
Distribution Agreement

In presenting this thesis as a partial fulfillment of the requirements for a degree from Emory

University, I hereby grant to Emory University and its agents the non-exclusive license to

archive, make accessible, and display my thesis in whole or in part in all forms of media, now or

hereafter now, including display on the World Wide Web. I understand that I may select some

access restrictions as part of the online submission of this thesis. I retain all ownership rights to

the copyright of the thesis. I also retain the right to use in future works (such as articles or

books) all or part of this thesis.

Sam Miller April 12, 2020

Integration of the Control Software for the Electromagnetic and Permanent Magnet Tweezers

by

Sam Miller

Laura Finzi

Advisor

David Dunlap

Advisor

Physics

Laura Finzi

Advisor

David Dunlap

Advisor

Shun Cheung

Committee Member

Effrosyni Seitaridou

Committee Member

2021

Integration of the Control Software for the Electromagnetic and Permanent Magnet Tweezers

By

Sam Miller

Laura Finzi

Advisor

David Dunlap

Advisor

An abstract of

a thesis submitted to the Faculty of Emory College of Arts and Sciences

of Emory University in partial fulfillment

of the requirements of the degree of

Bachelor of Science with Honors

Physics

2021

Abstract

Integration of the Control Software for the Electromagnetic and Permanent Magnet Tweezers

By Sam Miller

` Magnetic tweezers are single-molecule instruments that are often used to impart forces and

torques on DNA molecules. They typically have a pair of permanent magnets attached to a motor that

can be vertically translated and rotated to adjust the magnitude and orientation of the magnetic field,

respectively. Then, DNA molecules are chemically attached to the microscope stage and a paramagnetic

bead, which translates a magnetic force from the magnetic field onto the molecule. An objective

captures images of the samples and computer software uses diffraction pattern analysis to determine

the position, magnetic force, and tether length of the DNA molecule. The electromagnetic tweezers

developed by the Finzi-Dunlap lab improve upon the existing technology by generating a magnetic field

with current-carrying wires. Although this set-up offers numerous advantages over traditional magnetic

tweezers, the program that drives the electromagnetic tweezers existed independently of the

permanent magnet program. As a result, users of the electromagnetic tweezers were required to launch

and engage with two separate, non-communicative programs. In order to solve this problem, I

introduced a new “Axis-type” class that mimicked the behavior of the existing classes that represented

the motors in the permanent magnet program. The ElectromagnetAxis class wraps all of the

functionality required to set the current values that map to the strength and orientation of the resulting

magnetic field. Additionally, this class collects all of the relevant data from the electromagnetic tweezers

program into a single place. As such, ElectromagnetAxis objects allow the electromagnet program to

access the particle-tracking and data-processing components of the permanent magnet program. The

result is a single, unified program that launches and closes simultaneously, allows for the manipulation

of the magnetic field through the design introduced with the electromagnetic tweezers program, and

tracks beads and processes data through the software from the permanent magnetic tweezers program.

Finally, the unified software shows deference for the tenets of the object-oriented programming

paradigm through increased encapsulation of methods and properties. Therefore, users of the Finzi-

Dunlap lab’s electromagnetic tweezers only need to operate a single program to investigate the effects

of magnetic forces and torques on DNA molecules.

Integration of the Control Software for the Electromagnetic and Permanent Magnet Tweezers

By

Sam Miller

Laura Finzi

Advisor

David Dunlap

Advisor

A thesis submitted to the Faculty of Emory College of Arts and Sciences

of Emory University in partial fulfillment

of the requirements of the degree of

Bachelor of Science with Honors

Physics

2021

Acknowledgements

A special thanks to:

Laura Finzi

David Dunlap

Joe Piccolo

Josh Mendez

Shun Cheung

Effrosyni Seitaridou

Nancy, Andrew, and Jacob Miller

Table of Contents

Transcription and Supercoiling ... 1

Magnetic Tweezers ... 3

Electromagnetic Tweezers .. 7

Hardware .. 7

Software .. 9

Problem and Rationale ... 11

Simultaneous Launching and Closing of the Two Programs ... 13

Development of the Current Object ... 15

Adding Speed Parameters ... 20

Integration of Simple measurements ... 22

Force Extension ... 23

Chapeau Curve .. 25

Object Oriented Design ... 26

Robustness .. 26

Conclusion ... 28

References .. 31

Appendix A – Bead Simulation .. 32

Appendix B – Relevant Code ... 34

1

Transcription and Supercoiling

 Transcription of the deoxyribonucleic acid (DNA) (Figure 1a) is the process by which the DNA

double helix is unwound, and one of the two strands is used as a code to synthesize ribonucleic acid

(RNA) (Figure 1b) (Campbell, 2016). RNA can then be processed by ribosomes to assemble proteins

(messenger RNA, mRNA), used to deliver the correct amino acid for mRNA polymerization (transfer RNA,

tRNA), integrated as part of large molecular machines, such as the ribosome (ribosomal RNA, rRNA),

exploited as catalyst (Figure 1c, Top) (Campbell, 2016). Transcription is therefore a fundamental process

for the life of a cell and is highly dependent upon the physical structure of the DNA double helix. This is

because transcription is carried out and facilitated by a number of enzymes which can only bind to DNA

in specific configurations. In particular, RNA Polymerase is the enzyme which unzips the double helix,

generates the transcription bubble, and polymerizes an RNA strand in the 5’ to 3’ direction which is

complementary to the 3’-5’ template, or coding, DNA strand (Campbell, 2016). Unzipping naturally

engenders the unwinding of DNA behind and winding ahead of the transcription fork, resulting in

contortions of the molecule known as supercoils (Figure 1c, Bottom) (Wang, 1987). In order to alleviate

this problem, topoisomerases are employed ahead of the RNA Polymerase molecule. These enzymes

relax the DNA by relieving the molecule of the supercoils through the severing of the phosphate

backbone. Then, the DNA molecule is relaxed either partially or completely and DNA transactions, such

as transcription, DNA replication (duplication of the double stranded DNA) can continue.

2

Figure 1: (a) (Campbell, 2017) Nucleic acids are biomolecules composed of repeating units known as nucleotides.

Each nucleotide has a phosphate group, a pentose, and a nitrogenous base. In DNA, the pentose is deoxyribose,

and the bases may be either adenine, guanine, cytosine, or thymine. Bonds between these bases form a double

helix structure. (b) (Campbell, 2017) RNA molecules are also nucleic acids with ribose as their 5-carbon sugar. The

nitrogenous bases are the same as those in DNA except that thymine is replaced with uracil. RNA molecules, unlike

DNA, are single-stranded. (c) (Aryal, 2019) Transcription is the production of mRNA, a copy of a DNA strand that is

used to assemble proteins in ribosomes. The DNA double helix is unwound, and RNA Polymerase enzymes

assemble the mRNA. (d) (Wang, 1987) The transcription complex involved in unwinding the DNA and forming the

nascent mRNA naturally engenders positive supercoils in the DNA ahead of the transcription bubble and negative

supercoils behind it.

 Supercoils also play a major role in gene expression (Charles Dorman, 2016). The overwinding

and underwinding of DNA regulates the ability of certain enzymes, such as topoisomerases, to bind to

the strand in the first place. Indeed, supercoiling can be either free or topologically constrained by

proteins, such as the histone octamer around which eukaryotic DNA tightly winds to form a nucleosome,

the building unit of chromatin. In this form, DNA cannot be transcribed, nor replicated. Therefore, as

biological processes like transcription and replication are sensitive to the topological state of the DNA

(Dorman, 2019), DNA supercoiling becomes an important parameter for the regulation of such

processes (Finzi & Olson, 2016).

3

Magnetic Tweezers

Magnetic tweezers usually consist of a pair of permanent magnets -- often alloys of rare earth

elements that are ferromagnetic -- mounted above the stage of an optical microscope (Figure 2) (Finzi &

Dunlap, JMB 2010). The magnetic field established between the two magnets is used to exert forces and

torques on paramagnetic beads attached to single DNA molecules attached to the surface of a glass

microchamber. The pair of magnets are connected to a stepper motor or voice coil actuator, that is used

for vertical translation along the microscope optical axis, and a different stepper motor for rotation. In a

magnetic tweezers experiment, the molecules of interest are chemically anchored to the glass surface of

a flow chamber at one end and to a super-paramagnetic bead with a typical diameter of 1 micron

through digoxigenin-anti-digoxigenin or streptavidin-biotin bonds, respectively. The field from the pair

of magnets induces a force on the tethered bead which stretches the DNA attached to the surface of the

flow chamber, changing the bead’s diffraction image, and the amplitude of its thermal fluctuations.

Thus, by tracking the bead motion and recording images with a camera and appropriate computer

software, one can infer its distance from the surface and, consequently, the end-to-end distance of the

tethering molecule of interest (Kovari, 2019).

4

c

Figure 2: Magnetic tweezers. The pair of permanent magnets can be vertically translated and rotated with

motors to create a magnetic field of variable strength and orientation.

 An important part of the magnetic tweezers set up is the motor. The vertical translation of the

permanent magnets allows for the direct manipulation of the magnetic field strength. Likewise, the

rotation of the permanent magnets rotates the associated magnetic field. The rotation of the bead is an

effective method for twisting and inducing supercoils in a DNA molecule. Each turn of the magnetic field

increases or decreases, depending on the direction, the twist of the DNA. Once the DNA curls to form a

loop, further turns of the magnetic field contribute to the writhe, wherein the axis of the double helix

crosses over itself. (Wenxuan Xu et al, 2021).

Light

Source

Piezo

Motor

Permanent

Magnets

5

 By modelling the bead-tether complex in a thermal bath under the influence of the magnetic

force as an inverted pendulum, its motion can be succinctly summarized with the equipartition theorem,

which relates the average energy of a particle to the temperature of the bath. The following equation is

the result of modelling the average energy of a particle as a three-dimensional harmonic oscillator:

𝐸𝑡𝑜𝑡 =
1

2
𝑘𝑥𝑥2 +

1

2
𝑘𝑦𝑦2 +

1

2
𝑘𝑧𝑧2 (1)

 Then, the equipartition theorem says that the average of the square of the particle’s position in

each dimension is equal to half the Boltzmann constant times the temperature:

1

2
𝑘𝑥 < 𝑥2 > =

1

2
𝑘𝑏𝑇

1

2
𝑘𝑦 < 𝑦2 > =

1

2
𝑘𝑏𝑇 (2)

1

2
𝑘𝑧 < 𝑧2 > =

1

2
𝑘𝑏𝑇

 If the anchor point is the origin, the average extension of the DNA molecule is:

𝐿𝑎𝑣𝑔 = √< 𝑥2 > + < 𝑦2 > + < 𝑧2 > (3)

Finally, the magnetic force on the bead can be calculated by treating the bead-tether complex as

an inverted pendulum:

6

Figure 3: Tethered beads in a magnetic tweezer can be treated as inverted pendula in a simple model with which

the magnetic force can be determined. In this case, δx is the fluctuation of the bead in the x direction, θ is the angle

from the horizontal, and lavg is the average tether length.

 From Figure 3, an expression for the force in the x-direction can be found:

𝐹𝑥 = ||𝐹||𝑠𝑖𝑛𝜃 =
||𝐹||𝛿𝑥

𝑙𝑎𝑣𝑔
(4)

 As expected, the spring constant in the x-direction of an inverted pendulum is the force on it

divided by its length. Therefore, this expression can be substituted into the preceding equipartition

theorem equation, yielding the desired expression for the magnetic force:

1
2 𝐹 < 𝛿𝑥2 >

𝑙
=

1

2
𝑘𝑏𝑇

𝐹 =
𝑘𝑏𝑇𝑙

< 𝛿𝑥2 >
 (5)

7

 Therefore, a magnetic tweezers program is able to calculate the average tether length of the

molecule and the force felt by the bead simply by averaging the x, y, or z positions of the bead over

time.

Electromagnetic Tweezers

 A limitation of the most common implementation of magnetic tweezers is that the motors can

be costly because their movement must be extremely precise. What is more, the physical vibrations

produced by the motor during translation may disturb the sample. A magnetic tweezer measurement

depends on accurate tracking of the position of beads. Vibrations from the motor artificially translate

the beads and interfere with accurate tracking. Furthermore, the rate of change of the magnetic field is

limited by the minimum and maximum speeds of the motors (Piccolo, 2021). These issues motivated the

development of the electromagnetic tweezers which utilize current-carrying wires to produce the

magnetic field.

Hardware

 The electromagnetic tweezers in the Finzi lab use an Arduino functioning as a current controller

to split an input current from a DC voltage source into two output currents. This current controller uses

pulse width modulation to map the input current on a scale of 0-255 arbitrary units. The two resulting

currents flow through two pairs of solenoids which generate two magnetic fields (Figure 4, Right). The

magnitude of this resulting magnetic field can be changed by adjusting the amplitudes of the input

currents. The orientation of the magnetic field can be specified by modulating the amplitudes of the two

currents, since the resultant field is the vector sum of the two component magnetic fields.

8

Figure 4: Electromagnetic tweezers. Left: photograph of the electromagnetic tweezer microscope in the Finzi/Dunlap

lab. Right: Generation of a magnetic field from 2 input currents. Each current runs through a pair of solenoids,

creating a magnetic field. The vector sum of these two magnetic fields determines the orientation of the net

magnetic field. (Piccolo, 2021)

 Motor

 Light Source

 4 solenoids

 Stage

 Piezo

 Power Supply

Arduino +

Current

Controllers

 Ar

9

Software

 There exist two separate programs for operating the magnetic tweezers in the Finzi/Dunlap lab

in the physics department at Emory University. The first program operates the permanent magnetic

tweezer with stepper motors for translation and rotation of the permanent magnets. It is well

developed and has the user interface (UI) shown in Figure 5:

Figure 5: UI of the permanent magnet program.

In Figure 5, the uppermost panel is the parent window of all other windows in the program. This

is where the user accesses different simple experiments, tracking controls, and other settings. The

leftmost window contains the camera controls and the motor controls. The user can adjust the strength

and orientation of the magnetic field from here. Finally, the rightmost window is the image displayed by

the video camera. Regions of interest are drawn with small rectangles on this image to specify locations

in which to search for tethered beads. Throughout the operation of the magnetic tweezers, the camera

produces a video stream that pauses during the instances in which the program needs time to think,

10

process data, or move the motor. In each video frame, the program searches the regions of interest for

the particles and records the positions. It is then able to employ equations (3) and (5) to produce the

average tether length of the DNA molecule and force on the paramagnetic bead.

 Meanwhile, in a separate program, the electromagnetic tweezers have the UI shown in Figure 6:

Figure 6: UI of the electromagnet program. The bottom window is the Magnet Controller. Users can adjust the

strength and orientation of the magnetic field with the data fields on the top or by dragging the dot anywhere within

the central circle. The magnetic field can also be adjusted through the sliders on the left that correspond to the input

currents. The Turn Controller is the top window. A user can easily rotate the magnetic field by entering a value in

the Target Turns field and pressing start. Then, the magnetic field is rotated until the Current Turns field matches

Target Turns. The rotation of the magnetic field proceeds with equally sized steps determined by Step Size. A step is

taken after every period, determined by the Step Period parameter.

11

Problem and Rationale

 The main issue with the existing software for the Finzi-Dunlap lab’s electromagnetic tweezers is

that the graphical user interfaces (GUIs) for the permanent magnet and the electromagnet do not

communicate. The permanent magnetic tweezers are currently controlled by software developed by

former post-doc in the lab, Daniel Kovari. His program was developed in MATLAB with the outdated

app-design environment GUIDE (Graphical User Interface Design Environment) which is used to create

GUIs. GUIDE allows a programmer to create interactable windows with buttons, sliders, and data fields,

and more through a drag-and-drop interface that automatically generates the associated code

afterwards. Kovari’s software allows the user to directly specify the position (height above the sample)

and orientation of the permanent magnets. For the electromagnetic tweezers, however, these

parameters are no longer relevant; they are supplanted by the relative amperages of the input currents.

Meanwhile, the electromagnetic tweezer software that was developed by another former post-

doc, Josh Mendez, was not created through GUIDE. The Magnet Controller allows the user to directly

specify the strength and orientation of the magnetic field, while the Turn Controller can be used to

automate rotation. However, the electromagnetic software was not integrated with the particle-tracking

and data-recording aspects of the permanent magnet program.

As such, a user of the electromagnetic tweezers will be forced to launch both programs. Then,

the user must operate both programs at the same time for the duration of the experiment. This is a

cumbersome and inefficient way to take data with the electromagnetic tweezers that requires tedious

synchronization of the particle tracking data stream with electromagnet settings recorded by the user

for analysis.

In order to solve this problem, I unified the two programs by creating a new “Axis-Type” class

that mimics the behavior of the C862 and C843 motor classes that are used to set the strength and

12

orientation of the resulting magnetic field. Classes are fundamental tenets of object-oriented

programming. They are blueprints for objects which wrap important data and functions into

manipulable variables. As such, objects derived from my ElectromagnetAxis class compact most of the

user’s input data from both programs into a single manageable instance that can interact with the

particle-tracking and data-collection components of the former permanent magnet program.

As a result, the automated simple experiments will be available to the user. This automates

many of the typical data collection experiments that the user will likely want to perform. In a force

extension experiment, the current – and consequently, the magnitude of the magnetic field – is

gradually increased by a constant step size over time. The rotational analogue of this experiment is

known as a Chapeau curve. A record XYZ experiment simply tracks the location of the bead over time. In

the previous version of the software, where both programs were isolated from one another, these

simple experiments were only available through the permanent magnet GUI. With the

ElectromagnetAxis class, this range of capabilities will become available to users of the electromagnetic

tweezers as well. These simple experiments are crucial in plotting data, including force-tether length

curves and tether length-turn curves, which typically have the forms displayed in Figure 7. Finally, the

user will no longer have to launch and manage two separate programs in order to work with a single

machine.

13

Figure 7 (Strick, 1998): Typical plots of interest in a magnetic tweezers experiment. The figure on the left

plots tether length against supercoils. At lower forces, a DNA molecule will contract as more supercoils are

formed (either positive or negative). However, at intermediate and higher forces, the molecule’s extension

is not reduced with negative supercoils. The figure on the right plots tether length against forces. Generally,

as the force grows, the molecule’s extension increases. Then, when the force is reduced, the tether

shortens, with minimal hysteresis.

Simultaneous Launching and Closing of the Two Programs

 The permanent magnet program is driven by the file MultiMTgui_main.m which begins an

opening cascade that initializes the GUI. Similarly, the electromagnet GUI is launched by a driver file

called launch_Controller.m which instantiates the Magnet Controller and Turn Controller objects that

are used to set the magnetic field but do not save any settings. As shown in Figure 8, the user must run

both of these files individually in order to operate the electromagnetic tweezers. When they are done,

they must close the parent windows for each program.

14

Figure 8: Opening code cascades for both the permanent magnet and electromagnet programs. The permanent

magnet program (left) is launched through the driver file MultiMTgui_main.m which makes calls to various

initialization files that open communication with the hardware and launch the GUI. The electromagnet program

(right) is similarly launched by a driver file called launch_Controller.m that instantiates Magnet Controller, Turn

Monitor, and Turn Controller objects. These cascades occur independently of one another, and no communication

between the two programs takes place.

By wrapping launch_Controller in a function that returns the Magnet Controller and Turn

Controller, I gained access to those objects in the MultiMTgui_initializeHardware file. After instantiating

each object, I assigned them to a data field in the global MultiMTgui_main handles structure. This

achieved the simultaneous launching of both programs because now the Turn Controller, Magnet

Controller, and Turn Monitor (which listens for turns in the Magnet Controller) point directly to the

parent window of the entire program.

Then, in order to get the programs to terminate together, I simply included several delete

statements within a try-catch block in MultiMTgui_closeGUI.m. This callback is executed whenever the

user attempts to close the parent window. It invokes the proper delete files for the Turn Controller, Turn

15

Monitor, and Magnet Controller and closes the serial and COM ports that are used to interface with the

hardware.

Development of the Current Object

 MATLAB configuration files contain multiple variables and values that can be loaded into a

program. In the MultiMTgui_initializeVariables file, the configuration file that is loaded into the program

determines which motor is used, represented by the Motor Object variable in the global handles

structure. This Motor Object wraps two “Axis-Type” objects, which represent the motors in the

traditional permanent magnet program. Methods such as setPosition(), setVelocity(), and

setAcceleration() allow for the manipulation of the motor and thus the magnetic field. Each Motor

Object represents a direction of motion: one for translation and one for rotation. The properties of the

C862 Mercury Motor Controller class – called C862class – default to:

 The C862class properties are set through a method which takes a port as an input and attempts

to create a serial object. Then, the method scans for Mercury Motor Controllers along the different COM

ports in the computer. There are two motors that are connected in the traditional permanent magnet

setup; a C862Axis object is instantiated for each one.

 C862Axis objects are the interfaces through which most of the software will communicate with

the hardware. They have the following default properties:

16

 AxisType is a string loaded in from the configuration file that specifies the motor driving a

particular plane of motion. For translation, the C862 Motor Controller operates the M-126.PD motor.

Rotation is done with the C-150.PD motor. The string that is loaded in determines many of the other

properties, such as IsRotary – true for rotation, false for translation – Limits – 0 to 25 for translation, -

infinity to infinity for rotation, units – millimeters for translation, degrees for rotation, and so on. The

methods for the C862Axis class are mostly setters and getters. These are publicly available methods that

a programmer can invoke to update and retrieve private class attributes. In the case of the C862Axis

class, these methods directly interact with the hardware. For instance, public methods such as

setVelocity(val), setPosition(val), and setAcceleration(val) are higher level motor functions that facilitate

setting the velocity, position, and acceleration values of a motor.

 However, because the electromagnetic tweezers set the magnetic field through the magnitude

and vector sum of the input currents rather than the position and orientation of the motor, a new “Axis-

Type” class must be developed in order to fully integrate the two programs. This class must perform

many of the same functions as a traditional motor class in that it should contain convenient functions to

set the magnitude and orientation of the magnetic field.

17

 First, I created a new configuration file – MultiMTgui_config_ELECTROMAGNET.mat -- that had

many of the same data fields as the present configuration file except that the ‘MotorController’ field is

set to the string value ‘ELECTROMAGNET.’ Then, in the MultiMTgui_initializeHardware file, I added an

extra case to the opening switch statement:

 When the Motor Controller is initialized to ‘ELECTROMAGNET’ in MultiMTgui_initializeVariables,

an ElectromagnetClass object is instantiated as a Current object in the program. The C862 motor must

still be instantiated, so that the experimentalist can vertically translate the motor, because the distance

between the four solenoids and the sample still impacts the strength of the magnetic field. By creating

instances of both the Motor object and the Current object, the unified program has access to both the

traditional motor controls and the current controls provided by the electromagnet program.

I created the ElectromagnetClass and ElectromagnetAxis classes with structures that mimic

those of the C843 and C862 packages. Much like C862class and C843class, the ElectromagnetClass exists

primarily to wrap the two ElectromagnetAxis instances. However, because the Magnet Controller, Turn

Controller, Turn Monitor, and motor are already instantiated and linked to their COM ports, the

18

hardware is already connected, and no further initialization is necessary. Thus, the ElectromagnetClass

only requires constructor and a single property: an array called Axis. When the ElectromagnetClass is

instantiated, the constructor instantiates two ElectromagnetAxis objects to represent magnitude and

direction of the magnetic field. These two objects are assigned to the observable property Axis where

they can be easily accessed. The ElectromagnetClass object is assigned to the Current object data field in

the global handles structure associated with the main GUI window. Therefore, the Current object and

the two ElectromagnetAxis objects can be easily accessed by any window in the entire program.

The ElectromagnetAxis class has the following properties and methods:

ElectromagnetAxis Properties (Access = private)

Property (Default Values) Purpose

Limits = [-255, 255] Limits of current

Velocity = 0 How quickly the magnitude of the magnetic field

changes

Ang_Velocity = 0 How quickly the orientation of the magnetic field

changes

Step_Duration = 0 Time required to move one step of current; used

as input for WaitForOnTarget()

Num_Voltages = 0 For changes in magnitude of magnetic field only;

number of currents to step through from start to

stop

Num_Turns = 0 For changes in orientation of magnetic field only;

number of turns to step through from start to

stop

19

AxType = ‘’ Either ‘z’ or ‘r’; represents whether this object

changes the magnitude or direction of the

magnetic field. Modifies the functionality of

certain methods

Table 1: Private properties of the ElectromagnetAxis class

ElectromagnetAxis Methods (Access = public)

Method Purpose

setAxisType(int) Sets AxType property to ‘z’ if input is two, ‘r’ if

input is one

setCurrent() Accesses MagnetController.Controller.Target and

sets it equal to the input current

setTurn() Accesses TurnController.TargetTurns and sets it

equal to the input turn. Starts the

TurnController.StepTimer

setVelocity() Sets either Ang_Velocity or Velocity

WaitForOnTarget() Waits an appropriate amount of time, as

calculated by calculateStepDuration(), to

approximate a current speed.

CalculateStepDuration() Determines how long WaitForOnTarget() must

wait from the user’s desired speed

Table 2: Public setters for the ElectromagnetAxis class

setAxisType() is called in the constructor of the ElectromagnetAxis class. When it is passed a 1,

the AxType property is set to ‘r’; if it is passed 2, then AxType is set to ‘z’. This property transforms much

of the functionality of the methods through if/else statements that test the objects AxType.

20

Adding Speed Parameters

 Another issue is that the speed parameter that specifies how quickly the motor moves in the

permanent magnet set-up does not have an easily identifiable analogue for the electromagnetic set-up.

The C862 and C843 motors can move at a minimum speed of 0.1 mm/s and a maximum speed of 50

mm/s . As they move along this vertical axis, the distance between the sample and the source of the

magnetic field increases. Therefore, specifying the speed of the motor is related to how quickly the

magnitude of the magnetic field will change. This is important because molecules that are analyzed with

magnetic tweezers are often delicate; abrupt changes in the strength of the magnetic field can be jarring

and may potentially damage the sample. Similarly, the rotational speed of the motors specifies how

quickly the magnetic field is turning.

 Electromagnetic tweezers do not use the motors to change the strength nor orientation of the

magnetic field; this is accomplished through changing the input currents. However, the input current

can essentially be changed instantaneously. Therefore, I created a speed parameter that approximates

the continuous changes in magnetic field strength and orientation achieved by the permanent magnet

motors.

 My approach takes advantage of the mapping of the input currents onto a 0-255 scale. The

current can only change by whole numbers, so the smallest possible step size when moving from an

initial magnitude to a final magnitude is 1. This means that the number of steps required to move from

||𝐼𝑖|| to ||𝐼𝑓|| is simply equal to the difference between the two values. Once the user specifies a speed,

the total duration of the transition between the two magnetic field strengths can be calculated from the

definition of velocity.

𝑡𝑡𝑜𝑡 =
∆||𝐼||

𝑣
 (6)

21

Finally, the time required to complete a single step is the total duration of the transition divided

by the number of steps.

𝑡𝑠𝑡𝑒𝑝 =
1

𝑣
 (7)

These equations, and their rotational analogues, are employed in the private method

CalculateStepDuration(). This method is called after the user enters a speed so that the 𝑡𝑠𝑡𝑒𝑝 value is

immediately available to the rest of the program. This value can then be used to simulate smooth

transitions in the magnetic field strength and orientation.

These 𝑡𝑠𝑡𝑒𝑝 values are used in the public method WaitForOnTarget() derived from the function

of the same name found in the C862Axis and C843Axis classes. In the permanent magnet program, these

functions are invoked immediately after the position (rotational or translational) of the magnets has

been specified. This allocates time for the magnets to move to the required position before the

execution of the code continues.

If the ElectromagnetAxis type is ‘z’, then the WaitForOnTarget() method simply utilizes the built-

in pause() function to stall the program execution for 𝑡𝑠𝑡𝑒𝑝. This means that, when the magnitude of the

magnetic field is changed by the user, it will increment or decrement in steps of 1 and pause for a short

length of time that is determined by whatever speed the user selected.

WaitForOnTarget() uses an analogous approach to handle rotation when the ElectromagnetAxis

type is ‘r’. In this case, the x and y components of the initial magnetic field strength must be modulated

from their current values to the values that fit a vector with the same magnitude but different angle.

This was implemented by applying the following equations in increments of 10° where 𝜃 refers to the

new orientation of the magnetic field:

(8)

22

𝐵𝑥 = ||𝐵|| cos(𝜃)

𝐵𝑦 = ||𝐵||sin (𝜃)

Using these two equations, the x and y components of the magnetic field can be changed

simultaneously to rotate the field while keeping the magnitude constant. WaitForOnTarget(), for objects

with AxTypes of ‘r’, will apply the two preceding equations in 10 degree increments to simulate the

smooth rotation of a magnetic field that was possible with the permanent magnet setup.

WaitForOnTarget() implements these ideas with a while loop with a guard condition that asks

whether the target –either the Turn Controller property TargetTurns for rotation or the

MagnetController.Controller property Target for magnitude -- is sufficiently close to the current value.

In the case of changing the magnetic field’s magnitude, the current is discretized into whole number

values, so that the while loop ends when the target equals the current value. However, in the case of

changing the magnetic field’s orientation, rounding errors when converting from angles to turns and

turns to angles can cause the target and current turn values to not be exactly equal. Therefore, if the

difference is less than 1e-5, the rotation is said to be completed. In the body of the while loop, either

setTurn() or setCurrent() are appropriately called with each iteration, using Δθ values of 10° or change in

current values of 1. Then, the built-in pause function is called with 𝑡𝑠𝑡𝑒𝑝 as its argument. The result is an

approximated speed feature that simulates the continuous changing of the magnetic field found in the

permanent magnet set-up.

Integration of Simple measurements

 There are three measurement sequences predisposed in the permanent magnet program: the

force vs. extension curve, the Chapeau curve, and the temporal recording of the XYZ coordinates of the

23

bead. A force vs. extension measurement gradually increases the strength of the magnetic field by

gradually moving the motor up and down the microscope optical axis and taking data after every step.

Similarly, the Chapeau curve feature turns the magnetic field by some angle and takes data after each

step. Finally, the record XYZ experiment just tracks the position of the beads of interest over time.

During this experiment, the magnetic field strength and orientation can still be manually operated. All 3

of these experiments are features of the permanent magnet program but not the electromagnet

program. However, the record XYZ measurement did not need to be entirely overhauled because it

merely records the positions of the beads of interest and plots them against time; there is no required

interaction with the Current Object nor the Motor Objects.

Force Extension

 In order to incorporate the force vs. extension measurement into the unified electromagnetic

tweezers program, I first made several edits to the window that the user will interact with.

Figure 9: Force extension window through which the user interacts

 I added four data fields to the new GUI shown in Figure 9. The first three are parameters of the

force extension experiment: the initial current, the step size (in whole numbers), and the final current.

24

The fourth parameter is the speed which specifies how quickly the current will change. Then, depending

on the configuration file that is loaded into MultiMTgui_initializeVariables, some of these data fields are

hidden. If the configuration file specifies a motor as the Motor Controller object, then the program

defaults to the traditional permanent magnet GUI and the modifications that I made are grayed out.

Otherwise, the old data fields (initial height, step size, and final height) are hidden and my modifications

are present.

 This was achieved through a simple if/else statement in MultiMTgui_setupForceExtension,

which executes immediately as the window initializes for the first time. Then, when the user presses

‘Start’, MultiMTgui_startForceExtension is executed. In this file, the parameters specified by the user are

grabbed and saved in the handles to the force extension window.

 Finally, I made a parallel file MultiMTgui_FE_ProcessFrame_EM.m that interacts with the

ElectromagnetAxis object to step along the array of currents. If an experiment is running, ProcessFrame

files will execute immediately after the camera captures an image. The purpose of these files is to record

the positions of each bead and perform the appropriate calculations for each experiment. In a force

extension experiment, these calculations include the average magnetic force on the bead – given by

equation (5) – and the average tether length of the DNA molecule – given by equation (3). In order to do

this, MultiMTgui_FE_ProcessFrame_EM initializes persistent variables that have a global scope; they

continue to exist even after the function has finished executing. This way, I kept track of the number of

images the Piezo has taken as well as the current value in the array of currents that we must step

through. After a certain number of frames have been captured – specified by the user – the plots are

updated and the index for the array of currents is incremented and the ElectromagnetAxis setCurrent()

method is called with the new current value. In order to keep the current from changing too rapidly,

WaitForOnTarget() is called to ensure that the magnetic field is changing at the specified rate.

25

Chapeau Curve

 As in the case of the force vs. extension measurement, I began my modifications to the Chapeau

curve experiment by changing the GUI to fit both the permanent magnet and electromagnet setups.

Figure 10: Chapeau curve window that the user interacts with

 In the preceding Figure 10, I only needed to add the angular speed data field to the Chapeau

curve window. This is because a Chapeau curve experiment is performed in universal units of turns of

the magnetic field.

 Once again, I created a parallel MultiMTgui_CC_ProcessFrame_EM.m file that records data from

each captured frame, performs the necessary calculations, and updates the plots. In this case, we are

only interested in how the average height of the bead changes with additional turns, so no further

calculations are necessary. Persistent variables are used to keep track of the number of frames captured

as well as the number of turns of the magnetic field. After a predetermined number of images have

been snapped (specified by the Frames/Step field), the index corresponding to the array of turns is

incremented and the ElectromagnetAxis setTurn() method is invoked. Again, WaitForOnTarget() is called

to ensure that the orientation of the magnetic field changes at the rate requested by the user.

26

Object Oriented Design

 The modifications that I made to the code also improved the object-oriented structure of the

program. Although there was not much of a need to employ the tenets of inheritance and

polymorphism, which define how a subclass may derive and implement its methods from parent classes,

the edits that I made took advantage of abstraction and encapsulation to further promote the

modularity, readability, and reusability of the code. Abstraction and encapsulation refer to the hiding of

complicated details from the user by wrapping functionality in methods and applying the appropriate

access level.

 Much like the existing C843 and C862 packages, the ability to edit the properties of an instance

of my ElectromagnetClass and ElectromagnetAxis classes is limited to code within that package itself.

These properties, such as velocity, current, AxType, and more, are observable but not editable outside

of the ElectromagnetClass directory. As a result, most of the interaction between an ElectromagnetAxis

object and the rest of the magnetic tweezer software must utilize the public methods setTurn() and

setCurrent(). These methods allow the outside program to easily set the strength and orientation of the

magnetic field without worrying about the internal details of how this is achieved. Therefore, this level

of visibility is critical because it maximizes encapsulation and abstraction.

The technical details of how the turns and currents are actually being set are compacted into

single methods where they can be readily accessed and used. Furthermore, these methods have

succinct names that make their purposes and functions easily identifiable to anyone who may be

interested in the code in the future.

Robustness

 With the edits that I have made to the permanent magnet program, the resulting code has

become significantly more robust. The original code was already relatively capable of handling errors

27

and exceptions, especially those engendered by hardware failures. However, the previous version of the

software did not appropriately handle many of the edge cases of the operating parameters. In other

words, the program broke down in the instances where the user would attempt to operate the

electromagnetic tweezers with either extreme or invalid values.

For example, the Turn Controller does not permit step sizes larger than 0.5 turns. If a user

attempted to run an experiment with a step size of 0.6 turns, the program must be able to handle this

exception and default to 0.5 turns.

Below is a list of all the edge cases that have been tested and patched to ensure that the code

does not run into an error when the user specifies either an extreme or invalid parameter:

Motor Controls

• Minimum motor height below 0 mm

• Maximum motor height above 25 mm

• Motor speed above 50 mm/s

• Motor speed below 0.1 mm/s

Electromagnet Controls

• Current above 255

• Current below -255

• Current non-whole number

• Magnetic field strength above 255 arb units

• Magnetic field strength below 0

• Angle above 360 degrees

• Angle below 0 degrees

28

• Turn step size above 0.5 turns

• Turn step size below 0.1 turns

• Current Speed above 510 arb units / s1

• Current Speed below 1 arb unit / s

• Angular Speed above 100 turns / s

• Angular Speed below 0.01 turns / s

Conclusion

Magnetic tweezers are an important tool for single-molecule experimentation that work by

inducing magnetic forces on beads attached to molecules of interest. Electromagnetic tweezers work

through similar principles, except that the magnetic field is generated by current carrying wires rather

than a pair of permanent magnets. They offer many advantages over the traditional magnetic tweezers’

setup, including the lack of physical reverberations due to the translation and rotation of a motor as well

as faster adjustments of the magnetic field’s strength and orientation. However, Emory University’s

current electromagnetic tweezer prototype had a glaring software issue: 2 separate, non-

communicative programs were required to operate a single instrument. With the modifications made to

the permanent magnet GUI, I was able to fully integrate the existing software with the alternative

electromagnet software. Now, both programs launch together, can communicate with one another, and

close together as well. The user has full access to the particle-tracking and data processing components

of the permanent magnet program as well as the magnetic field controls given by the electromagnet

program. This was achieved through the development of a Current Object that is modeled off of the

existing classes that represent the traditional permanent magnet motors. By interacting with this object,

1 Derived from the proportion relating top motor speed and motor height to current speed and magnitude of

current:
50

𝑚𝑚

𝑠

25 𝑚𝑚
=

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑝𝑒𝑒𝑑

255 𝑎𝑟𝑏 𝑢𝑛𝑖𝑡𝑠

29

I made it easier to set the strength and orientation of the magnetic field through methods such as

setCurrent() and setTurn(). Consequently, both programs are able to communicate with each other

through the properties and methods of this class. The result is a single, unified program that can be used

to operate the electromagnetic tweezers in the Finzi-Dunlap lab. What is more, the final program was

developed with increased deference towards object-oriented design through encapsulation and

abstraction. Finally, after rigorous stress-testing of the code, I concluded that all of the potential edge-

cases stemming from the user’s input parameters have been accounted for. As such, the code functions

as intended and can be used to easily operate Emory’s electromagnetic tweezers setup. With a more

compact and user-friendly design, it will be significantly easier to utilize the electromagnetic tweezers to

study DNA transcription, supercoiling, and topography in the future.

In the future, this software could be further improved by porting the entire program to App

Designer, the successor to GUIDE. MATLAB is currently in the process of phasing out GUIDE and any

GUIs built through it may no longer be supported. Therefore, it would be prudent to look into

mechanisms for migrating programs built with GUIDE over to App Designer. In a similar vein, the

program should be version-controlled through Git. During this project, I did not work on a parallel

version of the code. This occasionally created some conflicts with other members of the lab who were

utilizing the electromagnetic tweezers. With version-control, these situations could be sufficiently

minimized. Other areas of improvement include the development of a bead simulation routine –

discussed in the appendix – that simulates the calibration process required to interpret the z-position

data taken by the tweezers during an experiment. This simulation can be integrated with the main

software by prompting the user to either select a simulation or real-world experiment when the

program boots up. Then, the simulation could be further advanced by adding the ability to perform

simple experiments – such as force extension and Chapeau curve – on the simulated beads, giving new

users of the software the ability to play around with the features of the program with mock data. Finally,

30

yet another prompt should be added that asks the user whether or not they would like to use the

electromagnet software or the traditional permanent magnet software. With this prompt, the unified

version of the software could be implemented with other magnetic tweezers setups across Emory’s labs.

31

References

Campbell, N. A. (2017). Biology. In Biology (pp. 335-363). Upper Saddle River: Pearson.

Liu, L. F., & Wang, J. C. (1987). Supercoiling of the DNA template during transcription. Proceedings of the

National Academy of Sciences, 84(20), 7024-7027. doi:10.1073/pnas.84.20.7024

Finzi, Laura, and Wilma K Olson. “The emerging role of DNA supercoiling as a dynamic player in genomic

structure and function.” Biophysical reviews vol. 8,Suppl 1 (2016)

Daniel T. Kovari, David Dunlap, Eric R. Weeks, and Laura Finzi, "Model-free 3D localization with precision

estimates for brightfield-imaged particles," Opt. Express 27, 29875-29895 (2019)

Finzi, L., & Dunlap, D. D. (2010). Single-molecule approaches to probe the Structure, kinetics, and

thermodynamics Of Nucleoprotein complexes that Regulate transcription. Journal of Biological

Chemistry, 285(25), 18973-18978. doi:10.1074/jbc.r109.062612

Charles Dorman, M. D. (2016). DNA supercoiling is a fundamental regulatory principle in the control of

bacterial gene expression. Biophysical Reviews.

Dorman, C. (2019). DNA Supercoiling and Transcription in Bacteria: A Two-Way Street. BMC Molecular

and Cell Biology.

Finzi, L. (2020). Introduction to Magnetic Tweezers.

Piccolo, J. (2021). Solid State Magnetic Tweezer Development.

32

Appendix A – Bead Simulation

Due to the challenges posed by online learning and online research, it was often impossible to

go into the lab and determine if the hardware was properly responding to the software I have

developed. Since I was working remotely for most of the duration of this project, I developed a MATLAB

routine to simulate the presence of a bead in a video frame. BeadSimulation.m was developed in close

association with Dr. Dunlap in order to confirm the validity of the software.

 This bead simulation routine utilizes the sinc function, defined as:

𝑠𝑖𝑛𝑐(𝑥) =
sin(𝜋𝑥)

𝜋𝑥
 (9)

 This formula approximates the point spread function of the microscope and was used to

approximate the image of a “bead” , to calibrate the program. During calibration, a piezoelectric

positioner moves the objective along the vertical axis and snaps a number of images at each height. As it

does this, the tethered beads go further in or out of focus creating an expanding or contracting ring

patterns versus height. A bead without a tether that is fixed to the surface is used as a control to

indicate the focal plane of the glass surface.

 In the preceding code, X and Y are pixel arrays that span the area of the window that displays

the camera’s field of view, A is the amplitude of the oscillation of the sinc function, and B1 and B2 are

33

the periodicities. The argument of the sinc function is the square root of the sum of the squares of each

position. This results in an oscillating circular pattern that is visually comparable to the diffraction

patterns that appear during an actual calibration. Bead 1 is a typical bead with a DNA tether that goes in

and out of focus as the Piezo steps through different heights. This is accomplished by passing the

getimg() function a periodicity that scales with the index of the piezo height array. By contrast, B2 is a

constant periodicity meant to simulate the control bead that is stuck to surface.

Figure 11: Left: Simulated calibration. The reference “bead” is on the upper left and the measurement “bead” is in

the center. Right: A sample diffraction pattern versus displacement scan. In a real experiment, the program uses this

data to interpret z values of the measurement beads.

 In a legitimate experiment, the data produced by calibration (Figure 11, Right) is utilized to

determine how far a bead is out of focus from the camera. Then, the program is able to use this

information as a look-up table to provide information about the relative and absolute heights of the

beads during data processing.

34

Appendix B – Relevant Code

ElectromagnetAxis.m

classdef ElectromagnetAxis < handle
 properties (Access = private)
 Limits = [];
 Velocity = 0;
 Ang_Velocity = 0;
 Current = 0;
 Turns = 0;
 Step_Duration = 0;
 Num_Voltages = 0;
 Num_Turns = 0;
 AxType = '';
 end

 methods (Access = public)
 function this=ElectromagnetAxis(ax_id) % constructor
 this.setAxisType(ax_id);
 end
 function setAxisType(this, ax_id) %set object to correspond to B

field strength or orientation
 if ax_id == 1
 this.AxType = 'r';
 this.Limits = [-inf, inf];
 elseif ax_id == 2
 this.AxType = 'z';
 this.Limits = [-255, 255];
 end
 end
 function WaitForOnTarget(this, hMain) %used to approximate speed
 handles = guidata(hMain);
 target = this.TargetPosition(hMain);
 if this.AxType == 'r'
 current = handles.TM.Turns;
 while abs(target - current)>= 1e-5 %vals are sufficiently

close
 current = handles.TM.Turns;
 pause(handles.TC.StepPeriod);
 end

 elseif this.AxType == 'z' %current already discretized to

smallest possible unit
 pause(this.Step_Duration);
 end
 end

 %setters
 function SetVelocity(this, val)
 if this.AxType == 'r'
 this.Ang_Velocity = val;
 elseif this.AxType == 'z'
 this.Velocity = val;
 end
 end

35

 function SetCurrent(this, val, hMain)
 handles = guidata(hMain);
 current = max(this.Limits(1), min(val, this.Limits(2))); %ensure

valid current
 handles.MC.Controller.Target = [current, current];
 this.Current = current;
 pause(this.Step_Duration);

 end
 function SetTurn(this, hMain, turn)
 handles = guidata(hMain);
 handles.TC.TargetTurns = turn;
 this.Turns = turn;
 if ~handles.TC.Running %start TurnController timer
 handles.TC.start();
 else
 return;
 end

 end
 %getters
 function target=TargetPosition(this, hMain) %get target value
 handles = guidata(hMain);
 if this.AxType == 'r'
 target = handles.TC.TargetTurns;
 elseif this.AxType == 'z'
 target = handles.MC.Controller.Target;
 end
 end
 function current = getCurrent(this)
 current = this.Current;
 end
 function turn = getTurns(this)
 turn = this.Turns;
 end
 function velocity = getVelocity(this)
 if strcmpi(this.AxType, 'r')
 velocity = this.Ang_Velocity;

 elseif strcmpi(this.AxType, 'z')
 velocity = this.Velocity;
 end
 end
 end
 methods (Access = public)
 function Step_Duration = CalculateStepDuration(this, varargin)
 %discretize current/turn to smallest possible value and
 %calculate time per step

 if strcmp(this.AxType, 'r')
 Step_Duration = 1 / Ang_Velocity;
 this.Step_Duration = Step_Duration;
 elseif strcmp(this.AxType, 'z')
 Step_Duration = 1 / this.Velocity;
 this.Step_Duration = Step_Duration;

36

 end
 end

 end
end

ElectromagnetClass.m

classdef (Sealed) ElectromagnetClass < handle
 properties
 Axis = []
 end
 methods (Access = public)
 function this=ElectromagnetClass()
 [MC, TM, TC, ~] = launch_Controller;
 handles.MC = MC;
 handles.TM = TM;
 handles.TC = TC;
 disp("Electromagnetic Set Up is On Its Way!");
 handles.MotorObj = C862class.getInstance();
 handles.MotorObj.ConnectCOM(handles.MotorCOM);
 this.Axis = [ElectromagnetAxis(1), ElectromagnetAxis(2)];
 end

 end

end

SimulateBead.m

function [CalStack, CalStackPos] = SimulateBead(hMain, nPos, nFrames,

CalStack, hBar, CalStackPos)

%% constants
handles = guidata(hMain);
disp(nPos);
pxNoiseSD = 1;
pxNoiseMean = 0;
kT = 4.1;
pN = 2000;
bp = 3000;
cL = 0.34*bp;
extension = 0.7*cL;
pixelCalibration = 7;
fluctuations = sqrt(kT*extension/pN)/pixelCalibration;
x = linspace(0, 1088, 1088);
y = linspace(0, 2048, 2048);
a = 125;
b = 5;
Simulation = figure();
pause('on');
colormap('gray');
colorbar;

37

handles.Simulation = Simulation;
ax = Simulation.CurrentAxes;
for p=1:nPos
 drawnow;
 handles = guidata(hMain);
 img = getimg(a, b*(1+(p/nPos)), b, x, y);
 img = rescale(img, 0, 256);

 for n=1:nFrames
 handles = guidata(hMain);
 CalStackPos(n,p) = p;
 tmp = circshift(img,round(fluctuations*randn),1);
 tmp = circshift(tmp,round(fluctuations*randn),2);
 CalStack{n,p} = tmp + pxNoiseSD.*randn(1088,2048) + pxNoiseMean;
 image(ax, CalStack{n,p});
 end
 waitbar((p/nPos), hBar);
end
delete(hBar);
close(Simulation);
guidata(hMain, handles);

end

function R = getimg(A, B1, B2, X, Y)
R = zeros(1088, 2048);
for i = 1:1088
 for j = 1:2048
 bead1 = sqrt((X(i)-544)^2 + (Y(j)-1044)^2);
 bead2 = sqrt((X(i)-272)^2 + (Y(j)-522)^2);
 R(i,j) = A*sin(pi*bead1/B1)/(pi*bead1/B1) +

A*sin(pi*bead2/B2)/(pi*bead2/B2);
 end
end
end

38

MultiMTgui_FE_ProcessFrame_EM.m

function MultiMTgui_FE_ProcessFrame_EM(hMain,X,Y,Z_REL,Z_ABS,dZ,UsingTilt)

handles = guidata(hMain);
fehandles = guidata(handles.hFig_ForceExtension);

if ~handles.ExperimentRunning
 return;
end

%% init persistent vars
persistent CurrentFrame;
persistent CurrentStep;
persistent Xacc;
persistent Yacc;
persistent dZacc;

%errorbar handles for figs
persistent hEBs_LvCurrent;
persistent hEBs_FvCurrent;
persistent hEBs_FvL_EM;

persistent Fx;
persistent avgL;
persistent stdL
persistent FxErr;

if isempty(CurrentFrame)
 CurrentFrame = 1;
end
if isempty(CurrentStep)
 CurrentStep = 1;
end
if isempty(Xacc)
 Xacc = NaN(handles.FE_FrameCount,handles.num_tracks);
end
if isempty(Yacc)
 Yacc = NaN(handles.FE_FrameCount,handles.num_tracks);
end
if isempty(dZacc)
 dZacc = NaN(handles.FE_FrameCount,handles.num_tracks);
end

if isempty(Fx)
 Fx = NaN(handles.FE_NumVoltages,handles.num_tracks);
 avgL = NaN(handles.FE_NumVoltages,handles.num_tracks);
 stdL = NaN(handles.FE_NumVoltages,handles.num_tracks);
 FxErr = NaN(handles.FE_NumVoltages,handles.num_tracks);
end

%% update title
handles.MMcam.haxImageAxes.Title.String = ...
 sprintf('Current (PWM): %0.2f; Frame Count %i/%i',...
 handles.FE_Voltage(CurrentStep),...

39

 CurrentFrame,...
 handles.FE_FrameCount);

%% xyz data
Xacc(CurrentFrame,:) = X;
Yacc(CurrentFrame,:) = Y;

%RefID = [handles.track_params.ZRef];
dZacc(CurrentFrame,:) = dZ;%Z_ABS(RefID) - Z_REL;

%% setup record
thisRecord.Date = handles.MMcam.clkImageTime;
thisRecord.Step = CurrentStep;
thisRecord.FrameCount = CurrentFrame;
thisRecord.ObjectivePosition = handles.obj_zpos;
thisRecord.MagnetHeight = handles.mag_zpos;
thisRecord.MagnetRotation = handles.mag_rotpos;

thisRecord.Current = handles.CurrentObj.Axis(2).getCurrent();
thisRecord.Turns = handles.CurrentObj.Axis(2).getTurns();
thisRecord.Velocity = handles.CurrentObj.Axis(2).getVelocity();

thisRecord.X= X;
thisRecord.Y = Y;
thisRecord.Z_REL = Z_REL;
thisRecord.Z_ABS = Z_ABS;
thisRecord.dZ = dZ;
thisRecord.UsingTilt = UsingTilt;

mtdat_writerecord(handles.FE_FileID,handles.FE_Record,thisRecord);
CurrentFrame = CurrentFrame + 1;

if CurrentFrame > handles.FE_FrameCount
 stopCamera(hMain);
 CurrentFrame = 1;
 %captured all frames in this step

 Xacc = Xacc*handles.PxScale;
 Yacc = Yacc*handles.PxScale;
 varX = nanvar(Xacc,0,1);
 %mean shift
 Xacc = bsxfun(@minus,Xacc,nanmean(Xacc,1));
 Yacc = bsxfun(@minus,Yacc,nanmean(Yacc,1));
 %tether length
 L = sqrt(Xacc.^2 + Yacc.^2 + dZacc.^2);
 %stats

 %varY = nanvar(Yacc,0,1);
 avgL(CurrentStep,:) = nanmean(L,1);
 stdL(CurrentStep,:) = nanstd(L,0,1);

 %RefTrks = find(strcmpi('Reference',{handles.track_params.Type}));

40

 %avgL(CurrentStep,RefTrks) = NaN;
 %stdL(CurrentStep,RefTrks) = NaN;

 %force
 kBT=1.380648813e-23*(273.15+handles.Temperature)*10^6;
 Fx(CurrentStep,:) = kBT*avgL(CurrentStep,:)./varX*10^12;
 FxErr(CurrentStep,:) = kBT*stdL(CurrentStep,:)./varX*10^12;

 %% Plot Data
 [~,filename,~] = fileparts(handles.FE_File);
 MeasTrks = find(strcmpi('Measurement',{handles.track_params.Type}));
 MeasTrkNames = cell_sprintf('Trk %d',MeasTrks);
 nMeas = numel(MeasTrks);
 if fehandles.hChk_FE_PlotLvCurrent.Value
 if isempty(hEBs_LvCurrent) || any(~isvalid(hEBs_LvCurrent)) ||

numel(hEBs_LvCurrent)~=nMeas
 try
 delete(hEBs_LvCurrent);
 catch
 end
 [hEBs_LvCurrent,hAx,~,hFig] = errorbar_selectable(...
 repmat(reshape(handles.FE_Voltage,[],1),1,nMeas),...
 avgL(:,MeasTrks),...
 [],[],...
 stdL(:,MeasTrks),stdL(:,MeasTrks),...
 MeasTrkNames);
 hAx.Title.String = 'Length vs Current';
 xlabel(hAx,'Current [PWM]');
 ylabel(hAx,'Avg. Tether Length [µm]');
 hFig.Name = [filename,' Length v Current'];
 hFig.NumberTitle = 'off';
 hold(hAx, 'on');
 else
 for n=1:nMeas
 hEBs_LvCurrent(n).YData = avgL(:,MeasTrks(n));
 hEBs_LvCurrent(n).XData = reshape(handles.FE_Voltage,[],1);
 hEBs_LvCurrent(n).YLowerData = stdL(:,MeasTrks(n));
 hEBs_LvCurrent(n).YUpperData = stdL(:,MeasTrks(n));
 end
 end
 end
 if fehandles.hChk_FE_PlotFvCurrent.Value
 if isempty(hEBs_FvCurrent) || any(~isvalid(hEBs_FvCurrent)) ||

numel(hEBs_FvCurrent)~=nMeas
 try
 delete(hEBs_FvCurrent);
 catch
 end
 [hEBs_FvCurrent,hAx,~,hFig] = errorbar_selectable(...
 repmat(reshape(handles.FE_Voltage,[],1),1,nMeas),...
 Fx(:,MeasTrks),...
 [],[],...
 FxErr(:,MeasTrks),FxErr(:,MeasTrks),...
 MeasTrkNames);
 hAx.Title.String = 'Force vs Current';
 xlabel(hAx,'Current [PWM]');

41

 ylabel(hAx,'Force [pN]');
 %set(hAx,'yscale','log');
 hFig.Name = [filename,' Force v Current'];
 hFig.NumberTitle = 'off';
 hold(hAx, 'on');
 else
 for n=1:numel(hEBs_FvCurrent)
 hEBs_FvCurrent(n).YData = Fx(:,MeasTrks(n));
 hEBs_FvCurrent(n).XData = reshape(handles.FE_Voltage,[],1);
 hEBs_FvCurrent(n).YLowerData = FxErr(:,MeasTrks(n));
 hEBs_FvCurrent(n).YUpperData = FxErr(:,MeasTrks(n));
 end
 end
 end
 if fehandles.hChk_FE_PlotFvL_EM.Value
 if isempty(hEBs_FvL_EM) || any(~isvalid(hEBs_FvL_EM)) ||

numel(hEBs_FvL_EM)~=numel(MeasTrks)
 try
 delete(hEBs_FvL_EM);
 catch
 end
 [hEBs_FvL_EM,~,~,hFig] = ForceExtension_selectable(...
 avgL(:,MeasTrks),...
 Fx(:,MeasTrks),...
 stdL(:,MeasTrks),...
 FxErr(:,MeasTrks),...
 MeasTrkNames);
 hFig.Name = [filename,' Force v Length'];
 hFig.NumberTitle = 'off';
 hold(hAx, 'on');
 else
 for n=1:numel(hEBs_FvL_EM)
 hEBs_FvL_EM(n).XData = avgL(:,MeasTrks(n));
 hEBs_FvL_EM(n).YData = Fx(:,MeasTrks(n));
 hEBs_FvL_EM(n).XLowerData = stdL(:,MeasTrks(n));
 hEBs_FvL_EM(n).XUpperData = stdL(:,MeasTrks(n));
 hEBs_FvL_EM(n).YLowerData = FxErr(:,MeasTrks(n));
 hEBs_FvL_EM(n).YUpperData = FxErr(:,MeasTrks(n));
 end
 end
 end

 %increment step
 CurrentStep= CurrentStep +1;
 if CurrentStep >handles.FE_NumVoltages
 MultiMTgui_stopForceExtension(hMain);
 else
 if handles.FE_Voltage(CurrentStep) ~=

handles.CurrentObj.Axis(handles.magzaxis).TargetPosition(hMain)
 if handles.FE_Voltage(CurrentStep) >

handles.FE_Voltage(CurrentStep-1)
 for

i=handles.MC.Controller.Target+1:handles.FE_Voltage(CurrentStep)
 handles.CurrentObj.Axis(handles.magzaxis).SetCurrent(i,

hMain);

42

 end
 elseif handles.FE_Voltage(CurrentStep) <

handles.FE_Voltage(CurrentStep-1)
 for i=handles.MC.Controller.Target-1:-

1:handles.FE_Voltage(CurrentStep)
 handles.CurrentObj.Axis(handles.magzaxis).SetCurrent(i,

hMain);
 end
 end
 end
 end
 startCamera(hMain);
end

end

