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Abstract

Methods for Addressing Spatial Correlations in Functional

Neuroimaging Data

By

Gordana Derado

Neuroimaging studies yield massive data sets that pose challenges for statistical
analyses due, in part, to the intricate anatomical and functional properties of neurons.
Our main objective is to uncover aspects of the complex spatial relationships present
in functional neuroimaging data and to develop statistical methods that either eval-
uate or leverage those correlations. We propose the following methods to achieve our
research goal: (i) a novel statistical approach to model the complex spatio-temporal
structure of neuroimaging data, (ii) a method to evaluate the level of connectivity
within functionally defined neural processing networks and (iii) a novel prediction
framework for neuroimaging data based on a hierarchical Bayesian spatial model.

To date, there has been limited research on simultaneously modeling spatial cor-
relations between the neural activity in distinct brain locations and temporal correla-
tions between repeated neural activity measurements. We propose a spatio-temporal,
autoregressive model which simultaneously accounts for spatial dependencies between
voxels within the same anatomical region and for temporal dependencies between a
subject’s estimates from multiple sessions. We illustrate the application of our method
using fMRI data from a cocaine addiction study.

Data-driven statistical approaches, such as ICA and cluster analysis, help to iden-
tify neural processing networks exhibiting similar patterns of activity. These ap-
proaches, however, do not quantify or statistically test the strength of the within-
network relatedness between voxels. We adapt Moran’s I statistic for applicability to
our neuroimaging analyses to measure the degree of functional autocorrelation within
identified neural processing networks and to evaluate the statistical significance of the
observed associations. We illustrate the use of our methodology with data from an
fMRI resting-state study of unipolar depression and a PET study of working memory
among individuals with schizophrenia.

Recently there has been growing interest in the use of neuroimaging data as a tool
for classification and prediction. We propose a novel Bayesian hierarchical framework
for predicting follow-up neural activity based on the baseline functional neuroimaging
data. The proposed model is multivariate and captures the correlations between
brain activity at different scanning sessions. We illustrate the use of our proposed
methodology with PET data from a study of Alzheimer’s disease.
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Chapter 1

Introduction

1.1 Overview

Advances in neuroimaging technology such as functional magnetic resonance imaging

(fMRI), positron emission tomography (PET), and diffusion tensor imaging (DTI),

have revolutionized our understanding of the human brain. The development of these

neuroimaging techniques has given researchers an opportunity for in-depth investi-

gations into both the anatomy and the function of the human brain. Neuroimaging

plays an increasingly important role in the diagnosis, therapeutic monitoring, and

scientific investigation of different neurologic and psychiatric disorders. Neuroimag-

ing studies yield massive data sets that pose challenges for statistical analyses due, in

part, to the intricate brain neurophysiology. The functional organization of the brain

is based on information processing properties of specialized cells (neurons) and the

complex and malleable modes of their interconnectivity. Our main objective was to

study aspects of the complex spatial relationships present in functional neuroimaging

data and to develop new statistical methods that provide accurate inference in the

presence of associated patterns and correlations.

The dissertation is organized as follows: The remainder of Chapter 1 provides
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background info on the human brain, various neuroimaging technologies, and standard

methods of statistical analyses and also outlines our proposed research objectives.

Chapter 2 presents a novel statistical approach to model the complex spatio-temporal

structure of neuroimaging data. Chapter 3 presents methods to evaluate the level of

connectivity within functionally defined neural networks, and Chapter 4 presents a

novel prediction framework for neuroimaging data.

1.2 An Introduction to Organization of the Hu-

man Brain

Basic Neuroanatomy. The brain is the center of the human nervous system and

constantly receives, interprets, and directs sensory information and organizes motor

and other responses throughout the body. The human brain has intricate structure

and function and has been the target of scientific inquiry for centuries. The largest

and uppermost section of the brain, operating at the highest functional level, is called

the cerebrum. The cerebrum consists of two hemispheres that communicate with each

other by a thick bundle of fibers called the corpus callosum. The right hemisphere

controls the left side of the body and vice-versa. Each hemisphere is covered by a

thick layer (1.5mm to 5mm) of gray matter called the cerebral cortex. The cerebral

cortex is heavily folded, resulting in ridges called gyri and grooves called sulci. A

cerebral hemisphere can be divided into four lobes: frontal, parietal, temporal, and

occipital (Figure 1.1 (a)), each of which specializes in different functions. The cerebral

cortex is connected to numerous subcortical structures such as the thalamus, the basal

ganglia, hypothalamus, cerebellum, and the brainstem.

Neuroscientists use several terms to describe orientation, some of which are il-

lustrated in Figure 1.1 (b). The following terms are used to describe direction in

the brain: rostral/anterior means front or head end; caudal/posterior means hind
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(a) (b)

Figure 1.1: (a) Principal fissures and lobes of the cerebrum viewed later-
ally, from Anatomy of the Human Body, the 1918 edition, available on-line at
www.bartleby.com/107 (Gray, 1918). (b) The axes of the central nervous system.

or tail end; dorsal means back or top side; ventral means belly or bottom side; lat-

eral means away from the midline, medial means toward the midline. We typically

view neuroimaging scans in three orthogonal planes referred to as axial (transverse

or horizontal), coronal, and sagittal (see Figure 1.2).

The functional cellular unit of the central nervous system is a nerve cell or neuron.

Brain tissue is divided into two types: gray matter and white matter. Grey matter

contains neural cell bodies, in contrast to white matter, which mostly contains myeli-

nated axons (myelin is a collection of lipid fats and proteins that sheaths the axons).

The color difference arises mainly from the white color of myelin.

Brain Atlases and Coordinate Systems. When group studies using functional imag-

ing data are performed, the individual brain images are usually transformed into a

common coordinate space to accomodate the variation. The Talairach space and

the Montreal Neurological Institute (MNI) space are the two most widely used atlas

spaces in the neuroscience community. The Talairach coordinate system is based on a
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stereotaxic atlas of the human cerebral cortex published by Talairach and Tournoux

(Talairach and Tournoux, 1988). It is related to anatomical landmarks and specifies

locations relative to their distance from the midpoint of a brain white matter struc-

ture called the anterior commissure (AC) - a small but easy to spot region. Each

location is described by three numbers which describe the distance in millimeters

from the AC: x is the left/right dimension, y is the posterior/anterior dimension, and

z is the ventral/dorsal dimension. In this atlas the axial slices are referred to by their

z coordinate, coronal by their y coordinate, and sagittal by their x coordinate. The

atlas is based on one brain, a brain of a 60-year-old French woman.

Figure 1.2: Planes of Brain Sections.

The MNI defined a new standard brain by using a large series of MRI scans of

healthy normal controls (Evans et al., 1993). These atlases differ in shape and size.

For example, the Talairach brain is considerably smaller than the average brain by up

to 10 millimeters in each dimension. Software packages are available to approximately

convert one coordinate system to the other.
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1.3 Functional Neuroimaging

Neuroimaging is traditionally divided into structural and functional imaging. Struc-

tural imaging maps the brain anatomy and includes computed tomography (CT) and

MRI. Functional techniques seek to examine the physiological properties of the brain,

either at rest or during task-induced activation. A variety of methods allow mapping

of human brain functioning. PET and fMRI measure localized changes in cerebral

blood flow (referred to as activations) that accompany neuronal activity with rela-

tively high spatial resolution (≤ 1mm), but with temporal resolution (2-20 sec) limited

by the much slower rate of brain regional blood flow and blood oxygenation. In con-

trast, techniques such as electroencephalography (EEG) and magnetoencephalogra-

phy (MEG) map the underlying electrical activity of the brain cortex. These methods

allow high temporal resolution of neural processes, but have poor spatial resolution

(over 1 cm).

While each modality is interesting in its own right, in this dissertation we focus and

introduce new statistical methods applied to fMRI and PET data. In the following

two sections, we give a brief description of the main principles on which these two

neuroimaging techniques are based. In this dissertation we concentrate on how they

are applied to human brain neuroimaging.

1.3.1 Functional Magnetic Resonance Imaging (fMRI)

As opposed to PET, which requires the use of radioactive markers, fMRI is a relatively

safe and non-invasive technique for generating maps of and studying brain activity.

fMRI data consist of a 3-D sequence of individual magnetic resonance (MR) images

- a “movie” of a subject’s brain activity. To understand the principles of fMRI, we

need to understand how individual MR images are acquired. Below, we present a

brief overview of the principles of MRI.
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1.3.1.1 Basic Principles of MRI.

“MRI is based on ability of organic tissue, placed in a magnetic field, to absorb

energy from radio waves, and then re-emit it, in proportion to mobile hydrogen ion

concentration” (Higgins, 1996). The basis of this process is an interaction between

radio waves and atomic nuclei called nuclear magnetic resonance (NMR). To obtain

an MR image, a subject is placed in a field of a large electromagnet (generally from

1.5 to 4.0 Tesla). The magnetic field aligns the magnetization of hydrogen atoms in

the brain. (Since much of the human brain is water, hydrogen nuclei are abundant,

which makes them ideal candidates for brain imaging studies.) A hydrogen nucleus

whose spin is oriented parallel to the applied magnetic field is said to be relaxed or

in the low energy state, while a nucleus whose spin is oriented against the magnetic

field is is said to be in an excited or high energy state. The scanner injects a pulse

of radio frequency (RF) to excite the nuclei and raise them out of their low energy

states. Upon removal of the RF pulse, the hydrogen nuclei return to their original

aligned position (i.e., lower energy states), and in doing so, emit RF energy measured

by the scanner. If the frequency of the input radio waves equals the natural resonance

frequency (the Larmor frequency) of the element in the magnetic field, the tissue will

absorb the radiation and when radio waves are turned off, it will emit a return signal

of the same frequency, but lesser amplitude. If the frequency does not match the

natural resonance of the element, the element will neither resonate nor send a signal.

The emission of this RF signal is the MRI signal that is recorded in fMRI studies.

Devices (coils) that can generate additional small local magnetic field gradients are

used to slightly shift the Larmor frequency across brain areas and the scanner to

recognize the location of the signal by its frequency.

By adding RF or gradient pulses and carefully choosing their timing, it is possible

to highlight different characteristics of the imaged tissue. In general, MRI maps the

water distribution in the brain. However, the useful contrast in MR images comes not
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only from spatial variation in the density of water, but also from differences in nuclear

magnetic properties known as relaxation. They are characterized by distinct rates or

relaxation times, used in MRI to distinguish between tissue types. Three relaxation

times are of primary interest in MRI: T1, T2 and T ∗
2 . T1 effects measure recovery of

longitudinal magnetization (parallel to the main magnetic field), while T2 refers to

decay of transverse magnetization (perpendicular to the main magnetic field). T1 time

refers to interval where 63% of longitudinal magnetization is recovered, and T2 time

refers to the interval where only 37% of original transverse magnetization is present.

T2 decay results from inherent, random variations in the precession of individual

protons. However, large-scale inhomogeneities in the magnetic field can also produce

differences in precession frequency, resulting in signal reduction. When T2 dephasing

(which occurs as the protons gradually fall out of phase in their precession) is due

to to one or more localisable sources, it is referred to as as T ∗
2 . So, T2 has only one

reason for dephasing and is intrinsic to tissue type (e.g. different T2 of cerebral spinal

fluid and fat), while T ∗
2 dephasing includes true T2 as well as field inhomogeneity

and tissue susceptibility. (The magnetic field inhomogeneity can result from the

microscopic magnetic field gradients resulting from an increase in blood oxygenation.

More detail will be given in the next section.) fMRI is a T ∗
2 image.

The raw data obtained from an MRI scanner are collected in the frequency domain.

The inverse Fourier transform is then used to transfer the data into image space, where

data analysis is performed.

1.3.1.2 Principles of fMRI

fMRI relies on hemodynamic correlates of neural activity, not the activity itself.

It is most commonly performed using blood oxygenation level dependent (BOLD)

contrast (Ogawa et al., 1990). The activation signal measured with BOLD fMRI is

indirectly measuring changes in the concentration of paramagnetic deoxyhemoglobin
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(hemoglobin without bound oxygen molecules) which arise from an increase in blood

oxygen utilization in the vicinity of neuronal firing.

fMRI is possible because of two basic phenomena. The first is the fact that

regional changes in brain activity are associated with local changes in blood flow and

blood oxygenation in the brain (collectively known as hemodynamics). The second

phenomenon is the ability of paramagnetic agents to produce contrast in the MR

signal. (Paramagnetism is the ability of an otherwise nonmagnetic material to exhibit

magnetic properties in the presence of magnetic field.)

The physiological basis of BOLD fMRI. When a subject performs a behavioral

task, for example a repetitive finger-tapping task, neuronal networks involving mul-

tiple brain regions are activated. These collections of neurons require large amounts

of energy as adenosine triphosphate (ATP) to sustain their metabolic activity. Since

the brain does not store its own energy, increased blood flow is required to deliver the

necessary glucose and oxygen (which is bound to hemoglobin) to meet this metabolic

demand. There is a disproportionate increase in regional cerebral blood flow (CBF)

relative to the cerebral oxygen metabolic rate in response to neuronal activation (e.g.,

30% vs. 5%). This results in a decreased oxygen extraction fraction (more oxygen sup-

ply than consumption) and hence local ‘hyperoxygenation’ – a surfeit of oxygenated

blood.

Biophysics of BOLD signal. The reduced oxygen extraction leads to an increase

in the ratio of oxygenated hemoglobin (oxy-Hb) to deoxygenated Hb (deoxy-Hb) in

the region of neural activation. Deoxy-Hb is slightly paramagnetic relative to brain

tissue while oxy-Hb is dimagnetic. Because of its paramagnetic properties, deoxy-

Hb has the effect of suppressing the MR signal, while oxy-Hb does not. Presence of

deoxy-Hb causes microscopic magnetic field inhomogeneities (gradients) which leads

to distractive interference from signal within the tissue element called voxel (a unit

of 3D volume). This process tends to shorten the T ∗
2 relaxation time. As oxygen ex-
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traction falls with increased local blood flow in a region of greater neuronal activity,

the T ∗
2 becomes longer and the MRI signal intensity increases relative to the base-

line state. The image intensity that varies with deoxy-Hb content has been termed

Blood Oxygenation Level Dependent (BOLD) and was suggested for potential use in

functional study of the brain by Ogawa et al. (1990).

Basic parameters of image acquisition. There are many imaging design parameters

(fixed at the beginning of the study) which control the spatial and temporal resolution

of the data and image quality in general. The most important intrinsic parameters,

which affect the signal measured at each voxel, are the repetition time (TR) and echo

time (TE). TR is the time, in milliseconds (ms), between successive applications of

RF pulses to a particular volume of tissue. It is impossible to measure the signal

immediately after the RF is applied, due to hardware limitations. The short waiting

time (also measured in ms’s) during which the peak signal is obtained is called TE.

The most common imaging sequence used in fMRI is the fast method of echo

planar imaging (EPI), which allows collection of whole brain data in a few seconds

or less.

1.3.2 Positron Emission Tomography (PET) Imaging

PET is a nuclear imaging technique for mapping brain function, or other molecular

processes in the body. It measures emissions related to positron decay from radioac-

tively labeled chemicals that have been injected into the bloodstream and generates

images of the distribution of the radio chemicals throughout the brain and body.

PET is also not an exact measure of brain function. It depends upon certain

assumption about what happens when an area of the brain becomes active: 1) cerebral

metabolism requires glucose metabolism, which requires oxygen from blood flow, i.e.

in parts of the brain that are more active there is more blood flow; 2) cerebral blood

flow varies locally with corresponding local variations in neural activity.
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In PET, images of the brain’s activity are generated by tracking the brain’s use

of a radioactively tagged compound, such as glucose, oxygen or a particular drug.

A machine called a cyclotron (used to accelerate charged particles to high energies)

is used to tag the specific substance with small amounts of radioactivity. Before

scanning, the labeled compound (called a radiotracer) is injected into the subject’s

bloodstream (or inhaled). When the tracer gets into the bloodstream, it goes to

areas of the brain that use it, while the subject is engaged in some type of mental

activity. So, oxygen and glucose accumulate in brain areas that are metabolically

active. When the radioactive material decays, it gives off a neutron and a positron.

When a positron hits an electron, both are destroyed and two gamma rays are released

approximately 180◦ opposed to each other. Sensors in the PET scanner detect and

record the brain area where the gamma rays are emitted. By reconstructing the sites

of the positron-electron collisions, the location of active regions can be imaged. A

computer uses the data gathered by the sensors to construct multicolored 2- or 3-

dimensional images that show where the compound is in the brain. Different colors

or degrees of brightness on a PET image represent different levels of tissue or organ

function. This method hence provides a functional view of the brain.

PET has very high biochemical sensitivity and selectivity (which allow probing

the neurochemical processes at the molecular level), but its temporal and spatial

resolution are inferior to that of fMRI. The mean free path of the positrons in brain

tissue limits the spatial resolution of PET scanning to about 4 mm. However, PET

images can be superimposed on subject’s MRI images, providing detailed information

about specific brain areas involved in a wide variety of functions. Spatial resolution

of PET data depends upon several other factors: the size and type of the crystal

used in the scanner scintillator to detect the gamma radiation emission, the energy

of the positron emitted etc. Temporal resolution depends mainly upon half-life of

the isotope. Safety regulations require to wait 5 half-lives between injecting the
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radioactive tracers.

Experimental Design. In a typical PET experiment, a brain scan is taken during

a control task (e.g., resting with eyes closed). The control task is compared to brain

scan taken while the subject is exposed to the experimental treatment or performing

the experimental task. To determine the brain activity that can be attributed to the

experimental condition, the difference between the PET scans is calculated.

1.4 Analysis of Functional Neuroimaging Data

Typical objectives in the analysis of functional neuroimaging data are sought through

the following: (i) activation studies attempt to localize particular brain regions that

are source(s) of task-related neural processing, (ii) connectivity studies seek to iden-

tify what brain areas show similar patterns of activity over time, yielding distributed

networks of brain function, and (iii) prediction studies try to use neuroimaging scans

to predict future behavioral, psychological, or cognitive outcomes, or to classify sub-

groups of individuals (e.g. for diagnostic purposes).

Data from a functional neuroimaging study consist of a series of 3-D images, typi-

cally obtained while the subject performs a certain cognitive, behavioral or emotional

task, or while at rest. In an fMRI study, typically hundreds of such 3-D images are

obtained, taken approximately 2-4 seconds apart. In a PET study, the number of

scans is significantly smaller (the maximum number of scans per subject is limited

due to the total isotope dose allowed), and the brain images are obtained much less

frequently. Each 3-D image comprises of a large number (> 100,000 in an fMRI study;

usually smaller for PET) of voxels. In addition, the experiment may be repeated for

the same subject, as well as for multiple subjects. Because of the neurophysiology

of the network organization of the brain, spatial correlations are very likely. Also,

temporal correlations (both within and between scanning sessions) are present due
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to repeated scanning.

To reduce artifacts caused by the scanner and subject movement, and to map indi-

vidual brains to a standard brain atlas (when performing group analysis and making

population inference), the functional scans undergo several preprocessing steps before

statistical analysis.

1.4.1 Preprocessing Pipeline

The main steps involved in fMRI preprocessing are: slice timing correction (shifting

each voxel’s time course so that we can assume they were measured simultaneously),

realignment (to correct for motion; usually a rigid body transformation using 6 vari-

able parameters is used), coregistration of structural and functional images (to map

the results obtained from functional data to a high resolution structural image for pre-

sentation purposes), normalization (important in group analysis, attempts to register

each subject’s brain to a standard template brain (see Section 1.2), it is commonly

done using non-linear transformations to match local features), and spatial smoothing

(typically done by convolving the functional images with a Gaussian kernel). Spatial

smoothing is done for several reasons: it may improve inter-subject registration, it

ensures that the assumptions of the random field theory (often used for multiple test-

ing correction) are satisfied, and to increase signal to noise ratio. However, spatial

smoothing causes a loss of acquired data and may introduce artificial spatial corre-

lations between nearby voxels. Preprocessing steps and the order in which they are

performed are important since they affect both the spatial and temporal correlation

structure of the data.

We refer to Woods et al. (1998)a and Woods et al. (1998)b for the details on the

preprocessing steps for PET data.
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1.4.2 Statistical Modeling for Activation Studies

The general objective of activation studies is to identify brain locations that are

involved in the neural processing associated with tasks that subjects perform while

in the scanner and possibly to compare these neural processing traits between tasks

or between subgroups of individuals. Commonly, a two-stage statistical modeling

procedure is used, consisting of single subject analysis at stage 1 and a group level

model at stage 2. We present the modeling procedure in context of fMRI data, and

PET analyses proceed using a similar framework. To set the notation, assume that

the data consist of a brain volume of V voxels (indexed by v = 1 . . . , V ), repeatedly

measured at T time points (indexed by t = 1, . . . , T ). In addition, assume that the

experiment is repeated for K subjects (indexed by i = 1, . . . , K).

1.4.2.1 Single-Subject Analysis

The first stage of the model characterizes distributed brain activity associated with

various experimental conditions, separately for each individual. A single subject

model for fMRI activation in a single voxel can be expressed as

yiv(t) =
L∑

l=1

xivl(t)Bivl +
M∑

m=1

hivm(t)νivm + εiv(t), (1.1)

for v = 1, . . . , V , i = 1, . . . , K and t = 1, . . . , T . Here yiv(t) represents the mea-

sured fMRI signal at time t for voxel v and subject i; xvil represents the task-related

BOLD response (the signal of interest) corresponding to l-th condition at time t;

and hivm represents the contribution of the nuisance parameters (such as high-pass

filtering parameters - to remove the drift component typically present due to scanner

instabilities, periodic fluctuations due to heart rate and respiration, and head mo-

tion) at time t. The terms Bivl and νivm represent the unknown amplitude of xivl

and hivm and εiv(t) represents the noise process. Typically, the relationship between
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stimuli and BOLD response is modeled using a linear time invariant system where

the stimulus acts as the input and the hemodynamic response function (HRF) as the

impulse response function. In a linear system framework the signal x(t) is modeled

as the convolution of a stimulus function s(t) and the hemodynamic response f(t),

i.e. x(t) = (s ∗ f)(t) =
∫∞

0
s(u)f(t− u) du.

In summary, (1.1) can, for most fMRI experiments, be represented in matrix form

as

yi(v) = XivBi(v) + Hivνi(v) + εi(v), (1.2)

where εi(v) is usually assumed to follow an AR(2) process. Here we arranged the

serial BOLD fMRI responses for subject i in the vector yi(v) = (yiv1, . . . , yivT )′ (at a

given voxel location). Xiv is a T ×L matrix with columns corresponding to predicted

BOLD response for each condition l, and Bi(v) = (Biv1, . . . , βivL)′. If, for example,

the nuisance matrix represents a drift, modeled using a pth order polynomial function,

then νi(v) = (νvi1, . . . , νvip)
′. Hiv is a T × p matrix with columns corresponding to

the polynomial functions.

The general linear model (GLM)(Worsley and Friston, 1995; Friston et al., 2002)

is the most popular way to analyze the single subject fMRI data. The GLM as-

sumes that the HRF is known apriori. If, in addition, the stimulus function vl(t) is

known and equivalent to experimental paradigm (for example: a vector of zero’s and

one’s, representing times when the signal is ‘off’ and ‘on’, respectively), then (1.2)

becomes a standard multiple regression model with known signal components and

unknown amplitudes. HRF is usually modeled using a canonical HRF, typically a

gamma function or a difference between two gamma functions. The BOLD response

is summarized in the design matrix Xiv, containing separate columns for each of the

l predictors. The parameters Bi(v) and νi(v) represent subject specific effects cor-

responding to Xiv and Hiv, respectively. The vector εi(v) denotes random errors
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representing characteristics of the measurement process that are unaccounted for by

the model, and we assume that the errors follow a zero-mean multivariate normal

distribution εi(v) ∼ N(0, σ2
i (v)I), where σ2

i (v) is the error variance at voxel v.

After fitting the model, a contrast vector c can be defined to test for an effect

θi = c′Bi. For example, we can test for the increased brain activity during the

‘on’ signal versus during the ‘off’ signal. Hypothesis testing can be performed in a

usual way: individual model parameters can be tested using a t-test and subset of

parameters using a partial F -test.

1.4.2.2 Multi-Subject (Group Level) Analysis

Typically, multi-subject analysis of fMRI data from an activation study is performed

using hierarchical models, which provide a framework for performing mixed-effects

analysis.

The stage 2 model combines the subject-specific effects Bi(v) from equation (1.2)

to estimate the associated group level or population parameters. The second level

model can then be written as

Bi(v) = Wivβ(v) + ei(v) (1.3)

where Wiv is the second-stage design matrix that often consists of subject-specific

characteristics and β(v) contains the group level parameters representing the effects

related to different sessions or the effects associated with different subpopulations (e.g.

treatment groups). Often, the interest is in making inferences about the differences

between sessions/groups. A common approach is to obtain θi from the single subject

analysis and then model it in terms of the corresponding group level parameter.
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1.4.3 Data-driven Descriptive Analysis Methods

Data-driven approaches to the analysis of functional neuroimaging data employ pattern-

based exploratory methods to “characterize” the nature of the signal present in the

data. A lot of recent work regarding the analysis of brain imaging data has focused on

examining functional connectivity of the human brain. Functional connectivity has

been defined as the temporal correlation between spatially remote neurophysiologic

events. For example, Independent Component Analysis (ICA) and cluster analysis

attempt to divide the brain into different functional networks involved in performing

certain tasks or characterizing a “default mode” of the resting-state brain.

1.4.3.1 Clustering

Cluster analysis uses PET or fMRI data to help identify dissociable networks or

clusters, each consisting of voxels that show correlated patterns of measured brain

activity. These clustering solutions do not define the underlying neuroanatomical

connections, but instead identify functional associations between voxels. Ideally, in-

tracluster voxels should exhibit high functional (or spatial) autocorrelation, validating

that the neural responses within clusters are functionally related.

Clustering procedures classify the V voxels in an image into G groups, with each

cluster consisting of Vg voxels, where g = 1, . . . , G and V =
∑G

g=1 Vg. Most methods

classify voxels by measuring the distance (dissimilarity) between the activity time

courses for every pair of voxels and combining voxels with small distances. Two

typical dissimilarity measures are Euclidean and Mahalonobis distances, which are

easy to compute and naturally interpretable.

Numerous investigators have proposed the use of clustering methods for neu-

roimaging data including Balslev et al. (2002), Baumgartner et al. (2000), Bowman

and Patel (2004), and Cordes et al. (2002). Clustering algorithms generally fall into

one of two categories, namely hierarchical clustering algorithms or partitioning al-
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gorithms. Hierarchical clustering performs a series of nested merges or divisions,

ranging from a solution with one large cluster containing all voxels to a solution in

which every voxel represents a separate cluster. Among the available hierarchical clus-

tering procedures are Ward’s, beta-flexible, centroid linkage, variable linkage, median

linkage, single linkage, and complete linkage algorithms (Bowman and Patel, 2004).

Partitioning algorithms, such as K-means and fuzzy K-means, specify the number of

clusters at the outset and sequentially reallocate voxels to clusters until obtaining a

final clustering solution (Fadili et al., 2001). Descriptions of particular clustering al-

gorithms are available in Rencher (2002), and Bowman et al. (2004) highlight several

of these algorithms for neuroimaging applications.

1.4.3.2 Independent Component Analysis (ICA)

Among the data-driven techniques, ICA has become a very popular method, success-

fully employed to decompose functional neuroimaging data into sets of spatial maps

and associated time-courses. ICA is an application of a blind source separation that

attempts to decompose the data set into components that are as statistically inde-

pendent from each other as possible (Common, 1994; Herault and Jutten, 1986). It

is possible to pursue either the temporal or the spatial independence of the target

components. One method of performing ICA minimizes the mutual information be-

tween components (Bell and Sejnowski, 1995; McKeown et al., 1997, 1998; Calhoun

and Pekar, 2000). The fixed-point algorithm (Hyvärinen, 1999) pursues the same

goal of minimizing the mutual information, but uses the concept of normalized dif-

ferential entropy or negentropy (Common, 1994). One interpretation of negentropy

is as a measure of non-normality, so maximizing the negentropy finds directions of

maximal-non-normality in the data.

Classical ICA. Let Y denote a S×V matrix of the observed voxel time courses, where

S is the number of scans, and V is the number of voxels included in analysis; C is a
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N×V random matrix whose rows Ci are to be filled with the unknown realizations of

the N spatial components (images, reshaped in 1-D vectors), and A is a S×N mixing

matrix, whose columns contain the associated time-courses of the N components. The

spatial ICA problem for fMRI time series can be formulated as an estimation of the

following model for the data:

Y = AC (1.4)

There are no assumptions about the mixing matrix A, while the constraint on the

spatial processes Ci is that they are (ideally) mutually statistically independent. The

amount of statistical dependence within a fixed number of spatial components can be

quantified by means of their mutual information, an important function in information

theory (Common, 1994). Thus, the ICA decomposition of Y can be defined (up to a

multiplicative constant and to the sign) as an invertible transformation: C = WY,

where the matrix W (so-called unmixing matrix) is determined such that the mutual

information of the target components Ci is minimized (i.e., such that Ci’s are “as

independent as possible”). Matrix A is the pseudoinverse of W. In McKeown et al.

(1998), the sources are estimated by iteratively optimizing the unmixing matrix W so

that C = WY contains mutually independent rows, using the ‘infomax’ algorithm.

Probabilistic ICA. Beckmann and Smith (2004) propose a probabilistic ICA (PICA)

model aimed at solving the problem of overfitting in classical ICA applied to fMRI

data, by including a Gaussian noise term in the classical ICA decomposition. The

PICA model, which extends model (3.2), is formulated as a generative linear la-

tent variables model. The model is “characterized by assuming that the S-variate

vector of observations is generated from a set of q statistically independent non-

Gaussian sources via a linear instantaneous mixing process, corrupted by additive

noise η(t)”(Beckmann and Smith, 2004):

yv = Acv + µ + ηv, ∀v ∈ {1, . . . , V }
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where yv denotes the S-dimensional column vector of individual measurements at

voxel location v, cv denotes the q-dimensional column vector of non-Gaussian source

signals contained in the data and ηv denotes Gaussian noise ηv ∼ N(0, σ2Σv). The

number of source processes is assumed to be smaller than the number of observations

in time (q < S). The model is closely related to Factor Analysis (Bartholomew,

1987). The individual component maps are obtained using a modified fixed-point

iteration scheme to optimize for non-Gaussian source estimates via maximizing the

negentropy. The maps are then separately transformed to spatial Z-scores. These Z-

score maps depend on the amount of variability explained by the entire decomposition

at each voxel location relative to the residual noise. Next, Gaussian/Gamma mixture

models are fitted to the individual Z-maps in order to infer voxel locations that are

significantly modulated by the associated time-course. For more details on PICA, we

refer the reader to Beckmann and Smith (2004).

Group ICA. Several methods for extending the single-session probabilistic ICA model

to higher dimensions and making group inferences have been proposed (Calhoun et al.,

2001; Beckmann and Smith, 2005; Guo and Pagnoni, 2008). In Beckmann and Smith

(2005), the single-session PICA has been extended to higher dimensions allowing

for a model-free analysis of multi-subject or multi-session fMRI data. For group

ICA, either tensorial ICA (where the data is decomposed into spatial maps, time

courses and subject/session modes), or a simpler temporal concatenation approach

(a single 2-D ICA is run on the concatenated data matrix obtained by stacking all 2-D

data matrices of every single data set on top of each other) are possible. The latter

approach is recommended to use when the interest is in finding a common spatial

pattern, but we cannot assume that the associated temporal response is consistent

between subjects, such as in the analysis of data acquired without stimulation (e.g.

resting-state). The technique is derived from the Parallel Factor Analysis (Harshman,



20

1970; Harshman and Lundy, 1994). 1

1.4.4 Prediction and Classification

In recent years there has been growing interest in the use of neuroimaging data as

a tool for classification (e.g. classification of mental and behavioral disorders) and

prediction (e.g., predicting an early onset of Alzheimer’s disease). Typical prediction

objectives in functional neuroimaging studies include: (i) predicting human experi-

ences and behaviors from brain imaging data, (ii) predicting brain activity patterns,

e.g. following a treatment intervention, using pre-treatment data and patient char-

acteristics, and (iii) predicting treatment response and relapse. Many attempts have

been made to address (i), e.g. Pugh et al. (1996), Hoeft et al. (2007), Giessing et al.

(2007). There have also been attempts to address (ii). For example, Guo et al.

(2008) introduced a Bayesian hierarchical model for PET and fMRI data to forecast

brain activity in schizophrenic patients following a specific treatment. Functional

neuroimaging has recently begun to show promise as a clinical tool in the prediction

of treatment response. For example, Evans et al. (2006) demonstated functional neu-

roimaging to be promising as a clinical tool in the prediction of treatment response

in psychiatric disorders such as major depression and obsessive-compulsive disorder.

The findings they reviewed suggest that treatment outcome may be predicted by pat-

terns of pre-treatment brain activity in psychiatric patients. They conclude, however,

that the actual clinical utility of such tests remains to be shown.

Popular classification methods in functional neuroimaging include Fisher’s Linear

(and Quadratic) Discriminant Analysis (LDA) (Fisher, 1936), logistic regression (LR),

Support-Vector Machines (SVM) (Vapnik, 1995), Neural Network classifiers (NN)

(Hertz et al., 1991), Partial Least Squares (PLS) analysis (Wold, 1966; McIntosh

1The research by Beckmann and Smith described above has been implemented as MELODIC
(Multivariate Exploratory Linear Optimized Decomposition into Independent Components - a stand
alone C++ program). It is freely available as part of FSL (FMRIB’s Software Library).



21

et al., 1996), and Bayesian classifiers (e.g. naive Bayes classifier).

Pattern recognition methods (which include SVM, NN, LDA) have been success-

fully applied in functional neuroimaging studies (LaConte et al., 2005; Pessoa et al.,

2007). These methods can be used to infer cognitive states (so-called brain decod-

ing). Using such approaches, it is possible to predict the mental state of a subject or

a stimulus class by analyzing the spatial distribution of neural responses. The SVM is

one of the most popular methods used to carry out this type of analysis. SVMs arise

from the Statistical Learning Theory of Vapnik (Vapnik, 1995) and their formulation

was motivated to deal with small sample sizes and high dimensional inputs, which

match the situation involved for temporally predictive modeling of fMRI data. Cox

and Savoy (2003) used statistical pattern recognition algorithms including LDA and

SVM to separate brain activation maps from an fMRI experiment in which partici-

pants viewed images of objects (baskets, birds, butterflies, chairs, cows, etc.). The

objects belonged to various categories, both of similar and differing forms. A notable

finding of their study was that it was possible, with small amounts of fMRI data, to

determine what the participant was viewing at levels well above chance.

Hanson et al. (2004) implemented a variety of feed-forward, neural network archi-

tectures with both linear and nonlinear decision rules. PLS, introduced to neuroimag-

ing community by McIntosh et al. (1996), is a useful method for forming prediction

equations when there are a large number of explanatory variables, particularly when

the random error variance is large. Giessing et al. (2007) applied PLS analysis to

study behavioral effects of nicotine in nonsmokers and found that neural data under

placebo can be used to predict individual behavioral effects of nicotine. Mitchell et al.

(2004) present case studies in which they have successfully trained three classifiers: a

Gaussian Naive Bayes classifier, k-nearest neighbor, and linear SVMs, to distinguish

cognitive states such as whether the human subject is looking at a picture or a sen-

tence or whether the word the subject is viewing is a word describing food, people,
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buildings, etc.

Methodology for statistical prediction based on functional neuroimaging data rep-

resents an important area for future research, and preliminary work in this area pro-

vides a promising outlook for the potential usefulness of functional neuroimaging data

in a clinical setting. For the functional neuroimaging modality, however, to be use-

ful in defining diagnostic categories or monitoring treatment success, it needs to be

shown that the technology has the ability to define clinically relevant information on

a single-subject basis.

1.5 Motivating Examples

1.5.1 An fMRI Study on Inhibitory Control in Cocaine Ad-

dicts

A common characteristic of drug addiction is an impairment in the ability to exert

inhibitory control over drug-related behaviors, in spite of adverse consequences. This

inhibitory control deficit can be elicited using response inhibition tasks outside of the

drug seeking context. The inhibitory control task, referred to as the STOP-signal

task, was designed to evaluate the ability to cancel a prepotent motor response (Aron

and Poldrack, 2006). The sample included 12 cocaine addicts who received an exten-

sive outpatient behavioral treatment program and 15 healthy controls. The cocaine

addicts were scanned while performing an inhibitory control task in two separate

sessions, before and after treatment, and similarly control subjects had baseline and

follow-up scans.

The aim of our analysis is to identify brain locations where there are inhibitory

control-related increases in brain activity following treatment for cocaine addiction.

In our analysis we take into account that there are both spatial correlations present

between neighboring voxels in the brain, as well as temporal correlations between
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repeated brain scanning sessions.

1.5.2 A PET Study on Working Memory in Schizophrenia

Patients

Schizophrenia is a devastating mental illness that may cause severe disturbances in

cognition, social behavior, and emotion. One important brain function that often goes

awry in patients with schizophrenia is working memory, characterized by the ability to

manipulate information in short-term memory. Our data are from a parametric study

of working memory in an executive function task in individuals with schizophrenia.

There were 16 subjects in the study, each having a total of 8 PET scans obtained

using a blood flow tracer. The aim is to examine the functional connectivity related to

working memory tasks and to evaluate the validity of the neural processing networks

identified by functional clustering.

1.5.3 An fMRI Resting-state Study of Depression

This data consist of fMRI resting-state scans of seven women with a history of major

depression. Functional data were acquired while the subjects were in the scanner

with their eyes open and while looking at a visual fixation cross. A group indepen-

dent component analysis (ICA) was applied to investigate the resting-state functional

connectivity of a group of depressed patients. There is substantial interest in deter-

mining associations between the brain activity characteristics of different regions while

subjects are in a resting state. For example, a set of regions has been consistently

identified in these investigations and has been labeled as the default mode network

(DMN). Our goal is to introduce a measure for the degree of functional autocorrelation

within neural processing networks identified by ICA and to evaluate the statistical

significance of the observed associations.
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1.5.4 A PET Study of Alzheimer’s Disease

Alzheimer’s Disease Neuroimaging Initiative (ADNI)

(http://www.loni.ucla.edu/ADNI/) is a large national project with the goal to

develop biomarkers of Alzheimer’s Disease (AD) in elderly subjects, to define the

rate of progress of mild cognitive impairment and Alzheimer’s disease, and to provide

a large database which will improve design of treatment trials. We analyzed PET

data from 73 healthy controls and 73 Alzheimer’s disease patients, obtained from the

ADNI database. Our goal is to predict subject’s follow-up (6 month) brain activity,

based on the baseline activity.

1.6 Proposed Research

Functional neuroimaging studies yield large data sets characterized by complex depen-

dence structures driven by highly sophisticated neurophysiology and neuroanatomy,

and aspects of the experimental designs. These complex dependence structures pose

analytical challenges for statistical modeling. To date, there is a paucity of methods

that incorporate spatial considerations. Most analyses are performed in a univariate

setting, where each voxel is modeled independently of the others (“massive univariate

approach”). Ignoring correlations affects the precision of estimates of model parame-

ters and consequently may lead to inaccurate statistical tests. Spatio-temporal mod-

eling may mitigate these shortcomings by incorporating more physiologically plausible

assumptions and by borrowing strength across related measures of neural activity.

1.6.1 Simultaneous Spatio-temporal Modeling of fMRI data

fMRI data sets contain temporal correlations from repeated scanning (within and

between scanning sessions) and complex spatial correlations. Typical analyses inves-

tigating task-related changes in measured brain activity use a two-stage procedure
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in which the first stage involves subject-specific models and the second-stage speci-

fies group (or population) level parameters. Customarily, the first-level accounts for

temporal correlations between the serial scans acquired during one scanning session.

Despite accounting for these correlations, fMRI studies often include multiple sessions

and temporal dependencies may persist between the corresponding estimates of mean

neural activity. Further, spatial correlations between brain activity measurements in

different locations are often unaccounted for in statistical modeling and estimation.

Bowman (2005) proposed an extended two-stage model for the estimation and test-

ing of localized activity in which the second stage accounts for spatial dependencies

between voxels within the same neural processing cluster (defined by a data-driven

cluster analysis). This model, however, did not account for repeated measures type

associations between the multiple experimental effects for each subject. We propose a

two-stage, spatio-temporal, autoregressive model which simultaneously accounts for

spatial dependencies between voxels within the same anatomical region and for tem-

poral dependencies between a subject’s estimates from multiple sessions. We develop

an algorithm that leverages the special structure of our covariance model, enabling

relatively fast and efficient estimation.

1.6.2 Functional Autocorrelation within Neural Processing

Networks

Data-driven statistical approaches, such as cluster analysis or independent compo-

nent analysis, applied to in vivo functional neuroimaging data help to identify neural

processing networks that exhibit similar task-related or resting-state patterns of ac-

tivity. Ideally, the measured brain activity for voxels within such networks should

exhibit high autocorrelation. An important limitation of the existing approaches is

that they do not quantify or statistically test the strength or nature of the within

network relatedness between voxels. To extend the results given by such data-driven
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analyses, we propose the use of Moran’s I statistic to measure the degree of func-

tional autocorrelation within identified neural processing networks and to evaluate

the statistical significance of the observed associations. We adapt the conventional

definition of Moran’s I, for applicability to neuroimaging analyses, by defining the

global autocorrelation index using network-based neighborhoods. Also, we compute

network-specific contributions to the overall autocorrelation.

1.6.3 A Novel Spatial Prediction Model

Neuroimaging has been used in clinical practice for over 30 years, but it is still per-

ceived as rarely offering clinicians much help in direct patient management. One

of the important directions in neuroimaging is increasing its clinical applicability in

terms of diagnostic purposes and to help predict future patients’ outcomes.

We propose a novel Bayesian hierarchical framework for predicting follow-up neu-

ral activity based on the baseline functional neuroimaging data that attempts to

overcome some shortcomings of the presently used modeling methods (such as small

sample sizes, heterogeneity, as well as recording of brain activity under resting-state

conditions) by borrowing strength from the spatial correlations present in the data.

The spatial correlations are incorporated in the model in two ways: the short-range

correlations between neighboring voxels are incorporated through a multivariate con-

ditional autoregressive (CAR) prior of the spatial parameters, while the long-term

correlations between anatomical brain regions are incorporated through the covari-

ance matrix of the random effect parameters.
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Chapter 2

Modeling the spatial and temporal

dependence in fMRI data

2.1 Introduction

Functional magnetic resonance imaging (fMRI) studies yield large data sets that

contain temporal correlations from repeated scanning (within and between scanning

sessions) and complex spatial correlations. Ignoring correlations affects the precision

of estimates of model parameters and consequently may lead to inaccurate statistical

tests. Spatio-temporal modeling may mitigate these shortcomings by incorporating

more physiologically plausible assumptions and by borrowing strength across related

measures of neural activity. One session of a typical fMRI neuroactivation study

acquires 3-D scans every 2-3 seconds while the subject performs different experimental

tasks. fMRI studies may also involve multiple sessions (e.g corresponding to pre-

and post-treatment periods). Typical analyses investigating task-related changes in

measured brain activity use a two-stage procedure in which the first stage involves

subject-specific and voxel-specific models relating neural processing to experimental

tasks. The second stage specifies voxel-specific models for group (or population) level
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parameters. The stage I analysis accounts for temporal correlations between serial

scans within one session using variants of autoregressive models (Bullmore et al.,

1996; Purdon et al., 2001; Friston et al., 2002). Despite addressing scan-to-scan

correlations within a session, the stage I estimates for multiple sessions may also

exhibit correlations, typically not accounted for at the second stage. Our focus is on

modeling these latter correlations.

Some attempts have been made at modeling the repeated measures correlations

and spatial correlations in fMRI data, though typically not in the same statisti-

cal model. Worsley et al. (2002) introduce a random effects analysis for combining

sessions and the method removes trends in effects over time. Bowman and Kilts

(2003) fit repeated measures covariance structures within a linear model to address

between-session correlations in positron emission tomography (PET) neuroimaging

data. Neither of these two approaches addresses the spatial correlations between lo-

calized brain activity measurements, and the method by Bowman and Kilts (2003)

involves long computations for PET data, making it less suitable for higher dimen-

sional fMRI data. Bowman (2005) presents a two-stage model in which the second

stage accounts for spatial dependencies within brain regions or networks, and Bow-

man et al. (2008) give a more flexible Bayesian model to capture correlations both

within and between brain regions. Neither of these approaches, however, accounts

for temporal or repeated measures associations between the multiple experimental

effects for a subject. There have been a few attempts to model both temporal and

spatial correlations simultaneously, but these approaches are generally hampered by

costly computation. The computations generally involve inverting large covariance

matrices, and separable models (over space and time) are often considered (Benali

et al., 1997; Hartvig, 2002). Gössl et al. (2001) use a Bayesian approach to fit a

semi-parametric spatial and temporal model for fMRI data. Their approach requires

extensive computations, limiting its applicability in practice. Woolrich et al. (2004)



29

propose a Bayesian framework to model the noise via a non-separable space-time,

simultaneous autoregressive model. This approach is very time consuming for the

fMRI datasets, taking roughly 6 hours for processing a single slice of 3-D fMRI data.

We propose a two-stage model that accounts for both spatial and temporal cor-

relations in fMRI data, and our model leads to fast parameter estimation. In the

second stage, we construct a simultaneous autoregressive model to capture spatio-

temporal correlations between the multiple (session) effects at a given location and

between pairs of voxels within defined anatomical regions. We use maximum like-

lihood (ML) methods to estimate parameters from our spatio-temporal model. We

overcome computational challenges involved with estimation by deriving an algorithm

that simplifies the calculations of inverses and determinants of large matrices, leading

to fast estimation of the model parameters. Our spatio-temporal model provides a

unified framework for both voxel-level and region-level inferences. Using our proposed

model, we analyze fMRI data from a study of inhibitory control in cocaine addicts to

evaluate the effects of behavioral therapy on neural processing related to inhibitory

control. To further delineate benefits of our spatio-temporal model, we conduct two

simulation studies: one to validate the accuracy of our estimation methods and the

other to evaluate the relative efficiency of our proposed spatio-temporal model com-

pared to the general linear model
(
GLM (not to be confused with generalized linear

models as in McCullagh and Nelder (1989) )
)
.

2.2 Experimental Data

To illustrate the use of our proposed model and to give motivation for its development,

we apply it to data from an fMRI study evaluating the impact of cocaine addiction

and treatment-related abstinence on neural responses to motor inhibition tasks. The

sample included 12 cocaine addicts enrolled in an intensive outpatient behavioral
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treatment program and 15 healthy controls, matched by age, sex (all males), race,

handedness, education and early life adversity. All the subjects were scanned while

performing an inhibitory control task used to model a characteristic hallmark of

drug addiction: an impairment in the ability to inhibit behaviors (e.g. drug-seeking

behaviors). The cocaine addicts were scanned in two separate sessions, before and

after treatment, and similarly control subjects had baseline and follow-up scans.

Experimental conditions: The inhibitory control task, referred to as the STOP-

signal task, was designed to evaluate the ability to cancel a prepotent motor response

(Aron and Poldrack, 2006). In this task, subjects are presented with visual GO-

stimuli, consisting of uppercase alphabetical letters appearing on the screen for 0.5

seconds with an inter-stimulus interval of 2.3 seconds. They are instructed to respond

to this signal by pressing a button as quickly as possible. An auditory STOP-signal

(also lasting 0.5 seconds) appears randomly in 16% of the trials. The occurrence

of the STOP-signal following a GO-stimulus is an indicator to refrain from pushing

the button (the prepotent response). Hence, a successful performance requires the

inhibition of a prepotent behavior. The aim of our analysis is to identify brain loca-

tions where there are inhibitory control-related increases in brain activity following

treatment for cocaine addiction.

2.3 Methods

Data from a single scan in our study are represented as a 53×63×46 3-D rectangular

lattice, comprised of a large number of voxels, indexed by a mapping of coordinates

(x, y, z) to v = 1, . . . , V (V > 150, 000 in our study). Each voxel contains intensity

information corresponding to measures of localized brain activity (BOLD fMRI re-

sponses). Since the number of intracranial voxels is too large to estimate a global

correlation matrix including all voxel pairs, we consider an approach that partitions
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the voxels into mutually exclusive subregions based on known neuroanatomical di-

visions. Specifically, we define anatomical regions using a parcellation of the brain

based on Brodmann areas (BA) (Brodmann, 1909a) and additionally separate BA’s

in the left and right hemispheres. To provide broader coverage, we also add several

subcortical regions (left and right caudate, thalamus and putamen) to our parcel-

lation, which were obtained from the Automated Anatomical Labeling (AAL) map

based on (Tzourio-Mazoyer et al., 2002). Other such parcellations exist, including

the Freesurfer software (Fischl et al., 2002, 2004) and LONI (Laboratory of Neuro

Imaging, UCLA) Probabilistic Brain Atlas (Shattuck et al., 2008). Building our model

based on well-established anatomical parcellations, rather than data-driven functional

clusters aids interpretability.

2.3.1 Statistical Model

Following the conventional two-stage modeling approach for fMRI data, we fit a GLM

at the first stage for each individual’s vector of serial BOLD responses, separately for

each voxel. The GLM regresses each voxel’s BOLD responses for subject i (i =

1, . . . , K) on within-subject design variables (e.g. session or stimulus indicators) and

on covariates that are not of intrinsic interest, such as high-pass filtering variables.

The model accounts for short-range scan-to-scan correlations within a session using

a first-order autoregressive process with white noise (Purdon et al., 2001; Friston

et al., 2002). The regression coefficient, B
(p)
igs(v), for voxel v represents a summary

measure of an individual’s (mean) neural activity associated with session or stimulus

p. We add a subscript g to denote the neuroanatomic region to which voxel v belongs

(g = 1, . . . , G), with the region consisting of Vg voxels in total.

At the second stage, we propose a spatio-temporal (ST) autoregressive model to

capture temporal correlations between the multiple sessions and spatial correlations

between pairs of intra-regional voxels. We express the spatio-temporal model as
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follows:

B
(p)
igs(v) = x′iβ

(p)
gs (v) + ρgs

1

Vg − 1

∑
v∗∈Nv

(
B

(p)
igs(v

∗)− x′iβ
(p)
gs (v∗)

)

+ ξgs
1

q − 1

∑

p∗ 6=p

(
B

(p∗)
igs (v)− x′iβ

(p∗)
gs (v)

)
+ eigs(v) ,

(2.1)

where xi is a vector of between-subject design variables, β(p)
gs (v) are the group-level

parameters, eigs(v) ∼ N(0, φ2
gs) (φ2

gs is the between-subject variation), ρgs is a spatial

dependence parameter, ξgs reflects the temporal dependence between sessions, Nv is

the set of all voxels within the same neuroanatomic region as v, and s denotes a

subject group (e.g., patients, controls). When ρgs = ξgs = 0, model (2.1) resembles

a typical stage II GLM from a random effects analysis of brain imaging data, with

constant variances within each region.

2.3.2 Parametric Covariance Model

Our model involves three parameters defining the variance-covariance structure: the

spatial (ρ) and temporal (ξ) dependence parameters and the variance parameter (φ2).

In this section, we present details about the assumed covariance/correlation model.

Let Bigs =
(
B

(1)′
igs , . . . ,B

(q)′
igs

)′
, where each B

(p)
igs contains individualized parameters for

all voxels in region g, and similarly βgs =
(
β(1)′

gs , . . . , β(q)′
gs

)′
. Model (2.1) implies that

Bigs has the following multivariate normal distribution Bigs ∼ MVN
(
βgs,Ωgs

)
(see

Appendix 5.1.1), where Ωgs = φ2
gsΨgsΨgs, and Ψgs is a qVg × qVg matrix with

Ψ−1
gs =




IVg − ρgsWg − ξgs

q−1
IVg . . . − ξgs

q−1
IVg

− ξgs

q−1
IVg IVg − ρgsWg . . . − ξgs

q−1
IVg

...
...

. . .
...

− ξgs

q−1
IVg − ξgs

q−1
IVg . . . IVg − ρgsWg




qVg×qVg

(2.2)
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(IVg and JVg denote identity and unity matrices of size Vg). In (2.2), Wg = [1/(Vg −
1)](JVg − IVg) specifies the neighborhood structure consisting of all voxels that fall in

the same anatomical region. The blocks along the main diagonal of Ψ−1
gs allow for

spatial correlations between measures of task-related brain activity for voxels in region

g, i.e. between elements of B
(p)
igs. The off-diagonal blocks of Ψ−1

gs capture correlations

between the summary measures of brain activity associated with various scanning

sessions. Our model assumes an exchangeable covariance structure between voxels in

the same neuroanatomic region. Although the complexity of human brain function is

likely to render departures from this assumption, the exchangeable structure provides

an improvement over the often used independence assumption and seems reasonable

for statistical modeling purposes based on descriptive empirical results (not shown

here; see Appendix 5.1.2).

Calculating the matrix Ψgs. Calculating Ψgs involves inverting a matrix of size

qVg × qVg, which can become unwieldy for large regions, and this calculation is per-

formed iteratively during estimation of the model. We derive an algorithm to facilitate

calculations of inverses and determinants of our large highly structured covariance ma-

trices, thereby enabling estimation of our model for fMRI applications. By recursive

calculation on q, the number of blocks in Ψ−1
gs , we represent Ψgs as follows

Ψgs =




dIVg + fJVg uIVg + zJVg · · · uIVg + zJVg

uIVg + zJVg dIVg + fJVg · · · uIVg + zJVg

...
...

...
. . .

uIVg + zJVg uIVg + zJVg · · · dIVg + fJVg




qVg×qVg

. (2.3)

Hence, Ψgs is determined by four functions: d(ρgs, ξgs, Vg, q), f(ρgs, ξgs, Vg, q),

u(ρgs, ξgs, Vg, q), and z(ρgs, ξgs, Vg, q). The explicit formulas for d, f , u and z are quite

lengthy and are given in the Appendix 5.1.3. We employ (2.3) to circumvent issues
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of long computing times and excessive memory consumption.

Estimated spatial and temporal parameters are not directly interpretable as spatial

and temporal correlations. The spatial and temporal correlations, denoted ηρ and

ηξ, respectively, require calculation of the covariance matrix Ωgs, i.e. of ΨgsΨgs.

Leveraging the special structure of Ψgs, we obtain ΨgsΨgs as a partitioned matrix,

with equal diagonal blocks AIVg + BJVg , and off-diagonal blocks CIVg + DJVg , where

A = d2 + (q − 1)u2 B = 2df + Vgf
2 + (q − 1)(2uz + Vgz

2)

C = 2du + (q − 2)u2 D = 2(fu + dz + Vgfz) + (q − 2)(2uz + Vgz
2) . (2.4)

The expressions for the spatial correlation, ηρ, and the temporal correlation, ηξ, are

then given by ηρ = B/(A + B) and ηξ = (C + D)/(A + B).

2.3.3 Estimation

We perform estimation of the second stage spatio-temporal model using ML methods.

The log-likelihood function for model (2.1) is given by

L(φ,ρ, ξ,β|B) ∝
2∑

s=1

∑
i∈Ks

G∑
g=1

{
− qVg

2
ln(φ2

gs) + ln
(
abs|Ψ−1

gs |
)

− 1
2φ2

gs
(Bigs −Xiβgs)

′Ψ−1
gs Ψ−1

gs (Bigs −Xiβgs)

}
, (2.5)

where Ks denotes the number of subjects in subgroup s (cocaine addicts and controls).

The ML estimator of the mean parameter vector βgs is given by β̂gs = 1
Ks

Ks∑
i=1

Bigs, g =

1, . . . , G. β̂gs is unbiased (as is β̂gs from a GLM analysis) and does not depend on the

covariance parameters. Estimation of the covariance parameters, therefore, proceeds

using the partially maximized likelihood function L(φ,ρ, ξ, β̂|B). We use the Fisher

scoring algorithm to estimate the covariance parameters ρs = (ρ1s, . . . , ρGs)
′, ξs =

(ξ1s, . . . , ξGs)
′, and φg = (φ1s, . . . , φGs)

′.
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Note on the parameter space. To apply our model, the matrix Ψ−1
gs must be

nonsingular, or equivalently Ωgs must be positive definite. In the context of our

fMRI data, with Vg > 20, for all g, and q = 2, the resulting explicit parameter

constraints are as follows:

ρgs + (Vg − 1)(1 + ξgs) 6= 0 ρgs + (Vg − 1)(1− ξgs) 6= 0

ρgs − ξgs 6= 1 ρgs + ξgs 6= 1 .

We monitor these boundary constraints during our iterative estimation procedure.

Estimation involves iterative calculations of the determinant and the inverse of a

qVg × qVg matrix (up to roughly 5,800×5,800 in our data application). Employing

the simplifications discussed in Section 2.3.2 enables fast and efficient computations.

Appendix 5.1.4 contains details regarding the score functions necessary for estimation.

2.3.4 Inferences

Inferences that are commonly sought in functional neuroimaging studies target the

identification of differences in neural processing between experimental tasks, sessions

(e.g. treatment periods), or groups. One may pursue these inferences at an extremely

localized (voxel) level or at a more spatially coarse regional level. In either case,

estimation and inferences in this setting produce maps of distributed brain activity

and the corresponding thresholded maps showing statistically significant (or highly

probable, in a Bayesian context) differences. We seek inferences about linear functions

of β(p)
gs , where for the inhibitory control study in cocaine addicts, p = 1 (baseline or

pre-treatment) or p = 2 (follow-up or post-treatment) and s = 1 (cocaine addicts) or

s = 2 (controls).

Voxel-level inferences. Following estimation using our spatio-temporal model, we

obtain t-statistic images from the voxel-specific contrast estimates, then threshold
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the t-statistics to determine voxels exhibiting statistically significant changes (or dif-

ferences) in brain activity. To adjust for typical changes observed with repeated

scanning sessions in the inhibitory control study, we identify voxels for which the

changes in brain activity following treatment are larger in cocaine addicts than

the corresponding changes between follow-up and baseline activity in control sub-

jects. Specifically, we estimate and test hypotheses about θ∗g = C∗
gβg, where C∗

g =

[−IVg IVg IVg − IVg ](Vg×4Vg) and βg = [β
(1)′
g1 ,β

(2)′
g1 , β

(1)′
g2 ,β

(2)′
g2 ]′(4Vg×1). Each element of

θ∗g represents a voxel-specific parameter. We construct Wald-type statistics for hy-

pothesis testing, with Var(θ̂
∗
g) = C∗

g Var(β̂g)C
∗′
g and df = 2(np + nc − 2), where np

is the number of addicts, and nc is the number of controls. We apply the stringent

threshold of α = 0.005, which is one approach that has a strong precedent in the

neuroimaging literature, but other thresholding approaches, such as false discovery

rate (Benjamini and Hochberg, 1995) and random field theory (Friston et al., 1995)

are also available.

Region-level inferences. Our spatio-temporal model also enables analyses targeting

an entire anatomical brain region corresponding to the underlying anatomical parcel-

lation. For inferences in region g, define θg = Cgβg, with Cg = 1
Vg

[−1′Vg
1′Vg

1′Vg
−

1′Vg
](1×4Vg), and construct the t-statistic using Var(θ̂g) = Cg Var(β̂g)C

′
g and degrees

of freedom dfr = 2Vg(np + nc − 2). Combining both sessions for subgroups s, i.e.,

βgs = [β(1)′
gs , β(2)′

gs ]′, the variance of β̂gs is given by Var(β̂gs) = 1
np+nc

φ2
gsΨgsΨgs. A no-

table advantage of modeling spatial correlations using our model is that the resulting

regional level analyses account for spatial dependencies between intra-regional voxel

pairs, rather than implicitly assuming independence.

Statistical significance of spatial and temporal correlations. It is often informative

to examine the magnitudes of spatial and temporal correlations as discussed in Section

3.2. Given the complexity of the estimators of these quantities, it is difficult to derive

analytical expressions for the variances of these estimators. If one has inherent interest
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in testing hypotheses about these parameters, then standard bootstrapping methods

are applicable. However, this approach may be computationally demanding. Given

that testing hypotheses about correlations was not of chief interest in the inhibitory

control study, we present estimates of correlations mainly for descriptive purposes. We

estimate standard errors of the correlations using 30 bootstrap samples drawn (with

replacement) from the subjects in our data, separately for controls and patients. We

apply our model and estimate the spatial and temporal correlations for each sample,

and then calculate the bootstrap standard errors as the standard deviations of the

30 estimated values for each parameter, which should provide reasonable estimates

of variability (Efron and Tibshirani, 1998).

2.4 Application to Inhibitory Control in Cocaine

Addicts Study

We used our spatio-temporal model to analyze fMRI data from the inhibitory control

study in cocaine addicts. Spatial and temporal parameters were estimated separately

for cocaine addicts and controls. The aim of our analysis was to evaluate whether the

inhibitory control-related changes in measured brain activity following treatment for

the addicts were larger than the corresponding between-session changes in the control

subjects.

All of the image pre-processing (slice timing, realigning, normalizing, and smooth-

ing [6mm (2 voxels) full width at half maximum (FWHM) Gaussian kernel], as well

as the first level, single subject analyses, were carried out in SPM51. To account for

inter-subject neuroanatomic differences that may persist after spatial normalization,

we chose to apply very focal spatial smoothing, rather than the more spatially expan-

1SPM5 is is a MATLAB software package implementing Statistical Parametric Mapping for
neuroimaging data available for download from the Wellcome Trust Centre for Neuroimaging web
page http://www.fil.ion.ucl.ac.uk/spm/software/spm5/.
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sive smoothing often applied in practice. Our smoothing should only have a small

effect on subsequent spatial modeling, since most of the Brodmann areas (within

which we model spatial correlations) are quite large, relative to the small size of

the smoothing kernel. The second level analysis, implementing our proposed spatio-

temporal model, was carried out using MATLAB. Our analysis includes 38 BA’s in

each hemisphere, after excluding those with fewer than 20 voxels, and we supplement

the BA’s with six subcortical regions, resulting in a parcellation consisting of 82 brain

regions. We perform exploratory analyses, computing crude estimates of spatial and

temporal correlations (Appendix 5.1.2), which provide support for the existence of

correlations from both sources as well as for the exchangeability assumption in our

covariance model.

2.4.1 Voxel-level inferences

Figure 2.1(a) shows voxels that reveal statistically significant increases in inhibitory

control-related brain activity following treatment at α = 0.005. The axial slices corre-

spond to 5 mm, 14 mm, 44 mm, and 65 mm above the anterior-posterior commissural

plane. The significant areas include the right frontopolar cortex (BA 10), left middle

temporal gyrus (BA 21), and retrosubicular area (BA 48) in the 5 mm slice; left

and right thalamus and the right inferior frontal cortex (BA 45) at 14 mm; left vi-

sual association cortex V3 (BA 19) and somatosensory association cortex (BA 7) and

the left angular gyrus (BA 39) at 44 mm; and the right pre-supplementary motor

area (pre-SMA, BA 6) at 65 mm. Other regions (not shown) exhibiting significant

treatment-related increases in brain activity include the right inferior prefrontal gyrus

(BA 47), left and right fusiforum gyrus (BA 37), and left primary auditory cortex

(BA 41).

Figure 2.1(b) shows results from the corresponding GLM–based analysis com-

monly used in the neuroimaging literature. Many of the areas showing statistical
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significance agree with the results from our approach (e.g. Brodmann areas 6, 7, 10,

and 19 emerged in both analyses), but there are some differences. For example, our

method identifies increased treatment-related brain activity in BA 48 and BA’s 21

and 22 (5 mm), which do not emerge from the GLM analysis. Also, both methods

identify areas in the thalamus, but our method detects a large right thalamic acti-

vation not revealed by the GLM. Similarly, both methods identify voxels in BA’s 6

(pre-SMA) and 39, but our model yields more spatially extensive activations. Overall,

our ST model produces more statistically significant voxels than the GLM. However,

neither method produces significant voxels when applying more conservative family-

wise error or false discovery rate multiple testing procedures. The differences between

the two models become more apparent at larger significance levels (e.g. α = 0.01,

not shown), suggesting that with a larger sample size and stronger activation signal,

greater differences are likely to emerge. We provide interpretive remarks about our

results in Section 2.4.4.

2.4.2 Region-level inferences

Our region-level analysis of treatment-emergent changes in neural processing, using

methods described in Section 2.3.4, revealed only one region (left BA 39, angular

gyrus) achieving statistical significance at α = 0.05, uncorrected (see Figure 2.1(c)).

The comparative region-level GLM analysis (that implicitly assumes spatial and tem-

poral independence) did not yield any statistically significant differences. Neither

method reveals significant differences at more stringent thresholds such as α = 0.005

(uncorrected).

2.4.3 Spatial and temporal correlations

Figure 2.2 shows the model-based estimates of spatial and temporal correlations for

both the cocaine addicts and control subjects in one axial slice of the brain. The
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Model Voxel-level inferences Region-level
inferences

ST
(a) (c)

GLM
(b) (d)

Figure 2.1: Voxel-level and region-level inferences for two models: the proposed
spatio-temporal (ST) model (top) and the GLM (bottom). (a): voxels that achieve
statistical significance in the ST model analysis at α = 0.005 in favor of a one-sided
alternative hypothesis of increased activity following treatment for cocaine addiction.
Significant increases occur in the right frontopolar area (BA 10), left middle and su-
perior temporal gyri (BA’s 21/22), right retrosubicular area (BA 48), right inferior
frontal cortex (BA 45), left and right thalamus (Thal), left somatosensory and vi-
sual association cortices (BA’s 7 and 19), left angular gyrus (BA 39), and right BA
6 (pre-SMA); (b): voxel-level results from a GLM analysis; (c): region, left BA 39
(angular gyrus), that achieves significance in our ST model analysis at α = 0.05; (d):
corresponding region-level results from the GLM. Slice labels denote the distance, in
mm, above the anterior-posterior commissural plane.

color scale indicates the strength of correlations, with brighter shades indicating cor-

relations of larger magnitude. For temporal correlations, positive values are shown in

one color (top colorbar) and negative values are shown in a separate color (bottom

colorbar). For clearer distinction, we add stripes to regions with negative correlations.

All of the correlations in Figure 2.2 would have the value zero in a GLM analysis,

signaling the need to account for them in our model.

Table 2.1 gives the model-based estimates, along with bootstrap standard errors

(in parentheses), of both temporal and spatial correlations for select regions in the
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Cocaine addicts Controls

Spatial
(a) (b)

Temporal
(c) (d)

Figure 2.2: Model-based estimates of the spatial and temporal correlations for the
inhibitory control study (a) addicts: spatial correlations, (b) controls: spatial corre-
lations, (c) addicts: temporal correlations, (d) controls: temporal correlations. For
(a) and (b), the darker to lighter intensities in the colorbar represent lower to higher
correlations. For (c) and (d), the top colorbar represents positive correlations, again
with lighter intensities reflecting higher correlations, and the bottom colorbar repre-
sents negative correlations (stripes added to maps) with brighter intensities indicating
stronger negative correlations. The temporal correlations for control subjects range
from -0.28 to 0.64 and are in general larger than those for the cocaine addicts, which
range from -0.24 to 0.45. The regional spatial correlations are not consistently higher
for either group, ranging from 0.08 to 0.54 among cocaine addicts and from 0.04 to
0.65 for healthy controls.
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Table 2.1: Model-based estimates of spatial and temporal correlations and estimated
bootstrap standard errors (in parentheses).

Group Region Temporal Region Spatial
correlations (std. err.) correlations (std. err.)

Addicts

BA 43 (L) 0.45 (0.19) BA 43 (L) 0.54 (0.10)
BA 22 (R) 0.39 (0.15) BA 29 (L) 0.50 (0.12)
BA 42 (R) 0.37 (0.18) BA 3 (L) 0.47 (0.10)
BA 3 (L) 0.37 (0.17) caudate (R) 0.47 (0.10)
BA 9 (R) 0.34 (0.28) BA 43 (R) 0.43 (0.07)
BA 35 (R) -0.24 (0.06) BA 48 (R) 0.08 (0.07)

Controls

BA 22 (L) 0.64 (0.07) BA 26 (L) 0.65 (0.05)
BA 42 (R) 0.63 (0.09) BA 26 (R) 0.60 (0.08)
BA 22 (R) 0.60 (0.09) BA 5 (R) 0.50 (0.12)
BA 21 (L) 0.58 (0.10) putamen (L,R) 0.50 (0.08, 0.06)
BA 43 (R) 0.46 (0.10) BA 38 (L) 0.47 (0.10)
BA 26 (R) -0.28 (0.11) BA 48 (R) 0.04 (0.02)

inhibitory control study. The associated spatial (ρ) and temporal (ξ) dependence

parameters achieve statistical significance for all regions at α = 0.01, except for BA

29 (L), which is significant at α = 0.05. The selected regions in Table 1 are those that

have correlations with the largest magnitude. The temporal correlations for cocaine

addicts range from -0.24 to 0.45 and tend to be larger in control subjects for whom

they range from -0.28 to 0.64. The regional spatial correlations are not consistently

higher for either group, ranging from 0.08 to 0.54 among cocaine addicts and from

0.04 to 0.65 for healthy controls.

The brain regions with highest temporal correlations differ between the two groups.

For the controls, the highest temporal correlations (∼ 0.6) are in right BA 42, par-

tially covering the auditory association cortex, and in left BA 21, left BA 22, and

right BA 22, regions in the temporal lobe which are also revealed by our voxel-level

analysis. For the cocaine addicts, the highest temporal correlations are somewhat

smaller (∼ 0.4) and appear in left BA 43 and in right BA 22. Spatial correlations for
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the control group are highest (≥ 0.6) in left and right BA 26, a retrosplenial region

in the cingulate cortex. For the cocaine addicts, the highest estimated spatial corre-

lations (∼ 0.5) are in left BA 29, also in the retrosplenial region, and in left BA 43.

For both groups, the region with the lowest estimated spatial correlation (≤ 0.08) is

the right BA 48, which is the second largest region (2,875 voxels). This suggests that

it is the least spatially homogeneous region and that subdividing large BA’s may be

warranted.

2.4.4 Implications of Results

The study on inhibitory control in cocaine addicts that is the subject of this novel

image analysis approach is, to the best of our knowledge, the first to examine the

changes in brain activity associated with an intensive addiction behavioral therapy.

Inhibiting prepotent or automatic responses is critical to the organization of successful

goal-directed behaviors. Aron et al. (007a) state that it is “... likely that the simple

Stop signal task taps into a control circuit . . . [and] variation (or damage) to key nodes

in this control circuitry (or to their connections) could produce important individual

differences, for example in liability toward and recovery from addiction (Garavan

and Hester (2007).” Aron et al. (2007) demonstrated that the ability to stop motor

responses depends critically on a network of structures including the right inferior

frontal cortex and the subthalamic nucleus (STN), both of which are connected to

the pre-SMA.

Our results agree, in several aspects, with the findings from these and other pre-

vious neuroimaging studies. Greater activation of the right orbitofrontal cortex is

necessary for behavioral inhibition in impulsive individuals (Horn et al., 2003). Ad-

ditionally, the right ventral prefrontal cortex has been selectively implicated in the

neuropathophysiology of drug addiction (Goldstein and Volkow, 2002; Bolla et al.,

2003; Volkow et al., 2005). Voxel-level analysis of our data found that the major
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brain effect of treatment is represented by an enabling of the right inferior prefrontal

gyrus (BA 47) and right orbitofrontal cortex (BA 11) responses to a demand for in-

hibition of habitual motor responses. Our findings are promising since they suggest a

positive effect of the behavioral therapy on the neural processing deficits associated

with cocaine-addiction, though we do not strictly regard these effects to be causal.

Our analysis was not able to explore voxels in the STN because this brainstem

area is not represented in the Brodmann area parcellation. This limitation is not

an inherent shortcoming of our model, and one can easily include additional regions

such as the STN in the analysis, if desired. The pre-SMA is identified as a significant

treatment-related area in our voxel-level analysis. The caudal pre-SMA is critical

to controlled action selection (Nachev et al., 2007) and is functionally compromised

in cocaine addicts (Kaufman et al., 2003). Enhancing the neural response of the

pre-SMA to a demand for a shift from habitual responses to controlled response

inhibition represents a plausible neural correlate of drug refusal skills acquired in

behavioral therapies targeting relapse prevention. Our region level analysis identifies

the angular gyrus (BA 39), which is important in visuospatial attention (Cattaneo

et al., 2009).

In areas exhibiting significant voxel-level post-treatment increases in task-related

brain activity, we observe distinct patterns of intra-regional correlations between pa-

tients and controls. Based on the estimates of the spatial correlations, the controls

exhibit higher spatial coherence in, for example, right BA’s 11
(
controls = 0.24(0.11),

addicts = 0.14(0.04)
)

and 47
(
controls = 0.28(0.13), addicts = 0.18(0.10)

)
, which

are frontal areas involved in executive functioning, planning and decision making, as

well as in both left and right thalamus
(
e.g. in right thalamus, controls = 0.32(0.09),

addicts = 0.17(0.07)
)
, which play a central role in the flow of information to the

cortex (Sherman and Guillery, 2002). Cocaine addicts showed more coherent func-

tioning in left BA’s 19
(
addicts = 0.16(0.02), controls = 0.09(0.07)

)
and 39

(
addicts
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= 0.31(0.10), controls = 0.16(0.10)
)
, which are involved in visual attention. The

latter finding is particularly interesting since BA 39 was identified in our region-level

analysis.

2.5 Simulations

We performed two simulation studies. The goal of the first simulation study was to

evaluate the accuracy of our estimation procedure. We selected regions (Brodmann

areas) with voxel sizes ranging from 100 to 2000. To generate data for the simulations,

we used our experimental data from the inhibitory control fMRI study to specify true

values for βgs = (β(1)
gs ,β(2)

gs ) (where the superscripts denote sessions 1 and 2), ρgs, ξgs

and φgs. We drew 200 samples from the multivariate normal probability distribution

MVN(βgs, φ
2
gsΨgsΨgs), and we applied our spatio-temporal model to estimate the

true parameters βgs, ρgs, ξgs, and φgs.

In the second simulation study, we evaluated the relative efficiency of our spatio-

temporal model compared to the GLM, both for voxel-level and region level estimators

of secondary parameters of interest (θg and θ∗g). We selected two regions, region A

with 100 randomly selected voxels from BA 24, and region B with 1,000 randomly

selected voxels from BA 19. We set the true parameters for ρgs, ξgs, φgs and drew

200 samples from MVN(βgs, φ
2
gsΨgsΨgs), where βgs, φ

2
gs and Ψgs were again obtained

from our experimental data. In addition to estimating the true parameters, we es-

timated the secondary parameters of interest θ∗g (voxel-level) and θg (region-level),

defined to address the stated objective of our study (see Section 2.3.4). We calcu-

lated the estimated variances for θ̂
∗
g and θ̂g, both applying the GLM and our spatio-

temporal model, and compared the voxel-level and region-level relative efficiencies

(spatio-temporal model vs. GLM), averaged over 200 samples in each case.

Simulation results. The first simulation study revealed extremely small biases
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Table 2.2: Estimation accuracy of the spatio-temporal model obtained from 200 sim-
ulated data sets for the cocaine addicts and the healthy control subjects, for four
selected regions. The difference between the median of the estimated values from the
generated samples and the true value is shown.

Group
Est. True Region∗ (no. voxels)

param. value 1 (100) 2 (500) 3 (1000) 4 (2000)
Difference (s.e.)

Addicts ρ 0.5 -0.0097 (0.0621) -0.0001 (0.0646) -0.0015 (0.0581) -0.0097 (0.0650)
ξ 0.2 0.0001 (0.0146) 0.0001 (0.0063) -0.0001 (0.0044) 0.0001 (0.0032)
φ2 1.8 -0.1592 (0.0490) -0.1537 (0.0213) -0.1483 (0.0148) -0.1501 (0.0120)

Controls ρ 0.5 -0.0075 (0.0531) -0.0011 (0.0547) -0.0034 (0.0574) 0.0009 (0.0517)
ξ 0.2 0.0012 (0.0111) 0.0009 (0.0056) -0.0005 (0.0039) 0.0000 (0.0028)
φ2 1.8 -0.1137 (0.0461) -0.1209 (0.0191) -0.1196 (0.0140) -0.1191 (0.0107)

∗ 1=BA 24(L), 2=BA 32(R), 3=BA 19(L), 4=BA 48(R). Corresponding region sizes are
100, 500, 1000, 2000 voxels, respectively. Starting value for ρ: 0.7, starting value for ξ: 0.1.

in the estimator of the mean model parameters βgs (not shown). Table 2.2 shows

the simulation results for the covariance parameters for the generated data. The

following regions were selected: BA 24 (L), BA 32 (R), BA 19 (L) and BA 48 (R).

The differences between the median values of the estimated parameters and the true

values, from 200 generated samples are shown for each of the regions (1)-(4).

The second simulation study revealed similar results for regions A and B, and we

only present the region B results for brevity. To summarize the voxel-level relative

efficiency results, we plot the distribution of relative efficiencies across 1,000 voxels

from region B (Figure 2.3). We see that the GLM-based voxel-level variance estimates

are on average higher than the corresponding estimates obtained from our spatio-

temporal model. The simulation-based estimate of the region-level relative efficiency

is 1.72 for region B. This demonstrates that, on the region level, our model also

leads to more precise estimates compared to GLM, and therefore may lead increased

statistical power.

We found that estimates for both ρgs and ξgs (spatial and temporal parameters)

are quite accurate, while the between subject variability φ2
gs was slightly underes-
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timated (roughly 6%), which likely stems from the well-known downward bias of

ML estimates of variance components (Laird and Ware, 1998). Restricted maximum

likelihood (REML) estimation can be used for our model and would presumably mit-

igate the observed bias. We favor ML estimation in our context, however, because it

substantially facilitates computations.
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Figure 2.3: The distribution of relative efficiency values from 1,000 voxels randomly
selected from left BA 19. Each voxel-level quantity is calculated as the mean relative
efficiency across 200 simulated data sets. The relative efficiency was calculated based
on the estimates from our model, relative to GLM.

2.6 Discussion

We propose a novel spatio-temporal modeling framework for functional neuroimag-

ing data, overcoming unsupported assumptions of independence between the multiple

summary statistics for each subject (e.g. from different sessions or stimuli) and be-

tween different brain locations within neuroanatomic regions. We used Brodmann

area templates, which are popular in the neuroimaging community, to define neu-

roanatomic regions, but other maps may be applicable. Our proposed framework is
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targeted to fMRI data; however, the general ideas extend easily to PET brain imaging

data measuring distributed patterns of regional cerebral blood flow. Our approach

provides a unified framework for voxel-level and region-level inferences. An impor-

tant contribution of our work is that we derive efficient computational solutions, e.g.

enabling the inversion of large covariance matrices, to facilitate implementation. Our

simulation studies demonstrated that our method is quite accurate and that the es-

timated standard errors are on average smaller compared to GLM, leading to better

precision of estimates of model parameters, and more accurate statistical tests by

borrowing the strength across related measures of neural activity.

One limitation of our model is that it does not account for correlations between

regions. Doing so within our current framework would lead to substantially increased,

perhaps prohibitive, computations. Bowman et al. (2008) establish a Bayesian frame-

work that models between-region correlations, in addition to within-region correla-

tions, but the number of regions included in the analysis is consequently constrained

by the sample size. One advantage of our proposed spatio-temporal model is that

the number of regions included is unconstrained. Our current maximum likelihood

estimation procedure requires close monitoring to ensure convergence, confinement

within the parameter space, and avoidance of the other specified boundary condi-

tions.

In summary, our proposed spatio-temporal model provides an appealing, compu-

tationally efficient alternative to standard GLM-based methods for analyzing fMRI

data. Our model is based on assumptions that are more neurophysiologically plausi-

ble, capturing correlations between different brain locations and between estimates of

neural activity at different scanning sessions. These correlations lead to interpretive

advantages over the GLM, e.g. revealing information about the degree of coher-

ence in brain activity within defined neuroanatomic regions. Our simulation studies

demonstrate that our model estimates are quite accurate and that the standard er-
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rors associated with estimates of our mean model parameters are on average smaller

than those from a GLM. This increase in efficiency will often lead to more powerful

statistical tests and the detection of more statistically significant voxels.
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Chapter 3

Evaluating Functional

Autocorrelation within Spatially

Distributed Neural Processing

Networks

3.1 Introduction

Data-driven statistical approaches, such as cluster analysis or independent compo-

nent analysis, applied to in vivo functional neuroimaging data help to identify neural

processing networks that exhibit similar task-related or resting-state patterns of ac-

tivity. Ideally, the measured brain activity for voxels within such networks should

exhibit high autocorrelation. An important limitation is that the algorithms do not

typically quantify or statistically test the strength or nature of the within-network

relatedness between voxels.

There have been numerous applications of clustering analysis to functional imag-

ing data (Bowman et al., 2004). Despite the successful application of clustering
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methods to neuroimaging data, statistical procedures for testing the validity of the

resulting cluster structure are still lacking. Although a clustering solution suggests

the existence of networks of functionally related voxels, the clusters exhibit unknown

levels of autocorrelation, which is a desirable characteristic of behaviorally relevant

neural circuits. Typical cluster analyses neither quantify the strength or nature of

the relatedness between within-cluster voxels using an easily interpretable measure

nor apply formal tests of hypotheses to evaluate the statistical significance of the

level of autocorrelation. These limitations are particularly noteworthy since clus-

tering procedures always produce a solution, even in the absence of true functional

connections in the data. Therefore, a valuable addition to cluster analyses applied in

functional neuroimaging studies is to measure the degree of functional autocorrelation

within a clustering solution and to evaluate the statistical significance of the observed

associations.

Similarly, even though ICA has proved promising, there is a need to study the

properties of ICA as applied to fMRI data. One major issue in application of ICA is

that the reliability of the estimated independent components (ICs) is unknown. The

results from ICA may vary considerably with different algorithm starting points, sam-

pling of subjects, preprocessing steps or type of decomposition algorithm (Calhoun

et al., 2003). Therefore, validation of estimated ICs has become important for correct

interpretation of ICA results. There has been previous work related to evaluating the

results of ICA by testing mutual independence between the extracted source signals

(Murata, 2001; Shimizu and Kano, 2001; Chiu et al., 2003; Stogbauer et al., 2004; Wu

et al., 2009). There have also been several measures proposed to evaluate the fit of

the estimated ICs to the data (McKeown et al., 1998; Esposito et al., 2002; Himberg

et al., 2004) and some attempts to investigate the reliability of the ICA estimates

(Himberg and Hyvärinen, 2003; Himberg et al., 2004). Still, it may remain unclear

how much autocorrelation is present in the identified components.
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We introduce a global index to evaluate the validity of neural processing net-

works identified by functional clustering or by ICA. Specifically, we propose the use

of Moran’s I statistic (Cliff and Ord, 1973) to quantify and test the autocorrelation

present within computed functional networks. We tailor our definition of the global

index to neuroimaging applications through the use of network-based neighborhoods,

and we compute network-specific contributions to the overall autocorrelation. Conse-

quently, our methods target autocorrelation exhibited by voxels within defined neural

processing networks, rather than between voxels globally throughout the entire brain.

Thus, we make no assumptions (or statements) about statistical dependence between

voxels on a global level. Hypothesis testing results from our framework augment

the descriptive findings of data-driven analysis by determining the presence, direc-

tion, and statistical significance of functional autocorrelation within neural processing

networks. For applications of the proposed methods to resting-state fMRI data, we

present an explicit temporal component. We illustrate the use of our methodology

with data from two studies: a PET study of regional cerebral blood flow (rCBF)

correlates of parametrically manipulated working memory among individuals with

schizophrenia and an fMRI resting-state study of depression. Moreover, we provide

empirical support for the use of the proposed methods using a bootstrap analysis and

a simulation study.

3.2 Experimental Data

PET Data on Working Memory in Schizophrenia Patients. We illustrate cluster anal-

ysis using PET data from a study of schizophrenia, but the cluster analysis is also ap-

plicable to fMRI data. Our data are from a parametric study of working memory in an

executive function task in individuals with schizophrenia. We use data from N = 16

subjects, each having a total of 8 PET scans obtained using the blood flow tracer
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[15O]H2. After aligning and re-slicing the PET images for each subject (Woods et al.,

1998), we spatially normalize each subject’s scans to a population-representative PET

atlas (Woods et al., 1998) centered in Talairach stereotaxic coordinates (Talairach and

Tournoux, 1988). We refrain from spatial smoothing of the PET data during prepro-

cessing to avoid artificially inducing correlations between nearby voxels. We analyze

data from 9,919 voxels, consisting primarily of gray-matter voxels that exhibit at

least a 1.6% change throughout the study. The study design encompasses 2 repli-

cate sessions of 4 scans, where the scans in each session represent four experimental

conditions that parametrically vary working memory load-the ability to manipulate

information in short–term memory. Specifically, the conditions are defined as digit

shadowing (minimal working memory load) and low, moderate, and high working

memory loads in the form of serial addition tasks. In the digit shadowing condition,

the subjects simply repeat a number that they receive by an auditory presentation,

which imposes a negligible load on working memory. In the other three experimental

conditions, the subjects receive auditory presentations of a series of positive inte-

gers and are instructed to provide the sum of the current number and the preceding

number, which requires that they store the previous number in short-term memory

and mentally suppress the previous sum. The range of the integers in the working

memory load presentations distinguishes the conditions. Both numbers in the low

load condition fall between 1 and 3, both numbers in the moderate load condition

are between 1 and 5, and the high load condition includes integers between 1 and 9.

On average, the sums for the three active load conditions during our experiment are

4.23 (low), 7.22 (moderate), and 10.09 (high).

FMRI Data from a Study on Depression. We use data from a second study

intended to characterize the impact of childhood abuse/early trauma, and its devel-

opmental course, on brain structure and connectivity. For our purpose, we analyze

fMRI resting-state scans of seven women with a history of major depression. While
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in the scanner, subjects had their eyes open and were looking at a visual fixation

cross. Functional data were acquired on a Siemens 3T HRRT (high resolution re-

search tomography) scanner, in 3D mode. During a 7.5 min acquisition, a series of

210 scans were acquired with TR=2sec, 20 axial slices, 3.4 × 3.4 × 4 mm3 resolu-

tion. The functional runs were collected with a Z-saga sequence to avoid orbitofrontal

signal ablation. A group ICA was applied to investigate the resting-state functional

connectivity of the depressed patients. There is substantial interest in determining as-

sociations between the brain activity characteristics of different regions while subjects

are in a resting state. For example, a set of regions has been consistently identified

in these investigations and has been labeled as the default mode network (DMN).

The first step in the analysis (preprocessing and the group ICA) of the fMRI data

was done in FSL (FMRIB’s Software Library, www.fmrib.ox.ac.uk/fsl) software

package. The preprocessing and the first level, individual subject analysis of the

PET data was done in SPM (Statistical Parametric Mapping, Welcome Department

of Cognitive Neurology, London, UK, www.fil.ion.ucl.ac.uk/spm/). The rest of

the analyses were carried out in Matlab.

3.3 Methods

Notation and terminology. The framework we present allows estimation (and testing)

for the presence of autocorrelation separately for each experimental condition p (p =

1, . . . , P ) or scan s (s = 1, . . . , S). Data from a single scan are represented as a 3-D

rectangular lattice, comprised of a large number of voxels, indexed by a mapping

of coordinates (x, y, z) to v = 1, . . . , V . Each voxel contains intensity information

corresponding to measures of localized brain activity for fMRI data, or rCBF in case

of PET data.
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3.3.1 Clustering

Summary statistics, such as means or regression coefficients, are often inputs for

clustering procedures applied to task-related fMRI or PET data (Simon et al., 2004).

We develop notation for this case, but the methodology extends to settings that cluster

the original response data directly, e.g. in resting-state fMRI studies. We denote

rCBF, as a proxy for brain activity, by Yk(v) =
(
Yk1(v), . . . , YkS(v)

)′
, representing

localized blood flow measurements from all S scans for subject k, k = 1, . . . , K (at

voxel v). For clustering, we typically consider statistics T(v) =
(
T1(v), . . . , TP (v)

)′
=

f
(
Y1(v), . . . ,YK(v)

)
, P ≤ S, that summarize data from all individuals, e.g. where

Tp(v) is the mean or estimated effect associated with experimental condition p. By

selecting the pth element of the summary vector from every voxel, we also define

the vector Tp =
(
Tp(1), . . . , Tp(V )

)′
, which will facilitate our upcoming discussion of

functional autocorrelation.

Clustering procedures classify the V voxels in an image into G groups, with each

cluster consisting of Vg voxels, where g = 1, . . . , G and V =
∑G

g=1 Vg. Most methods

classify voxels by measuring the distance (dissimilarity) between the activity time

courses for every pair of voxels and combining voxels with small distances. For ex-

ample, one popular measure of distance between the activity in voxels i and j is the

Euclidean distance given by

d
(
T(vi),T(vj)

)
=

[(
T(vi)−T(vj)

)′(
T(vi)−T(vj)

)]1/2
. (3.1)

Descriptions of particular clustering algorithms are available in Rencher (2002), and

Bowman et al. (2004) highlight several of these algorithms for neuroimaging applica-

tions.

Some clustering criteria and stopping rules for hierarchical clustering methods

quantify measures based on within-cluster similarity, e.g. proportional to the change
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in within-cluster variation, relative to between-cluster variation. However, these quan-

tities are limited because they are relative measures, e.g comparing two consecutive

levels of a clustering hierarchy. Also, these measures often lack easy interpretability

and are not amenable to formal hypothesis testing. The probability distributions of

clustering criteria are difficult to derive theoretically (Hartigan, 1977, 1978) and thus

do not provide a basis for formal hypothesis testing using a conventional Neyman-

Pearson framework. Furthermore, even if one successfully derives the distribution of a

particular clustering criterion, the result may be somewhat limited in practice in cases

where an alternative clustering algorithm provides better performance. We evaluate

statistical significance of the functional autocorrelation present in the final clustering

solution, regardless of the clustering algorithm employed to obtain the solution and

without relying on specific distributional assumptions of the data.

3.3.1.1 ICA

Classical ICA. Let Y denote an S × V matrix of the observed voxel time courses,

where S is the total number of scans, and V is the number of voxels included in the

analysis; C is an N×V random matrix whose rows Ci are to be filled with the unknown

realizations of the N spatial components (images, reshaped in 1-D vectors), and A is

an S × N mixing matrix, whose columns contain the associated time-courses of the

N components. The spatial ICA problem for fMRI time series can be formulated as

an estimation of the following model:

Y = AC . (3.2)

There are no assumptions about the mixing matrix A, while the constraint on

the spatial processes Ci is that they are (ideally) mutually statistically independent.

The amount of statistical dependence within a fixed number of spatial components
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can be quantified by means of their mutual information, an important function in

information theory (Common, 1994). Thus, the ICA decomposition of Y can be de-

fined (up to a multiplicative constant and to the sign) as an invertible transformation:

C = UY, where the matrix U (so-called unmixing matrix) is determined such that

the mutual information of the target components Ci is minimized (i.e., such that

Ci’s are “as independent as possible”). The matrix A is the (pseudo)inverse of U.

In McKeown et al. (1998), the sources are estimated by iteratively optimizing the

unmixing matrix U so that C = UY contains mutually independent rows, using the

‘infomax’ algorithm.

Probabilistic ICA (PICA). The model of equation (3.2) does not include random

noise. The PICA model, which extends model (3.2), is formulated as a generative

linear latent variables model. The model “is characterized by assuming that the S-

variate vector of observations is generated from a set of q statistically independent

non-Gaussian sources via a linear instantaneous mixing process corrupted by additive

noise η(t)” (Beckmann and Smith, 2004):

yv = Acv + µ + ηv, ∀v ∈ {1, . . . , V } .

where yv denotes the S-dimensional column vector of individual measurements at

voxel location v, cv denotes the q-dimensional column vector of non-Gaussian source

signals contained in the data and ηv denotes Gaussian noise ηv ∼ N(0, σ2Σv). The

number of source processes is assumed to be smaller than the number of observations

in time (q < S). The model is closely related to factor analysis. The individual

component maps are obtained using a modified fixed-point iteration scheme to opti-

mize for non-Gaussian source estimates via maximizing the negentropy. The maps

are then separately transformed to spatial Z-scores. These Z-score maps depend on

the amount of variability explained by the entire decomposition at each voxel location
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relative to the residual noise. Next, Gaussian/Gamma mixture models are fitted to

the individual Z-maps in order to infer voxel locations that are significantly modu-

lated by the associated time-course. For more details on PICA, we refer the reader

to Beckmann and Smith (2004).

Group ICA. In Beckmann and Smith (2005), the single-session PICA has been ex-

tended to higher dimensions allowing for a model-free analysis of multi-subject or

multi-session fMRI data. For group ICA, either tensorial ICA (where the data is

decomposed into spatial maps, time courses and subject/session modes), or a sim-

pler temporal concatenation approach (a single 2D ICA is run on the concatenated

data matrix obtained by stacking all 2D data matrices of every single data set on

top of each other) are possible. The latter approach is recommended to use when

the interest is in finding a common spatial pattern, but we cannot assume that the

associated temporal response is consistent between subjects, such as in the analysis

of data acquired without stimulation (e.g. resting-state data). We hence apply this

approach for IC analysis of our fMRI data set. The technique is derived from parallel

factor analysis (Harshman, 1970; Harshman and Lundy, 1994). 1

We define Y(v) =
(
Y1(v)′, . . . ,YK(v)′

)′
, representing concatenated measures of

localized brain activity at voxel v, across all subjects. In our upcoming fMRI example,

Y(v) is a (210∗7)×1 vector. We also define the mean vector of brain activity, across

all voxels in all ICs as T = 1
V

∑V
v=1 Y(v).

3.3.2 Functional Autocorrelation Statistic

Functional autocorrelation measures the extent to which voxels within neural pro-

cessing networks exhibit similar patterns of brain activity. For any selected element

of the summary vector (indexed by p), we measure the functional autocorrelation of

1The research by Beckmann and Smith described above has been implemented as MELODIC
(Multivariate Exploratory Linear Optimized Decomposition into Independent Components - a stand
alone C++ program). It is freely available as part of FSL (FMRIB’s Software Library).
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a clustering, or ICA solution using Moran’s I (Moran, 1950), defined as

Ip =
V

S0

Z′pWZp

Z′pZp

. (3.3)

In the case of clustering, Zp = [Tp − (T p1V )], with 1V denoting a (V × 1) vector

of ones and T p denoting the mean summary element across all voxels (i.e., T p =

1
V

∑V
v=1 Tp(v)); S0 =

∑G
g=1(Vg − 1)Vg and W is the symmetric spatial connectivity

matrix representing the clustering solution. The matrix W defines all pairs of voxels

that are in the same cluster, i.e., that exhibit functional connectivity, by including

a nonzero value in the appropriate off-diagonal element. Specifically, we define W

such that the diagonal elements are Wvv = 0 , and the (u, v)th off-diagonal element

is either Wvu = 1, if voxels u and v are in the same cluster, or Wvu = 0, otherwise.

When applied to group ICA results, we define Z = [
(
Y(1)′, . . . ,Y(V )′

)′−(1V⊗T)],

where ⊗ denotes the Kronecker product, or the direct product operator. Here we

drop the index p for convenience, since in our fMRI data example there is only one

experimental condition. W is now a block matrix: W = W1 ⊗ I(K∗S)×(K∗S), where

W1 is a V ×V connectivity matrix (i.e. W 1
vv = 0 and W 1

vu = 1, if voxels u and v are in

the same IC and 0 otherwise). V and S0 are the same as defined above. Connectivity

matrices in other areas of statistical application, e.g. geostatistics, typically specify

connections between locations that are physically adjacent, e.g. neighboring cities.

We adapt Moran’s I by tailoring our definition of adjacency to reflect the distributed

neural processing networks, which typically contain voxels that are not all spatially

contiguous. Since our application defines the proximity of voxels based on measures

of brain function, rather than physical or spatial distance, we refer to Moran’s I as a

functional autocorrelation index. However, the phrase spatial autocorrelation is also

appropriate since we view functional networks as spatially dissociable regions on a

brain map.
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The massive amount of data collected in functional neuroimaging studies yields

high dimensional spatial connectivity matrices, which may lead to computational

difficulties. In the case of clustering (and similarly for ICA), we can re-express Ip,

using the following, perhaps more computationally convenient, expression

Ip =
V

S0

V∑
v=1

V∑
u=1

Wvu[Tp(v)− T p][Tp(u)− T p]

V∑
v=1

[Tp(v)− T p]2
. (3.4)

A similar formula can be obtained when (3.3) is applied to an ICA solution from

fMRI data. In (3.4), the numerator of Moran’s I calculates the products of the

mean-centered summary statistics for within-cluster voxel pairs and computes the

sum of all such products. The denominator gives a measure of variation about the

overall mean. These interpretations reveal the conceptual similarity of Moran’s I to

the Pearson correlation coefficient, with Moran’s I representing a spatially weighted

version of Pearson’s measure. Moran’s I generally ranges between -1 and 1, but the

precise limits depend on the eigenvalues of W. A large positive value of Ip indicates

the presence of functional clusters in which there is high within-cluster similarity and

a negative value indicates clusters exhibiting dissimilarity between voxels. Randomly

assigning voxels to clusters typically results in uncorrelated rCBF between the voxels

within each group.

3.3.3 Hypothesis Testing

The randomization scheme, characterized by the random allocation of voxels to neural

processing networks, serves as the basis for establishing the null hypothesis and related

distributional properties for evaluating the statistical significance of any observed

value of Moran’s I. To conduct a test to determine if statistically significant functional
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autocorrelation is present in a clustering solution, compute the test statistic

Zp =
Ip − E(Ip)√

V (Ip)
. (3.5)

where E(Ip) and V (Ip) represent the theoretical mean and variance of Moran’s I

under randomization, respectively (we provide expressions below). Next, calculate

Pr(|Zp| > zα/2), the probability that the magnitude of the observed statistic Zp

exceeds the critical value from a standard normal distribution corresponding to type-

I error at level α. The test rejects the null hypothesis of uncorrelated networks,

e.g. no true cluster structure, when the absolute value of Zp is sufficiently large.

Therefore, a statistically significant test result indicates that the observed functional

autocorrelation exhibited by a clustering or ICA solution is large relative to the

expected value of the autocorrelation under randomization (Goodchild, 1986).

Calculating the test statistic Zp requires expressions for the expected value and the

variance of Moran’s I under the random assignment of voxels to functional networks.

The mean and the variance of Moran’s I under randomization are given by following

formulas (Moran, 1948, 1950; Cliff and Ord, 1973, 1981):

E(Ip) = − 1

V − 1
, (3.6)

V(Ip) =
V

[
(V 2 − 3V + 3)S1 − V S2 + 3S2

0

]

(V − 1)(V − 2)(V − 3)S2
0

− mp

[
(V (V − 1)S1 − 2V S2 + 6S2

0

]

(V − 1)(V − 2)(V − 3)S2
0

− E2(Ip)

(3.7)

where S1 = 2S0, S2 =
∑G

g=1 4Vg(Vg − 1)2, and

mp =
V −1

∑V
v=1

[
Tp(v)− T p

]4

{
V −1

∑V
v=1

[
Tp(v)− T p

]2}2 . (3.8)

Using Monte Carlo simulations based on our PET data, we empirically validate



62

the theoretical properties of Moran’s I under randomization to protect against poten-

tial bias, e.g. caused by intrinsic spatial autocorrelation in PET data (see the Results

section, Bootstrap analysis). Substituting the computed quantities (3.6)–(3.8) into

equation (3.5) gives the observed value of the test statistic upon which to base hy-

pothesis testing and statistical inferences regarding functional autocorrelation.

3.4 Results

Working Memory Data. We begin by fitting the working memory data using a gen-

eral linear model with expected value parameters representing the four experimental

conditions (digit shadowing and low, moderate, and high working memory loads) and

a covariate adjustment for global cerebral blood flow (gCBF). We obtain ordinary

least-squares estimates of the regression parameters and perform clustering using the

vector of summary statistics T(v) = β̂(v) for each voxel. We perform hierarchical

clustering using Ward’s method (Rencher, 2002) and determine the number of clusters

using the cubic clustering criterion (CCC) (Searle, 1983). Generally, CCC compares

the square of the observed correlation coefficient (R2) and an approximation of its

expected value under specified regularity conditions. A plot of CCC ranging from 1 to

40 clusters (Figure 3.2) clearly identified G = 29 as the number of clusters present in

the data. Therefore, the final clustering solution contains 29 clusters, and we depict

the cluster map in Figure 3.1(a).

The cluster sizes range widely with the smallest cluster (1) containing only 8

voxels and the largest cluster (17) containing 773 voxels. The average number of

voxels in a cluster is 342 with a standard deviation of 165 voxels. We calculated

the mean normalized rCBF values for all voxels within a cluster (averaged across

levels of working memory load), and arranged them in increasing order. Cluster 1

contains voxels with outlying observations and has a mean of only 14.0. The most
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(a) Cluster Map (b) Cluster 29
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Figure 3.1: Cluster maps from Ward’s method displayed on axial brain slices ranging
from -36mm to +52mm relative to the anterior/posterior commissure plane (z). (a)
View of the 29 clusters, with each cluster containing voxels that exhibit similar re-
sponses across varying loads on working memory. (b) Cluster 29 includes voxels in the
inferior frontal gyrus (BA 47), thalamus, anterior and posterior cingulate (BA 30;32),
and the lingual gyrus (BA 17;18). (c) Cluster 23 consists of voxels in the precentral
and middle frontal gyri (BA 9), in the middle, medial, and superior frontal gyri (BA
6), and along the supramarginal gyrus (BA 40). (d) Cluster 20 spans portions of the
right middle frontal gyrus (BA 10), the left medial frontal gyrus (BA 11), and the
anterior cingulate (BA 25).
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Figure 3.2: Plotted values of the cubic clustering criterion (CCC). The figure identifies
29 clusters present in the data.

active cluster (29) has a mean value of 69.8. Ten of the clusters identified by Ward’s

method exhibit brain activity that is lower than the global average of 50, while the

other clusters show increased activity relative to the global average value.

Typical cluster analyses cease after establishing a cluster solution and perhaps

quantifying associated descriptive statistics. While the descriptive cluster map pro-

vides some insights on functional associations in the brain, it does not quantify the

similarity of voxels within the 29 clusters. Our methodology allows us to compute a

global measure of the functional autocorrelation using Moran’s I statistic and to eval-

uate the validity of the clustering solution by examining the statistical significance

of the autocorrelation. Overall, the clusters exhibit very strong positive functional

autocorrelation for the digit shadowing condition (0.80), the low working memory

load condition (0.81), the moderate load condition (0.81), and the high load condi-

tion (0.81). The large positive values of the functional autocorrelation index suggest

that there is generally strong coherence between the voxel profiles within the defined

neural processing clusters. Furthermore, these functional autocorrelations are highly

statistically significant with p-values all less than 0.0001, confirming the validity of

the clustering solution relative to the expected associations under spatial randomness.

Our analysis identifies clusters containing voxels that, on average, reveal activ-
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(a) (b) (c)

Figure 3.3: Mean rCBF profiles, along with standard errors, for 3 representative
clusters across levels of working memory load ranging from digit shadowing (DS) to
the high load. Many clusters (not all shown here) exhibit nonlinear trends over the
parametrically varied memory loads.

ity profiles resembling particular polynomial curves as a function of varying working

memory load levels. The representative mean profiles for three clusters appear in

Figure 3.3; we display the associated standard errors using vertical bars. The plots

reveal potentially important functional characteristics of the relationship of cluster-

level activity to working memory. The nonlinear trends apparent in the plots provide

insights on the nature of the stimulus-response relationship in the cluster and may

assist in guiding subsequent statistical modeling, particularly in studies of paramet-

rically varying experimental conditions.

Cluster 29 is the most active cluster, i.e. has the highest normalized rCBF, asso-

ciated with the neural processing underlying working memory. The voxels within this

cluster reveal a roughly quadratic trend in rCBF, exhibiting an increase in measured

brain activity from digit shadowing through the moderate working memory load, fol-

lowed by slight attenuation in the activity at the high load (see Figure 3.3(c)). Axial

slices of the cluster map in Figure 3.1(b) show that this neural processing cluster

consists of voxels localized bilaterally in the inferior frontal gyrus (Brodmann area

(BA) 47) (Brodmann, 1909b), extending into the left superior temporal gyrus (BA

22); thalamus; anterior (BA 32) and posterior (BA 30 and 31) cingulate cortex; and

the lingual gyrus (BA 17 and 18). The quadratic trend that these voxels display sug-

gests that, in individuals with schizophrenia, the activity in this cluster increases to
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accommodate more substantial memory loads, but then diminishes when the working

memory load exceeds capacity. There was not a precipitous fall in the performance

of the serial addition task imposing a high working memory load, rather a near linear

decrease in accuracy from the digit shadowing to high load conditions. Performance

at high load levels may be subsumed by other clusters (e.g. cluster 20).

Cluster 20 defines a network of functionally related voxels spanning portions of the

prefrontal cortex including the right middle frontal gyrus (BA 10), left ventromedial

frontal gyrus (BA 11), and the subcallosal cortex (BA 25), all visible in axial slices

z = −12 mm through -4 mm of Figure 3.1(d). As indicated by Figure 3.3(a), these

voxels exhibit an approximate quadratic pattern of task-related activity with declining

activity from digit shadowing to moderate working memory load and a slight increase

at the high load level.

The full set of individual cluster maps identify functional associations related to

the neural activity involved in performing parametrically varying working memory

tasks. Here, our detailed inspection of two clusters reveals distinct profiles of task-

related brain activity and reveals associations between brain regions that have been

previously linked to working memory tasks. Numerous studies have detected the

involvement of both dorsal lateral and ventral lateral regions of the prefrontal cortex

in working memory functions (D’Esposito, 2001). In addition, several studies have

implicated distributed activations in the posterior parietal cortex (BA 40/7), anterior

cingulate cortex (BA 32), and the thalamus, as well as premotor areas (BA 6 and 8)

(D’Esposito et al., 1998; Perlstein et al., 2003; Picard and Strick, 1996).

The global autocorrelation measures augment the descriptive findings of classifi-

cation procedures by evaluating the strength and direction of the associations within

the defined neural processing clusters. Local measures of autocorrelation do not ex-

tend readily to neuroimaging classification applications because they would require

definitions of within-cluster adjacency or functional connections. To provide a crude
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Figure 3.4: The cluster-specific contributions to the overall autocorrelation index.

measure of the contribution that each cluster has on the overall Moran’s I autocor-

relation statistic, we compute the percent contribution of each cluster. Figure 3.4

displays the results of this local measure. The plot reveals that several clusters with

large or small mean rCBF values contribute more heavily to the global autocorrelation

measure. Generally, a cluster’s contribution to the overall level of global autocorrela-

tion gives an indication of the degree of similarity of rCBF profiles from voxels within

the cluster and of the spatial extent of the cluster. Both a high degree of within-

cluster homogeneity in working memory-related rCBF values and a large cluster size

lead to greater influence on the overall level of functional autocorrelation. Clusters 3,

4, 5, 23, and 29 have the largest impact on the overall functional coherence, attesting

to the high degree of functional autocorrelation in these clusters.

Depression Data. We first perform a group ICA analysis of the fMRI data using

PICA (Beckmann and Smith, 2004) as implemented in the FSL tool MELODIC (Mul-

tivariate Exploratory Linear Decomposition into Independent Components) Version

3.09. The following data pre-processing was applied to the input data: masking of

non-brain voxels; voxel-wise de-meaning of the data; normalisation of the voxel-wise

variance. Pre-processed data were whitened and projected into a 33-dimensional sub-
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IC
% of global

# voxels BA’s
autocorrelation

4 12.41 843 7, 9, 10, 11, 23, 30, 39, 40
5 6.88 1032 putamen, 3, 4, 6, 48
6 7.24 968 thalamus(l), 6, 9, 10, 46

17 10.65 1464 6, 9, 24, 32, 46
27 0 45 21(r), 22(r), thalamus (r)
29 4.24 827 40(r), 44(r), 45(r), 47

Table 3.1: Network-specific contributions to the overall autocorrelation index of se-
lected ICs (as identified by ICA) of the fMRI data from the study on depression. (l
and r denote the ‘left’ and ‘right’ hemisphere).

space using Principal Component Analysis. The whitened observations were decom-

posed into sets of vectors which describe signal variation across the temporal domain

(time-courses), the session/subject domain and across the spatial domain (maps) by

optimizing for non-Gaussian spatial source distributions using a fixed-point iteration

technique (Hyvärinen, 1999). Estimated component maps were divided by the stan-

dard deviation of the residual noise and thresholded by fitting a mixture model to

the histogram of intensity values (Beckmann and Smith, 2004). The optimal number

of components determined by the PICA algorithm (Beckmann and Smith, 2004) is

33. Many brain voxels were allocated to more than one IC, and some voxels were not

assigned to any of the ICs. Out of a total of 19,257 intracranial voxels, 17,197 were

assigned to at least one of the ICs. We assign each of the latter voxels to a single IC,

based on the largest (in magnitude) Z-score.

For this data set, the functional autocorrelation index is 0.17. Even though it

is modest compared to the one for PET data, it is statistically significant with a

p-value less than 0.0001. There are only 4 ICs for which the crude estimates of local

autocorrelation are > 0.01, and Figure 3.5 shows three of them. IC 4 represents the

DMN, and IC 6 contains voxels in several brain areas (e.g. dorsolateral prefrontal

cortex (BA 9), anterior prefrontal cortex (BA 10), and left thalamus) relevant in
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Figure 3.5: ICA results with optimal number of components (33); (a) IC 4 (with the
corresponding time course): the DMN; (b) IC 6, (c) IC 29.
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depression (Mayberg, 1997; Goldapple et al., 2004)). Table 3.1 lists the IC-specific

contribution to the global autocorrelation index, number of voxels and Brodmann

regions in which the IC’s voxels lie for several ICs.

Since for this data set, we calculate the global Moran’s I statistic based on the

voxels’ time courses (not the summary statistic vectors), the statistic I is small,

mainly due to the fact that the denominator in (3.3) increases very fast since the

number of time points is large (210). For this reason, we apply another approach

to evaluate the global autocorrelation. We calculate the global Moran’s I separately

for each time point, this way obtaining a (210 ∗ 7 × 1) vector of global indices of

autocorrelation, for our ICA solution. The obtained values are of a larger scale.

They range from 0.03 to 0.53, with the peak values within subjects reaching at least

0.3. The corresponding IC-specific contributions to the overall autocorrelation index

agree with the previous results reported in Table 3.1. Namely, the ICs with the largest

range of ‘local’ Moran’s I statistics are still IC 4 (range of I’s [0, 0.19]), IC 5 (range

of I’s [0, 0.14]), IC 6 (range of I’s: [0, 0.15]), and IC 17 (range of I’s [0, 0.26]).

Therefore, both approaches bring us to similar conclusions about which of the 33

ICs are most functionally and spatially coherent neural networks. There are several

possible reasons why, for this data set, the estimated global autocorrelation index is

relatively small. First, the sample size is small for a group analysis (only 7 subjects).

This is resting-state data, so the signal to noise ratio is likely to be lower than for

task data (such as our PET data set). Also, even though the ICA analysis should

ideally result in functionally correlated ICs, the approach is based on conceptually

different criteria which results in ICs that are as statistically independent as possible.

Bootstrap Analysis We do not perform spatial smoothing of the PET data prior to

conducting the cluster analysis to avoid artificially inflating the correlations between

the rCBF measurements in nearby voxels. A related issue is whether the intrinsic spa-

tial correlations in PET data, e.g. stemming from the acquisition and reconstruction
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Mean Working memory load
Moran’s I digit shadowing (DS) low moderate high
Theoretical -0.000101 -0.000101 -0.000101 -0.000101
Bootstrap -0.00033 -0.00025 - 0.00029 -0.00030

Bias −2.29× 10−4 −1.49× 10−4 −1.89× 10−4 −1.99× 10−4

Variability 0.62× 10−3 0.62× 10−3 0.63× 10−3 0.63× 10−3

Table 3.2: Summary of the Bootstrap analysis designed to evaluate a potential bias
of Moran’s I (e.g. caused by intrinsic spatial autocorrelation) in PET data.

processes, may bias Moran’s I toward higher values. If true, then the upward bias of

Moran’s I would call for modifications to the hypothesis testing framework outlined

previously. We conduct a Monte Carlo simulation study to evaluate the expected

value and the variability of Moran’s I under the null hypothesis of random cluster

assignments.

We conduct a bootstrap analysis that includes 500 samples drawn, with replace-

ment, from the working memory data. For each sample, we compute summary statis-

tics representing the four working memory load conditions, adjusted for gCBF. To

establish the null distribution of Moran’s I, we randomly allocate voxels to clusters in

each bootstrap sample, with the cluster sizes matching those obtained in our original

analysis, and then we calculate Moran’s I for the resulting randomized clustering so-

lutions. The 500 computed statistics represent the empirical distribution of Moran’s

I under the null hypothesis. The bootstrap distribution allows a comparison of em-

pirical and theortical properties of Moran’s I including both its mean and variance.

Table 3.2 summarizes the results of the bootstrap analysis. Theoretically, the

mean of Moran’s I is equal to -0.000101. The similarity of the theoretical and empir-

ical mean values provides strong evidence of negligible bias in Moran’s I for our PET

application. We find the empirical distributions of the bootstrap biases, reflecting

estimates of Moran’s I obtained from the boostrap samples (under randomization)

minus the theoretical value of the mean. Averaging over all the bootstrap samples

gives the bootstrap estimate of bias, for each condition. Although slightly negative,
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the biases are all extremely small. Similarly, the bootstrap variance estimates ex-

hibit close correspondence to the theoretical values. The magnitudes of all differences

between the empirical and theoretical variances are less than 0.4224 × 10−6. The

accuracy of the theoretical mean and variance expressions relative to their empirical

counterparts obtained from the bootstrap estimates supports the use of the hypothesis

testing procedure outlined in the Methods section.

Simulated Data Example. We analyze simulated data based on the working memory

PET study to illustrate further the utility of Moran’s I for detecting the presence

of functional autocorrelation in clustering solutions. We simulate data using a mix-

ture model that takes a weighted average of the global mean and the mean of the

voxel-specific summary values within the same neural processing cluster, with weights

defined by a spatial dependence (correlation) parameter ρ. Specifically, we generate

data for a particular voxel within cluster g using

T̂v = (1− ρ)µ + ρTNv + εv, (3.9)

where εv ∼ N(0, σ2
v), µ is the overall mean, e.g. 50; and TNv is the mean of the

summary statistics from the Vg−1 voxels in the same cluster as voxel v, i.e., from the

functional neighborhood of v, denoted by Nv. We consider six simulated data sets with

the correlation parameter varying across the set of values ρ ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}.
We use the 29 clusters computed from the working memory data to define the cluster

structure and the corresponding cluster sizes Vg. We utilize estimates of the variance

parameters and the summary statistic vector from the working memory data.

The error terms from different voxels in model (3.9) are independent. However,

the model yields simulated values that depend on the activity levels from other voxels

within the same neural processing cluster, when ρ > 0. The activity in a given voxel

is uncorrelated with the activity of the other voxels within the same cluster when
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Figure 3.6: Plot of Moran’s I versus the correlation parameter ρ for the simulated
data. Data with increased functional autocorrelation yield larger values of Moran’s
I.

ρ = 0.

We compute Moran’s I for the clustering solution corresponding to each simu-

lated data set, and Figure 3.6 displays the relationship between Moran’s I and the

correlation parameter for the simulated data. The plot illustrates that Moran’s I is

effective for detecting and quantifying functional autocorrelation in clustered data.

The value of Moran’s I is zero in the absence of functional autocorrelation. In prac-

tice, the importance of revealing the absence of functional autocorrelations lies in

the fact that a simple cluster analysis would yield misleading results by providing a

clustering solution when no true underlying structure is present in the data. Moran’s

I increases as a function of ρ, reinforcing that the global index captures the functional

autocorrelation inherent within the computed clusters. The simulated data do not

achieve perfect correlation, even when ρ = 1, primarily due to the addition of random

noise specified by our simulation model. Consequently, Moran’s I is approximately

equal to 0.8 when the correlation parameter for the simulated data equals 1.
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3.5 Discussion

Data-driven approaches, such as cluster analysis and ICA, are extremely useful tools

for describing the functional structure and patterns present in neuroimaging data.

Cluster analyses help dissociate groups of voxels that exhibit similar patterns of brain

activity over time or across experimental conditions. ICA is very useful for detecting

resting-state neural networks. In this work, we extend the interpretations given by

those two methods by introducing Moran’s I for statistical estimation and hypoth-

esis testing of the functional autocorrelation present in neural processing networks

as identified by clustering or ICA. Applying these procedures helps to evaluate the

validity of the typological descriptions given by a clustering or an ICA solution. Com-

puting Moran’s I is fast and easy to program using standard statistical software such

as R or SAS. We use MATLAB to calculate the functional autocorrelation of neural

processing networks of (functional clusters or ICA components) from PET working

memory data, fMRI depression data, and simulated data.

We propose a definition of Moran’s I that estimates the functional autocorrelation

separately for each element of the summary statistic vector, e.g. pertaining to a

specified experimental condition such as high working memory load. For studies that

cluster time courses measured under numerous experimental stimuli, it is perhaps

more beneficial to aggregate the spatial index across the components of the summary

statistic vector. One can easily modify Moran’s I to define a more crude measure that

“averages” across all elements of the summary vector. When computing the functional

network-specific contributions to the global autocorrelation index, the network sizes

impact the corresponding contributions. The data must provide extremely strong

evidence that a small neural processing network (e.g. a small cluster) contributes

substantially to the global autocorrelation for the network to weigh heavily in the

global calculation. The number of networks may also affect estimates of the functional

autocorrelation. Assigning voxels into a large number of groups will allow the solution
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to reflect strong resemblances among within-cluster voxels, whereas designating fewer

groups will often lead to less coherence within clusters.

We demonstrate the use of Moran’s I using PET neuroimaging data analyzed

using cluster analysis and fMRI resting-state data analyzed using ICA. In addition,

Moran’s I may combine with results from related descriptive procedures such as

principal component analysis (Friston et al., 1993). Structural equation modeling is

a useful approach to examine the direct and indirect effects that one brain region has

on another (McIntosh and Gonzalez-Lima, 1994), but it requires the specification of

anatomical models and substantially simplifies spatial representations from a large

number of voxels to a small number of regions. Both cluster analyses and ICA gen-

erally serve as exploratory tools, but often the ultimate objectives of neuroimaging

studies require the use of inferential or confirmatory statistical procedures. In this

light, conducting such analyses, followed by an assessment of the functional autocor-

relation, helps provide insights about characteristics of neuroimaging data that may

prove valuable for subsequent modeling, estimation, and hypothesis testing.
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Chapter 4

Bayesian Hierarchical Spatial

Model for Predicting Brain

Activity

4.1 Introduction

Functional neuroimaging (such as PET and fMRI), which permit noninvasive mea-

sures of neurophysiology and neuroreceptor binding, are powerful tools which have an

increasingly important role in defining the neural basis of illnesses and risk factors for

major psychiatric disorders such as depression, schizophrenia and Alzheimer’s disease

(AD). The clinical capabilities of neuroimaging tools for guiding treatment decisions

for such disorders, however, have not been fully established. There is emerging interest

in using functional neuroimaging to guide treatment selections for individual patients

and to predict the progression of the disease, prompting the need to develop statis-

tical methodology that would provide clinicians with predictive information about

patients’ brain activity. In treatment-related studies, such methods would assist clin-

icians in making treatment decisions by forecasting post-treatment neural activity. In
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studying the progression of dementia, they can identify preclinical changes that may

predict, for example, the onset of Alzheimer’s disease.

Functional brain imaging has only recently been used to predict brain and clinical

outcomes in individual patients. Guo et al. (2008) proposed a predictive statistical

model for PET and fMRI data, using a Bayesian hierarchical framework, that uses

patient’s pretreatment scans, coupled with relevant patient characteristics, to predict

brain activity in schizophrenic patients after a specified treatment regimen. This

represents an important first step in attempting to help make treatment decisions

through using functional neuroimaging data and provides a foundation on which

future research, including that on predicting clinical symptom responses, can build.

Stonnington et al. (2010) used relevance vector regression (RVR) to predict clinical

scores from individual scans. In particular, they used individuals’ MRI T1 weighted

image to predict their performances on established tests used in the evaluation of

Alzheimer’s disease, in two independent data sets. Predicted and actual clinical

scores were highly correlated. In their analysis they use only the structural MRI,

rather than neural activity derived from fMRI or PET scans.

Recently, Gaussian Processes (GPs), based on Bayesian theory, emerged as an al-

ternative to SVM. A Gaussian Process is a generalization of the multivariate Gaussian

distribution to infinitely many dimensions, with a constraint that any finite number

have a multivariate normal distribution. Marquand et al. (2010) evaluate the predic-

tive capability of GP models for two types of quantitative prediction: multivariate

regression and probabilistic classification, using whole-brain fMRI volumes from a

study investigating subjective responses to thermal pain. They show that GP models

predict subjective pain ratings without requiring anatomical hypotheses about func-

tional localization of relevant brain processes, and that GP predictions were more

accurate than any region previously demonstrated to encode pain intensity. They

also show that GP regression models outperform support vector and relevance vector
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regression.

Although each of these methods represent an important contribution to predict-

ing treatment outcome or brain activity based on neuroimaging data, none of the

methods use the spatial information from the neighboring voxels/regions to improve

the prediction accuracy. In addition to background spatial correlations inherent in

neuroimaging data, functional neuroimaging data naturally exhibit spatial correla-

tions due to underlying functional connectivity. We propose a model that borrows

strength from such correlations, with the goal of improving prediction.

Bowman et al. (2008) propose a spatial Bayesian hierarchical model for analyzing

functional neuroimaging data that provides a unified framework to obtain neuroacti-

vation inferences as well as task-related functional connectivity inferences. The model

combines whole-brain voxel-by-voxel modeling and ROI analyses within a unified

framework. An unstructured variance/covariance matrix for regional mean param-

eters allows for the study of inter-regional (long-range) correlations, and the model

employs an exchangeable correlation structure to capture intraregional (short-range)

correlations. Although this model captures both long-range and short-range corre-

lations, and provides a very useful framework that is applicable for both making

inferences regarding task-related changes in brain activity and for identifying promi-

nent task-related connectivity, it does not capture temporal correlations between the

brain activity in repeated scanning sessions which would constitute a basis for the

prediction.

We propose a novel Bayesian hierarchical framework for predicting follow-up neu-

ral activity based on the baseline functional neuroimaging data that attempts to

overcome some shortcomings of the modeling methods used in other neuroimaging

settings by borrowing strength from the spatial correlations present in the data. The

top level of our hierarchical model specifies a multivariate normal likelihood function,

where the mean is composed of a population-level mean parameter, a voxel-specific
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spatial parameter, an individualized (random effect) component and the covariates

contribution. The spatial correlations are incorporated in the model in two ways: the

short-range correlations between neighboring voxels are incorporated through a mul-

tivariate conditional autoregressive (CAR) prior of the spatial parameters, while the

long-range correlations between anatomical brain regions are incorporated through

the covariance matrix of the random effect parameters. Our proposed model is multi-

variate (bi-variate), allowing modeling correlations between brain activity at different

scanning sessions, which are the bases for the prediction of follow-up brain activity

for the new patients.

Estimation is performed using Markov Chain Monte Carlo (MCMC) techniques

implemented via Gibbs sampling. We apply our Bayesian hierarchical spatial model

to a PET data set from a study of Alzheimers disease. This bivariate application is

concerned with modeling spatial patterns for bivariate brain activity: the baseline and

the 6-month follow-up activity. An association between the baseline and follow-up

brain activity for a given individual is certainly expected. Also, spatial associations

across the brain locations (both between voxels and between regions) are expected.

Since our model incorporates a conditional autoregressive prior at the second

level, we give a brief introduction to CAR and multivariate CAR models here and

give references for more details.

4.1.1 Conditional Autoregressive (CAR) Models

Conditional autoregressive (CAR) models were introduced by Besag (1974) and are

one of the most important and widely used models to represent spatial correlations

(e.g., in disease mapping: Clayton and Kaldor (1987), Marshall (1991), Waller et al.

(1997)). They are conveniently implemented using Gibbs samplier and more general

MCMC methods for fitting certain classes of hierarchical spatial models.

Let φ = (φ1, φ2, . . . , φn) represent a vector of univariate variables. The zero-
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centered CAR specification, following Besag (1974), gives

φi|φj, j 6= i, τ 2
i ∼ N

(∑
j

bijφj, τ
2
i

)
, i = 1, . . . , n. (4.1)

Using Brook’s Lemma (1964), it can be shown that

f(φ, τ ) ∝ exp
{
−1

2
φT D−1(I−B)φ

}
, (4.2)

where B = {bij} and D is diagonal with Dii = τ 2
i . (4.2) suggests a multivariate

normal distribution, with zero mean, but in order for (4.2) to be a proper distribution,

D−1(I−B) must be non-singular and symmetric. This implies the following condition

on bij and τ :

bij

τ 2
i

=
bji

τ 2
j

, for all i, j.

However, in spatial applications a symmetric proximity matrix W is usually created

and one sets bij = wij/wi+, where wi+ =
∑

j wij. If τ 2
i = σ2/wi+, we define DW

to be diagonal matrix with entries wi+ and have D−1(I − B) = 1/σ2(DW − W ).

Since (DW −W )1 = 0, (4.2) is an improper distribution. This problem is in practice

ignored and the φi’s are sampled using the full conditional distributions in (4.1) with

a linear constraint imposed. Since f(φ, τ) in (4.2) cannot be used as a model for data

(data cannot arise under an improper stochastic mechanism), it is usually attached

to random spatial effects introduced at a second stage of a hierarchical specification.

Besag et al. (1995) showed that an improper CAR prior can still result in a proper

posterior distribution, provided the likelihood is well defined.

A suggested repair for the improperiety problem (Cressie, 1993) is to introduce

a parameter ρ into the mean specification which results in the covariance matrix

D−1(I − ρB) and choose ρ to make it nonsingular. This is guaranteed if ρ ∈
(1/λ(1), 1/λ(n)), where λ(1) and λ(n) are the smallest and the largest eigenvalues re-
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spectively of D
−1/2
W WD

−1/2
W . Moreover, it is not difficult to show that λ(n) = 1 and

λ(1) < 0. Parameter ρ can be interpreted as a coefficient which measures spatial asso-

ciation (see Gelfand and Vounatsou (2003) for an explanation of this interpretation).

Multivariate Conditional Autoregressive (MCAR) Models. Most of the applications of

CAR modeling are done in the univariate case and employ an improper specification.

Gelfand and Vounatsou (2003) move to multivariate conditional autoregressive models

and provide rich, flexible classes which yield proper distributions. Their approach is

to introduce spatial autoregression parameters. They first clarify what classes can

be developed from the family of Mardia (1988) and then propose to employ these

models as specifications for second-stage spatial effects in hierarchical models. For

more details about the CAR and MCAR models we refer the reader to Carlin and

Banerjee (2003), Gelfand and Vounatsou (2003), Banerjee et al. (2004), and Jin et al.

(2005). The theoretical work underlying the development of the MCAR models is

given in Mardia (1988).

In our model we adopt a MCAR prior with a single (scalar) spatial parameter (in

our case, it means we assume the same level of spatial association for the baseline

and the follow-up data), denoted in Gelfand and Vounatsou (2003) by MCAR(ρ, Σ).

4.2 Experimental Data

We consider data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study

(http://www.loni.ucla.edu/ADNI/). The goal of this national multi-center project

is to develop biomarkers of Alzheimer’s Disease (AD) in elderly subjects. Study

participants receive [18F]-2-fluoro-2-deoxy-2-glucose (FDG) positron emission tomog-

raphy (PET) scans several times during the study: at baseline (screening), 6 months,

12 months and 24 months. FDG is an analogue of glucose, and in PET it yields

concentrations of the injected tracer indicating tissue metabolic activity, in terms of
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regional glucose uptake. In our analysis, we used the baseline and month 6 scans.

For more details about the ADNI, see Mueller et al. (2005).

Participants are classified as mild cognitive impairment (MCI) patients, Alzheimer’s

disease (AD) patients, or healthy controls (HC). The data from 40 AD and 40 HC

subjects were used in the training step of the prediction model development. The

prediction model is then applied for predicting the month 6 follow-up PET scan,

based on the baseline scan, for an additional group of 33 AD and 33 HC subjects.

The PET scans being used in ADNI measure the brain’s rate of glucose metabolism

using the tracer [18F] Fluorodeoxyglucose. Since the images are from many different

PET scanner models and differ in resolution, orientation, voxel and image dimensions,

count statistics, etc., we did not use the raw or “original” PET images, but the already

processed PET image data available from the ADNI web site.

The processing steps are as follows. (1) Co-registration: In most cases, six five-

minute frames are acquired 30 to 60 minutes post-injection. Each extracted frame is

co-registered to the first extracted frame of the raw image file. (2) Averaging: the six

five-minute frames of the co-registered image set are averaged to create a single 30

min PET image.(3) Standardizing image and voxel size: Each subject’s co-registered,

averaged image from their baseline PET scan is reoriented into a standard 160×160×
96 voxel image grid, having 1.5 mm cubic voxels. This standardized image then serves

as a reference image for all PET scans on that subject. The individual frames from

each PET scan (the baseline study as well as all subsequent studies (6-month scan,

12-month scan, etc.) are co-registered to this baseline reference image. 4) Spatial

smoothing: Each image set is filtered with a scanner-specific filter function (can be

a non-isotropic filter) to produce images of a uniform isotropic resolution of 8 mm

FWHM, the approximate resolution of the lowest resolution scanners used in ADNI.

In addition to the above preprocessing steps, we performed a spatial normalization

to a standard 91× 109× 91 MNI space (Tzourio-Mazoyer et al., 2002).
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The following covariates were included in our analysis: the Alzheimers Disease

Assessment Scale – cognitive subscale [ADAS Cog] and the subjects’s age (years).

ADAS was designed to measure the severity of the most important symptoms of

AD. Its subscale ADAS-cog is the most popular cognitive testing instrument used

in clinical trials of nootropics. It consists of 11 tasks measuring the disturbances

of memory, language, praxis, attention and other cognitive abilities which are often

referred to as the core symptoms of AD.

4.3 Methodology

In this work, we propose a novel Bayesian hierarchical framework for predicting

follow-up (or post-treatment) neural activity based on the baseline (or pre-treatment)

functional neuroimaging data that attempts to overcome some shortcomings of the

presently used modeling methods by borrowing strength from the spatial correlations

present in the data (both local, between-voxel, correlations and more long-range,

between-region correlations). The proposed model builds on the proper multivariate

conditional autoregressive model (MCAR(ρ, Σ)) proposed in Gelfand and Vounatsou

(2003). Our proposed prediction algorithm is similar to the predictive method pro-

posed in Guo et al. (2008), but our proposed model is incorporating spatial infor-

mation, in addition to capturing correlations between the repeated scans. Also, Guo

et al. (2008) use the expectation-maximization (EM) algorithm to estimate the model

parameters, while we use the MCMC approach and the Gibbs sampling technique.

Our model can also be seen as an extension of a hierarchical model for functional

neuroimaging data proposed by Bowman et al. (2008). Using our proposed method,

we analyze the PET data from a study of Alzheimer’s disease described in Section

4.2.
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4.3.1 Model and Estimation

We consider an anatomical parcellation of the brain consisting of g = 1, . . . , G regions,

where we may set G to be as high as 116 (Tzourio-Mazoyer et al., 2002). Alternative

anatomical parcellations are also available, such as those based on Brodmann regions

(Brodmann, 1909b). Let i = 1, . . . , n denote subjects, v = 1, . . . , V voxels, and let

Vg represent the number of voxels in a particular region indexed by g. We denote

the regional glucose use, as a proxy for brain activity at voxel v, by Y (v). In our

experimental data (see Section 4.2), Y (v) represents an average over several scans

that were acquired on a same subject during one scanning session. Let Yig(v) =
(
Yig(v)(1), Yig(v)(2)

)T

, where superscripts (1) and (2) denote the baseline and follow-

up scans, respectively. Before processing, a local neighborhood of each voxel included

in the analysis must be selected, for the voxel-level spatial modeling. We apply a three-

dimensional (3D) neighborhood structure containing the 26 immediate neighboring

voxels: 9 above, 9 below, and 8 adjacent. In addition, we consider only within-region

neighbors. For each voxel included in the analysis, the neighbors are identified and

this information is saved in a connectivity matrix W , before the estimation procedure

is performed.

We propose a multivariate Bayesian hierarchical model that accounts for both

spatial correlations between intra-regional voxels, and between regions. The model

also accounts for correlations between baseline and follow-up regional glucose use. In
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particular, our proposed model has the following hierarchical structure:

Yig(v)|βg, φg, αig,γgv,Zg ∼ N(βg(v) + φg(v) + αig + Xigγg,Zg)

φv|φv′ , v 6= v′, Σ, v = 1 . . . , V ∼ N
(
ρ

∑
wvv′
wv+

Iφv′ ,
1

wv+
Σ

) (
MCAR(ρ, Σ)

)

βgj|λ2
gj ∼ N(β0gj, λ

2
gjI) (λvgj = λgj, ∀v ∈ region g)

Z−1
g ∼ Wishart

(
(c1Ω1)

−1, c1

)

Σ−1 ∼ Wishart
(
(c2Ω2)

−1, c2

)

αij|Γj ∼ N(0,Γj) (αij = α
(j)
i )

(Γj)
−1 ∼ Wishart{(hjHj)

−1, hj} j = 1, 2

λ−2
gj ∼ Gamma(aj, bj)

γgjq|τ 2
gjq ∼ N(0, τ 2

gjq) q = 1, . . . , Q (covariates)

τ−2
gjq ∼ Gamma(e0, f0)

ρ ∼ Uniform({0, 0.05, 0.1, . . . , 0.8, 0.81, . . . ,

0.9, 0.91, . . . , 0.99})

(4.3)

where j denotes the scanning session (i.e., j = 1 – baseline and j = 2 – follow-up).

For each voxel v, the subject-specific quantities Yig(v) are assumed to vary ran-

domly about a mean determined by a population-level mean parameter βg(v) =
(
βg(v)(1),βg(v)(2)

)T
, a population-level spatial dependence parameter

φg(v) =
(
φg(v)(1), φg(v)(2)

)T
, an individualized random effect component αig =

(
α

(1)
ig , α

(2)
ig

)T
and the covariates’ parameters γg =

(
γ

(1)
g1 , γ

(2)
g1 , . . . , γ

(1)
gQ , γ

(2)
gQ

)T
. Xig =


X

(1)
ig1 0 · · · X

(1)
igQ 0

0 X
(2)
ig1 · · · 0 X

(2)
igQ


 is a 2 × 2Q matrix containing the mean-centered

subject-specific covariates, where Q is the number of covariates in the model. The

random effects α
(j)
i =

(
α

(j)
i1 , . . . , α

(j)
iG

)
, where j denotes the baseline and follow-up

sessions, respectively, and αi =
(
αT

i1, . . . , α
T
iG

)T
. Given {βg}, {φg}, {αig}, {γgv}

and Zg, the {Yig} are conditionally independent.
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At the second level, the model expresses a prior belief that each voxels population

mean (for the j-th session) arises from a normal distribution with a mean given by the

overall region mean β0gj and variance λ2
gj. It represents a reasonable starting point

to assume that voxels within anatomically defined regions exhibit brain activity that

deviates around an overall mean for that region.

Spatial associations are introduced through random effects in the mean structure

of the data. Bivariate spatial random effects at the voxel level call for a multivariate

CAR (MCAR) specification, where ρ is a scalar parameter representing the overall

degree of spatial dependence and Σ is the covariance matrix between φv and φv′ .

The connectivity (proximity) matrix W used in the MCAR prior for the spatial

random effects φ is based on the 3D neighborhood structure described above. W =

{wvv′}(V×V ) is a symmetric matrix (i.e. wvv′ = 1 if voxel v′ is in the defined 3D

neighborhood of v), and wv+ is the sum of the elements in row v of W .

Parameter ρ determines the magnitude of the spatial neighborhood effect. We

follow the suggestion in Gelfand and Vounatsou (2003) and specify a discrete uni-

form prior for the spatial autoregression parameter ρ. The authors suggest that

“. . . discretization provides the most computationally feasible approach to update [ρ],

avoiding Metropolis steps”. Following the criteria in Gelfand and Vounatsou (2003),

we assume ρ < 1 to ensure propriety, we do not allow ρ < 0 since this would violate

the similarity of spatial neighbors which we seek, and we place prior mass which favors

the upper range of ρ “. . . since even moderate spatial dependence requires values of ρ

near 1 (see the reply to the discussion in Besag et al. (1991))”. In particular, similar

to Gelfand and Vounatsou (2003), we put equal mass on the following 36 values: 0,

0.05, 0.1, . . . , 0.8, 0.81 0.82, . . . , 0.90, 0.91, 0.92, . . . , 0.99. We provide additional

details regarding CAR and MCAR models in the Section 4.1.1.

The model also captures potential functional connections between anatomical

brain regions through the covariance matrix Γj. We specify a conjugate Wishart
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prior for Γj, allowing a flexible unstructured covariance matrix. The multivariate

structure enables us to compute the between-region connectivity matrix, separately

for each session. Finally, hyperpriors on the MCAR parameters and other hyperpa-

rameters complete the model.

Using the vector notation, Kronecker product, and some simple algebraic manip-

ulations, the model can we written at a region level. Some additional notation is

introduced and region-level model is given in Appendix 5.2.1.

Estimation. Estimation is performed using Markov Chain Monte Carlo (MCMC)

techniques implemented via Gibbs sampling. The Gibbs sampling algorithm is an

iterative Markov Chain Monte Carlo algorithm to sample from the joint distribution

of a vector of random variables, when only conditional distributions are available to

sample from. To use the Gibbs sampling algorithm, we need the full conditional

distributions of each of the parameters and random effects, given the rest.

Applying MCMC methods in our context is complicated by the massive amount of

data, the large number of spatial locations, and the large number of parameters that

need to be estimated. The Gibbs-friendly model specification facilitates estimation

by providing substantial reductions in computing time and memory. We present the

full conditionals required to run the Gibbs sampler below.

Iterating through simulations from the full conditionals, updated with the most

recent simulated parameters, results in (following a burn-in period) draws from the

joint posterior distribution of the parameters.

4.3.2 Full Conditional Distributions

Joint Posterior Distribution. Full conditional distributions are derived from the

joint distribution of the variables. The joint conditional distribution of all the vari-

ables in our model can be represented by the following expression (we drop the variable
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indices for simplicity)

[β,φ, α,γ,V, Σ,Γ,λ, τ , ρ] ∝[Γ] [λ] [τ ] [ρ] [V] [Σ] [β|λ] [α|Γ] [φ|ρ, Σ] [γ|τ ]

· [Y|β,V,φ, α,γ]

Full Conditional Expressions. Here we give the expressions for the full conditional

distributions of the parameters in the model. We note that the expressions are written

at a region level (i.e. for βg, instead of βg(v)). The details on how the formulas for

the full conditionals are derived are given in Appendix 5.2.2. Some computational

details and simplifications are also given in Appendix 5.2.2. The full conditionals are

given by the following (we omit notation for conditioned variables for simplicity):

1. βg ∼ N(ΩgTg,Ωg), where Ωg = IVg ⊗ (Λ−1
v + nZ−1

g )−1, Tg =
(
IVg ⊗ Λ−1

v

)
β0g +

V−1
g

∑n
i=1 rig, Λ−1

v =




1/λ2
1 0

0 1/λ2
2


, and rig = Yig −φg − 1⊗αig − 1⊗Xigγg.

2. The full conditional distribution for φv is a likelihood adjusted version of the

conditional distribution for MCAR(ρ, Σ).

φv ∼ N(HvPv,Hv), where H−1
v = wv+Σ−1 +nZ−1

g , Pv = wv+ρΣ−1
∑

v′ 6=v

wvv′
wv+

φv′+

nZ−1
g (Ȳg(v)− βg(v)− ᾱg − X̄gγg)

)
, and Ȳg(v) = 1

n

n∑
i=1

Yig(v), ᾱg = 1
n

n∑
i=1

αig,

X̄g = 1
n

n∑
i=1

Xig.

3. αi ∼ N(ΨP,Ψ), where Ψ =
(
Γ−1 + Ω−1

α

)−1
,

P =




1V1 ⊗ Z−1
1 . . . . . .

...
. . .

...

. . . . . . 1VG
⊗ Z−1

G



·




Yi1 − β1 − φ1 − 1V1 ⊗Xi1γ1

...

YiG − βG − φG − 1VG
⊗XiGγG




, and

Γ−1 = Γ−1
1 ⊗




1 0

0 0


 + Γ−1

2 ⊗




0 0

0 1


, while Ω−1

α =




V1Z
−1
1 . . . . . .

...
. . .

...

. . . . . . VGZ−1
G




.
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4. Γ−1
j ∼ Wishart

(
(hjHj +

∑n
i=1 αijα

T
ij)
−1, hj + n

)
.

5. Z−1
g ∝ Wishart

(
(c1Ω1+

∑n
i=1

∑
v∈g uigvu

T
igv)

−1, c1+nVg

)
, where uigv = Yig(v)−

βg(v)− φg(v)−αig −Xigγg.

6. Σ−1 ∼ Wishart
(
(c2Ω2+

∑V
v=1 wv+[φv−ρ

∑
v′ 6=v bv′φv′ ][φv−ρ

∑
v′ 6=v bv′φv′ ]

T ), c2+

V
)
, where V is the total number of voxels included in the analysis (with at least

one within-region neighbor).

7. λ−2
gj ∼ Gamma

(
aj +Vg/4,

[
1
bj

+
(βgj−1Vg β0gj)

T (βgj−1Vg β0gj)

2

]−1)
, where βgj = β(j)

g

and β0gj = β
(j)
0g , for j = 1, 2.

8. For the spatial parameter ρ, we set an array of values and take a uniform prior

on that set. The full conditional distribution of the spatial parameter ρ is just

the corresponding set of normalized likelihood weights. More details are given

in Appendix 5.2.2.

9. γg ∼ N(ΩγgTγg ,Ωγg), where

Ω−1
γg

= Λ−1
γg

+
∑n

i=1(1
T
Vg
⊗XT

ig)V
−1
g (1Vg ⊗Xig), Tγg =

∑n
i=1(1

T
Vg
⊗XT

ig)V
−1
g uig,

uig = Yig − βg − φg − 1Vg ⊗αig and

γg|Λγg ∼ N
(
0, diag(τ 2

g11, τ
2
g21, . . . , τ

2
g1Q, τ 2

g2Q)︸ ︷︷ ︸
Λγg

)
.

10. τ 2
gjq ∼ Gamma

(
e0 + 1

2
,
[

1
f0

+ 1
2
γ2

gjq

]−1
)
.

4.3.3 Prediction

A key advantage of the Bayesian modeling framework, relative to approaches employ-

ing classical statistical methods, is that we obtain samples from the joint posterior

distribution for all of the model parameters. A related advantage is that we can

easily estimate posterior distributions of functions of the model parameters using the

posterior samples.
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After obtaining the estimates of the parameters from our model, we can use the

summary statistics (e.g. mean) of the posterior samples of the estimates to predict

the session 2 (month 6) scans for the future patients, based on their baseline scans.

The prediction proceeds as follows (following the procedure described in Gelman et al.

(2004), Chapter 4). We first draw the covariance matrix Γ from its full conditional

distribution. We can then draw αi’s, given Γ, from the prior distribution for α. If

Yi∗1 denotes the baseline scan and Yi∗2 the month 6 scan for a future subject, we

now have all the necessary information (parameter estimates for β, φ, Γ, γ, Z, α

and the covariate matrix X) to estimate Yi∗2|Yi∗1.

At the region level, we can re-organize the data and the parameters as follows.

We can write Y = (YT
1 ,YT

2 )T , where Y1 contains all the session 1 voxel values,

and Y2 all the session 2 voxel values. For region g, then Yg = (YT
g,1,Y

T
g,2)

T ∼
N

(
(µT

g,1,µ
T
g,2)

T ,Σg

)
, where Σg = Zg ⊗ IVg .

From model (4.3), it follows that Yi∗,2|Yi∗,1 ∼ N(bi∗g,Ai∗g). For region g, bi∗g =

µi∗g,2 + ΣT
12Σ

−1
11 (Yi∗g,1 − µi∗g,1), and µi∗g = βg + φg + 1Vg ⊗ αi∗g + 1Vg ⊗Xi∗gvγgv.

µi∗g,2 is a vector consisting of even elements of µi∗g. If we write Zg =




a c

c b


, then

it is easy to see that Ai∗g = bIVg − cIVg · 1
a
IVg · cIVg = (b− c2

a
)IVg .

By inputting the posterior mean of the parameters obtained from the MCMC

estimation, we obtain the estimated conditional mean b̂i∗g and covariance matrix

Âi∗g. The follow-up regional glucose uptake Yg,2 are predicted using the mean of the

estimated conditional distribution, i.e. b̂i∗g. Also, a 100(1-α)% prediction interval

for Yg,2 can be constructed based on the estimated conditional variance.

4.3.4 Model Validation: Estimation of the prediction error.

To estimate the accuracy of our proposed prediction model, applied to the ADNI

data, we estimate the prediction error for the test subjects’ data. For each of the
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two groups (AD and HC), we applied our algorithm to predict the follow-up regional

glucose uptake for 33 new (test) subjects. We used the estimated parameters from

the training data.

We estimate the prediction error by comparing the observed and predicted follow-

up (6 month) brain activity. To evaluate the predicted error, typically the squared

error and absolute error functions are used to define the loss functions. These func-

tions are based on the absolute difference between the observed and predicted values,

and hence depend on the magnitude of the brain activity. The mean squared error

of prediction of a model, denoted PMSE(p̂) is defined as E[(y − f(X, p̂))2|p̂], where

y is the quantity to be predicted and f(X, p̂) is the prediction given by the model f .

In neuroimaging, prediction of the brain activity is performed on each voxel, and the

prediction error is evaluated across all voxels. The square or absolute error functions

are inappropriate in functional imaging, however, since the brain activity measure-

ment (such as regional glucose uptake, or BOLD signal) have different baseline values

across the brain. For that reason we propose a use of a scale-free loss function, so

that the prediction error is comparable across all brain voxels. The proposed function

is the ratio of the square root of the PMSE and the average effects at voxel v. This

function measures the magnitude of the PMSE relative to the average brain activity

at each voxel. For our data, this function (we will refer to it as the “standardized

square root of the prediction mean squared error – stPMSE”) is defined as

stPMSE
({Y (2)

i (v)}, {Ŷi
(2)

(v)}) =

√
(1/N

∑N
i=1[Ŷi

(2)
(v)− Y

(2)
i (v)]2

1/N
∑N

i=1 Y
(2)
i (v)

(4.4)

This measure of prediction error is similar to one of the two measures proposed in

Guo et al. (2008), but we divide by an average of the observed, not the predicted values

at voxel v. We think this is more reasonable since otherwise predicted values can have

undue influence on the measure of performance. For example, if the predicted values
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are overestimated, this could results in misleadingly small stPMSE.

4.4 Results

We apply our Bayesian spatial hierarchical model to PET data from the study of

Alzheimers disease (ADNI). We considered 39 regions relevant in AD in our analysis.

Those were selected from a set of 46 regions of interest considered in the Alzheimer’s

disease study in Bowman et al. (2008). We excluded some AAL (Automated Anatom-

ical Labeling, Tzourio-Mazoyer et al. (2002)) regions which we think are less relevant

in AD, an included several additional areas (e.g. left and right posterior cingulum).

The complete list of the regions with region sizes is given in Table 5.2.3, Appendix

5.2.3. Areas of the temporal and limbic lobes are of particular interest, having been

indicated as having either increased or decreased encoding activity between at-risk

subjects and controls in the first wave of the Alzheimers data or being thought to

be involved with the (verbal memory) paradigm (Bassett et al., 2006). We do not

perform the whole brain (e.g. including all 116 AAL regions) analysis for two rea-

sons. One reason is that the estimation time increases significantly with the number

of regions (we comment on the computation cost later in this section). The other

reason is that the number of regions in the analysis needs to be smaller than the

number of subjects in the smallest group (in our case, 40) in order to have a stability

of estimation of the between-region covariance parameters.

Our model captures the short-range spatial correlation between voxels within a

defined anatomical region as well as the (potentially) long-range inter-regional con-

nectivity, stemming from the covariance matrix Γj, of the random effect parameters

αij. We specify a Wishart prior for α−1
ij .

For the inverse-Wishart prior, the degrees of freedom must satisfy h0 > G to yield

a proper prior distribution. This prior becomes more diffuse as h0 gets smaller (West
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and Harrison, 1989); hence, we set h0 = G to reflect the most diffuse proper prior that

our data can support. A seemingly natural choice for H0j is a point estimate of Γj. We

use the sample covariance matrix to obtain H0j, calculated from the subject-specific

mean activity levels in each of the anatomical regions. In addition, we examine the

sensitivity of our results to the sample covariance matrix by artificially reducing the

correlations (covariances) using

H∗
0j = (1− w)H0j + w{diag(H0j)}.

We also use inverse Wishart priors for Σ and Zg, i.e. Σ−1 ∼ Wishart
(
(c2Ω2)

−1, c2

)
,

Z−1
g ∼ Wishart

(
(c1Ω1)

−1, c1

)
, where Ω1 and Ω2 are 2 × 2 matrices and c1 and c2 are

shape parameters. Since we have no prior knowledge regarding the nature and extent

of dependence, we choose Ω1 and Ω2 to be diagonal. The data will inform about

dependence a posteriori. We set c1 = c2 = 4 to provide low precision for these priors.

To complete our Bayesian hierarchical model, we set a1 = a2 = 0.1, b1 = 0.005,

b2 = 0.001, and h0 = G, resulting in vague or weakly informative priors, to ensure that

the information in the data primarily governs the results. However, more informative

priors may be employed when fairly precise information is available.

To estimate the model parameters, we performed 3,000 iterations with burn-in of

2,000 iterations and thinning of 5 iterations (for storage and computation time). The

programming was done in Matlab. The estimation was performed on a Linux cluster.

The test/experiment environment consisted of an 8-core system with 16GB of RAM.

Each MATLAB job was given a dedicated CPU and ran for approximately 26 hours.

Future optimizations include taking advantage of the multi-threaded nature of several

MATLAB image analysis functions or using the MATLAB Distributed Computing

Environment to use multiple cores per job for speed improvements.

Due to a large number of parameters in our model that need to be estimated, it is
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impractical (if not impossible) to monitor the trace plots for each of the parameters.

Also, to determine the stopping time, running parallel chains is recommended to

monitor how the chains mix. Again, for the computational reasons it was not practical

in our case. We did, however, obtained trace plots for a number of randomly selected

voxels in several regions, for each of the voxel-level parameters. (Several plots and

histograms are given in Appendix 5.2.3). The chains obtained by Gibbs sampler (trace

plots) are satisfactory, i.e., the generated Markov chains seem to converge, after the

burn-in period, to our distributions of interest. We also monitored the trace plots

for other (region-specific and scalar) parameters and found them to be satisfactory,

considering relatively small number of iterations we performed. For more details on

convergence, see Appendix 5.2.3.

4.4.1 Prediction of brain activity for PET data from a study

of Alzheimer’s disease (ADNI)

Using the estimates from the model, we apply the proposed prediction algorithm to

forecast the follow-up regional glucose uptake for each of the subjects in the test

data set, which consists of 33 subjects per each group. Our proposed prediction

algorithm provides individualized predictions of the regional glucose uptake, based

on the unique information in each subject’s baseline scan, and the relevant personal

characteristics (e.g., ADAS-cog score). For the prediction, we estimate the covariates

at the second scanning sessions by the mean of the second session in the training data.

We note that, for both groups (AD and HC), the posterior mean of the spatial effect ρ

was 0.99, for both scanning sessions data, indicating very strong spatial dependence.

Using two separate spatial effect parameters could be considered in future analyses

to see whether these differ for different sessions. Also, estimated covariance matrices

between the baseline and follow-up regional glucose uptake at a region level, Zg, yield

high between-session correlations (> 0.7 for almost all regions) at a region level.
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4.4.1.1 Individualized prediction maps

Figure 4.1 shows the individual prediction maps for of the regional glucose uptake

at 6 month follow-up for AD patients. Here we only show 4 subjects’ maps, for

brevity. The prediction maps for several other subjects are given in Appendix 5.2.3.

We can see that there are notable differences between subject in the predicted follow-

up activity, indicating that possibly different stages of the disease are present in

those individuals. We compare the individual predicted maps (Figure 4.1 (a) )to

the observed maps (Figure 4.1 (b)) and notice satisfactory agreement between the

observed and predicted brain activity for these 4 subjects. Similar correspondence

is observed for most of the subjects. The individual prediction maps, such as those

in Figure 4.1 (a), highlight possible individual differences in the progression of the

disease.

We also predict the follow-up brain activity for the healthy controls test data set,

which consisted of 33 subjects as well. The results for 4 selected subject are given

in Figure 4.2. Similar satisfactory agreement is observed between the predicted and

observed maps. We also notice that this groups exhibits smaller between-subject

differences, compared to the AD group.

4.4.2 Comparisons with competing prediction models

We compare our prediction results with the results obtained using two proposed com-

peting methods: the General Linear Model (GLM) based method, and the method

based on the Bayesian spatial hierarchical model for activation and connectivity anal-

ysis (BSMac) proposed in Bowman et al. (2008). We applied both of those methods

to the same experimental data set from a study of Alzheimer’s disease. First we give

some details on how the prediction is performed based on those two methods, and

then we compare the obtained result with the results obtained applying our method.

To evaluate prediction accuracy, we computed the standardized root mean square er-
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(a) predicted month 6 maps
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(b) observed month 6 maps
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Figure 4.1: Individualized predicted and observed 6 month follow-up regional glucose
uptake measurements for 4 AD patients from the test data set. Axial slice 40 is
shown in radiological view. There is a satisfactory agreement between the observed
and predicted post-treatment regional glucose uptake.

ror (described above) between the predicted regional glucose uptake and its observed

value for 33 new subjects in each group (AD and HC).

Comparison with predictions based on the GLM. A similar prediction

algorithm idea to the one we propose can be applied to develop a prediction algorithm

based on a GLM. The GLM models the brain activity for all subjects using common

population parameters. Independence and sphericity between scans at baseline and

at follow-up scans are assumed.

Estimates from the GLM are obtained using OLS. The predicted follow-up brain

activity reflects only the population-level expectation and does not take into account

the information from the subject’s pretreatment scans. That is, Y∗
g,2 = X∗

g,2 · β̂g,

where subscript 2 denotes session 2 (follow-up) brain activity at region g, superscript ∗
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(a) predicted month 6 maps
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(b) observed month 6 maps
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Figure 4.2: Individualized predicted and observed 6 month follow-up regional glucose
uptake measurements for 4 HC subjects from the test data set; axial slice 40 is shown
in radiological view. There is a satisfactory agreement between the observed and
predicted post-treatment regional glucose uptake.

denotes the new subject, and β̂g denotes the estimate of the session 2 mean parameter

obtained from the training data set.

Figure 4.3(c) displays the square root of the PMSE, relative to the average brain

activity, based on the GLM. A comparison between Figure 4.3(a) and Figure 4.3(c)

indicates that prediction errors based on our proposed model are lower than those

from the GLM, on average. The average error, for the model based on the GLM is

0.156.

Comparison with prediction based on BSMac. Prediction algorithm based

on the BSMac is defined in a similar way to the algorithm based on our proposed

BSPM. Since BSMac does not estimate the correlations between baseline and follow-

up brain activity scans (Yi’s ), i.e., temporal correlations, we estimate those by
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(a) BSPM
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(b) BSMac
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(c) GLM
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Figure 4.3: The images depict the square root of the prediction mean square error,
divided by the average observed brain activity (stPMSE, (4.4)) at each voxel for
prediction of the follow-up activity for 33 test subject in the AD group. Axial slices
35, 40 and 45 are shown in radiological view. (a) the stPMSE based on our proposed
model; (b) the stPMSE based on BSMac; (c) the stPMSE based on the GLM. Average
errors: 0.084 for the BSPM (a); 0.104 for the BSMac (b), and 0.156 for the GLM (c).
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(a) predicted month 6 maps
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(b) observed month 6 maps
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Figure 4.4: Prediction based on the BSMac. Individualized predicted and observed 6
month follow-up regional glucose uptake measurements for 4 test subjects in the AD
group; axial slice 40 is shown.

the sample covariances, at a voxel level. The local spatial parameters are also not

estimated, and are dropped from the estimated conditional mean. Other than those

changes, the prediction algorithm is the same as the one based on the proposed BSPM.

Figure 4.4 depicts the predicted and observed regional glucose uptake maps for

the same subjects as in Figure 4.2. We observe a fairly satisfactory agreement, but

smaller than the agreement between the observed and predicted maps based on the

BSPM.

Figure 4.3(b) displays the square root of the PMSE, relative to the average brain

activity, based on the BSMac. A comparison between Figure 4.3(a) and Figure 4.3(b)

indicates that the prediction errors based on our proposed model are also lower than

those from the BSMac, on average. We also notice improvement over the GLM model.

The average errors (total sum over all voxels, divided by the number of voxels included
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in the analysis) are 0.084 for the BSPM, 0.104 for the BSMac, and 0.156 for the GLM

based prediction method.

4.5 Simulation

We performed a small simulation study to evaluate the accuracy of our estimation

procedure. To generate data for the simulations, we selected 5 AAL regions (regions

79, 73, 15, 13, and 85) with sizes ranging from 234 to 4,655 voxels and simulated data

for 15 subjects. We used our experimental data described in Section 4.2 to specify

the true values for βg, spatial parameters φg, random effects parameters αi, and the

covariate parameters γg. The rest of the (hyper)parameters were drawn from the prior

distributions specified in the model. After all the parameters that define the mean

and the covariance parameters in model (4.3) were specified, 200 simulated data sets

were drawn, with the specified mean parameters and the variance-covariance matrix.

We then applied our estimation procedure to each of the data sets and analyzed the

posterior distributions of the parameters. Table 4.5 summarizes the results for the

parameters of the covariance matrix Zg, for each of the 5 selected regions. We see

that the biases for the covariance matrix parameters Zg are small, for each of the

regions. Also, spatial parameter ρ has only a small bias: we set the true value in

simulated data sets to 0.9 and the mean of the estimated ρ, across 200 data sets,

was found to be 0.9134 (for each data set, we first find a median of the parameter’s

posterior distribution, then average those medians). We believe that this bias would

be even smaller if a larger number of iterations were performed. For brevity, posterior

means of the estimated voxel-level parameters (for randomly selected 25 voxels in each

region), as well as the posterior means of the random effects αij are presented in the

Appendix 5.2.4.

In general, we notice that the parameters that are most relevant in the prediction
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Region

Param.
1 2 3 4 5

True Est. True Est. True Est. True Est. True Est.
Z11

g 323.26 321.25 160.61 160.05 11.46 11.46 3.44 3.44 3.57 3.57
Z22

g 120.75 120.50 45.30 45.15 37.22 37.19 10.45 10.45 3.38 3.38
Z12

g -41.95 -41.40 -33.70 -33.43 16.32 16.30 4.08 4.08 2.40 2.40

Table 4.1: Summary of the simulation results for the parameters in the covariance
matrix Zg, for each region. Z11

g and Z22
g denote the variance, and Z12

g the covariance
components.

(β’s, φ’s, α’s, Zg) have small or relatively small biases, while the parameters that

contribute the prediction less directly, have larger biases. We believe that these would

be reduced if longer Markov chains, i.e. larger number of iterations (at least 5,000),

are generated.

Figures with trace plots for some selected voxels and parameters are given in

Appendix 5.2.4.

4.6 Discussion

In this work, we describe a framework for spatiotemporal modeling of functional

neuroimaging data that provides important advantages over some other methods.

We propose a novel method for predicting post-baseline (or follow-up) brain scans,

based on the baseline scans. The prediction algorithm is based on a novel Bayesian

spatial hierarchical model. Our method is applicable in many clinical situations (e.g.,

for predicting the progression of a disease, or to predict after treatment brain activity,

based on the baseline (pre-treatment) activity). The proposed method may be useful

in clinical situations where it is too costly to acquire multiple (repeated) scans on the

same subjects.

Our model builds on the predictive model by Guo et al. (2008), and a spatial

Bayesian hierarchical model by Bowman et al. (2008), by incorporating a proper
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multivariate CAR prior for the spatial effect. The proposed model captures the short-

range correlations between voxels within a defined anatomical region as well as the

(potentially) long-range inter-regional correlations, which provide information about

functional connectivity between the brain regions. We consider 3D neighborhood

structure for estimation of the local spatial associations.

Based on the proposed model, we formulate a prediction algorithm for the follow-

up brain activity, based on an individual’s baseline functional neuroimaging data and

relevant subject characteristics. By borrowing strength from the spatial information,

we achieved improved prediction as compared to a couple of competitive prediction

models (GLM and BSMac).

We apply our Bayesian spatial hierarchical model to the PET data from the study

of Alzheimers disease, but the same methodology can easily be applied to a data

from an fMRI study. In that case, an individual summary statistics (i.e., regression

coefficients) from a typical first stage GLM based fMRI data analysis would first be

obtained (in practice often obtained using software packages such as SPM or FSL),

and then used as Y’s in our model (4.3).

One of the limitations of our proposed method is that the computing time is very

long (even for relatively small number of iterations of 3,000) for the estimation part

of the algorithm. However, this step is done one time, and the prediction step is very

fast (it is in order of seconds per one individual). Computing time can be improved by

implementing some parallel computing steps (as described in Section 4.4). Another

limitation is that we consider only within-region local 3D neighborhood in our model,

which results in some region border effects in the prediction maps. We will consider

across-region local 3D neighborhood in our future work.

Our future goal is to apply the proposed method to the MCI group and compare

the results with AD and HC groups. We also plan to apply it to different data sets

(e.g., from a treatment study on depression to evaluate the effect of the treatment
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using posterior inferences). In terms of comparisons with the competing methods,

we plan to compare the prediction error and the performance of the BSPM with the

spatio-temporal model proposed in Chapter 2 (Derado et al., 2010), and with the

model proposed in Guo et al. (2008), in addition to GLM and BSMac.

Some recent studies De Meyer et al. (2010), Anoop et al. (2010), Buerger et al.

(2002) (De Meyer et al. (2010), Buerger et al. (2002)) found that the β-amyloid

protein 1-42, total tau protein, and phosphorylated tau181P protein concentrations,

each derived from cerebral spinal fluid in the brain, may be clinically relevant bio-

logical markers for the differential diagnosis of AD. These biological measures may,

therefore, serve as potentially useful covariates (predictors) in our model. Some of

these proteins were collected in the ADNI study, but the rate of missing data (among

subjects with FDG-PET scans) was too substantial for inclusion in our analysis.

Our ultimate goal is to develop a formalized algorithm for predicting the symp-

tom response to treatment using baseline scans, predicted post-treatment (follow-up)

activity and patient characteristics.
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Chapter 5

Summary and Future Work

Brain imaging applications often produce large data sets that pose challenges for

statistical analyses due, in part, to the intricate neurophysiology. To date, there is

a paucity of methods that incorporate spatial considerations present in functional

neuroimaging data. The main objective of our research is to uncover aspects of the

complex spatial relationships present in functional neuroimaging data and to develop

statistical methods that either evaluate or leverage those correlations.

Our first proposed method is related to activation studies, which attempt to local-

ize regions of the brain activity when performing an experimental task. We propose

a two-stage, spatio-temporal, autoregressive model which simultaneously accounts

for spatial dependencies between voxels within the same anatomical region and for

temporal dependencies between a subject’s estimates from multiple sessions (Derado

et al., 2010). Our approach provides a unified framework for voxel-level and region-

level inferences. An important contribution of our work is that we derive efficient

computational solutions to facilitate implementation. Using our proposed method,

we analyze fMRI data from a study of inhibitory control in cocaine addicts. In sum-

mary, our proposed spatio-temporal model provides an appealing, computationally

efficient alternative to standard GLM-based methods for analyzing fMRI data. Our
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model is based on assumptions that are more neurophysiologically plausible, captur-

ing correlations between different brain locations and between estimates of neural

activity at different scanning sessions. These correlations lead to interpretive advan-

tages over the GLM, e.g., revealing information about the degree of coherence in brain

activity within defined neuroanatomic regions. Our simulation studies demonstrate

that our model estimates are quite accurate and that the standard errors associated

with estimates of our mean model parameters are on average smaller than those from

a GLM.

Our next proposed methodology is related to connectivity studies, which seek to

identify what brain areas show similar patterns of activity over time, yielding dis-

tributed networks of brain function (Derado et al., 2010a). We propose a method

to evaluate the level of connectivity within functionally defined neural networks. We

introduce a global index to evaluate the validity of neural processing networks identi-

fied by functional clustering or by ICA. Specifically, we propose the use of Moran’s I

statistic (Cliff and Ord, 1973) to quantify and test the autocorrelation present within

computed functional networks. We tailor our definition of the global index to neu-

roimaging applications through the use of network-based neighborhoods, and we also

compute network-specific contributions to the overall autocorrelation. Consequently,

our methods target autocorrelation exhibited by voxels within defined neural process-

ing networks, rather than between voxels globally throughout the entire brain. We

illustrate the use of our methodology with the data from two studies: a PET study of

regional cerebral blood flow (rCBF) correlates of parametrically manipulated working

memory among individuals with schizophrenia, and an fMRI resting-state study of

depression. We also provide empirical support for the use of our hypothesis testing

framework using a bootstrap analysis.

One of our future research goals is to evaluate the accuracy of the normal ap-

proximation formulas under randomization assumption (Cliff and Ord, 1973) derived
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for neuroimaging data. In particular, we think of the spatial correlations present in

neuroimaging data. Inherent spatial correlations can be present in the data due to

neurophysiology, data preprocessing, scanning acquisition etc. There are couple of

different scenarios in our evaluation of the appropriateness of these approximations:

to consider the data at the voxel level or to consider regional based clustering. Be-

cause the number of voxels or regions play the central role in the calculations, we may

observe smaller or larger degrees of bias when we consider these two settings. In case

we find that the answers vary, we hope to propose an alternative hypothesis testing

framework to the one presented in Chapter 3. In our simulation study based on the

PET data, the normal approximation seems to perform reasonably well. However, it

is an open question whether or not the regional level analysis will need to do some

adjustment for inherent spatial correlations in the data. We plan to investigate this

in our future work.

Prediction studies try to use neuroimaging scans to predict some behavioral, psy-

chological, or clinical outcomes, or to classify subgroups of individuals (e.g. for diag-

nostic purposes). Although functional brain imaging has become a powerful tool to

investigate the physiological basis of psychiatric or neurological disorders, it has only

recently been used to predict clinical outcomes in individual patients.

The third proposed method in this dissertation is a novel Bayesian hierarchical

framework for predicting follow-up neural activity based on the baseline functional

neuroimaging data. By borrowing strength from the spatial correlations present in the

data, the prediction algorithm based on this model has improved prediction accuracy,

compared to some competing models. The spatial correlations are incorporated in the

model in two ways: the short-range correlations between neighboring voxels are incor-

porated through a multivariate conditional autoregressive (CAR) prior of the spatial

parameters, while the long-range correlations between anatomical brain regions are

incorporated through the covariance matrix of the random effect parameters. We
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applied our proposed model to the data of 40 AD patients and 40 healthy controls to

estimate the parameters in our model which we then used to predict 6 month brain

activity, based on the baseline activity and some relevant subject’s characteristics to

a set of 33 test subjects (in each group).

In the future, we plan to apply the proposed prediction algorithm to the mild cog-

nitive impairment (MCI) group of subjects’ data to predict the 6 month, 12 month,

and 24 month brain activity. We think that this method had a potential clinical appli-

cation is a sense that would enable clinicians to forecast future brain states, monitor

the progression of dementia and to predict the onset of Alzheimer’s disease. We also

plan to apply the algorithm to the data from treatment studies, e.g. to forecast the

effect of the treatment. Also, we will investigate how to modify our prediction model

to further improve the prediction accuracy and to improve the computation cost.

Our long-term future goal is to develop a framework for predicting an individual’s

clinical response to treatment. To potentially improve classification (prediction) ac-

curacy, we plan to investigate and develop methods that borrow strength from the

spatial correlations present in the data. We plan to predict an individual’s clini-

cal response to treatment using spatially correlated, region-specific neural processing

characteristics, such as region trends in serial brain activity measurements.
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Appendices

5.1 Chapter 2 Appendices

5.1.1 Appendix A: Spatio-temporal Model in Matrix Form

Our stage-two spatio-temporal model (2.1) can be written in matrix form as follows:

Bigs = βgs + ρgsW
∗(Bigs − βgs) + ξgsM

∗(Bigs − βgs) + eigs ,

where eigs ∼ MVN(0, φ2
gsI) and where W∗ = Iq ⊗Wg, M∗ = 1/(q − 1)(Jq ⊗ IVg −

Iq ⊗ IVg) and Wg = 1/(Vg − 1)(JVg − IVg). We can rewrite the above equation as

Bigs = βgs + (I− ρgsW
∗ − ξgsM

∗)−1eigs = βgs + Ψgseigs (5.1)

Therefore, Bigs ∼ MVN(βgs, φ
2
gsΨgsΨgs).

5.1.2 Appendix B: Exploratory Data Analysis

B.1. Crude estimates of the spatial and temporal correlations.

To motivate our approach, we first performed an exploratory data analysis. We ob-

tained crude empirical estimates of the spatial as well as temporal correlations in our

data. To estimate the spatial correlations, we randomly selected a small percentage

(< 1%) of voxel-pairs from each anatomically defined brain region and calculated
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Pearson correlation coefficients between the response variable values for these voxel

pairs, across the subjects. Then we plotted the histogram of medians of these esti-

mated correlations of each region.

To estimate the temporal correlations, we randomly selected a number of voxels

from each region, calculated correlations between pre- and post treatment measure-

ments, across the subjects, and plotted the medians of the region estimates. The

estimates, shown in Figure 5.1, suggest that the voxels within the same regions have

correlated brain activity and that there is correlated brain activity between pre- and

post-treatment sessions.
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Figure 5.1: Empirical estimates of spatial correlations between randomly selected
intra-regional voxel pairs for patients for the 6 mm FWHM smoothed data (left);
empirical estimates of temporal (repeated measurement: pre- and post-treatment)
correlations between 30% randomly selected voxels from each cluster (right).

B.2. Exploring spatial correlations within anatomically defined regions.

Descriptive covariance plots. To investigate the spatial correlations for our experi-

mental data, we calculated the empirical correlation matrix separately for each of the

regions in a Brodmann area-based parcellation of the brain. For every voxel in the

region, the mean and the standard error of the correlations with each of the other

voxels in that region were calculated (across the subjects) and plotted. The mean

values were smoothed using the ‘loess’ curve to get a better idea of the overall spa-
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tial correlation for that region (see Figure 5.1.2). We performed this step for both

patients and controls. We found that the means of the correlations did not fluctu-

ate much within a region. Figure 5.1.2 shows such plots of several regions from the

anatomical parcellation. Figure 5.1.2 provides support for the compound symmetric

spatial covariance structure that we assume in our model.
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Figure 5.2: Empirical estimates of spatial correlations for 3 Brodmann regions (BA
3 (L) (part of the primary somatosensory cotrex), BA 18 (L) (V2-visual association
cortex), and BA 48 (L) (retrosubicular area) with 334, 1017 and 2914 voxels respec-
tivelly.
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5.1.3 Appendix C. Computing Variance-Covariance Matrix:

Coefficients of Ψg.

Let a = 1 + ρg

Vg−1
, b = − ρg

Vg−1
and k = − ξg

q−1
. (For simplicity we drop the group

index s here.) Ψg (see (2.3) in section 2.3.2) is a partitioned matrix with the diagonal

blocks determined by

d =
a + (q − 2)k

a2 + (q − 2)ak − (q − 1)k2

f =
−b{a2 + [1 + (q − 1)(q − 2)]k2 + Vg[ab + (q − 2)bk] + 2(q − 2)ak}

[a2 + (q − 2)ak − (q − 1)k2]{a2 + (q − 2)ak − (q − 1)k2 + Vgb[2a + (q − 2)k + Vgb}

The off-diagonal blocks are determined by

u =
−k

a2 + (q − 2)ak − (q − 1)k2

z =
bk[2a + (q − 2)k + Vgb]

[a2 + (q − 2)ak − (q − 1)k2]{a2 + (q − 2)ak − (q − 1)k2 + Vgb[2a + (q − 2)k + Vgb}

This result was derived recursively on q, the number of blocks (sessions repre-

sented) in Ψ−1
g .

5.1.4 Appendix D. Score Functions.

We present the score functions, which facilitate implementation of our model. For

simplicity, we drop the group notation s. Let rig = Big − Xiβg and we denote φ2
g

by wg. Also, from now on I will denote an identity matrix of size Vg and J will

denote a Vg × Vg matrix of ones. In addition, d = d(ρg, ξg, Vg, q), f = (ρg, ξg, Vg, q),

u = (ρg, ξg, Vg, q), and z = z(ρg, ξg, Vg, q) are the entries in matrix Ψg, defined in

section 2.3.2. A = A(d, f, u, z, Vg, q), B = B(d, f, u, z, Vg, q), C = C(d, f, u, z, Vg, q),

and D = D(d, f, u, z, Vg, q) are the entries in ΨgΨg, also defined in section 2.3.2.
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The score functions are as follows:

(1)

Sβg
=

∂ log L

∂βg

=
1

wg

K∑
i=1

{
B′

igΨ
−1
g Ψ−1

g Xi −X′
iΨ

−1
g Ψ−1

g Xiβg

}

From this we get (since in our case Xi = IqVg)):

β̂gOLS
=

1

K

K∑
i=1

Big g = 1, . . . , G.

(2)

Sρg =
∂ log L

∂ρg

=
K∑

i=1

tr

{
∂Ψ−1

g

∂ρg

·Ψg

}
− 1

2wg

K∑
i=1

r′ig
∂

∂ρg

(
Ψ−1

g Ψ−1
g

)
rig =

= −K · q · f · Vg − 1

wg

K∑
i=1

1
Vg−1

r′ig




k1I + k2J k3I− k3J · · · k3I− k3J

k3I− k3J k1I + k2J · · · k3I− k3J

...
...

. . .
...

k3I− k3J k3I− k3J · · · k1I + k2J




rig

where

k1 = 1 +
ρg

Vg − 1
, k2 = ρg − 1− ρg

Vg − 1
, and k3 = − ξg

q − 1
.

(3)

Sξg =
∂ log L

∂ξg

=
K∑

i=1

tr

{
∂Ψ−1

g

∂ξg

·Ψg

}
− 1

2wg

K∑
i=1

r′ig
∂

∂ξg

(
Ψ−1

g Ψ−1
g

)
rig =

= −K · q · (u + z)Vg − 1

wg

K∑
i=1

r′ig




m1I m2I + m3J · · · m2I + m3J

m2I + m3J m1I · · · m2I + m3J

...
...

. . .
...

m2I + m3J m2I + m3J · · · m1I



rig
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where

m1 =
ξg

q − 1
, m2 =

(q − 2)ξg − (q − 1)

(q − 1)2
− ρg

(q − 1)(Vg − 1)
, and m3 =

ρg

(q − 1)(Vg − 1)
.

(4)

Swg =
∂ log L

∂wg

=
K∑

i=1

{
− qVg

2wg

+
1

2w2
g

r′igΨ
−1
g Ψ−1

g rig

}
=

=−KqVg

2wg

+
1

2w2
g

K∑
i=1

r′igΨ
−1
g Ψ−1

g rig =

=−KqVg

2wg

+
1

2w2
g

K∑
i=1

r′ig




u1I + u2J u3I + u4J · · · u3I + u4J

u3I + u4J u1I + u2J · · · u3I + u4J

...
...

. . .
...

u3I + u4J u3I + u4J · · · u1I + u2J




rig

where

u1 =
(
1 +

ρg

Vg − 1

)2

+
ξ2
g

q − 1
u2 =

ρg

Vg − 1

(
ρg − 2− ρg

Vg − 1

)

u3 = − ξg

q − 1

(
2 +

2ρg

Vg − 1
− (q − 2)ξg

q − 1

)
u4 =

2ξgρg

(q − 1)(Vg − 1)
.

In a similar fashion, one can derive second derivatives and their expected values.
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5.2 Chapter 4 Appendices

5.2.1 Appendix E: Bayesian Spatial Hierarchical Model - re-

gion level

Let Yig =
(
YT

ig(v1), . . . ,Y
T
ig(vVg)

)T

(2Vg×1)
, and v1, . . . , vVG

denote the voxels in region

g. The Kronecker product (IVg ⊗Xig) · (1Vg ⊗ γg), i.e.


Xig

Xig

. . .

Xig







γg

γg

...

γg




= (IVg1Vg)⊗ (Xigγg) = 1Vg ⊗ (Xigγg).

Let also βg =
(
βT

g (v1), . . . , β
T
g (vVg)

)T
. Since βgj|λ2

gj ∼ N(β0gj, λ
2
gjI) are assumed

to be independent, then βg ∼ N(β0g,Λg), where

β0g =




β
(1)
0g (v1)

β
(2)
0g (v1)

...

β
(1)
0g (vVg)

β
(2)
0g (vVg)




, Λg =




λ2
g1

λ2
g2

. . .

λ2
g1

λ2
g2




= IVg ⊗




λ2
g1 0

0 λ2
g2


 = IVg ⊗Λv.

Finally, let Vg = IVg ⊗ Zg, where Zg =




Z11
g Z12

g

Z21
g Z22

g


 (same for all v ∈ g), and let

φg = [φT
g (v1) · · ·φT

g (vVg)]
T . Then model (4.3) can be re-expressed as
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Model (region level):

Yig|βg,φg,αig,γgv,Vg ∼ N
(
βg + φg + 1Vg ⊗αij + 1Vg ⊗ (Xigγg),Vg

)

βgj|λ2
gj ∼ N(1Vgβ0gj, λ

2
gjIVg)

φg|Σφ−1
g
∼ N(0,Σφ−1

g
), Σφ−1

g
= (DWg − ρWg)

−1 ⊗ Σ

αij|Γj ∼ N(0,Γj), where αi = [αT
i1, . . . , α

T
iG]T , j = 1, 2

γgj|τ 2
gj ∼ N(0, diag(τ 2

gj1, . . . , τ
2
gjQ))

(Γj)
−1 ∼ Wishart{(hjHj)

−1, hj}, j = 1, 2

λ−2
gj ∼ Gamma(aj, bj)

τ−2
gjq ∼ Gamma(e0q, f0q)

Z−1
g ∼ Wishart

(
(c1Ω1)

−1, c1

)

Σ−1 ∼ Wishart
(
(c2Ω2)

−1, c2

)

ρ ∼ Uniform({0, 0.05, 0.1, . . . , 0.8, 0.81, . . . ,

0.9, 0.91, . . . , 0.99})

(5.2)

5.2.2 Appendix F: Full Conditional Distributions for the

Bayesian Spatial Hierarchical Model

Let for each g = 1, . . . , G

Yig =




Yig(v1)

...

Yig(vVg)




(2Vg×1)

,φg =




φg(v1)

...

φg(vVg)




(2Vg×1)

, αig =




αig(v1)

...

αig(vVg)




(2Vg×1)

= 1Vg ⊗αig

Then we can write the model (5.2) as

Yig = βg + φg + 1Vg ⊗αig + 1Vg ⊗Xigvγgv + εig (5.3)
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where βg = (βT
g (v1), . . . , β

T
g (vVg)).

Let β0g = (βT
0g(v1), . . . , β

T
0g(vVg)).

Prior for β (combined pre and post):

β(1)
g ∼ N(β

(1)
0g1, λ

2
g1IVg)

β(2)
g ∼ N(β

(2)
0g2, λ

2
g2IVg)

Under the independence assumption

βg ∼ N
(
β0g,Λg

)

where

Λg =




λ2
g1 0

0 λ2
g2

. . .

. . .

λ2
g1 0

0 λ2
g2




= IVg ⊗




λ2
g1 0

0 λ2
g2




Deriving Full Conditional Distributions.

Denote by Λ(α) the set of all parameters, excluding parameter α. The full con-

ditional distributions for each of the parameters in the model are as follows.



118

(1)

[βg|Λ(βg),Y] ∝ [βg|Λg]×
n∏

i=1

[Yig|βg,φg,αig,γg,Vg]

∝ exp
{−1

2
(βg − β0g)

TΛ−1
g (βg − β0g)

}×

|Vg|−n
2

Vg exp
{
−1

2

n∑
i=1

[Yig − βg − φg − 1⊗αig − 1⊗Xigγg]
TV−1

g

[Yig − βg − φg − 1⊗αig − 1⊗Xigγg]
}

∝ exp
{−1

2
[βT

g Λ−1
g βg − 2βT

g Λ−1
g β0g]

}×

exp
{
−1

2

n∑
i=1

[βT
g V−1

g βg − 2βT
g V−1

g (Yigφg − 1⊗αig − 1⊗Xigγg︸ ︷︷ ︸
:=rig

)]
}

∝ exp
{−1

2
[βT

g [Λ−1
g + nV−1

g ]βg − 2βT
g [Λ−1

g β0g + V−1
g

n∑
i=1

rig]
}

∝ N
(
ΩgTg,Ωg

)

where Ωg, Tg, Λg are as defined in Section 4.3.2

(2) The full conditional distribution for φv is a likelihood adjusted version of the

conditional distribution for MCAR(ρ, Σ):
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[φv|Λ(φv),Y] ∝

∝ N
(
ρ

∑

v′ 6=v

wvv′

wv+

φv′ , w
−1
v+Σ

) ·
n∏

i=1

N(µigv,Zg) (denote bv′ =
wvv′
wv+

)

∝ exp
{
−1

2

(
φv − ρ

∑

v′
bv′φv′

)T
wv+Σ−1

(
φv − ρ

∑

v′
bv′φv′

)} ·

exp
{
−1

2

n∑
i=1

[Yig(v)− (βg(v) + φG(v) + αig(v) + Xigγg︸ ︷︷ ︸
r

)]TZ−1
g [Yig − r]

}

∝ exp
{
−1

2
wv+[φT

v Σ−1φv − 2φT
v Σ−1ρ

∑

v′
bv′φv′ ]

}
·

exp
{
−1

2

n∑
i=1

[φv − (Yig(v)− βg(v)− φG(v)−αig −Xigγg)︸ ︷︷ ︸
sig

]T [φv − sig]
}

∝ exp
{

same as above
}
·

exp
{
−1

2

[ n∑
i=1

φT
v Z−1

g φv − 2φT
v Z−1

g

n∑
i=1

sig

]}

∝ exp
{

same as above
}
·

exp
{

nφT
v Z−1

g φv − 2φT
v Z−1

g n · (Ȳg(v)− βg(v)− ᾱg − X̄gγg

)}

where

Ȳg(v) =
1

n

n∑
i=1

Yig(v)

ᾱg =
1

n

n∑
i=1

αig

X̄g =
1

n

n∑
i=1

Xig
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Then

[φv|Λ(φv),Y] ∝ exp
{
−1

2

[
φT

v (wv+Σ−1 + nZ−1
g︸ ︷︷ ︸

H−1
v

)φv

]}

−2φT
v

(
wv+ρΣ−1

∑

v′ 6=v

wvv′

wv+

φv′ + nZ−1
g (Ȳg(v)− βg(v)− ᾱg − X̄gγg)

)

︸ ︷︷ ︸
Pv

]}

∝ N(HvPv,Hv).

(3)

[αi|Λ(αi),Y) ∝ N(0,Γ) ·
G∏

g=1

N(βg + φg + 1Vg ⊗αig + 1Vg ⊗Xigγg,Vg)

∝ exp
{−1

2
αT

i Γ−1αi

} ·

exp
{−1

2

G∑
g=1

[Yig − βg − φg − 1Vg ⊗αig − 1Vg ⊗Xigγg]
TV−1

g ·

[Yig − βg − φg − 1Vg ⊗αig − 1Vg ⊗Xigγg]
}

∝ exp
{−1

2
αT

i Γ−1αi

} ·

exp
{−1

2

G∑
g=1

[1Vg ⊗αig−(Yig − βg − φg − 1Vg ⊗Xigγg)︸ ︷︷ ︸
=:tig

]TV−1
g [1Vg ⊗αig − tig]

}

∝ exp
{−1

2
αT

i Γ−1αi

} ·

exp
{
−1

2

[ G∑
g=1

(1Vg ⊗αig)
TV−1

g (1Vg ⊗αig)

︸ ︷︷ ︸
I

−2
G∑

g=1

(1Vg ⊗αig)
TV−1

g tig

︸ ︷︷ ︸
II

]}



121

I =
G∑

g=1

(1Vg ⊗αig)
TV−1

g (1Vg ⊗αig) = [αT
i1, . . . , α

T
i1︸ ︷︷ ︸

V1 times

]




Z−1
1

. . .

Z−1
1







αi1

...

αi1




+ · · ·+

[αT
iG, . . . , αT

iG︸ ︷︷ ︸
VG times

]




Z−1
G

. . .

Z−1
G







αiG

...

αiG




=

= V1α
T
i1Z

−1
1 αi1 + . . . + VGαT

iGZ−1
G αiG (Vg is the number of voxels in region g)

= [αT
i1, . . . , α

T
iG]︸ ︷︷ ︸

αT
i




V1Z
−1
1

. . .

VGZ−1
G




︸ ︷︷ ︸
Ω−1

α




αi1

...

αiG




II =
G∑

g=1

(1Vg ⊗αig)
TV−1

g tig = [αT
i1, . . . , α

T
i1]




Z−1
1

. . .

Z−1
1




ti1 + · · ·+

[αT
iG, . . . , αT

iG]




Z−1
G

. . .

Z−1
G




tiG =

= [αT
i1, . . . , α

T
iG]︸ ︷︷ ︸

αT
i




Z−1
1 . . .Z−1

1︸ ︷︷ ︸
V1 times

. . .

Z−1
G . . .Z−1

G︸ ︷︷ ︸
VG times







ti1

...

tiG




= αT
i︸︷︷︸

(2×2G)




1V1 ⊗ Z−1
1

. . .

1VG
⊗ Z−1

G







ti1

...

tiG




︸ ︷︷ ︸
P

.
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Hence, it follows that

[αi|Λ(αi),Y) ∝ exp
{−1

2
αT

i Γ−1αi

}× exp
{−1

2
αT

i Ω−1
α αi − 2αT

i P
}

∝ exp
{−1

2
αT

i (Γ−1 + Ω−1
α )︸ ︷︷ ︸

Ψ−1

αi − 2αT
i P

}

∝ N(ΨP,Ψ),

where

Ψ =
(
Γ−1 + Ω−1

α

)−1
,

P =




1V1 ⊗ Z−1
1 . . . . . .

...
. . .

...

. . . . . . 1VG
⊗ Z−1

G



·




Yi1 − β1 − φ1 − 1V1 ⊗Xi1γ1

...

YiG − βG − φG − 1VG
⊗XiGγG




, and

Γ−1 = Γ−1
1 ⊗




1 0

0 0


 + Γ−1

2 ⊗




0 0

0 1


, while Ω−1

α =




V1Z
−1
1 . . . . . .

...
. . .

...

. . . . . . VGZ−1
G




.

(4)

[Γ−1
j |Λ(Γ−1

j ),Y] ∝ [Γ−1
j ] ·

n∏
i=1

[α
(j)
i |Γ−1

j ]

∝ Wishart
(
(hjHj)

−1, hj

) ·
n∏

i=1

N(0,Γj)

∝ |Γj|(hj−G−1)/2 exp
{−hj

2
tr(HjΓ

−1
j )

} ·

|Γj|n/2 exp
{−1

2

n∑
i=1

αT
ijΓ

−1
j αij

}

∝ |Γj|(hj+n−G−1)/2 exp
{−1

2
tr[(hjHj +

n∑
i=1

αijα
T
ij)Γ

−1
j ]

}

∝ Wishart
(
(hjHj +

n∑
i=1

αijα
T
ij)
−1, hj + n

)
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(5)

[Z−1
g |Λ(Z−1

g ),Y] ∝ [Z−1
g ] ·

n∏
i=1

∏
v∈g

N(Yig(v)|βg(v),φg(v),αig,Xigγg,Zg)

( Let uigv = Yig(v)− βg(v)− φg(v)−αig −Xigγg)

∝ |Z−1
g |(c1−2−1)/2 exp

{−1
2
tr(c1Ω1Z

−1
g )

} ·

|Z−1
g |nVg/2 exp

{−1
2

n∑
i=1

∑
v∈g

uT
igvZ

−1
g uigv

}

∝ |Z−1
g |(c1+nVg−2−1)/2 exp

{−1
2
tr(c1Ω1Z

−1
g )− 1

2

n∑
i=1

tr
(
(
∑
v∈g

uigvu
T
igv)Z

−1
g

)

︸ ︷︷ ︸
=tr(

∑n
i=1(

∑
v∈g uigvuT

igv)Z−1
g )

}

∝ |Z−1
g |(c1+nVg−2−1)/2 exp

{−1
2
tr[(c1Ω1 +

n∑
i=1

∑
v∈g

uigvu
T
igv)Z

−1
g ]

}

∝ Wishart
(
(c1Ω1 +

n∑
i=1

∑
v∈g

uigvu
T
igv)

−1, c1 + nVg

)

(6)

[Σ−1|Λ(Σ−1),Y] ∝ [Σ−1] ·
V∏

v=1

N(ρ
∑

v′ 6=v

wvv′

wv+

φv′ ,
1

wv+

Σ) ( Denote bv′ :=
wvv′

wv+

)

∝ |Σ−1|(c2−2−1)/2 exp
{−1

2
tr(c2Ω2Σ

−1)
} ·

V∏
v=1

wv|Σ−1|V/2 exp
{

1
2

V∑
v=1

[φv − ρ
∑

v′ 6=v

bv′φv′ ]
T wv+Σ−1[φv − ρ

∑

v′ 6=v

bv′φv′ ]
}

∝ |Σ−1|(c2+V−2−1)/2 exp
{−1

2
tr

[
c2Ω2 +

∑

v=1V

[w
1/2
v+ (φv − ρ

∑

v′ 6=v

bv′φv′)][w
1/2
v+ (φv − ρ

∑

v′ 6=v

bv′φv′)]
T
]
Σ−1)

}

∝ Wishart
(
(c2Ω2 +

V∑
v=1

wv+[φv − ρ
∑

v′ 6=v

bv′φv′ ][φv − ρ
∑

v′ 6=v

bv′φv′ ]
T ), c2 + V

)
,

where V is the total number of voxels included in the analysis (which have at least

one within-region neighbor).

(7) Recall the notation: βgj = β(j)
g , where j = 1, 2 denote the baseline and follow-up
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sessions. The independence assumption implies

βgj ∼ MVN(β0gj, λ
2
gj), βg ∼ MVN

(
β0g, IVg ⊗




λ2
g1 0

0 λ2
g2




︸ ︷︷ ︸
Λg

)
.

Then

[λ−2
gj |Λ(λ−2

gj ),Y] ∝ [λ−2
gj ] · [βgj|λ−2

gj ]

∝ Gamma(aj, bj) · Normal(1Vgβogj, λ
2
gjIVg)

∝ (λ−2
gj )aj−1 exp

(λ−2
gj

bj

)
(λ2

gj)
−Vg/2 exp

{
− 1

2λ2
gj

(βgj − 1Vgβ0gj)
T (βgj − 1Vgβ0gj)

}

∝ (λ−2
gj )aj+Vg−1 exp

{
−λ2

gj

[ 1

bj

+
(βgj − 1Vgβ0gj)

T (βgj − 1Vgβ0gj)

2

]−1}

∝ Gamma
(
aj + Vg/4,

[ 1

bj

+
(βgj − 1Vgβ0gj)

T (βgj − 1Vgβ0gj)

2

]−1)

(8)

Let {ρ1, . . . , ρn} be an array of values on which we specify a discrete uniform prior

for ρ. (n = 36 in our analysis.) Let L(ρ) =
∏V

v=1 N(ρ
∑

v′ 6=v bv′φv′ , w
−1
v+Σ). Then
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L(ρ) ∝ exp
{
−1

2

V∑
v=1

[φv − ρ
∑

v′ 6=v

wvv′

wv+

φv′ ]
T wv+Σ−1[φv − ρ

∑

v′ 6=v

wvv′

wv+

φv′ ]
}

∝ exp
{
−1

2

V∑
v=1

[ρ
∑

v′ 6=v

wvv′

wv+

φv′

︸ ︷︷ ︸
A

−φv]
T wv+Σ−1[ρ

∑

v′ 6=v

wvv′

wv+

φv′ − φv]
}

∝ exp
{
−1

2

V∑
v=1

(ρAT − φT
v )wv+Σ−1(ρA− φv)

}

∝ exp
{
−1

2

V∑
v=1

(ρAT wv+Σ−1ρA− φT
v wv+Σ−1ρA− ρAT wv+Σ−1φv

}

∝ exp
{
−1

2

V∑
v=1

ρ2AT wv+Σ−1A− 2ρ
V∑

v=1

φT
v wv+Σ−1A

}

∝ exp
{
−1

2
ρ2

( V∑
v=1

AT wv+Σ−1A

︸ ︷︷ ︸
η−1

)
− 2ρ

( V∑
v=1

φT
v wv+Σ−1A

︸ ︷︷ ︸
ξ

)}

where

η =
( V∑

v=1

(∑

v′ 6=v

wvv′

wv+

φT
v′ · wv+Σ−1 ·

∑

v′ 6=v

wvv′

wv+

φv′

)−1

=
( V∑

v=1

1

wv+

MTΣ−1M
)−1

, M =
∑

v′ 6=v

wvv′φv′

ξ =
V∑

v=1

φT
v Σ−1M.

The corresponding set of normalized likelihood weights is then given by {p1, . . . , pn},
where

pk =
L(ρk)

L(ρ1) + . . . + L(ρn)
=

1
L(ρ1)
L(ρk)

+ . . . + L(ρn)
L(ρk)

, k = 1, . . . , n.
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For example, for n = 1

L(ρ1)

L(ρk)
=

exp{−1
2
(ρ2

1η
−1 − 2ρ1ξ)}

exp{−1
2
(ρ2

kη
−1 − 2ρkξ)}

= exp
{−1

2
(ρ2

1η
−1 − 2ρ1ξ − ρ2

kη
−1 + 2ρkξ)

}

= exp
{−1

2
[(ρ2

1 − ρ2
k)η

−1 − 2ξ(ρ1 − ρk)]
}

= exp
{−1

2
[(ρ1 − ρk)(ρ1 + ρk)η

−1 − 2ξ(ρ1 − ρk)]
}

= exp
{−1

2

(
(ρ1 − ρk)[(ρ1 + ρk)η

−1 − 2ξ]
)}

.

(9) [γg|Λ(γg),Y] =? Recall the notation: γg = [γ
(1)
g1 , γ

(2)
g1 , . . . , γ

(1)
gQ , γ

(2)
gQ ]T , where Q

denotes the number of covariates in the model and the superscripts (1) and (2) denote

the baseline and follow-up sessions. We assume independence between the covariates,

i.e.,

γg|Λγg ∼ MVN
(
0, diag(τ 2

g11, τ
2
g21, . . . , τ

2
g1Q, τ 2

g2Q)
)

[γg|Λ(γg),Y] ∝ [γg|Λ(Γg)] ·
n∏

i=1

Yig|βg,φg,αig,γg,Vg

∝ exp
{−1

2
γT

g Λ−1
γg

γg

} ·

exp
{−1

2

n∑
i=1

(Yig − βg − φg − 1Vg ⊗αig − 1Vg ⊗Xigγg)
TV−1

g ·

(Yig − βg − φg − 1Vg ⊗αig − 1Vg ⊗Xigγg)
}
.



127

The sum in the second exponential term can be written as

n∑
i=1

[1Vg ⊗Xigγg − (Yig − βg − φg − 1Vg ⊗αig)︸ ︷︷ ︸
:=uig

)]TV−1
g [1Vg ⊗Xigγg − uig]

=
n∑

i=1

[
(1Vg ⊗Xigγg)

T − uT
ig

]
V−1

g

[
(1Vg ⊗Xigγg)− uig

]
=

[
(1Vg ⊗Xigγg)

T = 1T
Vg
⊗ γT

g XT
ig = [γT

g XT
ig . . . γT

g XT
ig] = γT

g [Xt
ig . . .XT

ig] =

γT
g (1T

Vg
⊗XT

ig)

]

=
n∑

i=1

[
γT

g (1T
Vg
⊗XT

ig)− uig

]
V−1

g

[
1Vg ⊗Xigγg − uig

]

=
n∑

i=1

[
γT

g (1T
Vg
⊗Xig)V

−1
g (1Vg ⊗Xig)γg − 2γT

g (1T
Vg
⊗Xig)V

−1
g uig

]

= γT
g

( n∑
i=1

(1T
Vg
⊗Xig)V

−1
g (1Vg ⊗Xig)

)
γg − 2γT

g

n∑
i=1

(1T
Vg
⊗Xig)V

−1
g uig

Hence,

[γg|Λ(γg),Y] ∝ exp
{
−1

2
γT

g

[
Λ−1

γg
+

n∑
i=1

(1T
Vg
⊗XT

ig)V
−1
g (1Vg ⊗Xig)

︸ ︷︷ ︸
Ω−1

γg

]
γg

− 2γT
g

n∑
i=1

(1T
Vg
⊗XT

ig)V
−1
g uig

︸ ︷︷ ︸
Tγg

}

∝ N(ΩγgTγg ,Ωγg)

where Ω−1
γg

= Λ−1
γg

+
∑n

i=1(1
T
Vg
⊗XT

ig)V
−1
g (1Vg ⊗Xig), Tγg =

∑n
i=1(1

T
Vg
⊗XT

ig)V
−1
g uig

and uig = Yig − βg − φg − 1Vg ⊗αig.

Computational Details: Ωγg and Tγg can further be simplified for computational
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reasons.

Ω−1
γg

= Λ−1
γg

+
n∑

i=1

(1T
Vg
⊗XT

ig)(IVg ⊗ Z−1
g )(1Vg ⊗Xig) =

= Λ−1
γg

+ Vg

n∑
i=1

XT
igZ

−1
g Xig

and

Tγg =
n∑

i=1

[Xig · · ·Xig]




Z−1
g

. . .

Z−1
g




uig =

=
n∑

i=1

(1Vg ⊗XT
igZ

−1
g )uig

(10)

[τ 2
gjq|Λ(τ 2

gjq),Y] ∝ [τ 2
gjq][γgjq|τ 2

gjq]

∝ Gamma(e0, f0) · N(0, τ 2
gjq)

∝ (τ−2
gjq)

e0−1 exp
(
−τ−2

gjq

f0

)
(τ 2

gjq)
−1/2 exp

{
− 1

2τ2
gjq

γ2
gjq

}

∝ (τ−2
gjq)

e0+1/2−1 exp
{
−τ−2

gjq

[
1
f0

+ 1
2
γ2

gjq

]}

∝ Gamma
(
e0 + 1

2
,
[

1
f0

+ 1
2
γ2

gjq

]−1
)

5.2.3 Appendix G: Additional results from the analysis of

ADNI data

Regions included in analysis of ADNI data

We include 39 regions from the AAL map (Tzourio-Mazoyer et al., 2002) in our

analysis of the PET data from the study Alzheimer’s disease study (ADNI). The
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No. Region Name Vg No. Region Name Vg

1 Caudate L 877 21 Insula L 1898
2 Caudate R 950 22 Insula R 1760
3 Cingulum Ant L 1352 23 ParaHippocampal R 982
4 Cingulum Ant R 1352 24 Putamen L 976
5 Cingulum Mid L 1845 25 Putamen R 1058
6 Cingulum Mid R 2098 26 Rolandic Oper L 963
7 Frontal Inf Oper L 970 27 Rolandic Oper R 1278
8 Frontal Inf Oper R 1321 28 Temporal Mid L 4655
9 Frontal Inf Orb L 1537 29 Temporal Mid R 4337
10 Frontal Inf Orb R 1580 30 Temporal Pole Sup L 1189
11 Frontal Inf Tri L 2376 31 Temporal Pole Sup R 1171
12 Frontal Inf Tri R 1891 32 Temporal Sup L 2278
13 Frontal Sup L 3208 33 Temporal Sup R 3112
14 Frontal Sup R 3864 34 Thalamus L 1076
15 Frontal Mid L 4618 35 Thalamus R 1055
16 Frontal Mid R 4896 36 Cingulum Post L 466
17 Frontal Sup Medial L 2763 37 Cingulum Post R 281
18 Frontal Sup Medial R 2059 38 Precuneus L 3475
19 Hippocampus L 929 39 Precuneus R 2832
20 Hippocampus R 941

Table 5.1: Selected 39 AAL regions of interest considered in the Alzheimer’s dis-
ease study. Vg denotes the regions size, in voxels. Notation is as follows: R=right,
L=left, Inf=inferior, Med=medial, Mid=middle, Orb=orbital, Oper=operculum,
Post=posterior, Sup=superior, Temp=temporal, Tri=triangularis.

regions are listed in Table 5.2.3.

Figures 5.3 and 5.4 give the trace plot and the corresponding histogram plot of

the posterior distribution for parameter βg. The figures show the trace plot and

histogram for one selected voxel in region g.

Individualized prediction maps for subjects from ADNI data set. Figure

5.2.3 shows the individualized prediction maps for four additional AD patients from

the test data set. Figure 5.2.3 shows the individualized prediction maps for two

additional HC subjects from the test data set.
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Figure 5.3: Trace plot for βg parameter for a randomly selected voxel in region 2
(top) and for φg parameter for a randomly selected voxel in region 16 (bottom).
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Figure 5.4: Histogram plot for βg, for a randomly selected voxel in region 2 (left) and
for φg, for a randomly selected voxel in region 16 (right).
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(a) predicted month 6 maps
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(b) observed month 6 maps
Subject 4 , observed Y(2)
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Figure 5.5: Individualized predicted and observed 6 month follow-up glucose uptake
measurements for 4 AD patients from the test data set. Axial slice 40 is shown in
radiological view.
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(a) predicted month 6 maps
Subject 1 , predicted Y(2)
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(b) observed month 6 maps
Subject 1 , observed Y(2)
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Figure 5.6: Individualized predicted and observed 6 month follow-up glucose uptake
measurements for 4 HC subjects from the test data set. Axial slice 40 is shown in
radiological view.

5.2.4 Appendix H: Simulation Results.

Tables 5.2 through 5.4 give results from the simulation study described in Section

4.5. Tables 5.2 and 5.3 list the estimated and the true values, as well as the bias, for

parameter β from the mean of the top level of our model (BSPM). The results are

shown for all 5 regions included in the simulation study and for 25 randomly selected

voxels from each region. Table 5.2 gives the simulation results for the baseline session,

and Table 5.3 for the follow-up session. Table 5.4 gives the simulation results for the

random effect parameters αi, for baseline session (results for the follow-up session are

similar).
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