain types of days, characterized by their multipollutant 

profiles, to be associated with a statistically significant increase in asthma emergency 

department visits.  PM2.5 appeared to be one of the pollutants driving the formation of 

these harmful day types and thus further analyses were conducted to determine the 

associations between pediatric asthma and PM2.5 sources.  A positive association was 

observed for the cumulative, seven-day effect a 1 μg increase in biomass burnings (rate 

ratio: 1.02, 95% confidence interval: 1.01, 1.03), diesel vehicle emissions (rate ratio: 

1.05, 95% confidence interval: 1.01, 1.08), and gasoline vehicle emissions (rate ratio: 

1.07, 95% confidence interval: 1.03, 1.11).  These confidence intervals account for 

uncertainties in the source apportionment estimates using multiple imputation methods. 

This dissertation makes methodological contributions to the field of epidemiology 

with the development of a classification and regression algorithm that is well-suited for 

identifying joint effects of exposure mixtures. It also adds to the growing body of 

literature which suggests a harmful effect of multipollutant exposures on pediatric 

asthma.  
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Chapter 1: Introduction 

Overview 

 Exposure mixtures are all around us.  Every day we receive influence from the 

mixture of genes in our genetic code, ingest a mixture of nutrients at each meal and 

breathe a mixture of pollutants with each breath.  Such mixtures comprise a blend of 

individual exposures that we experience simultaneously, and yet despite this most fields 

of research have examined each exposure individually, as if it were an independent 

phenomenon.  

 This is particularly true for the field of air pollution.  Until this past decade the 

majority of research was spent understanding the effect of a single pollutant, say nitrogen 

dioxide, on human health; however, we know that pollutants aren’t emitted in isolation, 

nor do we selectively inhale one pollutant and not another.  So why haven’t pollution 

mixtures received more attention by researchers? 

 For one, studying pollution mixtures (a.k.a. ‘multipollutants’) is incredibly 

challenging. It requires changes to the current scientific approaches for air pollution, the 

development of new modeling methods, and modifications to how we conceptualize 

health risks [1].  Nonetheless researchers have been exploring multipollutant effects for 

some time, they have just been doing so through single pollutant models, in which a 

single pollutant effect is believed to act as a surrogate for the air pollution mixture [2-5].  

One reason to favor single pollutant models is that the Environmental Protection Agency 

[6] regulates pollutants individually.  Therefore results from single pollutant models have 

more direct relevance to regulatory decisions. 
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 In 2004, the National Research Council put out a report in which it called for a 

multipollutant approach to air quality management [7].  This resulted in a paradigm shift 

for air pollution research, as more scientists began exploring the health effects of 

multipollutant exposures.  However the field of multipollutant research is still in its 

infancy; there is still no clear consensus as to what a multipollutant approach means nor 

how it should be executed [8].  A particular challenge is how to model multipollutant 

exposures for health research.  

 

Motivation 

 Recently two review articles were published in which the authors describe 

different statistical approaches for handling multipollutant exposures [9, 10].  One 

approach described by both articles is classification and regression trees (C&RT).  C&RT 

is a recursive partitioning approach in which the initial dataset is repeatedly split into 

subsets, such that each resulting subset contains observations that are more similar with 

regards to the outcome.  C&RT results in the formation of ‘terminal nodes’, which are 

collections of observations that form a complete partition of the initial dataset.  An 

appealing aspect of C&RT is that it results in a dendogram; a visually intuitive and 

informative tree diagram describing the partitioning process and the resulting 

classification of terminal nodes.  C&RT has been proposed as a useful tool for identifying 

complex multipollutant interactions [9], though has yet to be used in an epidemiologic 

study for this purpose.  

 An alternative way to formulate multipollutant exposures is by the sources from 

which they are emitted.  Source apportionment (SA) is an approach used to describe the 
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components of particulate matter [11] according to the contributing sources.  Though PM 

is often measured, referenced and regulated as if it were a single pollutant, it is in fact a 

mixture of many different particles that differ in size, chemistry and reactivity.  SA is a 

technique for decomposing the PM mixture and determining the health effects of each 

source.  An added advantage is that it can lead to source-based risk assessment (i.e. what 

is the effect of reducing emissions from a given source?) and ultimately more targeted 

regulation [12].  

 This dissertation takes a multipollutant approach to air pollution epidemiology. In 

particular two types of air pollution mixtures are examined.  Studies 1 and 2 consider 

pollution mixtures by day and attempt to classify types of days according to their 

association with the outcome. Study 3 examines the mixtures encompassed in total fine 

particulate matter mass, by measuring the health effect associated with each different 

source.  Throughout this dissertation novel methodologies are developed or applied.  In 

the first study a modified C&RT algorithm is introduced and its applicability to air 

pollution mixtures demonstrated.  The second study then applies this C&RT algorithm to 

a three-city examination of multipollutant joint effects and compares the results to more 

conventional modeling approaches.  Finally, the third study is the first epidemiologic 

application of a novel ensemble-based source apportionment method.   

Throughout this dissertation the effects of multipollutants are examined with 

regards to emergency department visits for acute asthma events among children.  

Children are particularly vulnerable to effects of air pollution for several reasons 

including ongoing lung growth and development, incomplete metabolic systems, 

immature host defenses, high rates of infection with respiratory diseases, and activity 
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patterns that increase their exposure to air pollutants [13].  The association between 

individual pollutants and childhood asthma has been well-documented in the literature 

[14-22].  This dissertation seeks to advance the current understanding of the association 

between ambient air pollution and pediatric asthma by considering the effects air 

pollution mixtures. 

 This dissertation has the following aims: 

 Study 1: To demonstrate how a modified C&RT approach can be used to 

generate hypotheses about multipollutant joint effects, by investigating the 

association between ozone (O3), nitrogen dioxide (NO2), carbon monoxide 

(CO) and fine particulate matter <2.5μg/m3 (PM2.5) and emergency 

department (ED) visits for pediatric asthma. 

 Study 2:  To extend our understanding of multipollutant joint effects 

associated with pediatric asthma by comparing those identified via C&RT to 

those identified through more conventional multipollutant regression 

modeling approaches. 

 Study 3: To examine the association between ensemble-based PM2.5 source 

impacts and ED visits for pediatric asthma.  

It is the hope that the results presented in this dissertation can help to not only 

further the understanding of multipollutants’ impacts on childhood asthma but also offer 

new approaches and insight for dealing with mixtures of exposures as a whole.  
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Chapter 2: Ambient Air Pollutants and Associated Health 

Effects 

 

Introduction 

Ambient air refers to freely moving air in the outdoor environment.  The ambient 

air found in our atmosphere is a comprised of a natural mix of substances, the most 

abundant and crucial for life being oxygen (O2) and nitrogen (N2).  Pollution of the 

ambient air occurs when gases or particles that are not part of the natural mix are 

introduced into the air with adverse effects to humans or the environment.  Sources of 

such pollutants can be naturally occurring (e.g. dust storms, volcano eruptions, and forest 

fires) or caused by human activity (e.g. industrial processes, vehicular transportation, and 

heating and cooling emissions).  Pollutants emitted directly from a source are called 

primary pollutants, whereas secondary pollutants are formed through chemical reactions 

involving primary pollutants and some weather conditions including heat and sunlight.   

Ambient air pollutants are frequently categorized into gaseous and particulate-

phased pollutants.  The main gaseous pollutants include carbon monoxide (CO), nitrogen 

dioxide (NO2), ozone (O3), sulfur dioxide (SO2), volatile organic compounds (VOCs), 

certain toxic air pollutants and some gaseous forms of metals.  Particle pollutants can be 

either solid or liquid phase and are often characterized according to size as particulate 

matter <10 micrometers (PM10) and particulate matter <2.5 micrometers (PM2.5).  A more 

detailed description of the most common gaseous pollutants and particulate matter 

follows. 
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History of Ambient Air Pollution Control 

Over the course of the 20th century mounting evidence shed light on the harmful 

effects of ambient air pollution on public health.  Fueled by air pollution disasters, 

including deadly smogs in Donora, PA and  London, England, the U.S. government 

began a series of procedures to monitor and regulate air pollution, culminating in the 

1970 Clean Air Act [1].  The Clean Air Act established regulations on the concentrations 

of key pollutants for the good of public health.  One important result of the Clean Air Act 

was the development of a pollution control strategy based on National Ambient Air 

Quality Standards (NAAQS) to be achieved at the state and national level [2].  The Clean 

Air Act required the Environmental Protection Agency [3] to set NAAQS for six 

“criteria” pollutants at levels believed to protect the public health with an adequate 

margin of safety, regardless of economic or technological feasibility of attainment [4].  

For a complete list of the criteria pollutants and NAAQS see Table 2.1. 

Significant amendments to the Clean Air Act were introduced by Congress in 

1990.  Highlights of these 1990 amendments include setting attainment deadlines for 

cities failing to meet the NAAQs, strengthening the power of the EPA and States to 

enforce standards on individual pollution sources,  setting fuel and emission standards for 

motor vehicles, and reducing acid rain and ozone depletion [5].  The amendment also 

authorized control of 189 hazardous air pollutants (also known as “toxic air 

contaminants” or “air toxics”) that are known to cause serious health effects including 

cancer, birth defects, respiratory tract and neurological illness [6, 7].   
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 The success of the Clean Air Act and other pollution control strategies can be 

seen in the reduction of ambient air pollution levels.  Ambient air pollution levels have 

been declining since 1990 at the same time the motor vehicle use, energy consumption 

and the U.S. population have been increasing [8].  By 2008, direct PM2.5 emissions had 

declined by over one half, CO and SO2 dropped by nearly 50%, and PM10, NOx and 

VOCs had declined by over a third [8].  However, despite these significant declines in 

pollutant concentrations, epidemiologic studies continue to find health effects from 

ambient air pollution at levels below the current EPA standards [4].  It is therefore 

imperative that rigorous studies continue to be conducted on the health effects of low-

level exposures and that continuous consideration be given to the revision of the NAAQS 

to reflect what is best for public health.   

 

Ambient Air Pollution and Health 

 The detrimental effects of air pollution on human health are well documented.  

Ambient air pollution has been found to be associated with infectious respiratory 

diseases, including pneumonia [9, 10], otitis media [11, 12], and bronchiolitis [13, 14] as 

well as chronic lung diseases with acute manifestations including asthma [15-20] and 

chronic obstructive pulmonary disease (COPD) [21, 22].  Though the pathways by which 

air pollution exposure affects the respiratory system may be more explicit, there is also 

substantial evidence that air pollution is associated with cardiovascular and circulatory 

diseases.  The health effects of ambient air pollution on the cardiovascular and circulatory 

systems include cardiovascular mortality [23, 24], ischemic heart disease [25], deep vein 

thrombosis [26] and myocardial infarction [27-29]. 
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 The following section describes the main air pollutants in greater detail, 

highlighting some of the main sources, characteristics and key health effects associated 

with each pollutant. 

   

Ozone (O3) 

 Depending on its location in the atmosphere, ozone can be beneficial or harmful 

for the planet.  Stratospheric ozone, occurring at altitudes above 10km, is naturally 

created and helps shield the earth from solar radiation.  On the contrary, tropospheric 

ozone occurs in the lower atmosphere and acts as a greenhouse gas, trapping heat from 

the sun and warming the earth’s surface [8].  It is this latter type of ground-level ambient 

ozone that is considered one of the criteria pollutants and is associated with adverse 

human health effects.  

Ambient ozone is a secondary pollutant, formed through a photochemical process 

of sunlight acting on nitrogen oxides and hydrocarbons [2], both of which are primarily 

produced by motor vehicle emissions [7].  Ozone levels tend to highest on warm, sunny 

windless days with peak levels found in the afternoon [7].  In Atlanta ozone levels are 

highest in the spring and summer and tend to be homogenous over space [30, 31].  

Though the general trend shows O3 levels decreasing nationally by 10% from 2001 to 

2008, in 2008 there were still many areas with O3 concentrations above the NAAQS [8].  

Twenty-three sites around the U.S. showed an increase in ambient O3 concentration from 

2001 to 2008, including Atlanta, Los Angeles and Seattle [8]. 

High levels of exposure to ambient ozone are known to have detrimental 

consequence to human health.  Ozone is a highly reactive gas that is capable of producing 
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oxidative damage in the lung [32].  It is also a respiratory tract irritant for both adults and 

children, causing shortness of breath, wheezing, cough and chest pain when inhaled 

deeply [7].  Study results suggest that O3 exposure increases asthma morbidity by causing 

airway inflammation and epithelial permeability [33].  A 5-year follow-up cohort study in 

southern CA by McConnell et al. found that among children living in high ozone areas, 

those playing sports were 3.3 times more likely to develop a new case of asthma than 

those playing no sports [34].  Similarly, greater time spent outside was associated with 

higher incidence of asthma among children living in high ozone areas [34].  

 

Nitrogen oxides (NO2, NO and NOx) 

Nitrogen dioxide (NO2) is a pungent gas that varies from yellow to brown in 

color, depending on its concentration [2].  Nitrogen dioxide is readily produced in a 

number of atmospheric reactions including direct oxidation of NO and photochemical 

oxidation of NO with ozone.  Though NO2 is the primary pollutant regulated by the EPA, 

both NO and NO2 are commonly referred to together as NOx (nitrogen oxides) because 

of how readily they convert from one to the other [2].  Nitrogen oxides are formed 

naturally in the atmosphere by lightning, forest fires and bacterial activity in the soil; 

however, in North America, anthropogenic sources dominate [35].  Anthropogenic NO2 

is produced by high-temperature combustion, particularly from gasoline and diesel 

powered engines as well as power plants and industrial combustion [7, 35].  In areas 

without heavy industrial activity, such as Atlanta, almost all of the ambient NO2 

concentration is from traffic.  Because NO2 is primarily traffic generated, it is sometimes 
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used as an indicator of the proportion of pollutants stemming from a vehicular source 

[36].   

Separating out the effects of NO2 is often difficult as the pollutant rarely occurs 

outdoors by itself, but rather as a complex mixture of primary and secondary pollutants 

[1].  In epidemiologic studies, NO2 is often used as a surrogate or marker for traffic 

exposure, and it is often difficult to establish whether there is an independent association 

of NO2 due to its high correlation with other ambient pollutants, particularly traffic-

derived PM2.5 which has the potential to confound associations with NO2 [7, 37].  

Although NO2 exhibits little seasonality, studies in Atlanta have found NO2 to exhibit 

significant spatiotemporal heterogeneity [30, 31].   

The most significant health effects of NO2 result indirectly through its role in the 

formation of ozone and other secondary pollutants such as PM2.5 nitrate [1].  Nonetheless, 

studies suggest that exposure to NO2 alone compromises respiratory health. The 

Chattanooga School Children Study, one of the earliest to examine the respiratory effects 

of elevated NO2 exposure, found that lung function of second grade children living near a 

stationary source of NO2 was significantly lower than that of children living in the control 

area [38].  Since then, additional studies have found outdoor exposure to NO2 to be 

associated with respiratory morbidity in young children [39, 40].  Findings from a multi-

city European study of air pollution and health (APHEA) suggest an independent effect 

of NO2 on respiratory and cardiovascular mortality among adults [41]; however it is 

difficult to rule out the possibility that NO2 is acting as a surrogate for unmeasured 

pollutants.  A multipollutant study in Atlanta investigating emergency department visits 

for upper respiratory illness found a significant single-pollutant effect of NO2 but the 
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effect was attenuated to the null when an additional pollutants were added to the model 

[18].   

 

Carbon Monoxide (CO) 

Carbon monoxide is a colorless, odorless, tasteless gas that is emitted from a 

variety of natural and anthropogenic sources [2].  Anthropogenic CO is produced by the 

incomplete combustion of fossil fuels, with the principal sources of ambient CO 

including on-road and off-road vehicles [35].  In the U.S., highway and non-roadway 

mobile vehicles contribute up to 80% of CO emissions [8].  Regulations on vehicular 

emissions in the U.S. have helped lead to a declining trend in CO levels, which decreased 

by 41% from 2001 to 2008 [8]; however, the opposite trend is being observed in 

developing countries where CO levels are on the rise [2].  Carbon monoxide typically 

shows significant spatial and temporal heterogeneity, with the highest concentrations 

found along roadways during morning and evening rush hours when traffic is at its peak 

[2, 30]. As with NO2, in epidemiological studies CO is typically considered a surrogate 

for traffic-related pollutants; it is difficult to attribute measures of association to CO 

exposure alone.   

 Though exposure to extremely high levels of carbon monoxide can lead to acute 

poisoning and death, this level of exposure is rarely seen in ambient CO concentrations.  

The primary health concerns associated with low-level exposure to ambient CO are 

detriments to the cardiovascular system [2].  Once it is inhaled, CO is readily absorbed 

into the bloodstream where it may have direct and indirect effects on the cardiovascular 

system [2].  Carbon monoxide interferes with oxygen transport through the formation of 
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carboxyhemoglobin [7], thereby reducing the amount of oxygen flowing to the bodily 

organs and tissue [8].  CO exposure during pregnancy has been associated with preterm 

birth [42] and a 23 gram reduction in birth weight per 1 part per million increase in CO 

[43].  Preexisting conditions such as chronic respiratory disease, diabetes and CVD may 

make people more susceptible to harmful effects from CO exposure; however, study 

results are contradictory.  While some studies have reported an increased risk in 

hospitalization for acute cardiovascular events among subjects with preexisting 

cardiopulmonary conditions [28, 44], Peel et al. found that patients with congestive heart 

failure had a decreased risk of emergency department visits for ischemic heart disease 

[45].   

 

Particulate Matter (PM) 

Particulate matter (PM) refers to solid and liquid-phase particles that come from 

natural and anthropogenic sources [2].  Particles can be classified as primary or 

secondary in origin and vary in composition, size and density.  Primary particles are 

emitted directly from a source (e.g. a combustion engine) while secondary particles are 

formed from chemical reactions involving gaseous precursors, including sulfur oxides 

and NOx [1].  The majority of PM compounds can be grouped into five categories: 

sulfates, nitrates, elemental (black) carbon, organic carbon and crustal metals [8]. 

The term particulate matter refers to a complex mix of pollutant particles, the 

components of which are likely to exhibit substantial spatiotemporal variability.  As a 

result, it is sometimes difficult to isolate the effects of PM from other gaseous pollutants. 

Results from several studies have indicated that confounding due to SO2 and O3 can 
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largely be dismissed for studies of particulate matter effects [36, 46, 47].  However these 

results may apply only to PM10, as more recent studies have found that PM2.5 sulfate can 

confound associations with ozone [48]. Studies on confounding of PM by NO2 are less 

conclusive, with some U.S. studies finding little evidence of confounding [47] while 

other European and U.S. studies have found significant confounding [36, 37].  One 

explanation for this may be the difference in source contribution between the U.S. and 

Europe, particularly emissions from diesel vehicles that tend to be greater in Europe, 

which will affect the components of the PM mix [36].  Another factor could be the 

prevailing size of the particulate matter, as smaller particles have been found to be highly 

correlated with NO2 due their common motor vehicle source  [37]. 

 In order for particles to have an effect on human health, they must first have a 

pathway into the body, namely through the respiratory system. Studies on the deposition 

and clearance of particles in the body defined inhalable particles as those less than 10 μm 

in aerodynamic diameter, commonly referred to as PM10 [49].  Later evidence in the 

1990’s suggested that even smaller particles, those with an aerodynamic diameter of 2.5 

μm were able to penetrate the alveolar gas-exchange region of the lungs and may present 

a greater health risk to humans [49].  In lieu of these findings, in the context of health 

effect studies, particulate matter is frequently classified by its aerodynamic diameter as 

PM10 or PM2.5.  

 

PM2.5 

Fine particulate matter is defined as all biogenic and anthropogenic aerodynamic 

particles measuring less than 2.5 micrometers in diameter. The U.S. EPA did not begin 
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monitoring PM2.5 until 1999 [50]; prior to that point any health effects of PM2.5 would 

have been attributed to the larger PM10 classification (all particles <10 micrometers).  

Despite the recent focus on PM2.5, annual and 24-hour PM2.5 concentrations declined by 

17 and 19 percent from 2001 to 2008, respectively [8].  

Primary PM2.5 is emitted from combustion processes, particularly diesel-powered 

engines, power generation and wood burning whereas secondary PM2.5 is formed from 

atmospheric processes [7]. Because of their low settling velocity, fine particles can be 

transported relatively long distances downwind from their sources [2].  In Atlanta, fine 

particulate matter has been found to be relatively homogenous over space [30, 51].  The 

composition of PM2.5 has been shown to vary spatially and temporally.  One multi-city 

study in the U.S. found that the association of PM2.5 and cardiovascular and respiratory 

outcomes varied by season, with the strongest effects found in the spring [50].   

One of the first studies to look at the health effects of  PM2.5 found it to be 

associated with lung cancer and cardiopulmonary mortality [52].  As the body of research 

on PM2.5 grows, the more health effects previously attributed to all PM exposure are now 

being attributed to fine particulate matter. A reanalysis of the Harvard Six City study 

found that fine, and not coarse, particulate matter was associated with acute respiratory 

tract effects in children [53].  A recent update to the American Heart Association’s 

statement on air pollution concluded that acute PM2.5 exposure can lead to CVD mortality 

and non-fatal events [54].  

 

PM2.5 Components 
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Recently there has been increasing interest in understanding the PM2.5 

components that pose the greatest health risk. Particulate matter is, by definition, a mix of 

different chemical species that varies by emission source, seasonality, geographic 

location, and meteorological conditions.  The major components that comprise PM2.5 are 

sulfates, nitrates, organic carbon (OC), elemental carbon (EC) and crustal material [8].  

According to data from the U.S. EPA, in the eastern U.S. sulfate is the largest component 

by mass, due primarily to electricity production and industrial boilers.  OC is the primary 

component of PM2.5 on the west coast, with woodstoves and fireplaces comprising the 

primary sources.  Additional sources of OC include highway vehicles, waste burning and 

wildfires.  Nitrate, another important component on PM2.5, is produced by highway 

vehicles and non-road mobile machinery.  EC emitted from the incomplete production of 

fossil fuels is typically one of the smallest PM2.5 components by mass [8].  Crustal 

material is comprised of minerals from the Earth’s crust that become airborne through 

soil erosion, weathering and dust storms.   

 The composition of PM2.5 mass has been shown to significantly modify the 

association of PM2.5 and hospital admissions [50].  Studies examining the chemical 

composition of PM2.5 have found nickel, EC and vanadium [55]; EC, OC, and ammonium 

[56]; and nickel, arsenic, chromium, bromine and OC [50] to be associated with hospital 

admissions for cardiovascular and respiratory disease.  Data from Atlanta and other 

southeastern monitoring sites indicate that organic material and sulfates comprise 60% of 

PM2.5 [57].  Though sulfate has been found to be relatively spatially homogenous in 

Atlanta [30], it does exhibit significant seasonality with maximum concentrations 

occurring during the warm months [57]. 
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 The health risk posed by PM2.5 varies by component.  In Atlanta, sulfate-rich 

secondary PM2.5 and PM2.5 stemming from mobile sources, primarily EC and OC, was 

found to be associated with asthma [20] and all respiratory ED visits [58].  Emergency 

department visits for all CVD outcomes were significantly associated with same-day 

PM2.5 concentrations of OC-related sources, including diesel and gasoline as well as 

biomass burning [58]. 
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Table 2.1 National Ambient Air Quality Standards 

Pollutant NAAQS1 Primary/ 

Secondary 

Health Effects2,3 

CO 8hr – 9ppm 

1hr – 35ppm 

Primary Decreased exercise capacity, 

reduction in oxygen to bodily organs, 

aggravation of heart disease, chest 

pain, premature mortality 

NO2 1hr – 100ppb 

 

Primary Decreased lung function, increased 

airway reactivity, increased 

susceptibility to lung infection and 

respiratory symptoms 
Annual – 53ppb Primary and 

Secondary 

O3 8hr – 0.075ppm Primary and 

Secondary  

Decreased lung function, causes 

respiratory symptoms (i.e. coughing 

and shortness of breath), lung 

inflammation, decreased exercise 

capacity, aggravation of asthma and 

lung disease, leads to hospital 

admissions and premature mortality 

SO2 1hr – 75ppb 

 

Primary Decreased lung function, increased 

respiratory symptoms including 

aggravated asthma and wheezing,  

and respiratory mortality 
3hr – 0.5ppm Secondary 

PM10 24hr - 150 

µg/m3 

Primary and 

Secondary 

Decreased lung function, increased 

respiratory symptoms and illness, 

increase asthma exacerbations, 

hospital admissions for 

cardiovascular and respiratory 

diseases, and premature mortality,  

PM2.5 24hr - 35 µg/m3 

Annual - 

15µg/m3 

Primary and 

Secondary 

Increased hospitalizations for 

cardiovascular disease, myocardial 

infarction 
1 U.S. Environmental Protection Agency. "National Ambient Air Quality Standards (NAAQS)." Retrieved 

11/29/2011, from http://www.epa.gov/air/criteria.html. 
2U.S. Environmental Protection Agency (2010). Our Nation's Air: Status and trends through 2008. 

Research Park Triangle, NC, Office of Air Quality Planning and Standards 
3Bernard, S. M., J. M. Samet, et al. (2001). "The potential impacts of climate variability and change on air 

pollution-related health effects in the United States." Environ Health Perspect 109 Suppl 2: 199-209. 
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Chapter 3: Asthma and Air Pollution 

 

Asthma is a chronic lung disease with 235 million sufferers worldwide and the 

most common lung disease among children [1].  In the United States, approximately 

7.8% of the population had been diagnosed with asthma in 2008, while the rate among 

children was 9.3% [2].  These rates represent a significant increase in asthma prevalence 

over the past decade, which is seen across all age groups [3].  Although the probable 

cause for this increase is unclear, many genetic, biological and environmental risk factors 

have been found to be associated with the onset of asthma.  It is important to point out 

that though there is a statistically significant trend of increasing prevalence from 1980 – 

2009, the prevalence of asthma attacks has remained level since 1997 [4]. 

 The economic costs associated with asthma exacerbations are significant. From 

2002 to 2007 the annual economic cost of asthma in the U.S. was $56 billion, with the 

bulk of this burden stemming from direct health care costs [5].  Each year there are 

approximately 15 million outpatient visits, 2 million emergency room visits, and 500,000 

hospitalizations for acute asthma management [6].  In addition to direct healthcare costs, 

asthma-related morbidity is responsible for significant productivity loss.  Asthma is the 

leading cause of activity limitation in the U.S.  In 2008, asthma accounted for 14.2 

million lost work days in adults and 14.4 million lost school days in children [7]. 

 Asthma is a chronic inflammatory lung disease characterized by reversible airway 

obstruction and airway hyperresponsiveness [8].  Asthma diagnosis is typically based on 

the presence of characteristic symptoms including episodic breathlessness, wheezing, 
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cough and chest tightness [9].  Measurements of lung function variability, limitation and 

reversibility of obstruction are used to confirm asthma diagnoses [9].   

 Among asthmatics, the factors known to precipitate an acute response are 

heterogeneous; different triggers may be more or less important for susceptible 

individuals [6].  The numerous precipitants of acute asthma exacerbations include smoke, 

mold, pet dander, infectious diseases, stress, exercise, and air pollution.  While 

respiratory tract viruses are the most common causes leading to acute asthma 

exacerbations, cigarette smoke is one of the most important modifiable risk factors for 

asthma exacerbations, along with exposure to allergens from cats and dogs [6].  Hospital 

asthma mortality is highest in the winter months and may be reflective of higher rates of 

influenza infection [6]. 

 Severe asthma exacerbations have been described as “events that require urgent 

action on the part of the patient and physician to prevent a serious outcome, such as 

hospitalization or death” [10].  Poorly controlled asthma can lead to severe exacerbations.  

Preventative asthma medications are the primary strategy for managing persistent asthma 

in children; however, recent data suggest that these preventative medications are 

underutilized [11].  A national sample indicated that less than one-third of children and 

adolescents with diagnosed asthma used preventative medications [12].   

 

Populations Susceptible to Asthma 

 Disparities in asthma prevalence are seen across ethnic, racial, socio-economic, 

age and gender strata.  In the U.S., the population-based prevalence, emergency 

department visits, and hospitalization rates for asthma were higher among blacks than 

whites, higher among females than males, higher in poor than non-poor, and higher in 
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children than adults [2].  The socio-demographic group with the highest rate of asthma is 

poor people of Hispanic Puerto Rican descent, with approximately 22.4% of the 

population currently diagnosed with asthma [2].   

 Asthma prevalence data suggest some form of interaction exists between age and 

gender.  Although overall women experience higher rates of asthma than males, among 

children 0-17 years the prevalence is highest in boys  [6].  The prevalence of asthma in 

children under 15 years old has been reported to be 25-70% greater in boys than girls, 

whereas overall the prevalence is approximately 30% greater in females [13, 14].  This 

finding suggests that young boys may be more susceptible to mechanisms that trigger 

asthma attacks [15].  One reason commonly put forth for this increased susceptibility in 

childhood is that boys have proportionally smaller airways in relation to their lung size 

than girls [13].  In adulthood, the shift in asthma burden from males to females may 

represent the role of sex hormones in the complex pathways of asthma [6, 15]. 

Another sub-population with increased susceptibility to asthma is people born 

preterm.  Preterm birth is defined as birth <37 weeks gestation, with very preterm 26-33 

weeks and late-preterm 34-36 weeks  [16].  The rate of preterm births in developed 

countries showed a dramatic rise over the past couple decades; however, the past 5 years 

have seen a steady decline.  In 2009, 12.2% of all U.S. births were preterm [17].  The rise 

in preterm births seen during the 1990’s and 2000’s may have been due in part to changes 

in how labor and delivery were managed, namely more frequent induction of labor and 

cesarean delivery prior to 39 weeks [17], as well as increased incidence of multiple births 

[16].  Any increase in preterm birth is not to be taken lightly, as preterm birth is a leading 

cause of neonatal morbidity and mortality and has been shown to have long-term health 
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consequences persisting into adulthood [18].  In particular, preterm birth is associated 

with chronic lung disease and the development of asthma-like symptoms in adolescence 

and adulthood [19].  

 Studies on the risk of adverse birth outcomes and their role on the development of 

asthma are inconclusive.  A systematic meta-analysis found that infants born preterm 

have a 7-36% increased risk of developing asthma compared to term, with a trend of 

increasing risk as gestational age decreases [20].  In a case-control study of young adults, 

preterm birth and low birth weight were associated with a reduced risk of developing 

allergen responses later in life [21].  A national cohort study in Sweden found that adults 

born extremely preterm (23-27 weeks gestation) were 2.4 times more likely to develop 

asthma, while no additional risk of asthma was seen in those born preterm and late-

preterm (28-36 weeks) [22].  Conversely, a retrospective cohort study found children 

born late-preterm (34-36 weeks) had a 68%  increased odds of developing asthma by 18 

months [23].  Part of the discrepancy in these findings with late-preterm birth may be due 

to the age at which asthma was assessed, as the effect of preterm birth on asthma appears 

to be strongest in young age and decreases into adulthood [20]. 

The proposed mechanisms for how preterm birth may affect the risk of asthma 

development include genetic, environmental, and perinatal factors.  Several studies have 

suggested that the increased risk of developing asthma may be due to stunted fetal 

development and bacterial infections, such as chorioamnionitis [20, 23, 24].  Indeed, 

premature birth results in a deficit in lung development which may leave lungs more 

vulnerable to insult from environmental factors such as cigarette smoke [19].  Another 
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hypothesis for the observed associations is that preterm birth and asthma share a common 

genetic determinant [22].   

 

Air Pollution and Childhood Respiratory Health 

Exposure to ambient air pollution is a risk factor for asthma and other respiratory 

diseases that merits special attention.  It is one of the few risk factors to which all people 

are exposed, albeit to varying degrees.  Children are particularly vulnerable to effects of 

air pollution for several reasons including ongoing lung growth and development, 

incomplete metabolic systems, immature host defenses, high rates of infection with 

respiratory diseases, and activity patterns that increase their exposure to air pollutants 

[15]. 

 The reasons for the increased vulnerability of children to adverse health effects 

from air pollution exposure are both physiological and behavioral.  The lungs are not well 

formed at birth. Eighty percent of the alveoli in the lungs are formed postnatally [25] and 

full lung functionality not achieved until 6 years of age [26].  During the lung 

development period, the immature epithelium allow greater permeability of inhaled 

toxicants leading to damage of the airways in young children [26].  This suggests that 

early childhood exposures to air pollutants during this critical development process could 

have lasting detrimental effects on lung function.  A Southern CA study found that 

children living <500 meters from a freeway had substantial deficits in 8-year growth of 

lung function compared with children living >1500 meters from a freeway, which was 

independent of regional air quality [27].   

Relative to their size, children have much greater exposure to inhaled air 

pollutants than adults. Children have larger lung surface area per kilogram of body 
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weight than adults and breathe 50% more air per kilogram of body weight than adults 

[26].  Children also have narrower airways than adults, thus irritants which may elicit a 

minor response in adults could lead to potentially significant airway obstruction in young 

children [28]. 

In addition to the respiratory system, exposure to air pollution in early childhood 

might have adverse effects on the immune system, which is not fully formed at birth [26].  

For example exposure to ambient air pollution, particularly traffic-related pollutants, may 

increase susceptibility to RSV infection by mediating the immune response and 

increasing increased inflammation [29].  Children also spend more time playing outdoors 

than adults, particularly in the afternoon when many pollutant levels are at their highest 

[26], and therefore may have more direct exposure to ambient concentrations of air 

pollutants than adults.  One study found that children living in communities with high 

levels of air pollution had decreased lung function growth, with larger deficits seen in the 

children that spent more time outdoors [25].   

 The next chapter will discuss approaches for characterizing air pollution exposure 

and methods for modeling the health effects.  
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Chapter 4: Epidemiologic Methods for Multipollutants 

 

The past decade has seen a shift away from studying single-pollutant effects 

towards multipollutant effects, and in 2004 the National Research Council recommended 

a multipollutant approach to air quality management be adopted [1]. According to the 

EPA, a “multipollutant approach takes into account that humans and ecosystems are 

exposed to many air pollutants at the same time” [2].  Humans breathe in a mixture of 

pollutants so it seems logical that we would want to study the health effects of these 

multipollutant mixtures; however, how these mixtures are studied poses a challenge.  

Firstly it is important to clarify the multipollutant research question being put forth and 

secondly to understand the different statistical tools available for answering the question.  

 There is not yet consensus about what the term “multipollutant mixture” means 

with regards to air pollution and health studies.  Conceptual issues that underlie much of 

the multipollutant health discourse include pollutant covariation, joint effects, pollutant 

interaction, novel exposure definitions, and disentangling effects.  Pollutants frequently 

covary, which may be due to a common source, weather conditions, geographical 

features or photochemistry.  In multipollutant studies such covariation can cause 

confounding of the health effect and must be considered in the analysis and 

interpretation.  Often of interest in multipollutant research is the joint effect of two or 

more pollutants, whether it is from the perspective of source apportionment (e.g. what is 

the health effect of reducing emissions from a given source?) or from an interest in 

interaction (e.g. when combined do pollutants A and B act synergistically or 

antagonistically on a given outcome?).  In this context, pollutant interaction is meant to 



34 

 

encompass statistical interaction, occurring from having more than one pollutant in then 

model, in which a departure from additivity or multiplicity of effect is observed; 

biological interaction, in which two pollutants co-participate in a causal mechanism (e.g. 

black carbon may act as a carrier mechanism transporting O3 into the distal areas of the 

lung, leading to inflammation [3]); or chemical interaction, in which the presence of two 

substances precipitates a reaction and the formation of a new substance (e.g. sulfuric acid 

aerosols being neutralized by exogenous ambient ammonia or endogenously derived 

ammonia [4]).  Pollutant mixtures are sometimes studied in order to characterize the 

health risk posed by a set of exposures.  A prime example of this is source apportionment, 

in which statistical techniques are used to assign measured pollutants to a single source in 

order to characterize the health risk presented by the source.  Finally, Klein et al. suggests 

that multipollutant mixtures may be studied in order to disentangle the single effects of a 

certain pollutant, chemical, component or species from the joint effects.  The 

methodological and statistical techniques used to study multipollutant mixtures will 

depend upon which of these conceptual issues is being addressed. 

If the primary interest is the joint effect of two or more pollutants, studying this 

multipollutant effect is not as simple as putting all the pollutants into a generalized linear 

model and examining the resulting coefficients.  Unlike most multiple exposure studies, 

pollutant exposures are not independent and placing more than one in the same model 

often leads to parameter estimates that are unstable due to their high correlation [5].  In 

fact, pollutants are so intrinsically intertwined with one another that it is nearly 

impossible to disentangle the effect of a single pollutant.  It is commonly understood that 

even in single-pollutant studies, the health burden attributed to a pollutant is more likely 
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caused by multiple pollutants [6].  Issues to consider when putting multiple pollutants 

into a single model include: differential measurement error, colinearity of pollutants, 

whether or not one pollutant is an intermediate of the other (i.e. in the causal pathway), 

interactions between pollutants as well as meteorological variables, and that the 

pollutants may be surrogates for the same underlying mixture (i.e. may represent a traffic 

source) [7].  Research groups and individual scientists have put forth a myriad of 

different suggestions for how multipollutants can be assessed.  What follows is a 

description of the different study design and modeling approaches used in this 

dissertation for identifying pollution-related health effects. 

 

Study Design 

Before diving into the specifics of statistical approaches it is important to 

understand the way in which air pollution is measured, as this dictates, to some degree, 

the types of analyses that can be performed. Ambient air pollution, that is the freely 

moving air in the outdoor environment, is typically measured by ground station monitors 

that may be calibrated to measure the concentration of one or several pollutants. The 

simplest way to represent a population’s exposure to ambient air pollution is to use air 

pollution data from a single central monitor [8].  Additional approaches include nearest 

monitor, spatial averaging, kriging, and population-weighted averaging.  Which method 

is best depends on the spatiotemporal variability of the pollutant(s) of interest, the 

population to which inference of exposure is being made, and the amount of 

measurement error one is willing to tolerate. In general primary pollutants tend to be 

more spatially heterogeneous, while secondary pollutants are spatially homogenous [9].   
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Time Series 

 When both the exposure and outcome make use of aggregate data, in which the 

unit of observation is a group of people, the study is referred to as ecological [10].  

Ecological studies are common in air pollution epidemiology, where the exposure is 

typically a series of measurements from a single monitor and the outcome is daily counts 

of disease or death, and are frequently analyzed using time series analysis.  

In a time series study, a population is followed through time with exposure and 

confounders measured at the population level and the outcome frequently recorded as 

counts of binary events.  This aggregation results in a loss of information about the 

relationship between the exposure and the outcome due to reduced variation in the 

exposure; however, this loss in power due is overwhelmed by the gains in power that 

result from the size of the population that can feasibly be studied in time series designs 

[11].  Although time series studies do not offer precise information about the relationship 

between air pollution and health for a specific individual, they do provide great insight 

into the health impact of air pollution, as measured by central monitoring sites, on a 

population [12].  In most time series studies the unit of observation is the day.  Though 

we might expect the underlying risk of an individual to vary based on factors such as age, 

smoking, and SES, because time series studies are concerned with the aggregate risk of 

the population these factors will not affect the measure of overall risk.  That is to say the 

distributions of age, smoking and SES in the population do not vary from day to day with 

the ambient exposure and thus do not need to be considered for confounding in time 

series analysis; an important advantage of time series studies [13].  Only factors that co-

vary with ambient pollution levels (e.g. meteorology, season, week-day, etc.) have the 
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potential to confound a time series study and therefore must be adequately controlled for 

in the model.  

 Time series studies typically model the expected number of events in a given day, 

which is suggestive of a Poisson distribution. The probability of observing y events on a 

given day, assuming a mean of λ is: 

𝑃(𝑦) =
𝑒−λλ𝑦

𝑦!
 

In a classic Poisson model the variance is equal to λ; however, it is common in count 

studies for the variance to exceed the mean, which is referred to as overdispersion.  In a 

well-specified model, overdispersion may occur when the underlying population is not 

homogenous in their risk of morbidity [12].  When the model is not well-specified, excess 

variation may be a sign of unmeasured predictors, or that the variable does not follow a 

Poisson distribution.  Overdispersion in the Poisson variance can be accounted for by 

scaling the variance proportional to λ [13]. 

 In Poisson regression, also referred to as log-linear regression, the log of the 

expected daily count is modeled as a linear function of predictors.  In air pollution studies 

the model typically takes the form: 𝑙𝑜𝑔(𝐸(𝑌𝑡)) = ∑ 𝛽𝑖𝑋𝑡𝑖𝑖  where E(Yt) represents the 

expected number of events on a given day and Xti represents the predictor variables, 

including air pollution exposure.  Poisson generalized linear models (GLM), which allow 

for the control of temporal trends with splines and can account for overdispersion, are 

commonly used in air pollution and health studies [14-17].   

Case-crossover 
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Case-crossover studies offer an alternative to the time series approach in which 

the control of individual level confounders is more explicit.  In the case-crossover model, 

the study population consists solely of cases, who serve as their own controls in the 

analysis.  Rather than choose an external comparison group, the referent period is chosen 

from the case’s history or future [18].  Much like a matched case-control design, the day 

on which a case observed an event (the “index” period) is matched with similar non-event 

days (the “referent” period).  The selection of this referent period is based on days within 

a short time period of exposure to minimize time-varying factors.  One common choice in 

the selection of referent periods is to match on month and day of week [19], while others 

have chosen to match on month and maximum temperature [20]. 

A major advantage of the case-crossover design is that individuals serve as their 

own controls. Potential confounders that do not vary with ambient air pollution levels 

will not confound a case-crossover study. This includes personal smoking status, 

additional indoor pollution sources, age, and gender. 

 The case-crossover framework has been shown to be a special case of the time 

series approach when exposure is common to the cohort at each time, as in air pollution 

studies [21].  An important distinction between the two approaches is how the measures 

of association are modeled.  Conditional logistic regression (CLR) is typically used to get 

estimates of the odds ratio in case-crossover studies, whereas time series studies utilize a 

log-linear regression approach to express the expected number of counts each day [21].  

When the number of time intervals and case groupings is large CLR approach is 

computationally inefficient compared to log-linear regression [21]. Another disadvantage 
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of case-crossover studies is that conditional logistic regression cannot account for 

overdispersion, as is typically done in a time series approach.   

 This dissertation will employ both time series and case-crossover designs to 

examine air pollution and health associations. 

Confounding Control 

 As previously mentioned, when using a time series or case-crossover design, 

factors that co-vary with ambient pollution levels have the potential to confound the 

study and therefore must be adequately controlled for in the model.  Of particular concern 

for air pollution and health time series studies are long-term trends in morbidity and 

mortality, meteorology, seasonality, and infectious diseases.  Many of these variables 

show systematic variation over the course of the year, which will induce a correlation that 

is not necessarily causal.  To reduce these spurious associations and focus on what is 

potentially causal it is necessary to remove these time-varying patterns in the data.   

Splines are often used to capture and control for trends in data that do not follow a 

simple parametric (i.e. linear) form.  In spline models the variable exhibiting the temporal 

trend is categorized and the boundaries between these categories are called the “knots” of 

the spline [10]. The degree of “smoothness” of the spline is dependent upon the number 

of knots, which corresponds to the degrees of freedom [22].  How closely the splines 

control for trends is determined by the number of knots.  Over-controlling runs the risk of 

missing the exposure effect (bias towards the null), while under-controlling may 

inappropriately attribute temporal trends to the exposure effect (bias away from null).  

Cubic splines fit a cubic polynomial within each interval and the data are required to join 

smoothly at the interval.  In Chapter 7 we employ splines in a time series study to model 
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the associations of air pollution sources and pediatric asthma.  We run sensitivity 

analyses, varying the number of knots in our day-of-year spline, to consider how the 

results would change under differing degrees of smoothness in the spline.   

In addition to controlling for smooth temporal trends, it is important to consider 

meteorological control.  Air pollution and weather are intrinsically intertwined (e.g. 

sunlight is necessary in the formation of ozone) and the association between weather and 

health has been well documented, making confounding a practical concern.  As a result, it 

is crucial that models contain adequate control for the relevant meteorological covariates.  

Extensive analyses and investigations conducted by members of the Study of Particles of 

Health in Atlanta (SOPHIA) have suggested that for the assessment of asthma emergency 

department visits, cubic terms for maximum temperature and dew point typically provide 

adequate control.   

When the effect of temperature or air pollution is delayed by one or may days 

then a lag model may be best.  Several studies looking and the effects of extreme 

temperature on mortality have found the heat effects to be more immediate [23, 24], 

while the effects of cold can be delayed by up to 4 weeks [23, 25-27].  In general, the 

more flexible the lag model is, the better it will control for confounding (i.e. by 

temperature in air pollution studies). The trade-off, however, is in interpretability of the 

lag model.  

 There are several different approaches for dealing with lag effects in time series 

studies.  The simplest is to include each lag term in the model with its own coefficient, 

sometimes called a “unconstrained distributed lag model” [28].  A disadvantage is that if 

the number of lags is large, this approach will use up many degrees of freedom [29].  The 
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coefficients may also become unstable due to multicollinearity, as pollution on a given 

day is highly correlated with pollution on previous days [29].  An alternative is to use a 

constrained distributed lag model, which requires the coefficients for all of the lag 

parameters to be equal.  One common approach is to constrain the shape of the lag 

coefficients to follow a polynomial function.  For example, a third degree polynomial 

distributed lag function, p(x), can be stated as: 

𝑝(𝑥) = 𝛼0 + 𝛼1𝑋 + 𝛼2𝑋2 + 𝛼3𝑋3 

where X represents the lagged values.  The simplest constrained lag approach is to use a 

zero degree polynomial lag structure, which is equivalent to the moving average 

approach [29].  Air pollution and health studies have often found that using a multi-day 

moving average of air pollution exposure (2- or 3-day averages) has a better fit than 

single day pollution or longer moving averages, suggesting that the effect of an increase 

in pollution on a single day is distributed across several days [28].  Ultimately, a balance 

must be struck between too much constraint, which risks producing a distorted shape, and 

too little constraint, which can result in estimates that are too noisy to be informative 

[30].  

 

Analytic Approaches 

A simplistic way to characterize a pollutant mixture is to use a single pollutant as 

a surrogate for an underlying mixture or emission source.  This has historically been the 

most common approach for characterizing pollution mixtures [31-34].  For example SO2 

is often thought of as a surrogate for power plant emissions, while NO2 and CO may 

represent vehicular traffic [7].  Single pollutant models are popular because they are 
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simpler to conduct, easy to interpret, and can be directly applied to air quality regulation, 

which is conducted independently for each pollutant [35].   

Nonetheless, there is something dissatisfying about single pollutant models 

because we know the air is a complex mixture of pollutants that are inhaled 

simultaneously.  Furthermore, there are important limitations to single pollutant models, 

including confounding by correlated pollutants, which may lead to an overestimation of 

the main effects. In the spirit of mixtures and an effort to better characterize exposures as 

they occur, multipollutant models have increasingly been employed in air pollution 

epidemiology [36-39].  In multipollutant models, two or more pollutants are included in 

the same model to get the combined effect. While these models have the potential to 

better capture exposure, they also bring new complexities to the model.  For example, it 

has been shown that if the pollutants included in the model have different measurement 

error, there is the potential for the effect of the more poorly measured pollutant to be 

transferred to the better measured pollutant, resulting in bias of the point estimates [40].  

When two pollutants are both independent risk factors and correlated with one another, 

then including both in the model will control for confounding and lead to more accurate 

measures of association.  Multipollutant models also offer the possibility to evaluate 

pollutant-pollutant interactions, which some studies have suggested is a real concern [37]; 

however, as the number of interaction terms increase the power to detect any significant 

association will be reduced.  Additionally, when two or more highly correlated pollutants 

are included in the same model along with their interaction terms, such as PM10 and 

NO2, the results can become unstable [35].   

Source Apportionment  
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 All ambient pollution originates from a source.  Even secondary pollutants such 

as ozone, sulfates and nitrates require primary source emissions to form.  Another way of 

characterizing multipollutants is to characterize the main source emissions.  This is done 

by apportioning the particles found in the air to their respective sources.  Chemical 

species that are characteristic of a given source profile may serve as adequate tracers of 

that source when present in samples above their limit of detection.  For example, silicon 

may be used as a tracer for soil components of PM2.5 [41], levoglucosan as a tracer for 

biomass burnings [42], and hopanes and elemental carbon for vehicle emissions [43].  

When the sources in the region are known, a method known as chemical mass 

balance [44] can be used to apportion the mass from total PM2.5 to the relevant sources 

based on the presence of different tracer species [45].  When the sources are unknown a 

latent variable analysis is needed, approaches of which include principle components 

analysis, UNMIX [46, 47] and positive matrix factorization [48]. 

 A benefit of source apportionment is that it provides a more detailed description 

of particulate exposure.  Particulate matter is itself a mixture of many different chemical 

components and there is evidence to support that these components have varying degrees 

of toxicity [41, 49-51]. Current EPA practice regulates all PM2.5 mass equally; it does not 

distinguish between particles shown to be more or less toxic.  As the literature for source 

apportionment epidemiology grows and more evidence is available to identify the most 

harmful sources, there will be increasing pressure on the EPA to change their regulatory 

practices and start regulation according to source emissions, rather than total PM2.5 mass.  

 Dimension Reduction  



44 

 

A practical challenge of multipollutant studies is how to handle the myriad of 

measured pollutant variables, which have the potential to exceed the number of 

observations.  Some type of dimension reduction is often needed in order to reduce the 

data to the key set of predictors and remove variables that do not have any explanatory 

power [35].  One commonly used method for reducing dataset dimensionality into a core 

set of latent factors is principal component analysis (PCA) [7, 52, 53].  One drawback of 

PCA is that the principal components are constructed solely on the pollutant covariates 

and without consideration for how these covariates are related to the health outcome [5]. 

This lack of consideration for the outcome or response variable is typically referred to as 

an “unsupervised” approach.  Supervised PCA (SPCA) was developed by Bair et al. to 

account for the response variable in the formation of the components  [54] and has since 

been modified by Roberts et al. to fit the multipollutant context [5].  An alternative to 

SPCA, regression shrinkage techniques, such as ridge regression and LASSO, help to 

identify a subset of key variables that are highly predictive of the response while 

shrinking to zero the coefficients of non-predictor variables [55].  

Classification and Regression Trees 

Classification and regression trees (C&RT) offer an alternative to traditional 

regression models.  C&RT uses recursive partitioning to split data into groups that 

contain similar responses for the outcome variable.  No assumptions of a parametric 

relationship or monotonic relationship with the outcome are required in C&RT.  C&RT 

techniques have been used in clinical medicine to develop diagnostic algorithms for 

predicting disease presence and severity [56, 57].  C&RT can also be used to identify 

high-order interactions in the data, even when the main effects may be relatively weak, 
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and does not require the interaction terms be pre-specified.  Many research groups, 

particularly in the field of genetics have used recursive partitioning to identify interaction 

among many predictor variables [58-60]; however to our knowledge only one study has 

used C&RT to identify interaction effects of temperature and ambient air pollution on 

total mortality [61].   

For studies of air pollution the outcome is frequently a continuous or count 

variable (i.e. emergency department visits per day) and thus a regression tree approach is 

most appropriate.  A regression tree always starts with a root node that contains the 

sample of data from which the tree will be grown.  The data are then split into two child 

nodes based on the value of a predictor variables such that the branching results in child 

nodes that are “more pure” than the parent node.  At each node, the variable that is most 

strongly associated with the response variable (i.e. produces the most impurity 

improvement) will be used for the split.  The commonly used approach for selecting the 

best split is a least squares deviation criterion, based on within-node variance: 

 Impurity at node 𝜏 = 𝑖(𝜏)  =  ∑(𝑌𝑖 − �̅�(𝜏))2              [62](section 10.3) 

This process continues until the sample space is partitioned by a sequence of binary splits 

into n terminal nodes, such that all observations in a given terminal node have the same 

predicted value for the outcome variable.  The user can set a priori the minimum number 

of observations to be included at each terminal node. 

  A full tree is formed once there are no further splits that result in a reduction of 

node impurity or the minimum number of observations per terminal node has been 

reached.  Full trees must then be “pruned”.  Pruning is done to cope with overfitting and 

to find the tree that is most predictive of the outcome while being the least vulnerable to 
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noise in the data.  Partitioning and pruning can be thought of as synonymous to forward 

and backward model selection procedures [62].  Similarly, the number of nodes in a tree 

is analogous to the model degrees of freedom [63]. 

The binary splits in the final pruned regression tree represent points at which the 

data are stratified based on the response variable.  The mean responses at the terminal 

nodes can be compared to gain a better understanding of how the sequential 

stratifications (i.e. interactions) of the predictor variables modify the response.  Terminal 

nodes with significantly different response variables suggest the binary splits may have 

identified an important interaction in the data.   

Although several statistical packages are capable of running C&RT, including the 

‘rpart’ and ‘tree’ packages in R and S-plus, CART® by Salford Systems, SYSTAT, and 

DTREG, they are limited to varying degrees in their applicability to epidemiologic 

research. One key feature lacking from all of these packages is the ability to control for 

confounding at the time of tree partitioning.  When the outcome is continuous the 

researcher can avoid this pitfall by using residuals from the model that controls for 

confounding in tree partitioning; however, there is no straight forward way to do this 

when the outcome is Poisson.  Additionally, most existing packages choose the best split 

according to node impurity. While this is ideal for prediction models, when the goal is to 

identify statistically significant associations splitting on node impurity will not always 

result in an optimal tree.  

The next chapter provides a description of a modified classification and 

regression tree algorithm that is better-suited for epidemiologic research and the study of 

air pollution mixtures in particular. 
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Chapter 5: Classification and Regression Trees for 

Epidemiologic Research (Study 1) 

 

Introduction 

Every day we breathe a blend of air pollutants, ingest an assortment of nutrients, 

and are influenced by a unique combination of genes.  Throughout the course of a day 

and lifetime our total exposure can be conceptualized as a complex mixture of different 

individual exposures.  Advances in science have improved our ability to measure these 

exposures; a major challenge is how best to characterize and relate these mixtures to 

health endpoints.  

 Characterization of mixtures for epidemiologic research depends upon both the 

data that can be obtained as well as the research question of interest.  For some research 

questions interest may center on estimating the combined “joint effects” of two or more 

individual exposures on a given outcome.  Encompassed in this issue of joint effects is 

the concept of interaction.  While some joint effects may be indicative of interaction, it is 

not always the case.  For example, given an additive or multiplicative scale, exposures A 

and B may combine synergistically, antagonistically, or without interaction to promote 

disease, and our conceptualization of joint effects encompasses all of these.  Here we 

refer to “interaction” as statistical interaction or effect measure modification, that is a 

deviation from the expected independent joint effect of two or more risk factors[1]. 

Statistical interaction is often assessed by including the product of two or more 

risk factors (exposures) in a regression model and using statistical tests to determine 

whether the resulting coefficient differs significantly from zero.  As the number of 

exposures increases, the number of possible third-, fourth-, fifth-, and higher-order 
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interactions becomes too large to include in any one model and these are rarely 

considered in conventional analyses.  Testing only a specific sub-set of these interaction 

terms requires substantial a priori knowledge about complex interactions. As model 

complexity grows so does the challenge of interpretation[2].  In addition, parameter 

estimates may become unstable as the number of interaction terms increases. 

In this paper we describe how classification and regression trees (C&RT) can be 

used as an alternative method for identifying complex joint effects, including 

interactions, for multiple exposures.  The proposed approach expands the applicability of 

C&RT to epidemiologic research by demonstrating how it can be used for risk 

estimation.  We view this method as a means to generate hypotheses about joint effects 

that may merit further investigation. We illustrate this approach with an investigation of 

the effect of outdoor air pollutant concentrations on emergency department visits for 

pediatric asthma.   

 

Methods 

Data 

 The data we use to demonstrate our C&RT approach are from the Study of 

Particles and Health in Atlanta (SOPHIA) [3].  The 3-day moving average population-

weighted concentrations of ambient carbon monoxide (CO), nitrogen dioxide (NO2), 

ozone (O3), and particulate matter less than 2.5 microns in diameter (PM2.5) were 

calculated using measurements from stationary monitors from January 1st, 1999 – 

December 31st, 2009 [4].  During the same period, daily counts of hospital emergency 

department (ED) visits for asthma in children 2-18 years old were collected from all 
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hospitals in the area.  We defined emergency department visits for asthma as all visits 

with an International Classification of Disease, 9th edition code for asthma (493.0-493.9) 

or wheeze (786.07).  For a greater description of this dataset see Strickland et al, 2010 

[5]. 

 

Conceptual example 

We illustrate our method assuming the goal is examining the joint health risks of 

CO, NO2, O3 and PM2.5 on ED visits.  To simplify this example and aid comprehension, 

we have chosen to reduce the set of all possible joint effects by classifying the daily 

concentrations of each pollutant into quartiles.  This simplification yields 44 or 256 

different types of days, each of which can be viewed as a unique mixture.  To study the 

association of health with these types of mixtures we could calculate a risk ratio for every 

type of day, choosing the days when all pollutants are in their lowest quartile as the 

referent group.  This would result in 255 risk ratios.   

This approach quickly becomes cumbersome as the number of pollutants (or 

quantiles) increases.  Furthermore, it is unlikely that the joint effects for every pollutant-

quantile combination are of interest.  Some of these mixtures may never occur due to 

pollutant covariation, while statistical power will be lacking for rarely occurring 

mixtures.  In addition, as the number of quantiles used to classify the pollutant 

concentrations increases, the differences in the joint effects between two adjacent 

quantiles of the same pollutant may be trivial.  In this situation statistical efficiency 

would be improved if similar days were grouped. But how should days be grouped? 

C&RT methods address this issue by taking all possible joint effects and collapsing them 
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into groups that have similar predicted values for the outcome through a recursive 

partitioning process.   

 

Statistical methods 

C&RT is a non-parametric regression approach.  It represents a supervised form 

of hierarchical clustering in which the data are sequentially split into dichotomous 

groups, such that each resulting group contains increasingly similar responses for the 

outcome [6, 7].  The end product of a typical C&RT analysis is a dendogram illustrating 

the paths of dichotomous splits.  Every tree starts with a “root node” that contains the 

observations from which the tree will be grown.  The observations are then partitioned 

into two “child nodes” based on the value of an independent predictor variable.  The 

resulting child nodes each contain a subset of the original observations.  Each child node 

may be further partitioned, again based on the value of an independent predictor variable. 

This process continues until a set of partitioning criteria are no longer met, resulting in 

terminal nodes.  Terminal nodes, by definition, cannot have offspring. The collection of 

terminal nodes forms a complete partition of the observations in the root node. 

When the identification of joint effects is of interest, the C&RT approach offers 

some potential advantages over traditional parametric modeling approaches.  C&RT 

makes no assumption of a monotonic or parametric relationship with the outcome, is able 

to identify complex interactions among the predictor variables without a priori 

specification of the interaction terms, and can handle datasets where the number of 

predictors is high relative to the number of observations.  C&RT is a supervised learning 

approach, meaning it creates partitions based on an outcome variable.  This is in contrast 
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to unsupervised learning approaches, such as principal components analysis [8], k-means 

[9], and self-organizing maps [10], which do not consider the outcome.   

Although several statistical packages are capable of running C&RT, including the 

‘rpart’ and ‘tree’ packages in R and S-plus, CART® by Salford Systems, SYSTAT, and 

DTREG, they are limited to varying degrees in their applicability to epidemiologic 

research.  In the health sciences, C&RT is most commonly used as a prediction tool [2]; 

however, for epidemiologic research, we are more often interested in estimating effects 

than prediction.  In the next section we describe a modified C&RT approach that we 

believe is more appropriate for effect estimation.  

 

Modified C&RT approach 

 As a first step, before performing any partitions of the observations, a referent 

group of days is selected from all study days and held aside; this referent group is not 

used in tree construction.  The purpose of excluding a referent group is to enable 

statistical comparisons (i.e. risk ratio) between risk associated with days in the terminal 

nodes and those in the referent group.  For our example, we chose as a referent group the 

days in which all four pollutants were in their lowest quartile.  This is analogous to our 

referent group selection in the conceptual example.   

When attempting to estimate causal effects, it is necessary to have a well-

specified epidemiologic regression model that controls for confounding.  For this 

example we chose a Poisson generalized linear model using a framework equivalent to 

the conditional logistic case-crossover model [11], with time trends controlled by 

matching on weekday, month and year, and meteorology controlled with cubic terms for 
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the three-day moving average: maximum temperature, maximum temperature interacted 

with an indicator for season, and dew point.  A spline for day-of-year with two knots was 

included to provide additional control for seasonal trends.  At this first step the model 

should not include any of the exposure variables of primary interest (i.e. the pollutant 

variables).  Indicator variables are created representing all possible ways to split days into 

two groups, using each of the individual exposures in the analysis.  The number of 

indicators needed for each exposure will be one less than the number of distinct levels of 

the exposure.  For example, three indicator variables were created for ozone: one 

indicator comparing quartiles 1 vs. 2-4, a second comparing quartiles 1 and 2 vs. 3 and 4, 

and a third comparing quartiles 1-3 vs. 4.  This was done for all four pollutants, resulting 

in 12 indicator variables for the 12 possible splitting points.  If one prefers to keep the 

pollutant variable continuous, indicator variables could be created for every possible 

comparison.  For example if the pollutant contained 80 levels, 79 indicators would be 

defined.  Power may be limited with this approach, due to some joint effects having low 

representation; however, this is not a limitation of the method but rather a consequence of 

exploring joint effects that occur infrequently. 

Each indicator is then included one at a time in the regression model with control 

for confounding using all the observations (save for those held out in the referent group).  

After each run of the model the null hypothesis of independence between the outcome 

and each of the exposure indicators, conditional on the confounding control, is tested and 

the P-value saved.  The P-values for all possible exposure indicators from the model runs 

are compared and the smallest P-value below a pre-specified alpha level is selected as the 

first splitting variable.  The observations (excluding the referent group) are then 
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partitioned into two child subsets or nodes, each containing the subset of the original 

observations according to the indicator variable that produced the optimal split.  The 

process repeats itself for each child node, with the regression model being run separately 

on the two subsets of data and the best splitting point chosen from among the remaining 

indicators to further partition the child nodes.   

Partitioning stops if a minimum child node size is not met, the null hypothesis 

cannot be rejected for any of the eligible exposure indicators at a pre-specified alpha 

level, or no further partitions remain.  When any of the stopping criteria are met the node 

becomes a terminal node. The investigator must specify the significance level (alpha) and 

minimum node size, though this latter criteria is optional; how conservative the stopping 

criteria are will partly determine the size of the tree.  Consequently there is a trade-off 

between growing a tree large enough to identify potentially important joint effects and 

running the risk of over-fitting the tree.  In our example we specified a two-sided alpha of 

0.15 and a minimum node size of 60 observations.  The joint effects for the terminal 

nodes were calculated by including indicator variables for each terminal node 

simultaneously in the previously described case-crossover model, with the held out data 

when all pollutants were in the first quartile as the referent, to get adjusted risk ratios for 

each terminal node.  Analytic code was created in SAS® v9.3 (Statistical Analysis 

System; North Carolina). 

 

Results 

A total of 4,010 days, out of 4,018, with no missing data on air pollution levels 

and hospital emergency department visits for pediatric asthma were analyzed.  There 
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were 131 days with the concentrations of CO, NO2, O3 and PM2.5 all in their lowest 

quartiles, which were held aside to serve as the referent group, leaving 3,879 days in the 

dataset to be partitioned.   

The C&RT algorithm produced a tree with 13 terminal nodes, based on an alpha 

of 0.15 (Figure 5.1).  Each terminal node represents a subset of days with a specific 

pattern of pollutants that the algorithm could not split further, conditional on the 

confounders included in the model.  Referring back to the 256 types of days conceptual 

example, the terminal nodes will form a partition of the 255 joint effects in the tree.  For 

example, terminal node T1, which represents the subset of days where PM2.5 is in the 

highest quartile and NO2 is in the 1st or 2nd quartiles, is equivalent to grouping 32 unique 

types of days – all the combinations of CO and O3, characterized by quartiles, holding 

PM2.5 constant at the 4th quartile and NO2 at either the 1st or 2nd quartile. 

The tree depicted in Figure 5.1 is configured such that the right-hand branch of 

each split always corresponds to the higher concentration.  As a result, the mean 

concentration of the pollutants in the terminal nodes generally increases from left to right 

in the tree.  Table 5.1 contains the mean and standard deviations of the pollutant 

concentrations at each terminal node.  The right-most terminal node, T4, has the highest 

mean concentrations. The referent group contains the lowest concentrations for all four 

pollutants, by design.  

The dotted lines in Figure 5.1 show how the tree size, and hence the number of 

terminal nodes, would change if a more conservative alpha of 0.1 or 0.05 were selected.  

Note that the dotted line for alpha = 0.05 does not mean that the P-values for all 

subsequent splits are greater than 0.05; it only indicates that the P-values for the splits 
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occurring at internal (non-terminal) nodes 4, 5 and 7 were greater than 0.05.  The P-

values for the selected splits at each internal node as well as the subset of data to which 

the splits apply are presented in Table 5.2.  This information can be used to see how the 

tree size would differ under alternative choices of alpha.  

A simultaneous Wald test for the inclusion of all 13 terminal nodes in the model 

was significant, with a chi-square statistic of 34.3 (p=0.001, with 13 degrees of freedom), 

a result that was not unexpected, given that the terminal nodes were created through 

binary splits determined via hypothesis tests. The joint risk associated with days in each 

terminal node in comparison with risk associated within the held-out referent group are 

presented as adjusted risk ratios, estimated in a time series analysis using the same case-

crossover model and confounding covariates (Table 5.3). The largest risk ratio was for 

terminal node T1 (RR: 1.10, 95% CI: 1.05, 1.16) and corresponds to days where 

concentrations of PM2.5 are in the highest quartile and NO2 are in the lowest two 

quartiles.  Terminal nodes T2 (RR: 1.08, 95% CI: 1.03, 1.14) and T7 (RR: 1.08, 95% CI 

1.01, 1.15) had the next largest risk ratios compared to the referent.   

 

Discussion 

Many research groups, particularly in genetics, have used recursive partitioning to 

identify interactions among large numbers of predictor variables [12-14]; however, for 

the purposes of epidemiologic research we have found the standard C&RT packages to 

be lacking, to varying degrees.  In this paper we present a new C&RT algorithm that is 

better-suited to epidemiologic research when generating hypotheses about complex joint 

effects is of interest.   
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Perhaps the most important way in which the proposed algorithm differs from 

available C&RT programs is in its control for confounding.  Rarely in observational 

epidemiologic research are we immune to the hazards of confounding.  Nonetheless, 

because most C&RT programs were developed for the purposes of prediction and 

classification, and not causal inference, they do not directly account for confounding.  

The typical C&RT approach is to consider all covariates one-at-a-time in the search for 

the optimal split [7]; however, this one-at-a-time approach ignores confounding.  One 

approach for handling confounding is to first remove the association with the 

confounders and then fit a regression tree to the residuals [15]; unfortunately, this 

approach is appropriate only for Gaussian outcomes and cannot be easily applied to the 

residuals from generalized linear models (e.g. binomial or Poisson data) [16].  

Conditional inference trees, first proposed by Hothorn et al in 2006, offer a framework 

for recursive partitioning in which the best split is chosen conditional on all possible 

model splits [17]; however, this approach requires that all covariates in the conditional 

model be eligible for partitioning.  The C&RT algorithm we propose differentiates 

exposure covariates from control covariates, i.e., it allows for user-defined a priori 

control of confounding while restricting the selection of the optimal splits to the exposure 

covariates, thereby making this approach better aligned to epidemiologic research when 

effect estimation is of interest.  Bertolet et al identified many of the same limitations to 

the existing C&RT approaches and go on to present a similar method for using 

classification and regression trees that control for confounding with Cox proportional 

hazards models and survival data [18].  
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A cited drawback to existing C&RT algorithms is their inability to quantify 

exposure effect estimates [19].  The C&RT algorithm we have proposed enables effect 

estimation through the withholding of a common referent group of days during tree 

construction.  This allows for estimation of joint effects across terminal nodes in relation 

to the pre-specified reference group.  Selecting the referent group a priori ensures that it 

does not depend on the analysis (i.e. how the algorithm groups the data); otherwise each 

analysis might yield a different referent group and hinder comparisons across studies.  

Additionally, such a priori selection allows the researcher to define a meaningful referent 

group. 

C&RT does not provide a single statistic that summarizes all the joint effects, nor 

is it possible to look at the tree and assess whether the algorithm “worked;” C&RT 

merely identifies the joint effects present in the data.  Therefore, we suggest using C&RT 

as an intermediary step to generate hypotheses about joint effects that exist in the data in 

order to inform future analyses and studies.  For example, terminal node T4 has higher 

mean concentrations for all pollutants relative to T1 and yet the RR for T1 is greater than 

T4 (RR 1.10 vs 1.07).  While this difference could be due to the relatively small sample 

sizes or random error, one hypothesis is that splitting NO2 at its 50th percentile (quartiles 

1 & 2 vs. 3 & 4), which resulted in terminal node T1, may represent a particularly 

harmful type of PM2.5 mixture with regards to pediatric asthma.  Alternatively there may 

be certain meteorological factors that promote this specific pollutant covariation and 

influence personal exposure levels, such as relative humidity.  These hypotheses lead to 

several researchable questions. For example, do days in T1 appear to be dominated by a 

single source?  Is there evidence that this joint effect is associated with increased risk in 
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other datasets?  Does residual confounding or effect measure modification by 

meteorological factors further explain the relative risks associated with each terminal 

node? 

CO appears only once in the final tree, as a split at internal node 9, which results 

in terminal nodes 5 and 6 (Figure 5.1).  This suggests that in Atlanta CO may be less 

associated with pediatric asthma visits than O3, NO2, and PM2.5.  The minimal role of CO 

in the final tree is not entirely surprising since ambient concentrations of CO in isolation 

pose no appreciable health risk to the general population [20]; we chose to include CO in 

our model to act as a potential surrogate for other pollutants emitted from combustion 

sources that were not included in the model.  Removing CO from the analysis – assuming 

no change to the referent group – would only affect the final tree by collapsing terminal 

nodes 5 and 6 into a single terminal node.   

The RRs in Table 5.3 do not appear to be dominated by any single pollutant.  

Instead they suggest that higher levels of pollution are generally more harmful, with the 

RRs appearing relatively robust to the components of the mixture.  Terminal nodes T1, 

T3, T4, T6, T7 and T8 all have high overall mean concentrations, but from Table 5.1 it is 

clear that the distribution of pollutants in these terminal nodes is different.  For example, 

T8 is driven by high NO2, CO and PM2.5; T4 by high O3 and PM2.5; and T6 by high O3, 

and yet all three terminal nodes are associated with a similarly elevated risk relative to 

the referent group.  These results are consistent with a recent multipollutant study by 

Winquist et al, which found that the joint effects of an inter-quartile range increase 

pollutant combinations (oxidants, secondary pollutants, indicators of traffic, power 

plants, and five criteria pollutants) resulted in statistically significant  health effects but 
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that the point estimates for the different pollutant combinations were not appreciably 

different from each other [21].  From the perspective of multipollutant risk assessment, 

the C&RT approach of classifying day types may offer valuable insight by identifying 

specific pollution mixtures that are detrimental to health, which could lead to 

simultaneous regulation of pollutants or identification of harmful sources. In addition, by 

calculating a single joint effect for each terminal node, this approach helps to avoid over 

estimation of the RRs that could occur from joint effect calculations based on single 

pollutant models in which the single pollutant associations may be capturing the effects 

of correlated pollutants.  

The confidence intervals presented in Table 5.3 should be viewed in the 

framework of hypothesis generation and not as a tested result.  Multiple significance tests 

were conducted to identify the terminal nodes.  Ideally the joint effects for the terminal 

nodes would be estimated using independent observations; however, because another 

independent study was not available at the time of analysis, confidence intervals should 

not be interpreted at their nominal level.  Instead, in the spirit of hypothesis generating, 

the confidence intervals should be used to motivate future analyses, which may lead to 

substantive results.  

 Each terminal node can be interpreted as representing a specific mixture or a 

collection of mixtures that has a similar association with the outcome.  Although the path 

of exposure indicator terms leading to each terminal node in a C&RT tree may indicate 

interaction, this is not always the case.  For example, suppose a tree splits first after the 

third quartile of PM2.5 and then both branches go on to split between the second and third 

quartiles of NO2 (similar to the tree in Figure 5.1).  If the risk ratios comparing the higher 
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NO2 terminal nodes with the respective lower NO2 terminal nodes within levels of PM2.5 

are the same (a subjective decision) then interaction is not present.  In this scenario, the 

effect of NO2 on the outcome does not depend on the level of PM2.5, and therefore the 

tree is not suggestive of interaction.  The tree in Figure 5.1, however, does not meet this 

criterion.  Instead we conclude that interaction between NO2 and PM2.5 is present in our 

data because a calculation of the relative risks comparing days in internal nodes 5 vs. 4 

and internal nodes 7 vs. 6 suggests a different direction of effect of NO2 at low vs. high 

levels of PM2.5 (RR: 1.03 and RR: 0.96 respectively). 

 In our air pollution example, the fact that internal nodes 4 and 5 split on different 

exposures (O3 and PM2.5, respectively) suggests that there is something different about 

the association of the pollution mixtures on pediatric asthma visits on moderate PM2.5 

days when NO2 is below vs. above its median level.  By looking at the C&RT tree we 

cannot determine whether this is due to some chemical or physiological interaction 

between PM2.5 and the other pollutants, a difference in the particles that comprise PM2.5 

on high days as compared to low or normal days, the covariation of PM2.5 with other 

pollutants, random error, or some other factor.  Instead, we can use the C&RT tree to 

generate such hypotheses regarding relationships that exist in the data, which can then be 

investigated in subsequent analyses.  For example, an interesting follow-up analysis 

would be to perform C&RT on just the PM2.5 constituents to identify the components that 

appear to be driving the health association.  

While most C&RT packages utilize measures of node impurity, including the Gini 

index for classification trees and least squares for regression trees [7], to guide the 

splitting decisions there are situations in which other criteria may be justifiable.  One 



67 

 

approach is to base  the best split on statistical significance, as was done in this paper and 

has been favored by others [17, 18].  Selecting splits based on the smallest P-value (or 

largest Chi-square statistic) illustrates how recursive partitioning can be used to capture 

the strongest association present in the data.   

The selection of α in the proposed algorithm is analogous to pruning in the 

traditional C&RT programs, with larger values of α generating larger trees and smaller 

values generating nested sub-trees.  A frequently cited downside of C&RT is the 

instability of the tree, leading many investigators to  favor random forests instead, which 

is an approach that incorporates information from an ensemble of trees [6].  Although 

random forests offer a solution to tree stability, because there is no summary tree created, 

identification of joint effects is difficult. In the example we have presented, tree size and 

stability will be affected by the cut-points selected to categorize the exposures.  Because 

the purpose of the proposed approach is hypothesis generation, and not prediction or 

classification, the stability of any individual tree may be of less concern.  Once C&RT 

has been used to identify potentially harmful joint effects, further refinement of these 

effects, including investigating a dose-response relationship or finding specific cut-point 

values, can be conducted using other statistical approaches.  Furthermore, knowledge of 

the P-values at each splitting point in the tree, including the most significant and several 

runners-up, may offer a guide for the stability of any given branch.   

C&RT is sometimes criticized for displaying a selection bias towards predictor 

variables with more splits [17, 22].  We tried to address this by assessing equal numbers 

of potential splits (e.g. quartiles) for each predictor.  In our example we chose to create 

quartile indicators to bridge the C&RT results with the conceptual example; however, the 
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proposed algorithm places no restrictions on how the splits are created. One could create 

finer splitting points (e.g. deciles or centiles) to better approximate the continuous nature 

of the exposures; however, if statistical significance is used to determine the best split, 

the aforementioned tendency to select more balanced splits could become more 

pronounced as the number of potential splits increases.  Allowing the exposures to remain 

continuous is currently infeasible with this modified C&RT algorithm, due to 

computational challenges posed by the quantity of GLM models needed, and this 

direction warrants future methodological development.  Alternatively, splits could be 

based on substantive knowledge (e.g., the U.S. National Ambient Air Quality Standards).  

An advantage of this approach is that it would allow for greater generalizability, as the 

splitting points would not be data-based.   

A particular challenge in mixtures research is how to deal with highly correlated 

exposures; while not unique to C&RT, it is important to consider how it may influence 

the regression tree results.  If two exposures are highly correlated, and one is causally 

associated with the outcome while the other is merely a surrogate for the former, the 

algorithm will not necessarily split on the causal exposure.  This is of particular concern 

if the two exposures have differential measurement error, as the exposure with the least 

amount of measurement error can have the estimated greatest effect, even if not causal 

[3].  Pollutant correlation also affects the frequency at which specific mixtures occur.  Of 

the 256 possible day types referred to in the conceptual example, 37 never occurred 

during the 11-year period, and another 58 occurred less than 0.1% of the time.  This 

happens because the three-day moving averages of O3 and PM2.5 are strongly correlated 

(ρ=0.61), as are CO and NO2 (ρ=0.59).  The regression tree will have limited power to 
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identify whether rarely occurring exposures are harmful.  As a result, the terminal nodes 

in the resulting tree can be considered as either indicative of homogeneity of effect or as 

lacking sufficient power to split further.  

C&RT is one of many statistical tools that can be used to address the challenge of 

multipollutant exposures.  Among the more frequently cited approaches are single 

pollutant regression models [23],  two-pollutant regression models [23-25],  source 

apportionment [26],  clustering [8-10], recursive partitioning [7, 27], dimension reduction 

[28-30], and Bayesian model averaging [31]. Two recent reviews offer a detailed 

overview of the advantages and disadvantages of these and other approaches for 

multipollutant research [19, 32].  Recursive partitioning approaches, including C&RT, 

are attractive because unlike traditional regression models they require no distributional 

assumptions and can easily handle large numbers of predictors.  While C&RT is 

frequently utilized for its ability to identify complex interactions [33-35], we feel that this 

should be broadened to “complex joint effects.”  Such a broadening of scope would not 

only help to caution against the misinterpretation of interaction in C&RT trees, a problem 

that others have documented in the literature [6], but it would also expand the utility of 

C&RT.  Identifying joint effects associated with the outcome may be sufficient if one is 

interested in describing health associations in terms of covarying exposures where 

interaction may not exist, as in the case with air pollution.  C&RT has the additional 

advantage over other mixture approaches of producing output that is both visually 

intuitive and informative.   

In air pollution epidemiology, while there is currently interest in moving from a 

single pollutant to a multipollutant framework, the term “multipollutant” is often used 
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broadly and may encompass many different conceptual issues [23, 24, 36].  When the 

multipollutant interest involves the joint effects of several pollutants, we feel that C&RT, 

particularly with the modifications mentioned in this paper, is a very appropriate tool.  

We suggest that C&RT be used as an intermediary step for identifying and refining 

potentially harmful multipollutant joint effects for further investigation.  A good example 

of the benefits of incorporating C&RT into the modeling strategy is demonstrated in Sun 

et al, who show how a two-step multipollutant modeling strategy involving C&RT and 

dimension reduction techniques can offer substantial improvements on variable selection 

[19].   

For illustrative purposes we have shown how C&RT can be used to address 

challenges in the field of air pollution; however, there are many other fields in which 

exposure mixtures are of interest that may benefit from this C&RT approach.  As 

previously mentioned, researchers in genetics have been using C&RT to identify gene-

gene joint effects.  The proposed C&RT approach would enable these researchers to 

expand their current approach to include simultaneous control for biological and 

environmental factors that may confound the gene-gene associations.  Other fields that 

may benefit from C&RT include nutrition, where understanding the joint effects of 

nutrient mixtures is of interest, and infectious disease research, where advancements in 

multiplex assays allow scientists to measure an individual’s exposure to many different 

antibodies.  
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Conclusions 

With advances in science and technology, high dimensional datasets are 

increasingly common, leading many researchers to question how best to characterize and 

analyze these mixtures of exposures. Many issues arise when dealing with mixtures, 

including exposure covariation, physiological and chemical interaction, joint effects, and 

novel exposure metrics. Classification and regression trees offer an alternative to 

traditional regression approaches and may be well-suited for identifying complex patterns 

of joint effects in the data.  While recursive partitioning approaches such as C&RT are 

not new, they are seldom used in epidemiologic research.  We believe that the 

aforementioned modifications to the C&RT algorithm, namely the differentiation of 

exposure and control covariates to account for confounding and the withholding of a 

referent group, can aid researchers interested in generating hypotheses about exposure 

mixtures.   
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 TABLE 5.3. Mean and Standard Deviation for Pollutant Concentrations in Each Terminal 

Node, Atlanta, Georgia, 1999 - 2009 

Terminal Node  N CO NO2 O3 PM2.5 

    Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

Overall 4010 0.57 (0.3) 21.07 (7) 43.76 (17.45) 14.06 (5.78) 

Referent Group 131 0.27 (0.04) 11.9 (2.74) 24.68 (3.88) 6.81 (1.4) 

T1 316 0.5 (0.18) 16.68 (2.91) 57.09 (14.05) 21.13 (3.76) 

T2 279 0.53 (0.21) 24.13 (2.74) 35.77 (9.84) 8.47 (1.05) 

T3 1039 0.68 (0.31) 26.05 (4.31) 41.02 (14.89) 13.26 (1.98) 

T4 441 0.67 (0.28) 27.3 (5.31) 72.19 (12.72) 23.66 (4.74) 

T5 91 0.33 (0.07) 17.03 (2.42) 60.25 (5.05) 13.77 (2.51) 

T6 68 0.66 (0.09) 16.54 (3.17) 62.49 (5.81) 13.94 (2.36) 

T7 76 0.71 (0.37) 22.63 (1.29) 41.33 (13.27) 19.26 (2.07) 

T8 168 1.13 (0.42) 33.31 (7.08) 38.65 (11.11) 21.18 (4.36) 

T9 458 0.44 (0.21) 12.69 (2.58) 30.83 (7.76) 9.83 (2.67) 

T10 263 0.5 (0.24) 18.46 (1.22) 23.34 (4.87) 10.18 (2.67) 

T11 435 0.44 (0.17) 18.27 (1.28) 42.35 (7.06) 11.46 (2.95) 

T12 160 0.37 (0.15) 12.74 (2.3) 47.08 (3.42) 10.1 (1.9) 

T13 85 0.45 (0.17) 13.65 (1.98) 49.26 (3.99) 14.69 (0.98) 
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 Table 5.2.  Quartile Contrasts at Each Internal (Non-Terminal) Node. 

Internal 

Node 

No.a 

N Quartile Contrastb Wald     

P-valuec 

Subset of pollutant quartiles to which 

contrast appliesd  

CO NO2 O3 PM2.5 

1 3879 PM2.5: 4 vs. 1-3 0.000 All All All All 

2 2878 NO2: 3-4 vs. 1-2 0.003 All All All 1-3 

3 1001 NO2: 3-4 vs. 1-2 0.019 All All All 4 

4 1560 O3: 4 vs. 1-3 0.096 All 1,2 All 1-3 

5 1318 PM2.5: 2-3 vs. 1 0.123 All 3,4 All 1-3 

7 685 O3: 4 vs. 1-3 0.128 All 3,4 All 4 

8 1401 NO2: 2 vs. 1 0.086 All 1,2 1-3 1-3 

9 159 CO: 3-4 vs. 1-2 0.043 All 1,2 4 1-3 

14 244 NO2: 4 vs. 3 0.096 All 3,4 1-3 4 

16 703 O3: 3 vs. 1-2 0.140 All 1 1-3 1-3 

17 698 O3: 2-3 vs. 1 0.062 All 2 1-3 1-3 

33 309 PM2.5: 3 vs. 1-2 0.033 All 1 3 1-3 
aThe node numbers correspond to the numbering in Figure 5.1 (where each node, n, produces two 

child nodes numbered 2n and 2n+1).   
bBased on the indicator variable chosen for the best split. 
cP-value based on a Wald test that the beta coefficient for the quartile contrast indicator is zero. 
dEach subset of pollutant concentration levels represents an effect modifier of the quartile contrast 

and relates directly to the branching of the tree in Figure 5.1. Note that in the first split of the tree 

there is no effect modification by any of the pollutants because the entire dataset is used. 
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Table 5.3.  Risk Ratios of Emergency Department Visits for Pediatric Asthma for Days in 

the Terminal Nodes as Compared to the Referent Group,a Atlanta, Georgia, 1999-2009. 

Terminal 

Nodeb Nc Risk 

Ratio 

95% 

Confidence 

Interval 

Type of Days 

(pollutant quartiles) 

CO NO2 O3 PM2.5 

Referent 131 1.00   1 1 1 1 

T1 316 1.10 (1.05, 1.16) 1-4 1,2 1-4 4 

T2 279 1.08 (1.03, 1.14) 1-4 3,4 1-4 1 

T3 1039 1.05 (1.01, 1.1) 1-4 3,4 1-4 2,3 

T4 441 1.07 (1.02, 1.13) 1-4 3,4 4 4 

T5 91 1.03 (0.97, 1.1) 1,2 1,2 4 1-3 

T6 68 1.07 (0.98, 1.17) 3,4 1,2 4 1-3 

T7 76 1.08 (1.01, 1.15) 1-4 3 1-3 4 

T8 168 1.07 (1.01, 1.14) 1-4 4 1-3 4 

T9 458 1.01 (0.97, 1.05) 1-4 1 1,2 1-3 

T10 263 1.04 (0.99, 1.09) 1-4 2 1 1-3 

T11 435 1.03 (0.98, 1.07) 1-4 2 2,3 1-3 

T12 160 1.02 (0.97, 1.08) 1-4 1 3 1,2 

T13 85 1.04 (0.97, 1.11) 1-4 1 3 3 
aDays when all pollutants are in the lowest quartile. 
bTerminal nodes represent different types of days that can be described in terms of the pollutant 

quartiles.   
cEach day is in one and only one terminal node; the column sums to 4010 
dP-values are associated with the null hypothesis that the risk ratio for the pollutant indicator is 

1.0.   

 



78 

 

 

Figure 5.1. Tree resulting from C&RT analysis illustrating the joint effects of CO, NO2, O3, and PM2.5, treated as ordinal variables 

by quartile, for pediatric asthma ED visits in Atlanta from 1/1/1999 – 12/31/2009.  The tree was grown using an alpha of 0.15 and a 

minimum node size of 60 observations.  Nodes are numbered such that each node, n, produces two child nodes numbered 2n and 2n+1. 

Nodes with a bold border are terminal nodes for two-sided α = 0.15, labeled T1 – T13, as indicated by the circle in the upper right-hand 

corner and are colored according to the strength of association; redder colors indicate a more harmful association. The dotted lines indicate 

how the tree would appear under different levels of α.  For each split of the tree the branch with the more harmful association is bolded.  
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Chapter 6: A Three-City Analysis of Multipollutant Joint Effects: 

a comparison of classification and regression trees with 

conventional multipollutant models (Study 2) 
 

Introduction 

Everyday humans breathe a mixture of different air pollutants.  Characterizing 

these multipollutant mixtures for health effects has been tackled by air pollution research 

groups for decades.  Historically, the most common epidemiological approach for 

addressing mixtures has been through single pollutant models, in which a single pollutant 

effect is believed to act as a surrogate for the air pollution mixture [1-4]. Multipollutant 

models, in which two or more pollutants are included in the same model to get the 

combined effect, have been the predominant approach for examining mixtures [5-8].  

While these conventional approaches have made significant advances to our 

understanding of air pollution epidemiology, it is important to consider alternative 

approaches as the information we can learn is limited by the constraints and assumptions 

of the model [9, 10].   

Two reviews of alternative statistical approaches for multipollutant research have 

recently been published [11, 12].  In both reviews, classification and regression trees 

(C&RT), a recursive partitioning approach, was cited as a method for handling 

multipollutant exposures; however, there have been few applications of C&RT in 

assessing the health effects of ambient pollution exposure [13, 14].  In a recent paper we 

showed how C&RT can be adapted for epidemiologic research and become a useful tool 

for generating hypotheses about multipollutant joint effects [15].   
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C&RT classifies days according to their multipollutant profiles, and this can be 

conceptually appealing, as it adds a discrete summary of what is observed and can also 

help to elucidate patterns of meteorology, seasonality, and emission sources that cause 

certain pollutants to covary more strongly than others.  From a health perspective, 

classification of days can enable identification of day types that are more harmful to 

human health and help to improve risk prediction systems.  From a regulatory 

perspective, identifying the most harmful multipollutant joint effects can lead to more 

targeted regulation. 

In this analysis, we sought to extend our exploration of multipollutant joint effects 

associated with pediatric asthma emergency department (ED) visits by comparing those 

identified via C&RT to those identified through more conventional multipollutant 

regression modeling approaches.  To increase the power and generalizability of our 

findings, we take a three-city approach, utilizing data from Atlanta, Dallas and St. Louis 

to investigate multipollutant joint effects.  The results of our three-city C&RT approach 

are compared to those of more conventional multipollutant models and in doing so we 

discuss the relative merits, limitations and assumptions tied to each modeling approach 

and make suggestions for ways forward.  

 

Methods 

Data 

 

Our analysis utilized emergency department (ED) visit and criteria pollutant data 

available for three metropolitan areas: 20-county Atlanta, GA; 12-county Dallas-Fort 

Worth, TX; and 16-county St. Louis, MO-IL. 
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Emergency Department Visit Data 

Computerized billing records for ED visits to acute care hospitals in each city 

were obtained as follows: for Atlanta, from individual hospitals and the Georgia Hospital 

Association for an 11-year study period (January 1, 1999 through December 31, 2009); 

for Dallas, from the Dallas-Fort Worth Hospital Council Foundation for a 3.5-year study 

period (January 1, 2006 through August 31, 2009); and for St. Louis, from the Missouri 

Hospital Association for a 6.5-year study period (January 1, 2001 through June 27, 2007).  

Relevant data elements included a patient identifier, admission date, patient age, primary 

and secondary International Classification of Diseases 9th Revision (ICD-9) diagnosis 

codes, and ZIP code of patient residence.  We used these data in accordance with our data 

use agreement with the individual hospitals and/or hospital associations; this study was 

also approved by the Emory University Institutional Review Board.  Visits by patients 

living in ZIP codes outside of the city-specific study areas were excluded.   

The individual-level data were restricted to visits by pediatric patients (i.e. ages 2-

18 years), and aggregated to daily counts of asthma and/or wheeze, identified as any 

ICD-9 code of 493 and/or 786.07.  Visits by the same patient for the same condition on 

the same day were counted as a single visit. 

 

Air Pollution Data 

Our analysis focused on three criteria pollutants, ozone (O3), nitrogen dioxide 

(NO2), and particulate matter less than 2.5 microns in diameter (PM2.5), shown to have 

strong associations with asthma/wheeze in previous analyses using these data (Strickland 

et al., 2009;[16]) and by others.  The 3-day moving average population-weighted 
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concentrations of ambient O3 (8-hr max), NO2 (1-hr max) and PM2.5 (24-hr average) were 

calculated using measurements from stationary monitors in each of the three cities (Ivy et 

al., 2008).   

  

Statistical Methods 

Base Model 

 The base model used to analyze each of the city-specific time series was a Poisson 

generalized linear model using a framework equivalent to the conditional logistic case-

crossover model (Lu and Zeger., 2007).  Time trends were controlled by matching on 

weekday, month and year, and meteorology was controlled with cubic terms for the 

three-day moving average of: maximum temperature, maximum temperature interacted 

with an indicator for season, and dew point.  A spline for day-of-year with two knots was 

included to provide additional control for seasonal trends. Both the C&RT and 

conventional multipollutant approaches utilized this same base model for estimating 

effects, with the only difference being how the air pollution exposures were modeled.   

 

Classification and Regression Trees 

This analysis utilized classification and regression trees (C&RT) to 

estimatemultipollutant joint effects.  C&RT is a non-parametric regression approach that 

represents a supervised form of hierarchical clustering in which the observations are 

sequentially split into dichotomous groups, such that each resulting group contains 

increasingly similar responses for the outcome [17, 18].  Every tree starts with a “root 

node” that contains the observations from which the tree will be grown.  The 
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observations are then partitioned into two “child nodes” based on the value of an 

independent predictor variable.  The resulting child nodes each contain a subset of the 

original observations.  Each child node may be further partitioned, again based on the 

value of an independent predictor variable. This process continues until a set of 

partitioning criteria are no longer met, resulting in terminal nodes.  Terminal nodes, by 

definition, cannot have offspring. The collection of terminal nodes forms a complete 

partition of the observations in the root node.  Each terminal node can be viewed as a 

unique mixture, defined by the path of partitions, or splits, leading from the root node to 

that particular terminal node.   

While several statistical packages for running automated C&RT analyses exist, 

none allow for simultaneous control for confounding.  As a result of this and other 

constraints we developed a modified C&RT approach aimed at estimating joint effects.  

The following description contains a summary of the modified C&RT approach, which 

has been described in detail in Gass et al[15].   

 

Three-city C&RT Approach  

 To generate hypotheses about multipollutant joint effects across three cities, we 

first sought to identify joint effects within each city by growing city-specific regression 

trees.  We then compared the resulting trees and identified types of pollution mixtures 

that were common across all three cities.  We hypothesized that exposure to one or more 

of these pollution mixtures might be a cause of pediatric asthma and tested this in a three-

city regression analysis. 
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The first step in our three-city C&RT comparison was to determine a set of 

standard concentration cut-offs based on the daily levels of O3, NO2, and PM2.5 in each 

city.  While every city-day might have a unique multipollutant profile based on 

continuous pollutant distributions, these profiles are conceptually difficult to manage and 

inhibit comparison across cities.  To better enable comparison, we used the standard cut-

offs to classify every day into a “Day-Type” according to its concentration of O3, NO2, 

and PM2.5.  Using these cut-offs, each pollutant was divided into four levels, resulting in 

43 or 64 Day-Types.  Throughout the paper, the nomenclature used to describe these Day-

Types is O3-level/ NO2-level/ PM2.5-level.  For example, Day-Type “2/2/4” refers to days 

where both O3 and NO2 concentrations are in the 2nd level and the PM2.5 concentration is 

in the 4th level (with levels 1 – 4 ranging from lowest to highest concentration).   

A referent group was defined as days when all three pollutants were in the lowest 

level (i.e. days designated as Day-Type 1/1/1).  It was decided a priori that the referent 

group should include at least 100 days in each city. In order to reach this minimum, the 

referent group was defined as: O3<35ppb, NO2<21ppb, PM2.5<11ug, which corresponds 

to roughly the 40th percentile of the overall distribution for each pollutant from all 3 cities 

combined.  The remaining level cut-offs were defined at approximately the 60th and 80th 

percentiles.  Figure 6.1 shows the concentration cut-offs for each pollutant level as well 

as the frequency of days in each level across the three cities.   

For each city, the referent days were withheld to serve as a comparison group 

while the remaining days formed the root node in the C&RT algorithm. We considered 

the 9 possible ways these days can be split based on the three pollutant concentrations. 

This was accomplished by creating three mutually exclusive indicator variables for each 
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pollutant representing the different comparisons: level 1 vs. 2-4, levels 1 and 2 vs. 3 and 

4, and levels 1-3 vs. 4.  These 9 indicator variables represented the 9 possible partitions 

of the days in the C&RT procedure.   

Each of the 9 indicators was considered one-at-a-time in the base model described 

above. The indicator resulting in the smallest P-value for the null hypothesis that the beta 

for that indicator was 0, in the model containing just the indictor and confounders as 

independent variableswas selected. The days were partitioned accordingly. Partitioning 

continued until one of three stopping criteria were met: there were no more remaining 

ways to partition the days, the remaining splits were not significant at a pre-specified 

level of alpha (α=0.15), or the minimum number of days for each node (n=60) was not 

met.  In this case partitioning stopped and the node becomes a terminal node. 

This C&RT approach was used to grow three separate trees using the same 

algorithm and splitting-indicator definitions for Atlanta, Dallas, and St. Louis.  For the 

purposes of this study we were not interested in comparing the shapes of the trees or the 

ordering of the splits, but rather the mixture of air pollutants encompassed in the terminal 

nodes.  For each of the three cities, the C&RT algorithm partitioned the 63 Day-Types 

(all but the withheld referent group) into terminal nodes according to their association 

with the outcome.  As such, we were interested in identifying Day-Types that were 

grouped together in a terminal node in all three cities, as these may indicate homogeneity 

of effect of Day-Types within each city, across all three cities. For example, suppose 

Day-Types 2/3/4 and 3/3/4 are together in a terminal node in all three cities, then we say 

this pair of Day-Types constitutes a “Group” of Day-Types in which we are potentially 

interested.  We further examined the effects of these Day-Type groups directly in our 



86 

 

 

Poisson GLM via indicator variables.  This was done individually for each city, as well as 

a single three-city model with city-specific effects for all covariates in the model.   

 

Conventional Approach 

Finally, we compared our C&RT findings to those obtained from conventional 

multipollutant regression modeling approaches.  Specifically we considered the following 

three modeling approaches, described in detail below: linear effects, linear effects with all 

first-order interactions, and linear effects with quadratic effects.  For each modeling 

approach we approximated the comparable joint effect estimates to those obtained for the 

groups of Day-Types from our C&RT model.  

 

Conventional model with linear effects:  Our conventional multipollutant model consisted 

of the base model described above with the inclusion of a single linear term (β*pollutant) 

for each of the three pollutants, modeled using continuous 3-day moving average 

concentrations.  A single linear effects model was run for the three cities combined, with 

city-specific effects for all covariates. To estimate the joint effects comparable to the 

C&RT model, we used the results of the three-city linear effects model to estimate the 

joint effect for a change in the mean concentration of each Group relative to the referent 

group mean.  This was done by multiplying the coefficient for the linear effect of each 

pollutant by the difference in Group mean versus referent mean, for each pollutant.  We 

them summed these products across the pollutants in the combination, and exponentiated 

the sum to get the rate ratio for the joint effect.  Standard errors for the joint effects were 

calculated using the variance-covariance matrices for the individual-pollutant effect 
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estimates.  As a sensitivity analysis, we also calculated the joint effects using the change 

in the median concentration of each Group relative to the referent group median.  

 

Conventional model with linear effects and first-order interaction: The same conventional 

linear effects multipollutant model was run with the addition of all first-order 

multiplicative interaction terms (O3* NO2, O3* PM2.5, and NO2* PM2.5).  We also 

considered the same model with the second-order interaction term (O3* NO2* PM2.5).  

The same approach described above was used to calculate the comparable joint effects.   

 

Conventional model with linear and quadratic effects:  Finally we ran the same linear 

effects model with the addition of a quadratic term for each pollutant. Again, the same 

approach described above was used to calculate the comparable joint effects.  

 

Results 

After excluding days with missing air pollution levels or hospital ED visits, 4,012 

observations remained for analysis for Atlanta (1999-2009), 2,354 days for St. Louis 

(2001-6/2007) and 1337 days for Dallas (2006-8/2009).  The referent group, identified as 

days where all pollutants were in the lowest level, contained 606 days (15%) for Atlanta, 

115 days (5%) for St. Louis, and 121 days (9%) for Dallas (Figure 6.1).  A greater 

description of the referent group is provided in Table 6.3, including the monthly 

distribution as well as the percent of days with any precipitation and average wind speed.  

Table 6.4 contains the frequency of each of the 64 Day-Types (that is the joint 

distribution of the three pollutants parameterized as ordinal variables) in each city.  All 
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Day-Types occurred at least once in Atlanta, in St. Louis there was 1 Day-Type that 

never occurred and in Dallas there were 5 Day-Types that never occurred.  

The C&RT algorithm was run separately for each city, generating three regression 

trees with seven, six, and seven terminal nodes in Atlanta, Dallas, and St. Louis, 

respectively (Figures 6.2-6.4).  Comparing terminal nodes across the three cities, there 

were 17 Groups of two or more Day-Types that occurred together in the same terminal 

node in all three cities (Table 6.1).  While the numeric labeling of the Groups is arbitrary, 

we decided to order the Groups according to the level of O3, followed by NO2.  Of the 

7709 days from the three cities combined, 842 were in the referent group and 5446 were 

in one of the 17 Groups. Table 6.1 contains the number of days in each Group by city, as 

well as the mean concentrations of O3, NO2, and PM2.5. There were 10 Day-Types, 

corresponding to 1421 days from Atlanta, St. Louis and Dallas combined, that did not 

appear in any of the 17 Groups; these Day-Types did not appear together in terminal 

nodes with other day types consistently in all cities. 

The rate ratios (RR) for the 17 Groups, included as indicator variables in the base 

case-crossover model using the three-city dataset (Atlanta, St. Louis, and Dallas 

combined), are shown in Figure 6.5.  Nearly every RR, with the exception of the RR for 

Groups 2 and 10, is suggestive of a harmful association with pediatric asthma.  Groups 11 

and 14 had the two strongest RRs (RR: 1.07, 95% CI: 1.03, 1.12; and RR: 1.06, 95% CI: 

1.02, 1.09).   

The RRs for an IQR increase in the 3-day moving average concentration of O3, 

NO2, and PM2.5 from the conventional linear effects model are plotted for the single city 

and three-city models in Figure 6.6.  In all three cities the association with O3 is the 
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strongest, followed by NO2; PM2.5 appears to have a null, or in the case of Dallas 

protective, association in these models. 

The C&RT Group RR results are presented side by side with the three 

conventional multipollutant modeling approaches to provide more direct comparison 

between the results (Table 6.2).  The RRs shown for the conventional models are for a 

concentration change from the referent mean to the Group mean.  A Wald test of 

significance for the exposure terms was significant for the C&RT and all three 

conventional models (Table 6.2).  A test of significance for the exposure terms beyond 

the linear effects was non-significant for the quadratic model (p=0.63), suggesting that 

the multipollutant effect is not quadratic. However this test was significant for the first-

order interaction terms (p=0.007).  The RR results for the linear effects and interaction 

effects models are quite different, with the latter suggesting approximately double the 

increase in risk for each of the joint effects, albeit with a loss of precision.  Results from 

the second-order interaction model are not included because the term was non-significant 

(p=0.21) and the resulting confidence intervals were too large to be informative. 

The RRs from the conventional linear effects model have relatively good 

agreement with the C&RT Group results for the lower mean concentration Groups.  At 

higher pollution levels both the linear effects and interaction models suggest increasing 

risk with concentration, while the C&RT Group results suggest risk plateaus at the 

highest concentrations.  For example, the RR for Group 18, which contains the Day-Type 

when all pollutants are at their highest level (4/4/4), is 1.05 in the C&RT model (95% CI: 

1.01, 1.09) vs. an RR of 1.10 in the conventional model with linear effects (95% CI: 1.06, 

1.14) and 1.17 (95% CI: 1.1, 1.25) in the conventional model with interaction.  The lower 
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95% confidence levels for Groups 2, 10, 15, 16 and 18 for the conventional models are 

all greater than the point estimate from the corresponding groups in the C&RT model.   

The sensitivity analysis using the Group median (as opposed to mean) to calculate 

the joint effects for the conventional models yielded similar estimates and thus are not 

shown. 

Discussion 

In this paper we utilized classification and regression trees, a non-parametric 

recursive partitioning approach, to identify multipollutant joint effects associated with 

pediatric asthma in Atlanta, Dallas and St. Louis.  It is difficult to identify complex 

interactions of two, three or four pollutants using conventional regression models due to 

power limitations [19, 20].  A known advantage of C&RT is that can be used to detect 

complex and multiple interactions between covariates [11, 12].  We have previously 

shown that with few modifications, C&RT can be used to detect interactions between 

pollutant concentrations while simultaneously controlling for temporal and 

meteorological confounding [15].   

One key finding of this analysis is that the C&RT approach yielded different 

results than would have been generated under more conventional regression approaches.  

All three of the conventional multipollutant models suggest that increasing pollution 

leads to increasing rate ratios; however the C&RT Group results suggest a non-linear 

relationship with RRs plateauing when all pollutants are high (Table 6.2).  While this lack 

of a synergistic --or even multiplicative-- response is surprising, it is not unprecedented.  

In a review of the literature, Mauderly  and Samet found that 22 out of 36 laboratory 

studies failed to demonstrate a synergistic response [6]. It is plausible that the true 
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biological response is less than multiplicative and that this is masked by the constraints 

placed upon regression models when pollution is modeled linearly.   

An alternative hypothesis that might support of the C&RT findings is that on the 

highest pollution days asthmatic children change their behavior and limit exposure.  A 

cross-sectional study by Wen et al lends some support to this theory, which found that 

asthmatic adults had a greater odds of modifying their outdoor activity compared with 

non-asthmatics on days with media alerts due to a high air quality index [21]. 

Examination of the differences between the C&RT and conventional model 

results suggests that the role of individual pollutants was different.  In all three 

conventional models the joint effects are driven by O3. This is demonstrated by the 

increasing RRs in columns 4-6 of Table 6.3, an artifact of assigning arbitrary labels to the 

Groups based on increasing O3 concentration.  Conversely, if one were to sort the RRs 

for the C&RT Groups according to the mean concentrations of any single pollutant 

(Table 6.3 column 3), no pollutant would appear to drive the results. This difference in 

pollutant-specific association is most striking when looking at PM2.5.  The linear effects 

models for each city imply that PM2.5 has a null association (Figure 6.6), while the C&RT 

results suggest PM2.5 plays an important role in determining the Group joint effect; 

Groups 11, 3, 18, 17, and 14 have the five greatest mean PM2.5 concentrations and also 

five of the highest RRs from the C&RT model.  

Though the linear effects and C&RT models are not measuring the same thing 

(e.g., the C&RT results model exposure categorically while the conventional results 

model it continuously) the differences implied by the results is striking and merits further 

attention.  It is possible that C&RT is able to identify joint effects driven by PM2.5 
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constituents.  For example, the conventional model with linear effects treats all PM2.5 

concentrations equally; it could not distinguish between a high PM2.5 day that is primarily 

elemental carbon vs. a high day that is primarily sulfates.  Conversely the C&RT model 

has the potential to distinguish PM2.5 mixtures through the interactions generated by 

subsequent partitioning.  By partitioning on a pollutant (e.g., NO2) that is correlated with 

certain PM2.5 components, C&RT has the ability differentiate PM2.5 mixtures through 

their correlation with other independent variables in the model.  While the model with 

first-order interaction terms can discriminate between PM2.5 mixtures, its discriminatory 

power is limited to a linear effect for each of the interaction terms.  As such it could not, 

for example, identify the same complex interactions as seen in the St. Louis C&RT tree 

through nodes 1-2-4-9 (Figure 6.4). 

By binning days the C&RT model may be able to account for unmeasured 

confounding that is non-smooth (i.e. that varies with terminal node classification, not 

pollution).  For example, people may modify their behavior under certain types of days in 

a way that affects ED visits for asthma.  As a result, it is possible that the point estimates 

for the Group results are measuring not only the multipollutant effect but also the effects 

of other factors that are correlated with those Day-Types.  While this could be a 

disadvantage if one intends to use the point estimates to conduct risk assessment, it could 

be beneficial if the interest is in identifying types of days that are most harmful for a 

particular health outcome.  Knowing the harmful types of days could lead to a more 

targeted warning system to alert vulnerable populations.  

 When interpreting these results it is important to consider the modeling 

assumptions and how they are likely to affect estimates.  C&RT models are 
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nonparametric with no assumptions of monotonicity; each terminal node has its own 

estimated multipollutant joint effect for the outcome, relative to the referent group.  By 

contrast the conventional linear effects model imposes a monotonic relationship with the 

outcome.  While this may be desirable for a single pollutant model where it is well-

known that the dose-response is strictly increasing, it may be too restrictive for 

multipollutant models where so much remains unknown about the joint effects.  

Likewise, the interaction model used only looks for deviations from a multiplicative joint 

effect, rather than an additive one, which again may be desirable but one should be 

purposeful in their decision.  The results from the quadratic model suggest that the 

quadratic effects do not add any explanatory power (p=0.633).  

Furthermore, it is important to remember that when two or more Day-Types 

appear together in the same terminal node, it is either indicative of homogeneity of effect 

or lack of power to detect any further effect.  It is likely that one or more of the 17 

Groups were formed as a result of insufficient power to further partition the terminal 

node in a given city.  This would result in an “artificial group”, that is a Group in which 

the Day-Types do not have a similar association with the outcome.   

One downside to presenting the combined Group RRs in this analysis is that any 

heterogeneity across the cities will be masked.  Some between city heterogeneity is to be 

expected due to tangible and intangible city differences, including socio-economic status, 

air conditioning use, climate acclimation and behavior patterns that are likely to modify 

the health associations found.  Nonetheless, it seems likely that there exist some ambient 

pollution mixtures that are universally harmful, despite city-specific differences which 

may accentuate or attenuate the underlying true association.    
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Conclusion 

 As we have shown, C&RT can be used to investigate multipollutant joint effects 

and may lead to different conclusions than more conventional models.  In particular, the 

results from this study suggest C&RT and conventional models lead to different joint 

effects of O3, NO2 and PM2.5 when concentrations are high.  It is possible that the 

monotonicity assumptions of conventional models are leading to an overestimation of 

risk on high pollution days.  Furthermore we have shown how C&RT models can be 

beneficial for identifying types of days that are particularly harmful to health, which can 

help to improve warning systems and lead to more targeted regulation.  Understanding 

the potential risk air pollution mixtures pose to human health is a complex and 

challenging undertaking that has only just begun.  Exploring alternative models with 

different sets of assumptions can be a useful way to generate new ideas and perhaps gain 

greater insight into air pollution mixtures.   
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Figure 6.1. Flow diagram outlining three-city C&RT approach. The table in the upper right 

contains the concentration cutoffs used to categorize each pollutant into four levels and the 

frequency at which each level occurred by city.  

Adjusted RR calculated for 

each “group” relative to 

referent group 

Comparisons made 

between C&RT “group” 

results and conventional 

multipollutant approaches 

1All concentrations are based on the 3-day population weighted average 

Categorize each pollutant 

into four levels 

Referent group = days 

when each pollutant is in 

Level 1 

Referent group 

withheld from C&RT: 

Atlanta  (n=606)  

Dallas     (n=121) 

St. Louis (n=115) 

C&RT algorithm used to 

grow separate tree for each 

city 

Datasets: 

Atlanta  (n=4012) 

Dallas   (n=1337) 

St. Louis  (n=2354) 

“Day-types” appearing 

together in same terminal 

node in all 3 cities 

identified 

Four levels per pollutant = 

43 combinations or 64 

“day-types” that can occur 

These sets of “day-types” 

referred to as “groups” 

Indicators for each “group” 

included in multi-city 

Poisson GLM model 

Level Pollutant cutoffs1 Atlanta 

N (%) 

Dallas 

N (%) 

St. Louis 

N (%) 

1 0< O3 <35ppb 1462 (36.4%) 462 (34.6%) 1162 (49.4%) 

2 35< O3 <45ppb 775 (19.3%) 340 (25.4%) 404 (17.2%) 

3 45< O3 <55ppb 773 (19.3%) 282 (21.1%) 356 (15.1%) 

4 55ppb< O3 1002 (25.0%) 253 (18.9%) 432 (18.4%) 

1 0< NO2 <21ppb 2139 (53.3%) 599 (44.8%) 340 (14.4%) 

2 21< NO2 <25ppb 829 (20.7%) 195 (14.6%) 491 (20.9%) 

3 25< NO2 <30ppb 637 (15.9%) 240 (18%) 655 (27.8%) 

4 30ppb< NO2 407 (10.1%) 303 (22.7%) 868 (36.9%) 

1 0< PM2.5 <11 μg/m3 1387 (34.6%) 765 (57.2%) 858 (36.5%) 

2 11< PM2.5 <13 μg/m3 639 (15.9%) 235 (17.6%) 394 (16.7%) 

3 13< PM2.5 <17 μg/m3 982 (24.5%) 234 (17.5%) 593 (25.2%) 

4 17 μg/m3< PM2.5 1004 (25.0%) 103 (7.7%) 509 (21.6%) 
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 Table 6.1. Groups described by Day-Type, number of days and mean concentration. Group 

labels are arbitrary and ordered according to level of O3, followed by NO2.  Day-Types are 

represented by the level of O3, NO2 and PM2.5 respectively.  The number of days in each group is 

presented for all three cities combined, as well as by city.  Mean concentrations and standard 

deviations are presented for the 3-day population weighted average of O3 (ppb), NO2 (ppb) and 

PM2.5 (μg/m3).  

Label Day-Type 

O3/NO2/PM2.5 

All 

N 

Atlanta 

N 

Dallas 

N 

St. 

Louis N 

O3 

Mean(SD) 

NO2 

Mean(SD) 

PM2.5 

Mean(SD) 

Group1 

(Referent) 

1/1/1 842 606 121 115 25.9 (6.3) 15.4 (3.8) 8.2 (1.7) 

Group2 1/1/2, 1/1/3, 

2/1/2, 2/1/3 

652 431 134 87 32.3 (9.4) 16.4 (3.4) 13.2 (1.6) 

Group3 1/1/4, 2/1/4 99 49 25 25 33.1 (10.2) 16.5 (3.5) 19.8 (3) 

Group4 1/2/2, 1/2/3 248 126 13 109 23 (7.2) 22.9 (1.2) 13.3 (1.5) 

Group5 1/3/1, 1/3/2, 

1/3/3, 1/3/4 

642 210 85 347 24.8 (7) 27.5 (1.4) 12 (3.9) 

Group6 1/4/1, 1/4/2, 

1/4/3, 1/4/4, 

2/4/1, 2/4/2, 

2/4/3, 2/4/4 

855 173 196 486 30 (8.9) 34.7 (4.1) 13.3 (5.2) 

Group7 2/2/2, 2/2/3 107 63 15 29 40.3 (2.8) 23 (1.1) 13.1 (1.6) 

Group8 2/3/1, 2/3/2, 

2/3/3, 2/3/4 

257 110 38 109 40.1 (2.8) 27.3 (1.4) 11.3 (3.5) 

Group9 3/1/1, 3/2/1 267 156 76 35 49.3 (2.8) 18 (4.2) 9.2 (1.4) 

Group10 3/1/2, 3/1/3 333 242 64 27 50 (3) 16.3 (3) 13.7 (1.6) 

Group11 3/1/4, 3/2/4 161 119 16 26 50.9 (2.8) 18.7 (3.9) 19.9 (2.8) 

Group12 3/2/2, 3/2/3 131 68 27 36 49.4 (2.8) 22.9 (1.2) 13.7 (1.6) 

Group13 3/3/1, 3/4/1 163 25 63 75 49.7 (2.7) 31 (4.3) 9.1 (1.4) 

Group14 3/3/2, 3/3/3, 

3/3/4, 3/4/2, 

3/4/3, 3/4/4 

356 163 36 157 50 (2.9) 31.7 (5.4) 15.6 (4.2) 

Group15 4/1/2, 4/1/3, 205 149 42 14 61.4 (5.6) 17.3 (2.8) 14.3 (1.7) 

Group16 4/2/2, 4/2/3 128 77 36 15 63.1 (6.1) 23.1 (1.1) 14.3 (1.7) 

Group17 4/3/1, 4/3/2, 

4/3/3, 4/3/4 

392 207 72 113 67.2 (10.7) 27.4 (1.4) 19.1 (6.6) 

Group18 4/4/1, 4/4/2, 

4/4/3, 4/4/4 

450 156 58 236 68.5 (11.2) 35.7 (4.9) 19.7 (6.3) 
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Table 6.2. Rate Ratios (RR) for the multipollutant joint effects from the C&RT and conventional models. Rate ratios for the 

conventional models are calculated for the effect of an increase equal to the Group mean minus the referent mean for all three pollutants.  

AIC offers information about model fit (lower values indicate better fit) while the Wald test provides information on the significance of 

the exposure covariates in each model.   

 
C&RT results with 

indicators for each Group 

 
Group Mean - 

Referent Mean 

Conventional Model: 

linear effects 

Conventional Model:  

linear effects + first-

order interactions 

Conventional Model: 

linear effects+ 

quadratic effects   
  

Label RR 95% CI   O3  NO2   PM2.5   RR 95% CI RR 95% CI RR 95% CI 

Group 2 0.99 (0.97, 1.02)   6.35 1.01 5.04 1.01 (1.00, 1.02) 1.05 (1.02, 1.08) 1.01 (1.00, 1.03) 

Group 3 1.04 (0.99, 1.09)   7.2 1.18 11.64 1.01 (1.00, 1.03) 1.07 (1.03, 1.11) 1.02 (1.00, 1.04) 

Group 4 1.01 (0.98, 1.04)   -2.89 7.56 5.18 1.01 (1.00, 1.02) 1.04 (1.02, 1.06) 1.01 (1.00, 1.03) 

Group 5 1.03 (1.01, 1.06)   -1.05 12.11 3.83 1.02 (1.00, 1.03) 1.04 (1.02, 1.07) 1.02 (1.01, 1.04) 

Group 6 1.04 (1.01, 1.07)   4.06 19.34 5.14 1.04 (1.02, 1.06) 1.07 (1.04, 1.10) 1.04 (1.02, 1.06) 

Group 7 1.03 (0.99, 1.08)   14.37 7.63 4.97 1.03 (1.02, 1.05) 1.08 (1.05, 1.12) 1.04 (1.02, 1.06) 

Group 8 1.02 (0.99, 1.06)   14.24 11.91 3.12 1.04 (1.02, 1.06) 1.09 (1.05, 1.13) 1.05 (1.02, 1.07) 

Group 9 1.04 (1.01, 1.08)   23.43 2.68 0.98 1.04 (1.02, 1.06) 1.10 (1.05, 1.15) 1.04 (1.02, 1.07) 

Group 10 1.00 (0.97, 1.03)   24.15 0.94 5.56 1.04 (1.02, 1.06) 1.10 (1.05, 1.15) 1.04 (1.02, 1.07) 

Group 11 1.07 (1.03, 1.12)   24.96 3.35 11.74 1.04 (1.02, 1.07) 1.11 (1.06, 1.16) 1.05 (1.02, 1.08) 

Group 12 1.04 (0.99, 1.08)   23.48 7.53 5.52 1.05 (1.03, 1.07) 1.11 (1.06, 1.16) 1.05 (1.03, 1.08) 

Group 13 1.04 (0.99, 1.08)   23.84 15.68 0.92 1.06 (1.04, 1.09) 1.13 (1.08, 1.19) 1.06 (1.03, 1.09) 

Group 14 1.06 (1.02, 1.09)   24.15 16.29 7.46 1.06 (1.04, 1.09) 1.13 (1.08, 1.18) 1.07 (1.04, 1.10) 

Group 15 1.01 (0.97, 1.05)   35.53 1.98 6.09 1.06 (1.03, 1.09) 1.13 (1.07, 1.20) 1.06 (1.03, 1.10) 

Group 16 1.03 (0.98, 1.08)   37.21 7.71 6.16 1.07 (1.04, 1.10) 1.15 (1.08, 1.22) 1.08 (1.04, 1.11) 

Group 17 1.05 (1.01, 1.09)   41.33 12.04 10.94 1.08 (1.05, 1.12) 1.16 (1.09, 1.23) 1.09 (1.05, 1.13) 

Group 18 1.05 (1.01, 1.09)   42.56 20.37 11.55 1.10 (1.06, 1.14) 1.17 (1.10, 1.25) 1.10 (1.06, 1.15) 

AIC 62674      62667  62645  62669  

Wald 

Test* 

2

18df =36.6,  p=0.006     2

3df =27.06, 

p<0.0001 

2

6df =39.14, 

p<0.0001 

2

6df =28.77,  

p<0.0001 

Wald 

Test** 

NA      NA  2

3df =12.00,  

p=0.007 

2

3df =1.72,  p=0.633 

*Simultaneous Wald test for all exposure parameters in the model.  

**Simultaneous Wald test for additional exposure parameters beyond the linear effects 
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Table 6.3.  Distribution of referent and non-referent (i.e. used to generate C&RT trees) days by city. 

  Atlanta Dallas St. Louis 

 
Referent 

(n=606) 

Non-referent 

(n=3406) 

Referent 

(n=121) 

Non-referent 

(n=1261) 

Referent 

(n=115) 

Non-referent 

(n=2239) 

Month N % N % N % N % N % N % 

January 106 17.49 229 6.72 15 12.4 107 8.8 25 21.74 190 8.49 

February 41 6.77 270 7.93 6 4.96 107 8.8 5 4.35 192 8.58 

March 26 4.29 315 9.25 14 11.57 110 9.05 1 0.87 203 9.07 

April 12 1.98 318 9.34 3 2.48 117 9.62 5 4.35 205 9.16 

May 24 3.96 317 9.31 10 8.26 114 9.38 4 3.48 213 9.51 

June 15 2.48 315 9.25 13 10.74 107 8.8 0  -- 207 9.25 

July 9 1.49 332 9.75 8 6.61 116 9.54 0  -- 186 8.31 

August 18 2.97 323 9.48 2 1.65 122 10.03 4 3.48 182 8.13 

September 54 8.91 276 8.1 11 9.09 79 6.5 9 7.83 171 7.64 

October 79 13.04 262 7.69 4 3.31 89 7.32 25 21.74 161 7.19 

November 96 15.84 234 6.87 11 9.09 79 6.5 21 18.26 159 7.1 

December 126 20.79 215 6.31 24 19.83 69 5.67 16 13.91 170 7.59 

Precipitation N % N % N % N % N % N % 

Days with 

precipitation 
246 40.59 968 28.45 49 40.5 213 17.52 39 33.91 663 29.61 

Wind   Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

Wind speed 9.36 3.54 7.62 3.16 12.49 4.62 10.68 4.31 10.03 3.36 8.71 3.21 
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Table 6.4. Frequency at which each Day-Type (n=64) occurred by city, as well as the terminal node designation from the city-specific 

trees. 

Day- 

Type 

Pollutant Level Atlanta Dallas St. Louis 

O3 
N

O2 
PM2.5 N % 

Terminal 

Node1  
N % 

Terminal 

Node1  
N % 

Terminal 

Node1  

1/1/1 1 1 1 606 (15.1%) Referent 121 (9.1%) Referent 115 (4.9%) Referent 

1/1/2 1 1 2 137 (3.4%) 1A 29 (2.2%) 1D 30 (1.3%) 6S 

1/1/3 1 1 3 98 (2.4%) 1A 30 (2.2%) 1D 25 (1.1%) 6S 

1/1/4 1 1 4 24 (0.6%) 1A 6 (0.4%) 1D 11 (0.5%) 1S 

1/2/1 1 2 1 137 (3.4%) 5A 46 (3.4%) 1D 152 (6.5%) 3S 

1/2/2 1 2 2 56 (1.4%) 5A 9 (0.7%) 1D 46 (2%) 7S 

1/2/3 1 2 3 70 (1.7%) 5A 4 (0.3%) 1D 63 (2.7%) 7S 

1/2/4 1 2 4 21 (0.5%) 5A 1 (0.1%) 1D 26 (1.1%) 1S 

1/3/1 1 3 1 61 (1.5%) 5A 70 (5.2%) 1D 171 (7.3%) 2S 

1/3/2 1 3 2 46 (1.1%) 5A 9 (0.7%) 1D 47 (2%) 2S 

1/3/3 1 3 3 70 (1.7%) 5A 5 (0.4%) 1D 86 (3.7%) 2S 

1/3/4 1 3 4 33 (0.8%) 5A 0 (0%) 1D 43 (1.8%) 2S 

1/4/1 1 4 1 11 (0.3%) 4A 114 (8.5%) 1D 84 (3.6%) 2S 

1/4/2 1 4 2 23 (0.6%) 4A 18 (1.3%) 1D 63 (2.7%) 2S 

1/4/3 1 4 3 41 (1%) 4A 0 (0%) 1D 99 (4.2%) 2S 

1/4/4 1 4 4 28 (0.7%) 4A 0 (0%) 1D 101 (4.3%) 2S 

2/1/1 2 1 1 221 (5.5%) 1A 116 (8.7%) 1D 30 (1.3%) 3S 

2/1/2 2 1 2 92 (2.3%) 1A 34 (2.5%) 1D 13 (0.6%) 6S 

2/1/3 2 1 3 104 (2.6%) 1A 41 (3.1%) 1D 19 (0.8%) 6S 

2/1/4 2 1 4 25 (0.6%) 1A 19 (1.4%) 1D 14 (0.6%) 1S 

2/2/1 2 2 1 80 (2%) 6A 16 (1.2%) 1D 47 (2%) 3S 

2/2/2 2 2 2 32 (0.8%) 6A 10 (0.7%) 1D 12 (0.5%) 7S 

2/2/3 2 2 3 31 (0.8%) 6A 5 (0.4%) 1D 17 (0.7%) 7S 

2/2/4 2 2 4 10 (0.2%) 6A 1 (0.1%) 1D 4 (0.2%) 1S 
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2/3/1 2 3 1 42 (1%) 7A 28 (2.1%) 1D 69 (2.9%) 2S 

2/3/2 2 3 2 21 (0.5%) 7A 7 (0.5%) 1D 18 (0.8%) 2S 

2/3/3 2 3 3 31 (0.8%) 7A 2 (0.1%) 1D 19 (0.8%) 2S 

2/3/4 2 3 4 16 (0.4%) 7A 0 (0%) 1D 3 (0.1%) 2S 

2/4/1 2 4 1 7 (0.2%) 4A 54 (4%) 1D 58 (2.5%) 2S 

2/4/2 2 4 2 11 (0.3%) 4A 6 (0.4%) 1D 31 (1.3%) 2S 

2/4/3 2 4 3 26 (0.6%) 4A 0 (0%) 1D 33 (1.4%) 2S 

2/4/4 2 4 4 26 (0.6%) 4A 1 (0.1%) 1D 17 (0.7%) 2S 

3/1/1 3 1 1 123 (3.1%) 2A 59 (4.4%) 5D 11 (0.5%) 3S 

3/1/2 3 1 2 88 (2.2%) 2A 34 (2.5%) 2D 10 (0.4%) 6S 

3/1/3 3 1 3 154 (3.8%) 2A 30 (2.2%) 2D 17 (0.7%) 6S 

3/1/4 3 1 4 80 (2%) 2A 12 (0.9%) 2D 12 (0.5%) 1S 

3/2/1 3 2 1 33 (0.8%) 2A 17 (1.3%) 5D 24 (1%) 3S 

3/2/2 3 2 2 23 (0.6%) 2A 11 (0.8%) 2D 12 (0.5%) 7S 

3/2/3 3 2 3 45 (1.1%) 2A 16 (1.2%) 2D 24 (1%) 7S 

3/2/4 3 2 4 39 (1%) 2A 4 (0.3%) 2D 14 (0.6%) 1S 

3/3/1 3 3 1 21 (0.5%) 2A 28 (2.1%) 6D 31 (1.3%) 2S 

3/3/2 3 3 2 26 (0.6%) 2A 11 (0.8%) 2D 18 (0.8%) 2S 

3/3/3 3 3 3 37 (0.9%) 2A 7 (0.5%) 2D 23 (1%) 2S 

3/3/4 3 3 4 26 (0.6%) 2A 1 (0.1%) 2D 14 (0.6%) 2S 

3/4/1 3 4 1 4 (0.1%) 2A 35 (2.6%) 6D 44 (1.9%) 2S 

3/4/2 3 4 2 9 (0.2%) 2A 7 (0.5%) 2D 43 (1.8%) 2S 

3/4/3 3 4 3 23 (0.6%) 2A 6 (0.4%) 2D 45 (1.9%) 2S 

3/4/4 3 4 4 42 (1%) 2A 4 (0.3%) 2D 14 (0.6%) 2S 

4/1/1 4 1 1 22 (0.5%) 3A 15 (1.1%) 3D 0 (0%) 3S 

4/1/2 4 1 2 38 (0.9%) 3A 17 (1.3%) 3D 7 (0.3%) 6S 

4/1/3 4 1 3 111 (2.8%) 3A 25 (1.9%) 3D 7 (0.3%) 6S 

4/1/4 4 1 4 216 (5.4%) 3A 11 (0.8%) 3D 19 (0.8%) 1S 

4/2/1 4 2 1 11 (0.3%) 3A 14 (1%) 4D 8 (0.3%) 3S 
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4/2/2 4 2 2 17 (0.4%) 3A 10 (0.7%) 4D 5 (0.2%) 7S 

4/2/3 4 2 3 60 (1.5%) 3A 26 (1.9%) 4D 10 (0.4%) 7S 

4/2/4 4 2 4 164 (4.1%) 3A 5 (0.4%) 4D 27 (1.1%) 1S 

4/3/1 4 3 1 7 (0.2%) 3A 15 (1.1%) 4D 6 (0.3%) 4S 

4/3/2 4 3 2 19 (0.5%) 3A 15 (1.1%) 4D 11 (0.5%) 4S 

4/3/3 4 3 3 43 (1.1%) 3A 24 (1.8%) 4D 38 (1.6%) 4S 

4/3/4 4 3 4 138 (3.4%) 3A 18 (1.3%) 4D 58 (2.5%) 4S 

4/4/1 4 4 1 1 (0%) 3A 17 (1.3%) 4D 8 (0.3%) 5S 

4/4/2 4 4 2 1 (0%) 3A 8 (0.6%) 4D 28 (1.2%) 5S 

4/4/3 4 4 3 38 (0.9%) 3A 13 (1%) 4D 68 (2.9%) 5S 

4/4/4 4 4 4 116 (2.9%) 3A 20 (1.5%) 4D 132 (5.6%) 5S 
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Figure 6.2. Classification tree illustrating the joint effects of O3, NO2 and PM2.5 associated with emergency department visits for 

pediatric asthma in Atlanta (1999 – 2009).  Internal nodes are designated with an oval and numbered such that each node, n, produces 

two child nodes numbers 2n and 2n+1.  The branches of the tree are labeled according to the level of the pollutant used to partition the 

tree. For each partition, the branch with the more harmful association is bolded. Terminal nodes are numbered 1A-7A (A for Atlanta). The 

pie graphs at each terminal node are a graphical representation of the Day-Types that fall into each terminal node.  Each pie graph has 12 

wedges, four representing each level (L1-L4) of O3 (shades of purple), four representing each level of NO2 (shades of gold), and four 

representing each level of PM2.5 (shades of blue).   Pie wedges are colored if a pollutant level is classified into that terminal node and left 

white if the pollutant level is absent from the terminal node.  Day-Types present in the terminal node can be identified by finding every 

combination of one O3 wedge (purple), one NO2 wedge (gold) and one PM2.5 wedge (blue).  For example terminal node 7A contains 4 

Day-Types: O3 level 2, NO2 level 3 and PM2.5 levels 1-4 (2/3/1, 2/3/2, 2/3/3, 2/3/4).  
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Figure 6.3. Classification tree illustrating the joint effects of O3, NO2 and PM2.5 associated with emergency department visits for 

pediatric asthma in Dallas (2006 –2009).  Terminal nodes are numbered 1D-6D (D for Dallas). For additional description see Figure 

6.2. 
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Figure 6.4. Classification tree illustrating the joint effects of O3, NO2 and PM2.5 associated with emergency department visits for 

pediatric asthma in St. Louis (2001 –2007).  Terminal nodes are numbered 1S-7S (S for St. Louis). For additional description see 

Figure 6.2. 
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Figure 6.5. Rate ratios and 95% confidence intervals presented for the 17 C&RT Groups 

relative to the referent group (all three pollutants in the lowest level) for the three-city 

model.  Rate ratios were calculated using indicator variables for each Group in a Poisson GLM 

model with city-specific control for confounding.   
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Figure 6.6. Rate ratios per IQR increase from the conventional multipollutant model with 

linear effects; results are presented separately for each city and all three-cities combined. 
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Chapter 7: Ensemble-Based Source Apportionment of Fine 

Particulate Matter and Emergency Department Visits for 

Pediatric Asthma (Study 3) 
 

Introduction 

There is increasing epidemiologic evidence that fine particulate matter with 

aerodynamic diameter <2.5 microns (PM2.5) has a harmful effect on childhood asthma [1-

7].  However PM2.5 is a heterogeneous mixture of particles and there is a growing body of 

evidence that some particles are more detrimental to health than others [8-16].  Despite 

this, current regulatory strategy treats all particles that contribute to PM mass equally.  

Conducting epidemiological studies on source-apportioned PM, rather than total PM, 

may help identify the causal agents that precipitate acute asthmatic events and ultimately 

lead to more effective source-based regulation.   

Apportioning total fine particulate matter mass into its contributing sources is 

traditionally done with receptor-based modeling [17].  Common techniques include 

chemical mass balance (CMB) modeling [18] and factor analytic approaches such as 

principle components analysis [19], UNMIX [20, 21] and positive matrix factorization 

[22].  More recently chemical transport models, such as the Community Multiscale Air 

Quality (CMAQ), which utilize emission inventories and meteorology, have been used to 

estimate the impact of PM2.5 sources [23, 24].  While source apportionment (SA) 

techniques have proven to be a powerful tool in epidemiologic studies, each approach has 

its own set of limitations when included in health studies [25].  Indeed, a challenge with 

SA is that an accepted “gold standard” does not exist [26].  Without a gold standard 
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approach for measuring source impacts, it is difficult to quantify the uncertainty 

associated with each of the techniques, which may lead to biased health estimates and 

underestimated standard errors. 

One approach to overcome the limitations of individual SA models is to use an 

ensemble of source-apportioned results.  Lee et al (2009) showed that an ensemble 

average of five different SA models led to a higher predicted-to-observed PM2.5 ratio, 

fewer zero-impact days and a reduction in the day-to-day variability of the source impact 

estimates compared to single SA models [25].  Balachandran et al (2012) builds on this 

approach by propagating the uncertainties of each SA approach in the ensemble average 

[27] and then using Bayesian techniques to obtain multiple realizations of the source 

profiles to further capture the day-to-day uncertainties in the source apportionment 

techniques [28].  This Bayesian-based ensemble approach has been shown to provide 

results that are more consistent with independent observations and known emission 

sources compared with other single SA methods [28].   

This is the first study to apply results from this novel ensemble-based source 

apportionment technique in an epidemiologic analysis.  In this study we examine the 

association between ensemble-based PM2.5 source impacts and emergency department 

visits for childhood asthma.  By utilizing data from an 8.5-year time series study 

(1/1/2002 - 6/30/2010) in metropolitan Atlanta, with daily exposure and outcome 

observations, we also have the ability to examine lagged associations.  

 

Methods 

Exposure Data: Bayesian-based ensemble source apportionment 
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The Bayesian-based ensemble approach combines four independent SA methods, 

three of which were receptor-based: CMB using molecular markers [29] and CMB using 

gas-based constraints [30] and positive matrix factorization [31], as well as one chemical 

transport model [32]. All SA methods were conducted using concentrations from the 

Jefferson Street monitoring site in downtown Atlanta.  Ensemble averaging was 

conducted iteratively.  In the first step estimates of the source impacts and the 

uncertainties for each of the four SA methods were averaged with equal weighting.  Next 

the root mean square error (RMSE) was calculated between each method with respect to 

the average for each source category.  The inverse of the source-specific and method-

specific RMSE was then used as weights to re-estimate the ensemble average source 

impacts and uncertainties. A more detailed description of these first two steps is provided 

in Balachandran et al (2012) [27].  The above algorithm results in each day having the 

same estimated source impact uncertainty because the RMSE was constant across days. 

To further account for the uncertainties in the ensemble weights, for each day, the source-

specific and method-specific RMSEs were sampled independently from their posterior 

distributions and used as weights to recalculate the ensemble-averaged source impact.  

Finally, each posterior sample of daily source impact time series was used to derive CMB 

source profiles. [28].   

This Bayesian ensemble method was applied to estimate two seasonal source 

profiles (July 2001 and January 2002), which in turn were used to estimate daily source 

impacts for the 8.5 year time series (1/1/2002 – 6/30/2010).  Each day 10 source profiles 

were sampled from the seasonal source distribution and used in a CMB equation to get 

the daily concentration of each source.  This resulted in 10 separate time series with daily 
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SA concentrations.  A total of nine categories of sources were classified from the 

individual four SA methods: five primary sources and four secondary sources [25].  

Primary sources included biomass burning (BURN), primary PM from coal combustion 

(COAL), construction and road dust (DUST), diesel vehicles and non-road engines (DV), 

and gasoline-fuel vehicles and engine sources (GV).  Secondary sources included 

ammonium bisulfate, ammonium sulfate ammonium nitrate and other organic carbon, 

which was grouped as secondary organic carbon (SOC).  Because the CMAQ simulations 

that contributed to the chemical transport model were biased high for the sulfates and 

nitrates [33] these three secondary sources were dropped from the analysis, leaving SOC 

the only secondary source. 

 

Health Data 

Daily emergency department (ED) visit data were collected from all hospitals in 

metropolitan Atlanta for the 8.5 year time series.  Individual visits were restricted to 

pediatric patients (<18 years) living in zip codes within 5-county metropolitan Atlanta.  

We defined emergency department visits for asthma as all visits with an International 

Classification of Disease, 9th edition code for asthma (493.0-493.9) or wheeze (786.07).  

 

Statistical Methods 

We performed time-series analyses to estimate associations between the PM2.5 

sources and ED visits for pediatric asthma.  We had an a priori interest in the association 

with lags 0-2 (same day and previous two days’ exposure); but also an interest in 

exploring longer lag periods given previous published findings suggesting the effect of 
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pollutants on asthma may be prolonged over many days [1, 2, 34].  As a result, we 

considered the following two initial models: 1) a single-source model with same day (lag 

0) and previous week (lag 1-7) source impacts using an unconstrained distributed lag, that 

is, with an individual term for each lag in the same model; and 2) the same single-source 

model with exposure considered for only lags 0-2, controlling for source concentrations 

on lag days 3-7, again with individual terms for each lag in the same model.  All 

associations were calculated as the cumulative rate ratio for a 1 μg/m3 increase in the 

source concentration for each exposure day.   

Long-term temporal trends were controlled using a cubic spline with 8 knots per 

year.  Separate cubic terms were included for average maximum temperature lag 0-2 and 

lag 3-7.  Similarly, two cubic terms were included for average dew point lag 0-2 and lag 

3-7.  Indicator terms were included for season, day-of-week, federal holidays, and the 

days after Thanksgiving and Christmas.  To further control for temporal and 

meteorological trends we included interaction terms for season and day-of-week, as well 

as season and the maximum temperature cubic terms (for lag 0-2 and lag 3-7).  

 The single-source model analysis was conducted separately for each of the six 

sources (BURN, COAL, DUST, DV, GV, and SOC) as well as for total PM2.5.  Because 

previous epidemiologic analyses in Atlanta have found a strong association between O3 

and pediatric asthma [2, 3, 35, 36]), we also ran the same models controlling for O3, 

using the same unconstrained 8-day distributed lag structure for O3, as for the main 

exposure.  To account for potential confounding by sources not included in the model, we 

ran the single-source model with simultaneous control for the 8-day moving average of 

the other five sources.  Additional sensitivity analyses were conducted to compare the 
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following lag structures: lag 0-7 constrained with a cubic polynomial, the 8-day moving 

average of lags 0-7, and lags 0 through 7 considered separately (undistributed). 

 To account for the additional uncertainty from the ensemble-averaged SA 

concentrations, each analysis was run 10 times, once for each of the 10 separate ensemble 

time series (aka “runs”).  Multiple imputation methods were used to arrive at a combined 

point estimate and variance for each analysis as follows. The summary regression 

coefficient, Q was obtained by taking the mean of the regression coefficients from each 

run, where m=10.  

 
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i iQ
m
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Imputation-corrected variances were calculated according to the method described by 

Rubin, 1987 [37].  The first step required calculating the average variance from the 

ensemble runs (within imputation variance) (W) and the variance of the ensemble run 

coefficients (between imputation variance) (B). 
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With these two quantities the total imputation-corrected variance (T) can be calculated as:   
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All analyses were conducted using SAS® v9.3 (Statistical Analysis System; 

North Carolina). 

 

Results 

 There were 2,170 days with SA observations for lags 0 through 7 for all sources 

and for PM2.5. Table 7.1 summarizes the pollutant, meteorological and hospitalization 

data included in the model.  On average, 71 ED visits for acute asthma or wheeze 

occurred each day among children 0-18 years.  Mean concentrations of fine particulate 

matter and O3 during the study period were 14.51 μg/m3 and 40.61ppb, respectively.   

 Summary statistics of the daily source concentrations from each of the 10 

ensemble runs are presented in Table 7.2.  When averaged across all ensemble runs, 

BURN had the highest mean concentration (2.81 μg/m3) and greatest standard deviation 

(2.59), while COAL had the lowest (0.12 μg/m3, 0.12).  The mean concentration of DV 

was greater than GV (1.01 vs. 0.88 μg/m3) with DV showing greater average standard 

deviation within each ensemble run (0.95 vs. 0.69).  The last column in Table 7.2 shows 

the average correlation between each of the 10 ensemble runs by source.  DUST had the 

highest correlation between the runs (r=0.98), while the other five sources had similarly 

moderate average correlations between the runs, ranging from r=0.66 to r=0.74.  

   Table 7.3 contains the correlations between each of the sources and total PM2.5 

and O3.  The strongest correlations were observed between O3 and DUST, as well as 

PM2.5 and DV (both with r=0.48).  Among the sources, SOC and BURN exhibited the 

strongest negative correlation (r=-0.46) while SOC and DV exhibited the strongest 

positive correlation (r=0.44).  
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 The results from the primary health analyses for each of the sources are shown in 

Figure 7.1.  The results for each source are shown for three separate models: the single-

source model (with exposure modeled using an unconstrained distributed lag), the single-

source model with the addition of O3 control and the single-source model with 

simultaneous control for the other sources.  Results for exposure to total PM2.5 are 

presented for the single-source model and single-source model with O3 control in Figure 

7.2.  For each model in Figures 7.1 and 7.2, two separate exposures were considered: 

cumulative exposure to lag 0-2, controlling for lag 3-7 separately, and cumulative 

exposure to lag 0-7.  It is important to note that the y-axes in Figures 7.1 and 7.2 differ 

for each source, a consequence of reporting the associations in terms of a 1 μg/m3 

increase, as opposed to an IQR increase.   

 The RR for lag 0-7 was larger than lag 0-2 for all sources and PM2.5, with the 

exception of DUST and SOC, in all three models (Figures 7.1 and 7.2). The single-source 

model resulted in significant associations for BURN lag 0-7 (RR: 1.02, 95% CI: 1.01, 

1.03), DV lag 0-7 (RR: 1.05, 95% CI: 1.01, 1.08), GV lag 0-2 (RR: 1.03, 95% CI: 1.01, 

1.05) and lag 0-7 (RR: 1.07, 95% CI: 1.03, 1.11) and PM2.5 lag 0-2 (RR: 1.00, 95% CI: 

1.00, 1.01) and lag 0-7 (RR: 1.01, 95% CI: 1.00, 1.01).  When O3 was added to the 

model, the associations with DV lag 0-7, GV lag 0-2, and PM2.5 lag 0-2 were null, while 

the lag 0-7 RRs for BURN, GV and PM2.5 remained significant.  Controlling for all other 

sources in the same model resulted in a decrease in the point estimates and only DV lag 

0-7 remained significant (RR: 1.06, 95% CI: 1.00, 1.12).  The RRs for the O3 

associations, from the single-source models with O3 control, are presented in Figure 7.5.  

For comparison we also present the results from an O3-only model for the association of 
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lags 0-7, modeled with an unconstrained distributed structure.  There is no appreciable 

difference in the point estimates in Figure 7.5 between the O3-only model and the 

association with O3 from the single-source models with O3 control.  When PM2.5 and O3 

are in the same model the O3 association is non-significant (RR: 1.06, 95% CI: 0.99, 

1.13). 

 Table 7.4 uses the results from the single-source model measuring cumulative 

exposure to lag 0-7 to demonstrate how the 10 ensemble runs contributed to the summary 

point estimates and standard errors.  The standard error of the point estimates was nearly 

10 times greater for COAL compared with the other sources.  The ratio of the imputation-

corrected standard error to the average standard error shows the degree to which the 

confidence intervals were inflated due to the propagation of error from the ensemble runs.  

The degree of inflation ranged from 3% (DUST) to 20% (DV).   

 Results from the sensitivity analyses considering alternative lag specifications, 

specifically two constrained lag structures (a cubic polynomial and 8-day moving 

average) and lags 0 through 7 modeled separately (i.e. undistributed), resulted in nearly 

identical point estimates for all sources and are therefore not shown.  The individual 

unconstrained distributed lag results from the single-source model are shown for the 

sources and total PM2.5 in Figures 7.3 and 4, respectively.  The graphs for BURN, DV, 

GV and PM2.5 suggest an immediate same-day and day-after association (lag 0 and 1) 

followed by a delayed association occurring between lags 4-7.  For both BURN and DV 

the greatest association was seen on lag 7.  Throughout all analysis the associations for 

primary coal combustion, dust, and secondary organic carbons were consistent with the 

null. 
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Discussion    

 These analyses using source apportioned-exposure estimates suggest that some, 

but not all, sources of fine particulate matter are hazardous to a child’s respiratory health.  

In particular, traffic-related sources (diesel and gasoline vehicles), as well as biomass 

burning, were associated pediatric asthma ED visits when considering the cumulative 

eight-day exposure. The exposures to gasoline vehicles and biomass burning was 

statistically significant after controlling for O3 in the model. When all sources were 

included in the same model, only the eight-day exposure to diesel vehicles was 

statistically significant. 

 The finding that diesel and gasoline vehicle sources were associated with 

childhood asthma is well supported in the literature. Studies have found that residential 

proximity to roadways is associated with both incident asthma [38] and asthma 

exacerbation [39].  A study looking at the associations between source apportioned PM2.5 

and asthmatic children found traffic-related exposures to be most harmful, leading to a 

statistically significant increase in asthmatic symptoms [40]. In particular, previous 

studies have found indicators of diesel exhaust to be associated with hospital admissions 

for asthma [34] and airway inflammation in asthmatics [41].  The results of these studies 

are further corroborated by our model with all sources, which found that diesel vehicles 

(DV) exhibited the strongest association with asthma ED visits. 

 Our decision to control for ozone was driven by a concern for confounding, given 

that previous studies in Atlanta that have found O3 to be strongly associated with 

pediatric asthma [2, 3, 35, 36, 42].  Nonetheless, there is the potential for O3 to be on one 
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of the causal pathways if source emissions lead to O3 formation, which in-turn leads to an 

increase in asthma ED visits.  If this were the case then controlling for O3 would result in 

a bias towards the null.  Looking at the correlations between O3 and the sources in Table 

7.3, this appears to be of minimal concern; only DUST and SOC exhibited moderate 

correlations with O3 (r=0.48 and r=0.43, respectively).  The slight attenuation of rate 

ratios in Figure 7.1 for the single-source models with O3 control, as well as the similarity 

between the O3-only and single-source with O3 model results in Figure 7.5, provide 

further evidence that confounding by O3 is unlikely to be a major concern for the sources.  

There does, however, appear to be some confounding by O3 of the PM2.5 association for 

lags 0-2 (Figure 7.2).   

 Similarly we chose to incorporate all sources in the third model to account for 

potential between-source confounding. The results in Figure 7.1 suggest that there may 

be some confounding present in the single-source model results, particularly in the 

associations of BURN and GV, which were significant in the single-source model but 

non-significant in the model with control for all sources.   

 The availability of daily source concentrations over an 8.5 year period enabled us 

to examine different extended lag structures.  Many past studies have been limited in 

their ability to examine the lag structure of PM2.5 sources and constituents because much 

of the USA Environmental Protection Agency [43] monitoring data are only available on 

every third or sixth day [11, 14, 44, 45].  Studies that have looked at the temporal patterns 

of PM2.5 exposure and acute asthma exacerbations have consistently found evidence of a 

lagged effect [1, 2, 34].  In particular, the lag pattern we observed for total PM2.5 (Figure 

7.4) is consistent with an earlier Atlanta-based study by Peel et al (2005) that analyzed 
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the association between PM2.5 and asthma ED visits from 1998 – 2000, with an 

unconstrained distributed lag structure, and found lags 0 and 6 to have the strongest 

association with asthma ED visits [2].  A source apportionment study by Halonen et al 

(2008) found the strongest associations between traffic sources and pediatric asthma 

occurred between lags 3-5 [1], similar to the results in Figure 7.3 which suggest the 

greatest diesel associations occurred between lags 4-7.  There is biological plausibility 

behind these findings of a delayed effect, as ultrafine particles have been shown to 

penetrate deep into the lung, particularly in persons suffering from asthma [46] which 

could lead to inflammation in the alveolar region of the lungs [47]. 

 Further evidence of the lagged effect can be seen when the RR for the cumulative 

association of lag 0-2 is compared with that of lag 0-7 in Figures 7.1 and 7.2. With the 

exception of DUST and SOC, both of which are consistent with the null, all sources and 

total PM2.5 showed greater associations for lag 0-7, compared with lag 0-2. We chose to 

include lag 0-2 because it is commonly reported in both the asthma and source 

apportionment literature [3, 9, 40, 48-50]; however we did so controlling for lags 3-7.  

Our individual lag results from both the distributed and undistributed models suggested a 

strong association with lags 3-7 and thus excluding these lags may result in confounding 

of the lag 0-2 association.  As a result our lag 0-2 associations are likely to be smaller 

than those reported from other studies, which may be biased upwards due to confounding 

by longer lags not included in the model.  

 In our exploration of different lag structures, as part of the sensitivity analysis, we 

found that lag structure had very little effect on our results.  The point estimates for the 

cumulative lag 0-2 and 0-7 exposures were nearly identical between the unconstrained, 
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cubic constrained, and moving average models, suggesting that the overall temporal 

associations captured in the results are robust.  Similarly, the individual lag results from 

the distributed and undistributed models displayed comparable patterns and point 

estimates for each lag across all sources.  There appears to be minimal temporal 

correlation between the lags for most sources; the Spearman correlation coefficient 

between today and yesterday’s concentrations was less than r=0.5 for all sources, with the 

exception of DUST which was r=0.63. 

While we typically conceptualize lagged exposures presented in this, and other, 

analyses as the cumulative effect of an increase of 1 μg/m3 in each of the lagged days 

examined, for some sources such an exposure may be unlikely to occur.  For example, the 

cumulative effect of 1 μg/m3 increase in biomass burning over eight days may not be 

realistic, given that most burn events occur sporadically and over short time intervals.  An 

alternative and equivalent way to conceptualize the RR is the effect of a single-day 1 

μg/m3 increase in biomass burning sustained over 8 days.  For many source exposures 

this interpretation of the RR may be more realistic.  This interpretation may also have a 

more direct correspondence to regulation (e.g. what will be the sustained effect of 

shutting down a power plant for one day?). 

 An important contribution of this paper is the use of ensemble-based source 

apportionment data in a health analysis.  By using ensemble-averaged results from four 

different source apportionment methods we were better able to account for the 

uncertainties of each approach, while alleviating some of the concerns regarding inter-

method variability.  In order to propagate the uncertainty, all reported model results for 

the sources are the combination of 10 separate ensemble runs, with the net result of 
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inflating the summary confidence intervals by 3-20% (Table 7.4).  The relatively small 

increase in the CIs for DUST (3%) can be attributed to the strong correlation between the 

ensemble runs (r=0.98, Table 7.2), which in turn is a reflection of the relative agreement 

between SA methods.  Conversely, the results suggest that BURN has the greatest 

between-ensemble variability in source concentration, as is evident from the larger 

standard errors and weakest between-run correlation in Table 7.2.  The greatest increase 

in confidence interval width occurred with DV, and is a function of the ratio of the 

average standard error for the ensemble runs (within-run SE) vs. the standard error of the 

point estimates (between-run SE).  In the case of DV this ratio was relatively small, 

meaning that there was greater variability in the RR results between the ensemble runs.  

Indeed as with any study that uses ambient concentrations to represent population 

exposure, measurement error caused by spatial misalignment is a concern.  In our study, 

SA data from a single monitor was used to represent exposure for a 5-county area.  While 

extrapolating SA data from a single monitoring site to a greater metropolitan area is 

common [26, 51, 52], one must do so with caution.  Some sources of PM are likely to be 

more spatially homogenous than others (e.g. secondary organic carbons will be more 

homogenous than local vehicle emissions) and these differences in spatial variation will 

lead to differing degrees of spatial misalignment [53].  For the more heterogeneous 

sources where exposure misclassification is expected to be the greatest (e.g. BURN, 

COAL, DV, & GV) the observed point estimates are likely to be biased to the null [54].  
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Conclusion 

In this study we found that fine particulate matter generated from diesel and 

gasoline vehicle sources, as well as biomass burnings, was associated with a significant 

increase in emergency department visits for acute asthma-related events among children 

0-18 years.  Our results, which corroborate previous findings, suggest that for children, 

the harmful effects from a single-day’s exposure to these sources are sustained for the 

following week, with some of the largest effects seen between lags 4-7.  This study takes 

advantage of a novel ensemble-based source apportionment technique, which helps to 

minimize the potential for bias from relying on any single SA method and provides a 

means for inflating the confidence intervals around the point estimates to account for the 

uncertainty in SA methods.  As a result of this latter feature, our results may be more 

conservative than those from single SA studies.  Nonetheless, we found some sources to 

have significantly harmful associations, lending credence to the belief that sources have 

varying toxicity and providing further incentive for source-based regulation. 
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Table 7.5 Summary statistics for fine particulate matter (concentrations in μg/m3), ozone 

(ppb), meteorology, and emergency department visits for pediatric asthma in 5-county 

Atlanta (2002 – June, 2010).  

aThe analysis was restricted to days when all sources and fine particulate matter were non-missing for the 

8-day lag. 
bInter-quartile range

Variable Number 

of daysa 

Median Mean (SD) Minimum Maximum IQRb 

Pollutant        

Fine particulate matter ( 
PM2.5 μg/m3) 

2170 13.18 14.51 (7.33) 1.06 72.56 9.16 

Ozone ( O3 ppb) 2090 39.34 40.61 (19.16) 0.52 116.37 28.09 

Meteorology       

Maximum temperature 

(°C) 

2170 23 21.96 (8.37) -1 40 13 

Dew point (°C) 2163 11 9.64 (9.34) -20 24 16 

Health Outcome       

Asthma/Wheeze ED visits 2170 68 70.68 (28.75) 13 220 39 
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Table 7.7. Summary statistics for the source impacts, averaged across 10 ensemble runs. The standard deviation across runs is 

given in parentheses.  All results are reported in μg/m3. 

Source Minimum Median Mean Maximum 

Standard 

Deviation 

Inter-

Quartile 

Range 

Correlationa 

Between 

Ensemble 

Runs 

  Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

Biomass burning (BURN) 0 (0) 2.05 (0.048) 2.81 (0.029) 27.68 (6.04) 2.59 (0.081) 2.72 (0.063) 0.66 (0.012) 

Primary coal combustion (COAL) 0 (0) 0.09 (0.001) 0.12 (0.001) 1.08 (0.196) 0.12 (0.002) 0.14 (0.004) 0.70 (0.012) 

Dust/resuspended soil (DUST) 0 (0.002) 0.25 (0.001) 0.38 (0.001) 7.75 (1.485) 0.46 (0.012) 0.27 (0.002) 0.98 (0.001) 

Diesel vehicles (DV) 0 (0) 0.79 (0.016) 1.01 (0.012) 9.52 (0.646) 0.95 (0.017) 0.99 (0.016) 0.74 (0.009) 

Gasoline vehicles (GV) 0.02 (0.01) 0.66 (0.012) 0.81 (0.008) 7.12 (0.702) 0.69 (0.008) 0.66 (0.013) 0.74 (0.010) 

Secondary organic carbon (SOC) 0 (0) 1.32 (0.029) 1.6 (0.013) 27.26 (1.305) 1.65 (0.019) 2.03 (0.040) 0.67 (0.019) 

aMean Spearman correlation calculated from all pairwise runs 
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Table 7.9. Spearman correlation between sources (averaged across all 10 ensemble runs), 

fine particulate matter, and ozone. 

 BURN COAL DUST DV GV SOC PM2.5 O3 

Biomass burning (BURN) 1.00        

Primary coal combustion (COAL) 0.21 1.00       

Dust/resuspended soil (DUST) 0.02 0.13 1.00      

Diesel vehicles (DV) 0.00 0.20 0.25 1.00     

Gasoline vehicles (GV) 0.40 0.09 0.14 0.22 1.00    

Secondary organic carbon (SOC) -0.46 0.03 0.27 0.44 -0.12 1.00   

Fine particulate matter (PM2.5) 
0.20 0.19 0.41 0.48 0.30 0.46 1.00  

    Ozone (O3) 
-0.23 0.02 0.48 0.12 -0.11 0.43 0.47 1.00 

 

 

 

 
Table 7.11. Summary statistics for the standard error of the point estimate from the 

ensemble runs, where each measure is computed from the mean of 10 ensemble runs using 

the single-source model to calculate the rate ratio of a combined increase of 1μg/m3 over 

lags 0-7.  

Source 

Standard Error of 

Point Estimates Across 

Ensembles 

Average Standard 

Error for 

Ensemble Runs 

Imputation-

Corrected 

Standard Error 

Ratio of 

Imputation-

Corrected SE / 

Average SE 

BURN 0.0027 0.0049 0.0057 1.1539 

COAL 0.0675 0.1161 0.1359 1.1714 

DUST 0.0064 0.0269 0.0277 1.0309 

DV 0.0085 0.0134 0.0161 1.1992 

GV 0.0077 0.0181 0.0198 1.0939 

SOC 0.0049 0.0083 0.0097 1.1780 
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Figure 7.2. Rate ratios and 95% confidence intervals for the effect of a 1μg/m3 increase in 

source concentration on pediatric asthma ED visits, presented for lags 0-2 (controlling for 

lags 3-7) and lags 0-7. Blue circles, orange triangles and green squares represent results from the 

single-source model with an unconstrained distributed lag structure, the same model with O3 

control, and the same model controlling for all sources simultaneously, respectively.   
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Figure 7.4 Rate ratios and 95% confidence intervals for the effect of a 1μg/m3 increase in 

total PM2.5 concentration on pediatric asthma ED visits, presented for lags 0-2 (controlling 

for lags 3-7) and lags 0-7. Blue circles represent results from the single-source model with an 

unconstrained distributed lag structure, while orange triangles represent the same model with O3 

control.  
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Figure 7.6. Rate ratios and 95% confidence intervals for the single-day effect of a 1μg/m3 

increase in source concentration on pediatric asthma ED visits presented for lags 0 through 

7.  Results are generated from the single-source model with an unconstrained distributed lag 

structure.  
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Figure 7.8. Rate ratios and 95% confidence intervals for the single-day effect of a 1μg/m3 

increase in total PM2.5 concentration on pediatric asthma ED visits presented for lags 0 

through 7.  Results are generated from the single-source model with an unconstrained distributed 

lag structure. 
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Figure 7.5. Rate ratios and 95% confidence intervals for the cumulative effect of a 25 ppb 

increase in O3 for lags 0-7 generated from the single-source models with O3 control. For 

comparison the results of an ‘O3 only’ model (i.e. with no sources or PM2.5) are shown. 
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Chapter 8: Conclusion 

 

This dissertation makes both methodological as well as substantive contributions 

to the field of air pollution epidemiology.  Existing tools for conducting C&RT analyses 

have all been lacking, to varying degrees, in their applicability to epidemiologic research. 

The modified C&RT algorithm presented in Study 1 offers an approach that addresses 

several of these limitations.  In particular, the modified algorithm offers a way to control 

for confounding that is separate from tree construction; has more direct correspondence 

with statistical inference by choosing the best split based on statistical significance; and 

enables estimation of joint effects through the withholding of a common referent group 

prior to tree construction.  In Study 2, we highlight how a modeling approach using 

C&RT can lead to conclusions that are different from those generated using conventional 

modeling approaches.  In particular, the C&RT results suggest that the assumptions of 

monotonicity and a log-linear relationship inherent in many conventional modeling 

approaches may lead to an overestimation of risk on high pollution days.  Though we 

cannot know which, if any, of these modeling approaches is correct, we would argue that 

the incorporation of alternative models with different sets of assumptions, such as C&RT, 

can be a useful way to generate new ideas and perhaps gain greater insight into air 

pollution mixtures.   

Throughout this dissertation we find that the association between PM2.5 and ED 

visits for pediatric asthma is both important and complex. For example, in Study 1 the 

first split in Figure 4.1 is for PM2.5 between the 3rd and 4th quartiles, suggesting that when 

pollutants are categorized by quartiles, PM2.5 (and not O3) is most significantly associated 
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with the outcome.  In Study 2, the results from the C&RT Groups suggest that the days 

with the most harmful exposures for pediatric asthma are also the days with the highest 

PM2.5 concentrations.  This finding is a stark departure from the conventional models, 

which suggest that O3 is the biggest driver of the multipollutant effect and that PM2.5 has 

a null association (Figure 6.6).  These results from Studies 1 and 2 together suggest that 

the PM2.5 effect identified by C&RT may be due to the varying mixtures encompassed in 

total PM2.5 mass.   

We examine this possibility in Study 3 by looking at the association according to 

the different sources of PM2.5 and find that PM2.5 sources do vary in their toxicity, with 

traffic and biomass burning sources found to be the most harmful.  Results from Study 3 

also add to the growing body of literature that suggests the effect of PM2.5 on pediatric 

asthma may be extended over several days.  In our study, the effects of a single-day’s 

exposure to diesel and gasoline vehicles, as well as biomass burning, were sustained for 

the following week, with some of the largest effects seen between lag days 4-7 (Figures 

7.1 and 7.3).   

Understanding the health associations related to air pollution mixtures poses many 

challenges, including what statistical approaches to use and how to characterize pollution 

mixtures.  This dissertation tackles some of these challenges while examining the 

relationship between multipollutant exposures and emergency department (ED) visits for 

pediatric asthma in Atlanta.   

 


