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Abstract 

 

Evaluation of Functional Data Clustering Algorithms on Renogram Curves                   

to Aid in the Diagnosis of Kidney Obstruction 

By Kevin Park 

 

Kidney obstruction is a serious condition where the body’s urinary system develops resistance to 

urine outflow. Radionuclide renal imaging plays a major role in evaluating a kidney with 

suspected obstruction. Current practices model 99mTc-mercaptoacetyltriglycine (MAG3) 

gamma tracer concentration across time through a renogram curve to help in the diagnosis of 

kidney obstruction. One important issue that exists in interpreting kidney obstruction is that there 

are high misclassification rates of whether a kidney is obstructed or not because of the lack of 

training in diuretic renography among radiologists. The objective of this work is to provide 

another perspective on the statistical and computer-assisted diagnosis for kidney obstruction by 

assessing functional data clustering methods in the classification of renogram curves. We 

considered seven existing algorithms with the training dataset (N=147) where 23.80% of the 

renogram curves were from obstructed kidneys. We first use the training dataset to evaluate the 

unsupervised clustering algorithms against the consensus on kidney obstruction from three 

experts. We then evaluate the accuracy of prediction by using another dataset where we predict 

the obstruction status for each kidney from clustering methods developed with the training data. 

We also assess the performance of the best performing clustering methods in a group of kidneys 

which are difficult to interpret. The clustering algorithms of fscm, waveclust, and 

itersubspace provide reasonable results for the training set with a kappa of 0.7917, 0.7322, and 

0.522 respectively. These three methods resulted with a sensitivity of 82.86%, 77.14%, and 

91.43% and specificity of 95.54%, 94.64%, and 74.11% in the training set respectively. With the 

validation set, we find that only the two algorithms of fscm and waveclust perform strongly with 

a kappa of 0.7273 and 0.6957, sensitivity of 75.00% and 100.00%, and specificity of 95.00% and 

80.00% respectively. With the difficult renogram curves, we saw that fscm and waveclust gave 

ratings most similar to expert one while often not aligning with the majority expert rating. These 

two algorithms have shown potential to separate obstructed and unobstructed kidneys. Studies 

with larger sample sizes may provide further insight to the success of these algorithms in 

assisting kidney interpretations. 
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Introduction 

Five out of one thousand adults experience obstructed uropathy and hydronephrosis with 

underlying causes originating from an obstructed kidney (Mujoomdar & Dionne, 2012). A 

kidney biologically becomes obstructed when the body’s urinary system develops resistance to 

urine outflow and produces a build-up of urine (National Kidney Foundation, 2017). Although 

the prevalence of obstructed kidneys may be relatively low, kidney obstruction is still a major 

concern as an untreated, obstructed kidney will irreversibly lose function and increase the risk of 

renal failure. Renal failure is a serious condition because the kidney is unable to filter the excess 

waste material found in blood (Urology Care Foundation, 2018) and may lead to the requirement 

of chronic dialysis or a renal transplant. 

Radionuclide renal imaging plays a major role to help radiologists and nuclear medicine experts 

make a diagnosis for an obstructed kidney. The standard procedure to evaluate suspected kidney 

obstruction is to conduct baseline radionuclide imaging after the gamma emitting tracer, 99mTc-

mercaptoacetyltriglycine (MAG3), is intravenously injected into the blood (O’Reilly, 1996). In a 

normal kidney, MAG3 is rapidly removed from the blood, flown into the bladder, and is then 

excreted in the urine. However, an obstructed kidney cannot adequately extract MAG3 from the 

blood. This biological observation provides motivation to model the concentration of the MAG3 

tracer to help in the diagnosis of kidney obstruction. MAG3 concentration is specifically 

modeled by a time activity curve (renogram curve) where the number of photons from the 

MAG3 tracer can be counted over a 20 to 24 minute time period using a region of interest 

assigned around the kidney. If a patient is suspected to have an obstructed kidney from a baseline 

MAG3 imaging scan, an additional 20 minutes of radionuclide renal imaging are conducted with 

the administration of furosemide (O’Reilly, 1996). Current practices utilize the analysis of the 
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renal images, renogram curves, and summary measures of the renogram curve to interpret the 

radionuclide renal scans.  

Taylor (2014) address the major challenge of correctly interpreting renogram curves in the field 

of radionuclide renal imaging and diuresis renography. One issue that exists in diagnosing 

kidney obstruction is that there are high misclassification rates of whether a kidney is obstructed 

or not because of the lack of training and experience in diuretic renography among radiologists 

(Bao et al., 2011). Specifically, Taylor and Garcia (2014) note that time constraints contribute to 

the lack of training as radiologist residents spend only four months to assimilate a 36-month 

competency stated under the American Nuclear Medicine Board. In addition, the difficulty of 

obtaining consistent diagnosis of kidney obstruction increases as “an estimated 590,000 renal 

scans performed annually in the United States are interpreted at sites that perform fewer than 3 

studies per week” (Taylor & Garcia, 2014). The nature of classifying an obstructed kidney is 

tricky as even professional nuclear medicine physicians disagree about 20% of all kidney cases 

(Bao et al., 2011). These limitations found in current clinical practices of interpreting renogram 

curves call for the need of a new mechanism to help radiologists and nuclear medicine experts 

make a better decision when diagnosing an obstructed kidney. 

Several authors have developed a decision support system (RENEX) to help diagnose the 

obstruction of the kidney based on quantitative measures derived from the renogram curve 

(Taylor et al., 2008). Bao et al. (2011) proposes a regression framework in identifying important 

variables that are derived from renogram curves to predict a kidney’s obstruction status.  

However, Taylor (2014) cautions against the practice of over relying on a few parameters in the 

renogram scans, such as the half-time point, when analyzing renogram curve for suspected 

obstruction.  All these manuscripts use summary measures and variables derived from the 
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renogram curve to conduct interpretation of kidney obstruction. However, they do not fully take 

into consideration of the functional nature of the renogram curve. Interestingly, Taylor (2014) 

mentions the importance of the renogram curve in providing functional data to assist in the 

diagnosis and management of patients. Hence, the purpose of this thesis is to provide another 

perspective on the statistical and computer-assisted diagnosis for kidney obstruction by assessing 

functional data clustering methods in the classification of renogram curves. Specifically, we plan 

to evaluate the capabilities of existing functional data clustering algorithms in separating the 

obstructed and non-obstructed renogram curves. The functional data clustering algorithms that 

will be investigated include k-means clustering (MacQueen, 1967), fitfclust (James & Sugar, 

2003), distclust (Peng & Muller, 2008), iterSubspace (Chiou & Ling Li, 2007), funclust (Jacques 

& Preda, 2013), waveclust (Giacofci et al. , 2013), and fscm (Jiang & Serban, 2012). These 

functional data clustering methods will utilize the strengths of clustering analysis and adapt to 

analyze the functional renogram curves. All these algorithms are developed for unsupervised 

clustering, which means that the information regarding the kidney obstruction status is not used 

for clustering. These functional data clustering algorithms can be more successful than standard 

clustering procedures by utilizing complex mathematical splines or wavelength bases to account 

for the functional structure and shape of the renogram curves. Through the unsupervised nature 

and goal of clustering, we hope to find a functional data clustering method that will best separate 

obstructed and not obstructed kidney renogram curves while simultaneously ensuring that 

renogram curves in the same group are most similar to one another. If successful, these 

clustering algorithms can help radiologists and nuclear medicine experts make a more accurate 

diagnosis for suspected kidney obstruction. 
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To accomplish this goal, we first apply and evaluate the above seven algorithms to a dataset of 

147 subjects where each subject’s renogram curve was rated by three experts and resulted in a 

full consensus as obstructed or non-obstructed. In addition, we evaluate the accuracy rates of 

prediction by using another dataset of 28 randomly selected subjects where we predict the 

obstruction status for each kidney from clustering methods developed with the training data. The 

28 subject’s renogram curves also had three experts give a consensus rating as obstructed or not 

obstructed. Third, we apply the strongest performing algorithms to a special group of 28 subjects 

to determine how the algorithms perform with difficult renogram cases. These 28 subjects 

comprise the hard-to-interpret group as there was no consensus on obstructed or not obstructed 

among the three experts. 

Data 

The data that was utilized for this study contains both baseline and diuretic renogram curve 

measurements across 99 time points for 108 patient’s right and left kidney. Hence, the 108 

patients provide a dataset of 216 renogram curves. The patients also compose of 54 males and 54 

females with a mean age of 57.16 years.  

Specifically, MAG3 concentrations were measured across 59 time points for each patient’s 

baseline renogram curve and furosemide concentrations were measured across 40 time points for 

the patient’s diuretic renogram curves. Along with a patient identification system, each patient’s 

renogram curve was examined and rated by three experts. The three experts were asked to score 

each patient’s renogram curve from a scale of zero to two where zero indicates no kidney 

obstruction, one indicates an equivocal result, and two is a score to represent an obstructed 

kidney. 
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Methods 

Seven different unsupervised clustering methods were evaluated in this study. Each clustering 

method requires a fixed a-priori number of clusters to be specified before analysis so two clusters 

were pre-specified in this study, one for obstruction and one for not obstructed classification. The 

seven clustering methods that were tested include k-means clustering (MacQueen, 1967), 

fitfclust (James & Sugar, 2003), distclust (Peng & Muller, 2008), iterSubspace (Chiou & Ling 

Li, 2007), funclust (Jacques & Preda, 2013), waveclust (Giacofci et al. , 2013), and fscm (Jiang 

& Serban, 2012) .  

Clustering Method Backgrounds 

I. K-Means Clustering (MacQueen, 1967) 

The k-means clustering procedure is an unsupervised learning method that is highly used 

because of its relatively fast and simple procedure for clustering. After specifying the number of 

clusters (k) in k-means, k data points are placed onto the space and are assigned as the initial 

centroids. (Naik, 2010) Each data point is then classified onto each centroid with the calculation 

of the Euclidean distance. The data point is then assigned to the centroid that corresponds to the 

smallest Euclidean distance. After a data point has been assigned to a centroid, the centroid is 

recalculated with the new data points that are added and this process of assigning data points to 

centers repeats until all data points are utilized. 

The function that is minimized during K-means can be shown as: 

Distance = ∑ ∑ ||𝑥𝑖
𝑗

− 𝑐𝑗||𝑛
𝑖=1

𝑘
𝑗=1

2
 

where i = 1,…n and j = 1,…,k and n is the sample size and k is the number of centers 
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and || 𝑥𝑖
𝑗

− 𝑐𝑗||
2

  is the Euclidean distance between a data point 𝑥𝑖
𝑗
  and the cluster center 𝑐𝑗 

(Naik, 2010). 

Although Macqueen states how k-means is “efficient in the sense of within-class variance” and is 

economically and computationally feasible, k-means does contain some shortcomings (1967). 

One limitation of this procedure is its sensitivity to the initial means and number of centers 

chosen after every iteration of k-means clustering (Ortega et al., 2009). This sensitivity affects 

the consistent accuracy of the k-means classification across different iterations. Another 

disadvantage of the K-means clustering algorithm is that it is not resistant to outliers and that 

overlapping data are not handled very well (Ortega et al., 2009). Under this limitation, k-means 

may cluster data inadequately because of the close proximity of one data point to another. K-

means is also only applicable to numerical variables and is not robust to categorical variables 

(Ortega et al., 2009). The weaknesses present in the k-means procedure provide motivation to 

assess the functional data clustering procedure in the classification task. 

II. Fitfclust (James & Sugar, 2003) 

Fitfclust is a flexible model-based clustering procedure that is “particularly effective when the 

observations are sparse, irregularly spaced, or occur at different time points for each subject” 

(James & Sugar, 2003). In the fitfclust model, suppose gi(t) is the true value of an individual’s 

curve at time point t. Then the observed values of Yi can then be expressed as: 

Yi = gi + εi,  for i = 1, …, n 

where n is the total number of individuals, gi is a vector of true values, and εi are measurement 

errors at time t (James & Sugar, 2003). 
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Each curve in fitfclust is modeled by using natural cubic splines to impose structure onto each 

curve. Hence, each curve can be expressed as:  

gi(t) = s(t)Tγi 

where s(t) is a p-dimensional spline basis vector and γi is a vector of spline coefficients modeled 

using a Gaussian distribution (James & Sugar, 2003). 

With this formulation, the fitfclust model can be expressed as: 

Yi = Si(µk + γi) + εi , i = 1, …., n, εi ~ N(0, R) , γi ~ N(0, Г) 

where µk = λo + Λαk where λo and αk are p and h-dimensional vectors and Λ is a p x h matrix and 

where Si = (si(ti1), … , s(tin))
T is the spline basis matrix for ith curve (James & Sugar, 2003).  

To avoid confounding of the λo ,Λ, αk parameters, a constraint is imposed such that 

Σαk = 0 and ΛTSTΣ-1SΛ = I (James & Sugar, 2003). 

One unique aspect of this clustering method is that a random-effects model for the coefficients is 

utilized “instead of treating the basis coefficients as parameters and fitting a separate spline curve 

for each individual” when using basis functions for dimension reduction (James & Sugar, 2003). 

Incorporating the random effects in this way “allows strength to be borrowed across curves, 

providing superior results for data containing” sparseness (James & Sugar, 2003). The second 

unique feature to this clustering method is the formulation of the mean with additional 

parameters of = λo , Λ, and αk. Allowing the mean to be expressed with these parameters reduces 

the number of parameters that need to be estimated and allows for a low-dimensional 

representation of each curve to be clustered (James & Sugar, 2003). 
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Along with the strengths, this method still contains limitations with regards to model selection. 

As this model utilizes spline features, the choice of which spline basis to use is still an active 

area of research. Choosing the dimensions of the cluster mean space may also not be clear 

depending on the research question which can affect clustering in fitfclust (James & Sugar, 

2003). However, the strength of fitfclust’s clustering method to work with “sparse and 

irregularly spaced” functional data make it a robust method. 

III. Itersubspace (Chiou & Ling Li, 2007) 

An important assumption of the itersubspace procedure is that functions of the outcome are 

independently sampled from a “mixture of stochastic processes” and are “associated with a 

random cluster variable” (Chiou and Ling Li, 2013). Hence, the clusters centers under 

itersubspace “are stochastic structures consisting of the cluster means and eigenfunctions” that 

allow for the curve projection to fit onto the “functional principal component (FPC) subspaces of 

individual clusters” (Chiou and Ling Li, 2013). 

The itersubspace clustering method uniquely “accounts for both the means and the modes of 

variation differentials between clusters by predicting cluster membership with a reclassification 

step.” The reclassification step involves a “non-parametric iterative mean and covariance 

updating scheme” to “estimate cluster structures which then allows the cluster membership 

predictions” to be “based on a non-parametric random-effect model of the truncated Karhunen–

Loève expansion” (Chiou and Ling Li, 2013).  

Specifically, the clustering of the FPCs can provide the structure of the mean and covariance 

such that the predicted curve can be expressed with the non-parametric random-effects model: 
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�̃�(𝑐)(𝑡) =  µ(𝑐)(𝑡) +  ∑ 𝜀𝑗
(𝑐)(𝑌) 𝑝𝑗

(𝑐)
(𝑡)

𝑀𝑐

𝑗=1

  

Where pj are eigenfunctions, µ is the marginal mean of the mixture process, and εj is the random 

coefficients (Chiou and Ling Li, 2013). 

Maximizing the conditional probability here 

c*(y) = arg max { PC|Y(c|y)} where c ε {1,….,k} 

determines the best predicted cluster membership for each curve (Chiou and Ling Li, 2013). 

One important assumption that is made however is equal within-cluster variation. Unlike other 

clustering methods which utilize basis functions when modeling the curves, the itersubspace 

method uses “cluster eigenbases for process expansion” which is estimated by the data. The 

utilization of the cluster eigenbases allows for the maximum percentage of total variation to be 

explained by a few eigencomponents (Chiou and Ling Li, 2013). A major strength of this 

clustering analysis procedure is that the incorporation of “the mean and covariance functions of 

each cluster” allows “additional insight into cluster structures which facilitates functional cluster 

analysis (Chiou and Ling Li, 2013).” 

One main weakness of the itersubspace approach is that it can be computationally intensive. The 

majority of the computation time is present because of “cluster covariance estimation via two- 

dimensional smoothing (Chiou and Ling Li, 2013).” Another weakness of the itersubspace 

method is its sensitivity to the initial means. According to Chiou and Ling Li, this area of 

sensitivity still requires further investigation. Lastly, the itersubspace method can also run the 

risk of inconsistent estimation of the cluster mean and covariance function when the “number of 

curves in clusters is relatively small compared with random variation or when the measurement 
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errors in observed curves are dominant” (Chiou and Ling Li, 2013). With these weaknesses, the 

itersubspace algorithm may need to be used with caution to an application with a small sample 

size. 

IV. Distclust (Peng & Muller, 2008) 

Distclust is another clustering method that is proposed to help with the analysis of functional 

data that contains unequally spaced measurements and sparseness “with additional measurement 

errors” from a stochastic process (Peng & Mueller, 2008). The motivation for this method was to 

help analyze data common in longitudinal studies and online bidding sales data (Peng & Mueller, 

2008). Under “a square integrable stochastic process {X(t) : t ∈ T }” across time points, 

observations from the realization of this stochastic process can be expressed as: 

Yil = Xi(Til) + εil , 

where {εil} are independently and identically distributed with mean of zero and variance σ2 and 

{Yil : 1 ≤ l ≤ ni ; 1 ≤ i ≤ n} (Peng & Mueller, 2008). 

It follows that by Mercer’s theorem, Xi(t) can be expanded with eigenfunctions of a positive 

semidefinite kernel because X is a “square integrable stochastic process”  

Xi(t) = µ(t) + ∑ 𝜉𝑖𝑘𝜑𝑘(𝑡)∞
𝑘=1  

where µ(t) is the mean function “and the random variables {ξik : k ≥ 1} for each i are 

uncorrelated with zero mean and variance,” and  λk; λ1 ≥ λ2 ≥ · · · ≥ 0 are the eigenvalues of the 

positive semidefinite kernel and φk are the corresponding orthonormal eigenfunctions (Peng & 

Mueller, 2008). 
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The distance that is proposed for their use in their clustering analysis is to “use the conditional 

expectation of the L2 distance between these two curves, given the data” (Peng & Mueller, 

2008). Given curves Yi and Yj based on the observed data Xi = (Xi1,…,Xin) and Xj = (Xj1,…,Xjn), 

the L2 distance is defined as: 

D(i,j) = {∫ ( 𝑌𝑖(𝑡) − 𝑌𝑗(𝑡)
𝜏

 )2  𝑑𝑡 }
1/2

(Peng & Mueller, 2008). 

The original definition of L2 distance is not applicable to observed data that is sparse so Peng 

and Mueller propose “to use the conditional expectation of D2(i,j) given” Yi and Yj as the 

squared distance between Xi and Xj.  Specifically, this can be expressed by: 

�̅�(i,j) = { E(D2(i,j)| Xi , Xj ) }
1/2     1 ≤ i, j ≤ n (Peng & Mueller, 2008). 

Utilizing Parzeval’s identity, the L2 distance can then be expressed as: 

�̅�(i,j) = E(∑ ( 𝜀𝑖𝑘 −  𝜀𝑗𝑘
∞
𝑘=1 )2 | Xi , Xj ) (Peng & Mueller, 2008). 

One limitation of the distclust procedure is that it has the most computational time in comparison 

to the other clustering methods evaluated in this thesis. Another limitation of this clustering 

algorithm is that it is not as powerful to curve data that is ideally equally spaced and not 

irregular. 

V. Funclust (Jacques & Preda, 2013) 

Inspired by the itersubspace method and functional random variable estimation, funclust 

proposes a parametric mixture model to aid in the clustering task. Although “the notion of 

probability density for functional random variables” is not generally specified, Jacques and Preda 

utilize the Karhunen-Loeve expansion (principal component analysis) of a stochastic process to 
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get an “approximation for the density of functional variables” (2013). With that expansion, the 

best approximation of the underlying functional data density under the mean squares criterion is 

expressed as: 

X(q)(t) = µ(t) + ∑ 𝐶𝑗𝜓𝑗(𝑡)
𝑞
𝑗=1  

where “µ is the mean function of X, Cj are zero-mean random variables (principal components), 

and ψj 's form an orthonormal system of eigenfunctions of the covariance operator of X (Jacques 

and Preda, 2013).” 

By clever manipulation of probability and under the conditions that when “X is a Gaussian 

process, the principal components Cj are Gaussian and independent” the density of fX
(q) can be 

expressed as: 

fX
(q)(x) = ∏ 𝑓𝐶𝑗 (𝑐𝑗(𝑥))

𝑞
𝑗=1  

where fCj is the Gaussian centered density of variance λ” (Jacques and Preda, 2013). 

With these two equations, Jacques and Preda describes how these “results justify at least 

theoretically, the use of the principal component densities fCj to approximate the notion of 

probability density” of curve X. 

Based on this density approximation, a parametric mixture model is proposed. With this 

parametric mixture model, parameter estimation is then performed by incorporating an 

expectation maximizing like algorithm. Specifically, the algorithm maximizes the pseudo-

completed log-likelihood to obtain an estimate:  

LC
(q)(ϴ; X,Z) = ∑ ∑ 𝑍𝑖 ,𝑔 (log 𝜋𝑔 + ∑ log 𝑓𝐶𝑗 ,𝑔 (𝐶𝑖 ,𝑗 ,𝑔 ) )

𝑞𝑔

𝑗=1
𝐾
𝑔=1

𝑛
𝑖=1                          
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where Zi are group labels for each curve Xi, π1,…,πg are mixing probabilities, and fCj is the 

probability density function of the principal components (Jacques & Preda, 2013). 

With the maximization, the maximum a posteriori rule provides the clusters for analysis.  

A strength of the funclust procedure is that it takes group-specific subspaces into consideration 

through the assumption of the Gaussian mixture model for the coefficients of the eigen-function 

expansion (Jacques & Preda, 2013). One limitation of this procedure is the choice of the group 

specific dimension is still not fully clear and is an active area of research (Jacques & Preda, 

2013). 

VI. Waveclust (Giacofci et al. , 2013) 

Addressing the limitations of splines to deal with high dimensional data and irregular curve 

shapes, waveclust strategizes to manage individual inter-variability in high dimensional curve 

clustering. A strength of using wavelet decomposition is that it accounts for the signal of both 

fixed and random effects.  Giacofci et al. state specifically that “using a wavelet representation of 

this model allows us to characterize different types of smoothness conditions assumed on the 

response curves by the mean of their wavelet coefficients (2013).” Specifically, this method 

allows for the correlation within curves to have variability across groups and positions. It is 

noted though that in waveclust, orthonormal wavelet basis will be utilized as defined as: 

{ φj0k(t), k = 0,1,… 2j0 – 1; ψjk(t), j ≥ j0, k = 0, …, 2j – 1}   

where each basis was calculated from a “father wavelet φ and a mother wavelet ψ of regularity 

(r>0)” and j is a time index (Giacofici et al., 2013). 

With the orthonormal wavelet basis, each response curve, Yi(t), can be expressed as: 
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𝑌𝑖(𝑡) =  ∑ 𝑐𝑖,𝑗0𝑘
∗ 𝜑𝑗0𝑘(𝑡) + ∑ ∑ 𝑑𝑖,𝑗𝑘

∗ 𝜓𝑗𝑘(𝑡)

2𝑗−1

𝑘=0 𝑗 ≥𝑗0

2𝑗0−1

𝑘=0

 

where ci and di are wavelet coefficients of an individual curve (Giacofici et al., 2013). 

After defining the response curve, waveclust “proposes an efficient dimension reduction step 

based on wavelet thresholding adapted to multiple curves” (Giacofci et al., 2013). Then, by 

accounting for the “appropriate structure for the random effect variance”, it can mathematically 

be shown that “both fixed and random effects lie in the same functional space even when dealing 

with irregular functions that belong to Besov spaces” (2013). Giacofci et al. refer another source 

about Bezov’s space but they utilize that Bezov’s parameters of the function’s number of 

derivatives to help define a function’s regularity (2013). 

Once in the wavelet domain, waveclust becomes a linear mixed-effects model that can be used 

for clustering. Utilizing an expectation maximization algorithm for maximum likelihood 

estimation, the expectation maximization algorithm maximizes this likelihood 

log ϒ ( c, d, υ, θ, ϛ; π, α, β, G, σ2
ε) = log ϒ (c, d| υ, θ, ϛ; π, α, β, G, σ2

ε) 

+ log ϒ (υ, θ| ϛ;G) 

+ log ϒ ( ϛ ; π ) 

where ϒ and random effects (υ, θ) are label variables that are unobserved, α and β are the 

estimators of the mean curve coefficients, G is the variance of the random wavelet coefficients, 

and σ2
ε is the noise measurement error (Giacofci et al., 2013).  

It follows that the posterior probabilities for cluster l are then specified as: 
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𝜏𝑖𝑙
[ℎ+1]

=  
𝜋𝑙

[ℎ]
𝑓(𝑐𝑖, 𝑑𝑖;  𝛼𝑙

[ℎ]
, 𝛽𝑙

[ℎ]
, 𝐺[ℎ] +  𝜎𝜀

2[ℎ]
𝐼)

∑ 𝜋𝑝
[ℎ]

𝑓(𝑝 𝑐𝑖, 𝑑𝑖;  𝛼𝑝
[ℎ]

, 𝛽𝑝
[ℎ]

, 𝐺[ℎ] +  𝜎𝜀
2[ℎ]

𝐼)
 

where f is the probability density function of the Gaussian distribution. 

A major strength of the waveclust procedure is that its account for functional random effects in 

the model allows for “a better identification of the informative structures” for clustering 

(Giacofci et al., 2013). In contrast to other methods that rely on splines, Giacofci. et al. show that 

the waveclust method has a better estimation of the residuals. Another strength of the waveclust 

algorithm is that it has better computation time than spline-based functional clustering algorithms 

(Giacofci et al., 2013). 

VII. FSCM (Jiang & Serban, 2012)  

The functional spatial clustering method (fscm) uniquely specializes with handling spatially 

independent functions that are time varying. 

Mathematically, this can be expressed as  

Yij = fsj(tij ) + σεεij , j = 1, . . . , n 

where the cluster information will enter in the model with different fsj (t) for each cluster 

(Huijing & Serban, 2012). 

Mathematically, fscm “models the spatial dependence in the joint distribution of (Yj , Zj ), j = 1, . 

. . , n by assuming spatial dependence on the cluster membership Zj , j = 1, . . . , n and on the 

conditional distribution of Yj|Zj , j = 1, . . . , n” (Huijing & Serban, 2012). A major advantage of 

specifying “spatial dependence in the joint distribution (Yj , Zj )” is that it “allows borrowing 
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information across curves corresponding to nearby locations yet maintaining local resolution 

which will lead to enhanced estimation accuracy of the cluster patterns and of the cluster 

membership” (Huijing & Serban, 2012). 

Interestingly, a nonparametric model with spatially correlated errors is used as the underlying 

clustering model. Fscm also uniquely “assumes that the clustering membership is a realization 

from a Markov random field” (Huijing & Serban, 2012). Under the assumption of Markov, the 

probability a curve belongs to its nearest neighbors depends on the state of the cluster 

membership and fscm uses k-nearest neighborhoods to describe the structure of the 

neighborhood. 

By borrowing information across functions and stating these assumptions, “enhanced estimation 

accuracy of the cluster effects and of the cluster membership” is a result.  

Because of the difficulty in maximizing a likelihood under spatial dependence, Serban and 

Huijing propose using “a pseudo-likelihood imputation for Z1, . . . , Zn and Monte-Carlo 

approximations in the imputation of the latent variables” (2012). 

Therefore they can define the joint distribution of Z1, …, Zn for curves Y1,…,Yn such that: 

𝑧𝑗𝑘 ̂ ≈  
1

𝑀
 ∑ 𝐸[𝑍𝑗𝑘|𝑌1, … , 𝑌𝑛,ϒ𝑚]  

𝑀

𝑚=1

≈  
1

𝑀
 ∑ 𝐸[𝑍𝑗𝑘|𝑌1, … , 𝑌𝑛, ϒ̂] = 𝐸[𝑧𝑗𝑘|𝑌1, … , 𝑌𝑛,

𝑀

𝑚=1

ϒ̂] 
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A major strength of fscm’s method is its account for spatial dependence. One weakness that is 

important to note is that the conditional independence assumption for Yj|Zj for computational 

feasibility has been a disagreement among other work (Huijing & Serban , 2012). 

Methods of Analysis 

For this analysis, the R package of “funcy” was utilized to perform functional data cluster 

analysis. The funcit function in “funcy” was used to perform fitfclust (James & Sugar, 2003), 

distclust (Peng & Muller, 2008), iterSubspace (Chiou & Ling Li, 2007), funclust (Jacques & 

Preda, 2013), waveclust (Giacofci et al. , 2013), and fscm (Jiang & Serban, 2012). K-Means 

clustering was performed using the kmeans.fd R function. To use these procedures, the data also 

needed to be converted into a functional data object in R. This was accomplished by 

formatFuncy function in “funcy” under the Format1 argument. The statistical measures of 

agreement were also calculated using the confusionMatrix function in the “caret” and “e1071” 

packages in R. Weighted kappa was additionally calculated using the wkappa function in the 

“psych” package in R. The seeds 12345 and 123456 were also used for the reproducibility of the 

analysis. 

It is also important to note that each clustering procedure by default outputs clusters labeled as 1 

and 2 when specified to cluster the data into two groups. To assess agreement between the 

proposed clusters and expert scores, the proposed clusters under each clustering procedure were 

re-labeled to correspond to the expert score. This relabeling technique was clinically driven as 

individuals with obstructed kidneys had higher concentrations of MAG3 across most time points 

including the final time points. Hence, this can mathematically be evaluated by comparing the 

sum of the cluster center across the final time points. Mathematically, we relabeled cluster 1 

from the clustering algorithm as obstructed if the sum of the last five centers of cluster 1 were 
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greater than the last five centers of cluster 2. It follows that cluster 2 in that case would be 

labeled as the not-obstructed group. Moreover, cluster 2 from the clustering algorithm was 

relabeled as obstructed if the sum of the last five centers of cluster 2 were greater than the last 

five centers of cluster 1. Then, cluster 1 would be relabeled as the not obstructed group.  

Training Set Construction 

Initial analysis was done only on the training set in order to gain a better understanding of the 

performance of the unsupervised clustering algorithms. The training set is a subset of the 216 

renogram curves and only contains renogram curve data for individuals that had all three experts 

give the same score for obstructed kidney (2) or not obstructed kidney (0). For example, an 

individual where all experts gave a score of 2 were included in the training set. Individuals with 

all equivocal scores were not included in this dataset to ensure proper evaluation of each 

clustering method on well-defined renogram curves. Although there are a total of 175 curves that 

fit this criterion, the training set contains data for 147 renogram curves. The 147 renogram 

curves were randomly chosen from the 175 total renogram curves with the sample function in R 

to randomly choose 147 patient id’s. The remaining 28 curves were used as the validation set for 

the second part of the analysis. The 147 curve observations were measured across 99 time points 

where 35 curves were scored as obstructed and 112 curves were scored as not obstructed. 

Training Set Procedure 

K-means and the functional data clustering algorithms were evaluated with the training set. Two-

by-two count tables were constructed after each clustering procedure to cross-tabulate the 

number of renogram curves with respect to the proposed cluster classification under each 

clustering procedure and the expert consensus score (see Appendix, Figure A). Agreement was 
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assessed through the calculation of statistical measures of Kappa, Sensitivity, Specificity, 

Positive Predictive Value, and Negative Predictive Value (Agresti, 2002). 

Figure 1 - Diagram of Validation Set Construction 

 

Figure 1 illustrates how the training set and validation set were constructed from the 175 

renogram curves that had a consensus across the three experts. 

Validation Set Construction 

The validation set is a subset of the 175 renogram curves where there was a consensus of expert 

score ratings across the three experts. Specifically, the validation set contains 28 curves were 20 

of the curves were rated by all three experts as not obstructed and eight of the curves were rated 

by all three experts as obstructed. The validation set consist of the remaining curves in the 175 

renogram curves dataset that were not selected by the random sampling that was utilized in the 

training set. 

Validation Set Procedure 

The validation set was the starting point for the analysis to validate the clustering algorithms. 

Each renogram curve data (one row of the validation set), was added onto the training set data as 
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shown in figure B in the appendix. Hence, after one renogram curve from the validation set was 

added onto the 147 observations in the training set, a new data set of 148 observations was used 

in the analysis in order to obtain the predicted obstruction status for the newly added kidney. 

This "include-one-prediction" procedure was repeated to create 28 different datasets so that each 

kidney’s renogram curve in the validation set can be tested one at a time.  

Each dataset underwent the seven functional data clustering method that were evaluated. For this 

analysis, the k-Means and the six functional clustering algorithms procedure were run. After 

each clustering algorithm was run, every renogram curve in the validation set was given a 

predicted obstruction status by each clustering algorithm. Then, cross-tabulation tables of the 

number of renogram curve were made with respect to each clustering method’s proposed 

classification of the curves and the expert’s consensus score of the curve. Agreement was 

assessed through the calculation of statistical measures of Kappa, Sensitivity, Specificity, 

Positive Predictive Value, and Negative Predictive Value (Agresti, 2002). 

Hard-to-Interpret Set Construction                                                                                                   

Figure 2 – Diagram of Hard-To-Interpret Set Construction 

Figure two illustrates how the hard-to-interpret set was constructed from                                    

difficult renogram curves. 
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The hard-to-interpret set contains renogram curve data that are considered as “difficult cases.” A 

renogram curve is considered a “difficult case” when the three experts did not all give the same 

rating. There were a total of 41 renogram curves that were “difficult cases” where 14 of the 

curves had two out of three experts give a not obstructed rating, 13 of the curves had two out of 

three experts give an equivocal rating, and 14 of the curves had two out of three experts give an 

obstructed rating.  This analysis only focused on the curves where a majority of experts gave a 

not obstructed and obstructed score so only 28 curves were contained in the hard-to-interpret set. 

Hard-To-Interpret Set Procedure 

The hard-to-interpret set was the starting point to see how the strongest performing clustering 

algorithms handle difficult renogram curves. Similar to the validation set procedure as displayed 

in figure B of the appendix, each renogram curve data (row of the hard-to-interpret set), was 

added onto the training set data. Hence, after one renogram curve from the second test set was 

added onto the consensus training set, a new data set of 148 observations was used in the 

analysis. This procedure was repeated to create 28 different datasets so that one hard-to-interpret 

set curve can be tested at a time 

Each dataset underwent the specific functional data clustering method that was evaluated. For the 

this part of the analysis, the strongest performing clustering algorithms from the validation set 

analysis of fscm (Jiang & Serban, 2012) and waveclust (Giacofci et al. , 2013) procedure were 

evaluated. After each clustering algorithm run, cross-tabulations count tables of the renogram 

curves were made with respect to each clustering method’s proposed classification of the curves 

and each expert’s rating. Agreement was assessed through the calculation of weighted kappa 

(Agresti, 2002). 
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Handling Equivocal Cases in Hard-To-Interpret Set 

Figure 3 – Illustration of the Two Scenarios of Handling Equivocal Cases 

 

Figure three provides a visual of how equivocal counts were examined under two frameworks. 

We considered two scenarios to deal with equivocal expert ratings when comparing the proposed 

classification by the clustering algorithm with a single expert. This modification was needed to 

calculate weighted kappa in order to keep the scoring the same with the two levels of (0-Not 

Obstructed, 2- Obstructed) on both sides of the 2 x 2 table. As shown in figure 3 above, one 

scenario that took place is that equivocal case counts of renogram curves were moved and 

combined with the counts that agree with the cluster algorithm classification. In other words, the 

equivocal expert opinion will always be treated as concordant to whichever of the two group 

assignments (obstructed or non-obstructed) each clustering algorithm provides. This takes into 

account that the equivocal rating curves can actually agree with the true biological outcome of 

the kidney being truly obstructed or not obstructed. As shown in figure 3, the second framework 
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that was used was to move and combine equivocal rating counts that disagree with the cluster 

algorithm classification. In other words, the equivocal expert opinion will always be treated as 

discordant to whichever of the two group assignments (obstructed or non-obstructed) each 

clustering algorithm provides This takes into account that the equivocal rating curve can actually 

disagree with the true biological outcome of the kidney being truly obstructed or not obstructed. 

By evaluating both cases, this method takes into consideration that the equivocal rating can truly 

mean biologically that a kidney is obstructed or not obstructed kidney. The modifications were 

only applied to expert one and expert three because expert two gave no equivocal ratings on any 

curves in testing set two. All combinations of the three expert scores were also compared and 

evaluated. For each 2x2 table, weighted kappa was calculated (Agresti, 2002). 

Results                    

I. Training Set Results                                                                                                                

Figure 4- Illustration of K-Means Clustering Procedure 

 

 

 

 

 

 

 

Figure four visually shows how the k-means procedure assigned each curve into 2 clusters (green- not 

obstructed, red- obstructed). The second panel illustrates the center curve for each of the two clusters. 
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Figure 5 - Illustration of Functional Clustering Procedure 

 

Figure five illustrates how each of the clustering algorithms places each curve into two clusters                    

(black{cl 1}- not obstructed, red{cl 2}-obstructed). 

 

Figure 6- Illustration of Functional Clustering Algorithm Cluster Centers

Figure six illustrates the cluster centers proposed by each functional data clustering algorithm. 

(Black – Not Obstructed, Red – Obstructed) 
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Table 1 - Agreement Measures for Training Set Analysis  

N = 147 

 KAPPA SENSITIVITY SPECIFICITY POSITIVE 
PREDICTIVE 

VALUE 

NEGATIVE 
PREDICTIVE 

VALUE 

K-MEANS 0.5333 42.86% 100.00% 100.00% 84.85% 
FITFCLUST 0.096 51.43% 60.71% 29.03% 80.00% 
DISTCLUST 0.6877 71.43% 94.64% 80.65% 91.38% 

ITERSUBSPACE 0.7322 77.14% 94.64% 81.82% 92.98% 
FUNCLUST 0.0444 71.43% 35.71% 25.77% 80.00% 

FSCM 0.7917 82.86% 95.54% 85.29% 94.69% 
WAVECLUST 0.522 91.43% 74.11% 52.46% 96.51% 

Note: In table 1, sensitivity is defined as the probability that a clustering algorithm will indicate 

obstructed among those who truly have an obstructed kidney. Specificity is the probability that a 

clustering algorithm will indicate not obstructed out of those who truly do not have an obstructed kidney. 
Positive predictive value is defined here as the probability that subjects classified as obstructed by the 

clustering algorithm truly have an obstructed kidney. Negative predictive value here is the probability that 

subjects classified as not obstructed by the clustering algorithm truly do not have an obstructed kidney. 

The results presented in table one illustrate that certain clustering algorithms perform well while 

others perform poorly in the classification of obstructed and not obstructed renogram curves.  

The agreement measures were calculated from the 2x2 tables one through seven found in the 

appendix. The functional data clustering algorithm of fscm (Jiang & Serban, 2012) performs the 

best in contrast to the other clustering methods with its kappa of 0.7917, sensitivity of 82.86%, 

specificity of 95.54%, positive predictive value of 85.29%, and negative predictive value of 

94.69%. The second highest performing clustering algorithm is itersubspace (Chiou & Ling Li, 

2007) with a kappa of 0.7322. Fitfclust (James & Sugar, 2003) and funclust (Jacques & Preda, 

2013) performed the weakest in terms of agreement with a kappa of 0.096 and 0.0444 

respectively. With a kappa value greater than 0.7, there is statistically significant evidence to 

suggest a strong agreement of the obstructed and not obstructed kidney rating of the renogram 

curves between the expert consensus score and the proposed clusters from fscm (Jiang & Serban, 

2012) and itersubspace (Chiou & Ling Li, 2007) respectively.  
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II. Validation Set Results 

Table 2 – Agreement Measures for the Validation Set 

28 Samples of N = 148 

 KAPPA SENSITIVITY SPECIFICITY POSITIVE 
PREDICTIVE 

VALUE 

NEGATIVE 
PREDICTIVE 

VALUE 

K-MEANS 0.4615 37.50% 100.00% 100.00% 80.00% 
FITFCLUST -0.1818 12.50% 70.00% 14.29% 66.67% 
DISTCLUST 0.6216 62.50% 95.00% 83.33% 86.36% 

ITERSUBSPACE 0.6216 62.50% 95.00% 83.33% 86.36% 
FUNCLUST 0.0292 100.00% 5.00% 29.63% 100.00% 

FSCM 0.7273 75.00% 95.00% 85.71% 90.48% 
WAVECLUST 0.6957 100.00% 80.00% 66.67% 100.00% 

Note: In table 2, sensitivity is defined as the probability that a clustering algorithm will indicate 

obstructed among those who truly have an obstructed kidney. Specificity is the probability that a 

clustering algorithm will indicate not obstructed out of those who truly do not have an obstructed kidney. 
Positive predictive value is defined here as the probability that subjects classified as obstructed by the 

clustering algorithm truly have an obstructed kidney. Negative predictive value here is the probability that 

subjects classified as not obstructed by the clustering algorithm truly do not have an obstructed kidney. 

Table 2 presents the validation results of each functional data clustering algorithm after the 

inclusion of a single new renogram curve for 28 different curves. The agreement measures in 

table 2 were calculated from the 2x2 tables found in tables eight to 14 in the appendix. Like in 

the training set analysis, fscm (Jiang & Serban, 2012) performs the best with respect to 

agreement with a kappa value of 0.7273, sensitivity of 75.00%, specificity of 95.00%, positive 

predictive value of 85.71%, and negative predictive value of 90.48%. The second strongest 

clustering method in the validation set analysis is waveclust with a kappa of 0.6957. With a 

kappa value greater than 0.7, there is statistically significant evidence to suggest a strong 

agreement of obstructed and not obstructed kidney rating between the expert consensus score 

and the proposed clusters from fscm (Jiang & Serban, 2012). Unlike in aim one, itersubspace 

(Chiou & Ling Li, 2007) is not the second strongest method in producing the best agreement 

between the expert rating score and the proposed clusters. Similar to the consensus training set 

analysis as well, the two weakest performing clustering algorithm include funclust (Jacques & 
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Preda, 2013), and fitfclust (James & Sugar, 2003) with a kappa of 0.0292 and -0.1818 

respectively.  

III. Hard-To-Interpret Set Results 

Table 3 – Weighted Kappa Measures for Hard-To-Interpret Set  

N = 28 

TWO WAY AGREEMENT COMPARISON WEIGHTED KAPPA  
(EQUIVOCAL MOVED TO 
AGREEMENT) 

WEIGHTED KAPPA 
(EQUIVOCAL MOVED TO 
DISAGREEMENT) 

CASE 1: FSCM AND EXPERT ONE 0.5602 -0.0616 
CASE 2: FSCM AND EXPERT TWO -0.2912 NA 
CASE 3: FSCM AND EXPERT THREE 0.0718 -0.2315 
CASE 4: EXPERT ONE AND EXPERT TWO 0.3368 -0.3434 
CASE 5: EXPERT ONE AND EXPERT THREE -0.05514 NA 
CASE 6: EXPERT TWO AND EXPERT THREE 0.4948 0.0000 
CASE 7: WAVECLUST AND EXPERT ONE 0.5692 -0.1487 
CASE 8: WAVECLUST AND EXPERT TWO 0.0618 NA 
CASE 9: WAVECLUST AND EXPERT THREE 0.0714 -0.4358 

 

Table 4 – Difficult Cases Ratings Across Experts and Clustering Algorithms 

Case Number Expert 1 
(AT.L) 

Expert 2 
(ED.L) 

Expert 3 
(RH.L) 

FSCM 
Clustering 

Waveclust 
Clustering 

1      

2      

3      

4      

5      

6      

7      

8      

9      

10      

11      

12      

13      

14      

15      

16      

17      
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18      

19      

20      

21      

22      

23      

24      

25      

26      

27      

28      
Key: Red - Obstructed Rating (2); Yellow - Equivocal Rating (1); Green - Not Obstructed Rating (0) 

From table 3, both fscm (Jiang & Serban, 2012) and waveclust (Giacofci et al., 2013) have the 

greatest agreement (kappa of 0.5602 and 0.5692 respectively) when compared with expert one 

when equivocal cases were moved under the agreement scenario. Even when the equivocal cases 

were moved under the disagreement scenario, fscm (Jiang & Serban, 2012) and waveclust 

(Giacofci et al., 2013) still had the greatest agreement with expert one. This illustrates that the 

clustering algorithm proposed classifications were most similar to expert one. Interestingly, 

expert one gave the most equivocal results which demonstrates that the clustering algorithm does 

not align with the majority score (two out of three experts agree) for “difficult case” renogram 

curves. This can be seen in table four as fscm (Jiang & Serban, 2012) and waveclust (Giacofci et 

al., 2013) agreed with the majority expert score only 42.86% (12/28) and 50.00% (14/28) of the 

time respectively. It is also interesting to note that fscm (Jiang & Serban, 2012) tended to be 

more conservative and give a higher percentage of 67.86% (19/28) of not obstructed ratings 

when compared to waveclust (Giacofci et al., 2013) giving a not obstructed rating 46.43% 

(13/28) of the time. It follows that waveclust (Giacofci et al., 2013) was not as conservative by 

giving a greater percentage of 53.57% (15/28) of obstructed ratings when compared to fscm’s 

32.14% (9/28) provision of obstructed ratings. 
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Discussion 

Fscm (Jiang & Serban, 2012) has been one of the strongest performing clustering algorithm 

across the analysis. Fscm’s strong performance encourage further investigation of its assumption 

of spatial dependence between the joint distribution of the curves and cluster membership. This 

assumption allows the fscm method to borrow information from other curves in the classification 

of renogram curves. Waveclust’s good performance of the “difficult case” curves with the hard-

to-interpret set motivate the importance of further research of the potential of wavelet basis to 

account for functional random effects, rather than splines, to help with prediction and 

classification of renogram curves.  

On the other hand, fitfclust (James & Sugar, 2003) has consistently been one of the weakest 

performing clustering algorithms. Fitfclust’s advantage to deal with sparse, irregular time point 

curves is not effective here as our curve measurements were equally spaced and not sparse. 

Fitfclust’s incorporation of spline methods may also not be superior in the classification of 

renogram curves. 

A strong assumption of the independence between each patient’s right and left kidney is one 

limitation of this analysis. In this analysis, a patient’s right and left kidney were treated as 

independent, separate observations. However, these measurements may actually be dependent 

since these two biological measurements were taken on the same individual. Future work can see 

how the dependent nature of these measurements may affect the results of the analysis. 

Another limitation of the functional data clustering algorithms lies with respect to the handling of 

abnormal, outlier renogram curves. As many clustering algorithms are sensitive to cluster 

centers, abnormal renogram curves may produce inconsistent results in classifying renogram 

curves as obstructed or not obstructed. This sensitivity to the cluster center motivated our 
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methods to consider the sensitivity by adding “one difficult case” curve at a time in our 

validation set and hard-to-interpret set analysis. Future work can look at how to properly increase 

the robustness of these functional data clustering methods with respect to outliers. 

A final limitation of this analysis is the small sample size. With more data, unsupervised 

methods can become more powerful as there are more data to train each method. With only 216 

curves, one of our test sets only had 28 curves that were used to assess for the classification task. 
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Appendix 

 

Figure A – Diagram of Consensus Training Set Procedure 

 

 

Figure B - Diagram of Validation Set and Hard-To-Interpret Set Procedure 

 

Table 1 -  Cross Tabulation of K-Means Classification And Expert Consensus Score, N = 147 

 OBSTRUCTED 
(EXPERT – SCORE 2) 

NOT OBSTRUCTED 
(EXPERT – SCORE 0) 

K-MEANS 
OBSTRUCTED 

15 
(42.86%) 

0                                                                        
(0.00%) 

K-MEANS  
NON-OBSTRUCTED 

20 
(57.14%) 

112 
(100.00%) 
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Table 2 -  Cross Tabulation of Fitfclust Classification And Expert Consensus Score, N = 147 

 OBSTRUCTED 
(EXPERT – SCORE 2) 

NOT OBSTRUCTED 
(EXPERT – SCORE 0) 

FITFCLUST 
OBSTRUCTED 

18 
(51.43%) 

 44 
                            (39.29%) 

FITFCLUST 
NON-OBSTRUCTED 

17 
(48.57%) 

68 
(60.71%) 

 

Table 3 -  Cross Tabulation of Distclust Classification And Expert Consensus Score, N = 147 

 OBSTRUCTED 
(EXPERT – SCORE 2) 

NOT OBSTRUCTED 
(EXPERT – SCORE 0) 

DISTCLUST 
OBSTRUCTED 

25 
(71.43%) 

6 
(5.36%) 

DISTCLUST 
NON-OBSTRUCTED 

10 
(28.57%) 

106 
(94.64%) 

 

Table 4 -  Cross Tabulation of IterSubspace Classification And Expert Consensus Score, N = 147 

 OBSTRUCTED 
(EXPERT – SCORE 2) 

NOT OBSTRUCTED 
(EXPERT – SCORE 0) 

ITERSUBSPACE 
OBSTRUCTED 

27 
(77.14%) 

6 
(5.36%) 

ITERSUBSPACE 
NON-OBSTRUCTED 

8 
(22.86%) 

106 
(94.64%) 

 

 

Table 5 -  Cross Tabulation of Funclust Classification And Expert Consensus Score, N = 147 

 OBSTRUCTED 
(EXPERT – SCORE 2) 

NOT OBSTRUCTED 
(EXPERT – SCORE 0) 

FUNCLUST 
OBSTRUCTED 

25 
(71.43%) 

72 
(64.29%) 

FUNCLUST 
NON-OBSTRUCTED 

10 
(28.57%) 

40 
(35.71%) 

 

 

Table 6 -  Cross Tabulation of Waveclust Classification And Expert Consensus Score, N = 147 

 OBSTRUCTED 
(EXPERT – SCORE 2) 

NOT OBSTRUCTED 
(EXPERT – SCORE 0) 

WAVECLUST 
OBSTRUCTED 

32 
(91.43%) 

29 
(25.89%) 

WAVECLUST 
NON-OBSTRUCTED 

3 
(8.57%) 

83 
(74.11%) 
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Table 7 -  Cross Tabulation of Fscm Classification And Expert Consensus Score, N = 147 

 OBSTRUCTED 
(EXPERT – SCORE 2) 

NOT OBSTRUCTED 
(EXPERT – SCORE 0) 

FSCM 
OBSTRUCTED 

29 
(82.86%) 

5 
(4.46%) 

FSCM 
NON-OBSTRUCTED 

6 
(17.14%) 

107 
(95.54%) 

 

Table 8 -  Cross Tabulation of K-Means Classification And Expert Consensus Score, N = 28 

 OBSTRUCTED 
(EXPERT – SCORE 2) 

NOT OBSTRUCTED 
(EXPERT – SCORE 0) 

K-MEANS 
OBSTRUCTED 

3 
(37.50%) 

0 
(0.00%) 

K-MEANS  
NON-OBSTRUCTED 

5 
(62.50%) 

20 
(100.00%) 

 

Table 9 -  Cross Tabulation of IterSubspace Classification And Expert Consensus Score, N = 28 

 OBSTRUCTED 
(EXPERT – SCORE 2) 

NOT OBSTRUCTED 
(EXPERT – SCORE 0) 

ITERSUBSPACE 
OBSTRUCTED 

5 
(62.50%) 

1 
(5.00%) 

ITERSUBSPACE 
NON-OBSTRUCTED 

3 
(37.50%) 

19 
(95.00%) 

 

Table 10 -  Cross Tabulation of Fscm Classification And Expert Consensus Score, N = 28 

 OBSTRUCTED 
(EXPERT – SCORE 2) 

NOT OBSTRUCTED 
(EXPERT – SCORE 0) 

FSCM 
OBSTRUCTED 

6 
(75.00%) 

1 
(5.00%) 

FSCM 
NON-OBSTRUCTED 

2 
(25.00%) 

19 
(95.00%) 

 

Table 11-  Cross Tabulation of Distclust Classification And Expert Consensus Score, N = 28 

 OBSTRUCTED 
(EXPERT – SCORE 2) 

NOT OBSTRUCTED 
(EXPERT – SCORE 0) 

DISTCLUST 
OBSTRUCTED 

5 
(62.50%) 

1 
(5.00%) 

DISTCLUST 
NON-OBSTRUCTED 

3 
(37.50%) 

19 
(95.00%) 

 

Table 12-  Cross Tabulation of Waveclust Classification And Expert Consensus Score, N = 28 

 OBSTRUCTED 
(EXPERT – SCORE 2) 

NOT OBSTRUCTED 
(EXPERT – SCORE 0) 

WAVECLUST 
OBSTRUCTED 

8 
(100.00%) 

4 
(20.00%) 

WAVECLUST 
NON-OBSTRUCTED 

0 
(0.00%) 

16 
(80.00%) 
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Table 13 -  Cross Tabulation of Fitfclust Classification And Expert Consensus Score , N = 28 

 OBSTRUCTED 
(EXPERT – SCORE 2) 

NOT OBSTRUCTED 
(EXPERT – SCORE 0) 

FITFCLUST 
OBSTRUCTED 

1 
(12.50%) 

6 
(30.00%) 

FITFCLUST 
NON-OBSTRUCTED 

7 
(87.50%) 

14 
(70.00%) 

 

Table 14 -  Cross Tabulation of Funclust Classification And Expert Consensus Score , N = 28 

 OBSTRUCTED 
(EXPERT – SCORE 2) 

NOT OBSTRUCTED 
(EXPERT – SCORE 0) 

FUNCLUST 
OBSTRUCTED 

8 
(100.00%) 

19 
(95.00%) 

FUNCLUST 
NON-OBSTRUCTED 

0 
(0.00%) 

1 
(5.00%) 

 

Table 15 -  Cross Tabulation of Fscm Classification and Expert One Score , N = 28 

 Not Obstructed 
(Expert – Score 0) 

Equivocal 
(Expert – Score 1) 

 Obstructed 
(Expert – Score 2) 

Fscm 
Not Obstructed 

7 
 

7 
 

5 
 

Fscm 
Obstructed 

1 
 

3 
 

5 
 

 

 

Table 16 – Agreed Table of Fscm Classification and Expert One Score        Table 17 – Disagreed Table of Fscm Classification and Expert One Score 

 Not Obstructed 
(Expert – Score 0) 

Obstructed 
(Expert – Score 2) 

Fscm 
Not Obstructed 

14 
 

5 
 

     Fscm 
Obstructed 

1 
 

8 
 

 

 

Table 18 -  Cross Tabulation of Fscm Classification and Expert Two Score , N = 28 

 Not Obstructed 
(Expert – Score 0) 

Obstructed 
(Expert – Score 2) 

Fscm 
Not Obstructed 

6 13 

     Fscm 
Obstructed 

6 3 

 

 

 

 

 Not Obstructed 
(Expert – Score 0) 

 Obstructed 
(Expert – Score 2) 

Fscm 
Not Obstructed 

7 12 

Fscm 
Obstructed 

4 5 
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Table 19 -  Cross Tabulation of Fscm Classification and Expert Three Score , N = 28 

 Not Obstructed 
(Expert – Score 0) 

Equivocal 
(Expert – Score 

1) 

 Obstructed 
(Expert – Score 2) 

Fscm 
Not Obstructed 

5 7 7 

Fscm 
Obstructed 

5 0 4 

 

Table 20 – Agreed Table of Fscm Classification and Expert Three Score   Table 21 – Disagreed Table of Fscm Classification and Expert Three Score 

 Not Obstructed 
(Expert – Score 0) 

Obstructed 
(Expert – Score 2) 

Fscm 
Not Obstructed 

12 7 

     Fscm 
Obstructed 

5 4 

 

 

Table 22 -  Cross Tabulation of Expert One and Expert Two Score, N = 28 

 Expert One 
Not Obstructed 

Expert One 
Equivocal 

 Expert One 
Obstructed 

Expert Two 
Not Obstructed 

4 3 5 

Expert Two 
Obstructed 

4 7 5 

 

Table 23 – Agreed Table of Expert One and Expert Two Score                    Table 264– Disagreed Table of Expert One and Expert Two Score 

 Expert One 
Not Obstructed 

Expert One 
Obstructed 

Expert Two 
Not Obstructed 

7 5 

     Expert Two 
Obstructed 

4 12 

 

 

 

 

 

 

 

 

 

 

 Not Obstructed 
(Expert – Score 0) 

Obstructed 
(Expert – Score 2) 

Fscm 
Not Obstructed 

5 14 

     Fscm 
Obstructed 

5 4 

 Expert One 
Not Obstructed 

Expert One 
Obstructed 

Expert Two 
Not Obstructed 

4 8 

Expert Two 
Obstructed 

11 5 
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Table 25 -  Cross Tabulation of Expert Two and Expert Three Score, N = 28 

 Expert One 
Not Obstructed 

Expert One 
Equivocal 

 Expert One 
Obstructed 

Expert Two 
Not Obstructed 

6 3 3 

Expert Two 
Obstructed 

4 4 8 

 

Table 26 – Agreed Table of Expert Two and Expert Three Score                       Table 27 – Disagreed Table of Expert Two and Expert Three Score 

 Expert One 
Not Obstructed 

Expert One 
Obstructed 

Expert Two 
Not Obstructed 

9 3 

     Expert Two 
Obstructed 

4 12 

 

 

Table 28-  Cross Tabulation of Expert One and Expert Three Score, N = 28 

 Expert Three 
Not Obstructed 

Expert Three 
Equivocal 

 Expert Three 
Obstructed 

Expert One 
Not Obstructed 

3 3 2 

Expert One 
Equivocal 

3 0 7 

Expert Two 
Obstructed 

4 4 2 

 

Table 29 -  Cross Tabulation of Expert One and Waveclust, N = 28 

 Obstructed 
(Expert 1– Score 2) 

Equivocal 
(Expert 1– Score 1) 

Not Obstructed 
(Expert 1 – Score 0) 

Waveclust 
Not Obstructed 

5 5 3 

Waveclust 
Obstructed 

3 5 7 

 

Table 30 – Agreed Table of Expert Two and Expert Three Score                    Table 31 – Disagreed Table of Expert Two and Expert Three Score 

 Obstructed 
(Expert– Score 2) 

Not Obstructed 
(Expert – Score 0) 

Expert Two 
Obstructed 

10 3 

     Expert Two 
Non-Obstructed 

3 12 

 

 

 

 

 Expert One 
Not Obstructed 

Expert One 
Obstructed 

Expert Two 
Not Obstructed 

6 6 

Expert Two 
Obstructed 

8 8 

 Obstructed 
(Expert – Score 2) 

Not Obstructed 
(Expert – Score 0) 

Expert Two 
Obstructed 

5 8 

Expert two 
Non-Obstructed 

8 7 
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Table 32 -  Cross Tabulation of Waveclust Classification and Expert Two Score , N = 28 

 Not Obstructed 
(Expert – Score 0) 

Obstructed 
(Expert – Score 2) 

Waveclust 
Not Obstructed 

6 7 

Waveclust 
Obstructed 

6 9 

 

Table 33 -  Cross Tabulation of Expert Three and Waveclust, N = 28 

 Obstructed 
(Expert 3– Score 2) 

Equivocal 
(Expert 3– Score 1) 

Not Obstructed 
(Expert 3 – Score 0) 

Waveclust 
Not Obstructed 

3 4 6 

Waveclust 
Obstructed 

7 3 5 

 

Table 34 – Agreed Table of Waveclust and Expert Three Score                    Table 35 – Disagreed Table of Waveclust and Expert Three Score 

 Obstructed 
(Expert– Score 2) 

Not Obstructed 
(Expert – Score 0) 

Expert Two 
Obstructed 

7 6 

     Expert Two 
Non-Obstructed 

7 8 

 

Table 36 - Rand Index Across Clustering Methods for Curves 

Methods fitfclust distclust iterSubspace funclust funHDDC fscm waveclust 

fitfclust NA 0.6819 0.6819 0.0074 0.0000 0.6639 0.2203 

distclust 0.6819 NA 0.9591 0.0013 0.0000 0.9836 0.1788 

iterSubspace 0.6819 0.9591 NA -0.0090 0.0000 0.9794 0.1788 

funclust 0.0074 0.0013 -0.0090 NA 0.0000 -0.0063 -0.0015 

funHDDC 0.0000 0.0000 0.0000 0.0000 NA 0.0000 0.0000 

fscm 0.6639 0.9386 0.9794 -0.0063 0.0000 NA 0.1710 

waveclust 0.2203 0.1788 0.1788 -0.0015 0.0000 0.1710 NA 

 

 

Table 37 - Elapsed Computational Time Across Methods for Combined Baseline and Diuretic Curves 

Clustering Method Time (Minutes) 

Fitfclust 2.78 

Distclust 113.03 

iterSubspace 0.24 

funclust 24.37 

funHDDC 0.05 

fscm 5.45 

waveclust 20.54 

 Obstructed 
(Expert – Score 2) 

Not Obstructed 
(Expert – Score 0) 

Expert Two 
Obstructed 

3 10 

Expert two 
Non-Obstructed 

10 5 
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Table 38 – Distribution of Gender Across Groups 

 Group 1 Group 2 Group 3 Group 4 All Groups 

Male 31 23 11 23 54 (Left or Right),   
108 (Left and Right) 

Female 18 26 35 26 54 (Left or Right),   
108 (Left and Right) 

 

Table 39 – Distribution of Age Across Groups 

 Group 1 Group 2 Group 3 Group 4 All Groups 

Mean 58.35 58.67 58.67 56.15 57.16 

Minimum 25 18 18 18 18 

First Quartile 43 48 48 44 41.75 

Median 61 61 61 57 59.50 

Third 
Quartile 

70 71 71 67.75 70.00 

Max 87 83 83 83 87.00 

 

Table 40 – Number of Curves Across Groups 

 Group 1 Group 2 Group 3 Group 4 All Groups 

Count (Left) 91 82 12 40 108 

 

Table 41 – Number of Curves Across Diagnosis 

 

 

 

 

 

 

 

 

 

 

 Obstructed Equivocal Non-
Obstructed 

Curves 58 10 145 
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Plot A- Plot of Whole Kidney Curves 

 

 

Plot B – Mean Whole Kidney Curves 
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R Code 

y1l <- group1234_Left_curve_expert_data  %>% select(V6:V64) # Extract Baseline curves for left 

kidney 

y1r <- group1234_Right_curve_expert_data  %>% select(V6:V64) # Extract Baseline curves for right 

kidney 

y1 <- t(rbind(y1l,y1r))/1000 # Stacking left and right kidney baseline curves with scale divided by 1000 

y2l <- group1234_Left_curve_expert_data  %>% select(a1:a40) # Extract second curves for left kidney 

y2r <- group1234_Right_curve_expert_data  %>% select(a1:a40) # Extract second curves for right 

kidney 

y2 <- t(rbind(y2l,y2r))/1000 # Stacking left and right kidney second curves with scale divided by 1000 

 

Xl <-  group1234_Left_curve_expert_data  %>% select(AGE, Gender) 

Xr <-  group1234_Right_curve_expert_data  %>% select(AGE, Gender) 

X <- rbind(Xl,Xr) 

X[,1] <- (X[,1] - mean(X[,1]))/sd(X[,1]) 

X <- matrix(as.numeric(t(X)),nrow=2) 

 

Wl <- as.matrix(group1234_Left_curve_expert_data[,c(6,7,8)]) # Three sets of Expert ratings for left 

kidney 

Wr <- as.matrix(group1234_Right_curve_expert_data[,c(6,7,8)]) # Three sets of Expert ratings for right 

kidney 

W <- t(rbind(Wl, Wr)) # Stacking three sets of expert ratings for left and right kidneys 

  

yf1 <- fdata(t(y1), argvals = Baseline_Time_Interval) # Registered baseline curves 

yf2 <- fdata(t(y2), argvals = Diuretic_Time_Interval) # Registered second curves 

 

ave_y1 <- c(rep(NULL,59)) 

 

for(i in 1:59) { 

  ave_y1[i] <- mean( t(y1)[,i] ) 

} 
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plot(yf1, main = "Whole Kidney Curves", xlab = "Baseline Time", ylab = "Concentration in Kidney") # 

Plot them 

lines(ave_y1, type = "l", lwd = 8, col = "black") #Plot the average curve for all groups 

 

ave_y2 <- c(rep(NULL,40)) 

 

for(i in 1:40) { 

  ave_y2[i] <- mean( t(y2)[,i] ) 

} 

 

plot(yf2, main = "Diuretic Whole Kidney Curves", xlab = "Diuretic Time" , ylab = "Concentration in 

Kidney") 

lines(ave_y2, type = "l", lwd = 8, col = "black") #Plot the average curve for all groups 

 

#Majority Voting Coding 

 

Exp_Majority <- t(W) 

Exp_Majority <- as.data.frame(Exp_Majority) 

nrow(Exp_Majority) 

Exp_Majority[1,2] 

Majority <- rep(0, 216) 

Exp_Majority <- cbind(Exp_Majority, Majority) 

 

for (i in 1:nrow(Exp_Majority)) { 

  #If all experts agree, give majority the same vote 

  if((Exp_Majority[i,1] == Exp_Majority[i,2]) && (Exp_Majority[i,1] == Exp_Majority[i,3]) && 

(Exp_Majority[i,2] == Exp_Majority[i,3])) { 

    Exp_Majority[i,4] = Exp_Majority[i,2] 

  } 

  #If all experts disagree, code it as equivocal 
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  if((Exp_Majority[i,1] != Exp_Majority[i,2]) & (Exp_Majority[i,1] != Exp_Majority[i,3]) & 

(Exp_Majority[i,2] != Exp_Majority[i,3])) { 

    Exp_Majority[i,4] = 1 

  } 

  #If 2 experts agree, that will be the majority vote 

  else { 

    mode <- unique(Exp_Majority[i,]) 

    Exp_Majority[i,4] = mode[which.max(tabulate(match(Exp_Majority[i,], mode)))] 

  } 

} 

 

count(Exp_Majority, vars = c("AT.L") ) 

count(Exp_Majority, vars = c("ED.L") ) 

count(Exp_Majority, vars = c("RH.L") ) 

count(Exp_Majority, vars = c("Majority") ) 

 

#To use functional data clustering methods 

install.packages("funcy") 

library(funcy) 

#Set seed for reproducible research 

set.seed(123456) 

#Set data to right format for fdata object 

baseline_format <- formatFuncy(data = y1, format = "Format1") 

 

#New Analysis Plan 

#2/26/18 

 

#Obtain consenesus training set 

#Where all experts say obstructed(2) or all experts say not obstructed(0) 

two_curves_a <- as.data.frame(two_curves) 
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two_curves_new <- t(two_curves_a) 

 

#Attach expert ratings onto the two curves so we can subset by decision status 

two_curves_new2 <- cbind(two_curves_new, Exp_Majority[,-4]) 

two_curves_new2all <- cbind(two_curves_new, Exp_Majority) 

 

#Only want Where all experts say obstructed(2) or all experts say not obstructed(0) 

two_curves_2 <- subset(two_curves_new2, AT.L == 2 & ED.L == 2 & RH.L == 2) 

two_curves_0 <- subset(two_curves_new2, AT.L == 0 & ED.L == 0 & RH.L == 0) 

 

#All obstructed and not obstructed with expert ratings 

two_curves02e <- rbind(two_curves_0,two_curves_2) 

 

#All obstructed and not obstructed with no expert ratings 

two_curves_02 <- two_curves02e[,-c(100:102)] 

 

#Testing Set Construction 

two_curves_no1 <- subset(two_curves_new2all, AT.L == 2 & ED.L == 2 & RH.L == 1) #4 

two_curves_no2 <- subset(two_curves_new2all, AT.L == 2 & ED.L == 1 & RH.L == 2) #0 

two_curves_no3 <- subset(two_curves_new2all, AT.L == 1 & ED.L == 2 & RH.L == 2) #7 

 

two_curves_no4 <- subset(two_curves_new2all, AT.L == 1 & ED.L == 1 & RH.L == 2) #3 

two_curves_no5 <- subset(two_curves_new2all, AT.L == 1 & ED.L == 1 & RH.L == 0) #0 

two_curves_no6 <- subset(two_curves_new2all, AT.L == 1 & ED.L == 2 & RH.L == 1) #1 

two_curves_no7 <- subset(two_curves_new2all, AT.L == 2 & ED.L == 1 & RH.L == 1) #1 

two_curves_no8 <- subset(two_curves_new2all, AT.L == 1 & ED.L == 0 & RH.L == 1) #1 

two_curves_no9 <- subset(two_curves_new2all, AT.L == 0 & ED.L == 1 & RH.L == 1) #0 

 

two_curves_no10 <- subset(two_curves_new2all, AT.L == 0 & ED.L == 0 & RH.L == 1) #3 

two_curves_no11 <- subset(two_curves_new2all, AT.L == 0 & ED.L == 1 & RH.L == 0) #0 
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two_curves_no12 <- subset(two_curves_new2all, AT.L == 1 & ED.L == 0 & RH.L == 0) #3 

two_curves_no13 <- subset(two_curves_new2all, AT.L == 0 & ED.L == 0 & RH.L == 2) #1 

two_curves_no14 <- subset(two_curves_new2all, AT.L == 0 & ED.L == 2 & RH.L == 0) #3 

two_curves_no15 <- subset(two_curves_new2all, AT.L == 2 & ED.L == 0 & RH.L == 0) #3 

 

two_curves_no16 <- subset(two_curves_new2all, AT.L == 2 & ED.L == 2 & RH.L == 0) #1 

two_curves_no17 <- subset(two_curves_new2all, AT.L == 2 & ED.L == 0 & RH.L == 2) #2 

two_curves_no18 <- subset(two_curves_new2all, AT.L == 0 & ED.L == 2 & RH.L == 2) #1 

two_curves_no19 <- subset(two_curves_new2all, AT.L == 1 & ED.L == 1 & RH.L == 1) #4 

 

two_curves_no20 <- subset(two_curves_new2all, AT.L == 0 & ED.L == 1 & RH.L == 2) #0 

two_curves_no21 <- subset(two_curves_new2all, AT.L == 0 & ED.L == 2 & RH.L == 1) #0 

two_curves_no22 <- subset(two_curves_new2all, AT.L == 1 & ED.L == 2 & RH.L == 0) #0 

two_curves_no23 <- subset(two_curves_new2all, AT.L == 1 & ED.L == 0 & RH.L == 2) #2 

two_curves_no24 <- subset(two_curves_new2all, AT.L == 2 & ED.L == 0 & RH.L == 1) #1 

two_curves_no25 <- subset(two_curves_new2all, AT.L == 2 & ED.L == 1 & RH.L == 0) #0 

 

#Test Set, 41 curves 

two_curves_test <- rbind(two_curves_no1, two_curves_no3, two_curves_no4, 

two_curves_no6,two_curves_no7, two_curves_no8, two_curves_no10,two_curves_no12, 

two_curves_no13, two_curves_no14, two_curves_no15, two_curves_no16, two_curves_no17, 

two_curves_no18, two_curves_no19, two_curves_no23, two_curves_no24) 

count(two_curves_test,var = "Majority") 

 

#We want test set with no equivoval majority, just obstructed and not obstructed 

#Get 28 curves now with expert ratings 

two_curves_test2 <- subset(two_curves_test, Majority == 0 | Majority == 2) 

 

#Test set with no expert ratings 

two_curves_test2_noexp <- two_curves_test2[, -c(100:103)] 
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#Apply K-Means clustering on this dataset 

 

set.seed(12345) 

k_twocurves <- kmeans.fd(two_curves_02,ncl = 2) 

#ncl = number of clusters (groups) to classify 

k_twocurves 

 

k_twocurves_center <- k_twocurves$centers[["data"]] 

 

par(mfrow=c(1,1)) 

plot(k_twocurves_center[1,], type = "l", col = "red", main = "K-Mean Curves for Combined Kidney 

Curves", xlab = "Time Points", ylab = "Concentration in Kidney") #Curve 1 

lines(k_twocurves_center[2,], col = "blue") 

legend("topleft", legend = c("Obstructed", "Not Obstructed"), col = c("red","blue"), lwd = 1, bty = "n") 

 

 

#Determine how many curves belong to each cluster 

twocurves_cluster <- k_twocurves$cluster 

table(twocurves_cluster) 

length(twocurves_cluster) 

#1- Obstructed 

#2- Not Obstructed 

 

#Expert and K-Means Cluster Group 

twocurves_kmeans_score <- cbind(two_curves02e[,c(100:102)],twocurves_cluster) 

 

count(twocurves_kmeans_score, vars = c("AT.L", "twocurves_cluster") ) 
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#Functional Data Analysis Clustering 

library(funcy) 

 

#Get data into fdata object 

twocurves_format <- formatFuncy(data = as.matrix(t(two_curves_02)), format = "Format1") 

 

set.seed(123456) 

twocurvesfit <- funcit(twocurves_format , k = 2, methods = c(1:7)) 

 

summary(twocurvesfit) 

 

#Plot the clustered curves 

plot(twocurvesfit, legendPlace = "topleft") 

plot(twocurvesfit, type = "centers", legendPlace = "bottomright") 

#Cluster 1- Not Obstructed 

#Cluster 2 - Obstructed 

 

#Collect all the cluster information 

twocurves_clusters <- as.data.frame(Cluster(twocurvesfit)) 

 

#Attach expert ratings onto this cluster data frame 

twocurves_clusters <- cbind(two_curves02e[,c(100:102)],twocurves_clusters) 

 

#Get Cross Tabulation Counts for tables 

count(twocurves_clusters, vars = c("AT.L", "fitfclust") ) 

count(twocurves_clusters, vars = c("AT.L", "distclust") ) 

count(twocurves_clusters, vars = c("AT.L", "iterSubspace") ) 

count(twocurves_clusters, vars = c("AT.L", "funclust") ) 

count(twocurves_clusters, vars = c("AT.L", "waveclust") ) 

count(twocurves_clusters, vars = c("AT.L", "fscm") ) 



49 
 

 

 

#Calculate kappa, sensitivity, specificity, NPV, and PPV for each 2x2 clustering table 

install.packages("caret") 

install.packages("e1071") 

library(caret) 

library(e1071) 

 

?confusionMatrix 

 

#K-Means Table 

kmean_pred <- matrix(data = c(22,0,21,132),nrow = 2, ncol = 2, byrow = TRUE) 

kmean_table <- as.table(kmean_pred) 

confusionMatrix(data = kmean_table, positive ="A") 

 

#Fitfclust Table 

fitf_pred <- matrix(data = c(21,51,22,81),nrow = 2, ncol = 2, byrow = TRUE) 

fitf_table <- as.table(fitf_pred) 

confusionMatrix(data = fitf_table, positive ="A") 

 

#Distclust Table 

dist_pred <- matrix(data = c(30,7,13,125),nrow = 2, ncol = 2, byrow = TRUE) 

dist_table <- as.table(dist_pred) 

confusionMatrix(data = dist_table, positive ="A") 

 

#iterSubspace Table 

iter_pred <- matrix(data = c(32,7,11,125),nrow = 2, ncol = 2, byrow = TRUE) 

iter_table <- as.table(iter_pred) 

confusionMatrix(data = iter_table, positive ="A") 
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#funclust Table 

fun_pred <- matrix(data = c(18,62,25,70),nrow = 2, ncol = 2, byrow = TRUE) 

fun_table <- as.table(fun_pred) 

confusionMatrix(data = fun_table, positive ="A") 

 

#fscm Table 

fscm_pred <- matrix(data = c(35,6,8,126),nrow = 2, ncol = 2, byrow = TRUE) 

fscm_table <- as.table(fscm_pred) 

confusionMatrix(data = fscm_table, positive ="A") 

 

#waveClust Table 

wave_pred <- matrix(data = c(41,53,2,79),nrow = 2, ncol = 2, byrow = TRUE) 

wave_table <- as.table(wave_pred) 

confusionMatrix(data = wave_table, positive ="A") 

 

#Generate 147 random row numbers to choose rows for consensus set 

set.seed(12345) 

rownum <- sample(1:175, size = 147) 

ts1_ids <- setdiff(1:175, rownum) #Get id that were not chosen in rownum 

 

#Make a consensus training set of 147 with expert ratings 

consensus_e <- two_curves02e[rownum,] 

#35 Obstructed Curves 

#112 Not Obstructed Curves 

   

#Make a consensus training set of 147 with no expert ratings 

consensus <- two_curves_02[rownum,] 

 

 

#Perform K-Means on Consensus Training Set of size 147 
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#Apply K-Means clustering on this dataset 

 

set.seed(12345) 

k_twocurves <- kmeans.fd(consensus,ncl = 2) 

#ncl = number of clusters (groups) to classify 

k_twocurves 

 

k_twocurves_center <- k_twocurves$centers[["data"]] 

 

par(mfrow=c(1,1)) 

plot(k_twocurves_center[1,], type = "l", col = "red", main = "K-Mean Curves for Combined Kidney 

Curves", xlab = "Time Points", ylab = "Concentration in Kidney") #Curve 1 

lines(k_twocurves_center[2,], col = "blue") 

legend("topleft", legend = c("Obstructed", "Not Obstructed"), col = c("red","blue"), lwd = 1, bty = "n") 

 

 

#Determine how many curves belong to each cluster 

twocurves_cluster <- k_twocurves$cluster 

table(twocurves_cluster) 

length(twocurves_cluster) 

#1- Obstructed 

#2- Not Obstructed 

 

#Expert and K-Means Cluster Group 

twocurves_kmeans_score <- cbind(consensus_e[,c(100:102)],twocurves_cluster) 

 

count(twocurves_kmeans_score, vars = c("AT.L", "twocurves_cluster") ) 

 

#Functional Data Analysis Clustering 

library(funcy) 
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#Get data into fdata object 

twocurves_format <- formatFuncy(data = as.matrix(t(consensus)), format = "Format1") 

 

set.seed(123456) 

twocurvesfit <- funcit(twocurves_format , k = 2, methods = c(1:7)) 

 

summary(twocurvesfit) 

 

#Plot the clustered curves 

plot(twocurvesfit, legendPlace = "topleft") 

plot(twocurvesfit, type = "centers", legendPlace = "bottomright") 

#Cluster 1- Not Obstructed 

#Cluster 2 - Obstructed 

 

#Collect all the cluster information 

twocurves_clusters <- as.data.frame(Cluster(twocurvesfit)) 

 

#Attach expert ratings onto this cluster data frame 

twocurves_clusters <- cbind(consensus_e[,c(100:102)],twocurves_clusters) 

 

#Get Cross Tabulation Counts for tables 

count(twocurves_clusters, vars = c("AT.L", "fitfclust") ) 

count(twocurves_clusters, vars = c("AT.L", "distclust") ) 

count(twocurves_clusters, vars = c("AT.L", "iterSubspace") ) 

count(twocurves_clusters, vars = c("AT.L", "funclust") ) 

count(twocurves_clusters, vars = c("AT.L", "waveclust") ) 

count(twocurves_clusters, vars = c("AT.L", "fscm") ) 

 

#Calculate kappa, sensitivity, specificity, NPV, and PPV for each 2x2 clustering table 
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install.packages("caret") 

install.packages("e1071") 

library(caret) 

library(e1071) 

 

?confusionMatrix 

 

#K-Means Table 

kmean_pred <- matrix(data = c(15,0,20,112),nrow = 2, ncol = 2, byrow = TRUE) 

kmean_table <- as.table(kmean_pred) 

confusionMatrix(data = kmean_table, positive ="A") 

 

#Fitfclust Table 

fitf_pred <- matrix(data = c(18,44,17,68),nrow = 2, ncol = 2, byrow = TRUE) 

fitf_table <- as.table(fitf_pred) 

confusionMatrix(data = fitf_table, positive ="A") 

 

#Distclust Table 

dist_pred <- matrix(data = c(25,6,10,106),nrow = 2, ncol = 2, byrow = TRUE) 

dist_table <- as.table(dist_pred) 

confusionMatrix(data = dist_table, positive ="A") 

 

#iterSubspace Table 

iter_pred <- matrix(data = c(27,6,8,106),nrow = 2, ncol = 2, byrow = TRUE) 

iter_table <- as.table(iter_pred) 

confusionMatrix(data = iter_table, positive ="A") 

 

#funclust Table 

fun_pred <- matrix(data = c(25,72,10,40),nrow = 2, ncol = 2, byrow = TRUE) 

fun_table <- as.table(fun_pred) 
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confusionMatrix(data = fun_table, positive ="A") 

 

#fscm Table 

fscm_pred <- matrix(data = c(29,5,6,107),nrow = 2, ncol = 2, byrow = TRUE) 

fscm_table <- as.table(fscm_pred) 

confusionMatrix(data = fscm_table, positive ="A") 

 

#waveClust Table 

wave_pred <- matrix(data = c(32,29,3,83),nrow = 2, ncol = 2, byrow = TRUE) 

wave_table <- as.table(wave_pred) 

confusionMatrix(data = wave_table, positive ="A") 

 

 

 

#Test Set 1 Procedure 

 

#Constructing Test Set 1 

test1e <- two_curves02e[ts1_ids,]  #With expert ratings 

test1 <- two_curves_02[ts1_ids,] #No expert ratings 

 

count(test1e, vars = c("AT.L")) 

#8 Obstructed 

#20 Not Obstructed 

 

set.seed(12345) 

#Include one curve at a time procedure 

kmeans_test <- list() 

 

#For every iteration, perform k-means 

#With every iteration, only add one test set curve info. to the test set 
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for(i in 1: nrow(test1)) { 

   

  data_i <- rbind(consensus, test1[i,])  #Make the data for clustering procedure 

  kmeans_test[[i]] <- kmeans.fd(data_i,ncl = 2) 

   

} 

 

#Re-labeling the clustering groups to match with the expert score scale 

results <- c() 

for(i in 1:nrow(test1)) { 

  if (sum(kmeans_test[[i]][["centers"]]$data[1,95:99]) <  

      sum(kmeans_test[[i]][["centers"]]$data[2,95:99])) { 

    if (kmeans_test[[i]][["cluster"]][148] == 1) { 

      results[i] <- 0 

    } else if (kmeans_test[[i]][["cluster"]][148] == 2) { 

      results[i] <- 2 

    } 

  } 

  else if (sum(kmeans_test[[i]][["centers"]]$data[1,95:99]) >= 

           sum(kmeans_test[[i]][["centers"]]$data[2,95:99])) { 

    if (kmeans_test[[i]][["cluster"]][148] == 1) { 

      results[i] <- 2 

    } else if (kmeans_test[[i]][["cluster"]][148] == 2) { 

      results[i] <- 0 

    } 

  } 

} 

 

table(results, test1e[,"AT.L"]) 

table(test1e[,"AT.L"], results) 
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#K-Means Table 

kmean_pred <- matrix(data = c(3,0,5,20),nrow = 2, ncol = 2, byrow = TRUE) 

kmean_table <- as.table(kmean_pred) 

confusionMatrix(data = kmean_table, positive ="A") 

 

#iterSubspace Time 

library(funcy) 

 

#Include one curve at a time procedure 

 

iter_test <- list() #Initialize empty list to store itersubspace results 

set.seed(12345) 

#For every iteration, perform k-means 

#With every iteration, only add one test set curve info. to the test set 

for(i in 1: nrow(test1)) { 

   

  data <- rbind(consensus, test1[i,])  #Make the data for clustering procedure 

  data_format <- formatFuncy(data = as.matrix(t(data)), format = "Format1") #Format data to fdata object 

  iter_test[[i]] <- funcit(data_format, k = 2, methods = "iterSubspace") 

   

} 

 

#Re-labeling the clustering groups to match with the expert score scale 

results <- c() 

for(i in 1:nrow(test1)) { 

  if (sum(Center(iter_test[[i]])[95:99,1]) <  

      sum(Center(iter_test[[i]])[95:99,2])) { 

    if (Cluster(iter_test[[i]])[148] == 1) { 
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      results[i] <- 0 

    } else if (Cluster(iter_test[[i]])[148] == 2) { 

      results[i] <- 2 

    } 

  } 

  else if (sum(Center(iter_test[[i]])[95:99,1]) >= 

           sum(Center(iter_test[[i]])[95:99,2])) { 

    if (Cluster(iter_test[[i]])[148] == 1) { 

      results[i] <- 2 

    } else if (Cluster(iter_test[[i]])[148] == 2) { 

      results[i] <- 0 

    } 

  } 

} 

 

table(results, test1e[,"AT.L"]) 

table(test1e[,"AT.L"], results) 

 

#Iter Table 

iter_pred <- matrix(data = c(5,1,3,19),nrow = 2, ncol = 2, byrow = TRUE) 

iter_table <- as.table(iter_pred) 

confusionMatrix(data = iter_table, positive ="A") 

 

#FSCM Time 

 

#Include one curve at a time procedure 

 

fscm_test <- list() #Initialize empty list to store fscm results 

 

set.seed(12345) 
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#For every iteration, perform k-means 

#With every iteration, only add one test set curve info. to the test set 

for(i in 1: nrow(test1)) { 

   

  data <- rbind(consensus, test1[i,])  #Make the data for clustering procedure 

  data_format <- formatFuncy(data = as.matrix(t(data)), format = "Format1") #Format data to fdata object 

  fscm_test[[i]] <- funcit(data_format, k = 2, methods = "fscm") 

   

} 

 

#Re-labeling the clustering groups to match with the expert score scale 

results <- c() 

for(i in 1:nrow(test1)) { 

  if (sum(Center(fscm_test[[i]])[95:99,1]) <  

      sum(Center(fscm_test[[i]])[95:99,2])) { 

    if (Cluster(fscm_test[[i]])[148] == 1) { 

      results[i] <- 0 

    } else if (Cluster(fscm_test[[i]])[148] == 2) { 

      results[i] <- 2 

    } 

  } 

  else if (sum(Center(fscm_test[[i]])[95:99,1]) >= 

           sum(Center(fscm_test[[i]])[95:99,2])) { 

    if (Cluster(fscm_test[[i]])[148] == 1) { 

      results[i] <- 2 

    } else if (Cluster(fscm_test[[i]])[148] == 2) { 

      results[i] <- 0 

    } 

  } 

} 
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table(results, test1e[,"AT.L"]) 

table(test1e[,"AT.L"], results) 

 

#FSCM Table 

fscm_pred <- matrix(data = c(6,1,2,19),nrow = 2, ncol = 2, byrow = TRUE) 

fscm_table <- as.table(fscm_pred) 

confusionMatrix(data = fscm_table, positive ="A") 

 

 

#DistClust Procedure 

#Include one curve at a time procedure 

 

dist_test <- list() #Initialize empty list to store fscm results 

 

set.seed(12345) 

#For every iteration, perform k-means 

#With every iteration, only add one test set curve info. to the test set 

for(i in 1: nrow(test1)) { 

   

  data <- rbind(consensus, test1[i,])  #Make the data for clustering procedure 

  data_format <- formatFuncy(data = as.matrix(t(data)), format = "Format1") #Format data to fdata object 

  dist_test[[i]] <- funcit(data_format, k = 2, methods = "distclust") 

   

} 

 

#Re-labeling the clustering groups to match with the expert score scale 

results <- c() 

for(i in 1:nrow(test1)) { 

  if (sum(Center(dist_test[[i]])[95:99,1]) <  
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      sum(Center(dist_test[[i]])[95:99,2])) { 

    if (Cluster(dist_test[[i]])[148] == 1) { 

      results[i] <- 0 

    } else if (Cluster(dist_test[[i]])[148] == 2) { 

      results[i] <- 2 

    } 

  } 

  else if (sum(Center(dist_test[[i]])[95:99,1]) >= 

           sum(Center(dist_test[[i]])[95:99,2])) { 

    if (Cluster(dist_test[[i]])[148] == 1) { 

      results[i] <- 2 

    } else if (Cluster(dist_test[[i]])[148] == 2) { 

      results[i] <- 0 

    } 

  } 

} 

 

table(results, test1e[,"AT.L"]) 

table(test1e[,"AT.L"], results) 

 

#Distclust Table 

dist_pred <- matrix(data = c(5,1,3,19),nrow = 2, ncol = 2, byrow = TRUE) 

dist_table <- as.table(dist_pred) 

confusionMatrix(data = dist_table, positive ="A") 

 

 

#Waveclust Procedure 

#Include one curve at a time procedure 

 

wave_test <- list() #Initialize empty list to store fscm results 
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set.seed(12345) 

#For every iteration, perform waveclust 

#With every iteration, only add one test set curve info. to the test set 

for(i in 1: nrow(test1)) { 

   

  data <- rbind(consensus, test1[i,])  #Make the data for clustering procedure 

  data_format <- formatFuncy(data = as.matrix(t(data)), format = "Format1") #Format data to fdata object 

  wave_test[[i]] <- funcit(data_format, k = 2, methods = "waveclust") 

   

} 

 

#Re-labeling the clustering groups to match with the expert score scale 

results <- c() 

for(i in 1:nrow(test1)) { 

  if (sum(Center(wave_test[[i]])[95:99,1]) <  

      sum(Center(wave_test[[i]])[95:99,2])) { 

    if (Cluster(wave_test[[i]])[148] == 1) { 

      results[i] <- 0 

    } else if (Cluster(wave_test[[i]])[148] == 2) { 

      results[i] <- 2 

    } 

  } 

  else if (sum(Center(wave_test[[i]])[95:99,1]) >= 

           sum(Center(wave_test[[i]])[95:99,2])) { 

    if (Cluster(wave_test[[i]])[148] == 1) { 

      results[i] <- 2 

    } else if (Cluster(wave_test[[i]])[148] == 2) { 

      results[i] <- 0 

    } 
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  } 

} 

 

table(results, test1e[,"AT.L"]) 

table(test1e[,"AT.L"], results) 

 

#Waveclust Table 

wave_pred <- matrix(data = c(8,4,0,16),nrow = 2, ncol = 2, byrow = TRUE) 

wave_table <- as.table(wave_pred) 

confusionMatrix(data = wave_table, positive ="A") 

 

 

 

 

#Fitfclust Procedure 

#Include one curve at a time procedure 

fitf_test <- list() #Initialize empty list to store fscm results 

 

set.seed(12345) 

#For every iteration, perform waveclust 

#With every iteration, only add one test set curve info. to the test set 

for(i in 1: nrow(test1)) { 

   

  data <- rbind(consensus, test1[i,])  #Make the data for clustering procedure 

  data_format <- formatFuncy(data = as.matrix(t(data)), format = "Format1") #Format data to fdata object 

  fitf_test[[i]] <- funcit(data_format, k = 2, methods = "fitfclust") 

   

} 

 

#Re-labeling the clustering groups to match with the expert score scale 
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results <- c() 

for(i in 1:nrow(test1)) { 

  if (sum(Center(fitf_test[[i]])[95:99,1]) <  

      sum(Center(fitf_test[[i]])[95:99,2])) { 

    if (Cluster(fitf_test[[i]])[148] == 1) { 

      results[i] <- 0 

    } else if (Cluster(fitf_test[[i]])[148] == 2) { 

      results[i] <- 2 

    } 

  } 

  else if (sum(Center(fitf_test[[i]])[95:99,1]) >= 

           sum(Center(fitf_test[[i]])[95:99,2])) { 

    if (Cluster(fitf_test[[i]])[148] == 1) { 

      results[i] <- 2 

    } else if (Cluster(fitf_test[[i]])[148] == 2) { 

      results[i] <- 0 

    } 

  } 

} 

 

table(results, test1e[,"AT.L"]) 

table(test1e[,"AT.L"], results) 

 

#Fitfclust Table 

fitf_pred <- matrix(data = c(1,6,7,14),nrow = 2, ncol = 2, byrow = TRUE) 

fitf_table <- as.table(fitf_pred) 

confusionMatrix(data = fitf_table, positive ="A") 
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#Funclust Procedure 

#Include one curve at a time procedure 

fun_test <- list() #Initialize empty list to store fscm results 

 

set.seed(12345) 

#For every iteration, perform waveclust 

#With every iteration, only add one test set curve info. to the test set 

for(i in 1: nrow(test1)) { 

   

  data <- rbind(consensus, test1[i,])  #Make the data for clustering procedure 

  data_format <- formatFuncy(data = as.matrix(t(data)), format = "Format1") #Format data to fdata object 

  fun_test[[i]] <- funcit(data_format, k = 2, methods = "funclust") 

   

} 

 

#Re-labeling the clustering groups to match with the expert score scale 

results <- c() 

for(i in 1:nrow(test1)) { 

  if (sum(Center(fun_test[[i]])[95:99,1]) <  

      sum(Center(fun_test[[i]])[95:99,2])) { 

    if (Cluster(fun_test[[i]])[148] == 1) { 

      results[i] <- 0 

    } else if (Cluster(fun_test[[i]])[148] == 2) { 

      results[i] <- 2 

    } 

  } 

  else if (sum(Center(fun_test[[i]])[95:99,1]) >= 

           sum(Center(fun_test[[i]])[95:99,2])) { 

    if (Cluster(fun_test[[i]])[148] == 1) { 

      results[i] <- 2 
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    } else if (Cluster(fun_test[[i]])[148] == 2) { 

      results[i] <- 0 

    } 

  } 

} 

 

table(results, test1e[,"AT.L"]) 

table(test1e[,"AT.L"], results) 

 

#Funclust Table 

fun_pred <- matrix(data = c(8,19,0,1),nrow = 2, ncol = 2, byrow = TRUE) 

fun_table <- as.table(fun_pred) 

confusionMatrix(data = fun_table, positive ="A") 

 

 

#Test Set 2 Construction 

#Testing Set Construction 

two_curves_no1 <- subset(two_curves_new2all, AT.L == 2 & ED.L == 2 & RH.L == 1) #4 

two_curves_no2 <- subset(two_curves_new2all, AT.L == 2 & ED.L == 1 & RH.L == 2) #0 

two_curves_no3 <- subset(two_curves_new2all, AT.L == 1 & ED.L == 2 & RH.L == 2) #7 

 

two_curves_no4 <- subset(two_curves_new2all, AT.L == 1 & ED.L == 1 & RH.L == 2) #3 

two_curves_no5 <- subset(two_curves_new2all, AT.L == 1 & ED.L == 1 & RH.L == 0) #0 

two_curves_no6 <- subset(two_curves_new2all, AT.L == 1 & ED.L == 2 & RH.L == 1) #1 

two_curves_no7 <- subset(two_curves_new2all, AT.L == 2 & ED.L == 1 & RH.L == 1) #1 

two_curves_no8 <- subset(two_curves_new2all, AT.L == 1 & ED.L == 0 & RH.L == 1) #1 

two_curves_no9 <- subset(two_curves_new2all, AT.L == 0 & ED.L == 1 & RH.L == 1) #0 

 

two_curves_no10 <- subset(two_curves_new2all, AT.L == 0 & ED.L == 0 & RH.L == 1) #3 

two_curves_no11 <- subset(two_curves_new2all, AT.L == 0 & ED.L == 1 & RH.L == 0) #0 
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two_curves_no12 <- subset(two_curves_new2all, AT.L == 1 & ED.L == 0 & RH.L == 0) #3 

two_curves_no13 <- subset(two_curves_new2all, AT.L == 0 & ED.L == 0 & RH.L == 2) #1 

two_curves_no14 <- subset(two_curves_new2all, AT.L == 0 & ED.L == 2 & RH.L == 0) #3 

two_curves_no15 <- subset(two_curves_new2all, AT.L == 2 & ED.L == 0 & RH.L == 0) #3 

 

two_curves_no16 <- subset(two_curves_new2all, AT.L == 2 & ED.L == 2 & RH.L == 0) #1 

two_curves_no17 <- subset(two_curves_new2all, AT.L == 2 & ED.L == 0 & RH.L == 2) #2 

two_curves_no18 <- subset(two_curves_new2all, AT.L == 0 & ED.L == 2 & RH.L == 2) #1 

two_curves_no19 <- subset(two_curves_new2all, AT.L == 1 & ED.L == 1 & RH.L == 1) #4 

 

two_curves_no20 <- subset(two_curves_new2all, AT.L == 0 & ED.L == 1 & RH.L == 2) #0 

two_curves_no21 <- subset(two_curves_new2all, AT.L == 0 & ED.L == 2 & RH.L == 1) #0 

two_curves_no22 <- subset(two_curves_new2all, AT.L == 1 & ED.L == 2 & RH.L == 0) #0 

two_curves_no23 <- subset(two_curves_new2all, AT.L == 1 & ED.L == 0 & RH.L == 2) #2 

two_curves_no24 <- subset(two_curves_new2all, AT.L == 2 & ED.L == 0 & RH.L == 1) #1 

two_curves_no25 <- subset(two_curves_new2all, AT.L == 2 & ED.L == 1 & RH.L == 0) #0 

 

#Test Set, 41 curves 

two_curves_test <- rbind(two_curves_no1, two_curves_no3, two_curves_no4, 

two_curves_no6,two_curves_no7, two_curves_no8, two_curves_no10,two_curves_no12, 

two_curves_no13, two_curves_no14, two_curves_no15, two_curves_no16, two_curves_no17, 

two_curves_no18, two_curves_no19, two_curves_no23, two_curves_no24) 

count(two_curves_test,var = "Majority") 

 

#We want test set with no equivoval majority, just obstructed and not obstructed 

#Get 28 curves now with expert ratings 

two_curves_test2 <- subset(two_curves_test, Majority == 0 | Majority == 2) 

 

#Test set with no expert ratings 

two_curves_test2_noexp <- two_curves_test2[, -c(100:103)] 
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#Test Set 2 Analysis 

#Include one curve at a time procedure 

kmeans_test <- list() 

 

#For every iteration, perform k-means 

#With every iteration, only add one test set curve info. to the test set 

for(i in 1: nrow(two_curves_test2)) { 

   

  data_i <- rbind(consensus, two_curves_test2_noexp[i,])  #Make the data for clustering procedure 

  kmeans_test[[i]] <- kmeans.fd(data_i,ncl = 2) 

   

} 

 

#Re-labeling the clustering groups to match with the expert score scale 

results <- c() 

for(i in 1:nrow(two_curves_test2)) { 

  if (sum(kmeans_test[[i]][["centers"]]$data[1,95:99]) <  

      sum(kmeans_test[[i]][["centers"]]$data[2,95:99])) { 

    if (kmeans_test[[i]][["cluster"]][148] == 1) { 

      results[i] <- 0 

    } else if (kmeans_test[[i]][["cluster"]][148] == 2) { 

      results[i] <- 2 

    } 

  } 

  else if (sum(kmeans_test[[i]][["centers"]]$data[1,95:99]) >= 

           sum(kmeans_test[[i]][["centers"]]$data[2,95:99])) { 

    if (kmeans_test[[i]][["cluster"]][148] == 1) { 

      results[i] <- 2 

    } else if (kmeans_test[[i]][["cluster"]][148] == 2) { 
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      results[i] <- 0 

    } 

  } 

} 

 

table(results, two_curves_test2[,"Majority"]) 

table(two_curves_test2[,"Majority"], results) 

 

#K-Means Table 

kmean_pred <- matrix(data = c(2,1,12,13),nrow = 2, ncol = 2, byrow = TRUE) 

kmean_table <- as.table(kmean_pred) 

confusionMatrix(data = kmean_table, positive ="A") 

 

 

#iterSubspace Time 

library(funcy) 

 

#Include one curve at a time procedure 

 

iter_test <- list() #Initialize empty list to store itersubspace results 

set.seed(12345) 

#For every iteration, perform k-means 

#With every iteration, only add one test set curve info. to the test set 

for(i in 1: nrow(two_curves_test2)) { 

   

  data <- rbind(consensus, two_curves_test2_noexp[i,])  #Make the data for clustering procedure 

  data_format <- formatFuncy(data = as.matrix(t(data)), format = "Format1") #Format data to fdata object 

  iter_test[[i]] <- funcit(data_format, k = 2, methods = "iterSubspace") 

   

} 
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#Re-labeling the clustering groups to match with the expert score scale 

results <- c() 

for(i in 1:nrow(two_curves_test2)) { 

  if (sum(Center(iter_test[[i]])[95:99,1]) <  

      sum(Center(iter_test[[i]])[95:99,2])) { 

    if (Cluster(iter_test[[i]])[148] == 1) { 

      results[i] <- 0 

    } else if (Cluster(iter_test[[i]])[148] == 2) { 

      results[i] <- 2 

    } 

  } 

  else if (sum(Center(iter_test[[i]])[95:99,1]) >= 

           sum(Center(iter_test[[i]])[95:99,2])) { 

    if (Cluster(iter_test[[i]])[148] == 1) { 

      results[i] <- 2 

    } else if (Cluster(iter_test[[i]])[148] == 2) { 

      results[i] <- 0 

    } 

  } 

} 

 

table(results, two_curves_test2[,"Majority"]) 

table(two_curves_test2[,"Majority"], results) 

 

 

#Iter Table 

iter_pred <- matrix(data = c(4,5,10,9),nrow = 2, ncol = 2, byrow = TRUE) 

iter_table <- as.table(iter_pred) 

confusionMatrix(data = iter_table, positive ="A") 
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#FSCM Time 

 

#Include one curve at a time procedure 

 

fscm_test <- list() #Initialize empty list to store fscm results 

 

set.seed(12345) 

#For every iteration, perform k-means 

#With every iteration, only add one test set curve info. to the test set 

for(i in 1: nrow(two_curves_test2)) { 

   

  data <- rbind(consensus, two_curves_test2_noexp[i,])  #Make the data for clustering procedure 

  data_format <- formatFuncy(data = as.matrix(t(data)), format = "Format1") #Format data to fdata object 

  fscm_test[[i]] <- funcit(data_format, k = 2, methods = "fscm") 

   

} 

 

#Re-labeling the clustering groups to match with the expert score scale 

results <- c() 

for(i in 1:nrow(two_curves_test2)) { 

  if (sum(Center(fscm_test[[i]])[95:99,1]) <  

      sum(Center(fscm_test[[i]])[95:99,2])) { 

    if (Cluster(fscm_test[[i]])[148] == 1) { 

      results[i] <- 0 

    } else if (Cluster(fscm_test[[i]])[148] == 2) { 

      results[i] <- 2 

    } 
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  } 

  else if (sum(Center(fscm_test[[i]])[95:99,1]) >= 

           sum(Center(fscm_test[[i]])[95:99,2])) { 

    if (Cluster(fscm_test[[i]])[148] == 1) { 

      results[i] <- 2 

    } else if (Cluster(fscm_test[[i]])[148] == 2) { 

      results[i] <- 0 

    } 

  } 

} 

 

table(results, two_curves_test2[,"Majority"]) 

table(two_curves_test2[,"Majority"], results) 

 

#FSCM Table 

fscm_pred <- matrix(data = c(4,5,10,9),nrow = 2, ncol = 2, byrow = TRUE) 

fscm_table <- as.table(fscm_pred) 

confusionMatrix(data = fscm_table, positive ="A") 

 

 

#DistClust Procedure 

#Include one curve at a time procedure 

 

dist_test <- list() #Initialize empty list to store fscm results 

 

set.seed(12345) 

#For every iteration, perform k-means 

#With every iteration, only add one test set curve info. to the test set 

for(i in 1: nrow(two_curves_test2)) { 
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  data <- rbind(consensus, two_curves_test2_noexp[i,])  #Make the data for clustering procedure 

  data_format <- formatFuncy(data = as.matrix(t(data)), format = "Format1") #Format data to fdata object 

  dist_test[[i]] <- funcit(data_format, k = 2, methods = "distclust") 

   

} 

 

#Re-labeling the clustering groups to match with the expert score scale 

results <- c() 

for(i in 1:nrow(two_curves_test2)) { 

  if (sum(Center(dist_test[[i]])[95:99,1]) <  

      sum(Center(dist_test[[i]])[95:99,2])) { 

    if (Cluster(dist_test[[i]])[148] == 1) { 

      results[i] <- 0 

    } else if (Cluster(dist_test[[i]])[148] == 2) { 

      results[i] <- 2 

    } 

  } 

  else if (sum(Center(dist_test[[i]])[95:99,1]) >= 

           sum(Center(dist_test[[i]])[95:99,2])) { 

    if (Cluster(dist_test[[i]])[148] == 1) { 

      results[i] <- 2 

    } else if (Cluster(dist_test[[i]])[148] == 2) { 

      results[i] <- 0 

    } 

  } 

} 

 

table(results, two_curves_test2[,"Majority"]) 

table(two_curves_test2[,"Majority"], results) 
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#Distclust Table 

dist_pred <- matrix(data = c(4,10,5,9),nrow = 2, ncol = 2, byrow = TRUE) 

dist_table <- as.table(dist_pred) 

confusionMatrix(data = dist_table, positive ="A") 

 

 

#Waveclust Procedure 

#Include one curve at a time procedure 

 

wave_test <- list() #Initialize empty list to store fscm results 

 

set.seed(12345) 

#For every iteration, perform waveclust 

#With every iteration, only add one test set curve info. to the test set 

for(i in 1: nrow(two_curves_test2)) { 

   

  data <- rbind(consensus, two_curves_test2_noexp[i,])  #Make the data for clustering procedure 

  data_format <- formatFuncy(data = as.matrix(t(data)), format = "Format1") #Format data to fdata object 

  wave_test[[i]] <- funcit(data_format, k = 2, methods = "waveclust") 

   

} 

 

#Re-labeling the clustering groups to match with the expert score scale 

results <- c() 

for(i in 1:nrow(two_curves_test2)) { 

  if (sum(Center(wave_test[[i]])[95:99,1]) <  

      sum(Center(wave_test[[i]])[95:99,2])) { 

    if (Cluster(wave_test[[i]])[148] == 1) { 

      results[i] <- 0 

    } else if (Cluster(wave_test[[i]])[148] == 2) { 
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      results[i] <- 2 

    } 

  } 

  else if (sum(Center(wave_test[[i]])[95:99,1]) >= 

           sum(Center(wave_test[[i]])[95:99,2])) { 

    if (Cluster(wave_test[[i]])[148] == 1) { 

      results[i] <- 2 

    } else if (Cluster(wave_test[[i]])[148] == 2) { 

      results[i] <- 0 

    } 

  } 

} 

 

table(results, two_curves_test2[,"Majority"]) 

table(two_curves_test2[,"Majority"], results) 

 

#Waveclust Table 

wave_pred <- matrix(data = c(8,7,6,7),nrow = 2, ncol = 2, byrow = TRUE) 

wave_table <- as.table(wave_pred) 

confusionMatrix(data = wave_table, positive ="A") 

 

 

#Fitfclust Procedure 

#Include one curve at a time procedure 

fitf_test <- list() #Initialize empty list to store fscm results 

 

set.seed(12345) 

#For every iteration, perform waveclust 

#With every iteration, only add one test set curve info. to the test set 

for(i in 1: nrow(two_curves_test2)) { 
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  data <- rbind(consensus, two_curves_test2_noexp[i,])  #Make the data for clustering procedure 

  data_format <- formatFuncy(data = as.matrix(t(data)), format = "Format1") #Format data to fdata object 

  fitf_test[[i]] <- funcit(data_format, k = 2, methods = "fitfclust") 

   

} 

 

#Re-labeling the clustering groups to match with the expert score scale 

results <- c() 

for(i in 1:nrow(two_curves_test2)) { 

  if (sum(Center(fitf_test[[i]])[95:99,1]) <  

      sum(Center(fitf_test[[i]])[95:99,2])) { 

    if (Cluster(fitf_test[[i]])[148] == 1) { 

      results[i] <- 0 

    } else if (Cluster(fitf_test[[i]])[148] == 2) { 

      results[i] <- 2 

    } 

  } 

  else if (sum(Center(fitf_test[[i]])[95:99,1]) >= 

           sum(Center(fitf_test[[i]])[95:99,2])) { 

    if (Cluster(fitf_test[[i]])[148] == 1) { 

      results[i] <- 2 

    } else if (Cluster(fitf_test[[i]])[148] == 2) { 

      results[i] <- 0 

    } 

  } 

} 

 

table(results, two_curves_test2[,"Majority"]) 

table(two_curves_test2[,"Majority"], results) 
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#Fitfclust Table 

fitf_pred <- matrix(data = c(5,1,9,13),nrow = 2, ncol = 2, byrow = TRUE) 

fitf_table <- as.table(fitf_pred) 

confusionMatrix(data = fitf_table, positive ="A") 

 

 

#Funclust Procedure 

#Include one curve at a time procedure 

fun_test <- list() #Initialize empty list to store fscm results 

 

set.seed(12345) 

#For every iteration, perform waveclust 

#With every iteration, only add one test set curve info. to the test set 

for(i in 1: nrow(two_curves_test2)) { 

   

  data <- rbind(consensus, two_curves_test2_noexp[i,])  #Make the data for clustering procedure 

  data_format <- formatFuncy(data = as.matrix(t(data)), format = "Format1") #Format data to fdata object 

  fun_test[[i]] <- funcit(data_format, k = 2, methods = "funclust") 

   

} 

 

#Re-labeling the clustering groups to match with the expert score scale 

results <- c() 

for(i in 1:nrow(two_curves_test2)) { 

  if (sum(Center(fun_test[[i]])[95:99,1]) <  

      sum(Center(fun_test[[i]])[95:99,2])) { 

    if (Cluster(fun_test[[i]])[148] == 1) { 

      results[i] <- 0 

    } else if (Cluster(fun_test[[i]])[148] == 2) { 
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      results[i] <- 2 

    } 

  } 

  else if (sum(Center(fun_test[[i]])[95:99,1]) >= 

           sum(Center(fun_test[[i]])[95:99,2])) { 

    if (Cluster(fun_test[[i]])[148] == 1) { 

      results[i] <- 2 

    } else if (Cluster(fun_test[[i]])[148] == 2) { 

      results[i] <- 0 

    } 

  } 

} 

 

table(results, two_curves_test2[,"Majority"]) 

table(two_curves_test2[,"Majority"], results) 

 

#Funclust Table 

fun_pred <- matrix(data = c(13,12,1,2),nrow = 2, ncol = 2, byrow = TRUE) 

fun_table <- as.table(fun_pred) 

confusionMatrix(data = fun_table, positive ="A") 

 

 

#Aim Three 

install.packages("psych") 

library(psych) 

citation("psych") 

 

#Calculate kappa and weighted kappa for fscm 

fscm_pred <- matrix(data = c(4,5,10,9),nrow = 2, ncol = 2, byrow = TRUE) 

weights <- matrix(data = c(0,1,1,0), nrow = 2, ncol = 2, byrow= TRUE) 
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weights 

wkappa(fscm_pred, w = weights)  

 

#Calculate kappa and weighted kappa for waveclust 

wave_pred <- matrix(data = c(8,7,6,7),nrow = 2, ncol = 2, byrow = TRUE) 

wkappa(wave_pred, w = weights)  

 

#Calculate kappa and weighted kappa for k-means 

kmean_pred <- matrix(data = c(2,1,12,13),nrow = 2, ncol = 2, byrow = TRUE) 

wkappa(kmean_pred, w = weights) 


