
Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for
an advanced degree from Emory University, I hereby grant to Emory University and
its agents the non-exclusive license to archive, make accessible, and display my thesis
or dissertation in whole or in part in all forms of media, now or hereafter known,
including display on the world wide web. I understand that I may select some access
restrictions as part of the online submission of this thesis or dissertation. I retain
all ownership rights to the copyright of the thesis or dissertation. I also retain the
right to use in future works (such as articles or books) all or part of this thesis or
dissertation.

Signature:

Xingjian Li Date

Improving Sampling and Function Approximation in Machine Learning Methods for
Solving Partial Differential Equations

By

Xingjian Li
Doctor of Philosophy

Mathematics

Lars Ruthotto, Ph.D.
Advisor

Yuanzhe Xi, Ph.D.
Committee Member

Elizabeth Newman, Ph.D.
Committee Member

Accepted:

Kimberly Jacob Arriola, Ph.D.
Dean of the James T. Laney School of Graduate Studies

Date

Improving Sampling and Function Approximation in Machine Learning Methods for
Solving Partial Differential Equations

By

Xingjian Li
B.S., Xiamen University, 2019

Advisor: Lars Ruthotto, Ph.D.

An abstract of
A dissertation submitted to the Faculty of the

James T. Laney School of Graduate Studies of Emory University
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in Mathematics

2024

Abstract

Improving Sampling and Function Approximation in Machine Learning Methods for
Solving Partial Differential Equations

By Xingjian Li

Numerical solutions to partial differential equations (PDEs) remain one of the main
focuses in the field of scientific computing. Deep learning and neural network based
methods for solving PDEs have gained much attention and popularity in recent years.
The nonlinear structures and universal approximation property of neural networks
allow for a cheaper approximation of functions in high dimensions compared to many
traditional numerical methods. Reformulating PDE problems as optimization tasks
also enables straightforward setup and implementation and can sometimes circumvent
stability concerns common for classic numerical methods that rely on explicit or semi-
explicit time discretization. However low accuracy and convergence difficulty stand
as challenges to deep learning based schemes and fine-tuning neural networks can also
be computationally expensive at times.

We present some of our findings using machine learning methods for solving certain
PDEs. Since low and high dimensional PDEs often require very different numerical
methods to solve, we divide our work into two main sections based on the dimen-
sionality of a problem. In the first half we focus on the popular Physics Informed
Neural Networks (PINNs) framework, specifically in problems with dimensions less
than or equal to three. We present an alternative optimization based algorithm us-
ing a B-spline polynomial function approximator and accurate numerical integration
with a grid based sampling scheme. With implementation using popular machine
learning libraries, our approach serves as a direct substitute for PINNs, and through
performance comparison between the two methods over a wide selection of examples,
we find that for low dimensional problems, our proposed method can improve both
accuracy and reliability when compared to PINNs. In the second half, we focus on
a general class of stochastic optimal control (SOC) problems. By leveraging the un-
derlying theory we propose a neural network solver that solves the SOC problem and
the corresponding Hamilton–Jacobi–Bellman (HJB) equation simultaneously. Our
method utilizes the stochastic Pontryagin maximum principle and is thus unique in
the sampling strategy, this combined with modifying the loss function enables us to
tackle high-dimensional problems efficiently.

Improving Sampling and Function Approximation in Machine Learning Methods for
Solving Partial Differential Equations

By

Xingjian Li
B.S., Xiamen University, 2019

Advisor: Lars Ruthotto, Ph.D.

A dissertation submitted to the Faculty of the
James T. Laney School of Graduate Studies of Emory University

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

in Mathematics
2024

Acknowledgments

I would like to express my deepest gratitude to my advisor Prof. Lars Ruthotto for

his constant support and caring throughout my Ph.D. studies. Beyond the academic

and mathematical training that I received from Prof. Lars Ruthotto, he also passed

on to me the value of integrity and honesty and helped me through many down times

by being a role model. I could not have finished the Ph.D. without his help and I feel

extremely fortunate to be his student.

I would like to thank some of my collaborators including Prof. Samy Wu Fung,

Prof. Levon Nurbekyan, Dr. Deepanshu Verma, and Dr. Derek Onken. They have

helped me immensely during my time at Emory and taught me many valuable lessons

that have well-equipped me for my Ph.D. studies.

My thanks also go to my thesis committee members Prof. Yuanzhe Xi and Prof.

Elizabeth Newman, who has given me valuable suggestions for my thesis and advice

for my career path.

I would like to thank many of the friends that I made at Emory: Chang Meng,

Nicole Yang, Abbey Julian, Malvern Madondo, Kelvin Kan, Haley Rosso, Chris

Keyes, Shifan Zhao, Ayush Basu, Maxwell Auerbach, Benjamin Yellin, and many

more. They have supported me throughout my time here at Emory and I value my

friendship with them a lot.

Finally, I would like to thank my family for supporting me in my life in general, for

encouraging me when I encounter difficulties, and for listening to all my complaints.

i

Contents

1 Introduction 1

1.1 Overview of Thesis . 6

2 Mathematical Background 7

2.1 Neural Networks . 8

2.1.1 Definition . 8

2.1.2 Training of a Neural Network 10

2.2 Physics Informed Neural Networks 11

2.2.1 Neural Network Approximation 12

2.2.2 Loss Function . 12

2.2.3 Sampling and Training . 14

2.3 Finite Element Method . 15

2.3.1 Non-Stationary PDEs . 16

2.4 Stochastic Optimal Control and HJB Equations 18

2.4.1 Stochastic Optimal Control Problem 18

2.4.2 Stochastic Pontryagin Maximum Principle 20

2.4.3 Hamilton-Jacobi-Bellman Equation 22

2.4.4 FBSDE Formulation . 24

2.4.5 Relation to Deterministic Optimal Control 25

3 A Spline Based Alternative Model for PINNs 29

3.1 A Deeper Look into PINNs . 30

3.1.1 State of the Art in PINNs . 31

3.2 Pros and Cons of PINNs . 34

3.3 A Trainable Spline Model for PDEs in Low Dimensions 36

3.3.1 Spline Interpolation . 37

3.3.2 Spline Model for Higher Dimensions 39

3.3.3 Derivatives and Laplacians . 40

3.3.4 Sampling and Optimization 42

3.3.5 Outline of Our Method for Testing 43

3.4 Numerical Experiments for Different PDEs 46

3.4.1 2D Poisson Equation . 48

3.4.2 3D Poisson Equation . 51

3.4.3 1D Schrödinger Equation . 55

3.4.4 Allen-Cahn equation . 59

3.4.5 2D Taylor-Green Vortex Problem 64

3.4.6 Additional Numerical Schemes 68

3.5 Summary . 73

4 Deep Learning Approach for SOC problems and HJB Equations 75

4.1 Neural Network Approximation . 75

4.2 Formulation of the Training Problem 77

4.3 Numerical Experiments for SOC Problems and HJB Equations 81

4.3.1 Implementation Details . 81

4.3.2 2D Trajectory Planning Problem 82

4.3.3 100-dimensional example . 91

4.3.4 12D Quadcopter Path Finding Problem with Nonlinear Dynamics 98

4.4 Summary . 103

5 Conclusions and Future Work 105

Bibliography 107

iv

List of Figures

3.1 Mother spline b0 and basis functions b2 and b7 in 1D. 37

3.2 Spline approximation results of the 2D Poisson equation 49

3.3 Spline approximation results of the 3D poisson equation 52

3.4 Spline approximation results of the Schrödinger equation 57

3.5 FEM results of the Allen-Cahn equation 60

3.6 Spline approximation results for the Allen-Cahn equation 62

3.7 Spline approximation results of the 2D Navier-Stokes equation 66

3.8 Spline approximation results of the 1D Burgers equation 72

4.1 Visualization of noise under different σ 83

4.2 Results of the two-dimensional SOC problem 85

4.3 Visualization of Sampling differences 87

4.4 Approximation accuracy of value function for 2D SOC problem . . . 89

4.5 Approximation results to the 100D SOC problem 94

4.6 Relative error of value function when sampling from a distribution . . 96

4.7 Importance of sampling demonstrated by modifying the 100D example 97

4.8 Flight path examples for the 12D example 101

v

List of Tables

3.1 Error results for the 2D Poisson equation 51

3.2 Error results for the 3D Poisson equation 54

3.3 Error results for the Schrödinger equation 58

3.4 Error results for the Allen-Cahn equation 63

3.5 Error results for the 2D Navier-Stokes equation 67

3.6 Results when using projection to fit boundary conditions 70

3.7 Results for the sqe2sqe optimization scheme tested on the Burgers

equation . 73

4.1 Error results on the 2D SOC example 89

4.2 Validation of control objective on 2D SOC example 90

4.3 Error results on the 100D SOC example 93

4.4 Validation of control objective on 12D example 102

1

Chapter 1

Introduction

Numerical methods for solving partial differential equations (PDEs) play a crucial

role in simulating and understanding a wide range of phenomena in science and

engineering [36, 30, 27, 6]. Partial differential equations are ubiquitous in math as

well as other scientific fields such as physics, engineering, economics, etc. Analytical

solutions to many PDEs are often elusive or impractical, sometimes impossible to

obtain, necessitating the development of numerical methods for approximation of said

solutions, with examples such as [115, 95, 62, 37]. Many different approaches have

been proposed over the years for different PDE problems. One way to classify these

methods is to separate them into Eulerian and Lagrangian methods, see [114, 33, 114].

Eulerian and Lagrangian methods are two distinct approaches used in the numeri-

cal solution of PDEs. To briefly summarize, in Eulerian methods, the focus is on fixed

points in space, and the solution is tracked at specific locations over time. This usu-

ally corresponds to methods such as finite difference or finite element methods, where

the computational domain often remains stationary, and values at discrete grid points

are updated as the simulation progresses. On the other hand, Lagrangian methods

focus on following the movement of individual particles or elements in the system,

effectively translating the PDE problem into integrating some ODE system and thus

2

are not necessarily tied to specific grid discretizations of the domain, making the

method appealing for many high dimensional problems. On the other hand, not all

PDEs can be solved using a Lagrangian method, which is the main limitation of this

class of methods. We refer to [114, 33, 59] for more details regarding the differences

between the two approaches. The comparison here provides an important point of

view for our work.

In recent years deep learning based methods for numerically solving PDEs have

gained much attention with works such as Physics Informed Neural Networks (PINNs)

[92, 93, 94] being developed and broadly tested on many different applications. By

directly approximating the solution to a PDE with a neural network and reformulating

the PDE solver as some optimization task, PINNs and many similar methods no longer

tie themselves to specific grids in the domain, and thus are much easier to extend and

apply to problems in higher dimensions. However deep learning based methods are

not without their own challenges in the field, as a tradeoff, the main difficulty now

shifts to accurately solving a non-convex optimization problem, given little theory

support, much work remains to be done for such methods to achieve competitive

accuracy and efficiency, see [43, 23, 24].

We divide our work into two main sections, in the first part we focus solely on

PINNs and its applications to problems with spacial dimension smaller than or equal

to 3. Traditionally these problems are often solved with Eulerian methods such

as the finite element method (FEM) or the finite difference method (FDM), etc.

While PINNs has achieved success in the area over a wide range of problems such as

[65, 48], what can not be ignored is that successful implementation and fine tuning

of a PINNs model can be difficult with many failures of convergence documented in

[55, 23, 24]. As demonstrated in the pioneering work of [43] when directly compared

against Eulerian methods such as the finite element method over several benchmark

examples, it is also evident that PINNs cannot attain on-par accuracy to classic

3

numerical methods, showing another limitation of the methods.

In our work, we aim to provide a more detailed review of PINNs specifically on

low dimensional problems, while answering the more important question, of whether

neural networks are necessary for a machine learning based numerical PDE solver and

if other function approximators can achieve comparable results. To do so we propose

an alternative spline structure formulated as tensor products for function approxi-

mation similar to PINNs, we finalize the algorithm with our choice of sampling and

optimization scheme for the model. We implement our proposed solver under some

of the most popular machine learning libraries thus making it a direct substitute for

PINNs. We test our proposed approach and compare it against PINNs over a wide

selection of different PDE examples, we notice from the numerical results that our

proposed approach can achieve solutions with improved accuracy in most examples

when compared against PINNs. We also find that the polynomial structure of the

B-spline function approximator can be optimized with reduced need for hyperpa-

rameter tuning and opens the opportunity for additional numerical techniques to be

applied, such as domain decomposition and projection methods for fitting boundary

conditions.

As we establish the case for low dimensional PDEs, the difficulties in solving

high dimensional PDEs are differernt and also need addressing. Neural networks

have demonstrated their potential in solving problems with inputs in high dimensions

where grid discretization of the space can not often be relied upon. Such problems can

include the Black–Scholes equation [76], the Allen-Cahn equation, and many other

examples. In the second half of this thesis, we shift our focus to a specific type of

Hamilton-Jacobi-Bellman (HJB) equations that can have high spatial dimensions and

propose a neural network approach that can solve them efficiently. Solving the HJB

equation is often considered a global solution method for certain (stochastic) optimal

control problems, where for each problem the goal is to find a policy to control some

4

randomly perturbed dynamical systems to optimize a given objective functional.

As mentioned earlier one of the biggest challenges for efficiently solving the HJB

equation is to overcome the Curse-of-Dimensionality (CoD). With the space dimension

of a HJB equation easily reaching tens or even hundreds, numerical methods that rely

on grid discretization of the spatial domain such as [13, 31, 57, 58, 88, 105] are not

always practical. In our method, we propose to directly parameterize the solution

to the HJB equation, also known as the value function using a neural network. Due

to their universal approximation property, the use of neural networks as function

approximators for HJB equations has been tested in [44, 91] and received some success,

however their methods’ applicability is still limited amongst optimal control problems

due to their formulation of the learning problem.

One of the key differences that separates our method from similar ones is our

sampling strategy for training the neural networks. In existing methods a random

sampling scheme of the state-time space is usually used for obtaining the collocation

points needed, we instead borrow ideas from Lagrangian methods and propose an

alternative sampling scheme of the domain. To be more specific we use the stochastic

Pontryagin maximum principle (PMP) [86] to link the sampling and the value function

approximation; more precisely, we carefully define a Forward-Backward Stochastic

Differential Equations (FBSDE) system which can serve as a substitute for the HJB

equation. This allows us to follow the movement of each agent in the space-time

domain and sample accordingly in only the relevant region of the domain. In fact

for dynamical systems without noise, our choice of the FBSDE system is precisely

the characteristics curves of the problem. We use several numerical experiments

to demonstrate the effectiveness of our methods particularly for higher dimensional

problems.

We briefly summarize our main contributions as follows. For low dimensional

PDEs, we propose a Spline based function approximator and optimization method

5

that relies on accurate numerical integration, which can improve both accuracy and

reproducibility when compared to PINNs. We demonstrate this through extensive

numerical experiments. Our method partially fills in the gap between optimization

based methods such as PINNs and traditional numerical methods using polynomial

interpolation and solving linear systems. For HJB equations that can often have high

dimensions, our proposed method builds upon existing solvers with improvements

in both sampling strategy and loss function formulation. We demonstrate through

various examples that our modified solver can largely increase convergence speed and

model accuracy, most importantly our proposed method allows for tackling many

problems that can not be solved with existing solvers.

We also want to mention some of the work that I participated in during my Ph.D.

that I will not discuss in full in this thesis. In [79, 80] we propose a neural network

approach for solving high dimensional optimal control problems that follow determin-

istic dynamics. The method shares a similar idea to our work in [63], we will therefore

briefly cover the difference between deterministic and stochastic optimal control prob-

lems in relevant sections. My contribution to this work includes coding, numerical

experimentation, and writing. One of the areas of application for optimal control and

optimal transport theory is in generative modeling, specifically in the method of Con-

tinuous Normalizing Flow (CNF). We propose OT-Flow in [77], where we introduce

an optimal transport reformulation of the generic CNF formula by adding artificial

transport cost to the existing loss functional. Our solver also shares some similarities

to [63] by penalizing the violation of the resulting HJB equation. We will however

not discuss the application in detail in this work for the reason that both the optimal

transport problem and the HJB equation are not always solved with high accuracy

in practice, we therefore find it not suitable to include in this work. My contribution

to the project primarily focuses on numerical experimentation and coding.

6

1.1 Overview of Thesis

We structure the thesis as follows. In Chapter 2, we present the mathematical back-

ground relevant to the thesis. We first introduce the necessary background on neural

networks and deep learning. We follow this up by providing a brief overview of Physics

Informed Neural Networks (PINNs) and FEM as two methods of interest for solv-

ing many PDEs in low dimensions. We will also introduce and discuss the relevant

theory for stochastic optimal control problems and HJB equations, these set up the

foundations for our method in the following chapters. In Chapter 3 we first provide a

literature review regarding PINNs and its properties. We then propose and describe

an alternative spline based model and training scheme to optimize the model. We fol-

low this up by testing our spline structure and comparing the results with PINNs over

a wide range of different numerical experiments. we also introduce some numerical

techniques that can further improve model accuracy in this chapter. The related work

has yet to be published. In Chapter 4 we propose a neural network based approach

for solving stochastic optimal control problems and corresponding HJB equations at

the same time. We test our proposed method over several different examples and

present the numerical results in the latter half of the chapter, with more information

and details in relevant publications. In the last Chapter, we conclude our work and

point out several open questions and possible future directions for continuation of our

current work.

7

Chapter 2

Mathematical Background

For the second chapter, We provide the necessary mathematical backgrounds to better

understand and provide theoretical support for our work. We divide the chapter into

several different sections discussing PDEs with dimensions from low to high. We

start with a brief introduction to deep learning methods in section 2.1, in particular

how they can be used in general optimization problems. We also touch on definitions

such as neural networks, training and validation of a model, as well as common

optimization methods used in the process. This forms the basis for much of the

following work and discussions. We then include a section describing Physics Informed

Neural Networks (PINNs) in section 2.2, a deep learning based method for solving

general partial differential equations. Aside from the definition we will also describe

some implementation details. We also provide some brief notes on the classic finite

element method for solving PDEs in section 2.3 using a simple Poisson equation

example, we will rely heavily on the FEM for problems without analytic solutions.

Here for both PINNs and FEM, we look at PDEs with dimensions smaller than or

equal to three. Lastly, we attribute a main section to the concept of deterministic and

stochastic optimal control problems in section 2.4, we follow it up with two crucial

and relevant results for solving these problems, namely the Pontryagin Maximum

8

Principle and the HJB equation with its modified form, both of which will be of high

importance in the following work.

2.1 Neural Networks

Aside from its applications in the field of imaging, generative modeling and natural

language processing, machine learning and deep learning methods also play impor-

tant roles in applied mathematics,physics and engineering. We hereby provide a brief

introduction of neural networks (NN), as well as training, validation, and some ap-

plications of neural networks that are crucial to some of our work.

At its core, neural networks represent a class of function approximators that use

a combination of linear and nonlinear transformations to satisfy different tasks such

as regression or classification. Such formulation allows for additional flexibility and

function approximation in high dimensions, which is not always possible for tradi-

tional methods that rely on basis functions. However, the added complexity also

brings many challenges to convergence and optimization.

2.1.1 Definition

Consider the following definition

NN 0(x;θ) = act(Kx+ b). (2.1)

This forms the basis of a neural network layer, also denoted as a single layer network,

which combines the linear transformationKx+b with a nonlinear activation function.

Here the input x ∈ Rd. Matrices K ∈ Rm×d and b ∈ Rm can be arbitrary. We

often use θ = (K, b) to denote all the linear parameters (trainable weights). The

main difference that separates neural networks and a simple affine transformation is

the activation function, here denoted by act(·). Activation functions are nonlinear

9

functions applied element-wise to the input act(x) = [act(x1), act(x2), . . . , act(xd)]
⊤.

Some common choices for activation functions include Softmax, ReLU, and leaky

ReLU, etc, see [50, 2, 110]. In our work we primarily focus on the Tanh function, also

known as the hyperbolic tangent function, which reads

tanh(x) =
sinh(x)

cosh(x)
=
e2x − 1

e2x + 1
. (2.2)

In general different activation functions are used for different tasks. Lastly the output

of a single layer network NN 0(x;θ) ∈ Rm.

A single layer network is also referred to as a layer or a dense layer when used

to construct more complicated forms of neural networks. The most common form of

neural networks is the Multi-layer Perceptron (MLP), which takes the form

a0 = act(K0x+ b0)

ai+1 = act(K i+1ai + bi+1), 0 ≤ i ≤ M− 2

NN (x;θNN) = act(KMaM−1 + bM),

(2.3)

given input x the output is calculated through the combination of M different layers.

We refer to this as aM -layer perceptron, see [87]. The parameters of the network θ =

(K0, b0, . . . ,KM , bM) consists of parameters from each layer, each Ki ∈ Rmi×mi−1

and bi ∈ Rmi can take different shapes.

ResNet One architecture that we also focus on is the Deep Residual Network

(ResNet), introduced in [45], which has the formulation

a0 = act(K0x+ b0)

ai+1 = ai + act(K i+1ai + bi+1), 0 ≤ i ≤ M− 2

NN (x;θNN) = aM−1 + act(KMaM−1 + bM).

(2.4)

10

Notice here at each layer information from the previous layer is also added. ResNet

has shown wide applicability across many applications, we also adopt it for some of

our tests.

In general, increasing the width of a layer (increasing m in a single layer example)

and adding more layers improves the expressiveness of neural networks, i.e. it allows

the network to have more complexity and can approximate complex functions. How-

ever, it will also increase the computation overhead and difficulty of a given problem.

2.1.2 Training of a Neural Network

Mathematically, a deep learning problem can often be formulated as an optimization

problem

min
θ
J(NN (x,θ)). (2.5)

HereNN is the output of the neural network, and x is the input of the neural network

model, we use J or Loss to represent the objective function, which is a measurement

of the discrepancy between the current output of the model and the desired function

values. If explicit labeled data is given for J , that is for each x a label y is provided.

We often refer to the problem as a supervised learning problem and eq. (2.5) can be

further written as minimizing J(NN (x,θ),y). However, if only partial data exist

or we are given without data and use other metrics for J , it is sometimes called a

semi-supervised learning problem or unsupervised learning problem. In our work, we

primarily look at problems in the latter two categories.

We refer to the process of solving the minimization problem as ”training” a neural

network. Note that due to the nonconvex nature of a neural network, it is generally

a difficult problem to solve with limited convergence theory. We here provide some

discussion that will be useful for later sections.

11

Back Propagation The forward problem in a machine learning setting usually

means evaluating the objective J given some x, while the backward process is where

one updates the trainable parameters of a neural network. Gradient evaluation is

therefore crucial in the resulting optimization step, for neural networks we resort to

Automatic Differentiation (AD) for calculating the gradient, see [71]. AD offers an

efficient way of calculating gradient information regardless of architecture. Additional

tools and resources are also available such as [75] if Hessian information is also needed.

Stochastic Gradient Method Gradient descent method for training neural net-

works has the general form

θ = θ − η∇θJ(θ,x). (2.6)

Here η is the learning rate or step size and is usually picked by the user. x is the

input of the network. When using the entire dataset as input we refer to it as batch

gradient descent. However, it is much more common to use only a portion of the total

inputs (training data) at each update, this saves computation resources yet remains

effective in most instances.

There have been many alternatives to the standard stochastic gradient descent

(SGD) methods, with many listed in [96]. In our work, we also use Adaptive Moment

Estimation (Adam), which is a momentum-based subgradient method. Newton or

quasi-Newton methods such as L-BFGS are also sometimes used, though mostly for

sample average methods and full batch training.

2.2 Physics Informed Neural Networks

In this section, we offer a brief introduction to the idea of Physics Informed Neural

Networks. PINNs is a deep learning based method for solving partial differential

equations. The method differs from traditional numerical PDE methods such as

12

finite difference method (FDM) or finite element method (FEM) in a few key ways.

Instead of relying on a mesh discretization of the space, PINNs directly parameterize

the solution to some differential equation using a neural network. The problem can

then be formulated as an optimization problem with respect to the residual of the

given PDE, which can be solved with a stochastic gradient descent method based on

some sampling strategy over the given domain.

2.2.1 Neural Network Approximation

Being the major difference between traditional methods and PINNs, PINNs approxi-

mates the solution using a neural network, unlike FD which solves a discretized version

of the PDE, or FEM which also relies on some mesh for creating a function space

for its solution. Neural networks allow one to get rid of the need for meshing, which

can be appealing since meshing remains the main challenge for traditional methods

to tackle high dimensional problems.

Development in network architecture for PINNs is rather sparse. For most ap-

plications such as [43, 94, 23, 24, 29], multilayer perceptrons or their variants are

used with different activation functions. Empirically deep networks with a number

of layers over 5 are often needed for learning complicated functions, see [43, 92, 93],

which can lead to challenging optimization problems.

2.2.2 Loss Function

Consider a very general class of partial differential equations

Au(x, t) = f(x, t), x ∈ Ω, t ∈ [0, T]. (2.7)

Here the function u : Ω̄×[0, T] → Rn is the solution to the given PDE. Here we assume

the spatial domain Ω is open, bounded, and connected. [0, T] is the time interval and

13

here we assume time starts at 0. We use A to denote the differential operator and

nonlinear function f : Ω× [0, T] → Rn for the source term. The boundary and initial

condition for the problem are also defined

Bu(x, t) = g(x, t), x ∈ ∂Ω, t ∈ [0, T],

u(x, 0) = h(x), x ∈ Ω.

(2.8)

It is important to note for stationary problems such as the Poisson equation, where the

solution u is not time-dependent, one will need to correspondingly modify eq. (2.7)

and eq. (2.8). The state variable x can be of different dimensions depending on the

problems.

As mentioned in previous sections in PINNs we choose to approximate the solution

u with a neural network, usually denoted by uθ(x, t) with θ being the network weights

that are optimized during training. For the objective functional, PINNs directly

minimizes the residual of the strong form, that is eq. (2.7). We can write the loss

function as

J(θ) =α1

 1

Nf

Nf∑
i=1

∥Auθ(xi
f , t

i
f)− f(xi

f , t
i
f)∥2

+ α2

(
1

Ng

Ng∑
j=1

∥Buθ(xj
g, t

j
g)− g(xj

g, t
j
g)∥2

)
+ α3

(
1

Nh

Nh∑
k=1

∥uθ(xk
h, 0)− h(xk

h)∥2
)
.

(2.9)

Here, Nf is the number of collocation points (xi
f , t

i
f) ∈ Ω× [0, T] for i = 1, 2, . . . , Nf

sampled for the PDE residual in the loss. Similarly, (xj
g, t

j
g) ∈ ∂Ω × [0, T] for

j = 1, 2, . . . , Ng are points sampled from the boundary and xk
h for k = 1, 2, . . . , Nh

are sampled for learning the initial condition. α1, α2, α3 are weights that balance

between different terms in the loss function and are usually provided by the user.

In practice, properly choosing {αi}i=1,2,3 is often crucial to the accuracy of a PINNs

14

model. Notation wise Loss(θ) or Loss(x; θ) are also commonly used in literature for

eq. (2.9). Lastly, the minimization problem is often presented as

min
θ

E [J(θ)] , (2.10)

given fixed collocation points {xf , tf ,xg, tg,xh} the loss function eq. (2.9) forms a

deterministic optimization problem. However in most cases the collocation points are

resampled at each epoch, we therefore instead solve the problem in eq. (2.10), where

the expected value is taken w.r.t. the sample points. More details can be found in

[92, 93, 94]. We usually refer to the problem as solved given the best parameters θ

obtained through training, however, unlike methods such as the FEM, solving a PDE

using PINNs does not guarantee high solution accuracy in most cases.

2.2.3 Sampling and Training

Given the non-convexity nature of the loss function in eq. (2.9) when A is nonlinear

and the use of neural networks, small batch training is often required for optimizing a

PINNs model. Suitable techniques for sampling and resampling collocation points in

eq. (2.9) are important in PINNs setting, aside from the uniform sampling from the

given domain, Latin Hypercube Sampling [102] is another commonly used method.

For optimizing the parameters θ, automatic differentiation is the go-to method

for gradient evaluation of the loss function. SGD, ADAM, and L-BFGS are some of

the widely used methods for updating the parameters. In practice, it is also common

to combine ADAM and L-BFGS into a 2-step training scheme for better accuracy, as

illustrated in [43].

To sum up, alongside the choice of function approximators, sampling and opti-

mization of the learning problem also play an important role in the performance of

a PINNs model, we will demonstrate said point with more details in the following

15

chapters.

2.3 Finite Element Method

The finite element method (FEM) is one of the standard and most widely used meth-

ods for spacial discretization of many partial differential equations, particularly for

those without an analytic solution. Throughout the remainder of the paper we will

constantly be referring back to the FEM for numerical solutions to multiple examples,

as such we find it necessary to provide some basics of the FEM in this section.

We believe it is the best way to introduce the key components of FEM through

an example as in [43, 81]. Consider the simple Poisson equation

∆u(x) = f(x), x ∈ Ω,

with homogeneous Dirichlet boundary u(x) = 0 for x ∈ ∂Ω. We also assume the

right hand side f ∈ L2(Ω).

At its core, the FEM aims to find a weak solution to the problem. That is, we

want to find the solution u on some function space U such that for all functions

v(x) ∈ V , we have ∫
Ω

v(x)(∆u(x)− f(x))dx = 0.

By applying the Green’s Formula and taking into account the Dirichlet boundary

condition, we can get

∫
Ω

(⟨ ∇v(x),∇u(x)⟩ − v(x)f(x))dx = 0.

the most common choices for both U and V would be the Sobolev space H1
0 (Ω) of

functions defined on Ω → R that have a weak derivative. Boundary conditions are

also taken into consideration as indicated by the subscript 0. With the finite element

16

method, in order to solve the problem numerically, we replace H1
0 (Ω) with some finite

dimensional space H, H can be characterized by its basis {ψ}Ni=1, given the finite

dimensional space we can rewrite the weak form into

−
∫
Ω

⟨∇ψi(x),∇
N∑
j=1

ajψj(x)⟩dx =

∫
Ω

ψi(x)f(x)dx

for all i = 1, 2, . . . , N . The above equations can also be written as a linear system

Ba = F which has N ×N matrix B with entry

Bi,j = −
∫
Ω

⟨∇ψi(x),∇ψj(x)⟩dx,

and right hand side vector F as

F =

(∫
Ω

ψi(x)f(x)dx

)N

i=1

.

By solving the linear system a numerical approximation of u on H takes the form

û =
∑N

i=1 aiψi(x).

Notice the above formulation is only valid for homogeneous Dirichlet boundary

conditions. With Neumann condition, the additional
∫
∂Ω
vudx term needs to be

added to the bilinear form, a more general function space U = V = H1(Ω) will be

used instead as well. Mixed boundary conditions can be treated similarly. Stationary

PDEs other than the Poisson equation can be solved in a similar fashion by deriving

the weak formulation using the Green’s Formula.

2.3.1 Non-Stationary PDEs

For time dependent, non-stationary PDEs, one can apply FEM to the problem by

treating time as an additional dimension for the space variable, however, a more

common way for time dependent problems will be to apply FEM on only the space

17

variable after discretizing the system in time. As an example, we consider a general

heat equation

∂u(x, t)

∂t
= ∆u(x, t) + F (u(x, t)), x ∈ Ω, t ∈ [0, T],

with initial condition u(x, 0) = u0(x) for x ∈ Ω and boundary condition of choice.

The main difference between stationary and non-stationary PDEs is the introduc-

tion of time discretization methods, here for the heat equation we consider a more

stable implicit Euler scheme

un+1 = un + dt∆un+1 + dtF (un+1) for n = 0, 1, . . . , Nt.

Here we use n to denote the time stepping and dt is the size of the time steps. We

use un to denote the approximation of the solution u at each time step. The weak

form will then become

∫
Ω

vun+1dx =

∫
Ω

(vundx− dt⟨∇v,∇un+1⟩+ dtvF (un+1)) dx.

for n = 0, 1, . . . , Nt. Note here we once again assume 0 Dirichlet boundary for sim-

plicity. Given un a each time step, we can solve the weak problem with respect to

un+1 using a finite element discretization of the space. Also note that due to the

use of an implicit time integration scheme, the resulting equation will be nonlinear,

and iterative methods such as Newton’s method will be required for recovering un+1.

Other time stepping methods such as semi-explicit methods are also sometimes used,

however we will not focus on those in our work. We refer to [81, 115] for a more

thorough introduction to the method.

18

2.4 Stochastic Optimal Control and HJB Equa-

tions

One of the main focuses of the thesis is solving HJB equations, the importance of

which is tied to their underlying stochastic optimal control (SOC) problems. In this

section, we describe a classic type of SOC problems, provide some basics, and review

the key results from SOC theory that are crucial to some of our work. Our discus-

sion primarily follows [112] and we refer to this textbook for a more comprehensive

background and some details that we omit here.

To be more specific, we first introduce the definition of the SOC problems we

aim to solve, followed by a few key results: the stochastic Pontryagin Maximum

Principle (PMP), the corresponding Hamilton-Jacobi-Bellman (HJB) equation, and

its reformulation into a system of forward-backward stochastic differential equations

(FBSDEs) obtained from a nonlinear version of the Feynman-Kac formula. Lastly,

we will also highlight some major differences between SOC problems and their deter-

ministic counterpart.

2.4.1 Stochastic Optimal Control Problem

Let (Ω,F ,F = {Ft}t≥0,P) be a given complete probability space, W (s) be a d-

dimensional Brownian motion on (Ω,F ,F,P) where we use s to denote the time. For

a fixed initial state x at some time 0 < t < T < ∞, we seek to control the ran-

domly perturbed dynamical system some times also known as a stochastic differential

equation (SDE)

dzt,x(s) = f(s, zt,x(s),ut,x(s, zt,x(s)))ds+ σ(s, zt,x(s))dW (s), s ∈ [t, T],

zt,x(t) = x.

(2.11)

19

Here, zt,x : [t, T] → Rd describes the state and ut,x : [t, T] × Rd → U describes the

control of the system, the function σ : [t, T] × Rd → Rd×d represents the diffusion

coefficient, and f : [t, T]×Rd×U → Rd represents the drift of the system. We assume

that the set of admissible controls U ⊂ Rk is closed. Above condition guarantees

uniqueness of solution to the SDE eq. (2.11). Note here we require the control u to

be independent of the diffusion σ, which is commonly true in many applications.

We seek to minimize the objective functional

Jt,x(ut,x) = E
{
G
(
zt,x(T)

)
+

∫ T

t

L
(
s, zt,x(s),ut,x(s, zt,x(s))

)
ds

}
, (2.12)

which is comprised of the running cost L : [t, T] × Rd × U → R and the terminal

cost G : Rd → R. Here, the expectation is taken with respect to perturbance of

the dynamics eq. (2.11) over all admissible control processes ut,x(s, zt,x(s)) that is

described by the probability measure P. We assume sufficient regularity conditions

on f , σ, G, and L, see [112, Chapter 2] for a list of assumptions.

The value function assigns the optimal cost-to-go to any initial state is defined by

Φ(t,x) = inf
ut,x

Jt,x(ut,x), (2.13)

and a solution u∗
t,x to eq. (2.13) incurring this minimum value is called an optimal

control. Here to differentiate from the general PDE solutions in previous sections we

use Φ to denote the value function.

The Generalized Hamiltonian The functional H : [t, T] × Rd × Rd × Rd×d →

R∪{∞}, is a key ingredient for the SOC theory in some of the following sections and

the backbone of some of the work we did. For the problem defined in eq. (2.11) and

20

eq. (2.12) we can write H as

H(s, z,p,M) = sup
u∈U

H(s, z,p,M ,u), (2.14)

where p and M are called adjoint variables and

H(s, z,p,M ,u) =
1

2
tr (σ(s, z)M) + p · f(s, z,u)− L(s, z,u).

It can be assumed that there exists a unique minimizer of the Hamiltonian eq. (2.14)

given some assumptions from [112, Chapter 3] .

To make it notation wise convenient, in the rest of the paper, we drop the second

argument for the controls and denote controls by ut,x(s). The Hamiltonian is of

great importance in both the Pontryagin Maximum Principle as well as the Dynamic

Programming Principle, as can be seen in the following sections.

2.4.2 Stochastic Pontryagin Maximum Principle

The stochastic Pontryagin Maximum Principle (PMP) provides first-order necessary

conditions for the SOC problem and also states that the optimal control u∗
t,x must

satisfy an (extended) Hamiltonian system along the optimal state and adjoint trajec-

tory. This is of high importance in solving SOC problems and is made precise by the

following result from [112, Theorem 3.2, Chapter 3].

Theorem 2.4.1. [112, Theorem 3.2, Chapter 3] Assume that (z∗
t,x,u

∗
t,x) is an optimal

pair that solves eq. (2.11) and eq. (2.12). Then there exist adjoint states pt,x : [t, T] →

Rd and M t,x : [t, T] → Rd×d satisfying the adjoint equation

dpt,x(s) = M t,x(s)dW (s)−∇zH

(
s, z∗

t,x(s),pt,x(s),M t,x(s),u
∗
t,x(s))ds

pt,x(T) = −∇zG
(
z∗
t,x(T)

)
,

(2.15)

21

where s ∈ [t, T] and the optimal control satisfies

u∗
t,x(s) = argmax

u∈U
H
(
s, z∗

t,x(s),pt,x(s),M t,x(s),u(s)
)

(2.16)

for almost all s ∈ [t, T], P-almost surely.

We hereby highlight the fact that the optimal control defined in eq. (2.16) only

depends on the adjoint variable pt,x but not on M t,x since σ(·, ·) does not depend on

the control. This is key to reducing the complexity of the SOC solutions.

We further assume that there exists a unique continuous closed-form solution to

eq. (2.16). Although not demonstrated in this work, this assumption can be weakened

to include implicitly defined functions as long as they can be obtained efficiently; this

allows, for example, modeling more general convex running costs.

We note that when the control satisfies eq. (2.16), the dynamics in eq. (2.11) can

be rewritten in terms of the Hamiltonian and is equal to

dz∗

t,x(s) = ∇pH
(
s, z∗

t,x(s),pt,x(s),M t,x(s),u
∗
t,x(s)

)
ds+ σ(s, z∗

t,x(s))dW (s),

z∗
t,x(t) = x.

(2.17)

The system of equations eqs. (2.15) to (2.17) is called the stochastic Hamilto-

nian system, where the maximum condition eq. (2.16) corresponds to the variational

inequality for the control.

Despite its importance, finding a tuple (z∗
t,x,u

∗
t,x,pt,x,M t,x) that satisfies the

PMP can be difficult. However, when the value function Φ is differentiable, (pt,x,M t,x)

satisfying eq. (2.15) can be directly obtained from Φ, this is formalized in the following

theorem that, with weaker assumptions, can be found in [112, Chapter 5].

Theorem 2.4.2. [112, Chapter 5] Assume that u∗
t,x is an optimal control and Φ ∈

22

C1,3([t, T]× Rd). Then

pt,x(s) = −∇zΦ
(
s, z∗

t,x(s)
)

and M t,x(s)) = −σ(s, z∗
t,x(s))

⊤∇2
zΦ
(
s, z∗

t,x(s)
)
(2.18)

solve eq. (2.15).

Theorem 2.4.2 along with eq. (2.16) collectively serve to express the optimal con-

trol u∗ as

u∗
t,x(s) = u∗

t,x

(
s, z∗

t,x(s),−∇zΦ
(
s, z∗

t,x(s)
))
. (2.19)

for almost all s ∈ [t, T] and P-almost surely. This relation along with eq. (2.17) is

one of the key ingredients of some of our work. Additionally, there are a few things

we would like to point out here. Equation (2.19) characterizes the optimal control

in what some would call a feedback or feedback closed-loop form, which is of utmost

importance in many real-life applications. Once the value function is recovered with

its gradient readily available, the optimal control u∗ can be quickly calculated at any

given point in time and space, avoiding the re-computation overhead for cases when

multiple evaluations are needed for different times or states. Using the feedback form

also means separately solving and storing the adjoint variables are no longer necessary.

2.4.3 Hamilton-Jacobi-Bellman Equation

In the previous section, we studied how the solution to the problem eq. (2.12) for

initial states can be obtained from the values function Φ. To help approximate the

value function Φ, we also use the fact that Φ satisfies the Hamilton-Jacobi-Bellman

(HJB) equation, which is a result of the Dynamic Programming (DP) method or

Bellman’s principle. We state the following result taken from [112] under suitable

assumptions, see also [84, Remark 3.4.4, Theorem 3.5.2].

23

Theorem 2.4.3. [112, Propositon 3.5, Chapter 4] Assume that the value function

Φ ∈ C1,2([t, T]× Rd). Then Φ satisfies the HJB equation

−∂sΦ(s, z) +H
(
s,x,−∇zΦ(s, z),−σ(s, z)⊤∇2

zΦ(s, z)
)
= 0, ∀(s, z) ∈ [t, T)× Rd,

Φ(T,z) = G(z).

(2.20)

Furthermore, if Ψ ∈ C1,2([0, T]× Rd) is a solution of eq. (2.20) and u∗
t,x is such that

u∗
t,x(s) ∈ argmax

u∈U
H
(
s, z∗

t,x(s),−∇zΨ
(
s, z∗

t,x(s)
)
,−∇2

zΨ
(
s, z∗

t,x(s)
)
,u
)

(2.21)

for almost all s ∈ [t, T] and P-almost surely. Then Ψ = Φ, and u∗
t,x is an optimal

control.

The smoothness of Φ can be relaxed to continuity in the weaker sense of viscosity

solutions [112, Section 5, Chapter 4]. Using the definition of the Hamiltonian in

eq. (2.20) we get the HJB equation as the following second-order parabolic PDE:

−∂sΦ(s, z)−

1

2
tr(σ(s, z)σ(s, z)⊤∇2

zΦ(s, z))−∇zΦ(s, z) · f(s, z,u∗)

− L(s, z,u∗) = 0, ∀ (s, z) ∈ [t, T)× Rd,

Φ(T,z) = G(z(T)).

(2.22)

In addition, by the envelope theorem, it follows that ∇pH = ∇pH and ∇MH =

∇MH. This simplifies the computation of optimal trajectories, which can now be

24

expressed via the value function as:

dz∗

t,x(s) = ∇pH
(
s, z∗

t,x(s),−∇zΦ
(
s, z∗

t,x(s)
)
,−σ(s, z∗

t,x(s))
⊤∇2

zΦ
(
s, z∗

t,x(s)
))
ds

+ σ(s, z∗
t,x(s))dW (s),

z∗
t,x(t) = x.

(2.23)

Compare to eq. (2.11) these modified dynamics do not explicitly involve the control,

which reduces the problem solely to the state variables. This idea was proposed for

deterministic optimal control problems in [78], which we will elaborate further in later

sections.

Despite it being appealing, HJB equations are intrinsically hard to solve for various

reasons, in particular for the curse of dimensionality (CoD). Notice in eq. (2.20) that

the dimension of the PDE depends on the state variable. For SOC problems it is

common to have state variables with dimensions beyond a grid based method can

handle. A core objective for some of our work is to address this issue, which we will

discuss in the following chapters.

2.4.4 FBSDE Formulation

Regarding the CoD as described for general HJB equations, one way to avoid the need

for a spatial discretization of the HJB equation eq. (2.22) is to use a non-linear version

of the Feynman-Kac formula and obtain an equivalent system of stochastic differential

equations. To be more specific the resulting system has an easily exploitable forward-

backward structure and is most commonly referred to as a FBSDE system. This idea

has been applied to a variety of nonlinear parabolic/elliptic PDEs; see, for example,

[7, 69, 22, 82, 84].

The most obvious choice for formulating the FBSDE system given an HJB equa-

25

tion is to use eq. (2.23) as the forward system to sample trajectories. Along those

trajectories, we note that the solution to the HJB equation eq. (2.22) must satisfy

the backward SDE
dΦ(s, z(s)) = ∇zΦ(s, z(s))

⊤σ(s, z(s)) dW (s)− L(s, z(s),u∗(s))ds,

Φ(T,z(T)) = G(z(T)).

(2.24)

It is important to point out that FBSDEs can be derived for general semi-linear

parabolic PDEs and are not limited to HJB equations, moreover for each defined

PDE, given different forward dynamics we correspondingly get different BSDE for the

system. Choosing the proper FBSDE system often requires additional consideration,

for HJB equation eq. (2.22) our choice of the forward system eq. (2.23) is the key

difference from other existing works. As a more common choice, for example, [44]

and [91] remove the drift term entirely from the forward dynamics and use only the

standard Brownian motion for exploration, which read

dz∗

t,x(s) = σ(s, z∗
t,x(s))dW (s),

z∗
t,x(t) = x

(2.25)

with corresponding BSDE. Despite this being a valid FBSDE system for eq. (2.22),

we advocate for including the control in the dynamics as motivated by stochastic

PMP eq. (2.17). As we will demonstrate in later chapters through numerical exper-

iments, focusing the sampling along optimal trajectories can lead to more accurate

and efficient value function approximations.

2.4.5 Relation to Deterministic Optimal Control

Given the context, we think it is appropriate to also briefly introduce the deterministic

counterpart to SOC problems, how they relate to each other and some of the key

26

differences that affect how one treats them.

Definition of a deterministic optimal control problem can be easily derived from

eq. (2.11) by removing the volatility term

dzt,x(s) = f(s, zt,x(s),ut,x(s, zt,x(s)))ds, zt,x(t) = x. (2.26)

for s ∈ [t, T] with similar assumptions to eq. (2.11). The objective function to be

minimized is defined as

Jt,x(ut,x) = G
(
zt,x(T)

)
+

∫ T

t

L
(
s, zt,x(s),ut,x(s, zt,x(s))

)
ds, (2.27)

notice compare to eq. (2.12) the expected value is no longer needed. This is because

for deterministic problems, given initial state and time pair (t,x) without the volatil-

ity term the optimal solution zt,x(s) is uniquely defined. Value function Φ(s, z) for

deterministic OC problem is defined exactly as eq. (2.13), as for the Hamiltonian it

has form

H(s, z,p,u) = p · f(s, z,u)− L(s, z,u).

This differs from eq. (2.14) in the second order term. Also notice here in the de-

terministic case the adjoint variables only consist of p. With this observation, the

PMP for deterministic OC problems can be very much simplified to a system of

forward-backward ODEs

dz∗
t,x(s) = ∇pH

(
s, zt,x(s),p

∗
t,x(s),u

∗
t,x(s)

)
ds,

dp∗
t,x(s) = −∇zH

(
s, z∗

t,x(s),pt,x(s),u
∗
t,x(s)

)
ds,

z∗
t,x(t) = x.

p∗
t,x(T) = −∇zΦ(T,z

∗
t,x(T)).

(2.28)

for t ≤ s ≤ T . eq. (2.28) is a set of necessary first order optimality conditions for

27

eq. (2.27), more details and assumptions can be found in [14, 112].

The difference in PMP led us to the first key difference between a SOC problem

and its deterministic counterpart. For deterministic OC problems, the PMP serves as

a local solution, that is given some fixed (t,x) pair, we can obtain the optimal state

and adjoint pair (z∗,p∗) by discretizing and integrating eq. (2.28). Optimal control

u∗ can also be derived consequently. We refer to the solution obtained this way as

local in the sense that the solution is tied to the initial input of the system, changing

the initial pair (t,x) or moving off the optimal state path z∗(s) will both render the

optimal control obsolete.

Such local methods are generally not available for SOC problems with few excep-

tions such as [61]. Due to the existence of noise, even for fixed initial state (t,x),

the optimal state path zt,x(s) is not fixed. Therefore a direct discretization method

is not sufficient for evaluating the optimal control, a function approximator for u∗

is often necessary even for relatively simple problems. This difference poses a major

challenge for solving SOC problems.

Under similar assumptions to theorem 2.4.2, for details see [38, Theorem I.6.2]

we can aslo write the HJB equation as

−∂sΦ(s, z) +H

(
s,x,−∇zΦ(s, z)

)
= −∂sΦ(s, z)−∇zΦ(s, z) · f(s, z,u∗)

− L(s, z,u∗) = 0, ∀ (s, z) ∈ [t, T)× Rd,

Φ(T,z) = G(z(T)).

(2.29)

Similar to SOC problems, HJB equations for deterministic OC problems also suf-

fer from CoD. In addition to that, the difference in HJB equations eq. (2.22) and

eq. (2.29) also affects the regularity of the solutions. To be more specific eq. (2.29)

involves a fully nonlinear first order PDE which can have viscous solutions, while

28

eq. (2.22) is a quasilinear parabolic PDE, Assuming the noise is regular enough,

the second order term effectively regularizes the problem and eq. (2.22) will admit

smooth solution. One should expect the solution to eq. (2.22) to converge to the

solution of eq. (2.29) as σ → 0. The technique is the method of vanishing viscosity.

For more details and precise results, we refer to [36, Chapter 10]. This difference

is crucial to some of our work. While it is generally a challenging task to approxi-

mate a non-smooth function using neural networks, when dealing with SOC problems

and its related HJB equation, as long as the diffusion term satisfies the smoothness

assumption, we do not have such concern.

To summarize, in this chapter we provide the necessary mathematical background

for the thesis. We first introduced the concept of machine learning and neural net-

works, this forms the basis to understanding the thesis. We then discussed PINNs

and FEM, two very different methods for solving generic PDE problems. We rely

on FEM as a benchmark solution method for many of the problems in this thesis,

while for PINNs we will provide a deeper look in the next chapter. Lastly we pro-

vided background for optimal control problems and HJB equations, we will detail our

proposed method for solving such problems in chapter 4.

29

Chapter 3

A Spline Based Alternative Model

for PINNs

General Partial Differential Equations (PDEs) and how to solve them is one of the

main focuses of the math community with applications arising from physics, chem-

istry and engineering, etc. With analytic solutions absent in many instances, finding

suitable numerical solvers that can solve different PDEs with good accuracy and

efficiency remains the task for many applications in the field.

Deep neural networks gained their attraction in the field of PDEs through popular

work such as the Physics Informed Neural Networks (PINNs) [94] and Deep Ritz

Method [34]. The introduction of neural networks to approximate solution functions

is one of the key features that set the methods apart from traditional numerical

PDE methods. Given the universal approximation property one can approximate

arbitrary functions using neural networks without the need for any discretization of

the space-time domain. Another advantage of using function approximators is that it

can reduce or remove some of the stability concerns one may have when selecting time

discretization schemes with traditional methods. Reformulating the PDE problem as

an optimization problems also reduces the implementation difficulty, especially for

30

non-experts in the area.

That said neural network based methods for PDE solving are not without their

challenges, first of all, though neural networks have proven to be effective on many

high dimensional problems, it is unclear if they pose any advantages over other func-

tion approximators such as polynomials for low dimensional problems. The complex

and nonlinear structure of neural networks almost always yields non-convex learning

problems, which also makes solving them much harder. The Monte Carlo integration

scheme that PINNs and other methods rely on is also inferior in accuracy to methods

such as the midpoint rule or the Simpson’s rule. In our work, we aim to take a deeper

look at some of the mentioned challenges and hope to bring some insights into PINNs

and other alternative optimization based methods for PDE solving.

3.1 A Deeper Look into PINNs

In this section, we provide a brief review of PINNs, including some state-of-the-art

results in the field, in particular some recent work that tries to introduce classical

numerical PDE methods into PINNs. Through studying these related works on PINNs

we aim to gain a better understanding of the methods, specifically the strength of

PINNs as well as some of the issues one may encounter while using the method.

Neural network based methods for solving PDEs have gained much attention over

the past few years, with some more popular results such as the Deep Ritz method [34],

the Deep Galerkin method[100] and the Physics Informed Neural Networks (PINNs)

[94, 92, 93] all proposed after 2017. PINNs and related methods often share similar

ideals in principle, where given some PDE, a neural network is used to model the

solution of the differential equation with space and time variables as inputs, solving

the PDE then translates to minimizing some energy functional of the residual of the

PDE, as well as its initial and boundary conditions. PINNs as a method aims to

31

address and has the potential to overcome some of the challenges of traditional nu-

merical PDE methods such as the finite element method (FEM). For instance, since

using neural networks for function approximating does not rely on grid discretization

in either space or time, PINNs is another option to alleviate the curse of dimension-

ality and can be directly applied to problems with dimensions greater than 3. This

is generally not true for classical methods such as FEM or FDM, where special dis-

cretization in space will usually be needed for each problem. The grid-free property

of PINNs also allows for easier handling of problems with irregular domains, notice

for classical methods discretization of domains with irregular shape is one of the main

challenges for performance, this is generally not the case for PINNs.

Another advantage of PINNs is that evaluating a trained model can be easy and

cheap. Though training a neural network can be a hard task given the non-convex

nature of the learning problem, once a model is trained, evaluating new data points

in the domain can be both simple in practice and also efficient.

Much work in testing and applying PINNs has been done regarding different types

of PDEs and received success to a certain degree, see [70, 101, 51, 28].

3.1.1 State of the Art in PINNs

In this section we provide a brief overview of some of the state-of-the-art models and

results for PINNs, in particular, we will look at some work that aims to combine

classical numerical PDE methods into PINNs.

The development of PINNs has branched into several directions including changes

to sampling, problem formulation as well as models for function approximation. For

sampling training points to feed into the neural network, [70] showed that sampling

clusters of points in smaller regions instead of random sampling over the entire domain

can improve model accuracy in parts of the domain where training can be hard,

however, this often requires deeper knowledge of the problem for one to correctly

32

identify the sampling needs. In the absence of a reference solution, this strategy can

be much harder to implement. In [109] it is shown that alternative sampling methods

such as Latin hypercube sampling [67], Halton sequence [108] or Hammersley sequence

can sometimes produce better results compared to the common uniform sampling

methods. These results are often problem dependent though.

For proposed changes in models, Jagtap et al. in [49] introduced conservative

PINNs (cPINNs), in the work they aim to tackle problems with complex geometries

through a decomposition of the spatial domain and train multiple different neural

networks to solve the problem, one of each subdomain. The idea of domain decom-

position was later generalized in the work of extended PINNs (XPINNs), see [29],

where a more general space-time domain decomposition was discussed, special care

on the boundaries was also discussed such that each neural network trained for the

problem is consistent with its neighbors. XPINNs is now commonly used for problems

with large spatial and time domains. Follow-up and similar work also include [47]

and [52]. Finite Basis Physics-Informed Neural Networks (FBPINNs) [74] borrowed

ideas from the finite element methods and aim to reduce the spectral bias in PINNs

[90], we find it to be in many ways similar to the above-mentioned XPINNs where a

decomposition of the domain is used with the obtained solution being a combination

of multiple different neural networks.

Other results in PINNs also include competitive PINNs [113] which adopt the idea

from generative adversarial networks, aside from approximating the solution using a

neural network, another neural network is added to measure the performance of the

solution, the learning problem is also consequently reformulated as a saddle point

optimization problem. Bayesian PINNs (BPINNs) [111] utilizes a Bayesian neural

network and mainly targets problems with noisy data. These methods all showed

some success in certain test problems, but are limited in applicability due to high

computation cost and model limitations.

33

In particular, in recent years there have been attempts to introduce techniques and

ideas from traditional numerical PDE methods to PINNs models. we hereby discuss

a few of them. Kharazmi et al. proposed variational PINNs (VPINNs) in [51]. The

main contribution of VPINNs lies in its modified version of the loss functional, where

instead of minimizing the direct residual of the ODE, VPINNs form the loss functional

based on the variational form of the given PDE and use Legendre polynomials for

test functions. The work claims that the variational loss functional is more effective

for solving certain PDEs with non-smoothness. The idea of Spline-PINN is proposed

in [104], where a combination of Hermite Splines and convolutional neural networks

is used to model the solution in space and time. Training of the model remains

the same as regular PINNs. The method showed some success in problems such as

the Navier-Stokes equation. We find this to be an interesting idea, however since

the method still uses neural networks for constructing their function approximator, it

faces similar challenges to other neural network based approaches. A more recent idea

to combine the use of neural networks and FEM comes from [8]. Here a neural network

is used for learning the solution, however, instead of calculating the loss directly, an

interpolation of the neural network over some FEM space is first introduced, before the

loss functional is evaluated accordingly over the finite element space with parameter

gradient passing back to update the neural network.

Unlike methods such as finite element or finite difference, due to the use of neural

networks, convergence theories for PINNs are generally sparse. In [99] Shin et al.

showed convergence results of PINNs with respect to the number of training points.

They showed that for linear elliptic and parabolic PDEs, strong convergence can be

achieved in C0 given i.i.d. sampled training data. In [72] the authors developed

upper bounds on the generalization error of PINNs, the results however are limited

to PDEs that satisfy certain stability requirements. Similar error estimates are also

discussed in [97], here the authors looked at incompressible Navier-Stokes equations

34

and provided an upper bound on the total error of approximation. However, this is

only true for specific neural network architectures with two hidden layers and uses

tanh as activation functions. Such constraints on neural networks are not uncommon

for error estimates of PINNs.

In short, despite gaining much popularity in recent years, convergence results and

error analysis are still lacking for PINNs, especially for a more general class of neural

network models. Even for many commonly used test problems such as in [28], little

theory can be relied on.

3.2 Pros and Cons of PINNs

In this section, we want to provide our understanding of PINNs, namely the pros

and cons of the method through both a literature review and our own experience

experimenting with different examples. For some of the advantages and disadvantages

of PINNs mentioned in previous sections such as its ability to tackle the curse of

dimensionality, we shall not repeat them here.

We find one of the strengths of PINNs lies in its low entry bar for non-PDE experts

and the fact that it can be set up and implemented rather easily. Unlike traditional

numerical PDE methods whose successful implementation requires not only a deep

understanding of the PDE itself but also means to solve the occurring linear system.

With PINNs, minimal knowledge of the problem as well as neural network training is

sufficient to set up a solver. This property has inspired many works and experiments

beyond the numerical PDE community such as in [65, 68]. Implementation-wise,

PINNs models usually rely on open-source libraries such as Pytorch, Tensorflow, or

JAX [83, 1, 18], which all have large communities with many available resources.

This results in a much lower threshold for troubleshooting when compared against

packages for traditional numerical PDE methods such as FEniCS [5, 66] or NGSolve

35

[39].

Another accompanying strength of PINNs to many users is the stability of its

solution. For classic numerical PDE methods such as the FEM and FDM, carefully

selected step sizes for spacial and time discretization are often needed to avoid blow-

up in the solution, such as meeting the CFL condition [27] for certain hyperbolic

PDEs. Despite the difficulties in training, when approximating the solution using a

neural network this is generally not of concern, in fact exploitation of such property

has been done in [106, 107]. The reason for this is similar to that of time-dependent

finite element methods.

Despite its success in many problems, PINNs is not without any issues. In fact,

many works have been published detailing the challenges and difficulties of applying

PINNs to different applications. In [43] Grossmann et al. showed that PINNs can-

not achieve competitive accuracy when compared against the finite element method

through several examples and extensive experiments. [23] focuses primarily on prob-

lems arising in fluid dynamics and details their failure with PINNs where models

failed to converge despite much effort dedicated to training. Similar results are also

found in [24]. In the seminal work by Krishnapriyan et al. in [55] the authors aim

to explore and understand the failures of PINNs to converge. They conclude that

neural networks are expressive enough to approximate the solutions to most PDEs,

the challenge mainly resides in solving the consequent optimization problem. The

paper also proposes a few strategies to address the issue, which we will discuss in

later sections.

Due to the lack of convergence results and relevant theory to fall back on, we

summarize the main disadvantage of PINNs the difficulty to properly train a neural

network model. As laid out in earlier sections, formulation of the loss functional,

network architecture and size, choice of sampling, and optimization scheme can all

affect the outcome of the learning problem. Finding the appropriate hyperparameters

36

and learning setup can be time-consuming and affect solution accuracy.

It is also worth mentioning that though PINNs can achieve acceptable accuracy

for many applications, for problems that require high precision, PINNs has yet to

demonstrate its ability to attain so, which is also a limitation to its applicability.

3.3 A Trainable Spline Model for PDEs in Low

Dimensions

As described in earlier sections, the introduction of neural networks as function ap-

proximators brings versatility but also creates more challenging optimization prob-

lems. We want to point out that finite dimensional spaces such as P1(Ω) in FEM have

been applied to a much wider range of PDEs with dimension d ≤ 3 and have proven

approximation theory for functions under some regularity constraints. In our follow-

ing work, we aim to answer the question: For low dimensional PDEs (d ≤ 3),

is using a neural network necessary for PINNs or similar deep learning

algorithms?

Inspired by relevant work in the FEM [81, 115] and work such as [104], we propose

the following cubic B-spline model for approximating functions in low dimensions.

Consider some function Φ(x) ∈ C0(Ω) (note that we use Φ(x) to denote arbitrary

continuous functions only in this section, which is different from the value function

Φ(s, z) defined for HJB equations) with some scalar input x. we aim to construct the

approximation

Φ(x) ≈ Φspline(x) =
m∑
j=1

θjbj(x), (3.1)

here m is the total number of basis functions, we use θj and bj to represent the

coefficients and the corresponding basis functions. Here each basis function bj(x) is a

translated version of some b(x), which is sometimes referred to as a “mother” spline.

37

Figure 3.1: Mother spline b0 and basis functions b2 and b7 in 1D.

we define b(x) as

b(x) =

(x+ 2)3, −2 ≤ x < −1,

−x3 − 2(x+ 1)3 + 6(x+ 1), −1 ≤ x < 0,

x3 + 2(x− 1)3 − 6(x− 1), 0 ≤ x < 1,

(2− x)3, 1 ≤ x < 2,

0, else.

(3.2)

The translation is defined by bj(x) = b(x − j), allowing Φspline(x) to be defined for

any given x, another way to denote the spline function is Φθ(x). We visualize the

basis functions in 1D in fig. 3.1.

3.3.1 Spline Interpolation

One of the key differences between polynomials and neural networks is their ability to

interpolate existing data. We here briefly describe the interpolation of our proposed B-

spline model, for more details of polynomial interpolation one can refer to [3, 85, 103].

38

We consider the following interpolation problem for function Φ(x)

min

∫
Ω

(Φ′′(x))2dx subject to Φ(xj) = dataT(j), j = 1, 2, . . . ,m, (3.3)

where dataT represents the given data points, we aim to minimize the bending energy

while fitting the given data. Let θ = [θ1; θ2; . . . ; θm]
⊤, expanding eq. (3.1) at the cell

centers xj = j gives the interpolation condition

dataT(j) = Φspline(xj) =
m∑
k=1

θkbk(j) = [b1(j), . . . , bm(j)]θ, j = 1, 2, . . . ,m.

By concatenating each data points j we can obtain the following linear system

dataT = Bmθ

where

Bm = [bk(xj)] =

4 1 0

1
.

. 1

0 1 4

,

here matrix Bm ∈ Rm×m. We refer to [73] for a more detailed introduction to the

spline model as well as implementation in Matlab.

Evaluating the spline model Φspline(x) is also efficient compared to a neural net-

work, notice that the “mother” spline b(x) = 0 for x /∈ (−2, 2), therefore for any given

x at most four basis functions are nonzero, reducing the computational cost largely.

39

3.3.2 Spline Model for Higher Dimensions

For higher dimensional function approximation, namely d = 2 and d = 3, we resort to

a Kronecker product approach. In short we will replace eq. (3.1) with the following

Φ(x) ≈ Φspline(x) =

md∑
jd=1

· · ·
m1∑
j1=1

θj1,...,jdbj1(x1) . . . bjd(xd), (3.4)

where d = 2 or d = 3.

Similar to the 1D case, interpolation results can be derived, we omit them here

and point to [73] for those who are interested.

Implementation wise it is most common and efficient to treat the polynomial

approximation as a tensor product, where a d-dimensional tensor θ is used to repre-

sent the coefficients θj1,...,jd , for each input x = [x1, . . . , xd], spline value Φspline
j (xj) is

calculated before combined together as a tensor product. We will discuss our imple-

mentation in more detail in the following sections.

For time dependent problems we can derive a similar structure by treating time

as additional dimension in the Kronecker product, which will have the form

Φ(x, t) ≈ Φspline(x, t) =

md∑
jd=1

· · ·
m1∑
j1=1

θj1,...,jd,jtbj1(x1) . . . bjd(xd)b̃jt(t), (3.5)

here d = 1, 2, 3. we use jt to index the coefficients corresponding the to time input and

b̃jt(t) to denote the basis functions. Given related theory in FEM we here differentiate

the basis function in time by using a linear function instead of a cubic spline function,

namely we define

b̃(t) =

t+ 1, −1 ≤ t ≤ 0,

1− t, 0 ≤ t ≤ 1,

0, else.

(3.6)

Each basis function b̃jt can be translated from b̃ following b̃jt(x) = b̃(x− j) similar to

40

b(x). Such a definition allows us to treat time dependent variables in the same way as

spatial variables, this is the same as PINNs, avoiding the need for time discretization

as is often for classical methods such as FDM or FEM. Interpolation in time can also

be done easily as a piecewise linear interpolation problem.

3.3.3 Derivatives and Laplacians

When approximating the solutions Φ(·) using neural networks and minimizing the

residuals of the given PDEs, evaluating the gradient ∇Φ and Laplacian ∆Φ with

respect to the input x and t plays an essential role. With PINNs this is usually

done through the use of automatic differentiation [11], this usually requires at least

a full backward propagation of the entire neural network model. While calculating

the gradient term can be done this way relatively easily, computationally it can be

much more expensive when retrieving second order terms such as the Hessian or the

Laplacian using automatic differentiation. One possible solution to alleviate some of

the computation cost is to introduce packages like hessQuik [75].

For our proposed cubic spline model this can be done much easier. Given the

Kronecker product of 1D basis functions definition in eq. (3.4), for dimension index

q we have

∂qΦ
spline(x) =

md∑
jd=1

· · ·
m1∑
j1=1

θj1,...,jdbj1(x1) . . . (bjq(xq))
′ . . . bjd(xd), (3.7)

41

b′j1 can be derived through the “mother” spline in eq. (3.2) as

b′(x) =

3(x+ 2)2, −2 ≤ x < −1,

−9x2 − 12x, −1 ≤ x < 0,

9x2 − 12x, 0 ≤ x < 1,

−3(2− x)2, 1 ≤ x < 2,

0, else,

and b′′(x) =

6x+ 12, −2 ≤ x < −1,

−18x− 12, −1 ≤ x < 0,

18x− 12, 0 ≤ x < 1,

12− 6x, 1 ≤ x < 2,

0, else.

Similarly, the Laplacian can also be calculated directly given any input x using the

formula above without the need for automatic differentiation. It is also important

to note that given any fixed input x and t, the spline interpolation, its gradient and

Hessian are linear with respect to the weights {θi}.

Implementation Our implementation of the B-spline model follows the above-

described setup. Though defined for functions for any dimension, we restrict this

in our code to problems with spatial dimension of a maximum of 3 with additional

time variable if necessary. Our implementation also allows for parameterizations of

functions with vector outputs, which can be seen as a concatenation of 2 or more

scalar output functions.

In order to reduce the complexity of choosing the appropriate model, which is often

of concern in PINNs applications, our model can be defined and set up automatically

given only the domain information, as well as the number of basis functions in each

dimension. Our model allows for simultaneous calculation of both the gradient and

Laplacian with respect to the input along the forward propagation, reducing a large

portion of the computation cost.

We implement our model in Pytorch which allows for easy substitution for neural

networks in many PINNs related applications. We reference [73] and its Matlab code

42

for our spline structure, we have since made modifications to satisfy our need for PDE

problems.

3.3.4 Sampling and Optimization

In this section, we briefly describe the sampling and optimization strategy we use in

our experiments to accompany our selected spline function approximator.

Note that for PINNs and similar methods that rely on the the use of neural net-

works, it is most common to use Stochastic Approximation (SA) methods for training,

which use mini-batch sampling of training points in the domain with optimization

methods such as SGD or Adam. For our testing we opt for a Sample Average Ap-

proximation (SAA) [53] scheme for optimization. We base our sampling of collocation

points {xi
f , t

i
f}

Nf

i=1 on a grid discretization of the state-time domain. Boundary points

and initial points {xi
g, t

i
g}

Ng

i=1 and {xi
h}

Nh
i=1 can also be treated in the same way with grid

discretization of their respective surfaces. We note that this is tractable given prob-

lems in lower dimensions. With a grid based sampling method, the problem can then

be formulated as a deterministic optimization problem with respect to the samples

{xf , tf ,xg, tg,xh}, we can then solve the problem using methods with super-linear

convergence rate with line search such as L-BFGS.

We want to emphasize the two main reasons that motivate our formulation of

the training problem. First, an SA method is not suitable for optimizing our spline

model, notice that given each input in space at most 4 coefficients in each dimension

will be updated at each iteration, meaning only a small portion of all weights will

receive updates when trained with a mini-batch sampling scheme. Secondly, by using

a grid based sampling scheme, we can use numerical integration methods such as the

midpoint rule, which ensures higher accuracy compared to the Monte Carlo integra-

tion method. We can also reduce the number of hyperparameters by formulating the

problem as a deterministic optimization problem. In our testing we explore whether

43

we can maintain the accuracy of PINNs.

3.3.5 Outline of Our Method for Testing

In this section, we provide an outline of the method we aim to test for an arbitrary

PDE. We aim to maintain the optimization structure of PINNs by formulating the

solver as an optimization problem of the PDE’s residual while replacing the neural

network with a polynomial model. We address some of the ensuing issues by modifying

the classical PINNs algorithm. Consider a time dependent PDE defined in general

form from section 2.2

Au(x, t) = f(x, t), x ∈ Ω, t ∈ [0, T]. (3.8)

with boundary and initial condition

Bu(x, t) = g(x, t), x ∈ ∂Ω, t ∈ [0, T],

u(x, 0) = h(x), x ∈ Ω.

(3.9)

A learning problem can be set up with the following steps.

Create Spline Model and Sample points We construct a spline model given the

problem domain Ω× [0, T] with a chosen number of nodes for both x and t. We follow

the sampling scheme described in earlier sections by performing a grid discretization

of the domain, which gives {xf , tf ,xg, tg,xh}. We notice through various experiments

that increasing the number of splines generally improves model accuracy. This is not

necessarily true for PINNs as adding to the width and depth of a neural network also

increases the complexity of the optimization and may not always lead to a better

approximation of the solution, as demonstrated in[43].

44

Initialization As pointed out in [55] finding appropriate initialization plays an

important role in PINNs. While with neural networks it is generally hard to locate a

good initialization of the model, more can be tested when using a polynomial based

model. In particular for time dependent problems with given initial conditions, we

propose initializing the spline nodes using interpolation of the initial condition. We

repeat this for every spline node in time, which can be cheaply done, effective having

uθ(x, t) = h(x) for ∀t ∈ [0, T]. By doing so we directly satisfy the initial condition

without any update, we find that this also provides a better initial guess for the

following optimization problem compared to random initialization.

Loss Function and Optimization PINNs and similar methods minimize the

residual of some PDE as an energy function which has the form

min
θ

∫
Ω

∫ T

0

(Auθ(x, t)− f(x, t))2dxdt (3.10)

where uθ denotes the function approximation of the solution u. While PINNs relies

on a Monte Carlo approximation of the integral in eq. (3.10), given our choice of

sample points we instead minimize the following loss function

Loss(θ) =α1

 Nf∑
i=1

hxht(Auθ(xi
f , t

i
f)− f(xi

f , t
i
f))

2

+ α2

(
Ng∑
j=1

ht(Buθ(xj
g, t

j
g)− g(xj

g, t
j
g))

2

)
+ α3

(
Nh∑
k=1

hx(uθ(x
k
h, 0)− h(xk

h))
2

)
.

(3.11)

which is essentially the numerical integration of eq. (3.10) using the midpoint in-

tegration rule given the grid discretization of sample points. Here {α1, α2, α3} are

hyperparameters, in practice we usually set α1 = 1. Since our sampling relies on a

grid discretization of the space-time domain, we use hx and ht to denote the step sizes

45

used.

Notice that given fixed sample points the loss function eq. (3.11) is deterministic

with respect to the trainable weights θ, we therefore can solve the minimization

problem using methods such as L-BFGS.

With the spline architecture defined in eq. (3.4), we can easily verify the following

results for linear PDEs.

Corollary 3.3.1. Given the general form of PDEs defined in eq. (2.7) with boundary

and initial condition following eq. (2.8) over domain Ω × [0, T] with A and B being

linear operators. Let uθ(x, t) denote the spline function approximator from eq. (3.5)

defined over the same domain with θ being the nodal weights. For any selection of

collocation points {xi
f , t

i
f}

Nf

i=1 ∈ Ω× [0, T], {xj
g, t

j
g}

Ng

j=1 ∈ ∂Ω× [0, T] and {xk
h}

Nh
k=1 ∈ Ω.

The minimization problem

Loss(θ) =

Nf∑
i=1

(Auθ(xi
f , t

i
f)− f(xi

f , t
i
f))

2 +

Ng∑
j=1

(Buθ(xj
g, t

j
g)− g(xj

g, t
j
g))

2

+

Nh∑
k=1

(uθ(x
k
h, 0)− h(xk

h))
2

is convex with respect to θ.

Notice here given that corollary 3.3.1 holds for any choice of sampling schemes,

this also applies to the grid based sampling and exact integration method used in

eq. (3.11). Though some convergence results for PINNs have been established for

certain PDEs such as the Poisson equation, we are not aware of similar results for a

more general class of PDEs. Considering that linear PDEs consist of a wide range

of different problems, we argue that our proposed spline function approximator and

optimization scheme is advantageous over PINNs in accuracy, we will demonstrate

this in the following sections with numerical examples.

46

3.4 Numerical Experiments for Different PDEs

In this section, we test our discussed method and compare the results against some

PINNs solutions on a series of different benchmark PDE problems.

After reviewing many related works, we decide to primarily follow [43] for nu-

merical experiments and comparisons. The authors provided detailed comparisons

between trained PINNs solutions and finite element solutions on several different ex-

amples from 1D to 3D. Unlike many other works, in [43] the authors not only provide

hyperparameters for the best results, but also a detailed training routine used to ob-

tain the optimal model, including different network architectures and optimization

schemes tested for each problem. Though their network models may not necessarily

be state-of-the-art in terms of accuracy, we find this to be the most accurate depic-

tion of a normal user’s experience with PINNs where much effort and time are often

needed to properly train a neural network model.

In total we borrow 4 different examples from [43], namely for elliptic equations we

consider the Poisson equation in both two and three space dimensions. For parabolic

equations, we consider a time dependent Allen-Cahn equation in one space dimension,

and for hyperbolic equations, we test on a semilinear Schrödinger equation with one

space dimension. For these examples we primarily follow the experimental setup from

[43] while also testing our proposed scheme.

For problems introduced with explicit analytic solutions we directly compare the

PINNs results and our spline model results to the analytic solution for error measure-

ment, no additional numerical solution will be needed. However, for problems that do

not have such solutions, we rely on FEM solutions for comparison. We generally rely

on section 2.3 for setting up the FEM solver with additional details added for each

problem. In all instances, we use very fine discretization for both space and time in

order to ensure our FEM solution is as close as possible to the ground truth solution.

Implementation wise we use FEniCS [66] for all FEM solutions.

47

For obtaining the necessary PINNs models, we follow [43] closely. The PINNs

models tested here share the structure and loss function as the vanilla approach as

described in Raissi et al. [92, 93]. Unlike the vanilla approach, a two-step optimization

scheme is used where the Adam optimizer is used in the first phase of training with

random sampling at each epoch, followed by L-BFGS on a fixed set of collocation

points to refine the results. This training setup usually produces models with the

highest accuracy from our testing. We utilize the optimal learning rate selected in [43]

for each example. For sampling of collocation points the Latin Hypercube sampling

[102] is used as experiments have suggested that such sampling scheme often produces

better results. All derivatives in the loss function calculation as well as parameter

updates are computed using automatic differentiation. For harder problems such as

the Allen-Cahn equation and the Schrödinger equation, an additional optimization

step is added at the beginning of the training, where the network is trained to fit only

the initial condition. In [43] the authors claim such practice can improve accuracy on

problems tested.

Finding the optimal neural network is one of the biggest challenges for PINNs, for

each example in [43] multiple neural networks are tested with different depths and

widths. Different network architectures can lead to significant differences in error

results, system memory cost, training time and model evaluation time.

To further demonstrate our method and for more extensive comparisons we will

also include additional examples beyond those used in [43], Including a two dimen-

sional Navier-Stokes equation examples from [24] and one dimensional Burger’s equa-

tion example also used in [94]. we shall provide more details of each of these examples

in the relevant sections.

For implementation details, [43] has the PINNs models coded using JAX [18], in

our experiments we will use FEniCs for FEM solutions and Pytorch [83] for training

our proposed spline models.

48

For error calculation we mainly use 2 metrics, first is the most common l2 relative

error used in most PINNs related papers, given function u(x, t) and its approxima-

tion uθ(x, t) with collocations points {xi, ti}Ni=1, by stacking the collocation points as

vector inputs x, t, the l2 relative error of the approximation can be measured using

the following formula

l2 relative eror =
∥u(x, t)− uθ(x, t)∥2

∥u(x, t)∥2
.

Note here the collocation points can come from either random sampling or a grid

based discretization. We also provide average absolute error which takes the form

1
N

∑N
i=1 |u(xi, ti)− uθ(xi, ti)|, which we also find to be useful at times.

3.4.1 2D Poisson Equation

In this section we consider the two-dimensional Poisson equations which is defined

as:

∆u(x, y) =2(x4(3y − 2) + x3(4− 6y) + x2(6y3 − 12y2 + 9y − 2)

− 6x(y − 1)2y + (y − 1)2y), (x, y) ∈ (0, 1)2.

(3.12)

The problem is defined with mixed boundary condition

∂n⃗u(0, y) = 0, y ∈ [0, 1]

∂n⃗u(1, y) = 0, y ∈ [0, 1]

u(x, 0) = 0, x ∈ [0, 1]

∂n⃗u(x, 1) = 0, x ∈ [0, 1]

(3.13)

49

Figure 3.2: Approximation results of the 2D Poisson equation. Left: visualization of
the analytic solution to the problem. Middle: Approximated solution using our spline
based model. Right: absolute error between the learned solution and the true solution
over the domain. Notice here the spline function approximator achieves consistently
low error across the entire domain.

Such formulation of the problem allows for an analytic solution which reads

u(x, y) = x2(x− 1)2y(y − 1)2

for all (x, y) in the given domain. We visualize the true solution to the problem in

fig. 3.2. Notice here the solution u has values between 0 and 0.01 over the entire

domain, accurately approximating the solution can be challenging given the precision

needed. We refer to [43] for a carefully selected learning rate and training routine for

the problem.

Spline Approximation For setting up the learning problem for the spline model,

we follow the steps described in earlier chapters, here we define the loss function as

Loss(θ) =

Nf∑
i=1

h2(∆uθ(x
i
f , y

i
f)− f(xif , y

i
f))

2 + 100

Ng∑
j=1

(
h(∂n⃗uθ(0, y

j
g))

2

+ h(∂n⃗uθ(1, y
j
g))

2 + h(∂n⃗uθ(x
j
g, 1))

2 + h(uθ(x
j
g, 0))

2
)
,

(3.14)

here h is the step size for the discretization we use in sampling and f is the right

hand side function, we also set the weight for the boundary condition to 100. For

50

sampling we use a 150 × 150 grid to obtain all collocation points, we construct the

spline model with 32 nodes for each dimension. Since we use L-BFGS with line search

for optimizing the loss, no additional tuning for the learning rate is needed.

We display the training results in fig. 3.2 as well as a comparison to the analytic

solution. Our method showed high accuracy with the absolute approximation error

being below the 10−5 range, in fact when evaluated on a finer mesh, the average

absolute error of the spline model over the domain is 1.6× 10−6 across all collocation

points.

PINNs For PINNs results we follow closely to the work of [43] where they minimize

the l2 residual of the PDE as well as the boundary condition. A total of 2250 points

are sampled at each epoch with Nf = 2000 and Ng = 250. A multi-layer perceptron

(MLP) is used as the forward function approximator, see section 4.1 for more details,

with tanh as activation functions. The following architectures are tested: [20,1],

[60,1], [20,20,1], [60,60,1], [20,20,20,1], [60,60,60,1], [20,20,20,20,1], [60,60,60,60,1],

[20,20,20,20,20,1], [60,60,60,60,60,1], and [120,120,120,120,120,1]. We aim to find the

optimal solution that can be achieved by PINNs. For training Adam optimizer is

used for 20K epochs with a learning rate of 1× 10−3, followed by L-BFGS with line

search until no update for network weights can be made.

We use l2 relative error as our primary metric and display the training results in

table 3.1 alongside the spline approximation results. It is clear that the spline solution

produces errors that are at least a magnitude lower than any of the trained PINNs

models. We also note that for PINNs selecting the optimal NN architecture can be

challenging, simply adding to the depth of the neural network or increasing the size

of each layer does not always improve accuracy. In fact, the most complex architec-

ture tested in this experiment is [120,120,120,120,120,1] which showed relatively low

accuracy compared to small neural networks. This result is consistent with the ones

51

Methods architecture l2 relative error (lower is better)
Spline model 32× 32 0.00065

PINNs

[20, 1] 0.11
[60, 1] 0.058

[20, 20, 1] 0.025
[60, 60, 1] 0.023
[20× 3, 1] 0.013
[60× 3, 1] 0.004
[20× 4, 1] 0.012
[60× 4, 1] 0.006
[20× 5, 1] 0.010
[60× 5, 1] 0.003
[120× 5, 1] 0.011

Table 3.1: Error results of both spline models and PINNs when compared against the
analytic solution, we display the l2 relative error using different architectures. Here
the spline approximation results are at least a magnitude better than any PINNs
model.

from [55].

3.4.2 3D Poisson Equation

In this section we consider the Poisson equation in three space dimensions. The

problem is defined on the unit cube and reads as

∆u(x, y, z) = −3π2 sin(πx) sin(πy) sin(πz) (x, y, z) ∈ (0, 1)3, (3.15)

with homogeneous Dirichlet boundary condition

u(x, y, z) = 0 (x, y, z) ∈ ∂[0, 1]3.

Analytic solution to the problem can be written as

utrue(x, y, z) = sin(πx) sin(πy) sin(πz),

52

Figure 3.3: Approximation results of the 3D Poisson equation using the spline model
proposed in section 3.3. Here we visualize the solution and compare at three slices
in space, namely at x = 0.5, y = 0.5 and z = 0.5. We show the analytic solution in
the first column, the approximation results in the second column and the absolute
measured in the last column, notice here the errors are consistently in the 10−6 range,
showing high approximation accuracy.

for any pair (x, y, z) in the given domain. We visualize the solution to the problem

in fig. 3.3 over a few slices in space.

53

Spline Approximation We set up the spline model and corresponding learning

problem using the loss function

Loss(θ) =

Nf∑
i=1

h3(∆uθ(x
i
f , y

i
f , z

i
f) + 3π2 sin(πxif) sin(πy

i
f) sin(πz

i
f))

2

+ 100

Ng∑
j=1

(
h2(uθ(0, y

j
g, z

j
g))

2 + h2(uθ(1, y
j
g, z

j
g))

2 + h2(uθ(x
j
g, 0, z

j
g))

2

+ h2(uθ(x
j
g, 1, z

j
g))

2 + h2(uθ(x
j
g, y

j
g, 0))

2 + h2(uθ(x
j
g, y

j
g, 1))

2
)
,

(3.16)

with h being the step size used for spacial discretization. Here in this experiment, we

use a 100 × 100 × 100 grid for generating all the collocation points. We consider a

rather simple 32 × 32 × 32 spline architecture for approximating the solution as we

find it is sufficient for this problem. We use L-BFGS for updating parameters until

convergence.

We present some of the final training results in fig. 3.3 where we also compare

the solution against the analytic solution for u(x, y, z). We choose to display three

slices of the domain at x = 0.5, y = 0.5 and z = 0.5 respectively, notice the absolute

error on each slice is at 10−6 level or lower. We further calculate the average absolute

error of the approximated solution over 5000 randomly sampled points within the

unit cube, the average error is 4.36 × 10−7, indicating that the learned solution has

high accuracy over the given domain.

PINNs For PINNs training we use the l2 residual of the PDE and the bound-

ary condition to construct the loss function as presented in [43]. We select Nf =

1000 and Ng = 100 in training each epoch. We use MLP as our primary net-

work structure for testing and consider the following different architectures: [20,20,1],

[60,60,1], [20,20,20,1], [60,60,60,1], [20,20,20,20,1], [60,60,60,60,1], [20,20,20,20,20,1],

and [60,60,60,60,60,1]. We run Adam optimizer with learning rate 1 × 10−3 for 20K

iteration before moving to L-BFGS for fine tuning. All gradient and Hessian required

54

Methods architecture l2 relative error (lower is better)
Spline model 32× 32× 32 1.86× 10−6

PINNs

[20, 20, 1] 0.002
[60, 60, 1] 0.0008
[20× 3, 1] 0.011
[60× 3, 1] 0.0005
[20× 4, 1] 0.0015
[60× 4, 1] 0.0009
[20× 5, 1] 0.0021
[60× 5, 1] 0.0009

Table 3.2: Error results of both spline models and PINNs when compared against the
analytic solution of the 3D Poisson equation, we display the l2 relative error using
different architectures. Here the spline approximation results are over 2 magnitudes
better than all PINNs models tested.

for evaluating the loss or updating the parameters are calculated using automatic

differentiation.

We show the PINNs results as well as comparisons against the spline models

in table 3.2. For this example, PINNs can achieve relatively high accuracy with

l2 relative errors between 10−2 and 10−3 for all the architectures tested. However,

the spline approximation showed a much lower error of 1.86 × 10−6, which is over 2

magnitudes lower than any PINNs results.

To briefly summarize the 2 presented Poisson equation examples, notice regardless

of the right hand side both problems are linear PDEs. For fixed collocations points

used for training, the resulting loss function is, therefore, convex with respect to the

spline coefficients, as discussed in corollary 3.3.1, guaranteeing a reachable global

minimizer for the problem. For this reason, our spline approximation can achieve

much lower error than any PINNs architecture tested. Similar results should be

expected for other linear PDEs such as the heat equation or the Helmholtz equation.

In short, we believe for linear PDEs in low dimensions, our proposed spline model

and optimization scheme is preferable compared to PINNs in accuracy.

In the following sections, we will primarily focus on nonlinear PDEs which will

55

result in non-convex optimization problems in general, finding a good approximation

of the solution will therefore become much more difficult, we will investigate the

performance of our proposed method one different examples and compare against

PINNs in accuracy.

3.4.3 1D Schrödinger Equation

For examples on hyperbolic equations we here experiment on a semilinear Schrödinger

equation example often used as a benchmark problem in works such as [43, 92, 93]

and remains one of the more challenging problems to solve with neural networks. We

consider the following problem

i
∂h(x, t)

∂t
= −0.5∆h(x, t)− |h(x, t)|2h(x, t), x ∈ [−5, 5], t ∈ [0,

π

2
], (3.17)

with boundary and initial consition

h(x, 0) = 2sech(x), x ∈ [−5, 5],

h(5, t) = h(−5, t), t ∈ [0,
π

2
],

∂h(5, t)

∂x
=
∂h(−5, t)

∂x
, t ∈ [0,

π

2
].

Here h(x, t) is a complex valued function and can be written as h(x, t) = uR(x, t) +

i · uI(x, t). It is in practice most common to solve for uI and uR individually before

combining them to get h(x, t).

FEM Solution It is important to note that analytic solutions for eq. (3.17) does

not exist and therefore we resort to a FEM solution for measuring errors. We here

provide a brief outline for the FEM solution, we refer to [43] for more details.

Here we consider a semi-explicit Euler scheme for time discretization, the weak

56

form for both the real and imaginary part of the PDE can be formulated as

∫ 5

−5

(ut+1
I (x)− utI(x))vR(x)dx−

1

2

∫ 5

−5

⟨ ∇ut+1
R (x),∇vR(x)⟩dx− |ht(x)|2

∫ 5

−5

ut+1
R (x)vR(x)dx = 0,∫ 5

−5

(ut+1
R (x)− utR(x))vI(x)dx+

1

2

∫ 5

−5

⟨ ∇ut+1
I (x),∇vI(x)⟩dx+ |ht(x)|2

∫ 5

−5

ut+1
I (x)vI(x)dx = 0

for test functions vR and vI , here we assume Dirichlet boundary for simplicity. To

obtain an accurate solution to the problem we select step size dt = 1 × 0−3 for time

discretization. For spatial discretization we use a total of 2048 cells, We choose P1

finite element and solve the problem using FEniCs. We display the visualized FEM

solution of |h(x, t)| in fig. 3.4.

Spline Approximation In order to solve the problem using our spline setup, we

consider the following loss function

Loss(θ) =
1

Nf

Nf∑
i=1

hxht((
∂uθI(x

i
f , t

i
f)

∂t
− 1

2
∆uθR(x

i
f , t

i
f)− |hθ(xif , tif)|2uθR(xif , tif))2

+ (
∂uθR(x

i
f , t

i
f)

∂t
+

1

2
∆uθI(x

i
f , t

i
f) + |hθ(xif , tif)|2uθI(xif , tif))2)

+
1

Ng

Ng∑
j=1

ht((u
θ
R(−5, tjg)− uθR(5, t

j
g))

2 + (uθI(−5, tjg)− uθI(5, t
j
g))

2)

+
1

Ng

Ng∑
j=1

ht((
∂uθR(−5, tjg)

∂x
−
∂uθR(5, t

j
g)

∂x
)2 + (

∂uθI(−5, tjg)

∂x
−
∂uθI(5, t

j
g)

∂x
)2)

+
1

Nh

Nh∑
k=1

hx((u
θ
R(x

k
h, 0)− 2sech(xkh))

2 + (uθI(x
k
h, 0))

2),

(3.18)

by treating the real and imaginary part of the solution separately using different

function approximators. Here hx and ht represent discretizations used for space and

time sampling respectively. In our experiments we use a 300×250 grid for generating

all the collocation points. we test three different spline structures, namely 128× 96,

57

Figure 3.4: Visualization of the solved solution to eq. (3.17), Top: FEM solution of
|h(x, t)| using a fine grid and time discretization. Middle: the learned solution using
our spline based model. Bottom: Absolute error between the FEM solution and the
spline model.

192 × 128 and 256 × 192, in all test cases we use L-BFGS for optimization until

convergence.

We show the approximation results of our spline model in fig. 3.4 here the most

accurate solution is obtained using 256×192 nodes. In fig. 3.4 we display the compar-

ison between the FEM solution and the spline solution of |h(x, t)| over the domain,

as well as the absolute error between them evaluated over a 500× 500 grid. Here the

average absolute error for the approximation is 0.016. We also notice that the errors

are low initially and increase as time increases. This shows that our initialization

of the spline architecture using the given initial condition is useful in improving the

58

Methods architecture l2 relative error (lower is better)

Spline
Model

128× 96 0.058
192× 128 0.055
256× 192 0.038

PINNs

[20× 3, 2] 0.057
[20× 6, 2] 0.092
[100× 4, 2] 0.075
[100× 6, 2] 0.104

Table 3.3: Error results of both spline models and PINNs for the Schrödinger equation,
here the errors are measured with respect to |h(x, t)|. We compare the solutions to the
FEM results obtained using a fine mesh. The l2 relative error is used as the metric,
notice that here the spline solution can achieve slightly better accuracy compared to
the best PINNs results.

accuracy of the model.

PINNs The PINNs experiment follows the instruction given in [43], using a loss

function that minimizes the l2 residual of the PDE similar to eq. (3.18), two neural

networks uI(x, t; θ1) and uR(x, t; θ2) are used to learn the real and imaginary part

of the solution. We use Nf = 20000 collocation points sampled within the domain,

Ng = 50 for boundary points and Nh = 50 for initial conditions. Similar to pre-

vious examples we use MLP architectures for both approximating uI(x, t; θ1) and

uR(x, t; θ2). 8 different architectures are tested in [43] with networks of 20 and 100

neurons per layer and different depth. We train each network a total of 50K iterations

using Adam optimizer with a learning rate of 1 × 10−4 before finalizing the model

with L-BFGS.

We present some of the PINNs results as well as comparisons against the FEM

solution and the spline model results in table 3.3. Here one thing to note is that

trained PINNs models with different architectures have little difference in accuracy,

we therefore only include ones with the highest and lowest error to be displayed. As

can be observed the best spline results we obtained have a l2 relative error of 0.038,

which is lower than all the PINNs models trained, though the difference is not as big

59

as some of the other examples we presented. We also note that based on our test

results, increasing the number of nodes of the spline model can in most cases improve

accuracy. Here in our testing, the simple 128 × 96 model can still produce results

that are similar to the best PINNs model trained.

In general, we find both methods struggling to achieve high accuracy for the

problem, we attribute this to the complex loss function defined for the problem. Ad-

ditional consideration for optimization may be needed for both our spline architecture

and PINNs if higher accuracy is desired.

3.4.4 Allen-Cahn equation

In this section we discuss a one dimensional Allen-Cahn equation which is used in

[43] and is another challenging problems for PINNs to solve accurately. We consider

the following PDE

∂u(x, t)

∂t
= ϵ∆u− 2

ϵ
u((x, t)(1− u((x, t))(1− 2u((x, t)), x ∈ Ω = [0, 1], t ∈ [0, T]

(3.19)

with periodic boundary condition and initial condition given as

u(0, t) = u(1, t), t ∈ [0, T]

u(x, 0) = 1
2
(1
2
sin(x2π) + 1

2
sin(x16π)) + 1

2
, x ∈ Ω,

here we select T = 0.05 and ϵ = 0.01. Here the choice of a smaller ϵ will yield a

solution that is closer to a piecewise constant function, which increases the difficulty

of solving the problem, especially for PINNs and similar methods, we refer to [43, 4]

for more details on the Allen-Cahn equation.

FEM Solution Similar to the Schrödinger equation for the Allen-Cahn equation

an analytic solution is not readily available to us, hence we again resort to a finite

60

Figure 3.5: Solutions to the Allen-Cahn equation obtained through the finite element
method, here we use a fine grid for both space and time discretization to ensure that
the numerical solution is as accurate as possible.

element solution for accurately solving the problem and compare against solutions

obtained from the spline model or PINNs. For time discretization we consider a

semi-explicit Euler scheme. Assuming Dirichlet boundary condition we can write the

weak form of the problem as

∫ 1

0

(ut+1(x)− ut(x))v(x)dx+ 0.01 ·
∫ 1

0

⟨∇ut+1(x),∇v(x)⟩dx

+
2

0.01

∫ 1

0

ut(x)(1− ut(x))(1− 2ut(x))v(x)dx = 0,

(3.20)

for all test functions v(x) ∈ H1
0 ([0, 1]). In order to solve the problem with high

accuracy, we select the times step size dt = 1× 10−4. For the finite element mesh in

space, we use a total of 2048 cells over the given domain. We use P1 finite element

for the solution space and solve the nonlinear variational problem using a Newton

solver. Implementation is done using FEniCs. We display the solved FEM solution

in fig. 3.5.

61

Spline Approximation For using a spline model to approximate the solution to

eq. (3.19), we consider the following loss function

Loss(θ) =
1

Nf

Nf∑
i=1

hxht(
∂uθ(x

i
f , t

i
f)

∂t
− 0.01 ·∆uθ(xif , tif)

+
2

0.01
uθ(x

i
f , t

i
f)(1− uθ(x

i
f , t

i
f))(1− 2uθ(x

i
f , t

i
f)))

2

+
1

Ng

Ng∑
j=1

ht(uθ(0, t
j
g)− uθ(1, t

j
g))

2

+
1

Nh

Nh∑
k=1

hx(uθ(x
k
h, 0)−

1

2
− 1

2
(
1

2
sin(2πxkh) +

1

2
sin(16πxkh)))

2.

(3.21)

We use hx and ht to denote the step size used for generating all the collocation points,

in practice we also raise the weight on the boundary and initial condition in the loss

to 1000 for a faster and more accurate approximation of them. We use a 300 × 300

grid for sampling all points used for training and test models using different numbers

of spline nodes. We find the best result is obtained when using a 250 × 200 spline

architecture. For training we simply use L-BFGS until convergence.

We show the spline approximation results in fig. 3.6 together with both the abso-

lute and relative when compared against our obtained FEM solution. Notice for this

problem we get relatively low errors over the entire domain with the average absolute

error being 0.00037 when compared against the FEM solution over a 500× 500 grid

of the same domain.

PINNs In [43] the authors find applying PINNs for the Allen-Cahn equation defined

in eq. (3.19) can be particularly challenging. We here provide a brief overview of the

optimal PINNs setup being used, we refer to [43] for more details. The loss function

is defined similarly to eq. (3.21) where the l2 residual of the PDE is minimized,

here additional weight of 1000 is placed over the initial condition for more accurate

results. The neural network is trained with Nf = 20000 sample points (xif , t
i
f) ∈

62

Figure 3.6: Spline approximation results for the Allen-Cahn equation, we display the
predicted solution as well as the PDE residual after training in the top row. In the
bottom are plots of absolute and relative error for the problem, notice both remains
relative low over the domain.

[0, 1] × [0, 0.05], For boundary and initial condition Ng = 250 and Nh = 500 are

chosen. All sample points are collected using Latin Hypercube sampling at each

training iteration.

Our network type of choice is MLP and we test over 10 different architectures

using 20,100 or 500 neurons per layer with different numbers of layers. We omit a few

test cases from [43] in particular deep networks with 500 weights for each layer, we

find the time and memory cost to train such networks get increasingly high while the

performance actually decreases. Unlike some of the previous examples, we employ a

three-step training scheme to solve the minimization problem. 7K steps of Adam with

learning rate 1 × 10−4 is applied to only the initial loss, followed by 50K iterations

on the full loss using Adam, and lastly L-BFGS is applied for fine tuning the results.

Our testing results coincide with that of [43] in that an accurate approximation of

63

Methods architecture l2 relative error (lower is better)
Spline Model 256× 192 0.0014

PINNs

[20× 3, 1] 0.59
[20× 5, 1] 0.099
[20× 7, 1] 0.57
[100× 3, 1] 0.56
[100× 5, 1] 0.025
[100× 6, 1] 0.053
[500× 3, 1] 0.079
[500× 4, 1] 0.045

Table 3.4: Error results of both spline models and PINNs for the Allen-Cahn equation,
here the errors are measured with respect to the FEM results obtained using a fine
mesh. The l2 relative error is used as the metric, For PINNs we present the best
results for each architecture type and omit some of the results that are less accurate.

the initial and boundary condition is necessary for the PINNs model to converge to

the true solution.

We present error results for both PINNs and the spline approximation in table 3.4.

Here the errors are measured using the FEM solution. We notice that the spline

model can achieve a l2 relative error of 0.0014, which is a magnitude lower than all

the trained PINNs models. The lowest error is achieved in PINNs using a 5 layer

network with 100 neurons at each layer. Notice here that increasing the depth of

the neural network does not monotonically increase accuracy, we attribute this to the

added complexity of the optimization problem.

We notice that the computation and time cost get increasingly high when train-

ing with larger networks, Here when running on a NVIDIA Tesla T4 GPU, training

a network with architecture [500,500,500,500,1] takes around 8 hours while for the

architecture [100,100,100,100,100,1] which gives the highest accuracy, training time

is around an hour. Training the proposed spline model in this case takes less than

15 minutes with the same hardware. We don’t find the time comparison to be par-

ticularly meaningful given the differences between these 2 methods, however consider

the hyperparameter tuning requirement for PINNs, for harder problems time and

64

computation overhead remain a challenge for PINNs.

3.4.5 2D Taylor-Green Vortex Problem

In this section we consider the 2D incompressible Navier-Stokes equations, which

takes the general form

∇ · u = 0

∂u
∂t

+ (u · ∇)u = −1
ρ
∇p+ ν∇2u

(3.22)

with some boundary and initial condition. Here u = [u, v]⊤, p, ν and ρ denote the

velocity vector, pressure, kinematic viscosity, and density, respectively. Assuming the

fluid properties ρ and ν are given, our goal is to recover the velocity and pressure

[u(x, y, t), v(x, y, t), p(x, y, t)]⊤ given some domain (x, y) ∈ Ω and t ∈ [0, T].

We refer to [26, 17, 89] for more details on the Navier-Stokes equations, many

numerical methods for solving the Navier-Stokes equation have been developed such

as [25, 41]. PINNs and similar methods have also been applied and tested on such

problems in works such as those from[23, 104], we here place our focus mainly on

the work [24], we find the authors detailing of their experience applying PINNs to

solve the Navier-Stokes equation very inspiring, as they demonstrated some of the

strengths and challenges regarding PINNs.

In this section we consider a 2D Taylor-Green vortex (TGV) problem at Reynolds

number Re = 100 which is also used in [24], here the Reynolds number measures

the ratio between inertial and viscous forces. With periodic boundary conditions, the

65

problem yields a closed form analytic solution that reads

u(x, y, t) = cos(x) sin(y) exp(−2νt)

v(x, y, t) = − sin(x) cos(y) exp(−2νt)

p(x, y, t) =
ρ

4
(cos(2x) + cos(2y)) exp(−4νt)

(3.23)

with ν = 0.01 and ρ = 1 assume to be given. We define the space and time domain

to be x, y ∈ [−π, π] and t ∈ [0, 100]. Here since we mostly focus on approximation

accuracy of learning based algorithms, we omit most of the details and some properties

of the Navier-Stokes equations, we refer to [24] for a more thorough review of the

problem.

Spline Approximation Given that the solution to the TGV problem has a vector

output, we therefore use different spline approximator for each of u(x, y, t), v(x, y, t)

and p(x, y, t) respectively. For loss function, we consider the following residual terms

L1 = ∇ · uθ

L2 = ∂tuθ + uθ · ∇uθ + ∂xpθ − 0.01∇2uθ

L3 = ∂tvθ + uθ · ∇vθ + ∂xpθ − 0.01∇2vθ

L4 = uθ − u0

L5 = vθ − v0

L6 = pθ − p0

L7 = uθ − uD

L8 = vθ − vD

(3.24)

Here L1, L2, L3 represents the PDE residual within the given domain, L4, L5, L6 are

initial conditions with t = 0, and L7, L8 are boundary conditions, we assume Dirichlet

66

Figure 3.7: Spline approximation results for the 2D Taylor-Green Vortex, Similar to
[24] we choose to visualize both uθ and pθ at t = 40 over the spatial domain. we
compare the results to the analytic solution for error measurement. For both u and
p the absolute error at t = 40 is in the 10−3 range.

boundary for simplicity in our testing. we can write the loss function as

Loss(θ) =

∫
Ω

∫ T

0

(L2
1 +L2

2 +L2
3)dxdt+

∫
Ω

(L2
4 +L2

5 +L2
6)dx+

∫ T

0

∫
∂Ω

(L2
7 +L2

8)dxdt.

(3.25)

To evaluate the loss function we opt for a grid based sampling scheme and use the

midpoint rule for integration, we choose a 200× 200× 250 grid for generating all the

collocation points. regarding the spline model, we tested several different structures

and noticed insignificant differences between them, in the end we selected a model with

40×40×200 nodes in each dimension, we found this model sufficient to approximate

the solution, further increasing in number of splines increases computation cost and

does not yield better solution in our testing. For optimization, we rely on L-BFGS

until no updates to the parameters can be made.

We display some training results in fig. 3.7, similar to [24] we visualize both uθ

and pθ over a slice of the domain at t = 40 using a 500× 500 grid. We compare the

67

Methods architecture l2 error for u at t = 40 l2 error for u at t = 0
Spline model 40× 40× 200 0.022 1.84× 10−5

PINNs

[20× 3, 3] 0.031 0.009
[20× 4, 3] 0.069 0.012
[20× 5, 3] 0.054 0.008
[100× 2, 3] 0.037 0.005
[100× 4, 3] 0.016 0.003

results from [24] ≈ 0.02 ≈ 2× 10−4

Table 3.5: Error results of both spline models and PINNs when compared against the
analytic solution for the 2D Taylor-Green Vortex, here similar to [24] we show the l2
relative error of u(x, y, t) measured against the analytic solution at different times.
We also include results from [24] for a fine tuned PINNs model.

learned solution to the analytic solution in eq. (3.23), and we get the average absolute

error for u and p at 0.0035 and 0.0023 respectively. Here velocity v has almost the

same results as u. We find the errors to be relatively low given the large domain of

the problem.

PINNs Without any available PINNs model and codes to work with, we opt for

setting up our own training routine. We follow a similar idea to [43] for testing PINNs.

For loss function we consider a similar l2 residual penalization to eq. (3.25). We use

MLP neural networks with tanh as activation functions. We test the following archi-

tectures: [20,20,20,3], [20,20,20,20,3], [20,20,20,20,20,3], [100,100,3], [100,100,100,3]

and [100,100,100,100,3]. We use a two-step training scheme for optimizing our neural

networks of choice, in the first step we apply 30K iterations using Adam optimizer

with the learning rate set to 1 × 10−3, here we select Nf = 2000, Ng = 250 and

Nh = 250. We follow this up with L-BFGS for refining the network weights, at this

step we increase the batch size to Nf = 5000,Ng = 500 and Nh = 500.

In [24] a fine tuned PINNs solution is presented with state-of-the-art accuracy

for the TGV problem. In their work, the proposed network uses the MLP structure

with 3 hidden layers and 128 neurons per layer. For sampling at each iteration 8192

collocation points are used for both the PDE loss and the boundary/initial conditions.

68

The optimization runs for a total of 400K iterations using Pytorch’s Adam optimizer

with β1 = 0.9, β2 = 0.999 and ϵ = 10−8. The learning rate of choice for the problem

starts at 1× 10−3 and gradually decreases over time, we refer to [24] for more details

on the learning rate scheduler. We include the results in table 3.5 for comparison

against some of our results.

We present error results for both PINNs and the spline approximation in table 3.5.

We compare the trained solution to the analytic solution presented in eq. (3.23). Here

similar to [24] we focus on error comparison at 2 different time stamps, namely t = 0

and t = 40, where l2 errors are calculated with respect to uθ(x, y, t). Here notice that

most of our trained PINNs models are worse in terms of accuracy when compared to

the state-of-the-art results, particularly at the initial time. On the other hand, the

spline model shows very similar accuracy when measured at t = 40, and lower error

at t = 0 when compared against the state-of-the-art PINNs result. We conclude that

the spline model can achieve on-par accuracy to PINNs even on complex problems

with relatively large domains like eq. (3.22), whilst avoiding some of the difficulty for

fine tuning a neural network.

We recognize that Navier-Stokes equations represent a large class of PEDs in the

field of computational fluid dynamics, further explorations of other types of problems

are necessary for a deeper understanding of the proposed methods. However, we find

it more reasonable to leave it for future work and study.

3.4.6 Additional Numerical Schemes

Given the polynomial structure of the spline model we use, unlike with neural net-

works, additional numerical schemes can be tested and may result in improvement

in accuracy or convergence speed. We here provide a brief description of some of the

simple experiments we did, though this is not the primary focus of our work we hope

to inspire more discussion regarding the topic.

69

A Projection Method for Boundary Conditions

For learning based algorithms such as PINNs, accurately approximating the boundary

condition is in many cases crucial to the overall performance of the methods. With

PINNs this is usually done by re-weighting the loss function or modifying the training

process, as shown in the example eq. (3.19). It usually takes trial and error to find

the optimal hyperparameters.

Given the interpolation property of our proposed spline model we propose a pro-

jection method that can accurately match the boundary condition of a given PDE

while maintaining the key features of the learning algorithm. We consider a simplified

version of the general PDE in eq. (2.7) with boundary condition Bu(x) = g(x) for

x ∈ ∂Ω, the loss function can be written in integration form similar to eq. (2.9)

Loss(θ) =

∫
Ω

(Auθ(x)− f(x))2dx+

∫
∂Ω

(Buθ(x)− g(x))2dx

where θ denotes the trainable parameters. We find it possible to translate the problem

into a constraint optimization problem with the boundary condition being the equality

constraints. Here notice that the boundary condition by definition is linear in terms

of θ, given {xj
g}

Ng

j=1, the interpolation problem Buθ(xj
g) = g(xj

g) for j = 1, 2, . . . , Ng

can be solved directly or for a least square solution.

Assuming θ0 solves the minimization problem given collocation points {xj
g}

Ng

j=1

min
θ

Ng∑
j=1

(Buθ(x
j
g)− g(xj

g))
2.

Here since the operator B is linear, we can write it in matrix form as B. The solution

to the original problem has the form θ = θ0 +Nθ̂ with N representing the null space

of B. We can then reduce the original problem into a single objective optimization

70

Methods average absolute error on boundaries l2 error
Default, w = 1 0.0017 0.45
Default, w = 10 8.68× 10−5 0.024
Default, w = 100 5.02× 10−6 0.00065
With projection 9.84× 10−8 3.29× 10−5

Table 3.6: Comparison between the original learning problem and when using projec-
tion for treating boundary conditions, here we use w to denote the added weight for
the boundary loss, with higher w we emphasize optimizing the boundary loss to the
PDE loss, therefore one should expect lower error on the boundary. In this example
using the projection method allows us to achieve the highest accuracy on both the
boundaries and interior.

problem which reads

Loss(θ̂) =

Nf∑
i=1

(Auθ0+Nθ̂(x
i
f)− f(xi

f))
2.

We note that in practice this is equivalent to fixing the nodal values on the boundary

and optimizing only the spline nodes in the interior of the domain. Time dependent

problems can be treated similarly.

We use the 2D Poisson equation from eq. (3.12) to verify our idea. Notice here the

analytic solution has 0 values on all boundaries. We compare training the spline model

in its default setting and using the projection method, some results are presented

in table 3.6. Her when treating the boundary as part of the loss function we test

different weights for the boundary loss, we use the same spline model as presented in

table 3.1. We notice that in table 3.6 by increasing the boundary weight the model

achieves higher accuracy on the boundary, more importantly, the l2 error over the

entire domain also decreases as we approximate the boundary condition better. By

using the projection method we can achieve the lowest errors both on the boundary

and within the domain, showing the potential of the idea.

71

Domain Decomposition

While domain decomposition based methods have seen much development for tradi-

tional numerical PDE methods, it has also gained traction in recent years in the field

of PINNs, with ideas like [29] being widely tested. We here primarily focus on the

work [55], where a sequence-to-sequence learning scheme is proposed to address pos-

sible convergence issues originating from some complex problems. In this section we

conduct some preliminary testing of the same idea on our spline architecture. We aim

to investigate whether such an idea can result in improvement in solution accuracy.

We consider the following 1D Burger’s equation as our main example

∂u

∂t
+ u

∂u

∂x
− (0.01/π)

∂2u

∂x2
= 0, x ∈ [−1, 1], t ∈ [0, 1]

u(x, 0) = − sin(πx)

u(1, t) = u(−1, t) = 0.

(3.26)

Notice here the same problem is a commonly used benchmark problem also seen

in [92, 94, 9]. It’s worth pointing out that the problem does not yield an analytic

solution, however accurate numerical solutions to the problem is readily available

through the Chebfun library, we refer to [10, 32] for a detailed guide to the numerical

solutions.

Given a defined spline model, we consider the following loss function

Loss(θn) =

Nf∑
i=1

hxht(∂tuθn(x
i
f , ti) + uθn(x

i
f , ti)∂xuθn(x

i
f , ti)− (0.01/π)∆uθn(x

i
f , ti))

2

+

Ng∑
j=1

ht(uθn(1, t
j
g)− uθn(−1, tjg))

2 +

Nh∑
k=1

hx(uθn(x
k
h, n∆t)− u(xkh, n∆t))

2.

Note here instead of solving the problem on the entire domain, we discretize the

domain in time into N sub-intervals. We then solve the problem sequentially on each

72

Figure 3.8: Approximation results for the 1D Burgers equation, here we visualize at
2 different time t = 0.2 and t = 0.8, in both cases we can capture the function well,
notice for the problem we get highest error near the discontinuity.

sub-domain [−1, 1] × [n∆t, (n + 1)∆t] for n = 0, 1, . . . , N − 1. Notice here for each

sub-interval, we use the approximation results from the previous one as the initial

condition, thus finalizing the loss function. It’s also worth pointing out that for the

spline model, nodal values do not overlap, meaning we can write θ = [θ0, θ1, . . . , θN−1]

and only θn is optimized over each sub-domain. We train the function approximator

at each sub-domain following the same scheme as previously proposed, note here

we also correspondingly reduce the sampling for each sub-domain, the total number

of spline nodes and sample points remain the same as training directly on the full

domain.

For our experiment, we consider splitting the domain into 10 sub-domains of the

same size, before solving on them one by one in a sequential order. We use a spline

model with 192×100 nodes, we find using fewer nodes does not yield good results for

the problem. We show some of the learning results in fig. 3.8. Here we specifically

visualize the solution at t = 0.2 and t = 0.8, in both cases the solutions are captured

relatively well, we also note that we get the highest error near the ”shock”. We believe

further study into learning discontinuous functions or PDEs with viscous solutions

may be necessary for our polynomial model.

We measure the l2 relative errors of our spline model trained on the full domain

73

Methods l2 relative error
Spline model [192, 100] 0.061
Spline model [256, 192] 0.042

Spline model [192, 100], seq2seq 0.049
PINNs, Raissi et al. [92] 0.045

Table 3.7: Comparison of L2 relative error between different spline model and cor-
responding PINNs results. We notice that when using the same spline architecture,
the sequence-to-sequence learning tested can improve model accuracy especially near
the ”shock”, The overall accuracy of our model is also similar to that of PINNs.

and using the sequence-to-sequence learning technique and compare them in table 3.7.

Here we notice that using the domain decomposition scheme does reduce model error

similar to [55], in particular, we find that with domain decomposition we can capture

the ”shock” with much higher accuracy. Comparing our results to available PINNs

results from [92] also showed similar accuracy. We want to point out that in a more

recent work [9] the state-of-the-art PINNs results for the example have been further

improved, however since our main objective for the experiment is not to contest

against PINNs in accuracy, we will leave this for future work and discussion.

3.5 Summary

In our work we try to gain a better understanding of the pros and cons of PINNs

and similar machine learning methods for solving PDEs, more importantly we aim

to answer the following question, whether neural networks are necessary for the opti-

mization algorithm to be effective in low dimensional problems and how does PINNs

compare against other alternative methods. We investigate this by proposing an

alternative spline based function approximator which serves as a direct substitute

for neural networks in low dimensional problems, we also propose an optimization

algorithm that relies on exact numerical integration instead of Monte Carlo integra-

tion. Our implementation uses existing machine learning libraries and requires little

knowledge of classical numerical PDE methods.

74

We test our methods on multiple examples over different classes of PDEs and

compare the obtained solutions to some of the most accurate PINNs models available.

In all the tested examples we find that using a polynomial model we can achieve as

good or much better accuracy compared to the PINNs solutions, while at the same

time partially reducing the need for hyperparameter tuning. Convergence to global

minima can also be shown for linear PDEs, which is not always true for PINNs.

The spline structure allows for additional numerical schemes that are not possible

or easily implementable with PINNs, such as interpolation with existing data; using

projection methods to satisfy boundary conditions; or domain decomposition based

ideas. We also tested these ideas and received expected improvement in solution

accuracy. We believe further exploration of similar ideas may be worthwhile.

To briefly summarize we find through extensive experimentation that for many

low dimensional PDEs neural networks are not necessary to achieve accurate approx-

imation using an optimization based algorithm, In fact, polynomial based models can

be just as if not more effective while having much better reproducibility. We want

to use this opportunity to open up more discussion on the topic, we believe a deeper

look into similar polynomial models can yield more insights and lead to potential

developments of PINNs as well.

75

Chapter 4

Deep Learning Approach for SOC

problems and HJB Equations

In this Chapter we describe our proposed deep learning approach for solving high

dimensional (stochastic) optimal control problems and the corresponding HJB equa-

tions. The theoretical foundation of our framework is given by the PMP, FBSDE,

and Dynamic Programming as presented in the previous chapter. The key idea is

to approximate the value function Φ by a neural network and compute the control

using the feedback form. What distinguishes our framework from similar approaches

such as [44, 91] is the use of the feedback form to guide the sampling during training.

Thereby we seek to learn to explore the relevant part of the state space. This followed

by combining both the original control objective and HJB equation into the learning

problem allows us to tackle a given problem with better accuracy and efficiency. We

demonstrate our methods through various examples and comparisons.

4.1 Neural Network Approximation

The first building block of our framework is to parameterize the value function using

a neural network. Since finding an effective network architecture for any learning task

76

is both crucial and an open research topic, we treat this as a modular component.

Our framework can be used with any scalar-valued neural network that takes inputs

in Rd+1 as long as it is twice differentiable with respect to its last d inputs; this is to

allow computations of ∇Φ and ∇2Φ.

Among the networks we use in our numerical experiments is the multi-layer per-

ceptron (MLP) model used in [91, 44]. As an alternative, which also satisfies the

regularity needed, we propose the residual network also used for deterministic control

in [78], relevant work in [77] and showed satisfying results. The network is given by

Φ(y;θ) = w⊤NN (y;θNN) +
1

2
y⊤(A⊤A)y + b⊤y + c, (4.1)

with trainable weights θ = (w,θNN ,A, b, c). Assuming the state space has di-

mension d, here the inputs y = (s, z) ∈ Rd+1 correspond to time-space variables,

NN (y;θNN) : Rd+1 → Rm is a neural network, and θ contains the trainable weights:

w ∈ Rm, θNN ∈ Rp , A ∈ Rγ×(d+1), b ∈ Rd+1, c∈R, where rank γ=min(10, d + 1)

limits the number of parameters in A⊤A. Here, A, b, and c model quadratic poten-

tials, that is, linear dynamics; NN models nonlinear dynamics. For certain experi-

ments, we may choose to omit the quadratic potential termsA, b and c for comparison

or simplicity reasons.

In all of our experiments, for NN , we either use a MLP from [42], which can be

defined with

a0 = act(K0y + b0)

ai+1 = act(K i+1ai + bi+1), 0 ≤ i ≤ M− 2

NN (y;θNN) = act(KMaM−1 + bM),

(4.2)

77

or a residual neural network (ResNet), presented in [46]

a0 = act(K0y + b0)

ai+1 = ai + act(K i+1ai + bi+1), 0 ≤ i ≤ M− 2

NN (y;θNN) = aM−1 + act(KMaM−1 + bM),

(4.3)

with neural network weights θNN=(K0, . . . ,KM , b0, . . . , bM) where bi ∈ Rm ∀i,

K0 ∈ Rm×(d+1), and {K1, . . . ,KM} ∈ Rm×m with M being the depth of the net-

work. The choice of the element-wise nonlinearity act(·) is discussed in the respective

experiments.

As a brief summary, our learning problem has little restriction on neural network

architectures, as such, one can experiment with any other network architecture as long

as the selected function approximators have the expressiveness to learn the desired

value function. In our test cases both neural network models showed sufficiently

accurate convergence results.

4.2 Formulation of the Training Problem

In this section we describe our formulation of the learning problem, we aim to solve

both the SOC problem as well as its corresponding HJB equation at the same time.

Ideally, we would choose θ such that Φ(s, z;θ) is equal to the value function of the

control problem globally, that is, for all (s, z) ∈ [t, T]×Rd. Since this is known to be

cursed by the dimensionality for reasonable problem sizes, we resort to a semi-global

approach, which enforces this property at randomly sampled points in the space-time

domain. Selecting these sampled regions will be of key importance.

To generate samples, we first obtain initial states x ∼ ρ from some (possibly Dirac)

distribution ρ and then use an Euler Maruyama scheme with N + 1 equidistant time

points s0, . . . , sN and step size ds = (T − t)/N . This yields a state trajectory starting

78

at z0 = x via

zi+1 = zi + f(si, zi,ui)ds+ σ(si, zi)dW i, i = 0, . . . , N − 1 (4.4)

corresponding to eq. (2.11) where dW i ∼ N (0, ds · Id), and ui = u∗
t,x(si, zi) is the

optimal control obtained from the feedback, that is, form eq. (2.16)

u∗
i ∈ argmax

u∈U
H
(
si, zi,−∇Φ(si, zi;θ),−σ(si, zi)

⊤∇2Φ(si, zi;θ),u
)
.

A few comments are in place. First, it is important to note that due to the feed-

back form, the sampled trajectories depend on the parameters of the value function,

different parametrizations of the value function will yield different forward trajecto-

ries. Second, the addition of this drift term, motivated by control theory, is one of

the key differences to neural network solvers for the more general class of semi-linear

elliptic PDEs as presented in [44, 91]. Third, another way to view our choice of the

drift term is by the fact that for σ → 0, the trajectories defined above approximate the

characteristic curves of the non-viscous HJB equation corresponding to the determin-

istic counterpart of the control problem, thus making our SOC approach consistent

with that for deterministic OC in [78].

It is however worth pointing out some key differences compared to the similar

method proposed for deterministic OC problems in [78]. Due to the random noise

introduced even for a fixed initial state, the optimal path may vary at each step of

time integration. Unlike in the deterministic case, in order to avoid being stuck in less

desirable local minima, repeated re-sampling and parameter updating will be needed

to properly optimize the model, this will generally result in more iteration and time

for training.

To further simplify the notations, we omit the subscript z in ∇zΦ and ∇2
zΦ for

the rest of the paper. Furthermore, we collect the states, control, and noise along the

79

discrete trajectories in eq. (4.4) column-wise in the matrices

Z ∈ Rd×N , U ∈ Rk×N , dW ∈ Rd×N .

To learn the parameters of the neural networks in an unsupervised way (that is,

assuming neither analytic values of Φ nor optimal control trajectories), we approxi-

mately solve the minimization problem

min
θ

Ex∼ρ

{
EZ,U ,dW|x {β1P p

BSDE(Z,U ,dW) + β2P
p
HJB(Z) + β3J(Z,U)

+β4|G(zN)− Φ(sN , zN ;θ)|p + β5|∇G(zN)−∇Φ(sN , zN ;θ)|p}} ,
(4.5)

where the terms in the objective function consist of penalty functions for violations of

the BSDE system and the HJB equation, the control objective, and penalty terms for

the terminal condition, respectively, and are defined below. The exponent p ∈ {1, 2}

allows one to choose between different norms for the loss function. In our numerical

examples, we notice that using p = 1 favors the minimization of the control objective

and therefore gives much faster convergence, on the other hand choosing p = 2 em-

phasizes minimization of the BSDE and HJB loss, which can have higher accuracy for

approximating the value function but converges much slower. The relative influence

of each term is controlled by the components of β ∈ R5
+ and is of high importance in

hyperparameter tuning. Different choices of β allow us to experiment with different

learning approaches; for example, setting β1 = β4 = β5 = 1 and β2 = β3 = 0 provides

the same loss function as in [91] while β1 = 0 and βi > 0, i ∈ {2, 3, 4, 5} gives the

loss function used for deterministic OC problems in [78].

We penalize the violation of the BSDE eq. (2.24) via

PBSDE(Z,U ,dW) =
N−1∑
i=0

|Φi+1(θ)− Φi(θ) + L(si, zi,ui)ds−∇Φi(θ)
⊤σ(si, zi)dW i|

(4.6)

80

where we use the abbreviations Φi(θ) := Φ(si, zi;θ) and ∇Φi(θ) := ∇Φ(si, zi;θ).

Similarly, the HJB penalty term reads

PHJB(Z) = ds
N∑
i=1

|H(si, zi,−∇Φi(θ),−σ(si, zi)
⊤∇2Φi(θ))− ∂sΦi(θ)|, (4.7)

where ∇2Φi(θ) := ∇2Φ(si, zi; θ), ∂sΦi(θ) := ∂sΦ(si, zi; θ). Finally, we approximate

the objective functional via

J(Z,U) = G(zN) + ds
N∑
i=1

L(si, zi,ui).

In principle, any stochastic approximation approach can be used to approximately

solve the above optimization problem. Here, we use Adam [54] and sample a mini-

batch of trajectories originating in i.i.d. samples from ρ at each optimization step.

We find this to be the appropriate section to discuss more details of our proposed

approach. Our method shares much similarity with the PINNs approach to solving

the same HJB equation in both the definition of the loss function and a sample based

optimization scheme. The differences lie in two main ways, first our inclusion of the

control objective is unique to SOC problems and greatly changes the optimization

process compared to minimizing only the HJB loss. Unlike in PINNs where a random

sampling scheme over the entire space-time domain is usually used for batch min-

imization, our PMP inspired sampling scheme focuses only on a small yet relevant

portion of the state-time space where the optimal solution lies, this difference can be

amplified as the dimension of the problem grows.

81

4.3 Numerical Experiments for SOC Problems and

HJB Equations

We test the efficacy of our proposed algorithm on several different (Stochastic) OC

problems. First, we introduce a two-dimensional trajectory planning problem to vi-

sualize the difference between purely random exploration and our proposed sampling

scheme. To illustrate the accuracy of the learned value function, we compare it with

the value function obtained by solving the corresponding HJB PDE using a finite

element method (FEM). The goal of this experiment is to compare the accuracy of

the neural network and FEM approximation, and not to compete, with the FEM.

Secondly, we introduce a 100-dimensional benchmark problem and compare our ap-

proach to those in [35, 44] through the benchmark problem. For the original version

of this problem, our method shows faster initial convergence and time-to-solution

with comparable accuracy. We modify the terminal cost of this problem to further

highlight the importance of the feedback form in the sampling, while our method can

still recover a reasonable solution to the modified problem, approaches without the

feedback form can not. Lastly, we also test our method on a 12-dimensional problem

with nonlinear dynamics, comparing with solution obtained from the deterministic

version of the problem in [78], showing that our method generates relatively accurate

solutions under complex dynamics.

4.3.1 Implementation Details

We implement and test our proposed approach in two software environments. To

obtain a direct comparison with [91] we modify the FBSNN code accompanying the

paper. To this end, we created a publicly available fork at https://github.com/

EmoryMLIP/FBSNNs. Our two main modifications are adding the proposed drift to

the forward dynamics and adding the control objective in the training loss. Other

https://github.com/EmoryMLIP/FBSNNs
https://github.com/EmoryMLIP/FBSNNs

82

parameters, including the choice of neural network model, are kept unchanged.

In order to further simplify the experimentation, we also implement our own

PyTorch code available at https://github.com/EmoryMLIP/NeuralSOC. Our imple-

mentation contains all loss terms in eq. (4.5). We implement both sampling tech-

niques: pure random walk and the proposed one informed by PMP. This facilitates

comparisons of our approach with other available methods and simplifies developing

new examples.

We tested most of our examples using either Intel Xeon E5-4627 CPU or Nvidia

P100 GPU.

4.3.2 2D Trajectory Planning Problem

To visualize the behavior of our PMP-based sampling approach, we consider a two-

dimensional test problem.

The problem consists of planning an optimal trajectory from the initial state that

follows a Gaussian distribution x ∼ ρ = N ((−1.5,−1.5)⊤, 0.4 · I2) to the target

xtarget = (1.5, 1.5)⊤. To make the problem more interesting, a hill is placed at the

origin, denoted by Q(z), which adds height-dependent cost for traveling around that

region. In our experiments, Q(z) is defined by a two-dimensional Gaussian density

with mean zero and covariance of 0.4 · I2 scaled by a factor of 50.

The dynamics for the problem read

f(s, z,u) = u and σ =

 0.2 −0.4

−0.4 0.2

 . (4.8)

The choice of non-scalar σ adds to the complexity of the problem by changing the

behavior of the standard Brownian motion, see fig. 4.1.

https://github.com/EmoryMLIP/NeuralSOC

83

Figure 4.1: Action of σ in (4.8) on standard Gaussian distribution (Left) warps it
diagonally (Right). This would affect the solution of the problem.

The running cost and terminal cost of the problem are given, respectively, by

L(s, z,u) =
1

2
∥u∥2 +Q(z) and G(z) = 50 · ∥z − xtarget∥2. (4.9)

Our objective is to find an optimal path between each given initial state and the

target state, the traveling agent should also balance between taking the shortest path

and avoiding the obstacle.

The corresponding HJB equation can be derived as

∂sΦ(s, z) +
1

2
tr(σσ⊤∇2Φ(s, z))− 1

2
∥∇Φ(s, z)∥2 +Q(z) = 0. (4.10a)

with terminal condition

Φ(T,z) = G(z). (4.10b)

Finite Element Method

Since it is not obvious how to solve the HJB equation eq. (4.10) analytically, we resort

to approximately solving it using a finite element method (FEM) to obtain a baseline

for this problem.

The HJB equation is defined over the entire state space without an explicit bound-

84

ary condition, for simplicity we approximate the value function by solving the HJB

PDE eq. (4.10) on the restricted domain Ω = [−3, 3] × [−3, 3] with homogeneous

Neumann boundary conditions,

∂Φ

∂n̂
(s, z) = 0, on ∂Ω, ∀s < T,

where n̂ denotes the unit normal vector. Since the diffusion coefficient σ is indepen-

dent of time and space, tr(σσ⊤∇2Φ(s, z)) = div(σσ⊤∇Φ(s, z)), which we can then

use to derive a weak form of the PDE. Using the implicit Euler discretization in time

on a partition of [0, T] into N sub-intervals with uniform step size, ds, yields

Φn+1 − Φn

ds
+

1

2
div(σσ⊤∇Φn)−

1

2
∥∇Φn∥2 +Q = 0, n = N,N − 1, . . . , 0,

where Φn denotes the approximated solution Φ(tn, ·), at tn = n ·ds and ΦN+1 = G(·).

Then, using Green’s formula, the weak problem at the n-th time step consists of

finding Φn ∈ H1(Ω) such that

∫
Ω

(Φn+1 − Φn)vdz − ds
1

2

∫
Ω

σσ⊤∇Φn · ∇vdz + ds

∫
Ω

(
Q− 1

2
∥∇Φn)∥2

)
vdz = 0,

for all test functions v ∈ H1(Ω). Here, H1(Ω) denotes the Hilbert Sobolev space

defined by H1(Ω) = {v ∈ L2(Ω)|∇v ∈ L2(Ω)}.

To solve the problem in weak form numerically we use FEniCS [60], we create a

triangular mesh for Ω and use P1 Lagrange finite elements to discretize Φ in space.

We discretize Ω using 150 mesh points in each dimension, summing up to a total

of 22,500 degrees of freedom, and use the step size of ds = 0.001 in time. At each

time step, we use Newton’s method to solve for Φn, with relative error and absolute

error tolerance for the solver set to 10−6 and 10−10, respectively. We denote the FEM

solution by ΦFEM.

85

Figure 4.2: Results of the two-dimensional test problem. Left: Value function ap-
proximation ΦFEM(0, ·). Middle: Quiver plot of optimal controls at s = 0. Right:
Trajectories generated from randomly chosen initial states.

In fig. 4.2 we plot the solution ΦFEM as well as the optimal control policy at initial

time s = 0, which we obtained via the feedback form. We also present trajectory

examples originating from some randomly chosen initial states following the optimal

policy. As expected, the trajectories travel from the initial points to the target while

avoiding the obstacle in the center of the domain. It’s also worth noting that given

the relatively large noise we used for the example, the resulting trajectories can vary

greatly despite sharing the same initial states.

In table 4.2, we evaluate the control objective, J , for some fixed initial state.

We notice that the estimated value matches with ΦFEM(0), suggesting that the FEM

solution is an accurate approximation of the true Φ.

Another thing we want to point out is that FEM is sufficient and suitable for the

2D parabolic equation we have here since a variational form is explicitly available.

However for problems without an easily accessible variational form, FEM may not

be an ideal choice and one may want to resort to methods mentioned in [19, 57] for

baseline solutions.

86

Neural Network Approach

For the problem defined in eq. (4.8) and eq. (4.9), the forward SDE eq. (4.4) simplifies

to

zi+1 = zi −∇Φ(si, zi)ds+ σdW i, (4.11)

with feedback form which reads

u = −∇Φ(s, z). (4.12)

Following our proposed method in eq. (4.1), we approximate the value function

using a three-layer residual neural network with 32 neurons per layer. We do not

include the quadratic terms in the network for this experiment since we find the

simpler structure was already sufficient for solving this problem. As a result, the

model overall consists of 1217 trainable parameters. We choose tanh as the activation

function for all but the final layer of the network, the final layer does not have an

activation function.

For penalty parameters, we select β = (1.0.1.0, 1.0, 1.0, 0.0), that is, we enable

both the penalty terms, PBSDE and PHJB in eq. (4.5) along with the control objective.

To approximately solve eq. (4.5) we train a total of 6,000 steps with a batch size of

64, we use Adam optimizer for each update with no additional weight decay. For

learning rate scheduling, we start with a learning rate of 0.01 and divide it by 10

every 1800 iterations. The average cost per iteration is about 0.22s when running on

a NVIDIA P100 GPU.

Note that for the chosen σ in eq. (4.8) which is non-scalar, full Hessian information

of the value function, ∇2Φ, is required to calculate PHJB. To this end, though it is

possible to obtain the full Hessian using automatic differentiation, we instead use the

efficient implementation in the package ”hessQuik” [75]. We will refer to the neural

network approximated solution as ΦNN in the remainder of the section. We also notice

87

(a) Training samples with pure random walk as FSDE as also used in [44] and [91].

(b) Training samples with PMP-based drift term.

Figure 4.3: We visualize training samples of a pure random walk sampler (top row)
and our proposed PMP-based sampler (bottom row) for the two-dimensional test
problem. At six time points (left to right), we visualize the sampled states as two-
dimensional histograms. As expected, the pure random walk explores the area around
the initial state in all (even suboptimal) directions, while the proposed approach learns
to sample around approximately optimal trajectories.

that sampling the initial states from a slightly larger area than what is given during

training often helps the robustness of the learned model.

Given the stochastic nature of the problem and the random initialization of neural

network weights, each training sequence can produce a slightly different model. To

account for this, we repeat the training ten times and obtain neural network approx-

imations of the value functions Φ
(j)
NN, where 1 ≤ j ≤ 10. We compare the resulting 10

models to the FEM solution in the following subsections.

To gain more insight into the sampling, we store all states visited during training

and plot them as two-dimensional histograms for different time points (left to right)

in fig. 4.3. We compare our proposed PMP-based sampling (fig. 4.3b) to the purely

noise driven dynamics (fig. 4.3a), that is, without the drift term altogether, as used

in works such as [44, 91]. As expected, the use of purely noisy dynamics leads to the

sampling of points only around the initial states in all (even sub-optimal) directions

with almost no samples close to the target. On the other hand, with the use of the

88

drift term, the sampled states visit the paths between the initial and target states.

Another way to interpret the histogram plots in fig. 4.3 is by observing the semi-

global nature of our neural network approach for SOC problems. Since the loss

function in eq. (4.5) only minimizes the HJB and BSDE losses in a neighborhood

of points sampled using the forward SDE, one would expect the trained model to

be more reliable in regions that are frequently visited. On the other hand, with the

purely noise driven dynamics models are only optimized near the initial sampling

region, one should not expect the model to have high accuracy beyond that region,

especially near the target.

Comparison

In this subsection, we compare the neural network models Φ
(1)
NN, . . . ,Φ

(10)
NN and ΦFEM

obtained from previous subsections along the approximately optimal trajectories.

Specifically, we randomly sample initial states from ρ and simulate the trajectories

using the trained models. We believe that this approach enables a meaningful com-

parison since the training procedure focuses on those parts of the state space visited

by the trajectories and hence the neural networks approximate the value function

semi-globally. It is in our opinion important to focus on the relevant space when

comparing accuracy of solutions.

For each trained model, we record all the sampled states visited at times s ∈

{0, 0.5, 0.9} while following the corresponding learned policy. We then compare the

learned value functions Φj
NN with the reference solution ΦFEM at all these points.

In fig. 4.4, we plot the comparison for three different times s ∈ {0, 0.5, 0.9} along

the rows. The first, second, and fourth columns represent neural network models

Φ
(1)
NN, Φ

(2
NN), and ΦFEM at the sampled points, respectively. We observe that value

function estimates look similar to the finite element reference solution. The third

column shows the average results of the ten learned value functions obtained from

89

Φ1
NN

s
=
0

s
=
0.
5

s
=
0.
9

Φ2
NN ΦNN mean ΦFEM errors mean

Figure 4.4: Comparison between learned value function (First 3 columns, including
both individual model and model average) and the FEM solution (fourth column) at
different time shots s = 0, 0.5 and 0.9. From the errors (fifth column), the neural
network solution matches the FEM solution closely over the sampled region.

Time snapshot s = 0 s = 0.5 s = 0.9

AE (mean ± std) 0.31± 0.17 0.47± 0.44 0.17± 0.18

RE (mean ± std) 0.02± 0.01 0.06± 0.06 0.15± 0.17

Table 4.1: Average absolute and relative error between Φ
(1)
NN, . . . ,Φ

(10)
NN and ΦFEM

across all sampled points at different time steps.

the ten training sequences. Lastly, the last column displays the average absolute

mean errors between the learned value functions and ΦFEM.

In table 4.1, we compare mean of the absolute and relative errors between ΦFEM

and Φ
(j)
NN, 1 ≤ j ≤ 10, across the sampled points shown in fig. 4.4 for all ten trained

models, computed via

AE(s) =
1

nsamples × nmodels

nsamples∑
i=1

nmodels∑
j=1

∣∣∣Φ(j)
NN(s, zi)− ΦFEM(s, zi)

∣∣∣ (4.13)

90

Initial state ΦFEM(0) ΦNN(0) JFEM JNN

xinit = (−1.5,−1.5)⊤ 14.67 14.48 14.68 15.33

Table 4.2: Discrepancy between the value function Φ and the control objective J at
some initial state.

and

RE(s) =
1

nsamples × nmodels

nsamples∑
i=1

nmodels∑
j=1

∣∣∣Φ(j)
NN(s, zi)− ΦFEM(s, zi)

∣∣∣
|ΦFEM(s, zi)|

. (4.14)

Our observations indicate that the relative error is smallest at the initial time and

increases over time, while the average absolute error remains fairly constant across all

states and time intervals. We believe one possible explanation for such difference is

the fact that the true value function decreases as time increases, the relative errors are

therefore amplified given how they are calculated. Inclusion of the control objective,

J , in the training loss function may also play a role in the errors observed, as the

optimization problem has multiple objectives. Furthermore, the errors across all

the trained models display a relatively low standard deviation, indicating that our

proposed training scheme is robust to random initialization.

In table 4.2, we compare the value function approximation for one of the trained

models, Φ
(1)
NN, to the value of the control objective, J(−∇ΦNN), at the initial state

x = (−1.5,−1.5)⊤ and time t = 0. Since the system dynamics are stochastic, we

generate 12, 000 trajectories starting from x using the learned feedback control to

calculate the control objective J for each trajectory. We then use the sample average

as a proxy for the expected value. We use a finer step size of ds = 0.005 than the

one used in training to get a more accurate approximation of J . We observe that the

discrepancy between the value estimate and the actual cost is almost negligible for the

FEM solution, which is to be expected. For the neural network approximation, the

value estimate is about 4% smaller than the actual control objective, which indicates

91

that the value estimates can be overly optimistic. We consider this to be mostly

satisfactory as ΦNN still approximates J fairly well, despite the fact that in our training

problem we do not explicitly penalize the discrepancy between ΦNN(0) and J .

On the hardware used for our experiments, both approaches showed comparable

time-to-solution. The neural network training took approximately 20 minutes using

the GPU, while the FEM solution was obtained in roughly one hour using the CPU.

However, the FEM approach requires a computational mesh, making it infeasible for

d > 4, which is the primary use case for our proposed method.

Impact of Penalty Parameter Selection

In this section we briefly describe the importance of selecting appropriate hyperpa-

rameters, namely the β. Though solving both the SOC problem and the HJB equation

accurately gives the same value function, in practice solving the multi-objective min-

imization problem can be very hard and carefully choosing hyperparameters is often

needed for ideal results. From our observation only using the control objective and

excluding both HJB and BSDE penalties from the loss function can lead to a fast

convergence, however the solution will be suboptimal with the value function being

incorrect. On the other hand only minimizing the HJB/BSDE loss will often result

in the value function being minimized in a wrong solution region, rendering the final

solution obsolete.

4.3.3 100-dimensional example

In this section we consider a 100-dimensional benchmark SOC problem also used in

[35, 44] with fixed initial state x = (0, 0, . . . , 0)⊤ ∈ R100 corresponding to time t = 0.

The drift and diffusion of the system are given by

f(s, z,u) = 2u and σ =
√
2,

92

respectively. The terminal and Lagrangian cost for the problem are

G(z) = ln

(
1 + ∥z∥2

2

)
, and L(s, z,u) = ∥u∥2, (4.15)

respectively. We can compute the Hamiltonian eq. (2.14) of the system as

H(s, z,p,M) = sup
u∈U

{σ
2
tr (M) + p · f(s, z,u)− L(s, z,u)

}
= sup

u∈U

{
1√
2
tr (M) + p · 2u− ∥u∥2

}
.

Using the first-order necessary condition of the Hamiltonian we get

0 = 2u− 2p =⇒ u = p,

and using this closed form for u, the Hamiltonian can be then simplified to

H(s, z,p,M) =
1√
2
tr (M) + ∥p∥2.

Hence, the HJB equation satisfied by the value function, Φ(·, ·), reads

∂

∂s
Φ(s, z) + ∆Φ(s, z)− ∥∇Φ(s, z)∥2 = 0, (4.16)

with terminal condition

Φ(T,z) = G(z).

For this particular problem, an explicit solution can be obtained through the Cole-

Hopf transformation, see [21, 30] and has the form

Φ(s, z) = − ln
(
E
(
exp

(
−G

(
z +

√
2 dW (T − s)

))))
, (4.17)

which we can use to test the performance of our method.

93

Finally, we note that the forward SDE eq. (4.4) we propose to use for sampling

the state space simplifies to

zi+1 = zi − 2∇zΦ(si, zi)ds+
√
2dW i. (4.18)

The importance of sampling

To demonstrate the impact of using the feedback form to sample the state space, as

well as our proposed loss function, we conduct a direct comparison to the method

proposed in [91] on the benchmark problem.

For approximating the value function, we use the same neural network model as

described in [91], which is given by a five-layer feed-forward neural network with 256

neurons per hidden layer to approximate the solution Φ(s, z). We partition the time

interval [0, 1] using 50 uniformly spaced points.

For penalty terms, we use the same penalty parameters as in the original code

with added control objective for fair comparison, that is, β = (1, 0, 20, 1, 1). We

use the Adam optimizer [54] to update the parameters of the network with a batch

size of 64 using a total of 50,000 iterations. This results in the average cost per 100

iterations being around 27s using the CPU. For the following experiments, notice the

main differences between our approach and [91] lie in two ways, first is the use of a

PMP driven dynamics versus a pure noise driven one, second is the inclusion of the

control objective alongside the HJB penalty in the loss function.

Method
20k iterations
RE RE0

50k iterations
RE RE0

FBSNN 0.54% 0.12% 0.39% 0.045%

Ours 0.48% 0.0083% 0.39% 0.012%

Table 4.3: Relative errors for eq. (4.16) obtained using our method and method in
[91]

Given the explicit solution from eq. (4.17) we can evaluate the accurate value func-

94

0 0.2 0.4 0.6 0.8 1

4.4

4.5

4.6

4.7

4.8

0 0.2 0.4 0.6 0.8 1
4.3

4.4

4.5

4.6

4.7

0 0.2 0.4 0.6 0.8 1

4.4

4.6

4.8

0 0.2 0.4 0.6 0.8 1

4.4

4.6

4.8

t

Y
t
=
u
(t
,X

t)

Using 20k iterations

Using 50k iterations
Learned solution Exact solution FBSNN solution

Figure 4.5: Solution to eq. (4.16) obtained using our method (left column) and the
method in [91] (right column)

tion given arbitrary time and state, for our experiments the true value function Φ(s, z)

is calculated as the expected value over 10K random samples following eq. (4.17). In

Figure 4.5 we plot the exact solution (black-dashed line) eq. (4.17), the learned so-

lution using our approach (blue-solid line) and the solution learned using FBSNNs

(red-solid line) [91] along five random trajectories. In the top row, we present the

results obtained after training the networks for 20,000 iterations with a learning rate

of 10−3 and the bottom row presents the results after training the networks for 20K

and 30K iterations with learning rates 10−3 and 10−4, respectively. From the figure it

95

is clear that our approach approximates the value function better, especially in early

iterations, as compared to the FBSNNs which has observable higher errors.

In table 4.3, we also compare the learned solutions to the exact solution Φ in

eq. (4.17) by computing the average relative errors,

RE =
∥Φ(·, ·;θ)− Φ(·, ·)∥2

∥Φ∥2
, RE0 =

|Φ(0, z(0);θ)− Φ(0, z(0))|
|Φ(0, z(0))|

,

for ten random trajectories. Our method attains lower errors, especially for the initial

values and at the earlier iterations. We attribute this to the inclusion of the control

objective into the loss function, similar to the 2D example, we observe that having

the control objective as part of the minimization problem can allow the model to

converge much faster.

Initial states from a distribution

We use this section to demonstrate the versatility of our method beyond fixed initial

states, especially in addressing input states following a given distribution. Specifically,

given the same problem as presented in previous sections, instead of using a fixed

initial state, we sample x from a distribution ρ = N (0, 0.5 · I100).

We repeat the training process with 20k iterations, maintaining most of the same

hyperparameters, but increasing the batch size to 512 from 64 and choosing β3 = 50.

In fig. 4.6, we present the mean and variance of the relative errors of the errors relative

to eq. (4.17) in the learned value function for ten random trajectories. As expected to

the much higher complexity of the modified problem, the maximum relative error over

the time interval increased to around 1.5%, which is slightly larger than in the original

problem. Nevertheless given the results we can still conclude that our method is valid

when given multiple initial states, though additional effort in training is needed for

higher accuracy.

96

Figure 4.6: Mean and variance of the errors relative to eq. (4.17) in the learned
value function for ten random trajectories obtained by sampling initial states from a
distribution using our method after 20k iteration.

Shifted target

In the example above, one thing to note is that the minimizer of the terminal function

coincides with the initial state at x = (0, 0, . . . , 0)⊤. Therefore, even a random walk

without any drift (which is used in [91, 44]) will sample around the optimal terminal

state similar to the demonstration in fig. 4.3a, which is critical to accurately approxi-

mate the value function. This also means that after training using our approach, the

drift term in the sampler is relatively small and that the above experiment does not

fully show the advantages of our method.

To shed more light on the importance of sampling, we modify the terminal cost

to

G(z) = 1000 ln

(
1 + ∥z − ztarget∥2

2

)
,

with ztarget = (3, 3, . . . , 3)T , so that the target for the state variable z at final time T

no longer coincides with the initial state. Similar to the two-dimensional test problem

97

0 1 2 3

0

1

2

3

dim 1

d
im

2

generated trajectories

Figure 4.7: Computational results for the modified 100-dimensional benchmark prob-
lem in section 4.3.3. Left: Control objective for both methods given the same initial
state, the blue line represents results using FBSNNs in [91], and the orange line
denotes our method. Right: Trajectory examples generated using learned value func-
tions on two randomly selected dimensions. The orange line represents our method
and blue line FBSNNs.

in section 4.3.2, solving the modified problem now requires sampling states near the

target and we expect to benefit from the added drift term in our PMP inspired forward

dynamics.

We compare our method to FBSNNs on the modified problem while keeping the

same network structure and most of the hyper-parameters. We use a smaller σ = 2
√
2

5

to improve training speed. We evaluate the performance of the methods using the

objective functional J defined in eq. (2.12) at the control obtained from the feedback

form via the respective value function approximations. For this experiment, we use

a GPU to train and the results of this comparison are shown in fig. 4.7.

To reduce the effect of the Brownian motion, we run the experiments for each

method on the same problem five times and plot the average values corresponding

to training iterations. Furthermore, since the primary goal for this example is to

explore the difference between sampling strategies, we select much higher weights

for the control objective such that we have faster initial convergence for the control

variable.

As can be seen in fig. 4.7 (left), our method not only yields faster initial conver-

98

gence but also achieves a considerably lower control objective. This indicates that

the controls obtained from our approach are more effective, that is, they are closer

to optimal. It is also worth pointing out that due to the high terminal cost we as-

signed when designing the problem, it takes very few iterations to locate the correct

state-time region that the optimal solution resides in. Since FBSNNs use a Brownian

motion with no drift, the sampling is unlikely to discover the target. Consequently,

the generated trajectories in fig. 4.7 (right) from our method approximately reach the

target, while the trajectories obtained from the FBSNN method stay closer to the

initial state. Do note our primary goal for the added experiment is to highlight the

importance of PMP dynamics in exploring the solution space, additional hyperpa-

rameter tuning and training will be needed if one aims to solve the underlying HJB

equation accurately as well.

4.3.4 12D Quadcopter Path Finding Problem with Nonlinear

Dynamics

In this section we introduce a quadcopter path finding problem with stochastic and

nonlinear dynamics, a similar deterministic version of the problem is also used in

[64, 78]. Our goal for adding the example is to test our proposed method’s ability to

deal with nonlinear dynamics. The problem has a state dimension of 12 and 4 control

variables. We choose values x = [−1.5,−1.5,−1.5, 0, . . . , 0]⊤ ∈ R12 and xtarget =

[2, 2, 2, 0, . . . , 0]⊤ ∈ R12, we assume the initial states follows a Gaussian distribution

centered at x. Given the state variable z = [z1, z2, z3, z4, z5, z6, z7, z8, z9, z10, z11, z12]
⊤

99

the dynamics read

f(s, z,u) =

z7

z8

z9

z10

z11

z12

u1
m
f7(z4, z5, z6) =

u1
m

(sin(z4) sin(z6) + cos(z4) sin(z5) cos(z6))

u1
m
f8(z4, z5, z6) =

u1
m

(− cos(z4) sin(z6) + sin(z4) sin(z5) cos(z6))

u1
m
f9(z5, z6)− g =

u1
m

(cos(z5) cos(z6))− g

u2

u3

u4

Here z1, z2, . . . , z6 represents the spacial and angular position of the quadcopter [40].

The controls of the problem are u = [u1, u2, u3, u4]
⊤ ∈ R4. We assume that both the

mass of the quadcopter m = 1 and gravity g = 9.81 are given and remain constant.

We select the diffusion coefficient σ = 0.2 for the problem. The control objective

encompasses the energy term

L(u(s, z)) = 2 + ∥u(s, z)∥2 = 2 + u21 + u22 + u23 + u24,

and the terminal cost

G(z(T)) = 2500 · ∥z(T)− xtarget∥2.

100

The Hamiltonian of the system has the form

H(s, z,p,M ,u) =
1

2
tr (σM) + p · f(s, z,u)− L(s, z,u)

=
1

2
tr (σM) + p1z7 + p2z8 + p3z9 + p4z10 + p5z11 + p6z12 + p7

u1
m
f7

+ p8
u1
m
f8 + p9

u1
m
f9 − p9g + p10u2 + p11u3 + p12u4

given the adjoint variable p and M . By taking the first order optimality condition of

the generalized Hamiltonian and using the results from theorem 2.4.2, we can derive

the feedback form of the controls u in terms of the value function Φ(·) as

u1 =
−1

2m

(
f7
∂Φ

∂z7
+ f8

∂Φ

∂z8
+ f9

∂Φ

∂z9

)
,

u2 = −1

2

∂Φ

∂z10
, u3 = −1

2

∂Φ

∂z11
, u4 = −1

2

∂Φ

∂z12
.

The HJB equation and BSDE can be derived using the feedback form accordingly

under section 2.4.3.

Neural Network Approach for the SOC Problem

We test our proposed approach on the SOC quadcopter problem, for our model we

use the network architecture in eq. (4.1) featuring two layers and 128 neurons per

layer for the ResNet, we also enable the quadratic terms as described in eq. (4.1). For

training we select penalty terms β = (0.1, 0.1, 1.0, 0.1, 0.1). We train a total of 6000

iterations using Adam optimizer with a batch size of 128. For learning rate scheduling

we start with a learning rate of 0.01 and have it halved every 1600 iterations. Since

the dynamics in this example are more complex, we discretize the SDE with 100

equidistant steps between t = 0 and T = 1 to enhance accuracy. By doing so, on

average, every training iteration took around 2 seconds on the GPU.

We visualize the training results by showing some flight paths starting from ran-

domly generated initial states following the learned policy. In fig. 4.8 we notice that

101

Figure 4.8: Flight path examples using the learned controller. The target is depicted
by a red cross.

all trajectories converge to the target regardless of the initial states, indicating our

controller is successful in solving the path finding problem.

Comparison and remarks against the Deterministic OC solution

One of the main challenges for the quadcopter problem is the lack of a reference

solution, as described in section 2.4.2, SOC problems with nonlinear dynamics usually

do not admit analytic solutions. Since the problem has a state dimension of 12 we

are also not aware of any numerical methods for either local or global solutions.

To account for this we opt for a simple comparison against a neural network model

trained on the deterministic version of the same problem. Assuming the dynamics

insection 4.3.4 remain the same while the noise σ is reduced to 0. The problem then

reduces to that from [78]. Notice in this case changing the problem from stochastic

to deterministic does not affect the feedback form, however the Hamiltonian and the

HJB equation will lose the diffusion term, the BSDE system will also no longer be

necessary.

We have solved the deterministic version of the problem in [78] where the ex-

102

J at z0 evaluated at σ = 0.2 evaluated at σ = 0
Deterministic Model 9.33× 103 2.18× 103

Our Model 3.34× 103 -
Accurate J (deterministic) - 2.18× 103

Table 4.4: Approximated control objective J for initial state z0 =
[−1.5,−1.5,−1.5, 0, . . . , 0]⊤. Note the deterministic solution is trained with σ = 0
while ours with σ = 0.2. Value for the accurate solution comes from [78].

act same neural network is used, the penalty parameters used for the deterministic

problem reads β = (0, 0.1, 1.0, 0, 0). Here only the HJB loss is used and the training

primarily focuses on minimizing the control cost. The trained model has an accurate

approximation of J given a fixed initial state.

Having both models trained, we can then compare their performance on the SOC

problem. Fixing an initial state of x = [−1.5,−1.5,−1.5, 0, . . . , 0], for each policy,

we compute the average value of the control objective over 15,000 randomly chosen

trajectories, each using 200 time steps and report the results in table 4.4. As one

would expect, while the deterministic model approximates the true solution well for

σ = 0, its performance drops notably when the objective is evaluated with σ = 0.2,

falling behind our SOC model in performance.

We use this experiment to emphasize the following point, that taking the stochas-

ticity of the dynamics into account is crucial when handling noisy dynamics. The

deterministic solution, though accurate without any diffusion, is not robust enough

when injected with noise or consistent disturbance.

Having experimented with several examples in both stochastic and deterministic

OC problems. Some remarks can be made regarding training a neural network model.

For applications that require high accuracy of the Value function or solution to the

HJB equation, additional weights to β1, β2, β4, β5 are needed as well as longer training

time and iterations since optimizing the value function to high accuracy s generally

a hard task. On the other hand for applications where only the controls are needed,

such as most examples presented in [78], focusing on the control loss J can lead to

103

very fast convergence to relatively accurate results. This is the motivation behind

our choice of hyperparameters in [78].

4.4 Summary

We propose a neural network approach for approximately solving Hamilton-Jacobi-

Bellman PDEs arising in high-dimensional stochastic optimal control. Similar to

existing approaches [91, 44], we parameterize the value function with a neural network

and experiment with different losses to train the network weights. One of the main

differences that set our work apart from these works is the use of feedback form given

by the stochastic Pontryagin maximum principle to design the forward SDE used to

explore the state space during training. We also differentiate our method from similar

ideas by including the control objective in the learning problem, by solving the SOC

problem directly alongside the HJB equation we can more efficiently explore the state

space and gain faster convergence of the model.

Using an intuitive two-dimensional test problem, we visualize that the improved

sampling strategy allows us to effectively learn the value function and determine the

relevant regions of the state space; see section 4.3.2. We further demonstrate this

point through a modified version of the 100-dimensional test problem. Theoretically,

our proposed forward SDE compared to purely random exploration is that it coincides

with the characteristic curves of the HJB equation as the stochasticity of the system

is reduced. Therefore, our work can be seen as an extension of the neural network

approaches for deterministic control problems in [78].

Our choice of loss function allows us to gain much faster convergence while main-

taining accuracy compared to results in [91, 44], as we showed through the benchmark

example in section 4.3.3. Using a 12-dimensional quadcopter example whose dynamic

is nonlinear in the states, we also demonstrate that our model can handle complicated

104

dynamics; see section 4.3.4.

Compared to neural network approaches for semi-linear elliptic/parabolic PDEs

such as [91, 44] it is important to highlight that our approach is limited to HJB

equations arising in stochastic optimal control. Since our forward SDE is derived

from optimality principles, with the lack of similar property, extending it to other

high-dimensional PDEs (for example, Black Scholes [15] and Allen Cahan [98, 12]

equations) is not obvious and may be impossible.

105

Chapter 5

Conclusions and Future Work

In this dissertation, we present some results and findings on deep learning based

algorithms for solving different PDEs. We divided our work into two parts, in the

first half we investigate general PDEs with dimensions smaller than or equal to three

and focus particularly on the popular PINNs algorithm. Through experimentation,

we find that by using a polynomial based function approximator and more accurate

numerical integration scheme, one can maintain the optimization structure of a ma-

chine learning method and achieve as good if not much better accuracy than PINNs

in a variety of tested examples, while avoiding some of the common difficulties when

applying PINNs. In the second half of our work, we focus primarily on stochastic

optimal control problems and their corresponding HJB equations. By utilizing the

underlying control theory we propose a deep learning based method that can handle

problems in high dimensions with relatively high efficiency.

There remains abundant space for future work in the field regarding both topics.

For problems with dimensions smaller than or equal to 3, we believe there is much

that can be done to follow up our work. First of all, additional numerical experiments

are valuable to further understand and improve the current method, especially on

problems with complex domain or non-homogeneous PDEs. Finding the appropriate

106

numerical solutions to such problems and comparing them against PINNs would yield

meaningful results and conclusions. Finding other ways to leverage the polynomial

structures of our spline model to improve training efficiency and accuracy is another

topic worth paying attention to. Considering the non-convexity of many problems in

the field finding the appropriate means to implement stochastic optimization methods

will also help reduce memory cost and potentially improve convergence results and

model accuracy.

It is worth mentioning that despite several major differences, our proposed opti-

mization method shares many similarities with the least square finite element method

(see [16]) often used in PDE applications. We believe a deeper look into the differences

between our approach and LSFEM could result in ideas that can further improve our

method, as well as bring more insights into the general topic. In fact, we think such

discussion could add benefits to the development of PINNs as well.

For high dimensional HJB equations and (stochastic) optimal control problems,

one interesting topic often discussed in the area relates to problems with viscous

solutions, additional consideration and choices of networks may be necessary for ac-

curately and efficiently learning discontinuous solutions. Another possible future

direction will be to focus on problems with infinite time horizons, which yield sta-

tionary HJB equations with relevant theory. Some early work has been proposed in

[56, 20] for problems in low dimensions, while for more challenging high dimensional

problems results are still lacking.

107

Bibliography

[1] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-

jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,

Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Lev-

enberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris

Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal

Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,

Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and

Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous

systems, 2015. URL https://www.tensorflow.org/. Software available from

tensorflow.org.

[2] Abien Fred Agarap. Deep learning using rectified linear units (relu), 2019.

[3] Akram Aldroubi, Murray Eden, and Michael Unser. Discrete spline filters for

multiresolutions and wavelets of l 2. SIAM Journal on Mathematical Analysis,

25(5):1412–1432, 1994.

[4] Samuel Miller Allen and John W Cahn. Ground state structures in ordered

binary alloys with second neighbor interactions. Acta Metallurgica, 20(3):423–

433, 1972.

[5] Martin S. Alnaes, Jan Blechta, Johan Hake, August Johansson, Benjamin

https://www.tensorflow.org/

108

Kehlet, Anders Logg, Chris N. Richardson, Johannes Ring, Marie E. Rognes,

and Garth N. Wells. The FEniCS project version 1.5. Archive of Numerical

Software, 3, 2015. doi: 10.11588/ans.2015.100.20553.

[6] William F Ames. Nonlinear partial differential equations in engineering. Aca-

demic press, 1965.

[7] Fabio Antonelli. Backward-forward stochastic differential equations. Ann. Appl.

Probab., 3(3):777–793, 1993. ISSN 1050-5164. URL http://links.jstor.org/

sici?sici=1050-5164(199308)3:3<777:BSDE>2.0.CO;2-5&origin=MSN.

[8] Santiago Badia, Wei Li, and Alberto F. Mart́ın. Finite element interpolated

neural networks for solving forward and inverse problems, 2023.

[9] Reza Akbarian Bafghi and Maziar Raissi. Pinns-tf2: Fast and user-friendly

physics-informed neural networks in tensorflow v2. 2023. URL https://api.

semanticscholar.org/CorpusID:265043331.

[10] Zachary Battles and Lloyd N Trefethen. An extension of matlab to continuous

functions and operators. SIAM Journal on Scientific Computing, 25(5):1743–

1770, 2004.

[11] Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and

Jeffrey Mark Siskind. Automatic differentiation in machine learning: a survey,

2018.

[12] Nils Berglund. An introduction to singular stochastic pdes: Allen-cahn equa-

tions, metastability and regularity structures, 2019.

[13] D.P. Bertsekas and J.N. Tsitsiklis. Neuro-dynamic programming: an overview.

In Proceedings of 1995 34th IEEE Conference on Decision and Control, vol-

ume 1, pages 560–564 vol.1, 1995. doi: 10.1109/CDC.1995.478953.

http://links.jstor.org/sici?sici=1050-5164(199308)3:3<777:BSDE>2.0.CO;2-5&origin=MSN
http://links.jstor.org/sici?sici=1050-5164(199308)3:3<777:BSDE>2.0.CO;2-5&origin=MSN
https://api.semanticscholar.org/CorpusID:265043331
https://api.semanticscholar.org/CorpusID:265043331

109

[14] Leonhard Bittner. L. s. pontryagin, v. g. boltyanskii, r. v. gamkrelidze, e.

f. mishechenko, the mathematical theory of optimal processes. viii + 360 s.

new york/london 1962. john wiley & sons. preis 90/–. Zamm-zeitschrift Fur

Angewandte Mathematik Und Mechanik, 43:514–515, 1963. URL https://api.

semanticscholar.org/CorpusID:122390952.

[15] Fishcer Black and Myron Scholes. The pricing of options and corporate liabili-

ties. Journal of political economy, 81(3):637, 1973.

[16] Pavel B Bochev and Max D Gunzburger. Least-squares finite element methods,

volume 166. Springer Science & Business Media, 2009.

[17] Franck Boyer and Pierre Fabrie. Mathematical Tools for the Study of the In-

compressible Navier-Stokes Equations andRelated Models, volume 183. Springer

Science & Business Media, 2012.

[18] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris

Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye

Wanderman-Milne, and Qiao Zhang. JAX: composable transformations of

Python+NumPy programs, 2018. URL http://github.com/google/jax.

[19] Fabio Camilli and Maurizio Falcone. An approximation scheme for the optimal

control of diffusion processes. M2AN - Modélisation mathématique et analyse

numérique, 29(1):97–122, 1995. URL http://www.numdam.org/item/M2AN_

1995__29_1_97_0/.

[20] Eduardo Casas and Karl Kunisch. Infinite horizon optimal control for a general

class of semilinear parabolic equations. Applied Mathematics & Optimization,

88(2):47, 2023.

[21] Jean-François Chassagneux and Adrien Richou. Numerical simulation of

quadratic bsdes. The Annals of Applied Probability, 26(1), February 2016.

https://api.semanticscholar.org/CorpusID:122390952
https://api.semanticscholar.org/CorpusID:122390952
http://github.com/google/jax
http://www.numdam.org/item/M2AN_1995__29_1_97_0/
http://www.numdam.org/item/M2AN_1995__29_1_97_0/

110

ISSN 1050-5164. doi: 10.1214/14-aap1090. URL http://dx.doi.org/10.

1214/14-AAP1090.

[22] Patrick Cheridito, H. Mete Soner, Nizar Touzi, and Nicolas Victoir. Second-

order backward stochastic differential equations and fully nonlinear parabolic

PDEs. Comm. Pure Appl. Math., 60(7):1081–1110, 2007. ISSN 0010-3640. doi:

10.1002/cpa.20168. URL https://doi.org/10.1002/cpa.20168.

[23] Pi-Yueh Chuang and Lorena A. Barba. Experience report of physics-informed

neural networks in fluid simulations: pitfalls and frustration, 2022.

[24] Pi-Yueh Chuang and Lorena A. Barba. Predictive limitations of physics-

informed neural networks in vortex shedding, 2023.

[25] Pi-Yueh Chuang, Olivier Mesnard, Anush Krishnan, and Lorena A. Barba.

PetIBM: toolbox and applications of the immersed-boundary method on

distributed-memory architectures. The Journal of Open Source Software, 3(25):

558, may 2018. doi: 10.21105/joss.00558. URL https://doi.org/10.21105/

joss.00558.

[26] Peter Constantin and Ciprian Foiaş. Navier-stokes equations. University of

Chicago press, 1988.

[27] Richard Courant, Kurt Friedrichs, and Hans Lewy. On the partial difference

equations of mathematical physics. IBM journal of Research and Development,

11(2):215–234, 1967.

[28] Salvatore Cuomo, Vincenzo Schiano di Cola, Fabio Giampaolo, Gianluigi Rozza,

Maziar Raissi, and Francesco Piccialli. Scientific machine learning through

physics-informed neural networks: Where we are and what’s next, 2022.

http://dx.doi.org/10.1214/14-AAP1090
http://dx.doi.org/10.1214/14-AAP1090
https://doi.org/10.1002/cpa.20168
https://doi.org/10.21105/joss.00558
https://doi.org/10.21105/joss.00558

111

[29] Ameya D. Jagtap and George Em Karniadakis. Extended physics-informed neu-

ral networks (xpinns): A generalized space-time domain decomposition based

deep learning framework for nonlinear partial differential equations. Commu-

nications in Computational Physics, 28(5):2002–2041, 2020. ISSN 1991-7120.

doi: https://doi.org/10.4208/cicp.OA-2020-0164. URL http://global-sci.

org/intro/article_detail/cicp/18403.html.

[30] L. Debnath. Nonlinear Partial Differential Equations for Scientists and En-

gineers. Birkhäuser Boston, 2011. ISBN 9780817682651. URL https:

//books.google.com/books?id=Ir4yXgBesAsC.

[31] Hongjie Dong and Nicolai V. Krylov. The rate of convergence of finite-

difference approximations for parabolic Bellman equations with Lipschitz co-

efficients in cylindrical domains. Appl. Math. Optim., 56(1):37–66, 2007. ISSN

0095-4616. doi: 10.1007/s00245-007-0879-4. URL https://doi.org/10.1007/

s00245-007-0879-4.

[32] T. A Driscoll, N. Hale, and L. N. Trefethen. Chebfun Guide. Pafnuty Publica-

tions, 2014. URL http://www.chebfun.org/docs/guide/.

[33] Franz Durst, D Miloievic, and Bernhard Schönung. Eulerian and lagrangian

predictions of particulate two-phase flows: a numerical study. Applied Mathe-

matical Modelling, 8(2):101–115, 1984.

[34] Weinan E and Bing Yu. The deep ritz method: A deep learning-based numerical

algorithm for solving variational problems, 2017.

[35] Weinan E, Jiequn Han, and Arnulf Jentzen. Deep learning-based numeri-

cal methods for high-dimensional parabolic partial differential equations and

backward stochastic differential equations. Commun. Math. Stat., 5(4):349–

http://global-sci.org/intro/article_detail/cicp/18403.html
http://global-sci.org/intro/article_detail/cicp/18403.html
https://books.google.com/books?id=Ir4yXgBesAsC
https://books.google.com/books?id=Ir4yXgBesAsC
https://doi.org/10.1007/s00245-007-0879-4
https://doi.org/10.1007/s00245-007-0879-4
http://www.chebfun.org/docs/guide/

112

380, 2017. ISSN 2194-6701. doi: 10.1007/s40304-017-0117-6. URL https:

//doi.org/10.1007/s40304-017-0117-6.

[36] L.C. Evans. Partial Differential Equations. Graduate studies in mathematics.

American Mathematical Society, 2010. ISBN 9780821849743. URL https:

//books.google.com/books?id=Xnu0o_EJrCQC.

[37] Robert Eymard, Thierry Gallouët, and Raphaèle Herbin. Finite volume meth-

ods. Handbook of numerical analysis, 7:713–1018, 2000.

[38] W.H. Fleming and H.M. Soner. Controlled Markov Processes and Viscosity So-

lutions. Stochastic Modelling and Applied Probability. Springer New York,

2006. ISBN 9780387310718. URL https://books.google.com/books?id=

4Bjz2iWmLyQC.

[39] Peter Gangl, Kevin Sturm, Michael Neunteufel, and Joachim Schöberl. Fully

and semi-automated shape differentiation in ngsolve, 2020.

[40] Luis Rodolfo Garcia Carrillo, Alejandro Dzul, R. Lozano, and Claude Pégard.

Quad Rotorcraft Control. Vision-Based Hovering and Navigation. 01 2012.

[41] Paola Gervasio, Fausto Saleri, and Alessandro Veneziani. Algebraic fractional-

step schemes with spectral methods for the incompressible navier–stokes equa-

tions. Journal of Computational Physics, 214(1):347–365, 2006.

[42] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT

Press, 2016. http://www.deeplearningbook.org.

[43] Tamara G. Grossmann, Urszula Julia Komorowska, Jonas Latz, and Carola-

Bibiane Schönlieb. Can physics-informed neural networks beat the finite element

method?, 2023.

https://doi.org/10.1007/s40304-017-0117-6
https://doi.org/10.1007/s40304-017-0117-6
https://books.google.com/books?id=Xnu0o_EJrCQC
https://books.google.com/books?id=Xnu0o_EJrCQC
https://books.google.com/books?id=4Bjz2iWmLyQC
https://books.google.com/books?id=4Bjz2iWmLyQC
http://www.deeplearningbook.org

113

[44] Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional partial

differential equations using deep learning. Proc. Natl. Acad. Sci. USA, 115

(34):8505–8510, 2018. ISSN 0027-8424. doi: 10.1073/pnas.1718942115. URL

https://doi.org/10.1073/pnas.1718942115.

[45] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition, 2015.

[46] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2016.

[47] Zheyuan Hu, Ameya D. Jagtap, George Em Karniadakis, and Kenji Kawaguchi.

When do extended physics-informed neural networks (XPINNs) improve gen-

eralization? SIAM Journal on Scientific Computing, 44(5):A3158–A3182,

sep 2022. doi: 10.1137/21m1447039. URL https://doi.org/10.1137%

2F21m1447039.

[48] Yunona Iwasaki and Ching-Yao Lai. Clustering behavior of physics-informed

neural networks: Inverse modeling of an idealized ice shelf.

[49] Ameya D. Jagtap, Ehsan Kharazmi, and George Em Karniadakis. Conservative

physics-informed neural networks on discrete domains for conservation laws:

Applications to forward and inverse problems. Computer Methods in Applied

Mechanics and Engineering, 365:113028, 2020. ISSN 0045-7825. doi: https://

doi.org/10.1016/j.cma.2020.113028. URL https://www.sciencedirect.com/

science/article/pii/S0045782520302127.

[50] Kelvin Kan, James G. Nagy, and Lars Ruthotto. Lsemink: A modified newton-

krylov method for log-sum-exp minimization, 2023.

https://doi.org/10.1073/pnas.1718942115
https://doi.org/10.1137%2F21m1447039
https://doi.org/10.1137%2F21m1447039
https://www.sciencedirect.com/science/article/pii/S0045782520302127
https://www.sciencedirect.com/science/article/pii/S0045782520302127

114

[51] E. Kharazmi, Z. Zhang, and G. E. Karniadakis. Variational physics-informed

neural networks for solving partial differential equations, 2019.

[52] Ehsan Kharazmi, Zhongqiang Zhang, and George E.M. Karniadakis. hp-

vpinns: Variational physics-informed neural networks with domain decomposi-

tion. Computer Methods in Applied Mechanics and Engineering, 374:113547,

February 2021. ISSN 0045-7825. doi: 10.1016/j.cma.2020.113547. URL

http://dx.doi.org/10.1016/j.cma.2020.113547.

[53] Sujin Kim, Raghu Pasupathy, and Shane G Henderson. A guide to sample

average approximation. Handbook of simulation optimization, pages 207–243,

2015.

[54] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-

tion. arXiv preprint arXiv:1412.6980, 2014.

[55] Aditi S. Krishnapriyan, Amir Gholami, Shandian Zhe, Robert M. Kirby, and

Michael W. Mahoney. Characterizing possible failure modes in physics-informed

neural networks, 2021.

[56] Karl Kunisch and Donato Vásquez-Varas. Smooth approximation of feedback

laws for infinite horizon control problems with non-smooth value functions.

arXiv preprint arXiv:2312.11981, 2023.

[57] Harold J. Kushner. Numerical methods for stochastic control problems in con-

tinuous time. SIAM J. Control Optim., 28(5):999–1048, 1990. ISSN 0363-0129.

doi: 10.1137/0328056. URL https://doi.org/10.1137/0328056.

[58] Harold J. Kushner and Paul Dupuis. Numerical methods for stochastic con-

trol problems in continuous time, volume 24 of Applications of Mathematics

(New York). Springer-Verlag, New York, second edition, 2001. ISBN 0-387-

http://dx.doi.org/10.1016/j.cma.2020.113547
https://doi.org/10.1137/0328056

115

95139-3. doi: 10.1007/978-1-4613-0007-6. URL https://doi.org/10.1007/

978-1-4613-0007-6. Stochastic Modelling and Applied Probability.

[59] Alvin CK Lai and FZ Chen. Comparison of a new eulerian model with a

modified lagrangian approach for particle distribution and deposition indoors.

Atmospheric Environment, 41(25):5249–5256, 2007.

[60] Hans Petter Langtangen and Anders Logg. Solving PDEs in Python. Springer,

2017. ISBN 978-3-319-52461-0. doi: 10.1007/978-3-319-52462-7.

[61] N. Lehtomaki, N. Sandell, and M. Athans. Robustness results in linear-

quadratic gaussian based multivariable control designs. IEEE Transactions on

Automatic Control, 26(1):75–93, 1981. doi: 10.1109/TAC.1981.1102565.

[62] Randall J LeVeque. Finite difference methods for differential equations. Draft

version for use in AMath, 585(6):112, 1998.

[63] Xingjian Li, Deepanshu Verma, and Lars Ruthotto. A neural network approach

for stochastic optimal control. arXiv preprint arXiv:2209.13104, 2022.

[64] Alex Tong Lin, Yat Tin Chow, and Stanley Osher. A splitting method for over-

coming the curse of dimensionality in hamilton-jacobi equations arising from

nonlinear optimal control and differential games with applications to trajectory

generation, 2018.

[65] Joseph W Lockwood, Ning Lin, Michael Oppenheimer, and Ching-Yao Lai.

Using neural networks to predict hurricane storm surge and to assess the sen-

sitivity of surge to storm characteristics. Journal of Geophysical Research: At-

mospheres, 127(24):e2022JD037617, 2022.

[66] Anders Logg, Kent-Andre Mardal, Garth N. Wells, et al. Automated Solution

https://doi.org/10.1007/978-1-4613-0007-6
https://doi.org/10.1007/978-1-4613-0007-6

116

of Differential Equations by the Finite Element Method. Springer, 2012. doi:

10.1007/978-3-642-23099-8.

[67] Wei-Liem Loh. On latin hypercube sampling. The annals of statistics, 24(5):

2058–2080, 1996.

[68] Björn Lütjens, Catherine H. Crawford, Mark Veillette, and Dava Newman. Pce-

pinns: Physics-informed neural networks for uncertainty propagation in ocean

modeling, 2021.

[69] Jin Ma, Philip Protter, and Jiong Min Yong. Solving forward-backward stochas-

tic differential equations explicitly—a four step scheme. Probab. Theory Related

Fields, 98(3):339–359, 1994. ISSN 0178-8051. doi: 10.1007/BF01192258. URL

https://doi.org/10.1007/BF01192258.

[70] Zhiping Mao, Ameya Dilip Jagtap, and George Em Karniadakis. Physics-

informed neural networks for high-speed flows. Computer Methods in Applied

Mechanics and Engineering, 2020. URL https://api.semanticscholar.org/

CorpusID:212755458.

[71] Charles C. Margossian. A review of automatic differentiation and its efficient im-

plementation. WIREs Data Mining and Knowledge Discovery, 9(4), mar 2019.

doi: 10.1002/widm.1305. URL https://doi.org/10.1002%2Fwidm.1305.

[72] Siddhartha Mishra and Roberto Molinaro. Estimates on the generalization error

of physics informed neural networks (pinns) for approximating a class of inverse

problems for pdes, 2023.

[73] J. Modersitzki. FAIR: Flexible Algorithms for Image Registration. SIAM,

Philadelphia, 2009.

https://doi.org/10.1007/BF01192258
https://api.semanticscholar.org/CorpusID:212755458
https://api.semanticscholar.org/CorpusID:212755458
https://doi.org/10.1002%2Fwidm.1305

117

[74] Ben Moseley, Andrew Markham, and Tarje Nissen-Meyer. Finite basis physics-

informed neural networks (fbpinns): a scalable domain decomposition approach

for solving differential equations, 2021.

[75] Elizabeth Newman and Lars Ruthotto. ‘hessquik‘: Fast hessian computation of

composite functions. Journal of Open Source Software, 7(72):4171, 2022. doi:

10.21105/joss.04171. URL https://doi.org/10.21105/joss.04171.

[76] Bernt Oksendal. Stochastic differential equations: an introduction with appli-

cations. Springer Science & Business Media, 2013.

[77] Derek Onken, Samy Wu Fung, Xingjian Li, and Lars Ruthotto. Ot-flow: Fast

and accurate continuous normalizing flows via optimal transport, 2021.

[78] Derek Onken, Levon Nurbekyan, Xingjian Li, Samy Wu Fung, Stanley Osher,

and Lars Ruthotto. A neural network approach for high-dimensional optimal

control, 2021.

[79] Derek Onken, Levon Nurbekyan, Xingjian Li, Samy Wu Fung, Stanley Osher,

and Lars Ruthotto. A neural network approach applied to multi-agent optimal

control. In 2021 European Control Conference (ECC), pages 1036–1041. IEEE,

2021.

[80] Derek Onken, Levon Nurbekyan, Xingjian Li, Samy Wu Fung, Stanley Osher,

and Lars Ruthotto. A neural network approach for high-dimensional optimal

control applied to multiagent path finding. IEEE Transactions on Control Sys-

tems Technology, 31(1):235–251, 2022.

[81] N.S. Ottosen and H. Petersson. Introduction to the Finite Element Method.

Prentice Hall, 1992. ISBN 9780134738772. URL https://books.google.com/

books?id=_5FRAAAAMAAJ.

https://doi.org/10.21105/joss.04171
https://books.google.com/books?id=_5FRAAAAMAAJ
https://books.google.com/books?id=_5FRAAAAMAAJ

118

[82] Etienne Pardoux and Shanjian Tang. Forward-backward stochastic differential

equations and quasilinear parabolic PDEs. Probab. Theory Related Fields, 114

(2):123–150, 1999. ISSN 0178-8051. doi: 10.1007/s004409970001. URL https:

//doi.org/10.1007/s004409970001.

[83] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,

Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,

Alban Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison,

Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,

and Soumith Chintala. Pytorch: An imperative style, high-performance deep

learning library, 2019.

[84] Huyên Pham. Continuous-time stochastic control and optimization with fi-

nancial applications, volume 61 of Stochastic Modelling and Applied Probabil-

ity. Springer-Verlag, Berlin, 2009. ISBN 978-3-540-89499-5. doi: 10.1007/

978-3-540-89500-8. URL https://doi.org/10.1007/978-3-540-89500-8.

[85] Les Piegl and Wayne Tiller. The NURBS book. Springer Science & Business

Media, 2012.

[86] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko.

The Mathematical Theory of Optimal Processes. Translated by K. N. Trirogoff;

edited by L. W. Neustadt. Interscience Publishers John Wiley & Sons, Inc. New

York-London, 1962.

[87] Marius-Constantin Popescu, Valentina E Balas, Liliana Perescu-Popescu, and

Nikos Mastorakis. Multilayer perceptron and neural networks. WSEAS Trans-

actions on Circuits and Systems, 8(7):579–588, 2009.

[88] Warren B. Powell. Approximate dynamic programming. Wiley Series in Prob-

ability and Statistics. Wiley-Interscience [John Wiley & Sons], Hoboken, NJ,

https://doi.org/10.1007/s004409970001
https://doi.org/10.1007/s004409970001
https://doi.org/10.1007/978-3-540-89500-8

119

2007. ISBN 978-0-470-17155-4. doi: 10.1002/9780470182963. URL https:

//doi.org/10.1002/9780470182963. Solving the curses of dimensionality.

[89] Luigi Quartapelle. Numerical solution of the incompressible Navier-Stokes equa-

tions, volume 113. Birkhäuser, 2013.

[90] Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin,

Fred A. Hamprecht, Yoshua Bengio, and Aaron Courville. On the spectral bias

of neural networks, 2019.

[91] Maziar Raissi. Forward-backward stochastic neural networks: Deep learn-

ing of high-dimensional partial differential equations. arXiv preprint

arXiv:1804.07010, 2018.

[92] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed

deep learning (part i): Data-driven solutions of nonlinear partial differential

equations. arXiv preprint arXiv:1711.10561, 2017.

[93] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed

deep learning (part ii): Data-driven discovery of nonlinear partial differential

equations. arXiv preprint arXiv:1711.10566, 2017.

[94] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed

neural networks: A deep learning framework for solving forward and inverse

problems involving nonlinear partial differential equations. Journal of Compu-

tational Physics, 378:686–707, 2019.

[95] Singiresu S Rao. The finite element method in engineering. Butterworth-

heinemann, 2017.

[96] Sebastian Ruder. An overview of gradient descent optimization algorithms.

https://doi.org/10.1002/9780470182963
https://doi.org/10.1002/9780470182963

120

ArXiv, abs/1609.04747, 2016. URL https://api.semanticscholar.org/

CorpusID:17485266.

[97] Tim De Ryck, Ameya D. Jagtap, and Siddhartha Mishra. Error estimates for

physics informed neural networks approximating the navier-stokes equations,

2023.

[98] Jie Shen and Xiaofeng Yang. Numerical approximations of allen-cahn and cahn-

hilliard equations. Discrete Contin. Dyn. Syst, 28(4):1669–1691, 2010.

[99] Yeonjong Shin. On the convergence of physics informed neural networks for

linear second-order elliptic and parabolic type pdes. Communications in Com-

putational Physics, 28(5):2042–2074, June 2020. ISSN 1991-7120. doi: 10.4208/

cicp.oa-2020-0193. URL http://dx.doi.org/10.4208/cicp.OA-2020-0193.

[100] Justin Sirignano and Konstantinos Spiliopoulos. Dgm: A deep learning al-

gorithm for solving partial differential equations. Journal of Computational

Physics, 375:1339–1364, December 2018. ISSN 0021-9991. doi: 10.1016/j.jcp.

2018.08.029. URL http://dx.doi.org/10.1016/j.jcp.2018.08.029.

[101] Jonthan D Smith, Zachary E Ross, Kamyar Azizzadenesheli, and Jack B

Muir. Hyposvi: Hypocentre inversion with stein variational inference and

physics informed neural networks. Geophysical Journal International, 228(1):

698–710, August 2021. ISSN 1365-246X. doi: 10.1093/gji/ggab309. URL

http://dx.doi.org/10.1093/gji/ggab309.

[102] Michael L. Stein. Large sample properties of simulations using latin hy-

percube sampling. Technometrics, 29:143–151, 1987. URL https://api.

semanticscholar.org/CorpusID:121392444.

[103] P Thévenaz, T Blu, and M Unser. Image interpolation and resampling, hand-

book of medical image processing, 2003.

https://api.semanticscholar.org/CorpusID:17485266
https://api.semanticscholar.org/CorpusID:17485266
http://dx.doi.org/10.4208/cicp.OA-2020-0193
http://dx.doi.org/10.1016/j.jcp.2018.08.029
http://dx.doi.org/10.1093/gji/ggab309
https://api.semanticscholar.org/CorpusID:121392444
https://api.semanticscholar.org/CorpusID:121392444

121

[104] Nils Wandel, Michael Weinmann, Michael Neidlin, and Reinhard Klein. Spline-

pinn: Approaching pdes without data using fast, physics-informed hermite-

spline cnns, 2022.

[105] J. Wang and P. A. Forsyth. Maximal use of central differencing for Hamilton-

Jacobi-Bellman PDEs in finance. SIAM J. Numer. Anal., 46(3):1580–1601,

2008. ISSN 0036-1429. doi: 10.1137/060675186. URL https://doi.org/10.

1137/060675186.

[106] Yongji Wang, Ching-Yao Lai, Javier Gómez-Serrano, and Tristan Buckmaster.

Self-similar blow-up profile for the boussinesq equations via a physics-informed

neural network. arXiv preprint arXiv:2201.06780, 2022.

[107] Yongji Wang, Ching-Yao Lai, Javier Gómez-Serrano, and Tristan Buckmas-

ter. Asymptotic self-similar blow-up profile for three-dimensional axisymmetric

euler equations using neural networks, 2023.

[108] Tien-Tsin Wong, Wai-Shing Luk, and Pheng-Ann Heng. Sampling with ham-

mersley and halton points. Journal of graphics tools, 2(2):9–24, 1997.

[109] Chenxi Wu, Min Zhu, Qinyang Tan, Yadhu Kartha, and Lu Lu. A comprehen-

sive study of non-adaptive and residual-based adaptive sampling for physics-

informed neural networks. Computer Methods in Applied Mechanics and Engi-

neering, 403:115671, January 2023. ISSN 0045-7825. doi: 10.1016/j.cma.2022.

115671. URL http://dx.doi.org/10.1016/j.cma.2022.115671.

[110] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of

rectified activations in convolutional network, 2015.

[111] Liu Yang, Xuhui Meng, and George Em Karniadakis. B-pinns: Bayesian

physics-informed neural networks for forward and inverse pde problems with

https://doi.org/10.1137/060675186
https://doi.org/10.1137/060675186
http://dx.doi.org/10.1016/j.cma.2022.115671

122

noisy data. Journal of Computational Physics, 425:109913, January 2021.

ISSN 0021-9991. doi: 10.1016/j.jcp.2020.109913. URL http://dx.doi.org/

10.1016/j.jcp.2020.109913.

[112] Jiongmin Yong and Xun Yu Zhou. Stochastic controls, volume 43 of Applications

of Mathematics (New York). Springer-Verlag, New York, 1999. ISBN 0-387-

98723-1. doi: 10.1007/978-1-4612-1466-3. URL https://doi.org/10.1007/

978-1-4612-1466-3. Hamiltonian systems and HJB equations.

[113] Qi Zeng, Yash Kothari, Spencer H. Bryngelson, and Florian Schäfer. Competi-

tive physics informed networks, 2022.

[114] Zhao Zhang and Qingyan Chen. Comparison of the eulerian and lagrangian

methods for predicting particle transport in enclosed spaces. Atmospheric en-

vironment, 41(25):5236–5248, 2007.

[115] Olek C Zienkiewicz, Robert L Taylor, and Jian Z Zhu. The finite element

method: its basis and fundamentals. Elsevier, 2005.

http://dx.doi.org/10.1016/j.jcp.2020.109913
http://dx.doi.org/10.1016/j.jcp.2020.109913
https://doi.org/10.1007/978-1-4612-1466-3
https://doi.org/10.1007/978-1-4612-1466-3

	Introduction
	Overview of Thesis

	Mathematical Background
	Neural Networks
	Definition
	Training of a Neural Network

	Physics Informed Neural Networks
	Neural Network Approximation
	Loss Function
	Sampling and Training

	Finite Element Method
	Non-Stationary PDEs

	Stochastic Optimal Control and HJB Equations
	Stochastic Optimal Control Problem
	Stochastic Pontryagin Maximum Principle
	Hamilton-Jacobi-Bellman Equation
	FBSDE Formulation
	Relation to Deterministic Optimal Control

	A Spline Based Alternative Model for PINNs
	A Deeper Look into PINNs
	State of the Art in PINNs

	Pros and Cons of PINNs
	A Trainable Spline Model for PDEs in Low Dimensions
	Spline Interpolation
	Spline Model for Higher Dimensions
	Derivatives and Laplacians
	Sampling and Optimization
	Outline of Our Method for Testing

	Numerical Experiments for Different PDEs
	2D Poisson Equation
	3D Poisson Equation
	1D Schrödinger Equation
	Allen-Cahn equation
	2D Taylor-Green Vortex Problem
	Additional Numerical Schemes

	Summary

	Deep Learning Approach for SOC problems and HJB Equations
	Neural Network Approximation
	Formulation of the Training Problem
	Numerical Experiments for SOC Problems and HJB Equations
	Implementation Details
	2D Trajectory Planning Problem
	100-dimensional example
	12D Quadcopter Path Finding Problem with Nonlinear Dynamics

	Summary

	Conclusions and Future Work
	Bibliography

