
Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the re-
quirements for an advanced degree from Emory University, I hereby grant
to Emory University and its agents the non-exclusive license to archive,
make accessible, and display my thesis or dissertation in whole or in part in
all forms of media, now or hereafter known, including display on the world
wide web. I understand that I may select some access restrictions as part
of the online submission of this thesis or dissertation. I retain all ownership
rights to the copyright of the thesis or dissertation. I also retain the right
to use in future works (such as articles or books) all or part of this thesis or
dissertation.

Signature:

Olgert Denas Date

Deep Models for Gene Regulation

By

Olgert Denas
Doctor of Philosophy

Computer Science

James Taylor, Ph.D.
Advisor

Eugene Agichtein, Ph.D.
Committee Member

Michelangelo Grigni, Ph.D.
Committee Member

Jeremy Goecks, Ph.D.
Committee Member

Accepted:

Lisa A. Tedesco, Ph.D.
Dean of the Graduate School

Date

Deep Models for Gene Regulation

By

Olgert Denas
Ph.D., Emory University, 2014

Advisor: James Taylor, Ph.D.

An abstract of
A dissertation submitted to the Faculty of the Graduate School

of Emory University in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
in Computer Science

2014

Abstract

Deep Models for Gene Regulation
By Olgert Denas

The recent increase in the production pace of functional genomics data has
created new opportunities in understanding regulation. Advances range
from the identification of new regulatory elements to gene expression predic-
tion from genomic and epigenomic features. At the same time, this data-rich
environment has raised challenges in retrieving and interpreting information
contained therein.

Based on recent algorithmic developments, deep artificial neural net-
works (ANN) have been used to build representations of the input that
preserve only the information needed to the task at hand. Prediction mod-
els based on these representations have achieved excellent results in machine
learning competitions. The deep learning paradigm describes how to build
these representations and train the prediction models in a single learning
exercise.

In this work, we propose ANN as tools for modeling gene regulation and
a novel technique for interpreting what the model has learned.

We implement software for the design of ANNs and for training practices
over functional genomics data. As a proof of concept, use our software to
model di↵erential gene expression during cell di↵erentiation. To show the
versatility of ANNs, we train a regression model on measurements of protein-
DNA interaction to predict gene expression levels.

Typically, input feature extraction from a trained ANN is formulated as
an optimization problem whose solution is slow to obtain and not unique.
We propose a new e�cient feature extraction technique for classification
problems that provides guarantees on the class probability of the features
and their norm. We apply this technique to identify di↵erential gene expres-
sion associated features that agree with previous empirical studies.

Finally, we propose building representations of functional features from
protein-DNA interaction measurements using a deep stack of nonlinear trans-
formations. We show that these reduced representations are informative and
can be used to label parts of the gene, regulatory elements, and quiescent
regions.

While widely successful, deep ANNs are considered to be hard to use
and interpret. We hope that this work will help increase the adoption of
such models in the genomics community.

2

Deep Models for Gene Regulation

By

Olgert Denas
Ph.D., Emory University, 2014

Advisor: James Taylor, Ph.D.

A dissertation submitted to the Faculty of the Graduate School
of Emory University in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy
in Computer Science

2014

Acknowledgments

My advisor, James Taylor, for his patience and help.

The Mouse ENCODE Consortium in particular, Ross Hardison and Dave
Gilbert. The members of the committee for their help and feedback. M.
Gehring (Sauria) for great discussions.

My family and Barbara for their love and uninterrupted support.

Contents

1 Introduction 1

1.1 Introduction . 1

1.2 Summary of remaining chapters 4

1.3 Contributions of this thesis . 5

2 Background 7

2.1 Importance of regulation . 7

2.2 Mechanisms of gene regulation 10

2.2.1 Transcriptional regulation 10

2.2.2 Post-transcriptional regulation 13

2.2.3 Epigenetic regulation 14

2.3 Computational methods for TF binding analysis 16

2.3.1 From HGP to ENCODE 16

2.3.2 Next Generation Sequencing 17

2.3.3 From read counts to signal 20

2.4 Artificial neural networks . 22

2.4.1 Introduction . 22

2.4.2 Feed forward networks 24

2.4.3 Convolutional Neural Networks 26

2.4.4 Modern ANNs and Representation learning 27

3 Feature extraction 29

3.1 Introduction . 29

3.2 Relevant feature extraction from ANNs 31

3.3 Convex optimization based method 32

3.4 Conclusion . 39

4 Deep models for regulation 41

4.1 Introduction . 41

4.2 Di↵erential gene expression modeling 45

4.2.1 The G1E biological model and data 45

4.2.2 Feature extraction . 49

4.3 Gene expression prediction from TFos 55

4.3.1 Data . 55

4.3.2 Regression model . 56

4.4 Conclusion . 56

5 Unsupervised modeling of functional genomics data 60

5.1 Introduction . 60

5.2 Deep representations of the genome 63

5.2.1 Experimental setting 63

5.2.2 Data and Model . 66

5.3 TF composition analysis of timing replication domains 67

5.3.1 Introduction . 67

5.3.2 Data and Model . 70

5.3.3 Results . 71

5.4 Conclusion . 72

Bibliography 74

List of Figures

2.1 Protein synthesis . 11

2.2 Schematic views of HS and WGS 18

2.3 ChIP-Seq reads . 19

2.4 A three layer feed forward net 25

3.1 Feature parsimony as a function of ✏ 34

3.2 A convolutional layer . 36

3.3 Information gain of extracted features 40

4.1 A typical workflow using dimer for modeling gene regulation . 44

4.2 The G1E biological model . 46

4.3 PSU genome browser snapshot for the G1E model 47

4.4 Model selection for the G1E model 49

4.5 CNN training view for the G1E model 50

4.6 Feature correlation method according to genometricorr 52

4.7 G1E model feature interpretation 52

4.8 Feature extraction on the G1E model NN 53

4.9 The K562 model top layer weights 57

4.10 Accuracy of a 3-layer CNN for the K562 model 58

5.1 dAE schematic . 64

5.2 Modeling functional tracks with dAE 65

5.3 Lack of translation invariance 66

5.4 dAE + Segway input enrichment 68

5.5 TF composition of mESC TADs grouped by a 7-layer dAE . . 72

List of Tables

4.1 Classification of features based on their score w.r.t. gene classes. 51

4.2 Catalog of feature coverage for the G1E model 54

5.1 Segway data . 67

5.2 True versus predicted classification rates are shown comparing

the labels of an unsupervised model trained on the profiles of

seven transcription factors (Ctcf, Hcfc1, MafK, P300, PolII,

Zc3h11a, and Znf384) versus actual replication timing for all

mESC TADs. TADs considered either TTR or Late by repli-

cation timing predominantly composed label A0, while Early

TADs predominantly composed label B0. 71

1

Chapter 1

Introduction

1.1 Introduction

The information needed for the viability and identity of living cells is encoded

in genomic DNA sequence. Two of the most important elements in genomic

DNA are genes and cis-regulatory modules (CRM). The DNA sequence of

genes can be transcribed by the cell and translated in a chain of amino

acids forming a protein. On the other hand, CRM are binding locations for

special proteins, called transcription factors (TFs), that are necessary for

transcription.

Because, binding events at CRMs can potentially increase or decrease the

transcription rate of a gene, CRMs have a direct impact on gene expression

and eventually on the protein concentration levels in the cell. In this sense,

we say that CRMs regulate gene expression. The e↵ect of CRMs in regula-

tion manifests itself in many aspects of the cell’s life, such as determination

of the cell type in an organism, control in a timely manner the developmen-

tal process of the organism, and influencing adaptation to environment and

disease susceptibility.

Despite their importance, the mechanisms of transcriptional regulation reg-

ulation are not entirely understood, nor are catalogs of these CRM complete.

2

Until recently, the discovery of CRMs has relied heavily in computational ap-

proaches analyzing sequence data.

Computational approaches to CRM prediction can be viewed in three groups

(Reviwed in [Hardison & Taylor, 2012]). One group uses existing motifs – a

motif is a random vector of approximately 5-10bp in length, with each compo-

nent a multinomial distributed random variable of the DNA alphabet. These

methods identify putative CRM by scan the genome for significant matches

with the given motif. These methods can enrich the catalog of CRM that

share a common known signature (or motif). Extensions of these methods

simultaneously perform motif discovery and motif matching, thus potentially

reporting putative CRM not necessarily similar to already annotated motif.

Another group of methods is based on the tendency of regulatory elements

to be located over genome regions that have remained largely unchanged

during the evolution of species. Using alignments [Blanchette, 2007] of se-

quences from di↵erent species, statistical methods can identify these regions

and other regions that have accumulated less mutations than expected.

Finally, a group of methods is based on directly measured DNA-protein

interactions. Measurements provide binding evidence for a given protein

throughout the genome. Based on this evidence, these methods infer the

genome location of the binding event. While a binding event does not always

imply the bound genome region has regulatory function, these methods have

been very successful in predicting the location of a number of CRM.

It is important to realize that all three groups have their weaknesses. Motif

based methods are biased toward already annotated elements. Methods that

discover motifs have been shown to yield a large number of false positives.

Methods based on conservation leverage the idea that purifying selection

(rejecting mutations) is evidence of function. The advantage of these methods

is that they do not require sequence patters or motif occurrences in the

sequence. However, these methods are biased toward evolutionary conserved

3

sequence and tend to miss functional sequence that has not been conserved

between species that are being compared. Finally, methods based on direct

DNA-protein interactions, while having the lowest bias, are also subject to

high false positives.

Another disadvantage of methods based on measured DNA-protein interac-

tions is that they require an experiment for each protein and cell condition,

which can be costly. In an e↵ort to better understand transcriptional regula-

tion, several projects have applied high throughput sequencing technologies

to the production of DNA - protein binding data in many cell types and

TFs from several types of experiments. Notably, the ENCODE [ENCODE

Project Consortium, 2011; Mouse ENCODE Consortium et al., 2012; Ger-

stein et al., 2010; modENCODE Consortium et al., 2010] projects have been

cataloging DNA-protein interactions for hundreds of proteins in hundreds of

cell types and cell lines in Human, Mouse, Worm and Fly. These projects

have produced the most complete functional genomics data to date. Coupled

with whole genome comparisons and estimations of the level of sequence con-

servation, these data have been the basis of a number computational methods

to predict CRM.

This thesis proposes computational approaches for the analysis of func-

tional genomic data under the deep learning framework. Models with a deep

architecture have been show to perform well in a number of applications

including audio and visual pattern recognition. We apply deep models to

functional genomic data in an e↵ort (1) to better understand CRM and the

rules that govern their regulatory activity and (2) to build low dimensional

representations of multiple tracks of experimental functional genomics data.

4

1.2 Summary of remaining chapters

Chapter 2 In this chapter we introduce basic concepts in the biology of

genomes. First, we look at the biological processes in gene regulation, the re-

cent technologies developed to measure regulatory activities on the genome,

and computational approaches to low-level interpretation of the raw data.

Next, we introduce Artificial Neural Networks (ANNs). We describe funda-

mental architectures and training methods.

Chapter 3 In this chapter we consider the problem of interpreting trained

ANNs. We review existing methods and propose a novel layer-wise feature

extraction algorithm that identifies relevant class-related input features. We

also describe a freely available and e�cient implementation of the algorithm

and models described above in a software library called dimer (Deep Models

of Expression and Regulation).

Chapter 4 In this section we apply the algorithms proposed in Chapter

3 to two problems. First, we consider the problem of predicting and in-

terpreting the direction of gene expression (repression or induction) during

Erythroid di↵erentiation. We propose an ANN architecture and apply our

feature extraction algorithm. Next, we provide a biological interpretation of

the extracted features. Second, we reapply the training and analysis process

in the previous section to the quantitative prediction of gene expression on

the Gm12878 cell line.

Chapter 5 In this chapter we apply unsupervised learning of genome fea-

tures to two problems. First, we extract informative patterns of biochemical

activity of the genome and synthesize that information in the form of labels.

The aim is to provide high-level representations that can be generated sys-

tematically and are interpretable. Next, we apply unsupervised models to

5

the problem of characterizing the TF composition of specific genome regions

called Topologically Associated Domains (TADs). The method discovers a

partition of TADs induced by their TF compositions which aligns with a

partition induced by their replication timing during cell division.

1.3 Contributions of this thesis

The material contained in Chapter 1 is the result of work done within the

Mouse ENCODE project, as part of the regulatory elements analysis working

group. Results were submitted as a research article and involved

• the development of a consistent method, based on multiple genome

alignments, for the mapping of regulatory elements between human

and mouse; the method was the basis of the cis-regulatory element

comparison pipeline used by the mouse ENCODE consortium.

• Integration of ChIP-Seq assays of transcription factors (TFs) and chro-

matin accessibility with gene annotations revealed a strong divergence

between sequence and function conservation of regulatory elements.

Furthermore, it provided insights on the species, cell and TF specific

evolutionary landscape of regulatory regions.

In particular, we observed that di↵erences in functional versus sequence con-

servation reveal that information from sequence conservation alone is not

enough to identify regulatory elements. Computational methods that use

protein-DNA interaction measurements are in this regard a viable avenue.

This observation served as motivation for the subsequent work.

We propose a novel method for interpreting a trained deep Neural Network.

We improve upon existing results in the following ways:

• our method is parameter free and extracts a deterministic set of fea-

tures,

6

• our method is e�cient,

• we provide guarantees on both the parsimony of the features and their

class probability assigned by the model.

We implemented software for modeling functional genomics data using super-

vised and unsupervised deep learning techniques. This work is in preparation

for submission in BMC Genomics.

We apply our findings on three problems in functional genomics

• Predict di↵erential gene expression during Erythroid di↵erentiation.

• Predict quantitative gene expression from transcription factor occu-

pancy data with excellent accuracy.

• Perform unsupervised genome-wide labeling based on multiple tracks

of functional genomics data. Preliminary results of this work appeared

as a poster in Systems Biology: Global Regulation of Gene Expression,

Cold Spring Harbor Laboratories, NY (2014).

Given the limited use of deep ANNs in functional genomics, we hope our

work will draw more attention to these models.

7

Chapter 2

Background

2.1 Importance of regulation

The dynamic equilibrium of gene expression levels and their products is main-

tained by direct or indirect execution of instructions encoded in the genome

sequence. These instructions can be functional coding or functional noncod-

ing. The functional coding portion is composed of genome regions that are

transcribed into mRNA which, after processing, is translated into chains of

amino acids. The noncoding functional regions are more elusive but equally

important. These regions perform functions by virtue of their position in

the genome or their sequence, and are usually referred to cis– regulatory

elements.

The interaction between functional coding and functional noncoding genome

elements results in a carefully tuned control of the expression levels of selected

sets of genes. This orchestration is at the base of biological processes in the

cell, including cell’s response to environmental stimuli, its development, and

its di↵erentiation. At the organismal level, regulation of gene expression is at

the basis of speciation, and disease susceptibility [Bulger & Groudine, 2010;

E. Davidson, 2006].

8

In multicellular organisms, cells di↵erentiate to perform highly specialized

functions. For example, certain blood cells are specialized in the production

of immunoglobulins by expressing the genes that encode the appropriate

proteins. Similarly, pancreatic islet cells produce insulin as a response to

high sugar concentration. This level of specialization is regulated through

maintenance of appropriate gene expression levels. So, contrary to pancreatic

islet cells, other cell types, like skin cells, cannot produce insulin at all as they

have the insulin genes silenced. The choice and maintenance (at silenced or

expressed levels) of a set of genes is a form of regulation, which occurs during

cell di↵erentiation, making this form of regulation time sensitive.

Another example that will be revisited later is the G1E biological model.

It simulates stages of Erythropoiesis, the precess by which red blood cells are

created from stem cells through a series of di↵erentiation steps. These steps,

start with G1E cells, which can be prevented from di↵erentiating by removal

of a regulatory protein called GATA1 (described in detail in [Weiss et al.,

1997]). Restoration of GATA1 is followed by a chain of events, including the

production of other important proteins, which will promote the expression

of particular sets of genes. As a result, the cells resume their di↵erentiation

process.

Perhaps the most fascinating coordinations of gene expression take place

during organism development. Regulation of gene expression levels results

in substantial morphological changes during the early stages of embryo de-

velopment. For example, the early fly (Drosophila Melanogaster) embryo

maintains a delicate control of the concentration of maternal proteins. This

cellular environment promotes the expression of specific set of genes and gene

regions which correspond to body parts [Klug et al., 2007].

Another example, is the process of X chromosome inactivation. A battery

of genes found in the Xic region of the X chromosome are co-expressed to

produce a set of proteins that in turn will regulate the important Xist gene.

9

The product of the latter, a long RNA molecule, will coat most of chromo-

some X and inactivate it [Morey & Avner, 2011; Abramowitz & Bartolomei,

2012]. The process is very robust and manages X chromosome choosing, initi-

ation, spreading, establishment of the X-ist product, and finally maintenance

through the whole life of the cell and its progeny.

Species complexity is best reflected by the complexity of the functional

noncoding genome [Meader et al., 2010]. Furthermore, mutations on the

noncoding functional genome constitute the main mechanism of a species’

evolution [E. Davidson, 2006]. Except for a modest number of protein cod-

ing genes related to the immune, reproductive, and language systems [Enard

et al., 2002; Swanson et al., 2001; Hughes & Yeager, 1998], di↵erences in

human and chimpanzee are completely due to changes in functional noncod-

ing regions [King & Wilson, 1975]. Evidence of correlation in human-chimp

functional noncoding sequence divergence and gene expression divergence has

also been found [Wilson & Odom, 2009].

Creation of species specific regulatory elements is still not well understood.

However, measurements of DNA protein interaction have been useful in iden-

tifying putative regulatory regions. Recently, we performed a comparative

analysis of DNA-protein interaction sites for 116 human and 35 mouse pro-

teins over 52 human and 35 mouse cell types and tissues from the Human and

Mouse ENCODE projects. Aside from a substantial amount (44% of mouse

and 43% of human) of species specific regulatory material, the study sug-

gested a mechanism for the creation of new regulatory material in a genome.

In contrast to the examples mentioned above, mutations on the functional

noncoding genome are subject to purifying selection – i.e., selection against

deleterious mutations at these sites. Evidence from comparisons of distant

metazoans or even between species at the extremes of eukaryotes shows that

the subset of the genome encoding TFs and signaling components (e.g., for

temporal/spatial gene expression patterns) is largely the same [E. David-

10

son, 2006]. However, gene specializations within a gene family do occur in

taxonomic units [Wilson & Odom, 2009; Levine & Tjian, 2003].

To accommodate these apparently contradicting observations, Davidson

and Erwin [E. H. Davidson & Erwin, 2006] mapped evolutionary events with

changes in specific components of the gene regulatory network into several

hierarchical and modular network entities. On the top of the hierarchy stay

kernel modules, evolutionary inflexible elements performing essential func-

tions on which other processes depend. Below, are placed plugins which are

modules that perform functions related to diverse developmental purposes.

At the bottom, they place I/O switches, which allow or disallow develop-

mental modules to act at certain contexts. Their proper use is reflected in

proper body part sizes. Other lower level components are gene batteries as

peripheral subnetworks composed of di↵erentiation genes coding for proteins

and used for specific purposes within a cell type.

The identity and viability of an organism and the constituting cells are

largely defined from regulation of gene expression. In Eukaryotes, regula-

tion happens in various steps of the protein synthesis process, including the

predisposition of the DNA to be transcribed and the translation of mature

mRNA (See Fig. 2.1). These steps include chromatin remodeling, transcrip-

tion initiation, and post transcriptional modifications. In the next section

we will look at each of these steps and the corresponding mechanisms of

regulation.

2.2 Mechanisms of gene regulation

2.2.1 Transcriptional regulation

The main form of gene expression regulation in Eukaryotes is at the transcrip-

tional level [Derman et al., 1981; Roop et al., 1978]. This form of regulation

11

Figure 2.1: Diagram of the protein synthesis process. Inside the nucleus, the RNA

Polymerase produces an RNA strand complementary to the DNA. Depending on

the DNA sequence, the RNA can code for a protein (Mature mRNA in the figure) or

perform other functions. Ribosomal RNA, for example, is the RNA component of

the Ribosome, which is shown as a shaded area outside the nucleus. Transfer RNA

(tRNA in the figure) mediates the formation of the amino acid chain. Outside the

nucleus, the Messenger RNA is translated into a chain of amino acids which spell

the sequence of a protein. Taken from Wikipedia https://en.wikipedia.org/

wiki/Protein biosynthesis on April, 9 2014.

https://en.wikipedia.org/wiki/Protein_biosynthesis
https://en.wikipedia.org/wiki/Protein_biosynthesis

12

reflects the ability of the cell to regulate gene expression through protein-

DNA interactions prior to gene transcription. The regulatory DNA sites are

recognized and bound by DNA-binding transcription factors (TFs), proteins

that carry an enhancing or repressing function on the expression of the target

gene.

Regulatory regions of the DNA can be cis– or trans–acting. In the former

case, elements are found on the same chromosome as the target gene and

provide binding locations for TFs which mediate directly the expression of the

target gene. They are typically organized in modules called cis– regulatory

modules (CRM) and bind a battery of TFs. The TFs and the genomic regions

that code those TFs, on the other hand, are said to be acting in trans–, or

to be trans–acting elements.

One fundamental cis–acting element is the promoter region of a gene –

a region immediately upstream1 of the transcription start site (TSS). This

element, binds the general transcription factor (GTF) complex, which by

itself is enough to start transcription. Interference with the assembly of the

GTF is, thus, a potential form of regulation. Alone, this form of regulation is

not enough for the fine tuned gene expression we see in high order organisms.

The cell, in fact, has a way of selectively promoting or demoting the for-

mation and binding of the GTF at the promoter region, through enhancers

and silencers, respectively. Another class of regulatory elements, called in-

sulators, can block the e↵ect of an enhancer to a gene. Enhancers, silencers

and insulators are similar in principle to the promoter region, as they both

bind TFs to regulate gene expression. However, they di↵er from each other

in a number of ways. Enhancers and silencers can be located almost distally

upstream of the gene’s TSS, or downstream in intronic regions – an example

is the heavy-chain gene of immunoglobulin, which contains an enhancer in an

intron – and thus can act regardless of the direction in which the target gene

1The direction of the “stream” is defined by the direction in which the gene is read.

13

is located. It has been observed that certain insulators make use of spatial

conformations of the chromatin, such as looping [Phillips & Corces, 2009].

Another fundamental di↵erence is that enhancers, silencers, and insulators

can be constitutive or tissue type specific (see also [Maston et al., 2006] for a

review). Finally, it has been observed recently that enhancers are regularly

transcribed in both directions [Kim et al., 2010] producing eRNA transcripts.

It is not yet clear what is the function of eRNA or what are the implications

of this mechanism, but extensive eRNA measurements in human cells by the

FANTOM Consortium [Andersson et al., 2014] have been produced and used

to better understand the cell specific regulatory landscape in humans.

2.2.2 Post-transcriptional regulation

If transcription of a DNA region was not repressed by one of the mechanisms

described above, an mRNA molecule would have been created. At this point,

there are several routes for the mRNA molecule: it may get exported outside

of the nucleus and get translated into a protein, it may perform regulation

functions (see below), or it may be degraded before it is able to perform any

function.

Degradation of mRNA molecules is another way of gene expression regula-

tion, called post-transcriptional regulation, which we review briefly.

Post-transcriptional regulation includes a number of ways the cell can act

on the mRNA that resulted from gene transcription. One way, typical of

Eukaryotes, is the process of alternative splicing. Agents, called snRNPs

and composed of proteins and small nuclear RNA, remove large introns from

the mRNA. The regulatory function of this mechanism becomes apparent in

genes products that accept alternative splicing. It follows that the concen-

tration of the possible protein products out of a transcript will depend on

the splicing mechanism.

14

A more recently discovered form of regulation involves small noncoding

RNA molecules. The first observations, revealed that these molecules tended

to be long and create hairpin structures which tended to repress the genes

that produced them. More evidence showed that these molecules are part of

a complex gene regulating mechanism. Some long noncoding RNAs are diced

by the dicer protein into eithermiRNAs or siRNAs. The former, simply binds

to mRNA products preventing further processing of the transcript. siRNAs,

on the other hand, bind a protein called RISC which is able to degrade

mRNA sequences with regions complementary to the RISC bound siRNA.

2.2.3 Epigenetic regulation

The DNA is wrapped around proteins called histones (H2a, H2b H3, and H4,

plus variants) to form a basic “string on beads” structure, which can further

assemble in other structures. This structure is called chromatin and its unit

is the nucleosome. Chromatin structure varies along the DNA, forming do-

mains that are more or less accessible to proteins. For example, two large

domains of the chromatin are the euchromatin, largely accessible, and the

heterochromatin, condensed and non-accessible. Other smaller domains are

maintained and they all contribute to the accessibility of the DNA by the

TFs.

The mechanism of how small active or “dead” domains are created and

maintained is not fully understood. However, a number of proteins called

remodelers are known to perform nucleosome displacement. Remodelers can

recognize post-translational modifications of the histones located in their N-

terminus, or “tails”. There are di↵erent types of histone tail modifications,

such as Methylation, Acetylation, and Ubiquitation. Common combinations

of modifications on the same tail have been compiled into a histone code2

2The code defines also succinct names of modifications. For example, H3K4me is a

15

[Turner, 2005].

Global chromatin environments have been associated with histone modifi-

cations. For example, it has been observed that heterochromatin is wrapped

around histones with low Acetylation and and high on certain types of Methy-

lation: H3K9, H3K27, and H4K20; euchromatin, on the other hand, is as-

sociated with Acetylation, H3K4me3, H3K36me3, H3K79me3; and bivalent

chromatin contain modifications usually found in both euchromatin and het-

erochromatin.

Histone modifications are also directly related to regulation of transcrip-

tion, by marking active or repressed genomic regions. Acetylation correlates

with with activation of transcription and Deacetylation with repression of

transcription; Lysine Methylation at, H3K4, H3K36 and H3K79 correlates

with activation, but at H3K9, H3K27, H4K20 correlates with repression.

Methylation of H3K36 is context dependent because it is associated with

activation if found on coding sequence, and with repression if found on pro-

moters. (These and other aspects of chromatin modifications are reviewed

in [Kouzarides, 2007]).

The epigenetic landscape of the genome is often considered in the context

of the 3D organization of the chromatin. Chromatin conformation capture

technology [Lieberman-Aiden et al., 2009] has been used to measure distal

chromatin interactions. These interactions define a set of genomic topologi-

cally associated domains (TADs) which have proved to be very informative

in understanding distal regulatory mechanisms [Dixon et al., 2012]. Recently,

the Mouse ENCODE Consortium performed an association analysis between

TADs genome domains (RD) defined by synchronized replication timing dur-

ing DNA replication. The study showed a strong correlation between TAD

boundaries and RD boundaries [Pope et al., n.d.].

Methylation of the 4th Lysine amino acid in histone 3.

16

2.3 Computational methods for TF binding

analysis

2.3.1 From HGP to ENCODE

The completion of the human reference genome by the Human Genome

Project (HGP) uncovered the sequence that encodes the information nec-

essary for the viability of the human organism. While other organisms had

been already sequenced, the completion of the human genome was followed

by an increase of data production and technological advances in the biologi-

cal sciences. The reason of this increase lies in part in the need to interpret

the newly sequenced genome. The common theme of advances following the

completion of the HGP is the large scale low cost production of functional

annotations of the genome sequence.

As the annotation of the genome became richer, it became clear that or-

ganism complexity does not lie on the number of genes it possesses, but on

its faculty to combine their products [E. H. Davidson & Erwin, 2006; Meader

et al., 2010]. In a way, the community found itself in a position similar to the

one right before the start of the HGP, but with more tools and data at hand,

and di↵erent questions in mind: instead of wondering about the location of

cancer genes, with an annotated sequence at hand, the challenge was to un-

derstand how are these genes controlled, what are their roles and the roles

of their manipulators [Dulbecco, 1986]. Inspired by the success of the HGP,

several consortia, notably, US National Institutes of Health (NIH) Roadmap

Epigenomics Mapping Consortium [Bernstein et al., 2010], the ENCODE,

modENCODE, and the MouseENCODE, set to catalog and discover the reg-

ulatory nature of genome elements. One product of the ENCODE projects,

was the publication of the largest number of uniformly processed measure-

ments of biochemical activity on the genome [Plocik & Graveley, 2013]. As a

17

side e↵ect new methods and technologies were created and validated. Today,

the investigator possesses tens of methods for measuring di↵erent aspects of

the sequence, functional, and structural nature of the genome.

2.3.2 Next generation sequencing

The routine sequencing of whole genomes has been one of the most coveted

achievements in biology [Dulbecco, 1986; Collins & Galas, 1993]. The first

sequencing methods were developed in the 80s [Sanger et al., 1982]. More,

than a decade later, the process had been automated and the rate of sequenc-

ing was large enough for the Human Genome Project (HGP) to be feasible

[Lander et al., 2001].

The preferred method of the HGP was the Hierarchical Shotgun (HS) Se-

quencing. In this approach, the DNA is broken in 150 Mb length sequences

and replicated using BAC vectors. Once the correct order of these large se-

quences is determined a coarse sca↵old is created. Next, each of the sca↵old

parts is sequenced and assembled just as if it were a genome. Since the order

of the BAC inserts is known in advance it is possible to combine the inserts

into the original genome (Figure 2.2).

A competing method to HS was the Whole Genome Shotgun (WGS) advo-

cated by Celera [Weber & Myers, 1997] (Figure 2.2). This method skipped

the coarse sca↵olding step altogether and mapped the short reads directly to

the genome. Concurrently to the HGP, a draft genome was published by Cel-

era using this method [Venter et al., 2001]. The e↵ectiveness of WGS versus

HS has been debated extensively [Waterston et al., 2002; Myers et al., 2002].

One conclusion that can be safely drawn is that WGS paved the way for

next generation sequencing methods (see below), but HS was indispensable

for the creation of a reference error-free human genome sequence.

Celera’s WGS was followed by the developement of a novel technology for

18

Green,�1997 Weber�and�Meyers,�1997

Figure 2.2: Schematic views of HS (left) and WGS (right). For a short description

of each technology see the text. Adopted from [Waterston et al., 2002]. Permission

granted from PNAS.

DNA sequencing, commonly called Next Generation Sequencing (NGS). This

technology, with respect to the first generation, or Sanger sequencing, can

produce a larger amount of reads in lower time and cost. NGS platforms

capture fragmented DNA sequence and amplify it into fragment clusters.

Then, they probe each fragment cluster for the next base through a process

called sequencing by ligation or sequencing by synthesis, depending on the

technology. Each probing step binds the primers with fluorescent nucleotides

that can be detected and processed into sequence reads. Sequence reads from

NGS instruments contain more errors and are much shorter than reads from

the Sanger method, although this is constantly improving [Metzker, 2010].

In parallel to WGS, NGS has seen a widespread use for sequencing smaller

targeted regions of the genome. The most widely used targeting technique

is by chromatin immuno-precipitation (ChIP). This procedure is a general

method by which it is possible to identify properties of sequence regions

corresponding to some criteria. For example, one can identify the sequence

of transcribed regions, or the sequence of regions that interaction with a

given TF. It is often argued that the successful application of NGS with

19

ChIP experiments has somewhat shadowed its intended use in whole genome

sequencing [Wold & Myers, 2008].

Protein of
interest

Sequenced
fragments

Aligned
reads

Reference genome

Distribution
of reads

Peak
profile

5’ 3’

3’ 5’

Figure 2.3: Schematic of a ChIP-Seq experiment. A protein of interest is linked

to its binding location in the genome. The sequence is sheared and regions bound

by the protein are selected with an antibody and sequenced from the 5’ end. Only

part of the fragment is sequenced (called read). Reads are aligned to the reference

genome and histograms of reads from forward and reverse strands are computed.

Further processing estimates the signal profile for the fragments. This can further

be processed into a discrete peak call (See Section 2.3.3).

A typical ChIP-Seq assay starts with the immuno-precipitation of specific

genomic regions of interest, such as promoter regions or enhancers. The

resulting sample is then sequenced and the reads are aligned back to the

genome (Figure 2.3). Suppose that we want to target genome regions oc-

cupied by a certain TF. A ChIP-Seq assay starts by linking the TF to the

DNA and immuno-precipitating it by attaching an antibody specific to the

TF. Next, cross-linking is reversed and, after fragmentation and size selec-

tion, the sample is sequenced by a NGS technology [Johnson et al., 2007]. To

20

improve the quality of the subsequent data analysis, a control experiment is

performed in parallel where sequencing is applied to randomly chosen DNA

fragments not bound by the TF. Sequence reads from the ChIP sample are

highly enriched by DNA regions previously bound by the target TF, while

the control sample reflects noise.

ChIP-Seq has a number of advantages over its predecessor technologies

such as ChIP-chip [Ren et al., 2000]. First, not relying on hybridization

it removes biases over GC content and issues related to the hybridization

chemistry. Second, it improves accessibility as it does not depend on the

design of genome tiling arrays; for example some repetitive regions are not

easily accessible by microarrays. Finally, Chip-Seq can represent larger signal

variations and achieve higher accuracy at lower cost.

2.3.3 From read counts to signal

One of the biggest challenges in completing a ChIP-Seq assay is the discrim-

ination of the read counts into signal and noise – because reads accumulate

visibly to TF occupancy sites, these step is also called peak calling. Peak

calling is the problem of finding a suitable distribution for the background

noise (i.e., signal in absence of TF binding) and then scanning the ChIP sig-

nal for regions where the signal is significantly higher than expected under

the background distribution. A good estimation of the background distribu-

tion is thus essential for the quality of results [Zhang et al., 2008; Kharchenko

et al., 2008].

One way to estimate the background distribution is to perform a ChIP-Seq

experiment in absence of the protein of interest. This is a control experiment

and can be done once, or each time a new experiment is performed. When

control experiments cannot be performed, one can use standard background

estimation inferred from others, or call the peaks from the signal experi-

21

ment only. Depending on the presence of a control experiment there are two

strategies for modeling the background distribution.

The total number N of uniquely mapped reads is binned into windows of

length w (typically 100bp). The number of reads in each window is written

as a mixture g(n) = ⇡
0

f
0

(n) + (1 � ⇡
0

)f
1

(n), where 0  ⇡
0

 1, f
0

models

the number of reads in absence of the protein, and f
1

models the number of

reads when the protein binds. For a window i, the number of reads under

the background distribution f
0

can be written as ni|�i ⇠ Poisson(�i) and

�I ⇠ gamma(↵, �)3. This composed distribution can be also written as a

negative binomial NB(↵, �/(1 + �)). In the absence of a control experiment

it is assumed that windows with less than three reads are regions that did not

bind the protein of interest. Let then u
0

, u
1

, u
2

be the count of windows with

0, 1, and 2 mapped reads respectively. The estimated values of parameters

↵ and � are ↵ = (u
1

/u
0

)/⇢ and � = 1/⇢� 1, where ⇢ = (2u
0

u
2

� u2

1

)/(u
0

u
1

)

[Ji et al., 2008; Ladunga, 2010].

To estimate the mixture parameter ⇡
0

, one can write g(0) ⇡ ⇡
0

f
0

(0), under

the assumption that windows that did not contain any reads did not bind

the protein of interest. Then

⇡
0

=
u
0P

k uk

⇥ 1

f̂
0

(0)

where f̂
0

is the above estimated f
0

. With the estimated values of ⇡
0

, f
0

, and

g one can estimate the local false discovery rate (cite) for window wi with ni

reads as ⇡
0

f
0

(ni)/g(ni).

While one sample assays are easier and less expensive to perform, they

make the assumption that the background signal follows a negative binomial

distribution. This assumption has been observed to be unrealistic in some

cases [Kharchenko et al., 2008]. With data from a control experiment, one

can model the read counts from the control experiment as mi ⇠ Poisson(µi)

3We denote with I the random variable and i its values.

22

and the read counts from the ChIP experiment as ni ⇠ Poisson(�i). Because,

the ChIP experiment windows contain reads due to both noise and signal, we

write the rate µi = µi1 + µi0, where the rate due to background noise is also

set to be µi0 = c�i. This latter equality assumes that at each window, the

background noise in the two experiments di↵ers by a multiplicative constant

c. One can write ni|ni +mi ⇠ Bin(mi + ni, p0), since a Poisson conditioned

by the sum with another Poisson follows a Binomial. The parameter p
0

is

the expected fraction of ChIP reads in a background window and is typically

estimated from windows with a small number of reads. Given an estimation

of p
0

, the other quantities can be estimated from the data. The local FDR

in this case can be estimated as the ratio between f
Bin

(n|t, p̂
0

)/g
obs

(n|t) =

P (X = n) and X ⇠ Bin(t, p
0

) and g
obs

(n|t), the frequency of windows with

n ChIP reads among those with t total reads.

2.4 Artificial neural networks

2.4.1 Introduction

Simple versions of artificial neural networks (ANN) as pattern recognition

systems were popularized in the late 50s – early 60s [Rosenblatt, 1958]. These

early systems were simple two layer associative maps between input and

output (layers), but they could map similar input configurations into similar

output configurations. This allowed them to generalize reasonably well on

input they had never seen before. This same property posed a limitation of

these systems to recognize similar examples (e.g., inputs with the same label

in the case of a classification problem) with a very di↵erent representation in

the input. A classic example is the inability of a perceptron solve the XOR

problem, where examples 00 and 11 have label 0 and examples 01 and 10

have label 1.

23

Two layer ANNs have to learn a mapping based on the input encoding

provided by the external world. This is a limitation that manifests itself in a

large and well studied class of problems [Minsky & Papert, 1969]. Adding the

ability to create internal representations through one or more hidden layers,

removes this limitation [Rumelhart et al., 1986]. This simple observation

allowed a general use of ANNs.

The unit of computation in both an organic and artificial neural network

is the neuron. Organic neurons communicate with other neurons though

dendrites to axon connections called synapses. The e�ciency with which

a synapse transmits an impulse depends on physiological properties of the

synapse. On the other hand, artificial neurons are far more simple – a typical

artificial neuron, for example, implements no synaptic delay, and communi-

cates with impulses [Neumann, 1958].

The first artificial neuron model, proposed by McCulloch and Pitts in 1943

[McCulloch & Pitts, 1943] is of the form

y = s

pX

j

xjwj � u

!

=

(
1 if b+

Pp
j xjwj � 0

0 else

= s

p+1X

j

xjwj

!

The first equation shows the model in the canonical form. The unit has

weights wj for each input xj and an activation threshold u. The output y is

a binary value which is on whenever the weighted sum of the inputs is greater

than u. Typically, a bias term is added to the computation to cancel out u

(second equation). For convenience, one can think of the unit as having p+1

inputs where one of them is always one. This trick incorporates the bias term

into the summation of the third equation.

24

The step function s in (2.1) is called the activation function and is one of

the many choices of activation functions. For example, a continuous squash-

ing function such as the sigmoid �(x) = 1/(1 + e�x) allows for non-binary

activation values at the output of the neuron. Other functions that result

in faster training or with desirable application-specific properties have also

been proposed (reviewed in [Montavon et al., 2012]).

2.4.2 Feed forward networks

Neurons can be arranged in a number of topologies to create networks. The

topology refers to (1) the allowed connections between neurons, (2) the des-

ignation of select neurons as input units, and (3) the designation of select

neurons as output units for the network. The ability of the network to learn

concepts related to a problem depends on the topology, so designing network

topologies is a problem specific task.

Units in feed forward networks are organized in layers and connections

go from one (lower) layer to an upper layer. The topology allows for skip

connections, even though these do not change the expressibility of the net-

work. Each neuron combines the inputs and a bias term and then applies an

activation function as in Equation (2.1).

y = f

b+

pX

j

xjwj

!
(2.1)

Following the notation in [Hastie et al., 2009], the three layered network

for K-class classification in Figure 2.4 can be modeled as

Zm = �(↵
0m + ↵T

mX),m = 1, . . . ,M,

Tk = �
0k + �T

k Z, k = 1, . . . , K, (2.2)

fk(X) = gk(T), k = 1, . . . , K,

25

where Z = (Z
1

, . . . , Zm) and T = (T
1

, . . . , Tk). The output function gk(T)

is typically taken to be a softmax gk(T) = exp(Tk)/
PK

l=1

(exp(Tl)), which

produces a probability distribution over the outputs.

Figure 2.4: A three layer fully connected feed forward net.

To train an ANN, we try to fit the parameters (call them all ✓) to the

training data by minimizing a cost function R(✓). Typical choices for R

are the L
2

norm or, for classification problems, a cross-entropy measure

�
PN

i=1

PK
k=1

yik log fk(xi). There are many choices for R, and in general

iterative optimization methods can be used to fit the parameters. The most

popular is the back-propagation algorithm. For the network in Figure 2.4

and a sum-of-squared cost function

R(✓) =
NX

i=1

KX

k=1

(yik � fk(xi))
2 =

NX

i=1

Ri(✓)

an online optimization method updates the parameters at iteration r + 1 as

�
(r+1)

km = �
(r)
km � �r

PN
i=1

@Ri

@�
(r)
km

(2.3)

↵
(r+1)

ml = ↵
(r)
lm � �r

PN
i=1

@Ri

@↵
(r)
ml

(2.4)

26

after observing each input example. The learning rate �r at step r scales the

updates. The quantity @Ri
@↵ml

(resp. @Ri
@�km

) can be interpreted as the product

between the error at the output (resp. hidden) layer and the activation of

unit zm (resp. xl). The stochastic version of the back-propagation algorithm

computes the network prediction for a training example in a forward pass.

Then in a backward pass uses the label of the example to compute the errors

at each unit [Rumelhart et al., 1986].

2.4.3 Convolutional Neural Networks

A notable architecture is a convolutional NN (CNN). It contains one or more

Convolutional Pooling layers followed by a feed forward layer and a regression

or logistic regression layer. Convolutional layers perform a convolution of the

input with 2D local receptive fields which can be written as

fk(x) = �(x ⇤Wk + b), k = 1, . . . K (2.5)

The dimension of the receptive fieldWk is typically small compared to that of

the input, resulting in a drastic reduction on the number of parameters. This

organization allows for distributed representations of simple input features,

such as strokes in an image or peaks in a signal track, that can occur anywhere

in the input. Furthermore, the representation is equivariant to translations,

that is, translated input features correspond to translated features in the

feature maps. A high number of receptive fields will create a rich hidden

representation of the input. Optionally, a convolutional layer is followed by

a max-pooling layer of dimensions p, q.

Subsequent layers are fully connected sigmoid feedforward layers like that

in Equation (2.1).

Sparse, convolutional layers and max-pooling are at the heart of the LeNet

family of models. While the exact details of the model will vary greatly, the

figure below shows a graphical depiction of a LeNet model.

27

The lower-layers are composed to alternating convolution and max-pooling

layers. The upper-layers however are fully-connected and correspond to a

traditional MLP (hidden layer + logistic regression). The input to the first

fully-connected layer is the set of all features maps at the layer below.

2.4.4 Modern ANNs and Representation learning

The richness of functions represented by a learning system depends on the

number of computational units or parameters included in the system. Sys-

tems that can represent many functions compactly (i.e., with a small number

of computational units) are clearly desirable; from a statistical point of view,

these systems will tend generalize better [James et al., 2013] and from a

computational point of view, they will tend to need a smaller number of

training examples to train. Theoretical results from circuit complexity [Al-

lender, 1996] and experimental results show that deeper (i.e., more hidden

layers) ANNs result in more compact systems. Specifically a k+1 layer net-

work might require an exponential number of units to be represented by a k

layer network (See Chapter 2 of [Bengio, 2009] for a detailed description of

these arguments).

While depth allows for more e�cient deep models, it also increases the dif-

ficulty to train them. Until recently, deep ANNs performed poorly because

their learned weights corresponded to local minima or plateaus [Glorot &

Bengio, 2010]. This meant that the gradient based optimization algorithms

tended to get stuck in these regions apparently because they were not pow-

erful enough to find better solutions and because the initial weights of the

network were far from regions with good solutions. Finding good initial

weights, pre-training the weights of the network, resulted in networks that

generalized much better. Pre-training consists in a layer-wise unsupervised

training of weights [Hinton et al., 2006; Bengio et al., 2007].

28

The success of pre-trained deep ANNs had repercussions in the whole field

of machine learning and artificial intelligence. One of the first steps in a

machine learning problem is finding a data transformation that highlights

as many relevant features as possible with minimal loss of information. The

success of many machine learning methods depends heavily on the input

data transformation. Therefore, systematical approaches to defining criteri-

ons for good transformations and designing systems for obtaining them are

very important. The goal of representation learning is to define criterions

for the quality of representations and to build good (under their criteria)

representations.

A typical representation learning system learns a sequence of data trans-

formations in an unsupervised way. Architecturally, representation learning

systems are deep stacks of layers of neural units, where the representation

given by a layer is the input of the next layer.

The objective of each transformation layer is to obtain representations that

are distributed, invariant, and with disentangled factors of variations (re-

viewed in [Y. Bengio, 2013]). Distributed representations are expressive in

that they require a small number of parameters to represent a large number

of input regions. This property implies that the components of distributed

representations can vary independently. On the contrary “one-hot” repre-

sentations require n components to distinguish n input regions (or clusters).

Invariance refers to representations that have reduced sensitivity with respect

to variations of the input that is irrelevant to the task at hand. Finally,

good representations require disentangling of sources of variation in the in-

put data. Obtaining representations with disentangled factors of variation

requires large amounts of un-labeled data, as typically, only a small number

of factors change between consecutive input examples.

29

Chapter 3

Feature extraction in deep

models

3.1 Introduction

Deep learning methods learn hierarchies of features in hidden layers, so that

features of a layer are learned from those of the layer below. Recent algorith-

mic developments in initialization and training [Hinton et al., 2006; Bengio

et al., 2007] have made it possible to train deep models of more than 2 or 3

layers – although deep convolutional networks could be trained before. Not

only have deep models been successful in a of machine learning tasks over

several areas of research (in vision, audio and natural language processing),

but the hidden representations learned by them have been a topic of active

study.

Insights on the nature of hidden representations in a deep model has been

used to improve the training algorithms, the initial conditions, and the ar-

chitecture of the models. An important related problem is to identify input

features that are representative of the knowledge of the trained network or

that exhibit the highest predictive power. This is an aspect of deep learn-

30

ing architectures that remains unexplored, partly because neural nets are

used mainly in image or object recognition, where important features can be

examined visually, and partly because of a strong interest in the predictive

power of the models. Currently, it is very common to display the weights

of the model, which convey little information on the relevant input features.

The purpose of this chapter is to explore this problem and suggest a strategy

for relevant input feature extraction.

We will write a k–layer ANN architecture as a series of compositions of

functions on input vector X

N (X) = fWk
� fWk�1

� . . . � fW1(X) (3.1)

where all functions are vector valued and defined on vector inputs. The

functions in Expression (3.1) are architecture specific, but they usually take

the form �(XTW), with � a squashing function like the sigmoid �(x) = 1/(1+

exp(�x)) called the activation function. In Expression (3.1), the input X is

mapped in a series of intermediate representations, whose components are

non-linear combinations of some (locally connected) or all (fully connected)

components of the previous representation. These dependencies are also

specified by the network architecture. The parameters {Wi}1ik, or weights,

can be learned from training data in both a supervised or an unsupervised

fashion.

As the parameters are learned, the intermediate representations retain only

the information needed for the task at hand and become easier to classify or

regress. This property makes the hidden representations interesting in their

own right [Bengio, 2009]. For example, it has been observed that networks

with large enough low levels are able to learn data transformations that

exhibit feature de-correlation or sparsification. Furthermore, Lee et al. [Lee

et al., 2009] proposed a deep model that learns representations from image

data in an unsupervised way.

31

3.2 Relevant feature extraction from ANNs

The problem of finding a parsimonious set of input features that maximizes

the probability of a given output class is related to understanding the activity

of arbitrary neurons in a deep NN. The latter problem has been previously

considered. A typical way of understanding what a unit in the first layer

of a ANN is computing, is to visualize the weights of the first layer. Such

visualizations give a qualitative idea of the input features that are relevant to

the examined unit. Because ANNs have been widely used on image data, this

technique provides images of weights that are easily interpretable. Published

weight visualizations show edges, or simple strokes.

In the case of multiple layers, high or low weights at the first layer can

be canceled or amplified by weight configurations in the subsequent layers.

A more general technique that is applicable to the case of multiple layers

is the activity maximization [Erhan et al., 2009]. The idea is to find an

input vector that would maximize the activity of an arbitrary neuron in the

network. For a 1-layered network the input that maximizes the activity of

neuron ai = f(
P

j wijxj + bi) is

max ai (3.2)

s.t., ||x||2 =
P

j x
2

j  1

The solution to this is

xj =
wijpP

k w
2

ik

In a multilayered ANN this is an optimization problem that can be ap-

proached, for example, with gradient ascent. In other words, start with a

random vector x and update it by moving in the direction of the gradient
@ai
@x

. This method has been reviewed by Erhan et al. [Erhan et al., 2009] and

successfully used by Le et al. [Le et al., 2011]. Solving this problem multiple

times might yield di↵erent solutions depending on the local maximum the

32

search ends in. This can be acceptable if the solutions are not too di↵erent.

Another problem is that, depending on the size of the network, this method

can be slow.

Another very simple way to show what the model has learned is to exam-

ine the best scoring examples. While looking at the best examples, might

give clues to generalizable principles, one cannot rely on this method as an

automatic feature extraction procedure. Another option is to compute the

average of correctly classified examples weighted by the posterior probability

assigned by the model. This method is more systematic, but can su↵er from

the small sample size and thus extract features that are in fact noise.

3.3 Convex optimization based method

The methods discussed in the previous section provide a qualitative measure

of the of what an arbitrary unit in a ANN computes. Here we propose an

approach that

(1) finds a deterministic set of features based on the weights of the model

(2) guaranties a quality and parsimoniousness of extracted features

(3) is e�cient

The ideas of this section have been implemented in a Python library called

dimer available at https://bitbucket.org/gertidenas/dimer. Further-

more, unless otherwise stated, we will consider the ANN in Equation (3.1)

with convex activation functions and no pooling operations. The ANN N
is trained on dataset D = {(X(i), Y (i)) : i = 1, . . . , n} where the outputs

are discrete values Y (i) 2 {1, . . . , L}. For ease of notation we will denote

f (i) = fWi � . . . � fW1 and f (0) the identity function. We will also drop the Wi

subscripts when they are clear from the context.

https://bitbucket.org/gertidenas/dimer

33

We start with

Definition 3.1. Define the l-state at the ith layer of N as

sl,i = f (i)
�
Avgj:Y (j)

=l(X
(j))
�

(3.3)

the ground at the ith layer of N as

gi = f (i)
�
Avgj(X

(j))
�

(3.4)

and the l-membership assigned by N as

ml = Avgj:Y (j)
=l

�
N (X(j))

�
(3.5)

Notice that both sl,0 and g
0

remain defined.

In other words the l-state is the representation of the average l-labeled input

according toN . The ground, on the other hand, is the representation of the a

vector that is the average of all of the training data. If D is standardized, then

the ground is zero. The l-membership vector is such that the lth component

of the l-membership vector ml is the average posterior probability assigned

by the N to the l-labeled input examples, we will use this value as a lower

bound on the quality of our extracted features.

Our approach is based on the following idea. In a one layer ANN N (X) =

f(X), for a fixed output label l, we would like an input vector Xl such that

min |Xl � g
0

| (3.6)

s.t.,|f(Xl)� g
1

| � |ml � g
1

|

There are two quantities of interest in this formulation. The quantity being

minimized is a measure of the deviation of the feature vector from the ground

at input – intuitively, the smaller this value the more parsimonious Xl. The

second quantity is the distance from the ground at output – intuitively we

34

want the probability P (N (Xl) = l) to be at least as large as that of the

l-membership. Notice the di↵erence between this approach and the activity

maximization. In our approach we condition in all the components of f(Xl).

Because (N (Xl) = l) is typically high, we introduce a slack parameter 0 
✏  min{gl,k, 1 � gl,k} which relaxes Inequality (3.6). Increasing ✏ typically

results in more parsimonious features Xl and lower class probability. In Figure

3.1 we train a 2-layer model on a binary classification problem and extract

features satisfying Expressions (3.6) for various values of ✏. Increasing ✏ will

lower the label probability required for Xl to achieve. If the e↵ect on the class

membership is negligible in practice, it is worth exploring di↵erent values of

✏.

Figure 3.1: Average feature distance from ground as a function of ✏. We extract

features satisfying Expressions (3.6) for various values of ✏ on a 2-layer FF ANN for

a binary classification problem. The plot reports the total L
1

distance of extracted

features from the ground divided by the size of the layer.

We can now prove the following

Lemma 3.2. Let N be a one layer NN. For each label l, there is a feature

35

vector Xl such that

|N (Xl)� g
1

| � |ml � g
1

|

Furthermore, |Xl � g
0

|  |sl,0 � g
0

|.

Proof. We prove by construction. The formulation

min |Xl � g
0

|

s.t. N (Xl)

8
>><

>>:

� sl,1 � ✏ if sl,1 > g
1

 sl,1 + ✏ if sl,1 < g
1

= sl,1 else

(3.7)

Xl free

has Xl = sl,0 as a feasible solution. Because the activation function is convex

^ and concave_ for values that are below and above the ground respectively

and by Jensen’s inequality ml  sl,1.

ConvPool layers are treated in principle identically to fully connected sig-

moid layers since convolution can be thought of as matrix multiplication.

However, di↵erences arise in the indexes of constraints and the inversion of

pooling operations. A ConvPool layer maps F input feature maps of size

M ⇥ N into K output feature maps. The dimensions of the output feature

maps is (M�L+1)⇥(N�H+1) if the weights have size H⇥L. A schematic

view is shown in Figure 3.2. Let, X
[F⇥M⇥N]

1 be the input to the i-th con-

volutional layer of the network with weights W
[K⇥F⇥L⇥H]

. The formulation

is
1This notation indicates an array X with dimensions F ⇥M ⇥N

36

Figure 3.2: A convolutional layer. Here, we show two layers of a CNN, containing

4 feature maps at layer (m� 1) and 2 feature maps (h0 and h1) at layer m. Pixels

(neuron outputs) in h0 and h1 (outlined as blue and red squares) are computed

from pixels of layer (m�1) which fall within their receptive field in the layer below

(shown as colored rectangles). Notice how the receptive field spans all four input

feature maps. The weights W 0 and W 1 of h1 and h2 are thus 3D weight tensors.

The leading dimension indexes the input feature maps, while the other two refer

to the pixel coordinates.

min|Xl � g
0

|

s.t. �(
X

f

X[f] ⇤Wk[f])

8
>><

>>:

� sl,1[k]� ✏ if sl,1 > �(sl,0 ⇤Wk)

 sl,1[k] + ✏ if sl,1 > �(sl,0 ⇤Wk) 8k
= cl[k]� ✏ else

(3.8)

Xl free

where the ⇤ operation is a 2d convolution in ”valid” mode and k = 1, . . . K.

The solution of (3.8) can be obtained as in Lemma 3.2, however existence

cannot be guarantied if the layer applied max-pooling to the activation. One

37

way to deal with pooling is to ”un-pool” the output of the layer. Let y
1

, . . . yp

be the output of the layer before max-pooling and y after max-pooling. With

the ”un-pooling” method we will use y/p instead of the corresponding compo-

nent of cl in formulation (3.8). This substitution has the potential to tighten

some of the constraints in (3.8) and thus break its feasibility.

In practice, there are two ways to try to find a solution. First, one can

relax the constraints by increasing ✏. Second, find a relaxed formulation

that minimizes the absolute sum of constraint violation. This functionality

is provided with some of the LP-solvers [Gurobi Optimization, 2013]. The

e↵ectiveness of these strategies depends on the pool size and the variance of

cl.

Before we show how to extend the result of Lemma 3.2 to a multilayer NN,

we show in Algorithm 1 how to obtain it. At the end of the loop Cl is the

Algorithm 1 Feature extraction from a stack of layers.
Require: N (X) = fWk

� fWk�1
� . . . fW1(X)

Require: l one of class labels {1, . . . , L}
1: Cl N (E[Xl])� ✏

2: for i k, . . . , 1 do

3: f fWi � . . . � fW1

4: g fWi�1 � . . . � fW1

5: Find vectors Xl s. t., |fWi(Xl)� f(E[X])| � |Cl � f(E[X])|
6: Find X⇤

l minXl
|Xl � g(E[X])|

7: Cl X⇤
l

8: end for

9: return Cl

vector of features in the original input space. The minimization in step 6

reduces the domain of the extracted features at a layer, so that they can

be used as targets for the layer below. At the same time it determines the

38

most parsimonious features. We now prove that the features extracted in

Algorithm 1 have high class probability in the following

Lemma 3.3. Given a multilayer ANN N and a label l, there is a feature

vector Xl,i, i = 1, . . . k such that

|fWk
� . . . � fWi(Xl,i)� gk| � |ml � gk|

Furthermore, |Xl,i � gi�1

|  |sl,i�1

� gi�1

|.

Proof. Consider the following formulation for the i-the layer of N .

min |Xl,i � gi|

s.t. fWk
� . . . � fWi(Xl,i)

8
>><

>>:

� Xl,i+1

if sl,i > gi

 Xl,i+1

if sl,i < gi

= Xl,i+1

else

(3.9)

Xl free

and set

Xl,k+1

= sk,l if sk,l � gk,l

Xl,k+1

= sk,l if sk,l < gk,l (3.10)

by Lemma 3.2 the vector sl,i�1

is a feasible solution to the formulation of the

i-th layer for all i = 1, . . . , k satisfying the third case of (3.9). Adding the

minimization requirement, will produce a solution Xi,l that is not further from

gi�1

. As a result the constraints (3.9) for the i� 1th layer can only be more

relaxed. Thus, the solution space in the layers below is never reduced.

Theorem 3.4. Given a multilayer ANN N with no pooling operations trained

over a dataset D for a classification problem. Then for each output label l,

there is an input Xl to N such that

P (N (Xl) = l|Xl;N) � Avgj:Y (j)
=l(P (N (X(j)) = l|X(j);N))

|Xl � g
0

|  |sl,0 � g
0

|

39

Proof. Trivially Xl,0 from Lemma 3.3.

If the extracted features Xl,0 are informative, then we expect them to cor-

relate with the information gain from input features. Following [Han &

Kamber, 2001], the information gain of an input feature A is

Gain(A) = I(sI , sR)� E(A) (3.11)

where

I(sI , sR) = �sI/s log
2

(sI/s)� sR/s log
2

(sR/s) (3.12)

and

E(A) =
sI0 + sR0

s
I(sI0, sR0

) +
sI1 + sR1

s
I(sI1, sR1

) (3.13)

where sI (resp. sR) is the count of induced (resp. repressed) examples and

where sIi (resp. sRi) is the count of induced (resp. repressed) examples with

A = i. The information gain in (3.11) is a measure of relevance of feature A

in discriminating di↵erential expression.

We considered a dataset of the 95 most di↵erentially expressed genes during

G1E di↵erentiation (for details on the dataset see Chapter 4). Each training

example is a 7⇥ 500 real matrix representing a 20Kb (we binned the signal

into 40bp bins) TSS-centered neighborhood of TFos for 7 TFs. We trained

3 layer ConvNet with 10 convolutional kernels and a hidden layer of size 200

on this dataset. The score of the extracted features shows a strong alignment

with the information content (See Figure 3.3).

3.4 Conclusion

ANNs are notorious for being hard to tune and train [Montavon et al., 2012]

and finding the right parameters and meta-parameters requires a lot of intu-

ition and tricks. Furthermore, the layer wise mapping of non-linear combi-

nations of inputs make it hard to interpret the role of input features on the

40

Figure 3.3: The plot shows the information gain as defined in Expression (3.11)

and the score of the extracted features XI0 and XR0

. The data is sorted by in-

creasing induced score, repressed score, and information gain.

output. Often, ANNs are used as black boxes for prediction. We presented

a systematic method for extracting knowledge from a deep ANNs back in

the input space, by using the weights of the trained model to infer layer-wise

parsimonious input features with guarantied margin on the targets.

41

Chapter 4

Deep models for gene

regulation

4.1 Introduction

Thus far, we have described deep ANNs and their use in supervised and un-

supervised modeling. In the previous Chapter, we proposed an algorithm for

extracting features based on their importance to predicting samples. In this

Chapter, we use ANNs and our feature extraction method for modeling and

interpreting functional genomics data. First, we consider classifying a set of

di↵erentially expressed genes during G1E di↵erentiation and uncover a num-

ber of global regulatory mechanisms and interplays between the participating

TFs supported by recent empirical studies. Next, we perform quantitative

gene expression prediction from 41 ChIP-Seq assays targeting TF binding

locations in in human K562 cells. These cases are a proof of concept for the

use of deep ANNs as a supervised approach in represent biological knowledge

in an interpretable way.

The modeling framework we present here relies on sequence census methods

described in Section 2.1. Sequence census methods based on Chromatin Im-

42

munoprecipitation (IP) followed by high throughput sequencing (ChIP-Seq)

are now available for multiple cell types, TFs, and other epigenetic features.

Studies that integrate multiple types of IP based assays have had consider-

able success in the identification of regulatory elements and cis-regulatory

modules [Heintzman et al., 2007; Pique-Regi et al., 2011], prediction of gene

expression [C. Cheng et al., 2012], and a variety of interdependencies between

TFs and histone histone modification profiles [Yu et al., 2008] or DnaseI

Hypersensitive Sites and Gene expression [Thurman et al., 2012]. Compu-

tational analysis of TF occupied segments (TFos) identified by ChIP-Seq

methods have also improved upon the performance of approaches based on

sequence (including motifs and evolutionary conservation) data only (Re-

viewed in [Hardison & Taylor, 2012]).

Typical computational approaches have been based on Hidden Markov

Models [Taylor et al., 2006], Bayesian Networks [Yu et al., 2008], and Ran-

dom Forests [C. Cheng et al., 2012]. A paradigm that has been foreign to

genomics studies is based on deep ANNs. Deep ANNs have been almost im-

possible to train for a long time. However, recent developments in the field

and advances in computational power have made ANNs the best performing

models in a number of machine learning competitions [Y. Bengio, 2013].

We have implemented a framework, dimer, that allows for functional ge-

nomics data aggregation, model design and model interpretation. dimer

provides an environment for the definition and training of deep models. It

implements typical configurations of supervised and unsupervised architec-

tures and allows for the design of custom ones. dimer manages datasets,

model parameters, and training monitors. dimer can also perform model

introspection. Documentation and source code is available at https://

bitbucket.org/gertidenas/dimer.

In a typical workflow, dimer accepts tracks of real signal or discrete features

from a number of genome regions. Tracks span genome regions of lengths

https://bitbucket.org/gertidenas/dimer
https://bitbucket.org/gertidenas/dimer

43

that can vary from several Kb to several Mb. For example, they can be

transcription start site-centered neighborhoods or a sliding window along

the genome. Labels or quantitative values can be assigned to each region in

the case of a supervised problem. dimer will preserve topological information

on the dataset – e.g. the organization of ChIP-Seq signal in tracks – which

can be very informative. A generic training dataset in dimer is a set of input-

label pairs D = {(X(i), Y (i)), i = 1, . . . , N}. The i-th input example X(i) is

a two dimensional matrix where value X
(i)
jk represents the value of the j-th

input track, at the k-th position with respect to a genomic mark (Figure 4.1).

Given a model architecture, dimer can be used to pre-train its layers under

some cost function and then fine tune the weights with supervised gradient

descent.

44

.

.

.

.

.

.

e(Wi.x+bi)

P
j e(Wj.x+bi)

Training
Feature
Extraction

Prediction

(A)

(B)

(C)

Figure 4.1: A typical workflow using dimer for modeling gene regulation: (A) TF

occupancy sites on a TSS-centered neighborhood. The vertical black line indicates

the TSS and the dashed rectangle a 10Kb neighborhood. The corresponding input

example, in this case is a matrix Xjk with 1  j  6 indicating the index of the

track, and �5Kb  k  5Kb indicating the position with respect to the TSS. As

a training example, a label or quantitative value Y could be also associated. (B)

Schematic of a fully connected feed-forward NN with a single layer. The input X

is shown in orange units. The output layer uses the softmax function to produce a

unit norm vector whose dimension equals the number of output classes. (C) The

output of the final layer of the NN interpreted as a class probability. Data from

TF occupied segments are fed to the NN in the training phase (Training arrow).

A trained model, can be used to identify relevant input features back in the input

space (Feature Extraction arrow). The model can also be used to predict the

expression of a gene based on its TF occupancy profile (Prediction arrow).

45

4.2 Di↵erential gene expression modeling

4.2.1 The G1E biological model and data

The G1E biological model allows for the controlled di↵erentiation of pluripo-

tent GATA1� erythroid cells (G1E). G1E cells are derived from mouse em-

bryonic stem cells and can be induced to further di↵erentiation into the

G1E-ER4 sub-line [Weiss et al., 1997]. G1E-ER4 cells resemble normal ery-

throid progenitor cells, with the exception of estrogen activated GATA1 re-

ceptor (GATA1-ER). This receptor allows control of GATA1-ER expression

by treating G1E-ER4 cells with estradiol (E2), which in turn will un pause

di↵erentiation (Figure 4.2). Resemblance of G1E sub-lines (G1E-ER4 and

G1E-ER4+E2 cells) with normal erythroid progenitors and di↵erentiating

erythroblasts respectively makes the G1E-ER4 di↵erentiation a very good

model for normal protheoblast di↵erentiation in mouse [Wu et al., 2011].

Because Erythroid di↵erentiation depends heavily on the GATA1 TF [Weiss

et al., 1994], GATA1-ER release on G1E-ER cells is an important event that

causes changes on the TF binding locations and the chromatin structure as

the cell di↵erentiates into G1-ER4+E2 (See Figure 4.3). Whether the former

induce the latter or vice-versa is still an open question, however empirical

studies of the G1E model report that chromatin state profiles and acces-

sibility remains largely unchanged during GATA1-induced erythroid di↵er-

entiation. This suggests a scenario where the chromatin structure of G1E

cells is established prior to G1E cell commitment and subsequent changes

are limited to TF binding locations [Wu et al., 2011].

On the above assumption, we consider, in addition to GATA1, the ChIP-

Seq profiles of three other important TFs in the G1E model: GATA2, TAL1,

and CTCF. The GATA2 TF, a protein similar to GATA1 that recognizes

similar motifs (WGATAR) and plays an important role as a regulator of the

di↵erentiation process [Yamamoto et al., 1990]. The TAL1 protein which

46

Figure 4.2: The G1E biological model. The diagram shows the di↵erentiation

process from GATA1 null Embryonic Stem Cells (GATA1� ESC). GATA1� ESC

are induced to di↵erentiate. GATA1 is restored on G1E cells and di↵erentiation

continues to G1E-ER4-E2. The G1E and G1E-ER4-E2 time points (0h and 30h

respectively) are shows by the black arrows. We use ChIP-Seq data targeting a

total of four TFs in these two time points as the input to our model. Figure

adopted with permission from Dr. Ross Hardison.

47

is known to form multi protein complexes with both GATA1 and GATA2

[Wadman et al., 1997]. The CTCF protein, a highly conserved zinc finger

protein implicated in diverse regulatory functions, including transcriptional

activation/repression, insulation, imprinting, and X chromosome inactivation

[Phillips & Corces, 2009].

Figure 4.3: A snapshot from the PSU genome browser on a neighborhood centered

at the Zfpm1 gene, which is induced during G1E di↵erentiation. The gene track

shows the gene position and name, the DnaseSeq track shows DNA accessibility,

whether the rest of the tracks show raw occupancy signal of the region for 4 proteins

in G1E and G1E-ER4-E2 (light and dark magenta respectively). Higher signal

represents higher occupancy. This view shows how di↵erentiation is accompanied

by TAL1 reduction at particular sites and GATA1 enrichment in intronic regions.

We build a 3-layer ConvNet where the bottom layer is a convolution layer

with several banks (Figure 4.5 shows two banks as Wk) of 2 dimensional

layers of connections. Follow, a fully connected feed forward layer and a

logistic regression layer with two outputs representing the state of the gene:

Induced or Repressed. In this model architecture:

(i) with kernels spanning all the input tracks across a small genomic region,

co-localized features across the all input tracks can be extracted

(ii) each bank will highlight simple features, such as combinations of peaks,

48

that can possibly occur along the entire input track

(ii) there is substantial parameter sharing in the convolutional layers. The

number of parameters of a convolutional layer is the product of the

number of kernels and the receptive field shape.

We train by minimizing the cost function

L(✓ = {W, b};D) =
|D|X

i=0

log(P (Y = y(i)|x(i);D)) + �
1

||✓||
1

+ �
2

||✓||
2

(4.1)

computed over the training set D. The validation contains 20% of the exam-

ples, which are randomly selected prior to each training and never showed to

the model. We train the model for 10 epochs (an epoch is a sweep through all

of the training examples) stop training if the validation cost would increase

in all next 10 epochs. The model is trained on 600 (7 ⇥ 500) TSS-centered

neighborhood profiles and achieves 70% accuracy on 5-fold cross validation.

The parameters of the model are the weights of the layers, ✓, and a variable

learning rate ⇢i indexed by the training epoch. We optimize the weights by

batched stochastic gradient descent (batch size of 20) and update the learning

rate at the nth epoch to ⇢n = ⇢
0

⇥
p
(n� 1)/n if the cost on the training

set increased by 1%. We choose ⇢
0

= 0.2, but the results are robust to this

choice as the learning rate gets quickly adjusted.

The meta-parameters are: �
1

,�
2

, and the size of the layers. Using the

above training strategy, we searched heuristically the meta-parameter space

for training neural nets. First, we determined ranges of number of kernels in

the convolutional layer and the size of the top layer by exploring the grid

nr. kernels = {2, . . . , 80}⇥top size = {20, 40, 80, 160}⇥rfield size = {(7, 21)}

we noticed that both the un-regularized cost in Expression (4.1) and the

miss-classification rate increases in models with more than 20 kernels (See

Figure 4.4), suggesting that those models are likely to over-fit the data.

49

Figure 4.4: We trained a 3-layer convolutional network on our full tr dataset 20

for each choice of the number of kernels (right column) and the top layer size

(left column). We then reported miss-classification rates (top row) and the cross-

entropy (bottom row) for the validation set at the last training epoch.

4.2.2 Feature extraction

Following the techniques presented in the previous Chapter, we compute the

most parsimonious input to the network that produces a given gene class

with a given probability. We further process features quantitatively and

qualitatively. For each extracted feature we consider its pair of score values

with respect to the induced and repressed gene classes. The class of the

feature, given the pair of scores is shown in Table 4.1 and the score of the

feature is the average of the magnitudes in all cases.

To interpret the extracted features, we perform association tests between

features of di↵erent tracks. Given a pair of query and target tracks of ex-

tracted features we ask how are the query features positioned with respect to

the target features by evaluating the expected and observed relative distance

between the two (Figure 4.6). Following Favorov et al. [Favorov et al., 2012],

let di be the relative distance of a query feature from neighboring target

50

Figure 4.5: Schematic view of a 3-layer CNN. The bottom (top in figure) layer is a

convolution layer with several banks (parametrized by 2 kernels {W k, bk}, in figure)

with 2D layers of neurons. Each output value of the convolutional layer depends on

a neighborhood of input from all the tracks centered at the corresponding position.

Follow, a fully connected sigmoid feed forward layer parametrized by {U, bl} and a

logistic regression layer parametrized by {V, b} with two outputs representing the

state of the gene: Induced or Repressed.

51

Score

induced repressed classification

positive negative (zero) E strong (weak)

negative positive (zero) R strong (weak)

positive positive (negative) TFos strong (weak)

zero zero na

Table 4.1: We classify extracted features based on their score for induced and repressed

genes. Those that exhibit enrichment on induced (resp. repressed) genes and feature

depletion for repressed (resp. induced) genes are strong features associated to enhancing

(resp. repressive) function. Those that show enrichment or depletion on one class of genes,

but show no significant depletion (resp. enrichment) on the other class are weak.

features as shown in the top-right panel of Figure 4.6. Then, the measure

S =

Z
0.5

0

|ECDF (d)� ECDFideal(d)|dd (4.2)

where ECDFideal(d) is the cumulative distribution of distances in the case

of perfect independence of query and target features, is a correlation (up to

normalization) measure.

We extract a parsimonious set of strong 56 repressor and strong 391 en-

hancer input features, and another 3053 features less directly associated to

di↵erential gene expression (Table 4.2). We map these features to the genome

as TF-specific tracks of scored regions relative to the TSS (Figure 4.8). Im-

portantly, the function attributed to these features is associated to the whole

set of genes.

Finally, association analysis between all pairs of tracks shows a number of

patterns in line with results in the literature. We summarize these as follows

• GATA1 and TAL1-ER4 are by far the most important players on di↵er-

ential gene up regulation during erythroblast di↵erentiation, account-

52

Figure 4.6: Distribution of query features with respect to the target features

[Favorov et al., 2012]. The top figures show several types of distribution. The

bottom plots (left to right) show the empirical cumulative distribution of query

features positively and negatively associated with target features in black. The

blue line indicates the ecdf. of non associated features. Figure adopted from the

GenometriCorr documentation.

Figure 4.7: Correlation values for the relative distance statistic described by

Equation (4.2) color-coded in a matrix. Notice that the matrix is not esymmetric

specially in the case of a di↵erent number of features between query and target.

53

Figure 4.8: Feature extraction on the network shown in 4.5. The method extracts

features top-down starting from a given gene class (Repressed in the Figure). The

input layer is shown on the top with the tracks concatenated. The convolutional

layer maps the input into 10 feature maps which are further mapped to a hidden

state (bottom track in figure). An input representation shows in red the average

signal for Repressed genes and in black the extracted features. It can be seen

(blown up region on the right) that extracted features are either a subset or a

partial match of the features obtained by the average signal.

54

E- E+ na R- R+

CTCF ER4 64 0 175 235 26

CTCF G1E 93 1 355 50 1

GATA1 ER4 301 82 105 12 0

GATA2 ER4 4 0 471 25 0

GATA2 G1E 16 4 453 26 1

TAL1 ER4 96 304 100 0 0

TAL1 G1E 28 0 341 103 28

Table 4.2: Catalog of feature coverage (measured in 40bp bins) associated to di↵erential

gene expression during erythroblastoid di↵erentiation. Feature classes are defined above,

while ’na’ stands for ’no activity’

ing for 38.57% and 40.28% of the enhancer signal on both cell types for

induced genes respectively.

• We notice that repression associated features are dominated by CTCF

signal in ER4 (CTCF R+ features account for 100% in ER4).

• GATA1 enhancer features show significant overlap with TAL1 ER4 fea-

tures (Scaled absloute distance tests p-val < 0.03 and < 0.03 for TAL1

over GATA1 and viceversa respectively) suggesting co-operation of the

two factors for gene induction during di↵erentiation [Y. Cheng et al.,

2009; Wu et al., 2011]. See also Figure 4.7.

• The concentration of strong GATA1 enhancer features proximal to the

TSS, shows a 28.05% increase with respect to global average (from 8.2

features / Kb to 10.5 features / Kb), suggesting a preferential enhancing

activity of GATA1 proximal to the TSS.

• We were able to discover that features extracted from the model sup-

port the GATA switch mechanism by which, a global replacement of

55

GATA2 by GATA1 takes place during di↵erentiation [Wu et al., 2011]

(Scaled absolute distance test p-val < 0.03). See also Figure 4.7.

The model presented here showed that ANNs can be successfully used to

model and interpret functional genomics data in a classification setting. In

the next section we adopt an almost identical ANN for regression of gene

expression levels.

4.3 Gene expression prediction from TF oc-

cupied segments

4.3.1 Data

The human ENCODE project has performed ChIP-Seq experiments target-

ing a total of 400 TFs across a total of 120 cell lines. These measurements

are not distributed uniformly across cell lines, with the best coverage being

in Tier 1 cell types. We choose in our experiment GM12878 lymphoblastoid

cells and all 30 TFos measurements available for this cell type.

We use raw TFos as predictors of gene expression. Of the three (RNA-Seq,

RNA-PET, and CAGE) technologies used by ENCODE to measure gene

expression, we choose CAGE as it seems to show better correlation with

TFos [C. Cheng et al., 2012; ENCODE Project Consortium et al., 2012]. For

the same reasons we choose whole cell transcripts from the PolyA+ RNA

extraction protocol. We sample the TFos peak signal around a 2Kb TSS

centered window and average it across 100 bp bins for a randomly chosen

sample of 10000 GENCODE V7 annotated TSSs. Thus, similarly to the G1E

data (Section 4.2.1) each input example i is a 2-dimensional matrix where

Xjk represents the activity (i.e. peak enrichment) of protein j, k bins away

from the TSS of gene i.

56

4.3.2 Regression model

The regression model is similar to the one for di↵erential gene expression

classification in the G1E model in Figure 4.5. In this model the top layer is

a regression layer followed by a sigmoid nonlinearity, but the cost function

and the training procedure remains the same. Minor changes to the model

in Figure 4.5 to adapt it to a quite di↵erent problem show the versatility of

ANNs. We find that a model with a single Convolutional Pool layer performs

best.

To observe the e↵ectiveness of TFos as a distance from the TSS, we impose

the Convolutional Pool layer filters to cover the whole TSS-centered window.

Not surprisingly, the trained filters of the top layer show a high value for sig-

nal 1Kb upstream of the TSS. Importantly, we observe a high weight magni-

tude at +2Kb and +3Kb suggesting, contrary to previous studies [C. Cheng

et al., 2012], that TFos in these locations are helpful in predicting expression

(Figure 4.9). The model was able to explain 66% of the variability in the

data. and the correlation between the predicted and actual outputs is 82%

(Figure 4.10).

4.4 Conclusion

In light of a number of algorithmic breakthroughs, deep neural networks and

other classes of deep models have taken the lead in a number of machine

learning competitions and have found wide use in predictive settings and in

tasks that are of special interest to artificial intelligence. However, their use in

the genomics community has been limited. We propose dimer, a framework

for the design and analysis of deep neural networks. The dimer framework

also implements a method for model introspection.

As a proof of concept, we analyzed the e↵ect of TF binding in di↵erential

57

Figure 4.9: The input is convoluted with the weights of the kernels in the first

layer. Since, kernels are sliced across the tracks, there is a one to one correspon-

dence between weights in a column and the signal at a fixed distance from the

TSS. The top plot shows the average kernel weight in the first layer. The bottom

plot is the marginal sum of the values of the weights in the above plot. A bar is

the sum of weights of a column. Nonzero values at distal sites, suggest that the

model finds predictive value in the signal at those sites.

58

Figure 4.10: Accuracy of the 3-layer CNN model in predicting expression levels as

measured by CAGE whole cell PolyA+ reads. We train and test on 10000 random

GENCODE V7 annotated TSSs. Each point in the scatterplot is a gene whose

coordinates represent the predicted and actual expression levels. The histograms

show the marginal distribution of values.

59

gene expression in the G1E model. We showed how extraction of knowledge

from the trained model can help identify important patterns in gene regula-

tion. Then, we used TFos data from the human ENCODE to quantitatively

predict gene expression in the Gm12878 cell line and show that our model

achieves excellent prediction accuracy.

We believe that our modeling pipeline and the feature interpretation tech-

nique will be a useful resource for the modeling and explanation of biological

processes that involve high dimensional data.

60

Chapter 5

Unsupervised modeling of

functional genomics data

5.1 Introduction

The availability of complementary functional genomics assays described in

Section 2.1 has made it possible to draw the most complete map of the

genome to date. This map includes information on many aspects of the

nature and function of the DNA, including DNA-protein interactions, chro-

matin conformation, histone modification, gene expression, and evolutionary

conservation. This abundance of data calls for systematic data synthesis

methods, for example tagging genome regions according to function or other

epigenetic properties – e.g., enhancer, exon, or accessible regions.

In the previous chapter we described supervised methods that model the

function of putative CRE or other genome elements. While insightful, these

results are limited in scope by the particular datasets they analyze. In the

case of IP based methods, it can be argued that the results are applicable to

the particular cell condition, TFs considered, and the cell type in which the

data were collected. A class of machine learning methods, called unsuper-

61

vised, do not require previous annotation. Instead, these methods search the

parameter space for a configuration that best explains the data under some

cost or energy function. Thus, these methods can potentially find patterns

of a more global nature.

There have a number of attempts to apply unsupervised methods to mul-

tiple functional genomics datasets. Filion et al. [Filion et al., 2010], for

example, applied PCA to identify a set of five chromatin domains with spe-

cific functional properties in Drosophila.

A group of methods use sequential state models with a carefully designed

state structure and variable dependencies. At the training phase, these mod-

els scan part of the genome to learn transition and emission probabilities

from data tracks. After training, they can assign labels with probabilities

the whole genome sequence. One such model, Segway [Ho↵man et al., 2012],

uses a Dynamic Bayesian network, a form of a Probabilistic Graphical Model

[Bilmes, 2010], to detect common patterns of chromatin modification and

TFos occurring on the genome. Based on the patterns it has seen during

training, the model can label an arbitrary genome location. These can be vi-

sualized in the form of non-overlapping segments that span the whole genome.

Segway [Ho↵man et al., 2012], was successfully used to identify patterns as-

sociated with transcription start sites, gene ends, enhancers, regions bound

by transcriptional regulator CTCF and repressed regions.

Other similar methods based on Hidden Markov Models have been pro-

posed. ChromHMM [Ernst & Kellis, 2012] and HMMSeg [Hon et al., 2008]

both use HMMs to model commonly occurring Histone Marks. ChromHMM

was used in the mouse ENCODE project pipeline whether HMMSeg has

been used to assign chromatin signatures to existing and novel promoter and

enhancer regions in HeLa cells.

Sequential state models, can handle multiple tracks (e.g., chromatin mod-

ification and TFos tracks), but they have a number of limitations. First,

62

these methods have a ”shallow” architecture which is not very e�cient with

respect to deep architectures, in learning complex representations. Further-

more, they model conditional dependence between adjacent sites (relying on

the Markov assumption) but, assume all tracks are conditionally independent

given a single latent state at a site. There is empirical evidence on the ben-

efit of extending traditional DBNs with hidden layers in phone recognition

[Gunawardana et al., 2005; Andrew & Bilmes, 2012].

We employ stacks of denoising auto encoders (dAE) [Vincent et al., 2008]

as models for unsupervised interpretation of multiple genome tracks. We

have already described the benefits and properties of hidden representations

in deep models (See Section 2.4.4). The goal is to use these representation

as summarizing labels of the input.

A dAE is a pair of conjugate vectorial mappings parametrized by the same

weight matrix W
[q⇥p]

h : Rp ! Rq

X̃ ! H = �(WX̃)

h0 : Rq ! Rp (5.1)

H ! Z = �(W TH)

where X̃ is a noisy version of the input X and W are the weights of the

layer. The vector H is called the code and is a representation of the input

that is forced to keep as much information as possible in order to reconstruct

X. The weights of a dAE are initialized at small random values, and trained

with gradient descent over a cost function of the type

C(W) = |Z �X|
1

+ �
1

|W |
1

+ �
2

|W |
2

(5.2)

where the |a|
1

=
P

i |ai| and |a|
2

=
P

i a
2

i . Figure 5.1(A) shows a dAE

schematic with a hidden layer of size 5. The heat-maps give a visual repre-

sentation of 31 functional genomic tracks over 100 randomly chosen 100bp

63

genome sites in human chromosome 21, their representation, and their re-

construction.

A dAE is similar to the PCA, but because the functions h, h0 are non-

linear, the dAE can in principle model a richer set of inputs. One can,

however, achieve a more complex model by stacking dAEs so that each layer

will produce a representation of the output of the layer below – the first layer

will produce a representation of the raw input. The representation of the top

layer can be interpreted as a combination of labels (one label per component)

or as a meta-label of input patterns. As a result the representation allows

for labels to a site that are described by any combination of these patterns.

A stack of dAEs is trained layer-wise bottom-up. Figure 5.1(B) shows the

training and validation cost in Expression (5.2) as a function of training

epochs.

We implemented in dimer functionality for the design and analysis of deep

unsupervised models. Currently dimer supports fully connected architec-

tures with Binomial input corruption and sigmoid non-linearities. It also

implements various training strategies and data and model parameter man-

agement.

5.2 Deep representations of the genome

5.2.1 Experimental setting

Functional genomic tracks have a sequential nature and it is thus important,

at any position, to take into consideration the data distribution in a neigh-

borhood of that position. DBN-based models achieve this naturally. We

instead define as input to the model a small neighborhood centered in that

position. We have experimented with windows ranging from 5 bp to 100 bp.

For training, we simply sample the whole input space (the genome or the

64

(A) (B)

Figure 5.1: (A) Schematic of a dAE [Vincent et al., 2008]. A dAE is a pair of

conjugate functions h, h that, given input X compute a hidden representation

(H) and an input reconstruction (Z) respectively. Typically the dimension of H is

smaller than that of X. The training criterion favors representations that produce

accurate reconstructions (Z ⇡ X). To improve generalization, the model is in fact

shown a noisy version of the input (hence the tilde). The pair of heat-maps show

100 input examples and their reconstructions from a 1-layer dAE with a hidden

state of size 5. The hidden state is shown in the bottom heat-map. A column of

the hidden state heat-map recapitulates a row of the input heat-map. (B) Train

and validation cost as a function of training epochs over the same dataset. The

y-axis shows the normalized cost in Expression (5.2) C(W)/|W |
1

. The spikes show

the cost function of each layer before the first epoch when the layer has random

weights. In this example, the input is of size 310 and the hidden representations

of size 201, 116, 31 respectively.

65

chromosome) and feed the the samples in a random order to the model. The

more signal configurations we capture with the training data, the better.

During the identification phase we slide a fixed size window spanning all the

tracks along the genome. Each input sample centered at a certain position

will be recapitulated by the representation of the top layer of the dAE stack.

Each component of this representation can be thought as a (discrete) label

and the whole representation as a meta-label for that position (See Figure

5.2). This interpretation has the advantage of being dense so that a meta-

label of size l with k-level discretization can represent up to kl states.

Figure 5.2: Higher levels of a stack of dAE can learn to represent higher level fea-

tures by using hidden representations of layers below as input. Imposing decreasing

output sizes for each label, forces hidden representations to be informative. The

output of the last layer can be interpreted as a meta-label for the corresponding

input. We use fixed-length windows over all input tracks as input to the dAE. The

resulting meta-label, is thus a small dimensional representation of the input.

Fully connected dAEs lack translation equivariance – translated inputs do

not correspond to translated outputs – posing a challenge in the interpre-

tation of meta-labels (See Figure 5.3). We considered substituting fully

connected layers of a dAE with convolutional ones, which are translation

66

equivariant. However, this approach would require a receptive field to span,

in principle, the whole input range making it hard to cope with missing data.

A sliding window dAE can instead easily skip over missing data.

Figure 5.3: Labeling of a genome region in chromosome 21 using a 4-layer dAE

with meta-label size of 8 trained over genes (shown in blue). We expect perfect

fit of meta-labels since the model has enough capacity to reproduce the input

without loss of information. However, as the sliding window approaches the gene,

the output signal fluctuates.

5.2.2 Data and Model

We consider 31 assays over 9 Histone Modifications, 2 DNaseI Hypersensitive

Sites, and 20 TFs (See Table 5.1). While more tracks are now available, we

chose this dataset because it had been previously used to generate segmen-

tations [Ho↵man et al., 2012].

We train each of the layers of the model, starting from the bottom. We

apply 20% noise (i.e., we set the value of an input example to zero with prob-

ability 0.2) to each training example before showing it to the model. We use

an early stopping strategy with memory on the validation cost. We perform

a grid search over the parameter space W ⇥ B ⇥ L (window size, binning

size, model depth) and choose parameters with the smallest reconstruction

error over the training set .

The translation equivariance problem (Figure 5.3) makes it di�cult to in-

terpret the raw meta-labels. To deal with this problem, we trained a dAE

67

Track type Features targeted

TFs cFos, cJun, cMyc (Iyer), cMyc (Snyder), CTCF (Bernstein),

CTCF (Iyer), GABP, GATA1, JunD, Max, NFE2,

NRSF, Pol2 8WG16 (Myers), Pol2 8WG16 (Snyder),

Pol2 CTD4H8, Rad21, SRF, XRCC4, ZNF263

Open chromatin DNaseI (Crawford), DNaseI (Stam), FAIRE

HM H3K27ac, H3K27me3, H3K36me3, H3K4me1,

H3K4me2, H3K4me3, H3K9ac, H3K9me1, H4K20me1

Table 5.1: Tracks for the Segway dataset. Names in parenthesis indicate the

laboratories that produced the data.

and fed the output to Segway. Then, we compared the results with the out-

put of a Segway run on the raw data. Figure 5.4 shows one example of a dAE

+ Segway versus a simple Segway runs over the same dataset. The dAE +

Segway system scans input examples of length 100bp binned in bins of size

10bp and has a top layer output size of 31 – these numbers correspond to

a 10-fold dimensionality reduction by the dAE. Segway is fed with both the

raw 31 track input and the dAE output with all parameters unchanged at

their default value.

5.3 Transcription factor composition analysis

of timing replication domains

5.3.1 Introduction

The replication-timing program maintains a temporal order of DNA repli-

cation in Eukaryotes. The whole genome can be partitioned into regions

of uniform replication timing (early or late) bounded by timing transition

68

Figure 5.4: We considered 31 ENCODE signal tracks that measured binding of 15

di↵erent TFs, 9 di↵erent histone modifications, and regions of open chromatin on

the K562 cell line. We trained a 3-layer dAE in unsupervised mode on a small (1%)

genomic region of chromosome 21 and then labeled the whole chromosome allowing

for 31 simultaneous states per 200 bp window binned in 10bp bins. The hidden

representation of the top layer resulted in a 10-fold reduction of the dimension of

input. Heat-maps above show label enrichment for input tracks for Segway alone

and dAE+Segway respectively.

69

regions (TTR). During development changes in replication timing occur in

400-800Kb units called replication domains (RD) [Hiratani & Gilbert, 2010].

So, there are multiple uniformly replicating regions separated by TTRs within

a domain, but the boundary between two RDs is not necessarily marked by

a TTR. RDs are an important topological unit for the genome as they are

preserved across cell types and species and seem to confine long-range e↵ects

of genome rearrangement [Pope et al., n.d.].

Recently, studies of the 3D conformation of the chromatin have discovered

other domains induced by chromatin organization (1) topologically associat-

ing domains (TADs), which are genomic regions that align with H3K27 and

H3K9 blocks and (2) lamina-associated domains (LADs), and coordinately

regulated gene clusters.

It is thus, of interest to find a uniform domain based chromatin struc-

ture that explains the relationship between TADs, LADs and RDs. Recent

studies have attempted to find such a structure using data from the Human

and Mouse ENCODE projects. One aspect of this attempt lead by Pope

et al. [Pope et al., n.d.] investigated the extent to which transcription fac-

tor binding could be used to distinguish hypothetical regulatory classes of

RDs. By combining available ENCODE data for seven factors (Ctcf, Hcfc1,

MafK, P300, PolII, Zc3h11a, and Znf384), we assigned data driven labels

for each mESC TAD using a stack of six denoising autoencoders [Vincent

et al., 2008], which is a powerful data reduction technique for unsupervised

machine learning [Y. Bengio, 2013]. We trained the stack in an unsupervised

fashion on 200 random samples for each of the six layers and obtained two

labels or groups of TADs, termed A0 and B0.

70

5.3.2 Data and Model

Raw data from genome-wide ChIP-Seq in vivo detection of TF binding were

processed in 200bp bins over a 1Mb window around the center of each mESC

TAD. Each sample can be thought as a 2-dimensional matrix with rows for

seven TF activity profiles and each row represented as a real vector with

values for each bin in the 1 Mb window (number of bins = 5000). The value

Xijk represented the activity (i.e. peak enrichment) of TF j, k bins from

the center of TAD i. The model consists of a stack of 7 sigmoid denoising

autoencoders, which define parameterized feature extraction (encoder) and

reconstruction functions (decoder). The encoder projects the data into a

smaller dimension feature space and the decoder reconstructs the input from

the feature space. The parameters of the functions are optimized to give the

smallest reconstruction error over all the training data samples. While similar

in principle to PCA (they both can be used as dimensionality reduction

techniques), the denoising auto-encoder learns a nonlinear mapping between

the input and its representation. Furthermore, constraints on the input and

feature dimension sizes and the addition of noise to the input force it to

learn important structure in the input. The stack reduces input dimensions

gradually from (7 x 5000), (7 x 1000), (7 x 200), (7 x 60), (7 x 30), (7 x

20), to (7 x 10). Each autoencoder injects an additive binomial noise with

a 20% corruption rate. We initialized weights at small random values with

mean zero and used minibatch stochastic gradient descent [Rumelhart et al.,

1986] to minimize the mean squared input reconstruction error. We trained

on 200 random samples for 500 epochs each layer then used the model to

transform all other samples. The model output was evaluated using gold

standard labels based on both the means and standard deviations of mESC

replication timing within each TAD. Early TADs had mean replication timing

> 0 and standard deviation < 0.25, Late TADs had mean replication timing

< 0 and standard deviation < 0.25, and all others TADs were considered

71

“TTR”.

5.3.3 Results

Interestingly, 94% of all TADs were already labeled as A0 or B0 in the fourth

layer and 100% were labeled in the fifth and sixth layers, indicative of clearly

recognizable di↵erences in the transcription factor composition of these two

groups of TADs, as well as clear similarities within each group of TADs.

With an overall error rate of 16%, A0 TADs corresponded to RDs within

either TTRs or late regions, while B0 TADs corresponded exclusively to

early RDs (Table 5.3.3). The relatively high enrichment of Hcfc1, MafK, and

PolII within early versus late RDs may account for the two labels (Figure

5.5). These results demonstrate that combinations of transcription factors

can accurately predict the compartmentalization of RDs and provide addi-

tional evidence that TTRs and late RDs have indistinguishable chromatin

composition and are partitioned from early replicating TADs at TTR-present

RD boundaries [Pope et al., n.d.].

Score

TF model prediction Early TTR Late

A0 (TTR/Late) 7% 39% 17%

B0 (Early) 28% 9% 0%

Table 5.2: True versus predicted classification rates are shown comparing the

labels of an unsupervised model trained on the profiles of seven transcription

factors (Ctcf, Hcfc1, MafK, P300, PolII, Zc3h11a, and Znf384) versus actual

replication timing for all mESC TADs. TADs considered either TTR or Late

by replication timing predominantly composed label A0, while Early TADs

predominantly composed label B0.

72

0.0

0.2

0.4

0.6

E L
anchor

TF
 b

in
di

ng
 a

bu
nd

an
ce

 (l
og

 s
ca

le
)

tf

Ctcf

Hcfc

Mafk

P300

Pol

Zc3h

Znf

Figure 5.5: TF composition of mESC TADs grouped by a 7-layer dAE. The plot

shows the distribution of the sum of the normalized TF profile signal,
P

k Xijk

grouped by the model assigned label.

5.4 Conclusion

In this chapter we proposed a framework for the use of deep unsupervised

models for modeling functional genomics data. First, we produced segmenta-

tions of the genome based on Histone Modifications, DnaseI Hypersensitive

Sites, and TFos. The resulting labels align with functional features defined

by the input. Next, we investigated the extent to which transcription factor

binding could be used to distinguish hypothetical regulatory classes of RDs.

By combining available ENCODE data for seven factors (Ctcf, Hcfc1, MafK,

P300, PolII, Zc3h11a, and Znf384), we obtained a grouping of TADs induced

by their TF composition that aligned with the structure of RDs.

Both applications show that deep dAEs are a viable alternative as unsuper-

vised models of functional genomic data. Hidden representations produced

by these models are informative and can be used for dimensionality reduction.

One di�culty in the use of dAEs is the adaptation of these models to

sequential data – specially when dependencies between sites of the same track

73

are important. To address this problem, combinations of deep models with

sequential models are a possible avenue [Andrew & Bilmes, 2012]. Another

possible pitfall with dAEs is the lack of translation equivariance. Due to

this phenomenon, hidden layers are hard to interpret by the human eye

and further processing is needed to extract information. However, this is

a problem of the particular architecture (Fully Connected Feed Forward)

used here and has been addressed in the past by use of convolutional layers

[LeCun & Bengio, 1995].

74

References

Abramowitz, L. K., & Bartolomei, M. S. (2012, Apr). Genomic imprinting:

recognition and marking of imprinted loci. Curr Opin Genet Dev , 22 (2),

72-8.

Allender, E. (1996). Circuit complexity before the dawn of the new mil-

lennium. In 16th annual conference on foundations of software technology

and theoretical computer science (pp. 1 – 18).

Andersson, R., Gebhard, C., Miguel-Escalada, I., Hoof, I., Bornholdt, J.,

Boyd, M., et al. (2014, Mar). An atlas of active enhancers across human

cell types and tissues. Nature, 507 (7493), 455-61.

Andrew, G., & Bilmes, J. (2012). Sequential deep belief networks. In Inter-

national conference on acoustics, speech and signal processing.

Bengio, Y. (2009, January). Learning Deep Architectures for AI. Found.

Trends Mach. Learn., 2 (1), 1–127.

Bengio, Y., Lamblin, P., D., P., & Larochelle, H. (2007). Greedy layer-

wise training of deep networks.” advances in neural information processing

systems 19 (2007): 153. NIPS .

Bernstein, B. E., Stamatoyannopoulos, J. A., Costello, J. F., Ren, B.,

Milosavljevic, A., Meissner, A., et al. (2010, Oct). The NIH Roadmap

Epigenomics Mapping Consortium. Nat Biotechnol , 28 (10), 1045-8.

75

Bilmes, J. (2010, November). Dynamic graphical models. IEEE Signal

Processing Magazine, 27 (6), 29 – 42.

Blanchette, M. (2007). Computation and analysis of genomic multi-sequence

alignments. Annu Rev Genomics Hum Genet , 8 , 193-213.

Bulger, M., & Groudine, M. (2010, Mar). Enhancers: the abundance and

function of regulatory sequences beyond promoters. Dev Biol , 339 (2),

250-7.

Cheng, C., Alexander, R., Min, R., Leng, J., Yip, K. Y., Rozowsky, J., et

al. (2012, Sep). Understanding transcriptional regulation by integrative

analysis of transcription factor binding data. Genome Res , 22 (9), 1658-67.

Cheng, Y., Wu, W., Kumar, S. A., Yu, D., Deng, W., Tripic, T., et al.

(2009, Dec). Erythroid GATA1 function revealed by genome-wide anal-

ysis of transcription factor occupancy, histone modifications, and mRNA

expression. Genome Res , 19 (12), 2172-84.

Collins, F., & Galas, D. (1993, Oct). A new five-year plan for the U.S.

Human Genome Project. Science, 262 (5130), 43-6.

Davidson, E. (2006). The regulatory genome. gene regulatory networks in

developement and evolution. Academic Press.

Davidson, E. H., & Erwin, D. H. (2006, Feb). Gene regulatory networks and

the evolution of animal body plans. Science, 311 (5762), 796-800.

Derman, E., Krauter, K., Walling, L., Weinberger, C., Ray, M., & Darnell,

J. E., Jr. (1981, Mar). Transcriptional control in the production of liver-

specific mRNAs. Cell , 23 (3), 731-9.

76

Dixon, J. R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., et al. (2012,

May). Topological domains in mammalian genomes identified by analysis

of chromatin interactions. Nature, 485 (7398), 376-80.

Dulbecco, R. (1986, Mar). A turning point in cancer research: sequencing

the human genome. Science, 231 (4742), 1055-6.

Enard, W., Przeworski, M., Fisher, S. E., Lai, C. S. L., Wiebe, V., Kitano,

T., et al. (2002, Aug). Molecular evolution of FOXP2, a gene involved in

speech and language. Nature, 418 (6900), 869-72.

ENCODE Project Consortium. (2011, Apr). A user’s guide to the encyclo-

pedia of DNA elements (ENCODE). PLoS Biol , 9 (4), e1001046.

ENCODE Project Consortium, Bernstein, B. E., Birney, E., Dunham, I.,

Green, E. D., Gunter, C., et al. (2012, Sep). An integrated encyclopedia

of DNA elements in the human genome. Nature, 489 (7414), 57-74.

Erhan, D., Bengio, Y., Courville, A., & Vincent, P. (2009). Visualiz-

ing higher-layer features of a deep network (Tech. Rep.). Departement

d’Informatique et Recherche Operationnelle.

Ernst, J., & Kellis, M. (2012, Mar). ChromHMM: automating chromatin-

state discovery and characterization. Nat Methods , 9 (3), 215-6.

Favorov, A., Mularoni, L., Cope, L. M., Medvedeva, Y., Mironov, A. A., Ma-

keev, V. J., et al. (2012, May). Exploring massive, genome scale datasets

with the GenometriCorr package. PLoS Comput Biol , 8 (5), e1002529.

Filion, G. J., Bemmel, J. G. van, Braunschweig, U., Talhout, W., Kind, J.,

Ward, L. D., et al. (2010, Oct). Systematic protein location mapping

reveals five principal chromatin types in drosophila cells. Cell , 143 (2),

212-24.

77

Gerstein, M. B., Lu, Z. J., Van Nostrand, E. L., Cheng, C., Arshino↵, B. I.,

Liu, T., et al. (2010, Dec). Integrative analysis of the Caenorhabditis

elegans genome by the modENCODE project. Science, 330 (6012), 1775-

87.

Glorot, X., & Bengio, Y. (2010). Understanding the di�culty of training deep

feedforward neural networks. In 13th international conference on artificial

intelligence and statistics (aistats).

Gunawardana, A., Mahajan, M., Acero, A., & Platt, J. (2005). Hidden condi-

tional random fields for phone classification. In citeseer (Ed.), Interspeech

(Vol. 2, p. 1).

Gurobi Optimization, I. (2013). Gurobi optimizer reference manual. Avail-

able from http://www.gurobi.com

Han, J., & Kamber, M. (2001). Data mining: Concepts and techniques.

MORGAN KAUFMANN PUBLISHERS.

Hardison, R. C., & Taylor, J. (2012, Jul). Genomic approaches towards

finding cis-regulatory modules in animals. Nat Rev Genet , 13 (7), 469-83.

Hastie, T., Tibishrani, R., & Friedman, J. (2009). Elements of statistical

learning: Data mining, inference, and prediction. Springer.

Heintzman, N. D., Stuart, R. K., Hon, G., Fu, Y., Ching, C. W., Hawkins,

R. D., et al. (2007, Mar). Distinct and predictive chromatin signatures

of transcriptional promoters and enhancers in the human genome. Nat

Genet , 39 (3), 311-8.

Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A fast learning algorithm

for deep belief nets. Neural Comput., 18 (7), 1527–1554.

http://www.gurobi.com

78

Hiratani, I., & Gilbert, D. M. (2010). Autosomal lyonization of replication

domains during early mammalian development. Adv Exp Med Biol , 695 ,

41-58.

Ho↵man, M. M., Buske, O. J., Wang, J., Weng, Z., Bilmes, J. A., & Noble,

W. S. (2012, May). Unsupervised pattern discovery in human chromatin

structure through genomic segmentation. Nat Methods , 9 (5), 473-6.

Hon, G., Ren, B., & Wang, W. (2008, Oct). Chromasig: a probabilistic

approach to finding common chromatin signatures in the human genome.

PLoS Comput Biol , 4 (10), e1000201.

Hughes, A. L., & Yeager, M. (1998). Natural selection at major histocom-

patibility complex loci of vertebrates. Annu Rev Genet , 32 , 415-35.

James, G., Witten, D., Hastie, T., & Tibishrani, R. (2013). An introduction

to statistical learning. Springer.

Ji, H., Jiang, H., Ma, W., Johnson, D. S., Myers, R. M., & Wong, W. H.

(2008, Nov). An integrated software system for analyzing ChIP-chip and

ChIP-seq data. Nat Biotechnol , 26 (11), 1293-300.

Johnson, D. S., Mortazavi, A., Myers, R. M., & Wold, B. (2007, Jun).

Genome-wide mapping of in vivo protein-DNA interactions. Science,

316 (5830), 1497-502.

Kharchenko, P. V., Tolstorukov, M. Y., & Park, P. J. (2008, Dec). De-

sign and analysis of ChIP-seq experiments for DNA-binding proteins. Nat

Biotechnol , 26 (12), 1351-9.

Kim, T.-K., Hemberg, M., Gray, J. M., Costa, A. M., Bear, D. M., Wu, J., et

al. (2010, May). Widespread transcription at neuronal activity-regulated

enhancers. Nature, 465 (7295), 182-7.

79

King, M. C., & Wilson, A. C. (1975, Apr). Evolution at two levels in humans

and chimpanzees. Science, 188 (4184), 107-16.

Klug, W. S., Cummings, M. R., & Spencer, C. A. (2007). Essentials of

genetics. Pearson prentice hall.

Kouzarides, T. (2007). Chromatin modifications and their function. Cell ,

128 (4), 693 - 705.

Ladunga, I. (2010). Computational biology of transcription factor binding.

Springer.

Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin,

J., et al. (2001, Feb). Initial sequencing and analysis of the human genome.

Nature, 409 (6822), 860-921.

Le, Q., Monga, R., Devin, M., Corrado, G., Chen, K., Ranzato, M., et al.

(2011). Building high-level features using large scale unsupervised learning.

arXiv preprint arXiv:1112.6209 .

LeCun, Y., & Bengio, Y. (1995). Convolutional networks for images, speech,

and time-series. In M. A. Arbib (Ed.), The handbook of brain theory and

neural networks. MIT Press.

Lee, H., Grosse, R., Ranganath, R., & Ng, A. (2009). Convolutional deep

belief networks for scalable unsupervised learning of hierarchical repre-

sentations. In Proceedings of the 26th annual international conference on

machine learning (pp. 609–616).

Levine, M., & Tjian, R. (2003, Jul). Transcription regulation and animal

diversity. Nature, 424 (6945), 147-51.

Lieberman-Aiden, E., Berkum, N. L. van, Williams, L., Imakaev, M.,

Ragoczy, T., Telling, A., et al. (2009, Oct). Comprehensive mapping

80

of long-range interactions reveals folding principles of the human genome.

Science, 326 (5950), 289-93.

Maston, G. A., Evans, S. K., & Green, M. R. (2006). Transcriptional regu-

latory elements in the human genome. Annu Rev Genomics Hum Genet ,

7 , 29-59.

McCulloch, & Pitts. (1943). A logical calculus of the ideas immanent in

nervous activity. Bulletin of Mathematical Biophysics , 7 , 115 - 133.

Meader, S., Ponting, C. P., & Lunter, G. (2010, Oct). Massive turnover of

functional sequence in human and other mammalian genomes. Genome

Res , 20 (10), 1335-43.

Metzker, M. L. (2010, Jan). Sequencing technologies - the next generation.

Nat Rev Genet , 11 (1), 31-46.

Minsky, M. L., & Papert, S. (1969). Perceptrons. MIT press.

modENCODE Consortium, Roy, S., Ernst, J., Kharchenko, P. V., Kherad-

pour, P., Negre, N., et al. (2010, Dec). Identification of functional elements

and regulatory circuits by Drosophila modENCODE. Science, 330 (6012),

1787-97.

Montavon, G., Orr, G. B., & Müller, K.-R. (Eds.). (2012). Neural networks:

Tricks of the trade. Springer.

Morey, C., & Avner, P. (2011, Jul). The demoiselle of x-inactivation: 50 years

old and as trendy and mesmerising as ever. PLoS Genet , 7 (7), e1002212.

Mouse ENCODE Consortium, Stamatoyannopoulos, J. A., Snyder, M.,

Hardison, R., Ren, B., Gingeras, T., et al. (2012, Aug). An encyclo-

pedia of mouse DNA elements (Mouse ENCODE). Genome Biol , 13 (8),

418.

81

Myers, E. W., Sutton, G. G., Smith, H. O., Adams, M. D., & Venter, J. C.

(2002, Apr). On the sequencing and assembly of the human genome. Proc

Natl Acad Sci U S A, 99 (7), 4145-6.

Neumann, J. von. (1958). The computer and the brain. Yale University

Press.

Phillips, J. E., & Corces, V. G. (2009, Jun). CTCF: master weaver of the

genome. Cell , 137 (7), 1194-211.

Pique-Regi, R., Degner, J. F., Pai, A. A., Ga↵ney, D. J., Gilad, Y., &

Pritchard, J. K. (2011, Mar). Accurate inference of transcription fac-

tor binding from dna sequence and chromatin accessibility data. Genome

Res , 21 (3), 447-55.

Plocik, A. M., & Graveley, B. R. (2013, Feb). New insights from existing

sequence data: Generating breakthroughs without a pipette. Mol Cell ,

49 (4), 605-17.

Pope, B. D., Ruba, T., Dileep, V., Yue, F., Wu, W., Denas, O., et al. (n.d.).

Topologically-associating domains are stable structural units of replication

timing regulation. (Submited as a companion paper in the Mouse ENCODE

project)

Ren, B., Robert, F., Wyrick, J. J., Aparicio, O., Jennings, E. G., Simon, I.,

et al. (2000, Dec). Genome-wide location and function of DNA binding

proteins. Science, 290 (5500), 2306-9.

Roop, D. R., Nordstrom, J. L., Tsai, S. Y., Tsai, M. J., & O’Malley, B. W.

(1978, Oct). Transcription of structural and intervening sequences in the

ovalbumin gene and identification of potential ovalbumin mRNA precur-

sors. Cell , 15 (2), 671-85.

82

Rosenblatt, F. (1958, Nov). The perceptron: a probabilistic model for infor-

mation storage and organization in the brain. Psychol Rev , 65 (6), 386-408.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning repre-

sentations by back-propagating errors. Nature, 323 , 533 – 536.

Sanger, F., Coulson, A. R., Hong, G. F., Hill, D. F., & Petersen, G. B.

(1982, Dec). Nucleotide sequence of bacteriophage lambda DNA. J Mol

Biol , 162 (4), 729-73.

Swanson, W. J., Yang, Z., Wolfner, M. F., & Aquadro, C. F. (2001, Feb).

Positive darwinian selection drives the evolution of several female repro-

ductive proteins in mammals. Proc Natl Acad Sci U S A, 98 (5), 2509-14.

Taylor, J., Tyekucheva, S., King, D. C., Hardison, R. C., Miller, W., &

Chiaromonte, F. (2006, Dec). ESPERR: learning strong and weak signals

in genomic sequence alignments to identify functional elements. Genome

Res , 16 (12), 1596-604.

Thurman, R., Rynes, E., Humbert, R., Vierstra, J., Maurano, M. T., Haugen,

E., et al. (2012). The accessible chromatin landscape of the human genome.

Nature, 489 (7414), 75-82.

Turner, B. M. (2005, Feb). Reading signals on the nucleosome with a new

nomenclature for modified histones. Nat Struct Mol Biol , 12 (2), 110-2.

Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton,

G. G., et al. (2001, Feb). The sequence of the human genome. Science,

291 (5507), 1304-51.

Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P.-A. (2008). Extracting

and composing robust features with denoising autoencoders. In Proceed-

ings of the 25th international conference on machine learning (pp. 1096–

83

1103). New York, NY, USA: ACM. Available from http://doi.acm.org/

10.1145/1390156.1390294

Wadman, I. A., Osada, H., Grütz, G. G., Agulnick, A. D., Westphal, H.,

Forster, A., et al. (1997, Jun). The LIM-only protein Lmo2 is a bridging

molecule assembling an erythroid, DNA-binding complex which includes

the TAL1, E47, GATA-1 and Ldb1/NLI proteins. EMBO J , 16 (11), 3145-

57.

Waterston, R. H., Lander, E. S., & Sulston, J. E. (2002, Mar). On the

sequencing of the human genome. Proc Natl Acad Sci U S A, 99 (6), 3712-

6.

Weber, J. L., & Myers, E. W. (1997, May). Human whole-genome shotgun

sequencing. Genome Res , 7 (5), 401-9.

Weiss, M. J., Keller, G., & Orkin, S. H. (1994, May). Novel insights into

erythroid development revealed through in vitro di↵erentiation of GATA-1

embryonic stem cells. Genes Dev , 8 (10), 1184-97.

Weiss, M. J., Yu, C., & Orkin, S. H. (1997, Mar). Erythroid-cell-specific

properties of transcription factor GATA-1 revealed by phenotypic rescue

of a gene-targeted cell line. Mol Cell Biol , 17 (3), 1642-51.

Wilson, M. D., & Odom, D. T. (2009, Dec). Evolution of transcriptional

control in mammals. Curr Opin Genet Dev , 19 (6), 579-85.

Wold, B., & Myers, R. M. (2008, Jan). Sequence census methods for func-

tional genomics. Nat Methods , 5 (1), 19-21.

Wu, W., Cheng, Y., Keller, C. A., Ernst, J., Kumar, S. A., Mishra, T., et

al. (2011, Oct). Dynamics of the epigenetic landscape during erythroid

di↵erentiation after GATA1 restoration. Genome Res , 21 (10), 1659-71.

84

Yamamoto, M., Ko, L. J., Leonard, M. W., Beug, H., Orkin, S. H., & Engel,

J. D. (1990, Oct). Activity and tissue-specific expression of the transcrip-

tion factor NF-E1 multigene family. Genes Dev , 4 (10), 1650-62.

Y. Bengio, P. V., A. Courville. (2013). Representation learning: A review and

new perspectives. In 30th international conference on machine learning.

Yu, H., Zhu, S., Zhou, B., Xue, H., & Han, J.-D. J. (2008). Inferring causal

relationships among di↵erent histone modifications and gene expression.

Genome Res .

Zhang, Y., Liu, T., Meyer, C. A., Eeckhoute, J., Johnson, D. S., Bernstein,

B. E., et al. (2008). Model-based analysis of ChIP-Seq (MACS). Genome

Biol , 9 (9), R137.

	preamble
	thesis
	Introduction
	Introduction
	Summary of remaining chapters
	Contributions of this thesis

	Background
	Importance of regulation
	Mechanisms of gene regulation
	Transcriptional regulation
	Post-transcriptional regulation
	Epigenetic regulation

	Computational methods for TF binding analysis
	From HGP to ENCODE
	Next Generation Sequencing
	From read counts to signal

	Artificial neural networks
	Introduction
	Feed forward networks
	Convolutional Neural Networks
	Modern ANNs and Representation learning

	Feature extraction
	Introduction
	Relevant feature extraction from ANNs
	Convex optimization based method
	Conclusion

	Deep models for regulation
	Introduction
	Differential gene expression modeling
	The G1E biological model and data
	Feature extraction

	Gene expression prediction from TFos
	Data
	Regression model

	Conclusion

	Unsupervised modeling of functional genomics data
	Introduction
	Deep representations of the genome
	Experimental setting
	Data and Model

	TF composition analysis of timing replication domains
	Introduction
	Data and Model
	Results

	Conclusion

	Bibliography

