
 

Distribution Agreement 

In presenting this thesis as a partial fulfillment of the requirements for a degree from Emory 
University, I hereby grant to Emory University and its agents the non-exclusive license to 
archive, make accessible, and display my thesis in whole or in part in all forms of media, now or 
hereafter now, including display on the World Wide Web. I understand that I may select some 
access restrictions as part of the online submission of this thesis. I retain all ownership rights to 
the copyright of the thesis. I also retain the right to use in future works (such as articles or 
books) all or part of this thesis. 

 

Edrick Wang                                       April 9th, 2025  



 

Higher-order Van Hove singularities in kagome topological bands  

 

by 

 

Edrick Wang 

 

Luiz H. Santos 
Adviser 

 

Physics Department 

 

Luiz H. Santos 

Adviser 

 

Ajit Srivastava  

Committee Member 

 

Wladimir Benalcazar  

Committee Member 

 

2025 



 

 

Higher-order Van Hove singularities in kagome topological bands  

 

By 

 

Edrick Wang 

 

Luiz H. Santos 
Adviser 

 

 

 

 

An abstract of 
a thesis submitted to the Faculty of Emory College of Arts and Sciences 

of Emory University in partial fulfillment 
of the requirements of the degree of 

Bachelor of Science with Honors 
 

Physics Department 

 

2025 



 

Abstract 

Higher-order Van Hove singularities in kagome topological bands  
By Edrick Wang 

Motivated by the growing interest in band structures featuring higher-order Van Hove 
singularities (HOVHS), we investigate a spinless fermion kagome system characterized by 
nearest-neighbor (NN) and next-nearest-neighbor (NNN) hopping amplitudes. While NN 
hopping preserves time-reversal symmetry, NNN hopping, akin to chiral hopping on the 
Haldane lattice, breaks time-reversal symmetry and leads to the formation of topological bands 
with Chern numbers ranging from C = ±1 to ±4. We perform analytical and numerical analysis of 
the energy bands near the high-symmetry points Γ, ±K, and Mi (i = 1, 2, and 3), which uncover a 
rich and complex landscape of HOVHS, controlled by the magnitude and phase of the NNN 
hopping. We observe power-law divergences in the density of states (DOS), ρ(ε) ∼ |ε|−ν, with 
exponents ν = 1/2, 1/3, 1/4, which can significantly affect the anomalous Hall response at low 
temperatures when the Fermi level crosses the HOVHS. Additionally, the NNN hopping induces 
the formation of higher Chern number bands C = ±2, ±4 in the middle of the spectrum obeying a 
sublattice interference whereupon electronic states are maximally localized in each of the 
sublattices when the momentum approaches the three high-symmetry points Mi (i = 1, 2, and 
3) on the Brillouin zone boundary. This classification of HOVHS in kagome systems provides a 
platform to explore unconventional electronic orders induced by electronic correlations.  
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Chapter 1

Introduction

Since the birth of solid state physics, the primary objects to study are 3-dimensional

(3D) materials, which exist naturally in nature. Recently, experimental methods

such as exfoliation methods are utilized, such that individual layers of atoms can

be separated with ease. Graphene, which is one layer of graphite, is the first and

a common example of 2D materials (Fig. 1.1 (a)) [1]. Although 2D materials still

consist of atoms which are 3-dimensional, they can be approximately treated as

2-dimensional. The length scale at which electrons can travel in the z-direction is so

small compared to the other 2 degrees of freedom (x and y), that the electrons are

essentially constrained to only the xy-plane, thus a 2D lattice system.

(a) (b)

Figure 1.1: An illustration of (a) the honeycomb lattice, the underlying lattice
structure of graphene, and (b) the kagome lattice, which is the system of interest in
this thesis.

1
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2D materials are intrinsically different than 3D materials. Specifically, they

can host novel toplogical states and give rise to otherwise impossible quantum

phases, such as the integer and fractional quantum Hall effect [2, 3], where the Hall

conductance is quantized precisely as an integer multiple or fraction multiple of

the conductance quantum e2

h , respectively; here, e is the elementary charge, and h is

the Planck constant. In addition, 2D crystals containing a transition metal in the

unit cell may give rise to many intriguing phenomena, such as superconductivity,

charge-density waves (CDW), and spin-density waves (SDW) [4]. For this reason,

much emphasis is put towards fully understanding the phases of those quantum

materials.

With new methods of engineering 2D materials available, solids consisting of

different lattice structures emerge. In addition to graphene, which resembles a

honeycomb lattice, a class of materials called the kagome materials [5] are now

realizable [6, 7] (See Fig. 1.1 (b)). Kagome materials are specifically interesting as

2D lattice because they can host novel, correlated, electronic phenomena [8, 9, 10,

11, 12, 13, 14]. In particular, Van Hove singularities (VHS), referring to a divergence

in the density of states of an electronic band, substantially enhance the interaction

effects due to the large accumulation of electronic states around the VHS. These

singularities play a crucial role in the emergence of various electronic phenomena

in kagome materials, including charge density waves, pair density waves, and

unconventional superconductivity [15, 16, 17, 18, 19, 20, 21].

Recently, the appearance of higher-order VHS (HOVHS), which would results

in even stronger power-law divergent DOS, has attracted much experimental and

theoretical interest as a pathway to explore novel electronic orders [22, 23, 24, 25, 26,

27, 28, 29, 30, 31, 32, 33, 34], specifically in the context of cuprate band structures

[35, 36]. In particular, when HOVHS emerge in topological bands, characterized

by the Chern number, the interplay between band topology and high DOS can
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promote novel electronic orders [37, 38, 39], such as superconducting pair-density

waves and Chern supermetals [37]. The importance of combining higher-order

singularities and nontrivial band topology is thus emphasized, and such interplay

on the kagome lattice remain largely unexplored.

In this thesis, I will investigate the effects of a complex next-nearest-neighbor

(NNN) hopping amplitude, t2 eif, on the electronic bands of a kagome lattice.

This hopping term, analogous to the Haldane model on the honeycomb lattice

[40], breaks time-reversal symmetry (TRS) and induces the formation of bands

with nonzero Chern numbers. Employing a systematic analytical and numerical

classification of critical points at high-symmetry points G, ±K, and Mi (i = 1, 2, 3)

of the Brillouin zone as a function of (t2, f), we reveal a rich landscape of HOVHS

in this time-reversal broken kagome system. Notably, we identify conditions under

which bands with Chern numbers as large as C = ±4, emerge. Owing to the

presence of HOVHSs, these bands support power-law divergences in the DOS,

r(e) ⇠ |e|�n, with exponents n = 1
2 , 1

3 , and 1
4. In addition to the classification

of HOVHS, this TRS-broken system reveals new features of the kagome band

structure:

(1) While the NNN hopping destroys the exact flatness condition of the third band

in the nearest-neighbor (NN) kagome lattice [41, 42, 43] (a special case where all

points in the Brillouin zone become critical at t2 = 0), our phase diagram uncovers

HOVHS lines at the high symmetry points K and Mi in the (t2, f) parameter space,

which converge to a flat band at (t2 ! 0, f = ±p/2). Thus the kagome lattice

provides a relevant setting to study the emergence of HOVHS near stronger DOS

singularities due to flatbands.

(2) In the lowest band, our classification of HOVHS not only identifies the loci of

high DOS but also pinpoints the location of a nearly flat Chern band with C = ±1 in

the (t2, f) parameter space. This provides an ideal scenario for exploring competing
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electronic orders and emergent fractional Chern insulators [44, 45, 46, 47, 48] in a

partially filled band.

(3) The NNN chiral hopping, while breaking TRS, preserves the sublattice inter-

ference (SI) [8, 49, 50] of the second band for the entire parameter space (t2, f). SI

implies that electronic states associated with Mi points at the Brillouin zone bound-

ary are maximally localized on the sublattices A, B, and C, which has a non-trivial

effect on interactions when the Fermi energy crosses a HOVHS at the Mi points at

the zone boundary. Our work thus extends the mechanism of SI in time-reversal

broken Chern bands from the Chern number C = ±1 band on the honeycomb

lattice [37] into the realm of topological kagome bands supporting higher Chern

numbers, C = ±2 and C = ±4.

This work opens a direction to explore exotic kagome bands in synthetic mate-

rials such as optical lattices [7]. In particular, an implementation of the complex

NNN hopping akin to a Haldane optical lattices [51] could be achieved via peri-

odic modulation using piezoelectric actuators. Moreover, the recent discovery of

a new family of kagome metals, AV3Sb5 (A = K, Rb, Cs) displaying a variety of

exotic correlated electronic phenomena [8, 9, 10, 11, 12, 13, 14] and exhibiting both

conventional and higher-order Van Hove singularities [6, 52, 53], as evidenced by

angle-resolved photoemission spectroscopy (ARPES) [32, 33], further motivates a

deeper exploration of the HOVHS landscape in kagome lattices. While kagome

systems have been actively studied in connection with Van Hove singularities, the

relationship between VHS and non-trivial band topology in these materials remains

largely unexplored.



Chapter 2

Background

2.1 Kagome Systems

There are two main methods to investigate the kagome lattice. The first is through

natural kagome metals. Examples of this type are AV3Sb5 (A = K, Rb, Cs) [6], a class

of kagome materials displaying a variety of exotic correlated electronic phenomena

[8, 9, 10, 11, 12, 13, 14] and exhibiting both conventional and higher-order Van Hove

singularities [6, 52, 53], as evidenced by angle-resolved photoemission spectroscopy

(ARPES) [32, 33]. Co-based kagome materials, namely MgCo6Ge6 and YbCo6Ge6,

have also been shown to exhibit higher-order Van Hove singularities [54], confirm-

ing that HOVHS indeed can emerge and requires further understanding in those

systems.

Another avenue to explore kagome lattice is through optical lattice [55, 56, 57,

58]. As a synthetic material, optical lattice gives experimentalists more freedom

to control certain aspects of the system of interest, specifically hopping strength

between neighboring sites. The kagome lattice has already been realized on an

optical lattice in 2012 [7] and has been intensely studied [59, 60, 61]. Additionally,

with theoretical work on realizing complex hopping processes established [62, 63],

5
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the Haldane model was finally realized [51], almost 30 years after the original paper

by Haldane [40]. The model which we investigate in this thesis can particularly

take advantage of this achievement, since the Hamiltonian also involves a complex,

NNN electron hopping process.

2.2 Van Hove Singularities

Leon Van Hove has shown that in 2D lattice systems, saddle points on the electronic

bands lead to divergence in the density of states (DOS) [64]. Fig. 2.1 showcases a

saddle point on a 2D electronic band, with the low-energy expansion around it as

e = e0 + a(p2
x � p2

y). For the rest of this section, the constant e0 will be omitted.

When one calculates the DOS around the energy e0, there exists a divergence in

the form of logarithmic law, r(e) µ log |L
e |, where r(e) is the DOS as a function of

energy e and L is the energy cutoff. In the context of condensed matter physics, this

singularity in the DOS is referred to as a Van Hove singularity (VHS). In particular,

we will refer to the saddle points of the type shown in Fig. 2.1 as conventional

saddle points, as there exists higher-order ones, exhibiting power-law divergence.

saddle point

Figure 2.1: A conventional saddle point on a 2-dimensional manifold. The taylor
expansion around the saddle point reads z µ x2 � y2.

To mathematically distinguish the conventional saddle points and the higher-

order critical points, it is necessary to introduce the mathematical object Hessian,

which is defined as Hn,k = det( ∂2en,k
∂ki∂kj

), where en,k is the electronic band in momen-
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tum space with band index n and wavevector k. Consider a critial point (i.e. where

the gradient is 0, rken,k = 0) on a 2D Bloch band. We can proceed to expand the

dispersion relation around point of interest, e0:

ek+p � e0 = ap2
x + bp2

y + 2gpx py + · · · , (2.1)

where a, b, and g are all real coefficients. In the basis of kx and ky, we can express

the second-order terms using matrices:

ek+p � e0 =
�

px py
�
0

B@
a g

g b

1

CA

0

B@
px

py

1

CA (2.2)

The determinant of the 2 ⇥ 2 matrix in Eq. (2.2) then is the Hessian quantity men-

tioned above. Intuitively, as a scalar, Hessian provides information on the second-

order curvature at the point of interest. For a conventional saddle point on a Bloch

band, the following conditions must be satisfied: rken,k = 0 and Hn,k < 0. For

(conventional) extrema points, the Hessian would instead be Hn,k > 0. Interest-

ingly, a new set of critical points emerges when Hessian vanishes, which form

higher-order critical points (they can be either a saddle point or an extremum). Ac-

cordingly, this type of points corresponds to a new physical singularity, higher-order

Van Hove singularity (HOVHS). HOVHS exhibits a higher power-law divergence

in DOS, and these higher-order singularities in kagome systems will remain the

focus of the thesis.

2.3 Berry Curvature

Haldane has shown that a 2D lattice system could host topological bands with-

out external magnetic field [40], hence birthing the concept of anomalous integer
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quantum Hall effect. Here, the quantity that characterizes the quantized Hall con-

ductance is called the Chern number, a topological invariant of the electronic band

of interest. Moreover, Berry curvature is a geometric quantity closely connected

with the Chern number, as they are related in the following manner:

Cn =
1

2p

Z
W(k) d2k =

1
2p

Z
rk ⇥ A(k) d2k, (2.3)

where Cn is the Chern number of band with index n, and W(k) = rk ⇥ A(k)

corresponds to the gauge invariant Berry curvature, where A(k) is called the gauge-

dependent Berry connection:

A(k) = i hn(k)| ∂

∂k
|n(k)i ⇡ i

Dk
hn(k)| (|n(k + Dk)i � |n(k)i). (2.4)

For the calculations of Chern numbers in Sec. 4.2, we use specifically the Fukui

method to numerically compute the Berry curvature of each electronic band [65].

For this method, the 1st Brillouin zone (BZ) would be divided into a N ⇥ N grid of

plaquettes. And for each plaquette, the line integral
H

A · dk around the plaquette

is computed using Eq. (2.4), and it is gauge invariant. The geometric phases for

all plaquettes in the 1st BZ are then summed, giving the Chern number of a given

band.

(a) (b)

Ω(k)

kykx

Ω(k)

Figure 2.2: Example of Berry curvature using the Fukui method. The Chern number
resulting from this curvature is 1.



Chapter 3

Model

We study a tight-binding model of the kagome lattice with lattice constant a, con-

sisting of NN hopping as well as complex NNN hopping,

H = �t1 Â
hi,ji

c†
i cj � t2 Â

hhi,jii
eifij c†

i cj + h.c., (3.1)

where t1 (t2) is the NN (NNN) hopping strength, fij is the phase factor associated

with the NNN hopping between sites i and j, hi, ji and hhi, jii indicates the NN

and NNN hopping respectively, and c†
j (cj) is the fermionic creation (annihilation)

operator at site j. The vectors connecting the NN atomic sites are defined as

a1 = a
2(1, 0), a2 = a

4(1,
p

3) and a3 = a1 � a2, and the NNN hopping vectors

are defined as b1 = a
2(0,

p
3), b2 = a

4(3,�
p

3), and b3 = �(b1 + b2), as shown

in Fig. 3.1. Notice that the black dashed arrows shown in Fig. 3.1 denote the

direction of the complex NNN hopping. Furthermore, we assume the system is

spin-polarized, thereby omitting the spin degree of freedom.

In the momentum space, the Hamiltonian reads H = Âk c†
kĤ(k)ck, where

Ĥ(k) = ĤNN(k) + ĤNNN(k), and ck = (ck,A ck,B ck,C)
T, with A, B, C being

the three sites of the kagome unit cell displayed in Fig. 3.1. The momentum k is

defined in the first Brillouin zone (BZ) spanned by the two reciprocal lattice vectors,

9
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a2

a1

A

B C

"2##$

"1

Figure 3.1: Kagome lattice with the sites A, B, and C marked in orange, blue, and
green respectively. The vectors connecting site B with its nearest neighbors A and
C are denoted as a2 and a1 respectively. The real NN hopping amplitude, t1, is
represented by solid black lines. The black dashed arrows show the orientation of
the NNN hoppings with strength t2eif. This NNN hopping breaks time-reversal
symmetry while preserving C3 rotation and inversion symmetry about the center of
the hexagon.

G1 = 2p
a (1,� 1p

3
) and G2 = 2p

a (0, 2p
3
). The lattice constant a will henceforth be set

to 1. The single particle Hamiltonian Ĥ(k) can be expressed as

Ĥ(k) =

0

BBBB@

0 h12(k) h13(k)

h⇤12(k) 0 h23(k)

h⇤13(k) h⇤23(k) 0

1

CCCCA
, (3.2)

where h12(k) = �2 t1 cos (k · a2)� 2 t2 eif cos (k · b2), h13(k) = �2 t1 cos (k · a3)�

2 t2 e�if cos (k · b3), and h23(k) = �2 t1 cos (k · a1)� 2 t2 eif cos (k · b1).

Diagonalization of the Hamiltonian given in Eq. (3.2), H = Âk Ân=1,2,3 Y†
n,ken,kYn,k,

yields the dispersion of each band, en,k, where n = 1, 2, 3 denotes the index of the

first, second and third energy bands, respectively, in ascending order. Henceforth,

energy is expressed in units of t1. Owing to C3 rotation and inversion symmetries,

the spectrum satisfies en,C3k = en,k and en,�k = en,k.



Chapter 4

Analysis

4.1 Higher-order Van Hove Singularities

In 2D Bloch bands, an ordinary VHS exhibits logarithmic divergence in the DOS

(r µ log|e|) [64], which occurs at a saddle point (i.e., where the dispersion is locally

en,k ⇠ k2
x � k2

y), with the following conditions satisfied: rken,k = 0 and Hn,k < 0,

where Hn,k = det( ∂2en,k
∂ki∂kj

) is the Hessian of the dispersion en,k. When the Hessian at

a critical point vanishes, the quadratic form approaches degeneracy, making the

energy dispersion of at least third order. When this happens, HOVHS emerges

with a power-law divergence in DOS [22, 25, 66, 23] due to a higher-order critical

point. To clarify the usage of HOVHS in our paper, we point out that this type of

singularity can manifest itself in the form of either a higher-order saddle point or a

higher-order extrema. While conventional extrema do not give rise to divergence in

DOS, higher-order extrema generate a flat local dispersion, inducing a power-law

divergence in DOS, which we will discuss in the following subsections. We also

emphasize that in the case of an HOVHS resulting from an extremum, we do not

observe the emergence of the singularity from the merging of ordinary VHS on

the energy band, which is the case in higher-order saddle points like the monkey

11
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saddles [22].

(a)

(b)

Γ K
M

Figure 4.1: Band structure at (a) (t2, f) = (0, 0) and (b) (t2, f) = (0.76, 0.9p), with
the first BZ shown in (a). The corresponding DOS is displayed on the right. The red
dashed lines in (a) and (b) denote the energy at which the M points of the second
band support a conventional VHS and a HOVHS respectively, as indicated by the
divergences in the corresponding DOS. Notice that the energy corresponding to the
M points on band 2 is always zero.

In the absence of NNN hopping, as shown in Fig. 4.1 (a), band 3 is flat and

bands 1 and 2 support critical points on the high-symmetry points of the first BZ

G = (0, 0), ±K = (± 4p
3 , 0), M1 = (p, pp

3
), M2 = (�p, pp

3
), and M3 = (0,� 2pp

3
),

with conventional saddle points located on Mi. Figure 4.1 (b) illustrates the effect

of the NNN hopping on the band structure, where we observe the onset of bands

with significantly higher DOS divergence than ordinary VHS. Henceforth we focus

on addressing how these critical points emerge as a function of the parameters

(t2, f). As shown below, all high-symmetry points on the three bands can support
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HOVHS in this parameter space. In particular, we analyze high-symmetry points

separately and classify their HOVHS as shown in Fig. 4.2- 4.4. C3 rotation and

inversion symmetries reduce the analysis to three of the six high-symmetry points.

4.1.1 Critical Points at ±K

Higher-order singularities emerge at K in the form of monkey saddles, as shown in

Fig. 4.2. The corresponding low-energy dispersion, which reflects the C3 rotation

symmetry around the K points, takes the form

eK+p � eK = a(p3
x � 3px p2

y) + · · ·, (4.1)

where px and py are defined parallel and perpendicular to the GK line in the first

Brillouin zone, respectively, and the coefficient a is real. This monkey saddle

dispersion indicates that the corresponding DOS exhibits a power-law divergence

with exponent n = 1/3 [23, 66, 67, 22], which we confirm numerically. Furthermore,

these observations apply to the �K points as well, since the model is symmetric

under inversion.

Low

Highky

kxK

Figure 4.2: Contour plots of the energy dispersion corresponding to band 2, near
the high-symmetry point ±K. The white lines denote the boundaries of the first BZ
and the black lines correspond to the Fermi surface contour at the corresponding
energy of the HOVHS. The dispersion here exhibits a monkey-saddle dispersion.
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4.1.2 Critical Points at G

In contrast to the ±K points, the G point does not support a high-order saddle even

though the Hessian Hn,G vanishes. Instead, as the second-order curvature of the

dispersion vanishes along both the kx and ky directions, G becomes an extremum

with vanishing Hessian, thereby resulting in a locally flat band around the G point,

as shown in Fig. 4.3. The corresponding low-energy dispersion takes the form,

eG+p � eG = a(p2
x + p2

y)
2 = a p4, (4.2)

where a is a real parameter and (px, py) = p (cos q, sin q). Furthermore, the dis-

persion exhibits a stronger power-law divergence with exponent n = 1/2, i.e.,

r(e) µ |e � eG|�
1
2 .

Γ

-π -
π
2

π
2

π kx

ϵ2,k

ky

kx

kx

Low

High
(a) (b)

Figure 4.3: Contour plots of the energy dispersion corresponding to band 2, near the
high-symmetry point G where the Hessian vanishes, thereby supporting HOVHS. At
the G point (a), which is an extremum, the second-order curvature of the dispersion
vanishes along both kx and ky directions. (b) The energy dispersion considered in
(a), around the G point, plotted along kx with ky held constant at zero, in order to
highlight the flatness of the band around the G point.

Additionally, we notice one particular instance at (t2 , f) = (1/3 , p) for the first

band where the coefficient a vanishes resulting in a low-energy dispersion of the
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form (up to O(p6))

eG+p � eG ⇡ p6
x

1152
�

p4
x p2

y

192
+

p2
x p4

y

128
=

p6

1152
cos2 (3 q) , (4.3)

where eG = � 8
3 , and the corresponding DOS diverges around G as r(e) ⇠ |e �

eG|�2/3. We note that both expressions Eqs. (4.2) and (4.3) obey inversion and C3

rotation symmetries.

4.1.3 Critical Points at Mi

The emergence of HOVHS at Mi points occurs under two conditions: when either

one or both of the eigenvalues of the Hessian Hn,Mi vanish. Given the model has C3

symmetry, the following discussion applies to all the Mi points, and hence we drop

the subscript i for the Mi points. When one eigenvalue vanishes, the second-order

curvature of the dispersion vanishes along either the kx or ky direction, resulting in a

locally flat band structure in that direction, as shown in Fig. 4.4. The corresponding

low-energy dispersion takes the form,

eM+p � eM =

8
>><

>>:

ap2
x + bp4

x + gp2
x p2

y + dp4
y + · · ·, ∂2

kyen,M = 0

ap2
y + bp4

x + gp2
x p2

y + dp4
x + · · ·, ∂2

kxen,M = 0
, (4.4)

with all coefficients being real, where the DOS diverges around M as r(e) ⇠

|e � eM |�1/4. On the other hand, when both eigenvalues vanish, the a coefficient

vanishes, leading to a fourth-order dispersion in momentum, where the DOS obeys

a power-law divergence with exponent n = 1/2, similar to the case of the G point.

Here, the second-order curvature vanishes in all directions, making the dispersion

at Mi locally flat.
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Low

Highky

kxM

Figure 4.4: Contour plots of the energy dispersion corresponding to band 2, near the
high-symmetry point Mi where the Hessian vanishes, thereby supporting HOVHS.
Around the M3 point, the dispersion becomes locally flat only along the kx direction.

4.1.4 HOVHS Phase Diagrams

We numerically calculate the Hessian for the band dispersions corresponding to

the Hamiltonian in Eq. (3.2) around the high-symmetry points ±K, G, and M. Our

analysis reveals a range of (t2, f) values, shown in Fig. 4.5 (a)-(c), for which all three

bands support HOVHS at one or more of these high-symmetry points. The critical

points marked by the HOVHS lines in Figs. 4.5 (a)-(c) all correspond to a vanishing

Hessian. Dashed lines indicate higher-order saddle points, while solid lines denote

higher-order extrema. Notice that the higher-order critical point at G is invariably an

extremum, whereas those at ±K are consistently higher-order saddles. Additionally,

we find that the Hessian is invariant under the transformation f ! �f. As a result,

we display the HOVHS lines for only 0  f  p.

We wish to point out an interesting feature of the flat band in Fig. 4.5 (c). As

t2 approaches 0 around f = ±p/2, two HOVHS lines of Mi and one of ±K are

seen merging at a single parameter value. This convergence suggests that, as we

perturb the system away from t2 = 0 around f = ±p/2, even when the global band

dispersion is no longer perfectly flat, the local energy dispersion around the ±K

and Mi points remains relatively flat. This provides a unique setting to investigate
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Band 1 Band 2 Band 3

Figure 4.5: (a)-(c) Parameter space plots showing the set of (t2, f) values for which
the high-symmetry points G(orange), ±K (blue) and M(green) corresponding to the
bands 1-3 (from left to right) support HOVHSs. The dashed lines correspond to the
high-symmetry points which can be classified as higher-order saddles whereas the
solid lines correspond to extrema with vanishing Hessian. (d) Parameter space plot
zoomed in around the intersections of the lines highlighted with the black dashed
lines in (a), clarifying the different intersections of boundary lines. The parameter
pair of interest is labeled with ?, with values (t2 = 0.45, f = 0.76p). (e) The 3D plot
of the band structure at parameters labeled with ? in (d), supporting HOVHSs at
both M and G points. The energy value corresponding to the HOVHS at the M and
G points are �2.74 t1 and �2.67 t1 respectively. (f) Band diagram of the same bands
to showcase the exceptional flatness of band 1, with an approximate bandwidth of
0.08 t1. The first BZ is shown in the diagram as well.

the emergence of HOVHS near stronger DOS singularities due to flat bands.

Additionally, we notice a region in Fig. 4.5 (a) where numerous line intersections

occur, for the first band. That region is zoomed in and shown in Fig. 4.5 (d).

Coincidentally, the bandwidth in that region also achieves a minimum as low as

⇡ 0.08 t1. Selecting a parameter pair of (t2 = 0.45, f = 0.76p), which is marked

with ? in Fig. 4.5 (d), we obtain a band 1 giving rise to HOVHSs both at G and M

points. The 3D plot of the band structure is showcased in Fig. 4.5 (e), and the 1D

band structure of the system is demonstrated in Fig. 4.5 (f), exhibiting the extreme
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flatness of the lowest band. The particular region shown in Fig. 4.5 (d) can be a

promising territory to observe strongly correlated phenomena in the system.

We now discuss an analytic approach underlying the phase diagrams shown

in Figs. 4.5 (a)-(c). In particular, we perturbatively determine the quadratic form

near each high-symmetry point. For concreteness, we focus on the G point, where

nondegenerate perturbation theory holds, except when degeneracies occur between

bands 2 and 3 at f = 0, p. Expanding the Hamiltonian about G, we get

Ĥ(G + p) = Ĥ(G) + Ĥ(p) , (4.5)

Ĥ(p) =

0

BBBB@

0 z12(p) z13(p)

z⇤12(p) 0 z23(p)

z⇤13(p) z⇤23(p) 0

1

CCCCA
, (4.6)

where, up to second order in momentum, z12 = t1(p · a2)2 + t2eif(p · b2)2, z13 =

t1(p · a3)2 + t2e�if(p · b3)2, z23 = t1(p · a1)2 + t2eif(p · b1)2. The eigenstates of Ĥ(G)

can be expressed as, Y(0)
1,G = 1p

3
(1, 1, 1), Y(0)

2,G =
⇣

1
6

⇣
�
p

3 � 3i
⌘

, 1
6

⇣
�
p

3 + 3i
⌘

, 1p
3

⌘
,

and Y(0)
3,G =

⇣
1
6

⇣
�
p

3 + 3i
⌘

, 1
6

⇣
�
p

3 � 3i
⌘

, 1p
3

⌘
.

The dispersion, to leading quadratic order, follows from

en,G+p = e
(0)
n,G + Y(0)⇤

n,G Ĥ(p)Y(0)
n,G. (4.7)

and, hence, the Hessian Hn,G(t2, f) of each band:

H1,G =


3
4
(t1 + 3t2 cos(f))

�2
,

H2,G =


�1

8
t1

⇣
1 + 3t2 cos(f)� 3

p
3t2 sin(f)

⌘�2
,

H3,G =


�1

8
t1

⇣
1 + 3t2 cos(f) + 3

p
3t2 sin(f)

⌘�2
.

(4.8)
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Setting Hn,G = 0, results in the HOVHS contours at G shown in Fig. 4.5 (orange

lines),

t1,G(f) = �sec(f)
3

,

t2,G(f) = � 1
3(cos(f)�

p
3 sin(f))

,

t3,G(f) = � 1
3(cos(f) +

p
3 sin(f))

.

(4.9)

The other high-symmetry points can be dealt with similarly. In particular, the

analysis of degenerate perturbation theory for G at f = p, as well as the Hessian

expressions for M and K points are provided in Appendix. A.

4.2 Band Topology

The NNN hopping breaks time-reversal symmetry and leads to the possibility of

energy-isolated topological bands characterized by a nonzero Chern number. To

investigate that, we numerically compute [65] the Chern number of the three bands

in the t2 � f parameter space.

The Chern number diagrams are presented in Fig. 4.6. We restrict our analysis

to 0  t2  1 where the magnitude of the second neighbor hopping is less than the

NN hopping t1. Furthermore, the parameter f is restricted from [0, p], since for any

Chern number C at (t2, f), as f goes to �f, the Chern number flips sign. The white

regions describe bands that are not separated by a direct gap. The colored regions

represent isolated bands with nonzero Chern numbers. In this parameter regime,

we observe a rich landscape of gapped topological bands, some of which support

relatively large Chern numbers.

By combining the phase diagrams shown in Fig. 4.5 and Fig. 4.6, we uncover

a comprehensive understanding of how the NNN hopping leads to the onset of
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+3

+2

-1

-2

-3

+4
Band 1 Band 2 Band 3

t2

Figure 4.6: Phase diagrams for band 1 (left), band 2 (middle), and band 3 (right),
showing the corresponding Chern numbers in the t2-f parameter space. Since TRS
is respected at f = 0, p, the Chern number for all three bands at f = 0, p are 0.
White regions in the phase diagrams indicate non-positive indirect energy gaps
where the Chern number is not well-defined. (In this case, there is no situation
where the Fermi energy lies in between the bands, and the bands are characterized
by a possible non-quantized anomalous Hall response.) Only [0, p] is shown on the
f axis, since for any Chern number C at (t2, f), as f goes to �f, the Chern number
flips sign. As seen in certain regions of the parameter space, band 2 can support
Chern number as high as ±4.

topological bands supporting HOVHS at the high-symmetry points, characterized

by power-law diverging DOS r(e) ⇠ |e � e0|�n, with exponents n = 1/2, 1/4, 1/3,

which is one of the main results of our analysis.

This structure of HOVHS can be accessed upon changing the Fermi energy in

each of the bands, which also changes the anomalous Hall response owing to the

presence of a finite Berry curvature in the bands. Importantly, the zero temperature

differential anomalous Hall response displays a strong divergence whenever the

Fermi level crosses a Van Hove singularity, due to the large change in the number

of electronic states in a small energy window. At zero-temperature, this response,
dsint

xy (µ;T=0)
dµ , near VHSs can be expressed in terms of the density of states r(µ) as [39]

dsint
xy (µ; T = 0)

dµ
=

e2

2ph
hWiFS r(µ) , (4.10)

where sint
xy (µ; T = 0) = e2

h
1

2p

R
d2k W(k)Q(µ � e(k)) is the anomalous Hall con-

ductivity at zero-temperature, defined in terms of the Berry curvature W(k), and
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HOVHS at K point

HOVHS at K point

HOVHS at M point

HOVHS at M point

HOVHS at Γ point

HOVHS at Γ point

(a) (b) (c)

(d) (e) (f)

Figure 4.7: (a-c) Intrinsic anomalous Hall conductivity sint
xy (µ; 0) and (d-f) the cor-

responding differential anomalous Hall conductivity
dsint

xy (µ;0)
dµ at zero temperature,

plotted as a function of the Fermi energy µ in units of t1 for the Chern bands support-
ing HOVHS at (t2, f) = (0.39, p/2) for band 1 (left), (t2, f) = (0.26, p/2) for band
2 (middle) and (t2, f) = (0.80,�0.9p) for band 3 (right). The high-symmetry point
where the HOVHS is located is mentioned in each plot. The differential anomalous
Hall response, like the corresponding DOS, exhibits a power-law divergence around
µ⇤ (marked by the blue dashed line) with exponents 1/3, 1/4 and 1/2 for K, M and
G point respectively.

hWiFS defines the average of the Berry curvature on the Fermi surface.

In Fig. 4.7, we plot sint
xy (µ; 0) as well as

dsint
xy (µ;0)

dµ as a function of the Fermi energy

µ for three different cases where a Chern band supports HOVHS at either of the

three high-symmetry points. Notice that in all the three cases, the inverse of the

slope of the anomalous Hall response sint
xy (µ; 0) vanishes as µ ! µ⇤ where µ⇤ is the

energy corresponding to the HOVHS, shown in Figs. 4.7 (a)-(c). As a result, the
dsint

xy (µ;0)
dµ plots show a divergence as µ ! µ⇤, displayed in Figs. 4.7 (d)-(f).

We numerically confirm that the differential anomalous Hall responses exhibit

power-law divergences with the same exponent as the corresponding DOS, and

note that the distinctly sharp peaks become progressively broadened as temperature

increases.
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4.3 Sublattice Interference

A remarkable feature of Kagome systems is that Bloch states of the second band

corresponding to each Mi point in the Brillouin zone are maximally localized on one

of the three sublattices A, B and C. Notably, this form of sublattice interference (SI)

[8, 49, 17] is persistent even with long-range real hopping terms extending up to the

third nearest neighbor [49]. However, SI in kagome systems supporting topological

bands is yet to be explored. In this section, we investigate the rich interplay between

SI and HOVHS promoted by the complex hopping.

First, we establish that the SI persists on band 2 throughout the t2-f parameter space.

For instance, consider the high-symmetry point M1 = (p , pp
3
). Working out the

dot product of M1 with the lattice vectors ai and bi, M1 · a1 = p/2, M1 · a2 =

p/2, M1 · a3 = 0, M1 · b1 = p/2, M1 · b2 = p/2 and M1 · b3 = �p, yields the

Hamiltonian Ĥ(M1)

Ĥ(M1) = �2 t1

0

BBBB@

0 0 1

0 0 0

1 0 0

1

CCCCA
� 2 t2

0

BBBB@

0 0 �eif

0 0 0

�e�if 0 0

1

CCCCA
, (4.11)

supporting the energy values, e1,3 = ±2
q
(t1 � t2e�if)(t1 � t2eif) and e2 = 0,

where e1  e2  e3. The corresponding eigenstates are denoted as Yn,k = ul,kck,

where ul,k is a unitary transformation with l = A, B, C. Notably, the e = 0 case

corresponds to the second band with eigenvector Y2,M1 = (0 1 0)T, localized on the

B sublattice.

Similarly, for the other two high-symmetry points M2 and M3, the eigenvalues of

the corresponding Hamiltonian yield the eigenvalues e1  e2 = 0  e3, where the

e = 0 case again corresponds to the second band. Owing to C3 rotation symmetry,

the eigenvectors of the second band at M2 and M3, Y2,M2 = (0 0 1)T and Y2,M3 =



23

kx

ky

uλ,2 (k) 2

0.1

0.3

0.5

0.7

0.9

Figure 4.8: Contour plot of the sublattice weights for the second band corresponding
to the sites A (left), B (middle), and C (right) of the kagome lattice at (t2, f) =
(0.258, p/2), demonstrating that each Mi point on band 2 corresponds to one of the
three sites of the kagome lattice. In this example, the band carries a Chern number
of +2 while supporting HOVHS at the M points. Here, the black lines denote the
first Brillouin zone boundaries.

(1 0 0)T, are maximally localized on the C and A sublattices, respectively. Fig. 4.8

shows the strong sublattice localization at each of Mi on the second band.

SI plays an important role in constraining the interactions between electronic

states located near Mi when the Fermi level crosses a Van Hove singularity. Earlier

works have explored this regime for logarithmic VHS in kagome lattice [8, 49, 17].

The presence of the complex hopping on this kagome lattice, remarkably, uncovers

a new regime where the second band supports HOVHS on the Mi, displayed in the

green contours of Fig. 4.5. Furthermore, these band support higher Chern numbers,

C = ±2,±4 (middle panel of Fig. 4.6), generalizing the SI in time-reversal broken

Chern bands beyond the Chern number C = ±1 band on the honeycomb lattice

[37]. The identification of topological bands showing SI and HOVHS is a promising

platform to explore electronic correlations.



Chapter 5

Conclusion

Motivated by recent interest in band structures supporting higher-order Van Hove

singularities, we have investigated a kagome system characterized by NN and

NNN hopping, which, respectively, preserve and break time-reversal symmetry

(Fig. 3.1). The latter, similarly, to a chiral hopping on the Haldane lattice, leads to

the formation of topological bands supporting Chern numbers C = ±1,±2,±3,±4,

as depicted in Fig. 4.6.

More notably, we have performed a comprehensive analytical and numerical

analysis of the band dispersions near the six high-symmetry points G, ±K, and Mi

(i = 1, 2, 3), which uncovered a complex and diverse domain of HOVHS controlled

by the magnitude and phase of the NNN hopping (Figs. 4.1-4.5). As such, our analy-

sis unveils Chern bands with strong power law divergence in the DOS, r(e) ⇠ |e|�n

characterized by the exponents n = 1/2, 1/3, 1/4. Such strong singularities in the

density of states can imprint characteristic features in the low temperature intrinsic

anomalous Hall response, when the Fermi level crosses the HOVHS (Fig. 4.7).

We have explored distinct features of the kagome system worth mentioning.

First, while it takes a critical value of the NNN hopping strength for HOVHS to

emerge in bands 1 and 2, HOVHS can emerge at the ±K and Mi out of the third

24
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(flat) band for infinitesimal strength of the NNN, as shown in Fig. 4.5. Furthermore,

the NNN hopping provides a mechanism for the realization of high Chern number

bands manifesting a sublattice interference whereupon electronic states of the sec-

ond band are maximally localized on the A, B, and C sublattices as the momentum

approaches M3, M1, and M2, respectively (Fig. 4.8).

The classification of HOVHS in kagome systems opens promising directions

for future investigation. In particular, the interplay between band topology and

large density of states provides a guiding principle to exploring correlation effects

in kagome lattices, which could serve as a mechanism to realize unconventional

electronic orders such as chiral topological superconductivity and fractional topo-

logical states. Another interesting direction to explore would be incorporating a

spin degree of freedom into our model, which can be experimentally realized in

kagome FeGe metals [68, 69, 70].



Appendix A

Analytical Expressions of the HOVHS

Lines

On the line f = p in the t2-f parameter space, bands 2 and 3 are touching at G

point, and thus need the degenerate perturbation theory (PT) treatment. We can set

up the matrix

V =

0

B@
V22 V23

V⇤
23 V33

1

CA , (A.1)

where Vij = Y(0)⇤
i,G Ĥ(p)Y(0)

j,G . After diagonalization, we use the two eigenvalues,

3t2/4 and �1/4, in replacement of Y(0)⇤
n,G Ĥ(p)Y(0)

n,G for the energy shift in Eq. (4.7).

Given that the perturbation matrices for M and K have both linear and quadratic

dependence on p, we use second order perturbation theory, with the energy shift

defined as the following:

en,k+p � e
(0)
n,k = Ĥnn(p) + Â

m 6=n

|Ĥnm(p)|2

e
(0)
n,k � e

(0)
m,k

, (A.2)

where k can be K or M, and Ĥnm ⌘ Y(0)⇤
n,k Ĥ(p)Y(0)

m,k. With Eq. (A.2), we derived the

expressions for Hessian at M and ±K points:

26



27

H1,M(t2, f) =
1

64g6

⇥ 3
⇣

g � 9t4
2 � 9gt3

2 cos(3f) + (15g � 4)t2
2 cos(2f) + t2

⇣
�7g + 22t2

2 + 2
⌘

cos(f)� 12t2
2 + 1

⌘

⇥
⇣
�g + t4

2 + t2

⇣
�
⇣

g + 6t2
2 + 2

⌘
cos(f) + gt2(t2 cos(3f) + cos(2f)) + 8t2 cos2(f)

⌘
� 1
⌘

(A.3)

H2,M(t2, f) =
1

16g4

⇥
⇣

9t3
2 cos(3f)� 15t2

2 cos(2f) + 7t2 cos(f)� 1
⌘ ⇣

�3t2
2(t2 cos(3f) + cos(2f)) + 3t2 cos(f) + 3

⌘

(A.4)

H3,M(t2, f) =
1

64g6

⇥
⇣

9t4
2 + g

⇣
1 � 9t3

2 cos(3f)
⌘
+ (15g + 4)t2

2 cos(2f)� t2

⇣
7g + 22t2

2 + 2
⌘

cos(f) + 12t2
2 � 1

⌘

⇥
⇣

3t2

⇣⇣
�g + 6t2

2 + 2
⌘

cos(f) + gt2(t2 cos(3f) + cos(2f))� 8t2 cos2(f)
⌘
� 3

⇣
g + t4

2 � 1
⌘⌘

(A.5)

H1,±K(t2, f) =
1

16t2

⇣
�6t2 cot(f) + 2

p
3t2 + 3 csc(f)

⌘ csc(f)

⇥
⇣

36t3
2 � 24t2

2 cos(f) +
p

3
⇣

4t2
2 sin(f)(5 � 12t2 cos(f)) + 6t2 cot(f)� 3 csc(f)

⌘
� 6t2

⌘

(A.6)

H2,±K(t2, f) =
1

16t2

⇣
6t2 cot(f) + 2

p
3t2 � 3 csc(f)

⌘ csc(f)

⇥
⇣
�36t3

2 + 24t2
2 cos(f) +

p
3
⇣

4t2
2 sin(f)(5 � 12t2 cos(f)) + 6t2 cot(f)� 3 csc(f)

⌘
+ 6t2

⌘

(A.7)
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H3,±K(t2, f) =
1
8

 
3 � 6t2 cos(f)

8t2
2 cos(2f) + 4t2

2 � 12t2 cos(f) + 3
+ 6t2 cos(f)� 1

!
, (A.8)

where g =
q

t2
2 � 2t2 cos(f) + 1. At specific (t2, f) values in the parameter space,

the ±K points on either pair of neighboring bands will touch. Due to the no-level

crossing theorem under the PT framework, we want to emphasize the Hn,K expres-

sions are only valid in some regions of the parameter space. The band-crossing

happens at a set of (t2, f) values, related by the function t2 = 3
2(

p
3 sin(f)+3 cos(f))

.

Starting from the NN kagome model, i.e., (t2, f) = (0, 0), once the critical (t2, f)

line is crossed, the Hessian expressions for ±K, as given in Eqs.(A.6)-(A.8), become

mixed and do not correspond to the correct band index n. However, we wish to

point out that upon plotting the roots of all three Hn,±K expressions, we do obtain

the complete set of HOVHS lines for the ±K points in the parameter space.
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[38] Ömer M Aksoy, Anirudh Chandrasekaran, Apoorv Tiwari, Titus Neupert,

Claudio Chamon, and Christopher Mudry. Single monkey-saddle singularity

of a Fermi surface and its instabilities. Physical Review B, 107(20):205129, 2023.

[39] Lakshmi Pullasseri and Luiz H Santos. Chern bands with higher-order Van

Hove singularities on topological moiré surface states. Physical Review B,
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spectrum. Physical Review B, 67(10):104505, 2003.

[43] Congjun Wu, Doron Bergman, Leon Balents, and S Das Sarma. Flat bands and

Wigner crystallization in the honeycomb optical lattice. Physical review letters,

99(7):070401, 2007.

[44] Titus Neupert, Luiz Santos, Claudio Chamon, and Christopher Mudry. Frac-

tional quantum Hall states at zero magnetic field. Phys. Rev. Lett., 106:236804,

Jun 2011.

[45] D. N. Sheng, Zheng-Cheng Gu, Kai Sun, and L. Sheng. Fractional quantum

Hall effect in the absence of Landau levels. Nature Communications, 2:389 EP –,

07 2011.

[46] Evelyn Tang, Jia-Wei Mei, and Xiao-Gang Wen. High-temperature fractional

quantum Hall states. Phys. Rev. Lett., 106:236802, Jun 2011.

[47] Kai Sun, Zhengcheng Gu, Hosho Katsura, and S. Das Sarma. Nearly flatbands

with nontrivial topology. Phys. Rev. Lett., 106:236803, Jun 2011.

[48] N. Regnault and B. Andrei Bernevig. Fractional Chern insulator. Phys. Rev. X,

1:021014, Dec 2011.

[49] Yi-Ming Wu, Ronny Thomale, and S Raghu. Sublattice interference promotes



37

pair density wave order in kagome metals. Physical Review B, 108(8):L081117,

2023.

[50] Tilman Schwemmer, Hendrik Hohmann, Matteo Dürrnagel, Janik Potten, Jacob
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