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Abstract

Connections between Classical and Umbral Moonshine

By Sarah Trebat-Leder

The classical theory of monstrous moonshine describes the unexpected connection be-

tween the representation theory of the monster group M, the largest of the sporadic

simple groups, and certain modular functions, called Hauptmoduln. In particular,

the n-th Fourier coefficient of Klein’s j-function is the dimension of the grade n part

of a special infinite dimensional representation V \ of the monster group. More gen-

erally the coefficients of Hauptmoduln are graded traces Tg of g ∈ M acting on V \.

Similar phenomena have been shown to hold for the Mathieu group M24, but instead

of modular functions, mock modular forms must be used. This has been general-

ized even further, to umbral moonshine, which associates to each of the 23 Niemeier

lattices a finite group, infinite dimensional representation, and mock modular form.

Both results of this dissertation involve finding unexpected connections between the

classical theory of monstrous moonshine and the newer umbral moonshine. In our

first result, we use generalized Borcherds products to associate to each pure A-type

Niemeier lattice a conjugacy class g of the monster group and give rise to identities

relating dimensions of representations from umbral moonshine to values of Tg. Our

second result focuses on the Matheiu group M23. While it inherits a moonshine from

being a subgroup of M24, we find a new and simpler moonshine for M23 such that

the graded traces are, up to constant terms, identical to the monstrous moonshine

Haupmoduln.
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Chapter 1

Introduction

1.1 Moonshine

Monstrous moonshine begins with the surprising connection between the coefficients

of the modular function

J(τ) := j(τ)−744 =
(1 + 240

∑∞
n=1

∑
d|n d

3qn)3

q
∏∞

n=1(1− qn)24
−744 =

1

q
+196884q+21493760q2+. . .

and the representation theory of the monster group M, which is the largest of the

simple sporadic groups. Here q := e2πiτ and τ ∈ H := {z ∈ C : =z > 0}. McKay no-

ticed that 196884, the q1 coefficient of J(τ), can be expressed as a linear combination

of dimensions of irreducible representations of the monster group M. Namely,

196884 = 196883 + 1.

Thompson saw that the same was true for other Fourier coefficients of J(τ). For

example,

21493760 = 21296876 + 196883 + 1.
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In [Tho79b], McKay and Thompson conjectured that the n-th Fourier coefficient of

J(τ) is the dimension of the grade n part of a special infinite-dimensional graded

representation V \ of M.

This was later expanded into the full monstrous moonshine conjecture by Thomp-

son, Conway, and Norton [CN79, Tho79a]. Since the graded dimension is just the

graded trace of the identity element, they looked at the graded traces Tg(τ) of non-

trivial elements g of M acting on V \ and conjectured that they were all expansions

of principal moduli, or Hauptmoduln, for certain genus zero congruence groups Γg

commensurable with SL2(Z). Note that these Tg are constant on each of the 194

conjugacy classes of M , and therefore are class functions, which automatically have

coefficients which are C-linear combinations of irreducible characters of M . Part of

the task of proving monstrous moonshine was showing that they were in fact Z≥0-

linear combinations.

By way of computer calculation, Atkin, Fong, and Smith [Smi85] verified the ex-

istence of a virtual representation of M. Then using vertex-operator theory, Frenkel,

Lepowsky, and Meurman [FLM84] finally constructed a representation V \ ofM thereby

providing a beautiful algebraic explanation for the original numerical observations of

McKay and Thompson. Borcherds [Bor86] further developed the theory of vertex-

operator algebras, which he then used in [Bor92] to prove the full conjectures as given

by Conway and Norton.

Monstrous moonshine provides an example of coefficients of modular functions

enjoying distinguished properties. Moreover, their values at Heegner points have

also been considered important. A Heegner point τ of discriminant d < 0 is a com-

plex number in the upper half-plane of the form τ = −b±
√
b2−4ac

2a
with a, b, c ∈ Z,

gcd(a, b, c) = 1, and d = b2 − 4ac. The values of principal moduli at such points are

called singular moduli. As an example of their importance, it is a classical fact that

the singular moduli of j(τ) generate Hilbert class fields of imaginary quadratic fields.
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Moreover, the other McKay-Thompson series arising in monstrous moonshine satisfy

analogous properties [CY96]. It is natural to ask what other interesting properties the

values of the Hauptmoduln Tg(τ) could possess. We show in Theorem 1.2.2 that some

of these values are related to another kind of moonshine, called umbral moonshine.

Recently, it was shown that phenomena similar to monstrous moonshine occur for

other q-series and groups. In particular, the Mathieu group M24 exhibits moonshine

[EOT11,Gan16], with the role of the j-invariant played by a mock modular form of

weight 1/2, denoted H(2)(τ). A mock modular form is the holomorphic part of a

harmonic weak Maass form. Cheng, Duncan, and Harvey conjectured in [CDH14a]

that this is a special case of a more general phenomenon, which they call umbral

moonshine. For each of the 23 Niemeier latticesX they associate a vector-valued mock

modular form HX(τ), a group GX , and an infinite-dimensional graded representation

KX of GX such that the Fourier coefficients of HX encode the dimensions of the

graded components of KX .

In particular, if cX(n, j) is the n-th Fourier coefficient of the j-th component of

HX , then

cX(n, j) =

 dimKX
j,−D/4m

if n = −D/4m where D ∈ Z, D ≡ j2 (mod 4m),

0 otherwise,
(1.1.1)

where

KX =
⊕

j (mod 2m)

⊕
D∈Z

D≡j2 (mod 4m)

KX
j,−D/4m.

The existence of such a KX was recently proven by Duncan, Griffin, and Ono in

[DGO15], generalizing Gannon’s proof for Mathieu moonshine in [Gan16]. However,

many questions still remain, including:

Question 1.1.1. Is there a "natural" and uniform construction of KX for all umbral
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X? Is KX equipped with a deeper algebra structure as in the case of the monster

module V \?

Remark 1. Constructions have recently been given for a few specific cases, such as

in [CD17].

1.2 Introduction of Results

In Chapter 3, we will associate a conjugacy class g(X) of M to each pure-A type

Niemeier lattice X. In Chapter 4, we associate a conjugacy class ĝ in M to each

conjugacy class g in the Mathieu group M23 ⊂M24.

In both cases, we show the first glimpses of new connections between the classical

monstrous moonshine and the newer Mathieu and umbral moonshines.

Remark 2. We fully expect that they can be extended to all Niemeier lattices and to

all conjugacy classes of M24, but we leave that to someone else!

Remark 3. The results in Chapter 3 were joint work with Ken Ono and Larry Rolen

and were published in [ORTL15].

As a convention, we will denote the names of conjugacy classes of M with capital

letters, such as 1A, whereas we’ll use lower case letters, such as 1a, for those of M23.

1.2.1 First Result

In Chapter 3, we will use generalized Borcherds products (see [BO10]) to describe

a connection between the mock modular forms HX(τ) of umbral moonshine and

the McKay-Thompson series Tg(τ) of monstrous moonshine. Generalized Borcherds

products are a method to produce modular functions as infinite products of rational

functions whose exponents come from the coefficients of mock modular forms, and

they can be viewed as generalizations of the automorphic products in Theorem 13.3

of [Bor98].
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We focus on the Niemeier lattices X whose root systems are of pure A-type ac-

cording to the ADE classification. They are listed in Table 1.1, along with their

Coxeter numbers m(X) and the notation we will use for the mock modular form HX .

Table 1.1: Pure A-type Root Systems

Root System X Coxeter Number m(X) Mock Modular Form HX

A24
1 2 H(2)(τ)

A12
2 3 H(3)(τ)

A8
3 4 H(4)(τ)

A6
4 5 H(5)(τ)

A4
6 7 H(7)(τ)

A3
8 9 H(9)(τ)

A2
12 13 H(13)(τ)

A1
24 25 H(25)(τ)

Table 1.2 gives the monstrous moonshine dictionary for the conjugacy classes g

which correspond to pure A-type cases of umbral moonshine1. Note that η(τ) is the

Dedekind eta-function, defined by

η(τ) := q1/24

∞∏
n=1

(1− qn).

All of our Hauptmoduln are normalized so that they have the form q−1 + O(q),

which is why all of the η-quotients in the table have a constant added to them.

There is an evident correspondence between the pure A-type latticesX in Table 1.1

and the conjugacy classes g in Table 1.2. We give this correspondence in Table 1.3.

We show that for a pure A-type Niemeier lattice X and its corresponding conju-
1The case X = A24 corresponds to g(X) = (25Z), which is what Conway and Norton call a

“ghost element”. This means that Γ0(25) is the only genus zero Γ0(N) that does not correspond to
a conjugacy class of the monster group. The parentheses are used to indicate a ghost element.
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Table 1.2: The Dictionary of Monstrous Moonshine

Monster Conj. Class Congruence Subgroup McKay-Thomspon Series

g Γg Tg(τ)

2B Γ0(2) η(τ)24/η(2τ)24 + 24

3B Γ0(3) η(τ)12/η(3τ)12 + 12

4C Γ0(4) η(τ)8/η(4τ)8 + 8

5B Γ0(5) η(τ)6/η(5τ)6 + 6

7B Γ0(7) η(τ)4/η(7τ)4 + 4

9B Γ0(9) η(τ)3/η(9τ)3 + 3

13B Γ0(13) η(τ)2/η(13τ)2 + 2

(25Z) Γ0(25) η(τ)/η(25τ) + 1

Table 1.3: Correspondence Between Umbral and Monstrous Moonshine

Root System X Conj. Class g(X)

A24
1 2B

A12
2 3B

A8
3 4C

A6
4 5B

A4
6 7B

A3
8 9B

A2
12 13B

A1
24 (25Z)

gacy class g := g(X), the “Galois (twisted) traces” of the CM values of the McKay-

Thompson series Tg(τ) are the coefficients of the mock modular form HX . To more

precisely state this, we set up the following notation.

Let X be a pure A-type Niemeier lattice with Coxeter number m := m(X) and

corresponding conjugacy class g := g(X). We call a pair (∆, r) admissible if ∆ 6= −3 is
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a negative fundamental discriminant and r2 ≡ ∆ (mod 4m). We also let e(a) := e2πia.

Theorem 1.2.1. Let cX(n, j) be the n-th Fourier coefficient of the j-th component of

HX . Let (∆, r) be an admissible pair for X. Then the twisted generalized Borcherds

product

Ψ∆,r(τ,H
X) :=

∞∏
n=1

P∆(qn)
c+

(
|∆|n2

4m
, rn
2m

)
,

where

P∆(x) :=
∏

b∈Z/|∆|Z

[1− e(b/∆)x](
∆
b )

is a rational function in Tg(τ) with a discriminant ∆ Heegner divisor.

Remark 4. For ∆ = −3, we need to replace Ψ∆,r(τ,H
X) with Ψ∆,r(τ,H

X)3. However,

with that modification all of the theorems described in this section hold.

The next result gives a precise description of the rational functions in Theo-

rem 1.2.1. In particular, it gives a “twisted” trace function for the values of Tg at

points in the divisor and the coefficients c+ of the mock modular forms HX . It is

often the case that coefficients of automorphic forms can be expressed in terms of

singular moduli (see e.g., [BO07,BF06,DIT11,Zag02]).

Corollary 1.2.2. By Theorem 1.2.1, we can write

Ψ∆,r(τ,H
X) =

∏
i

(Tg(τ)− Tg(αi))γi

for some discriminant ∆ Heegner points αi. Then we have that

dimKX
r,|∆|/4m

= cX
(
|∆|
4m

,
r

2m

)
=

1

λ∆

∑
i

γi · Tg(αi),

where

λ∆ =
∑

b∈Z/|∆|Z

e(b/∆) ·
(

∆

b

)
.



8

Example. Let X = A24
1 , so m(X) = 2 and g(X) = 2B. Then the corresponding

McKay-Thompson series is

Tg(τ) =
η(τ)24

η(2τ)24
+ 24 =

1

q
+ 276q + . . . .

We pick the admissible pair (∆, r) = (−7, 1). In Section 3.1, we will show that

Ψ∆,r(τ,H
X) =

(Tg(τ)− Tg(α1))2

(Tg(τ)− Tg(α2))2 =

(
Tg(τ)− 1−45

√
−7

2

)2

(
Tg(τ)− 1+45

√
−7

2

)2

= 1 + 90
√
−7q + (28350 + 45

√
−7)q2 + . . . ,

where α1 := −1+
√
−7

4
and α2 := 1+

√
−7

4
. Note that Tg(α1) and Tg(α2) are algebraic

integers of degree 2 which form a full set of conjugates. Their twisted trace is

2[Tg(α1)− Tg(α2)] = −90
√
−7,

which matches the q1 Fourier coefficient above. To check Corollary 1.2.2, we note

that

λ∆ =
∑

b∈Z/7Z

e(−b/7) ·
(
−7

b

)
= −
√
−7

and
1

λ∆

∑
i

γiTg(αi) = 90 = c+ (7/8, 1/4) = dim
K

(2)
1,7/8

.

Example. As a second example, again consider X = A24
1 , so m(X) = 2 and g(X) =

2B. We pick the admissible pair (∆, r) = (−15, 1). Let ρ1, ρ2, ρ3, ρ4 be the roots of

x4 − 47x3 + 192489x2 − 9012848x+ 122529840,
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with ρ1, ρ2 having positive imaginary parts. Then

Ψ−15,1 =
(Tg(τ)− ρ1)2(Tg(τ)− ρ2)2

(Tg(τ)− ρ3)2(Tg(τ)− ρ4)2
.

We get that

λ−15 =
√
−15,

and
1

λ∆

∑
i

γiTg(αi) = 462 = c(2) (15/8, 1/4) = dim
K

(2)
1,15/8

.

In view of this correspondence, it is clear that the mock modular forms of umbral

moonshine have important properties. The congruence properties of their coefficients

have just begun to be studied. For example, [CHM14] examines the parity of the

coefficients of the McKay-Thompson series for Mathieu moonshine in relation to a

certain conjecture in [CDH14b], which in our case corresponds to X = A24
1 . Congru-

ences modulo higher primes were also considered in [MW14].

Let Θ := q d
dq

= 1
2πi

d
dτ
. Given the product expansion of a generalized Borcherds

product, it is natural to consider its logarithmic derivative. It turns out that this

logarithmic derivative has nice arithmetic properties. This idea was also used in

[BO10] and [Ono10].

Theorem 1.2.3. Fix a pure A-type Niemeier lattice X with Coxeter number m. Let

(∆, r) be an admissible pair. Consider the logarithmic derivative

L∆,r(τ) =
√

∆
∑

a∆,r(n)qn :=
√

∆
∑
n

∑
ij=n

icX
(
|∆|i2

4m
,
ri

2m

)(
∆

j

)
qn

of Ψ∆,r(τ,H
X). Then L∆,r(τ) is a meromorphic weight 2 modular form.

When p is inert or ramified in Q(
√

∆), it turns out that L∆,r(τ) is more than

just a meromorphic modular form; it is a p-adic modular form. Essentially, a p-adic



10

modular form is a q-series which is congruent modulo any power of p to a holomorphic

modular form; we refer the reader to Section 3.2.1 for the definition.

Theorem 1.2.4. Let X be a pure A-type Niemeier lattice with Coxeter number m.

Let (∆, r) be admissible and suppose p is inert or ramified in Q(
√

∆). Then L∆,r is

a p-adic modular form of weight 2.

We will use this result to study the p-divisibility of the coefficients a∆,r(n).

Corollary 1.2.5. Let X,∆, r, p be as above. Then for all k ≥ 1 there exists αk > 0

such that

#{n ≤ x : a∆,r(n) 6≡ 0 (mod pk)} = O

(
x

(log x)αk

)
.

In particular, if we let

π∆,r(x; pk) := #{n ≤ x : a∆,r(n) ≡ 0 (mod pk)},

then

lim
x→∞

π∆,r(x; pk)

x
= 1.

Remark 5. Corollary 1.2.5 also applies to any constant multiple of L∆,r with integral

coefficients. In the example below, we consider the coefficients of

L−7,1(τ)

90
√
−7

= q +O(q2).

However, it is not always the case that the analogous normalization has integral

coefficients.

Example. We illustrate Corollary 1.2.5 for X = A24
1 , ∆ = −7, r = 1. Note that

this is the same case considered in Example 1.2.1. The first few coefficients of the
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normalized logarithmic derivative are given by

L−7,1(τ)

90
√
−7

=:
∑
n≥1

a−7,1(n)qn = q + q2 − 4371q3 + q4 + 17773755q5 + . . .

The prime p = 2 is split in Q(
√
−7), and so Theorem 1.2.4 and Corollary 1.2.5

do not apply. Therefore, we expect the coefficients a−7,1(n) to be equally distributed

modulo 2, but cannot prove anything about them. The prime p = 3 is inert, so

Corollary 1.2.5 tell us that, asymptotically, 100% of the coefficients a−7,−1(n) are

divisible by 3. We illustrate this behavior in Table 1.4.

Table 1.4: Divisibility of a−7,1(n) by p = 2, 3

x π2(x)/x π3(x)/x

50 0.38 0.64
100 0.45 0.68
150 0.47 0.69
200 0.49 0.71
250 0.48 0.71
300 0.49 0.72
...

...
...

∞ .5? 1

1.2.2 Second Result

In Chapter 4, we consider the Mathieu group M23, which is the point stabilizer of the

action of M24 on 24 points. It is a sporadic group, with about 107 elements in 17 con-

jugacy classes. M23 inherits a moonshine from M24 whose McKay-Thompson series

are weight 1/2 mock modular forms. However, M23 exhibits another moonshine. We

show that there exists a different infinite dimensional graded representation of M23

whose McKay-Thompson series are Hauptmoduln for monstrous genus zero congru-

ence subgroups.

For a conjugacy class g of M23, we start with the dual families of Rademacher
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sums (see Section 2.3 for more information about Rademacher sums):

H [µ]
g (τ) := −2qµ − 2

∑
ν− 1

8
∈Z

ν<0

Ag(µ, ν)q−ν | µ+
1

8
∈ Z, µ < 0

 (1.2.1)

and F [ν]
g (τ) := 2qν − 2

∑
µ+ 1

8
∈Z

µ<0

Ag(µ, ν)q−µ | ν − 1

8
∈ Z, ν < 0

 . (1.2.2)

Here, H [−1/8]
g is the Mathieu moonshine McKay-Thompson series H(2)

g . A priori,

the H [µ]
g are weight 1/2 mock modular forms on Γ0(ng) with multiplier system ε−3,

while the F [ν]
g are weight 3/2 mock modular forms on Γ0(ng) with multiplier system

ε3. Here, ε is the multiplier system of η(τ) as described in Appendix A and ng is the

order of the elements in the conjugacy class g. However, we show in Theorem 4.1.2

that the F [ν]
g are actually modular!

We then define

fg(τ) :=
F

[−7/8]
g (τ)

η3(τ)
= q−1 +

∑
n≥0

cg(n)qn ∈M !
0(Γ0(ng)).

Note that cg(0) = 3 + Ag(−1/8,−7/8)

2
, which is given in Table 1.5.

Our first theorem gives a surprising connection between these functions and the

McKay-Thompson series of monstrous moonshine. In particular, for each conjugacy

class g ofM23, we associate a conjugacy class ĝ of the monster groupM as in Table 1.6.

Then we have the following:

Theorem 1.2.1. We have that

fg(τ) = 3 +
Ag(−1/8,−7/8)

2
+ Tĝ(τ) ∈M !

0(Γĝ),

where Tĝ(τ) is the monstrous moonshine McKay-Thompson series and Γĝ is the genus
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Table 1.5: Constant Term of fg

M23 Conj. Class Constant Term of fg

g cg(0)

1a 48

2a 0

3a 3

4a 4

5a 3

6a 3

7ab 5
2

8a 2

11ab 4

14ab 7
2

15ab 3

23ab 2

zero group associated to ĝ in monstrous moonshine, as given in Table 1.6.

Remark 6. Coefficients and expressions for the monstrous moonshine McKay-Thompson

series Tg(τ) can be found in [CN79]. Note that Tĝ(τ) and fg(τ) are differentially nor-

malized generators of the modular functions on Γĝ.

Furthermore, we show that these fg are the McKay-Thompson series for a new

moonshine on M23.

Theorem 1.2.2. There exists a graded M23-module

V =
∞⊕

n=−1

Vn
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Table 1.6: Correspondance Between Conj. Classes of M23 and the Monster Group M

M23 Conj. Class Monster Conj. Class Congruence Subgroup

g ĝ Γĝ

1a 1A Γ0(1)

2a 2B Γ0(2)

3a 3B Γ0(3)

4a 4C Γ0(4)

5a 5B Γ0(5)

6a 6E Γ0(6)

7ab 7B Γ0(7)

8a 8E Γ0(8)

11ab 11A Γ0(11) + 11

14ab 14C Γ0(14) + 14

15ab 15C Γ0(15) + 15

23ab 23AB Γ0(23) + 23

such that the graded trace of g on M23 is 2fg(τ), i.e.

2fg(τ) =
∞∑

n=−1

tr(g | Vn)qn.

Remark 7. While the order of M23 divides the order of the monster group M, [NW02]

showed that M23 is not a subgroup of M. This rules out the possibility that our

moonshine for M23 comes directly from monstrous moonshine via restriction.

Remark 8. The reason we use 2fg is that a few of the constant terms of fg are half-

integral, as can be seen in Table 1.5.

Example. Let g = 1a. Then

F
[−7/8]
1a (τ) = 2q−7/8 + 90q1/8 + 393480q9/8 +O(q17/8) = 2(J(τ) + 48) ∗ η3(τ)
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and

f1a(τ) = q−1+48+196884q+21493760q2+21493760q3+O(q4) = 48+J(τ) = 48+T \1A(τ)

In monstrous moonshine we famously have

196884 = 196883 + 1,

where 196883 and 1 are dimensions of representations of the monstrous group M.

However, in our new moonshine for M23 we have that 196884 equals

9·1+2·22+8·45+8·230+15·231+6·253+28·770+32·896+36·990+24·1035+39·2024,

where 1, 22, 45, 230, 231, 253, 770, 896, 990, 1035, and 2024 are all of the dimensions

of the irreducible representations of M23, as can be seen in Appendix B. Therefore,

it would be extremely hard to notice this moonshine by comparing coefficients of

Hauptmoduln to the degrees of irreducible characters!



16

Chapter 2

Background

2.1 Vector-Valued Modular Forms

In this section, we follow [BO10] in giving the needed background on vector-valued

modular forms, though we state results in less generality. Also see [BFOR17].

2.1.1 A Lattice Related to Γ0(m)

We will define a lattice L and a dual lattice L′ related to Γ0(m) such that the com-

ponents of our vector-valued modular forms are labeled by the elements of L′/L.

We consider the quadratic space

V := {X ∈ Mat2(Q) : tr(X) = 0}

with the quadratic form P (X) := m det(X).1 The corresponding bilinear form is then

(X, Y ) := −m tr(XY ). Let L be the lattice

L :=


b −a/m
c −b

 ; a, b, c ∈ Z

 .

1Note that this corrects a typo in [BO10].
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The dual lattice is then given by

L′ :=


b/2m −a/m

c −b/2m

 ; a, b, c ∈ Z

 .

We will switch between viewing elements of L′ as matrices and as quadratic forms,

with the matrix

X =

b/2m −a/m

c −b/2m


corresponding to the integral binary quadratic form

Q = [mc, b, a] = mcx2 + bxy + cy2.

Note that then P (X) = −Disc(Q)/4m.

We identify L′/L with ( 1
2m

Z)/Z, and the quadratic form P with the quadratic form
j

2m
7→ −j2

4m
on Q/Z. We will also occasionally identify j

2m
∈ Q/Z with j ∈ Z/2mZ.

For a fundamental discriminant ∆ and r/2m ∈ L′/L with r2 ≡ ∆ (mod 4m), let

Q∆,r := {Q = [mc, b, a] : a, b, c ∈ Z,Disc(Q) = ∆, b ≡ r (mod 2m)}. (2.1.1)

The action of Γ0(m) on this set is given by the usual action of congruence subgroups

on binary quadratic forms. We will later be working with Q∆,r/Γ0(m).

2.1.2 The Weil Representation

By Mp2(Z) we denote the integral metaplectic group. It consists of pairs (γ, φ), where

γ = ( a bc d ) ∈ SL2(Z) and φ : H → C is a holomorphic function with φ2(τ) = cτ + d.

The group Γ̃ := Mp2(Z) is generated by S := (( 0 −1
1 0 ) ,

√
τ) and T := (( 1 1

0 1 ) , 1).

We consider the Weil representation ρL of Mp2(Z) corresponding to the dis-
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criminant form L′/L. We denote the standard basis elements of C[L′/L] by ej,

j/2m ∈ L′/L. Then the Weil representation ρL associated with the discriminant

form L′/L is the unitary representation of Γ̃ on C[L′/L] defined by

ρL(T )ej = e(j2/4m)ej,

and

ρL(S)ej =
e(−1/8)√

2m

∑
i∈Z/2mZ

e(ij/2m)ei.

2.1.3 Harmonic Weak Maass Forms

If f : H→ C[L′/L] is a function, we write

f =
∑

j∈Z/2mZ

fjej

for its decomposition into components. For k ∈ 1
2
Z, let M !

k,ρL
denote the space of

C[L′/L] valued weakly holomorphic modular forms of weight k and type ρL for the

group Γ̃. The subspaces of holomorphic modular forms (resp. cusp forms) are denoted

by Mk,ρL (resp. Sk,ρL). Now, assume that k ≤ 1. A twice continuously differentiable

function f : H → C[L′/L] is called a harmonic weak Maass form (of weight k with

respect to Γ̃ and ρL) if it satisfies:

1. f(Mτ) = φ(τ)2kρL(M,φ)f(τ) for all (M,φ) ∈ Γ̃;

2. ∆kf = 0;

3. There is a polynomial

Pf (τ) =
∑

j∈Z/2mZ

∑
n∈Z− j2

4m
,

−∞<<n≤0

c+(n, h)e(nτ)ej
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such that

f(τ)− Pf = O(e−εv)

for some ε > 0 as v → +∞.

Note here that

∆k := −v2

(
∂2

∂u2
+

∂2

∂v2

)
+ ikv

(
∂

∂u
+ i

∂

∂v

)

is the usual weight k hyperbolic Laplace operator, and that τ = u+iv. We denote the

vector space of these harmonic weak Maass forms by Hk,ρL . The Fourier expansion

of any f ∈ Hk,ρL gives a unique decomposition f = f+ + f−, where

f+(τ) =
∑

j∈Z/2mZ

∑
n∈Z− j2

4m
,

−∞<<n

c+(n, j)e(nτ)ej, (2.1.2)

f−(τ) =
∑
j∈L′/L

∑
n∈Q,
n<0

c−(n, j)W (2πnv)e(nτ)ej, (2.1.3)

and W (x) :=
∫∞
−2x

e−tt−kdt = Γ(1− k, 2|x|) for x < 0. Then f+ is called the holomor-

phic part and f− the nonholomorphic part of f . The polynomial Pf is also uniquely

determined by f and is called its principal part. We define a mock modular form of

weight k to be the holomorphic part f+ of a harmonic weak Maass form f of weight

k which has f− 6= 0. Its weight is just the weight of the harmonic weak Maass form.

Recall that there is an antilinear differential operator defined by

ξk : Hk,ρL → S2−k,ρL , f(τ) 7→ ξk(f)(τ) := 2iyk
∂

∂τ
,

where ρL is the complex conjugate representation. The Fourier expansion of ξk(f) is

given by

ξk(f) = −
∑

j∈Z/2mZ

∑
n∈Q,n>0

(4πn)1−kc−(−n, j)qnej.
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The kernel of ξk is equal to M !
k,ρL

, and we have the following exact sequence:

0→M !
k,ρL
→ Hk,ρL → S2−k,ρL → 0.

We call ξk(f) the shadow of f . Note that ξk(f) uniquely determines f−, but the f+

is only determined up to the addition of a weakly holomorphic modular form.

2.2 Umbral Moonshine

In this section, we summarize the main objects and conjectures of umbral moonshine.

However, we first briefly describe Mathieu moonshine, which umbral moonshine gen-

eralized.

2.2.1 Mathieu Moonshine

In 2010, the study of a new form of moonshine commenced, called Mathieu moonshine.

Let µ(z, τ) := µ(z, z, τ ) be Zwegers’ famous function from his thesis [Zwe02], which

is defined in the appendix. Let H(2)(τ) be the q-series

H(2)(τ) := −8
∑

ω∈{ 1
2
, 1+τ

2
, τ
2
}

µ(ω, τ) = 2q−1/8(−1 + 45q + 231q2 + . . . ), (2.2.1)

which occurs in the decomposition of the elliptic genus of a K3 surface into irreducible

characters of the N = 4 superconformal algebra. This is a mock-modular form, and

plays the role of J(τ) in Mathieu moonshine. Eguchi, Ooguri, and Tachikawa con-

jectured that the Fourier coefficients encode dimensions of irreducible representations

of the Mathieu group M24 [EOT11]. This was extended to the full Mathieu moon-

shine conjecture by [Che10,EH11,GHV10a,GHV10b], which included providing mock

modular forms H(2)
g for every g ∈ M24. The existence of an infinite dimensional M24

module underlying the mock modular forms was shown by Gannon in 2012 [Gan16].
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In the context of umbral moonshine, H(2)(τ) is viewed as vector-valued with com-

ponents H(2)
r (τ) for r ∈ Z/4Z. However, since H(2)

0 = H
(2)
2 = 0 and H(2)

3 = −H(2)
1 , in

practice we often just focus on the component H(2)
1 . That’s what’s given in (2.2.1).

2.2.2 The Objects of Umbral Moonshine

Cheng, Duncan, and Harvey generalized even further - conjecturing that Mathieu

moonshine is but one example of a more general phenomenon which they call umbral

moonshine [CDH14a].

For each of the 23 Niemeier root systems X, which are unions of irreducible simply-

laced root systems with the same Coxeter number, they associate many objects,

including a group GX (playing the role of M), a mock modular form HX(τ) (playing

the role of j(τ)), and an infinite dimensional graded GX module KX (playing the role

of the M -module V \) Table 2.1 gives a more complete list of the associated objects.

The ADE classification of simply laced Dynkin diagrams allows us to classify the

irreducible components of the Niemeier root systems X. We will focus on the simplest

cases - the root systems of pure A-type, i.e. X = A
24/(m−1)
m−1 , where (m − 1) | 24. In

these cases, the lambency ` is an integer and equals m, and ΓX = Γ0(m). The case

X = A24
1 corresponds to Mathieu moonshine, with GX = M24 and HX = H(2), as

defined above. We will generally refer to HX , SX , ψX , and TX as H(m), S(m), ψ(m),

and jm respectively. These are the main quantities from Table 2.1 that we will work

with, and we will only define them for pure A-type. This is done in Section 2.2.4.
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Table 2.1: Objects Associated to a Niemeier Root System X

LX The Niemeier lattice corresponding to X.

m The Coxeter number of all irreducible components of X.

WX The Weyl group of X.

GX := Aut(LX)/WX The umbral group corresponding to X.

πX The (formal) product of Frame shapes of Coxeter

elements of irreducible components of X.

ΓX The genus zero subgroup attached to X.

TX The normalized Hauptmodul of ΓX , whose

eta-product expansion corresponds to πX .

` The lambency. A symbol that encodes the genus zero

group ΓX . Sometimes used instead of X to denote

which case of umbral moonshine is being considered.

ψX The unique meromorphic Jacobi form of weight 1 and

index m satisfying certain conditions.

HX The vector-valued mock modular form of weight 1/2

whose 2m components furnish the theta expansion of

the finite part of ψX .

Called the umbral mock modular form.

SX The vector-valued cusp form of weight 3/2 which is

the shadow of HX . Called the umbral shadow.

HX
g The umbral McKay-Thompson series attached to

g ⊂ GX . It is a vector-valued mock modular form

of weight 1/2, and equals HX when g is the identity.

SXg The vector-valued cusp form conjectured to be

the shadow of HX
g .

KX The conjectural infinite dimensional graded GX-module

whose graded super-dimension is encoded by HX .
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2.2.3 The Conjectures and Proof Strategy of Umbral Moon-

shine

The main conjectures of umbral moonshine are as follows:

1. The mock modular form HX encodes the graded super-dimension of a certain

infinite-dimensional, Z/2mZ×Q-graded GX-module KX .

2. The graded super-characters HX
g arising from the action of GX on KX are

vector-valued mock modular forms with concretely specified shadows SXg .

Remark 9. Originally, it was thought that HX
g was the unique, up to scale, mock

modular form of weight 1/2 for Γ0(n) with optimal growth, for suitably chosen n,

multiplier system, and shadow. However, this was shown in [CDH18] to be false in a

few cases. An alternate analogy of the genus zero property from monstrous moonshine

was given and proven in [CDH18]. It uses Rademacher sums and will be discussed in

Section 2.3.4.

We will now describe the general strategy used by Gannon in [Gan16] and Duncan-

Griffin-Ono in [DGO15] to prove the umbral moonshine conjectures.

In order to prove moonshine for a group G with proposed McKay-Thompson series

Tg(τ), one approach is to study the series Tχ where χ ∈ Ĝ, defined by

Tχ(τ) :=
1

|G|
∑
g∈G

χ(g)Tg(τ), (2.2.2)

where the sum is over all elements of G. The idea is that if a G-module V exists for

which the Tg(τ) are the graded traces, then we have the following. First, there are

nonnegative integers mχ(n) such that V =
⊕

n Vn with Vn =
⊕

χ V
mχ(n)
χ . Secondly,

we’ll have that

Tg(τ) =
∑
n

∑
χ

mχ(n)χ(g)qn. (2.2.3)
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So in order to prove that there exists a G-module V for which the Tg(τ) are

the graded traces, it’s enough to prove that the coefficients mχ(n) in (2.2.3) are

nonnegative integers. Then we can use them to construct V out of irreducibles. Note

that this is not a completely satisfying conclusion, as we hope for moonshine modules

to have "natural" constructions equipped with deeper algebraic structure, like the

monster module V \.

Starting with (2.2.2) and (2.2.3), the orthogonality of characters implies that

Tg(τ) =
∑
χ

χ(g)Tχ(τ).

This in turn gives us that

Tχ(τ) =
∑
n

mχ(n)qn.

So the goal is then to show that the coefficients of the Tχ(τ) are nonnegative inte-

gers. This can be broken into two steps. First, showing that they’re integers, and

next showing that they’re nonnegative. Note that Atkin, Fong, and Smith used this

strategy on monstrous moonshine in [Smi85], but didn’t quite show that the mχ(n)

were nonnegative.

2.2.4 Defining the Umbral Mock Modular Forms

In this section we define the mock modular forms HX from umbral moonshine, as well

as their shadows SX and non-holomorphic parts. Note that we only give definitions for

the pure A-type cases - see [CDH14a] for a more detailed and general definition. We

also refer the reader to Appendix A for definitions of ϕ(m)
1 (τ, z), µm,0(τ, z), θm,j(τ, z),

and R(u; τ).

For a pure A-type Niemeier lattice X with Coxeter number m, define the Jacobi

form ψX by

ψX(τ, z) := cmϕ
(m)
1 (τ, z)µ1,0(τ, z),
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where cm = 2 for m = 2, 3, 4, 5, 7, 13 and cm = 1 for m = 9, 25. We can break up ψX

into a finite part ψXF and a polar part ψXP . The polar part is given by

ψXP (τ, z) =
24

m− 1
µm,0(τ, z).

Then the mock modular form HX is defined by

ψXF (τ, z) = ψX(τ, z)− ψXP (τ, z) =
∑

j∈Z/2mZ

HX
j (τ)θm,j(τ, z), (2.2.4)

where

θm,j(τ, z) :=
∑

n≡j (mod 2m)

qn
2/4myn.

We also define the shadow SX(τ), the non-holomorphic part FX(τ), and the har-

monic weak Maass form ĤX(τ) corresponding to the mock modular form HX via

their components:

SXj (τ) :=
∑

n≡j (mod 2m)

nqn
2/4m, (2.2.5)

FX
j (τ) :=

∫ i∞

−τ

SXj (z)√
−i(z + τ)

dz (2.2.6)

= −2mq−(j−m)2/4mR

(
j −m

2m
(2mτ) +

1

2
; 2mτ

)
, and

ĤX
j (τ) := HX

j (τ) + FX
j (τ) (2.2.7)

Note that by definition, SXj (τ) = −SX−j(τ). Therefore, SX0 = SXm = 0. The

same is true of HX
j . We can write this in terms of Shimura’s theta functions as

SXj (τ) = θ(τ ; j, 2m, 2m,x) [Shi73]. Then using the transformation laws for his θ-
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functions, we get that SX transforms as follows:

SXj (τ + 1) = e(j2/4m)SXj (τ), and

SXj (−1/τ) = τ 3/2 e(−1/8)√
2m

∑
i (mod 2m)

e(ij/2m)SXk (τ).

Thus, we have

SX(τ + 1) = ρL(T )SX(τ), and

SX(−1/τ) = τ 3/2ρL(S)SX(τ).

From these transformations, we see that SX(τ) : H → C[L′/L] is a weight 3/2

vector-valued modular form transforming under the Weil representation ρL, i.e. an

element of the space M3/2,ρL . From [CDH14a], we know that H(m) is a mock modular

form with shadow SX . This gives us the following theorem.

Theorem 2.2.1. We have that ĤX(τ) : H → C[L′/L] is a weight 1/2 vector-valued

harmonic weak Maass form transforming under the Weil representation ρL, i.e., it is

an element of H1/2,ρL. Moreover, it has shadow SX(τ), non-holomorphic part FX ,

and principal part P (τ) = −2q−1/4m(e1 − e2m−1).

2.3 Rademacher Sums

In this section, we will discuss a method of building modular forms that will be

important in Chapter 4. For more details, see [CD14].

2.3.1 Introduction To Rademacher Sums

The general idea is as follows: If you want to construct a symmetric function from

a non-symmetric one, you can simply sum its images under the desired group of
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symmetries. Of course, when the group of symmetries is infinite, issues of convergence

come up.

To address this problem, Poincaré (see [Poi11]) started with a function that was

already invariant under a large enough group of symmetries and then restricted the

summation to representatives of the cosets of the subgroup fixing f . So if we let f(τ) =

e(mτ), where m ∈ Z, then f is invariant under the subgroup of upper triangular

matrices, denoted Γ∞. Therefore, we can consider

f̃(τ) :=
∑

M∈Γ∞\Γ

f(Mτ)
1

(cτ + d)w

where M = ( a bc d ).

For w ≥ 4, this sum converges absolutely, locally uniformly in τ , and so gives a

holomorphic function on the upper half plane. When m ≥ 0, it’s bounded at i∞ and

so f̃(τ) is a modular form of weight w on SL2(Z). This also works for more general

congruence subgroups Γ and multipliers.

For w ≤ 2, more work is required. Rademacher (see [Rad39]) came up with a

solution for w = 0. He showed that

J(τ) + 12 = e(−τ) + lim
K→∞

∑
M∈Γ∞\Γ
0<c<K

−K2<d<K2

e(−Mτ)− e(−a/c) (2.3.1)

where again M = ( a bc d ).

This sum is conditionally convergent, and the right hand side is a modification of

the Poincaré sum with w = 0 andm = −1. This idea has been successfully generalized

to other groups and (some) weights, but the modularity doesn’t usually completely

survive the regularization procedure - it instead yields mock modular forms.

Let Γ be a subgroup of SL2(R) that is commensurable with SL2(Z) and contains

−I. Say it has width h at the cusp i∞. Let ψ be a multiplier of weight w ∈ R and
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0 ≤ α < 1 be such that ψ(T h) = e(α). Then for any index µ such that hµ + α ∈ Z,

we can define the Rademacher sum R
[µ]
Γ,ψ,w, which is a mock modular form on Γ with

weight w and multiplier ψ. We will not give the general definition here (see [CD14]),

but it is similar in structure to that of J(τ) in 2.3.1.

2.3.2 Rademacher Series and Zagier Duality

In practice, it’s often more useful to write Rademacher sums is in terms of their

Fourier expansion. We expect (and can prove in many cases) that

RΓ,ψ,w(τ) = qu +
∑

hν+α∈Z
ν≥0

cΓ,ψ,w(µ, ν)qν ,

where the Fourier coefficients are called Rademacher series and are given in terms of

Kloosterman sums Kγ,ψ and Bessel functions Bγ,w.

These Rademacher series exhibit a Zagier duality, which generalizes that in [Zag02].

In particular, we have that

cΓ,ψ,2−w(−ν,−µ) = cΓ,ψ,w(µ, ν)

when µ, ν ∈ 1
h
(Z − α). This comes from a symmetry in the Bessel functions and

Kloosterman sums that define these series. Therefore, we expect (and can prove in

many cases) dual families of Rademacher sums whose coefficients lie on a grid:

{R[µ]
Γ,ψ,w | hµ+ α ∈ Z, µ < 0}, {R[ν]

Γ,ψ,2−w | hν − α ∈ Z, ν < 0}.



29

2.3.3 Monstrous Moonshine Functions as Rademacher Sums

For monstrous moonshine, we look at Γ = Γg for g ∈ M, ψ = 1, w = 0, and µ = −1.

We have that

R
[−1]
Γg ,1,0

= q−1 +
∑
k≥0

cΓg ,1,0(−1, k)qk

where

cΓg ,1,0(−1, k) =
2π√
k

∑
b>0

1

|g|b
I1

(
4π
√
k

|g|b

)
K(k, 1, |g|b).

Here, K is a Kloosterman sum and I is an I-Bessel function. Both are defined in

Appendix A.

We have that Tg matches the Rademacher sum R
[−1]
Γg ,1,0

up to the constant term:

Tg(τ) = R
[−1]
Γg ,1,0

(τ)− cΓg ,1,0(−1, 0).

Furthermore, we have that R[−1]
Γ,1,0 is modular exactly when Γ has genus zero. See

[DF11] for proofs of all this, starting with the convergence and Fourier expansion of

R
[µ]
Γ,1,0.

2.3.4 Mathieu Moonshine Functions as Rademacher Sums

Let g ∈M24. Then we define a character ρg as follows. Define ng to be the order of g

and hg be the minimal length among cycles in the cycle shape of g when g is regarded

as a permutation in the unique non-trivial permutation action of M24 on 24 points.

Then ρg is given by

ρg(γ) = e

(
− cd

nghg

)
(2.3.2)

for γ = ( a bc d ) ∈ Γ0(ng). The fact that (2.3.2) defines a morphism of groups Γ0(ng)→

C× relies on the fact that hg is always a divisor of 24. Note that hg is also a divisor of

ng, and for g ∈M23, hg = 1. Finally, let ψg = ρgε
−3, where ε is the multiplier system
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of η(τ) as given in Appendix A.

Then for µ, ν < 0 satisfying µ ∈ Z − 1/8, ν ∈ Z + 1/8, we have the following

theorems. They are proven in [CD12] for µ = −1/8, but the same methods work

more generally. For ease of notation, we let ψ = ψg and Γ = Γ0(ng).

Theorem 2.3.1. The Rademacher sums R[µ]
Γ,ψ,1/2 and R

[ν]

Γ,ψ,3/2
converge, locally uni-

formly for τ ∈ H and are weak mock modular forms bounded at all cusps besides

i∞.

Theorem 2.3.2. The Rademacher series cΓ,ψ,1/2(µ,−ν) and cΓ,ψ,3/2(ν,−µ) converge

and are equal. Moreover, they are the coefficients of the corresponding Rademacher

sums:

R
[µ]
Γ,ψ,1/2 = qµ +

∑
ν<0

ν∈Z+1/8

cΓ,ψ,1/2(µ,−ν)q−ν

and

R
[ν]

Γ,ψ,3/2
= qν +

∑
µ<0

µ∈Z−1/8

cΓ,ψ,3/2(ν,−µ)q−µ.

Remark 10. Usually, ν is defined be positive and in Z− 1/8, so that the coefficients

of R[µ]
Γ,psi,1/2 are cΓ,ψ,1/2(µ, ν). However, since we will be working extensively with the

dual family we have defined ν to be what is usually −ν.

The reason that [CD12] focused on the case where µ = −1/8 is that those

Rademacher sums are the ones that appear in Mathieu moonshine. In particular,

they proved the following:

Theorem 2.3.3. We have that H(2)
g (τ) = −2R

[µ]
Γ,ψ,1/2.

More generally, almost all of the umbral moonshine McKay-Thompson series HX
g

are equal to the appropriate vector-valued Rademacher sums. The only exceptions

are when X = A3
8 and the order of g is a multiple of 3, in which case a vector-valued

theta series must be added to the Rademacher sum. See [CDH18] for more details.
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2.4 Replicability of Monstrous Tg

In this section, we give an overview of the Theory of Replicability as developed by Con-

way, Norton, and others in [CN79], [Nor84], and [ACMS92], and proved by Borcherds

in [Bor92].

In Conway and Norton’s first paper [CN79] on moonshine, they found what they

called replication formulas. For example, if the nth coefficient of Tg(τ) is cg(n), then

the triplication formula can be written as:

1

3
(T 3

g (τ)− Tg3(3τ)) = (cg(3)q + cg(6)q2 + · · · ) + cg(1)Tg(τ) + cg(2).

Considering the coefficient of q2 on both sides gives that

2cg(1)cg(2) + cg(4) = cg(6) + cg(1)cg(2),

and hence allows us to recursively compute cg(6) in terms of cg(1), cg(2), and cg(4)

using

cg(6) = cg(4) + cg(1)cg(2).

The function Tg3(τ) is called the 3rd replicate of Tg(τ), and for more general functions

f we can work backwards to define the 3rd replicate f (3) using the triplication formula.

In [Nor84], Norton expanded upon his previous work with Conway to develop a

general definition and framework for replicable functions. Let f(τ) = q−1 +
∑
cnq

n,

and define

F (σ, τ) = log(f(p)− f(q)) = log(p−1 − q−1)−
∞∑

m,n=1

cm,np
mqn,

where p = e(σ), q = e(τ), and σ, τ ∈ H. Then f is replicable if ca1,b1 = ca2,b2 whenever

a1b1 = a2b2 and (a1, b1) = (a2, b2). This condition is necessary and sufficient to
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generate replication formulas like those for the monstrous moonshine functions.

In proving the monstrous moonshine conjecture, Borcherds studied the Lie algebra

m associated to the monster group M, and showed that it admits the denominator

identity

p−1
∏
m,n∈Z
m>0

(1− pmqn)c(nm) = J(σ)− J(τ),

where σ, τ , p, and q are as before and c(n) is the nth coefficient of J . This is known

as the Koike-Norton-Zagier formula, and gives many recursive formulas which can be

used to calculate the coefficients c(n).

For example, if we look at the coefficient of p3q on both sides, we get that

p−1(−c(4)p4q) + p−1(−pq−1)(−c(1)pq)(−c(2)p2q) + p−1(−pq−1)(−c(6)p3q2) = 0,

which gives the familiar

c(6) = c(4) + c(1)c(2).

Put together, the recursive formulas allow us to compute the coefficients of J(τ) given

just the values of c(1), c(2), c(3), and c(5) to start with.

The same is true of coefficients of the other McKay-Thompson series Tg, where

cg(n) is the nth coefficient of Tg:

p−1 exp

−∑
k>0

∑
m,n∈Z
m>0

1

k
cgk(nm)pmkqnm

 = Tg(σ)− Tg(τ).

This gives us the following recursive formulas:
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cg(4k) = cg(2k + 1) +
cg(k)2 − cg2(k)

2
+
∑

1≤j<k

cg(j)cg(2k − j),

cg(4k + 1) = cg(2k + 3)− cg(2)cg(2k) +
cg(2k)2 + cg2(2k)

2

+
cg(k + 1)2 − cg2(k + 1)

2
+
∑

1≤j≤k

cg(j)cg(2k − j + 2)

+
∑

1≤j<k

cg2(j)cg(4k − 4j) +
∑

1≤j<2k

(−1)jcg(j)cg(4k − j),

cg(4k + 2) = cg(2k + 2) +
∑

1≤j≤k

cg(j)cg(2k − j + 1),

cg(4k + 3) = cg(2k + 4)− cg(2)cg(2k + 1)−
cg(2k + 1)2 − cg2(2k + 1)

2

+
∑

1≤j≤k+1

cg(j)cg(2k − j + 3) +
∑

1≤j≤k

cg2(j)cg(4k − 4j + 2)

+
∑

1≤j≤2k

(−1)jcg(j)cg(4k − j + 2).

We will use these recursive formulas in Section 4.2.1.
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Chapter 3

Proof of First Result

3.1 Relating Umbral and Monstrous Moonshine

In this section, we explain the relationship between the mock modular forms HX from

umbral moonshine and the Hauptmoduln Tg from monstrous moonshine.

3.1.1 Twisted Generalized Borcherds Products

Let cX(n, j) be the n-th Fourier coefficient of HX
j . Let (∆, r) be an admissible pair,

so that ∆ 6= −3 is a negative fundamental discriminant and r2 ≡ ∆ (mod 4m).

Let ΨX
∆,r := Ψ∆,r(τ, Ĥ

X) be the generalized twisted Borcherds product defined in

Theorem 1.2.1.

To understand the statement of the next theorem, we need to define the twisted

Heegner divisor ZX
∆,r associated to ĤX . First, let

Z∆,r

(
−1

4m
,
j

2m

)
:=

∑
Q∈Q∆,jr/Γ0(m)

χ∆(Q)

w(Q)
αQ,

where w(Q) is the order of the stabilizer of the quadratic form Q in Γ0(m), χ∆ is the

generalized genus character defined in [GKZ87], and αQ is the unique root of Q(x, 1)
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in H. Then define

ZX
∆,r :=

∑
j∈Z/2mZ

∑
n<0

cX(n, j)Z∆,r(n, j) = 2Z∆,r

(
−1

4m
,
−1

2m

)
− 2Z∆,r

(
−1

4m
,

1

2m

)
,

since the principal part of ĤX is −2q−1/4m(e1 − e2m−1).

Theorem 3.1.1. We have that ΨX
∆,r is a modular function for Γ0(m) with divisor

Z
(m)
∆,r .

Proof: From Theorem 6.1 and 6.2 of [BO10], we know that Ψ∆,r is a modular function

for Γ0(m) with finite order unitary character σ and divisor ZX
∆,r. It remains to show

that σ is trivial.

Since ∆ 6= −3, we know that w(Q) = 2, 4 for all Q ∈ Q∆,±r. Moreover, note that

{Q : Q ∈ Q∆,−r} = {−Q : Q ∈ Q∆,r} and that

χ∆(−Q)

w(−Q)
α−Q = −χ∆(Q)

w(Q)
αQ,

so

ZX
∆,r =

∑
Q∈Q∆,r/Γ0(m)

−4
χ∆(Q)

w(Q)
αQ.

Therefore, ZX
∆,r is an integral degree zero divisor.

Since Γ0(m) has genus zero, ZX
∆,r is a principal divisor on X0(m) and we may

consider a meromorphic function f on X0(m) with associated divisor ZX
∆,r. The

expression
∣∣ΨX

∆,r/f
∣∣ defines a harmonic function on X0(m) with no singularities, and

therefore must be constant. So ΨX
∆,r/f is a holomorphic function on H with constant

modulus, and must therefore also be constant. So σ is trivial.
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3.1.2 Proofs of Theorem 1.2.1 and Corollary 1.2.2

Proof of Theorem 1.2.1: Since Γ0(m) has genus zero, Theorem 3.1.1 implies that

ΨX
∆,r is a rational function in the Hauptmodul for Γ0(m). The normalized Haupt-

modul, which we call jm(τ), is defined by

jm(τ) :=
η(τ)24/(m−1)

η(mτ)24/(m−1)
+

24

m− 1
. (3.1.1)

But using Table 1.1, we see that jm(τ) is equal to Tg(X)(τ), the graded trace of

g(X) ∈M on V .

Proof of Corollary 1.2.2: From Theorem 1.2.1, we have that

∞∏
n=1

P∆(qn)
c+

(
|∆|n2

4m
, rn
2m

)
=
∏
i

(Tg(τ)− Tg(αi))γi .

We equate the q1 Fourier coefficients of each side, using Table 1.2 to get the Fourier

expansion

Tg(τ) =
1

q
+O(q).

3.1.3 Examples

For each pure A-type case X with Coxeter number m, we illustrate how to write ΨX
∆,r

as a rational function in jm. Note that here ∆ < 0 is a fundamental discriminant and

r ∈ Z is such that ∆ ≡ r2 (mod 4m).

First we work out an example for m = 2 in some detail, then list one example for

each m. In Section 3.1.4, we explain how to find representatives of Q∆,r/Γ0(m) using

a method of Gross, Kohen, and Zagier.

Consider the case X = A24
1 ,∆ = −7, r = 1. Note here that m = 2. Using

the method of Section 3.1.4, we compute that Q−7,1/Γ0(2) = {Q1, Q2} and that
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Q−7,−1/Γ0(2) = {−Q1,−Q2}, where the quadratic forms Q, their Heenger points αQ,

and their generalized genus characters χ∆(Q) are given in Table 3.1. We also include

the value of j2 at each Heegner point. Using the table, the divisor of ΨX
−7,1 is given

Table 3.1: Quadratic Forms Needed for m = 2, ∆ = −7, r = 1 Case

quadratic form = Q αQ χ∆(Q) j2(αQ)

Q1 = [2, 1, 1] α1 = −1+
√
−7

4
1 γ1 := 1+45

√
−7

2

Q2 = [−2, 1,−1] α2 = 1+
√
−7

4
−1 γ2 := 1−45

√
−7

2

−Q2 α2 1 γ2

−Q1 α1 −1 γ1

by:

(−α1 + α2)− (α1 − α2) = 2α2 − 2α1.

Therefore,

ΨX
−7,1(τ) =

(j2(τ)− γ2)2

(j2(τ)− γ1)2
.

Similarly, for each value ofm corresponding to a pure A-type case, we demonstrate

in Table 3.2 how to write Ψ∆,r(τ, Ĥ
(m)) as a rational function in jm for some nice choice

of ∆, r. In all the examples we consider,

ΨX
∆,r(τ) =

(jm(τ)− γ2)2

(jm(τ)− γ1)2

for some γ1, γ2 ∈ OQ(
√

∆). Note that ΨX
∆,r will not always be a rational function of

this particular form - we always picked ∆ with class number 1.
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Table 3.2: Examples

m ∆ r γ1 γ2

2 −7 1 1+45
√
−7

2
1−45

√
−7

2

3 −11 1 17 + 8
√
−11 17− 8

√
−11

4 −7 3 −15+3
√
−7

2
−15−3

√
−7

2

5 −11 3 −3 + 2
√
−11 −3− 2

√
−11

7 −19 3 3+3
√
−19

2
3−3
√
−19

2

9 −11 5 −1 +
√
−11 −1−

√
−11

13 −43 3 7+
√
−43

2
7−
√
−43

2

25 −19 9
√
−19
2

−
√
−19
2

3.1.4 Computing the Elements in Q∆,r/Γ0(m)

In this section, we explain how to compute Q∆,r/Γ0(m), following [GKZ87].

Let Q0
∆,r be the subset of primitive forms. Then we have a Γ0(m)-invariant bijec-

tion of sets

Q∆,r =
⋃
`2|∆

 ⋃
h∈S(`)

`Q0
∆/`2,h

 ,

where S(`) := {j ∈ Z/2mZ : j2 ≡ ∆/`2 (mod 4m), `j ≡ r (mod 2m)}. Since we pick

∆ to be a fundamental discriminant, the only possible prime we need to worry about

is ` = 2. In our examples, we always choose ∆, r such that S(2) = ∅. In this case, we

just need to work with Q0
∆,r.

Now, let n :=
(
m, r, r

2−∆
4m

)
. Then for Q = [mc, b, a] ∈ Q0

∆,r, define n1 :=

(m, b, a), n2 := (m, b, c), which are coprime and have product n. We have the fol-

lowing result:
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Lemma 3.1.2. (Section 1.1 of [GKZ87]) Define n as above and fix a decomposition

n = n1n2 with n1, n2 positive and relatively prime. Then there is a 1:1 correspondence

between the Γ0(m)-equivalence classes of forms [cm, b, a] ∈ Q0
∆,r satisfying (m, b, a) =

n1, (m, b, c) = n2 and the SL2(Z) equivalence classes of forms in Q0
∆ given by Q =

[mc, b, a] 7→ Q̃ = [cm1, b, am2], where m1 ·m2 is any decomposition of m into coprime

positive factors satisfying (n1,m2) = (n2,m1) = 1. In particular, |Q0
∆,r/Γ0(m)| =

2v|Q0
∆/SL2(Z)|, where v is the number of prime factors of n.

Note that |Q0
∆/SL2(Z)| equals 2h(∆) for ∆ < 0, where the factor of 2 arises

because Q0
∆ also contains negative semi-definite forms.

In our examples, we always choose ∆, r such that n = 1, so that |Q0
∆,r/Γ0(m)| =

|Q0
∆/SL2(Z)| = 2h(∆), where h(∆) is the class number of Q(

√
∆). The theory of

reduced forms allows us to easily compute Q0
∆/SL2(Z).

3.2 p-adic Properties of the Logarithmic Derivative

3.2.1 p-adic Modular Forms

For each i ∈ N, let fi =
∑
ai(n)qn be a modular form of weight ki with ai(n) ∈ Q. If

for each n, the ai(n) converge p-adically to a(n) ∈ Qp, then f :=
∑
a(n)qn is called

a p-adic modular form. For p 6= 2, we define the weight space

W := lim←−
t

Z/φ(pt)Z = Zp × Z/(p− 1)Z.

For p = 2, we define

W := lim←−
t

Z/2t−2Z = Z2.

Then the ki converge to an element k ∈ W , which we call the weight of f . We identify

integers by their image in Zp × {0}.
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3.2.2 Proof of Theorem 1.2.3

Proof of Theorem 1.2.3: By Theorem 1.2.1, ΨX
∆,r(τ) is a meromorphic modular

function, so that Θ(ΨX
∆,r(τ)) is a weight 2 meromorphic modular form on Γ0(m).

Thus, the logarithmic derivative

Θ(ΨX
∆,r(τ))

ΨX
∆,r(τ)

is a weight 2 meromorphic modular form on Γ0(m) whose poles are simple and are

supported on Heegner points of discriminant ∆.

3.2.3 Proofs of Theorem 1.2.4 and Corollary 1.2.5

Proof of Theorem 1.2.4: We show that if (∆, r) is an admissible pair and p is inert

or ramified in Q(
√

∆), that

L∆,r :=
Θ(ΨX

∆,r(τ))

ΨX
∆,r(τ)

is a p-adic modular form of weight 2. Say L has poles at α1, . . . , αn, all of which are

CM points of discriminant ∆. For each αi, there is some zero βi of Ep−1 such that

j(τ)− j(αi) ≡ j(τ)− j(βi) (see Theorem 1 of [KZ98]). Then let

E := Ep−1

∏
i

(j(τ)− j(αi))
(j(τ)− j(βi))

.

This has weight p − 1, is congruent to 1 modulo p, has zeros at α1, . . . , αn, and has

no poles. Let ft := fE (pt). Then Lt ≡ L (mod pt) and is a modular form of weight

kt = 2 + (p− 1)pt ≡ 2 (mod φ(pt+1)), so L is a p-adic modular form of weight 2.

Proof of Corollary 1.2.5: This corollary follows directly for the coefficients of any

p-adic modular form using the following beautiful result, proven by Serre [Ser76] using

the theory of Galois representations.
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Lemma 3.2.1 (Serre [Ser76] Theorem 4.7 (I)). Let K be a number field and OK the

ring of integers of K. Suppose f(τ) =
∑

n≥0 anq
n ∈ OK [[q]] is a modular form of

integer weight k ≥ 1 on a congruence subgroup. For any prime p, let p be a prime

above p in OK. Let m ≥ 1. Then there exists a positive constant αm such that

# {n ≤ X : an 6≡ 0 (mod p)m} = O

(
X

(logX)αm

)
.
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Chapter 4

Proof of Second Result

4.1 Proof of Theorem 1.2.1

Following the notation in Section 2.3.4, we define H [µ]
g and F [ν]

g as follows for g ∈M23:

H [µ]
g (τ) := −2R

[µ]
Γ,ψ,1/2 = −2qµ − 2

∑
ν

cΓ,ψ,1/2(µ,−ν)q−ν , (4.1.1)

F [ν]
g (τ) := −2R

[ν]

Γ,ψ,3/2
= −2qν − 2

∑
µ

cΓ,ψ,3/2(ν,−µ)q−µ. (4.1.2)

Recall that µ, ν < 0 satisfy µ ∈ Z − 1/8 and ν ∈ Z + 1/8. Since we’re focusing

on g ∈ M23, we have that ρg is trivial and hence ψ = ε−3. Note that H [−1/8]
g (τ) is

the McKay-Thompson series in Mathieu moonshine, but we will work with the F [ν]
g ’s

instead of the H [µ]
g ’s. We define S[ν]

g to be the shadow of F [ν]
g . An explicit expression

for it can be found using Theorem 2.3.1.

To prove Theorem 1.2.1, we will need to study the effect of Atkin-Lehner operators

on F [ν]
g and S[ν]

g . Let u be an exact divisor of ng, so that (ng/u, u) = 1. Then let Wu
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be a determinant 1 matrix of the form

1√
u

 au b

cng du

 ,

for some a, b, c, d ∈ Z. The following result is proven for H [−1/8]
g and its shadow

in [CD12], and works more generally:

Proposition 4.1.1. For g ∈M23, let u be an exact divisor of ng. Then the q-expansion

of F [ν]
g |Wu is supported on qk+u/8 with k ∈ Z and the q-expansion of S[ν]

g | Wu is

supported on qk−u/8 with k ∈ Z.

4.1.1 Proof that fg are Modular

Lemma 4.1.2. We have that F [ν]
g is modular for all ν < 0 satisfying ν ∈ Z+ 1

8
and all

g ∈M23.

Proof: We know that S[ν]
g is a cusp form of weight 1/2 on Γ0(ng) with multiplier

system ε−3, and so

η3S[µ]
g ∈ S2(Γ0(ng)).

It suffices to show that η3S
[µ]
g = 0. Assume that η3S

[µ]
g 6= 0.

If g ∈ {1, 2, 3, 4, 5, 6, 7ab, 8}, then dimS2(Γ0(ng)) = 0, so we have a contradiction.

Next, if g ∈ {11ab, 14ab, 15ab}, we have that dimS2(Γ0(ng)) = 1. Using sage, we

can see that all nonzero cuspforms are eigenforms of Wng and have a zero of order 1

at i∞. Therefore, we have that

ordi∞(η3S[ν]
g | Wng) = ordi∞(η3S[ν]

g ) = 1.
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However, using Proposition 4.1.1 and Table 4.1 we see that

ordi∞(η3S[ν]
g | Wng) ≥ 2.

This is a contradiction.

Table 4.1: Computing Order of Vanishing for g ∈ {11ab, 14ab, 15ab}

M23 Conj. Class g ordi∞(η3 | Wng) ordi∞(S
[ν]
g | Wng) ordi∞(η3S

[ν]
g | Wng)

11ab 11/8 ≥ 5/8 ≥ 2

14ab 14/8 ≥ 2/8 ≥ 2

15ab 15/8 ≥ 1/8 ≥ 2

Lastly, if g ∈ {23ab}, we have that dimS2(Γ0(ng)) = 2. using sage, we can see

that all nonzero cuspforms are eigenforms of WN with eigenvalue −1 and have a zero

of order 1 or 2 at i∞. Therefore, we have that

ordi∞(η3S[ν]
g | WN) = ordi∞(η3S[ν]

g ) ≤ 2.

However, ordi∞(η3 | WN) = 23/8 and ordi∞(S
[ν]
g | WN) ≥ 1/8 by Proposition 4.1.1.

Therefore, ordi∞((η3S
[ν]
g ) | WN) ≥ 3. This is a contradiction.

Corollary 4.1.3. We have that

fg(τ) :=
F

[−7/8]
g (τ)

2η3(τ)
∈M !

0(Γ0(ng)).

4.1.2 Proof that fg are Hauptmoduln

For g ∈ {1a, 2a, 3a, 4a, 5a, 6a, 7ab, 8a}, we have that Γ0(ng) = Γĝ, which has genus

zero. However, for g ∈ {11ab, 14ab, 15ab, 23ab}, we have that Γ0(ng) ( Γĝ = Γ0(ng) +
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ng, and so we need to do a bit more work to show that the fg are invariant under the

genus zero group Γĝ.

Proposition 4.1.4. For g ∈ M23, let u 6= 1 be an exact divisor of ng. If u ≤ 8, then

ordi∞(fg | Wu) ≥ 0. If 9 ≤ u ≤ 16, then ordi∞(f | Wu) ≥ −1. If 17 ≤ u ≤ 24, then

ordi∞(f | Wu) ≥ −2.

Proof: This follows from Lemma 4.1.1 by breaking up fg into F [−7/8]
g and η3, and

considering the action of Wu on each separately. We know that ordi∞(η3 | Wu) =

u/8 and that ordi∞(F
[−7/8]
g | Wu) must be greater than or equal to the smallest

nonnegative number in the appropriate arithmetic progression.

Lemma 4.1.5. Let g ∈ {11ab, 14ab, 15ab, 23ab}. Then fg is invariant under Wng .

Proof: We have that fg ∈M !
0(Γ0(ng)) from Corollary 4.1.3.

For g ∈ {11ab, 23ab}, there is only one exact divisor u of ng which is greater than

1, and so we split up fg into f+
g + f−g , where f+

g is invariant under Wu and f−g is

anti-invariant.

Using sage, we see dimS2(Γ0(11)) = 1 and all nonzero elements are anti-invariant

under W11. Let f (11) be such an element. We also see that dimS2(Γ0(23)) = 2,

and all nonzero elements are anti-invariant under W23. Let f (23) be such an element

satisfying ordi∞(f (23)) = 2. Then f−g · f (ng) ∈M2(Γ0(ng) + ng), which has dimension

zero because ng is prime. So f−g = 0 and hence fg is invariant under Wng .

For g ∈ {14ab, 15ab} there are three exact divisors u > 1 to consider. We break

up fg into f+++
g + f+−−

g + f−+−
g + f−−+

g where the plus and minuses correspond to

the exact divisors in order from largest to smallest, so that f−−+
14 is anti-invariant

under W14 and W7, but invariant under W2. The same method as before shows that
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f−−+
g = 0. Now, we have that

f14ab | W2 = f+++
14ab − f

+−−
14ab − f

−+−
14ab

f14ab | W7 = f+++
14ab − f

+−−
14ab + f−+−

14ab

f15ab | W3 = f+++
15ab − f

+−−
15ab − f

−+−
15ab

f15ab | W5 = f+++
15ab − f

+−−
15ab + f−+−

15ab .

Moreover, by Proposition 4.1.4, we know that ordi∞(fg | Wu) ≥ 0 when 1 < u ≤ 8,

so we have that

Princ(f+++
g ) = Princ(f+−−

g ) + Princ(f−+−
g )

Princ(f+++
g ) = Princ(f+−−

g )− Princ(f−+−
g ).

Therefore, we have that f−+−
g has no principal part, so f−+−

g is a modular function

with no poles, and hence must be constant. But since it is anti-invariant under some

Atkin-Lehner operators, it must then be zero.

So f−+−
g and f−−+

g are zero, and hence fg is invariant under Wng .

This completes the proof of Theorem 1.2.1.

4.2 Proof of Theorem 1.2.2

We will use the strategy described in Section 2.2.3 to prove Theorem 1.2.2. In par-

ticular, we define

Tχ(τ) :=
2

|M23|
∑
g∈M23

χ(g)fg(τ) =
∑
k

mχ(k)qk, (4.2.1)
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where mχ(k), once proven to be a nonnegative integer, will be the multiplicity of the

irreducible representation Vχ in the graded component Vk of our moonshine module

V . Note that we’re summing over all elements of M23.

Remark 11. If we didn’t multiply by two, we’d still have that all mχ(k) are nonneg-

ative integers for k 6= 0. However, some of the constant terms of the Tχ would be

half-integers, as can be seen in Appendix C.

4.2.1 Proof that mχ are Integral

First, we show that there is a virtual M23 module V , which is equivalent to proving

that the coefficients mχ(n) are nonnegative. Since our fg agree with the McKay-

Thompson series of monstrous moonshine up to the constant terms, we can take

advantage of work that’s already been done on those functions.

Lemma 4.2.1. The virtual modules V0, V1, V2, V3, V5 exist.

Proof: It suffices to show thatmχ(n) is integral for all χ ∈ M̂23 and n ∈ {0, 1, 2, 3, 5}.

This is a straightforward computation using Definition 4.2.1 and our identification of

the fg with monstrous moonshine functions. See Appendix C for the coefficients.

Using the replication formulas as described in Section 2.4, we can define the other

Vn recursively.
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We define

V4k = V2k+1

⊕
∧2(Vk)

⊕
1≤j<k

Vj ⊗ V2k−j,

V4k+1 = V2k+3

⊕
(−V2 ⊗ V2k)

⊕
S2(V2k)

⊕
∧2(Vk+1)

⊕
(⊕1≤j≤kVj ⊗ V2k−j+2)⊕

(⊕1≤j<k(S
2(Vj)− ∧2(Vj))V4k−4j)

⊕
(⊕1≤j<2k(−1)jVjV4k−j),

V4k+2 = V2k+2

⊕
(⊕1≤j≤kVjV2k−j+1),

V4k+3 = V2k+4

⊕
(−V2 ⊗ V2k+1)

⊕
(− ∧2 (V2k+1))

⊕
(⊕1≤j≤k+1Vj ⊗ V2k−j+3)⊕

(⊕1≤j≤k(S
2(Vj)− ∧2(Vj))⊗ V4k−4j+2)

⊕
(⊕1≤j≤2k(−1)jVj ⊗ V4k−j+2).

Therefore, all Vn are virtual modules with 2cg(n) = Tr(g | Vn)

4.2.2 Estimation Tools

This section describes some estimates that we’ll need in Section 4.2.3 to prove that

the mχ(n) are nonnegative.

First, we state two approximations for the I-Bessel function I1(x). See Appendix A

for the definition of this function. From these very precise approximations we derive

much simpler approximations which will do for our purposes.

Lemma 4.2.1 (Abramowitz and Stegun, pg 378). If |x| ≤ 3.75 and t = x/3.75, then

I1(x)

x
=

1

2
+ .87890594t2 + .51498869t4 + .15084934t6 + .02658733t8

+ .00301532t10 + .00032411t12 + ε,

where |ε| < 8× 10−9.

Corollary 4.2.2. For |x| ≤ 3.75, we have that .4 ≤ I1(x)
x
≤ 2.1.
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Lemma 4.2.2 (Abramowitz and Stegun, pg 378). If x ≥ 3.75 and t = 3.75/x, then

√
xI1(x)

ex
= .39894228− .03988024t− .00362018t2 + .00163801t3 − .01031555t4

+ .02282967t5 − .02895312t6 + .01787654t7 − .00420059t8 + ε,

where |ε| < 2.2× 10−7

Corollary 4.2.3. If x ≥ 3.75, then .3 ≤
√
xI1(x)
ex

≤ .4.

Lemma 4.2.3 (Weil [Wei48]). We have that |K(a, b;m)| ≤ τ(m)
√

gcd(a, b,m)
√
m.

We will also make use of the function d(n), which denotes the number of positive

divisors of n. For any ε > 0, there exists Cε such that d(n) ≤ Cεn
ε. For our estimates,

it will suffice to use ε = 1
4
.

Lemma 4.2.4 (See pg 27 of [Gan16]). Let C1/4 = 8.55. Then d(n) ≤ C1/4n
1/4.

We will also use the following straightforward result connecting the divisor func-

tion to the Riemann-zeta function ζ(s), which can be obtained by expanding

ζ2(s) =

(∑ 1

ns

)2

.

Lemma 4.2.5. For s > 1, we have that

∞∑
n=1

d(n)

ns
= ζ2(s).

Lastly, we will need estimates on sums of powers, which can be proved by esti-

mating the sums by integrals.

Lemma 4.2.6. If r > −1, then

n∑
x=1

xr ≤ (n+ 1)r+1

r + 1
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4.2.3 Proof that mχ are Nonnegative

Now, we show that the mχ(n) ≥ 0. Using Definition 2.2.2 and the triangle inequality,

we have that

mχ(k) ≥ 2

|M23|

c1a(k)χ(1)−
∑
g∈M23
g 6=1a

|cg(k)| · |χ(g)|

 . (4.2.2)

Our strategy will therefore be to give a lower bound on c1a(k) and an upper bound

on |cg(k)| for g 6= 1a.

Recall from Section 2.3 that

cg(k) =
2π√
k

∑
b>0

1

nhb
I1

(
4π
√
k

ngb

)
K(k, 1, ngb).

Let

Pg(b; k) :=
2π

ngb
√
k
I1

(
4π
√
k

ngb

)
K(k, 1, ngb),

so that cg(k) =
∑
Pg(b; k). Define

b0(g) =

 2, g = 1a

1, otherwise

and

L =
4π
√
k

3.75ng
.

Then for g = 1a, we’ll show that

c1(k) ≥ P1a(1; k)−
∑

b0(g)≤b<L

P1a(b; k)−
∑
b≥L

P1a(b; k).
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For g 6= 1a, we’ll show that

|ch(k)| ≤
∑

b0(g)≤b<L

|Pg(b; k)|+
∑
b≥L

|Pg(b; k)|.

Splitting up the sum at L allows us to use Corollary 4.2.2 and Corollary 4.2.3. Note

that L is not an integer. For by b ≥ L we simply mean all integers b satisfying that

condition.

First, we will estimate P1a(1; k). Recall that

P1a(1; k) =
2π√
k
I1(4π

√
k)K(k, 1, 1).

By Corollary 4.2.3, we have that

I1(4π
√
k) ≥ .3

2
√
π

e4π
√
k

k1/4
.

We also know that K(k, 1, 1) = 1. Therefore, we have that

P1a(1; k) ≥ .5
e4π
√
k

k3/4
. (4.2.3)

Next, we will estimate

∑
b0(g)≤b<L

|Pg(b; k)| = 2π√
k

∑
b0(g)≤b<L

1

ngb
I1

(
4π
√
k

ngb

)
|K(k, 1, ngb)|.

Since c < L = 4π
√
k

3.75ng
, we have that 4π

√
k

ngb
> 3.75. So we can apply Corollary 4.2.3 to

get that

I1

(
4π
√
k

ngb

)
≤
.4
√
ngb

2
√
π

e4π
√
k/(ngb)

k1/4
.
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We can also use Lemma 4.2.3 and Lemma 4.2.4 to get

|K(k, 1, ngb)| ≤ d(ngb)
√
ngb ≤ 8.55b3/4.

Putting this together, we get that

∑
b0(g)≤b<L

|Pg(b; k)| ≤ 3.42n1/4
g

√
π
e4π
√
k/(b0(g)ng)

k3/4

∑
b0(g)≤b<L

b1/4.

Using Lemma 4.2.6, we have that

∑
b0(g)≤b<L

b1/4 ≤ L5/4

5/4
=

4

5

(
4π

3.75ng

)5/4

k5/8

so we get that ∑
b0(g)≤b<L

|P1a(b; k)| ≤ 22

ng

e4π
√
k/(b0(g)ng)

k1/8
. (4.2.4)

Note that either b0(g) = 2 or ng ≥ 2, so we have that the exponent is at most

2π
√
k, making this sum grow more slowly than our main term P1a(1; k), which has

exponent 4π
√
k.

Lastly, we will estimate

∑
b≥L

|Pg(b, k)| = 2π√
k

∑
b≥L

1

ngb
I1

(
4π
√
k

ngb

)
|K(k, 1, ngb)|.

Since

b ≥ L =
4π
√
k

3.75ng
,

we have that

0 <
4π
√
k

ngb
≤ 3.75.
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So we can apply Corollary 4.2.2 to get that

I1

(
4π
√
k

ngb

)
≤ 8.4π

√
k

ngb
.

We can also use Lemma 4.2.3 to get

|K(k, 1, ngb)| ≤ d(ngb)
√
ngb.

Putting this together and using d(ab) ≥ d(a)d(b) and Lemma 4.2.5, we get that

∑
b≥L

|Pg(b, k)| ≤ 16.8π2d(ng)

n
3/2
g

∑
b≥L

d(b)

b3/2
≤ 16.8π2d(ng)

n
3/2
g

ζ(3/2).

Note that d(ng) ≤ 4. Therefore, we have that

∑
b≥L

|Pg(b, k)| ≤ 1733

n
3/2
g

(4.2.5)

So using (4.2.3), (4.2.4), and (4.2.5), we can now find estimates for our cg(k).

We have that

c1(k) ≥ .5
e4π
√
k

k3/4
− 22

e2π
√
k

k1/8

and that for g 6= 1a, we have that

cg(k) ≤ 22

ng

e4π
√
k/(2ng)

k1/8
+

1733

n
3/2
g

.

Plugging these into (4.2.2) along with the information from the character table in



54

Appendix B, we get that mχ(k) > 0 for all k ≥ k0(χ) where

k0(χ) =


4 χ = χ1, χ2

3 χ3, χ4, χ5, χ6, χ9

2 otherwise

Therefore, it just remains to check that mχ(k) is nonnegative for k < k0(χ) ≤ 4.

These values are given in Appendix C. This completes the proof of Theorem 1.2.2.
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Appendix A

Definitions of Special Functions

We define the Jacobi theta functions θi(τ, z) as follows for q := e(τ) and y := e(z).

θ2(τ, z) := q1/8y1/2

∞∏
n=1

(1− qn)(1 + yqn)(1 + y−1qn−1)

θ3(τ, z) :=
∞∏
n=1

(1− qn)(1 + yqn−1/2)(1 + y−1qn−1/2)

θ4(τ, z) :=
∞∏
n=1

(1− qn)(1− yqn−1/2)(1− y−1qn−1/2)

We use them to define weight zero index m−1 weak Jacobi forms ϕ(m)
1 as follows.
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Let

ϕ
(2)
1 := 4(f 2

2 + f 2
3 + f 2

4 ),

ϕ
(3)
1 := 2(f 2

2 f
2
3 + f 2

3 f
2
4 + f 2

4 f
2
2 ),

ϕ
(4)
1 := 4f 2

2 f
2
3 f

2
4 ,

ϕ
(5)
1 :=

1

4

(
ϕ

(4)
1 ϕ

(2)
1 − (ϕ

(3)
1 )2

)
ϕ

(7)
1 := ϕ

(3)
1 ϕ

(5)
1 − (ϕ

(4)
1 )2

ϕ
(9)
1 := ϕ

(3)
1 ϕ

(7)
1 − (ϕ

(5)
1 )2

ϕ
(13)
1 := ϕ

(5)
1 ϕ

(9)
1 − 2(ϕ

(7)
1 )2

where fi(τ, z) := θi(τ, z)/θi(τ, 0) for i = 2, 3, 4.

For the remaining positive integers m with m ≤ 25, we define ϕ(m)
1 recursively.

For (12,m− 1) = 1 and m > 5 we set

ϕ
(m)
1 = (12,m− 5)ϕ

(m−4)
1 ϕ

(5)
1 + (12,m− 3)ϕ

(m−2)
1 ϕ

(3)
1 − 2(12,m− 4)ϕ

(m−3)
1 ϕ

(4)
1 .

For (12,m− 1) = 2 and m > 10 we set

ϕ
(m)
1 =

1

2

(
(12,m− 5)ϕ

(m−4)
1 ϕ

(5)
1 + (12,m− 3)ϕ

(m−2)
1 ϕ

(3)
1 − 2(12,m− 4)ϕ

(m−3)
1 ϕ

(4)
1

)
.

For (12,m− 1) = 3 and m > 9, we set

ϕ
(m)
1 =

2

3
(12,m− 4)ϕ

(m−3)
1 ϕ

(4)
1 +

1

3
(12,m− 7)ϕ

(m−6)
1 ϕ

(7)
1 − (12,m− 5)ϕ

(m−4)
1 ϕ

(5)
1 .

For (12,m− 1) = 4 and m > 16 we set

ϕ
(m)
1 =

1

4

(
(12,m− 13)ϕ

(m−12)
1 ϕ

(13)
1 + (12,m− 5)ϕ

(m−4)
1 ϕ

(5)
1 − (12,m− 9)ϕ

(m−8)
1 ϕ

(9)
1

)
.
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For (12,m− 1) = 6 and m > 18 we set

ϕ
(m)
1 =

1

3
(12,m− 4)ϕ

(m−3)
1 ϕ

(4)
1 +

1

6
(12,m− 7)ϕ

(m−6)
1 ϕ

(7)
1 −

1

2
(12,m− 5)ϕ

(m−4)
1 ϕ

(5)
1 .

For m = 25, we set

ϕ
(25)
1 =

1

2
ϕ

(21)
1 ϕ

(5)
1 − ϕ

(19)
1 ϕ

(7)
1 +

1

2
(ϕ

(13)
1 )2.

See the appendix of [CDH14a] for more information on the space of weight zero

Jacobi forms.

We use two versions of an Appell-Lerch sum. The first is the generalized Appell-

Lerch sum µm,0, defined as in [CDH14a]. It is given by

µm,0(τ, z) := −
∑
k∈Z

qmk
2

y2mk 1 + yqk

1− yqk
,

and is the holomorphic part of a weight 1 index m “real-analytic Jacobi form”.

Zwegers [Zwe02] uses a slightly different version of the Appell-Lerch sum. He first

defines the theta function

ϑ(z, τ) :=
∑

ν∈1/2+Z

qν
2/2yνe(ν/2).

Then he defines

µ(u, v; τ) :=
e(u/2)

ϑ(v; τ)

∑
n∈Z

(−1)nq(n2+n)/2e(nv)

1− qne(u)
.

This is completed to a “real-analytic Jacobi form” µ̃(u, v; τ) of weight 1/2 by letting

µ̃(u, v; τ) := µ(u, v; τ) +
i

2
R(u− v; τ),
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where

R(z, τ) :=
∑

ν∈1/2+Z

{
sgn(ν)− E(ν + a)

√
2t
}

(−1)ν−1/2q−ν
2/2y−ν ,

t := =(τ), a := =(u)
=(τ)

, and E(z) := 2
∫ z

0
e−πu

2
du.

The Dedekind eta-function, denoted by η(τ), is a holomorphic function on the

upper half-plane defined by the infinite product

η(τ) = q1/24
∏
n>0

(1− qn).

It is a modular form of weight 1/2 for the SL2(Z) with multiplier ε : SL2(Z)→ C so

that η(γτ)ε(γ)j(γ, τ)1/4 = η(τ) for all γ = ( a bc d ) ∈ SL2(Z), where j(γ, τ) = (cτ)+d)−2.

The multiplier system ε may be described as

ε ( a bc d ) =

 e(−b/24), c = 0, d = 1

e(−(a+ d)/24c+ s(d, x)/2 + 1/8), c > 0

where

s(d, c) =
c−1∑
m=1

(d/c)((md/c))

and ((x)) is 0 for x ∈ Z and x− bxc − 1/2 otherwise.

The modified Bessel function of the first kind is denoted Iα(x) and may be defined

by the power series expression

Iα(z) =
∑
n≥0

1

Γ(m+ α + 1)m!

(z
2

)2m+α

.

This converges absolutely and locally uniformaly in z so long as z avoids the negative

reals.
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The Klooserman sum K(a, b;m) is defined as

K(a, b;m) =
∑
h

e

(
ah+ bh∗

n

)
,

where h runs through a complete set of residues prime to n and h∗ is defined by

hh∗ ≡ 1 (mod n).
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Appendix B

Character Table of M23

The Matheiu group M23 has 17 conjugacy classes and 27 · 32 · 5 · 7 · 11 · 23 = 10200960

elements. Table B.1 gives the number of elements in each conjugacy class. Table B.2

gives the full character table of M23, and uses the following:

A :=
−1 +

√
−7

2

B :=
−1 +

√
−11

2

C :=
−1 +

√
−15

2

D :=
−1 +

√
−23

2
.

Both tables are used in the computations of Section 4.2.3.
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Conjugacy Class Number of Elements
1a 1
2a 3795
3a 56672
4a 318780
5a 680064
6a 860080
7a 728640
7b 728640
8a 1275120
11a 927360
11b 927360
14a 728640
14b 728640
15a 680064
15b 680064
23a 443520
23b 443520

Table B.1: Conjugacy Classes of M23
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1a
2a

3a
4a

5a
6a

7a
7b

8a
11
a

11
b

14
a

14
b

15
a

15
b

23
a

23
b

χ
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1

χ
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22
6

4
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−
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1

χ
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1
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−

1
1

1
1
−

1
−

1
0

0
0

0

χ
1
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24
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Appendix C

Coefficients of Tχ

We have the following:

Tχ1 = 2q−1 + 6 + 18 ∗ q + 36 ∗ q2 + 236 ∗ q3 + 4088 ∗ q4 + 65746 ∗ q5 +O(q6)

Tχ2 = 4 ∗ q + 72 ∗ q2 + 3722 ∗ q3 + 87108 ∗ q4 + 1437888 ∗ q5 +O(q6)

Tχ3 = Tχ4 = 1 + 8 ∗ q + 216 ∗ q2 + 7644 ∗ q3 + 178836 ∗ q4 + 2939568 ∗ q5 +O(q6)

Tχ5 = 16 ∗ q + 920 ∗ q2 + 39110 ∗ q3 + 912160 ∗ q4 + 15028196 ∗ q5 +O(q6)

Tχ6 = 14 ∗ q + 964 ∗ q2 + 39200 ∗ q3 + 916784 ∗ q4 + 15091598 ∗ q5 +O(q6)

Tχ7 = Tχ8 = 8 ∗ q + 966 ∗ q2 + 39206 ∗ q3 + 916628 ∗ q4 + 15091674 ∗ q5 +O(q6)

Tχ9 = 12 ∗ q + 1044 ∗ q2 + 42976 ∗ q3 + 1003784 ∗ q4 + 16529676 ∗ q5 +O(q6)

Tχ10 = Tχ11 = 28 ∗ q + 3262 ∗ q2 + 130356 ∗ q3 + 3057014 ∗ q4 + 50300306 ∗ q5 +O(q6)

Tχ12 = Tχ13 = 32 ∗ q + 3776 ∗ q2 + 151826 ∗ q3 + 3556504 ∗ q4 + 58533616 ∗ q6 +O(q6)

Tχ14 = Tχ15 = 36 ∗ q + 4196 ∗ q2 + 167598 ∗ q3 + 3930356 ∗ q4 + 64671968 ∗ q5 +O(q6)

Tχ16 = 48 ∗ q + 4328 ∗ q2 + 175644 ∗ q3 + 4107408 ∗ q4 + 67617996 ∗ q5 +O(q6)

Tχ17 = 78 ∗ q + 8520 ∗ q2 + 343052 ∗ q3 + 8033772 ∗ q4 + 132224398 ∗ q5 +O(q6).
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