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Abstract 

Online Learning Based Clinical Information Extraction and Classification 

By Shuai Zheng 

 

 

 To enable the research use of clinical reports, pertinent data needs to be extracted 

from narrated medical reports. Traditional automated based approaches are brittle and do 

not have the ability to take user interaction as feedbacks for improving the extraction 

algorithm in real time.   

 In this dissertation, we present an interactive, online machine learning based 

system, IDEAL-X, that addresses some key shortcomings of existing systems. IDEAL-X 

provides a standard interface that can be used for simple data extraction and data entry. It 

is unique, however, in its ability to transparently analyze and quickly learn, from users' 

interactions with a small number of reports, the desired values for the data fields. 

Additional user feedback (through acceptance or edits on system generated values) 

incrementally refines the decision model in real-time, which further reduces the user’s 

burden in processing subsequent reports. Extensive experiments in multiple use cases 

show that the system achieves high accuracy on data extraction with minimal effort from 

users. The system also accepts predefined domain knowledge, in the form of controlled 

vocabulary, to improve the efficiency and accuracy of data extraction. The system 

contains components for standardizing and querying extracted values. Moreover, an 

online learning based classification module can be used to support clinical decision 

making. We report successful applications of IDEAL-X to extract data in Emory 

Cardiology, Pathology, and the Centers for Disease Control and Prevention.  
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Chapter 1 

Introduction 

 

 

1.1  Motivation 

1.1.1  Clinical Data 

While tremendous efforts have been made to enable structured reporting for electronic 

medical records system, a large amount of medical data remain in free-form narrative text 

reports. Moreover, most existing medical report systems are based on natural language 

narrations written in free-form text. While some high-level structures exist --- for 

example, patient records may contain sections on "Medications on Admission", "Hospital 

Course" and "Condition on Discharge" --- the narrative style of each section is often 

highly informal and personal. For instance, each of the following patient record snippets 
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describes similar "heart rate" information of patients during physical examination (See 

Figure 1.1). As a consequence, useful research data from individual patients are usually 

obscured and distributed across reports of multiple types with heterogeneous structures 

and vocabularies.  

 

 

 

 

Figure 1.1. Snippets of clinical free text narrations 

1.1.2  Structured Reporting 

Compared to traditional free-form text reporting system, "structured reporting" [1] offers 

significant promise for both human consumption and machine processing. Report 

standards, controlled vocabularies and terminologies have proliferated in medical 

domains to standardize the creation of medical reports. DICOM structured reporting 

standardizes reporting in radiology images [2]. Structured Reporting for Anatomic 

Pathology [3] is under development by IHE for standardized structured pathology 

reporting. Such structured reporting often depends on pre-defined templates or 

vocabularies. Examples include the College of American Pathologist's (CAP) cancer 

protocols and checklists [4], which provide detailed checklists for options in pathology 

reports. The Cancer Biomedical Information Grid (caBIG) [5]'s Cancer Data Standards 

Registry and Repository (caDSR) [6] offers APIs and tools to define common data 

1. "...... Blood pressure was 152/63 , heart rate 67 with occasional 

premature  ventricular contractions, respirations 15 ......" 

2. "......Her pulse was regular at 82 beats per minute......" 

3. "......The blood pressure was 115/73 and heart rate was 93......" 

4. "......122/66 , 96.8 , 81 , 21 for vital signs......" 
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elements (CDEs). HL7 Clinical Document Architecture [7] defines standardized 

document structure and semantics to share electronic health information. These efforts to 

standardize medical reporting formats and vocabularies give rise to the possibility for 

automated searching, browsing, and mining of medical data. 

1.1.3  Clinical Data Processing 

Despite the obvious benefits of structured reports, majority of EMR systems still allows 

for (thus encourages) narrative text narration. To facilitate large-scale research and 

clinical use of data embedded in narrative text, pertinent data needs to be identified first. 

Figure 1.2 shows a typical pipeline for processing medical reports: valuable facts are 

extracted from free text EMR either manually or with automated information extraction 

system. Diagnosis is then realized through human effort or software tools, is conducted 

based on extracted structured data. 

 

 

Figure 1.2 Information extraction and classification pipeline for medical reports 
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Next, we discuss traditional approaches and their limitations. 

1.1.4  Traditional Approaches 

For large datasets, manual extraction and classification are tedious, time-consuming and 

error-prone. Automated tools, on the other hand, are typically tuned for particular 

domains, and precisely annotated training datasets need to be developed and learned to 

establish decision models through which subsequent reports can be processed. Once 

trained, the decision models of extraction and classification are difficult or impossible to 

modify and improve. Therefore, these approaches lack the capability of taking user 

feedbacks, to adapt and improve the extraction or classification algorithm in real time. In 

addition, automatically extracted data suffers from inaccuracies as a result of natural 

limits on statistical machine learning techniques.  

 For healthcare research that requires completely accurate data, the above 

discussion points to one constant: human involvement is necessary, whether to perform 

the actual extraction or for post-extraction verification. In this thesis, we consider an 

online machine learning approach. 

1.1.5  Online Learning Based System 

Our goal is to provide a generic information extraction and classification framework that 

is adaptable to diverse clinical reports, enables a dynamic interaction between the human 

and machine, and produces highly accurate results with minimal human effort. We have 

developed a system, IDEAL-X (Information and Data Extraction using Adaptive Online 
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Learning), to support adaptive information extraction from diverse clinical reports with 

heterogeneous structures and vocabularies. A demo video can be found in YouTube [8]. 

 IDEAL-X takes an online machine learning approach that integrates machine 

learning with interactive human intervention, and combines it with customizable 

vocabularies. The data extraction and classification engines can automatically predict 

answers to annotate or classify reports, gradually learn from human feedback, and 

iteratively improve its accuracy. The online learning algorithms [9-11] make predictions 

one report at a time, and utilize human feedback to update its prediction model 

immediately. Compared to traditional batch training based algorithm, which requires 

training with large volumes of carefully annotated data before deploying a system, online 

learning based algorithms can avoid costly expense of preparing training data and also 

render the possibility of updating the deployed system in a dynamically changing data 

environment.  

 The online machine learning based approach is enabled through an intuitive 

interface and workflow. The system provides an interactive interface for users to view 

and annotate reports, and to verify answers generated by the data extraction or 

classification engine. When a user makes manual annotations or revises system-generated 

answers on a report, IDEAL-X learns important linguistic features and patterns of the 

values to be extracted in subsequent reports. The process is repeated, and the knowledge 

accrued by the system helps it to improve the extraction or classification accuracy. In turn, 

this reduces the user’s effort over time.  

 Besides online machine learning, IDEAL-X allows for customizable controlled 

vocabularies to support data extraction from clinical reports, where a vocabulary 
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enumerates the possible values that can be extracted for a given attribute. (The X in 

IDEAL-X represents the controlled vocabulary plug-in.) The use of online machine 

learning and controlled vocabularies is not mutually exclusive; they are complementary, 

which provide the user with a variety of modes for working with IDEAL-X. 

1.2  Research Contribution 

Important contributions of this work are as follows. 

 i) We develop various online learning algorithms to support information 

extraction and classification. The algorithms form the foundation for IDEAL-X, and 

experiments reveal the contextual challenges of applying online learning in clinical 

environments.   

 ii) We present a workflow and software interface to facilitate a human-machine 

collaboration aimed at balancing accuracy and efficiency. User may also input domain 

specific knowledge to improve the system’s learning efficiency and prediction accuracy. 

 iii) We investigate existing clinical knowledge bases, design interface and 

template for controlled vocabulary. We demonstrate the important role that controlled 

vocabulary plays in information extraction and data standardization, and present solutions 

to assist in building domain-specific vocabulary.   

 iv) We demonstrate the feasibility of IDEAL-X in three real-world uses cases. 

Working with Emory Clinical Cardiovascular Research Institute, we extract information 

from heterogeneous clinical reports to support Biobank building, which addresses a 

variety of research questions in cardiovascular disease. Working with Emory Pathology, 
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we extract diagnosis and genetic information from pathology reports to support patient 

group identification. Working with the Centers for Disease Control and Prevention, we 

improve VTE surveillance with information extracted from radiology reports. 

1.3  Potential Usages 

Compared to free-form text, strictly formatted data is not only more feasible for browsing, 

but also suitable for further data processing such as querying, statistical analysis, and 

reasoning to support decision making. For many informatics systems, extracting 

information from unstructured text is an indispensable procedure. Examples include the 

following. 

I) Clinical reporting and billing system 

Most existing medical report systems are based on natural language narrations written or 

dictated in free-form text. The wide demand for extracting research data from text reports 

in the medical/health-care field makes IDEAL-X particular relevant. The system can 

extract information from narrative or dictation text to generated structured forms, which 

may be further normalized into standardized code or template with medical standards 

such as ICD-9 or UMLS [12]. Standardized clinical data is extremely feasible for billing 

purpose and other administration usage in a hospital. 

II) Patient Identification and Surveillance  

By combining extracted data, such as diagnosis with demographics information, 

physicians can index patients and identify patient group of specific research interest. 

When further integrated with temporal and geographic background information, 
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surveillance system can be implemented to detect and monitor outbreak and pandemic 

phenomenon of certain disease.  

III) Clinical decision support system (CDSS)  

In an increasingly data-driven world, a preliminary procedure of clinical decision support 

system [13-15] is to identify and annotate valuable attributes from free-form text [16, 17]. 

Strictly formatted data, which integrates information from various clinical reports, 

provides a comprehensive view of the patient’s information. With this view, diagnosis 

could be determined either by physician or automated clinical decision support system 

(CDSS) based on data mining and statistics technologies, such as clustering and 

classification.  

IV) Medical records de-identification system 

De-identifying medical reports and patient records [18-21] can facilitate health 

information sharing. To free-form text, the first step of concealing patient’s personal 

information is to locate and annotate sensitive attributes [22], especially the 18 data 

elements designated by HIPPA. This information extraction framework can also be 

adopted to support de-identification, so as to make clinical data feasible for sharing to 

advance clinical research. 

V) Annotation system 

Annotating adequate text to create a training corpus is essential to most natural language 

processing oriented project. Some annotation tools provides machine-assisted features 

[23, 24], however, these assistances are still very limited and not intelligent enough. 

Having a system that can semi-automatically assist in finding and highlighting potentially 
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relevant pieces of information can speed up the annotation work, therefore, facilitates the 

development of other NLP technologies and systems. 
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Chapter 2 

Background and Related Work 

 

 

2.1 Background 

A patient’s electronic medical record includes a variety of medical reports.  Data in these 

reports provides critical information that can be used to improve clinical diagnosis and 

support biomedical research. For example, the Emory University Cardiovascular Biobank 

[25] collects records of patients with potential or confirmed coronary artery diseases 

undergoing cardiac catheterization, and aims to combine extracted data elements from 

multiple reports to identity patients for research. Report types include history and 

physical report, discharge summary, outpatient clinic note, outpatient clinic letter, 

coronary angiogram report, cardiac catheterization procedure report, echocardiogram 

report, inpatient report, and discharge medication lists. 
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 In increasing level of difficulty for data extraction, a clinical report is usually a 

mixture of semi-structured data, tabular based text, template based narration, and 

complex narration.  

 

Figure 2.1 A snippet of semi-structured report 

 Semi-structured data, as demonstrated in Figure 2.1, describes the value of data 

elements in the form of Attribute/Value pair. This format is highly readable and may be 

generated from a database directly. However, processing such data still requires an 

extraction tool as the original structure may not be preserved. 

 

 

Figure 2.2 A snippet of a report with tabular based text 

…… 

Monitored Values: 

AO Diastolic - CV                          65.00    02/30/2009 19:30 

AO Systolic - CV                          139.00    02/30/2009 19:30 

LV EDP - CV                                27.00    02/30/2009 19:31 

…… 
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 Tabular based narration, as demonstrated in Figure 2.2, presents information in 

the form of tables. Similar to semi-structured data, it renders great human readability. But 

for the computer to interpret it properly is still a challenge.  

 

Figure 2.3 A snippet of a report with template based narration 

 Template based narration, as demonstrated in Figure 2.3, is a very common report 

form. The narrative style including its sentence patterns and vocabulary is consistent, 

direct, and resembles the use of the same template across different records. To extract 

information from this type of text (e.g., “mid left anterior descending artery”), specific 

linguistics based rules or constrains need to be applied. This may require non-trivial NLP 

expertise, especially when the number of attributes to be extracted is large.  

 

 

Figure 2.4. A snippet of complex narration report 

…… 

The patient is a healthy 51-year-old lady who had a diagnosis of breast 

cancer treated in 2001 with surgery. She had experienced mild ascites 

recently, but she denies painful and reports that she feels better when in 

warm environment. 

…… 

The coronary territory consisting of the mid/distal left anterior 

descending coronary artery and diagonal branches contained luminal 

irregularities. There is 90 % stenosis in the mid left anterior descending 

coronary artery.    

…… 
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 Complex narration is essentially free-form text. Compared to template based 

narration, it often contains discourse that is informal and personal, and the narrative 

patterns are diverse.  It is the most difficult narration style to interpret and process by 

NLP algorithms. Certain types of information, such as diseases and medications, can be 

extracted with high accuracy with the aid of a controlled vocabulary. 

 IDEAL-X implements a solution for each of the above report format.  

2.2 Important Problems of Clinical NLP 

NLP issues that play an important role in  medical information extraction are summarized 

as follows. 

I) Negation Detection 

 In medical reports, the meaning of concept may be reversed by negative terms for 

example, "the patient has no history of diabetes", the term "diabetes" should not be 

extracted as a history of a disease.  

II)Uncertainty Detection 

 Similar to negation terms, uncertain terms also alter the meaning of a sentence, 

for example, “the patient is planned to take radiation therapy” means the “radiation 

therapy” hasn’t been conducted yet.  

III) Timex Detection 
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 As temporal information [26-28] plays an important role in medical reports, it 

would be critical to extract temporal information so as to identify important medical 

events.  

IV) Standardization 

 In medical domain, the value to be extracted or processed usually have 

considerable variances and abbreviation. For instance, "DM" is the abbreviate of diabetes, 

and "Pindolol", is a hyponym of beta-blocker.  

2.3 Related Work 

2.3.1 Clinical Information Extraction 

A number of research efforts have been conducted in the field of medical information 

extraction. cTAKES (clinical Text Analysis and Knowledge Extraction System) [29] is 

an open-source NLP system designed for extracting information from clinical text. It 

offers various NLP tools trained especially for clinical fields. Most algorithms or systems 

focus on a particular application domain such as pathology reports [30, 31]or biomedical 

text [32, 33]. caTIES [34] (Cancer Text Information Extraction System)  is a cancer text 

information extraction system specialized in tissue annotations. MedEx [35] extracts 

medications and related information such as dosage and duration. ONYX [36] adapts 

semantically annotated grammar rules to analyze sentence level text. MedLEE [37] 

(Medical Language Extraction and Encoding system) is a clinical information extraction 

system that offers the feature of mapping information to controlled vocabularies.  
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 These automated tools have noticeable shortcomings. 

  1) Both rule and machine learning based approach are domain-specific and not 

easily adaptable to new reports. In addition, once implemented, the decision model 

remains static and is difficult to improve.  

 2) In machine learning based approaches, a precisely annotated training dataset is 

required. Such a training set can be difficult and expensive to obtain.  

 3) In rule based approaches, rules need to be manually engineered by clinical 

domain experts and linguistic professional.  

 4) Automated systems cannot produce completely accurate results due to either 

incomplete rule coverage or the nature of statistical machine learning, especially in noisy 

settings.  

2.3.2 Clinical Decision Support 

Clinical Decision Support is one of the most important applications for information 

extracted from clinical reports. Machine learning algorithms, especially classification 

algorithms, have been widely used in clinical domain to support medical decision making 

[38]. Medical decision support system was used for heart disease diagnosis [39], 

neuromuscular disorders detection[40], fetal well-being [41] and cancer [42, 43]. Apart 

from disease or disorder diagnosis, it also has been applied to support clinical procedures 

in hospital, for example examining the performance of physician and patient outcome 

[44], and providing support for antibiotic prescribing [45]. 
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 Similar to traditional information extraction approaches, most existing clinical 

decision support systems and algorithms lack the ability to accommodate streaming data -

-- typical in a clinical environment, and are thus not easily adaptable. 

2.3.3 Online Machine Learning 

Online machine learning provides customizations for different working environments and 

supports incremental improvement. Amilcare [46] is an adaptive information extraction 

system used for Semantic Web annotation. Its algorithm, (LP)2[47], generalizes and 

induces symbolic rules. DUALIST [48] allows users to select system populated rules for 

feature annotation to support text classification, word sense disambiguation and 

information extraction. Another related research area is interactive annotation, which 

attempts to ease the annotation process by incorporating machine learning techniques. 

MIST [49]’s classifier automatically learns to support de-identification. RapTAT [50] 

learns document phrases to accelerate annotation.  

 Different from online machine learning, which processes instances in sequence, 

active learning [51, 52] is semi-supervised, with the ability to retrieve labels for most 

informative data points by inquiring users actively. Example applications in healthcare 

informatics include word sense disambiguation [53] and phenotyping [54]. 

2.3.4 Contextual Feature Extraction 

Many researches emphasize the value of special contextual features within text. Detecting 

negation expression and the affected scope [55-60] is very important to clinical report 

since it may overturn the meaning of a statement. Temporal feature provides critical 
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information for medical reasoning and decision [61-67]. It represents medical encounters 

with a timeline. Some other researches value the importance of medical events, which are 

modeled based on medicine procedure, time and negative information [65, 68-71].  
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Chapter 3 

IDEAL-X: The User Perspective 

 

 

3.1 Goals 

We aim at a system that supports convenient and intelligent data extraction from different 

types of reports using knowledge learned from human interaction during ordinary manual 

data extraction. Towards that end, the development of IDEAL-X  adheres to the 

following design goals:  

 Ease of use: The system should have a low learning curve for new users. 

Interactions between a user and the system should follow (or minimally deviate from) the 

conventional process for manual extraction/classification and the input of domain 

knowledge should be easy to interpret and construct.  
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 Domain agnostic: The system should be easily adaptable to different types of 

reports and clinical environments. Thus, the system should employ designs and 

algorithms that are problem neutral.  

 High accuracy: The system should ensure high accuracy to meet the rigorous 

requirement of clinical research or healthcare quality improvement. Besides the online 

learning based method, the system should allow domain-specific knowledge such as 

customized vocabularies, when available, to be incorporated into the decision model to 

amplify the system’s performance.  

 High efficiency: The system should maintain a consistent, crisp response time to 

each document, regardless of the number of documents in the input collection or have 

been processed.   

 In sum, all these goals raise constraints and challenges to system development and 

algorithm design.  

3.2 Human-Computer Interaction 

Human-Computer interaction (HCI), as a field, aims to optimize the interface between 

human and computer [72]. To online learning based systems that rely on user feedbacks 

for improving predictions, the quality of the interface for collecting user feedback most 

directly affects the user experience.  

 We design interface and operations with the following features: 
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Figure 3.1 An example screenshot of IDEAL-X’s interface 

 1) The system learns feedback from users’ regular annotation interactions 

transparently and incrementally. 

 2) From the knowledge gained by observing the user, the system generates 

normalized answers to populate forms in real-time  

 3) No special configuration or training sets are required. Initial training data or 

configuration may be provided, however, as an option. 

3.2.1 Interface Design 

IDEAL-X provides a graphical user interface (GUI) for data extraction/classification and 

human interaction (Figure 3.1). The main window of IDEAL-X is split into two panels 
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that sit side by side: a text input panel and an output panel. The text input panel displays 

the reports of current subject being processed, where multiple reports of the subject 

(when available) are arranged through tabs. The output panel displays extracted name-

value ("Attribute" and "Value") pairs of data elements of interest, and the configured 

classifiers will be embodied as additional attributes in output table. When selected, 

locations of values of the form data elements will be highlighted in the text input panel. 

The "Previous" and "Next" buttons at the bottom on the right-hand side allow users to 

navigate through the input document collection. In extraction, the user may review and 

update any prefilled values by mouse-highlighting the correct value in the text, followed 

by clicking the data field. In classification, the user may choose available class label by 

clicking the combo box of classification attribute. The interface is simple and intuitive, 

and the underlying text processing and learning process is transparent to users.  

3.2.2 Basic Operations 

I) Select a value 

To select a value from the input text, the user highlights the text to be extracted by left-

clicking and dragging the mouse over the text region. The highlighted text is then 

dropped into the value field of the corresponding attribute in the output table with a 

single left click over the field. Color highlights are used to match each field index with 

the physical text in the input text. When multiple values are inserted into the field, these 

values are listed in the output Table in the same order as their appearances in the input 

text. 
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II) Unselect a value 

To unselect a text, whether user selected or system generated, the user may single left 

click the highlighted text in the input text.  The system will remove the value from 

"Value" field as well as unhighlight the text in the input text. 

III) Clear all values in a field 

To clear all the values in a field, the user may left single click all the highlighted texts 

one by one, as described above, or right single click the row of the appropriate form 

element in the output table. The latter clears the "Value" field in the output table, as well 

as unhighlights all corresponding texts in the input text. 

IV) Navigation 

A single left click of the "Next" button loads the next text document into the "Text input" 

panel, and populates the "Output Table" with system generated values. 

A single left click of the "Previous" button loads the previous (already processed) text 

document in the collection into the "Text input" panel, and displays all selected values in 

the "Output Table". 

3.2.3 Interactions 

The system provides a wizard for constructing the metadata of the output form. The user 

builds the form by specifying a list of data elements and their constraints. An example is 

the data element “Heart Rate”, which is constrained to be a numerical value between 0 

and 200. Other constraints include sections of the report that may contain the values. 
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However, except for the names of the data elements, specifying constraints are optional, 

as these can be learned by the system.  

 Once data element, which represents value to be extracted, is defined, IDEAL-X 

interacts with users in two approaches: through interactive annotation process and 

domain knowledge input process. Based on these two ways, the decision model for 

IDEAL-X may be established through online learning, the input of domain knowledge, or 

by a combination of the two.  

I) Interactive annotation process 

 

 

Figure 3.2. The workflow of interactive annotation process 

In the online learning mode (See Figure 3.2) of information extraction, the user either 

manually extracts information from each document, or inspects and correct, if necessary, 

any prefilled values by the system in the “Output Form”. As the user moves through the 

document collection, the system learns features of correct and incorrect answers by 

comparing system extracted values and manually revised ones. Through this process, the 

decision model improves, and the amount of information that the system is able to 

correctly prefill grows over time. As one might expect, the "Output Form" for the first 

few documents may be empty. 
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 When perform classification, user specifies the following information to construct 

a classification attribute: input attributes, labels of output classes, and machine learning 

model of classification. While processing each instance, user specifies the class label for 

each classification attribute. When new instance gets loaded, the system populates labels 

for classification attributes automatically. User then verify and revise system generated 

class label to further improve the accuracy of classification. 

 Once the decision model accrues an acceptable level of accuracy, the user has the 

option to turn off manual review and to allow the system to complete the 

extraction/classification for the remaining documents in batch mode. A demo video can 

be found in YouTube [8].  

II) Domain knowledge input process 

The system also provides a graphical user interface (see section Knowledge Loading 

Component for detail) for the user to customize domain knowledge, such as an controlled 

vocabulary, which may contain terminology of attributes and structural properties of 

documents.  

 The terminology includes lists of values and their normalization mappings. For 

example, Disease terminology includes “Diabetes Mellitus" with variations “DM” and 

“Diabetes”. It also defines inductions. For example, taking “Insulin” or “Metformin” 

indicates having Diabetes Mellitus. Structural properties provide positive and negative 

contextual information for giving terms. For example, to extract medications taken by 

patients, the “Allergies” section is a negative context and medicine names in the section 

will be skipped. Controlled vocabularies can be a powerful tool to support data 



25 
 

 
 

extraction: it can be used to locate sentences and chunks of possible values, and to 

perform normalization for extracted values, discussed in Chapter 5.  

 The domain knowledge is incorporated directly into the decision model that may 

be further enhanced by online learning.  

3.2.4 Query Interface and Engine 

The system provides a built-in query interface (see figure 3.3) that allows the user to 

search for patients or reports based on user-specified conditions. The extracted data is 

organized and indexed with reversed index to facilitate querying.  

 

Figure 3.3: Query interface  
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 The interface is split into three main panels. The right panel shows the search 

condition. For each attribute, the user may specify a value from the list of available 

values that the system has collected during extraction. The “Search” button finds all 

reports that match all of the search criteria, and displays the results as a directory tree in 

the left panel. Selecting a node in this tree loads the content of the corresponding report 

into the text area of the second panel.   
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Chapter 4 

Online Learning Based Clinical 

Information Extraction 

 

 

4.1 Online Machine Learning  

4.1.1 Online Learning Overview  

Traditional machine learning algorithms take a two-stage approach: batch training based 

on an annotated training dataset, followed by batch prediction on new datasets based on 

the model generated from stage one (see Figure 4.1 (a)). In contrast, online machine 

learning algorithms [10, 11] take an iterative approach (Figure 4.1 (b)). It learns one data 

points at a time, and based on external feedback, adapts its prediction model for 

subsequent data points.  
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 Online learning matches the data collection model of heathcare organizations, 

where new patient data is received on a daily basis. In IDEAL-X, when the predication 

model achieves a satisfactory accuracy, the system may be switched to run in batch mode. 

 In both batch and online learning, the objective is to learn some function: 

F: X ->Y 

where X is the input dataset and Y is the set of predicted outcomes (also called labels). 

Given  a sequence of input data (x1, y1), (x2, y2), ……(xn, yn), an online learning algorithm 

generate successive approximations to F that best capture the data points that have 

already been processed. Each approximation is calculated only on previous 

approximation  and current data point. Previous data points need not be stored, which 

guarantees constant memory usage.  

 The goal of online learning is to minimize the cumulative gap between predicted 

value and the real answers. This could be represented with a loss function: 

£ = ∑ E(f(xi) -  yi ) 

where f(xi)  is the predicted value of iteration i, and yi is the real answer. Function E 

estimate the different between these two values.  

 Online machine learning not only significantly reduces human’s effort for 

annotation, since user’s role evolves from annotator to reviewer over time, it also 

provides the mechanism for collecting feedback from human-machine interaction to 

continuously improved the system’s model.  
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Figure 4.1. Online machine learning versus batch learning. (a) Batch machine learning 

workflow; (b) Online machine learning workflow 

4.1.2 Online Learning Based Information Extraction and 

Classification 

Online learning is integrated into the information extraction workflow of IDEAL-X as 

follows. 

 i) Upon loading each document, the system attempts to fill the output form 

automatically according to its internal extraction/classification model.  
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 ii) The system updates its model automatically based on user feedbacks during the 

extraction/classification process.  

 iii) Optionally, the user may provide domain specific knowledge to further 

support data extraction, standardization and classification. Pre-training with human 

annotated data is not required for these steps. 

 Automatic population of the output form is performed with the following steps. 

To extract information, regions of the input document where target values may appear are 

detected by a combination of locations in the text and co-occurring words. Then, 

candidate values are extracted either with machine learning based model or a dictionary. 

Lastly, constraints such as regular expressions and ranges of numerical values are applied 

to narrow the candidate set. Candidates that receive confidence scores above the 

threshold are used to fill the output form, which could be later transformed into a 

standardized format based on controlled vocabularies and further integrated to render a 

single structured view.  

 To classify instances, the information extracted from free text is first integrated 

with structured data retrieved from a database or data warehouse. The integrated 

structured data are then analyzed by an online learning algorithm. Finally, the system 

proposes class labels with associated confidence scores to populate the classification data 

elements in the output table (See details in Chapter 7). 

 With online learning, the information extraction and classification models are 

updated gradually as the collection of processed documents grow. As a user reviews 

system-generated values, unrevised values and manually updated values are treated as 

correct answers. Related information are exploited to update the decision model. the 
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system learns the features and contexts of pertinent values and class labels, and is able to 

propose and generate values for data elements (both information extraction elements and 

classification elements) automatically after processing a few reports.  

4.2 System Design Overview 

The design of IDEAL-X consists of two main parts: the frontend graphical user interface 

(GUI), and the backend data extraction engine. The GUI provides the interface for 

annotation, feedback, navigation, and customization (Chapter 3). The information 

extraction system contains of the following major components: preprocessing, domain 

knowledge loading, data extraction engine, and online learning. Figure 4.2 shows how the 

data flows among the components (in gray). 

 The preprocessing component converts input texts and output forms into internal 

data structures used by the data extraction engine. The domain knowledge component 

imports domain knowledge, in the form of controlled vocabulary, to support information 

extraction, standardization and classification. The data extraction engine extracts values 

from input texts or predicts label for classes to fill the output forms. The online learning 

component utilizes user inputs, in the form of edits on generated values, to update the 

decision models of the answer generating component. We describe the modules of each 

component. 

 The interface and workflow conform to traditional annotation systems: a user 

browses an input document from the input document collection and fills out an output 

form. Upon loading each document, the system attempts to fill the output form 
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automatically with its data extraction engine. The user can review and revise incorrect 

answers. The system then updates its data extraction model automatically based on user 

feedbacks. Optionally, the user may provide a customized controlled vocabulary to 

further support data extraction and answer normalization. Pre-training with manually 

annotated data is not required, as the prediction model behind the data extraction engine 

can be established incrementally through online learning, customizing controlled 

vocabularies, or a combination of the two. 

 

 

Figure 4.2. System components and dataflow 

  The system can operate in two modes: 1) interactive: through online 

learning, the system predicts values to be extracted for each report, and the user verifies 

or corrects the predicted values; and 2) batch: batch predicting for all unprocessed 

documents once the accrued accuracy is sufficient for users. While interactive mode uses 

online machine learning to build the learning model incrementally, batch mode runs the 

same as the prediction phase of batch machine learning.    
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4.3 Document Preprocessing 

When a report is loaded, the text is first parsed into an in-memory hierarchical tree 

consisting of four layers: section, paragraph, sentence and token. Apache OpenNLP [73] 

is used to support parsing. Linguistic features such as part of speech (POS) and data type 

are also analyzed.  

 A reverse index of tokens is created to support efficient keywords based search. 

The index is used to find locations (e.g., sections, paragraphs, sentences and phrases) of a 

token, as well as its properties such as part of speech and data type. For example, given 

the token “DM”, the system can quickly identify the section (e.g., “History”) and the 

containing sentences. Such token search is frequently performed in answer prediction, 

and the in-memory index structures enable high efficiency for such operations.  

 In this step, unique contextual information such as timex, and special data 

structure such as tabular data, are also identified and analyzed. To timex extraction, the 

system employs pre-defined regular expressions (See Table 4.1 for examples) to mark 

temporal data in text:  

Timex Example Java Regular Expression 

12/03/2012 "\\d{1,2}/\\d{1,2}/\\d{4}" 

1-12-98 "\\d{1,2]-\\d{1,2}-\\d{2}" 

12012010 "\\d{8}" 

Table 4.1 Timex regular expression examples 

 To tabular information, the system parses table in input text and comprehends 

underlying relations between value and metadata. 
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4.4 The Data Extraction Engine 

While the user interacts with IDEAL-X interface, the data extraction engine works 

transparently in the background. The engine has three major components: answer 

prediction, learning, and the learning model that the online learning process continuously 

updates (Figure 4.3).  

 The system combines statistical and machine learning based approaches with 

controlled vocabularies for effective data extraction. We present details of the algorithms 

for prediction and learning below.  A key design criteria is the O(1) complexity to ensure 

the overall efficiency of the system.  

 

Figure 4.3. Overview of system workflow 
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4.4.1 Answer Prediction 

Predicting the value of each data element involves the following steps: 1) Identifying 

target sentences that are likely to contain the answer; 2) Identifying candidate chunks in 

the sentences; 3) Filtering the chunks to generate candidate values; 4) Ranking candidate 

values to generate (raw) values; 5) Normalizing values; and 6) Aggregating values from 

multiple reports. The workflow is shown in Figure 4.3 (a).  

I)  Identifying target sentences  

Through online learning, the system accrues keywords from past answers (answer 

keywords) along with co-occurring words in the corresponding sentences (contextual 

words). For example, given answer keywords “diabetes” and “hypertension” in the 

sentence “The patient reports history of diabetes and hypertension”, contextual words 

are ”patient”, “report” and “history”. Such answer keywords and contextual words 

combined with customized vocabularies can be utilized to identify sentences that are 

likely to contain answers with the following methods.  

a) Similarity based search using the vector space model  

Given a collection of contextual words and their frequencies, the system computes the 

similarity against sentences in the document [74]. Sentences with high similarities are 

selected. For example, most sentences about “disease” contain "diagnosis" and "history".  

In particular, the algorithm builds space vectors and ranks candidate sentences with the 

following five steps: 
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 1) Accumulated contextual keywords are represented by a query q using space 

vector. The query vector consists of terms whose frequency f are above acceptance 

threshold α. wi is the weight of a individual term.：   

q = (w1, w2, w3, ……, wn) 

 2) Calculating weight of individual term for a query space vector takes the 

following steps: 

 Frequency f is defined as the count of term ci divided by numbers of accumulated 

instances n: 

     fi =  ci / n 

 For terms with frequency f above acceptance threshold α, basic weight bi is 

computed with the following function, where max(c) is the maximum count among 

individual terms. log curves and smoothes the number of count: 

    bi = log(ci) / log (max(c))  

 Employing ideas similar to term frequency-inverse document frequency (tf-idf), 

we promote terms that have high concurrence with the value to be extracted. The high 

concurrence score oi is calculated with the following formula: 

    oi = log ( ci / (gi / n) *  β) 

In the expression, gi is the total count of term i in all processed documents, gi / n 

represents the average appearance of term i. Since ci is the number of times term i co-

occurs with the answer, the term with the stronger correlation with the answer will 

receive a higher oi score, indicating its higher distinguishing power. For example, ci / (gi / 
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n) equals 1 means whenever the term i appear, the sentence that it belongs to always 

contains the value to be extracted. In this case, term i serves as a most reliable contextual 

word for identifying the target sentence. β is the parameter used for adjusting the scale of 

promotion. Finally, the term weight wi  is calculated with bi * oi. 

 3) Each sentence t in a document is treated as a independent bag of words, 

represented by the vector: 

dt = (w1, w2, w3, ……, wj,t) 

where wi is the weight of each term, or simply the number of occurrences.  

 4) The score of a sentence, St, is computed as follows.  

    St = (q ·dt) /log(|dt|) 

The expression q · dt  represents the dot product (X ·Y = ∑Xi Yi) of query vector q and 

sentence vector dt. This product is normalized by the length of sentence |dt| to dampen 

the effect of long sentences. 

 5) Sentences with score St above Max(St) * γ are selected as candidates for further 

processing. γ is a parameter in the range [0, 1] that determines the acceptance threshold 

based on Max(St), the maximum score among all the sentences. 

 The past contextual keywords and their frequency weights are represented and 

maintained through a learning model discussed later in “Learning” section.  

b) Answer keyword matching search 

The answer keywords, combined with relevant user customized vocabularies, are also 

used to identify target sentences with keyword matching. For example, to extract diseases, 
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if a sentence contains the disease name “myocardial infarction” defined in the vocabulary, 

the sentence is selected as a target.  

 In both approaches, sections to be searched or skipped are also considered in 

order to narrow the scope of searching.  

II) Identifying candidate chunks 

After target sentences are selected, the system identifies potential phrases in the sentences 

using two methods:  Hidden Markov model (HMM) [75] and keyword based search.  

a) Hidden Markov Model Based Chunking  

The HMM is prevalent in pattern recognition and sequence data analysis. It represents 

target words and contextual words in a sentence with different states, and marks values to 

be extracted based on probability distributions learned from previously collected values 

and their sentence. Once an HMM is trained, it can be used for evaluation, which 

estimates the probability score of a labeled sequence, or for decoding, which aims to 

optimize labeling for a sequence of input data (observations).  

 

Figure 4.4 A simple HMM decoding example  

 For information extraction, usually decoding is applied: tokens are treated as the 

input sequence of observations, and the algorithm tries to mark this sequence of tokens 

with a corresponding sequence of states (in other word labels). For example, to extract 
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age information, the following sentence (see Figure 4.4) could be labeled with state T 

(the state of target value) and state F (the state of irrelevant value).  

A Hidden Markov model has three major components: 

  A set S of state that represents different labels. 

  A probabilistic transition function a that represents, for each pair of states (i,j), 

the odds of transitions from i to j. 

  Emission probabilities b which represent the odd that a state n output a token o 

  Inspired by a novel adjustable HMM framework [76], we designed a topology for 

HMM, which emphasizes contextual information of close neighborhood. We present 

details of this HMM model as follows: 

 

 

Figure 4.5 Adaptive HMM structure 

This HMM graph (Figure 4.5) consists of the follow types of state: 

1) Target State: This state represents the token to be extracted. 
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2) Prefix States: These states represent tokens appear right before target value, window 

size of which is adjustable. 

3) Suffix States: These states represent tokens appear right after target value, window 

size of which is adjustable. 

4) Pre Background and Post Background States: These two states represent irrelevant 

contextual tokens that are not in the scope of the prefix or suffix window. Pre background 

state transits to the very first prefix state, and the last suffix state transits to the post 

background state. Both of these states transit to themselves when background tokens are 

consecutive. 

5) Adaptive Structure (Optional): During the learning phrase, the system learns the 

feature of values to be extracted and adjusts the structure of HMM correspondingly. 

When the system learns that the same sentence may have multiple values to be extracted, 

the inter state (purple state), which represents conjunctions in between values to be 

extracted, is added to the topology. Its corresponding transaction edges with the target 

state are also added. 

 With this adaptable structure, the HMM can operate with the simplest structure. 

Given a model, and its transition probabilities and emission probabilities, information 

extraction could be performed with regular HMM decoding algorithms. 

 In IDEAL-X, we implemented the regular Viterbi algorithm [77]. The time 

complexity of this algorithm is constraint by the length of input data sequence and the 

number of states in the HMM. However, regarding processed instances, the decoding 

time is a constant O(1). The HMM is thus amenable to the efficiency requirements of our 
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system. Each time Viterbi decoding algorithm processes a candidate sentence, which is 

treated as the input observation sequence, the target chunks that receive high confidence 

score are selected as candidate chunks for further processing. 

b) Keyword based Chunking  

The keyword based search finds candidate chunks with the longest match using keywords 

collected from past answers and the controlled vocabulary.   

III) Filtering chunks.  

The vector space model narrows the scope of search, and HMM utilizes contextual 

information to support information extraction. There are additional inherent properties of 

the tokens that we use for the final extraction, described below. These are implemented in 

the form of If-Then rules. Whether a rule is applied or not is determined by the learning 

process based on historical statistics (see next chapter for details).  

a) Part of speech (POS)  

This filters a phrase by its POS tag in the sentence. Simple example is the system may 

filter out all the phrases that are not noun when extracting disease names.  

b) String pattern 

This looks for chunks that match special string patterns, including special characters and 

capitalizations. For example, criterion may be applied to only approve token that contains 

character “@” when extract email address.  

c) Value domain 

This eliminates numerical or enumerated values that fall outside a specified range of 

values.  For example, to hear rate, candidate numbers bigger than 200 could be rejected. 
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d) Date Type 

This eliminates values that are not in the approved categories. For example, the system 

may only accept integer values for age.  

e) Disambiguation Contextual Words 

This aims to filter out ambiguous term which is irrelevant to the objective concept. For 

example: to extract disease information in the sentence “the patient takes cancer screen”, 

the term “cancer” should not be extracted as disease of the patient since “cancer screen” 

is a medical procedure, not a disease. In this case, “screen” would be used as landmark to 

filter out the term “cancer”. The learning process discovers this sort of contextual words, 

and uses them for disambiguation. 

 In addition, negation and uncertainty detection are major challenges of clinical 

information extraction. In IDEAL-X, we use predefined rules to detect negation and 

uncertain contextual information to rule out negated or uncertain terms.  

f) Negation 

This removes phrases governed by words that reverses the meaning of the answer. For 

example, if a candidate chunk “cancer” is extracted from a sentence “the patient has no 

history of cancer”, “cancer” would not be included.  

g) Certainty 

Similar to negation filter, this detects and filters uncertain event or situation. For example, 

a candidate chunk “radiation therapy” for treatment from a sentence “the patient is 

planned to take radiation therapy” should not be included.  
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 Clearly, when applicable, these rules improve the precision of the extraction, but 

they do not improve recall. The If-Then rules take time O(1) to execute.  

IV) Ranking Candidate Values  

The combined scores of the selected sentences and chunks are ranked. For a single-

valued data element (e.g., heart beat), the candidate value with the highest confidence 

score is selected. For a multi-valued data element (e.g., medication), values with 

confidence scores above a threshold are selected. Based on this, each candidate value is 

either accepted or rejected. 

V) Normalizing Values  

This step normalizes extracted values through transformation, generalization and 

induction given by the controlled vocabulary. For example, “DM” is transformed to 

“Diabetes Mellitus”. “Pindolol” is generalized to its hypernym “beta blocker”. The 

appearance of medication term “Metformin” (a drug for treating type 2 diabetes) in the 

text can infer the disease “Diabetes Mellitus”. (See Chapter 5 for detail). 

VI) Aggregating Results 

Data extracted from multiple reports of a patient will be aggregated into a single table. 

The aggregation process may normalize values and remove duplicates. For example, 

“lisinopril” and “captopril” are extracted from discharge summary and inpatient report 

respectively, and they can be normalized as “ACE inhibitor”. If the same data element is 

extracted from multiple reports, deduplication is performed. The final output is a table 

that can be easily exported to other applications such as Excel or a database.  
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4.4.2 Learning 

As described in Chapter 3, system predicted values automatically populate the output 

table, and the user advances to the next report with or without revision to these values. In 

both cases, the internal learning and prediction models of IDEAL-X are updated. This is 

the essence of online learning.   

 For each instance, IDEAL-X collects and analyzes the following features: 1) 

Position: location of the answer in the text hierarchy; 2) Landmark: co-occurring 

contextual keywords in a sentence; 3) POS: parts of speech tag; 4) Value: the tokens of 

the answer; 5) String patterns: literal features such as capitalization, initial and special 

punctuation.  

Updating involves updating the three statistical models described above: the 

space-vector model, HMM, and the rule induction model.  

a) Updating Space Vector Model 

This model uses “Landmark” features of positive instances. After removing stop words, 

such as “a”, “and”, “the”, and etc, based on a predefined list, the system updates count of 

each co-occurring contextual words, which will be used for calculating weights of the 

query space vector when perform prediction [74].  

b) Updating HMM 

For positive training instances, HMM lists all words in a sentence as a sequence, in which 

an extracted value is marked as target value state and other words are recognized as 
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irrelevant contextual states. For example, given neighborhood window 2, the follow 

sentence is first marked with different states labels.  

 

Figure 4.6 HMM training example 

 Based on this labeled sequence, the count of transition between states, and 

observation (in this case, token) from a state are updated, with which the state transition 

probabilities and emission probabilities can be recalculated [75]: 

c) Updating rule induction model 

Most rules are applied to data element, which affects all values to be extracted. These 

filtering rules are induced based on the coverage percentage [78]. Features such as POS, 

data types, string patterns of positive instances are analyzed and their respective coverage 

percentages are modified. Once the support level of a rule reaches a predefined threshold, 

the rule is triggered for filtering. For example: if the system detects that more than 95% 

of extracted values are noun, the rule “only accept noun” could be triggered. 

 Rules for disambiguation are applied to individual values of a data element. For 

example, to data element “disease”, the disambiguation term “scan” is only applied to the 

value “cancer”. To learn these disambiguation terms, the system analyze both positive 

instances and negative instances: the word has only appeared in rejected instances are 

captured as disambiguation term, and related rejection rule is created for the 

corresponding term of given data element. 
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V) Summary   

In interactive mode, the above four steps repeat for each report, where the learning 

models are continuously updated and improved.  

 For example, to extract age information from a sentence “The patient is a 25 years 

old gentleman”, the system learns features from a positive instance value “25”. 

Contextual words “patient”, “years”, “old” and “gentleman” are captured as landmark 

and their frequencies are updated. The sequence of words in the sentence is also ordered 

to update the HMM model. As the value “25” is recognized as an integer, the coverage of 

rule for filtering non-integer candidates will increase correspondingly. These updated 

models will be applied to prediction for the remaining unprocessed reports. 
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Chapter 5 

Controlled Vocabulary Supported 

Clinical Information Extraction 

 

As a complement to interactive learning, the system allows direct inputs of knowledge – 

the so called controlled vocabulary, to help with information extraction and 

standardization. In this chapter, we describe details of the controlled vocabulary in 

IDEAL-X, its implementation, as well as two approaches for customizing a controlled 

vocabulary. 

5.1 Construction of Controlled Vocabularies 

The current implementation is limited to controlled vocabularies in clinical domains, and 

can be constructed by physicians and clinical researchers without expertise in natural 
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language processing or programming. The customized knowledge may be stored in XML 

files or databases.   

 

Figure 5.1: Examples of terminology  

 

Figure 5.2 Examples of structural constraints   
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 The knowledge in the controlled vocabulary can be categorized into two types: 1) 

Terminology: This includes terms and corresponding standardization mapping.  Figure 

5.1 shows an example.  Variances such as “DM” and “Insulin” indicate ways in which 

diabetes may appear in reports.  The name “Diabetes Mellitus” provides the standard 

terminology for the variations. 2) Structural Constraints:  This helps to indicate sections 

to include or ignore in the extraction process. Constraints may also contain 

disambiguation terms, which could further improve the precision of extraction. Figure 5.2 

is a simple example that “superficial” is a negative indicator for extracting deep vein 

“Thrombosis”.  

 Note that both forms of knowledge in the controlled vocabulary may be learned 

through online learning.  But if such knowledge can be obtained, making it directly 

available to IDEAL-X can certainly help to facilitate the learning process. 

5.2 Supporting Information Extraction 

Controlled vocabularies help to improve the answer prediction process in the following 

ways.  

  In sentence searching, terminology can be used for identifying target sentences 

through keyword matching, and section information of structural constraints can be used 

to narrow the scope of searching.  

 In phrase chunking, terminology can be applied to identify candidate chunks 

based on the longest match. This complements machine learning based phrase chunking.  
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 In chunk filtering, disambiguation terms provides contextual information to rule 

out unqualified candidate chunks. 

 Terminology, when explicitly specified by domain experts, is reliable and hence 

provides important assistance in information extraction. Another pivotal function of 

controlled vocabulary is standardization, discussed next.  

5.3 Supporting Standardization 

After values are extracted, the system consults the mapping table to standardize the 

output in three ways: normalization, generalization or induction. Figure 5.3 shows 

examples for each standardization scenario. For example, dm, which abbreviates  

diabetes, can be normalized to diabetes; Pindolol, a beta-blocker, generalizes to its 

hypernym; Nifedipine is a medication taken by hypertension patient, therefore, the 

system infers hypertension even if “hypertension” isn’t explicitly mentioned in the text.  

 

 

Figure 5.3 Examples of standardization  

 In general, rule-based standardization provides a generic and convenient solution 

for importing domain knowledge to normalize extracted results.  
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5.4 Generating Vocabulary 

Controlled vocabulary is important to both information extraction and standardization. 

However, building a vocabulary manually could be cumbersome, especially when the 

size of terminology is large or the structure of reports is not available. To ease the process 

of vocabulary building, we implemented the following two convenient approaches: 

5.4.1 Adaptive Vocabulary 

The system incrementally refines the controlled vocabulary during the interactive 

extraction process.  The user can start with a seed vocabulary, that is, terminology 

obtained from existing domain knowledge resources. Typically, a standard ontology such 

as the SNOMED Clinical Terms [79], or the NCI Thesaurus [80] is a useful starting point 

for creating the seed vocabulary.  

 However, standard vocabulary may be incomplete or miss certain terminologies 

specific to the local reporting environments. When a mismatch occurs between the 

vocabulary and an extracted value, IDEAL-X refines the vocabulary adaptively by adding 

the extracted terms and removing unneeded terms. In this way, the vocabulary converges 

to a lexicon that is consistent with the extraction task. In addition, the vocabulary may 

also be exported for reproducibility, other extraction projects, and ontology construction. 

5.4.2 Vocabulary Generating Tool 

In a related project (Google Summer of Code 2014) [81], we implemented a tool to 

support vocabulary building based on clinical terminology resources. Clinical ontologies 
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and standards such as ICD-10 code and NCI Thesaurus are reliable resources of clinical 

lexicon. However, there is a lack of tools to explore and integrate resources for various 

data formats. We developed a tool, MedVocGenerator, to ease browsing and searching 

for medical standards and vocabularies.  The tool also enables reuse of existing resources 

to customize a domain specific terminology. 

 

Figure 5.4 Screenshot of MedVocGenerator  

 The GUI of MedVocGenerator is intuitive and user-friendly. A corpus may be 

loaded from the menu-bar. The content of the corpus is display as a tree on the left panel. 

The user may search for terms with the support of auto-complete and spell-check 

function. Search results are displayed on the center panel, and the right panel shows the 

vocabulary to be outputted in a tree view.  

 This interface also supports convenient drag-and-drop operation. The user can 

drag terms from loaded corpus or text in search results, and drop them into the output 
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vocabulary tree. New nodes may be defined and add new nodes to the output tree. The 

resulting vocabulary can be outputted as XML/JSON or other formats to support other 

applications. 

5.4.3 Discussion 

Both adaptive vocabulary feature of IDEAL-X and vocabulary generating tool 

MedVocGenerator aim to ease the process of vocabulary construction, and are 

complementary.  Adaptive vocabulary polishes an existing vocabulary automatically and 

transparently within the normal information extraction workflow.   In contrast, the 

MedVocGenerator tool assists the user in the vocabulary construction as a precursor to 

the information extraction process.  
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Chapter 6 

Clinical Information Extraction Use 

Cases 

 

We demonstrate the clinical effectiveness of the system with three use cases. Each case 

focuses on one or more features and usages of the system. In the first case, the system 

processes and integrates heterogeneous clinical reports with the support of controlled 

vocabulary. The second case illustrates the system importing and adapting existing 

terminology such as ontology. In the third case, we study the applicability and challenge 

of using IDEAL-X to identify low prevalence diseases. The following evaluation metrics 

are used. 

 Precision: This estimates the correctness of extraction. 

Precision = TP / (TP + FP) 
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 Recall: This estimates the completeness. 

Recall = TP / (TP + FN) 

 F-1: This is the weighted average of precision and recall.  

F1 = 2 * (Precision * Recall) / (Precision + Recall) 

For clinical effectiveness focused study, we use sensitivity and specificity, and their 

confidence interval for comparison. 

   Sensitivity = TP / (TP + FN) 

   Specificity = TN / (FP + TN) 

 The use cases provided motivation problems and helped to evolve and improve 

the design of IDEAL-X over the course of our research. The experimental results not 

only demonstrate the clinical effectiveness of our approach, they also provide firsthand 

experience with real world clinical data and in-depth understandings of practical 

challenges.  

6.1 Use Case 1: Large Scale Cohort Identification 

for Cardiology Research 

6.1.1 Background and Motivation 

Emory University Cardiovascular Biobank aims to address a variety of research questions 

in cardiovascular diseases. It is a registry of patients with suspected or confirmed 

coronary artery disease undergoing cardiac catheterization. The final database will store 

approximately 12,000 patients’ records, and will contain information from eight sources 
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including major Emory Healthcare units. Apart from the data collected with standardized 

questionnaire, clinical data is collected from up to eight types of reports: Cardiac 

Catheterization Procedure Report, Echocardiogram Report, History and Physical Report, 

Discharge Summary, Outpatient Clinic Note, Outpatient Clinic Letter, Coronary 

Angiogram Report, and Inpatient Report as well as Discharge Medication lists. Data 

elements extracted from reports and structured records are integrated to provide 

comprehensive information for patient identification. Manual extraction of the data is 

infeasible due to the large number of reports.  

6.1.2 Experiment Setup 

I) Datasets  

We use three datasets from 100 patients that are randomly sampled from a collection of 

about 5,000 patients in the Emory Biobank database. Dataset 1 is a set of semi-structured 

reports and contains 100 cardiac catheterization procedure reports. Dataset 2 is a set of 

template-based narration and contains 100 coronary angiographic reports. Dataset 3 is a 

set of complex narration and contains 315 reports, including history and physical report, 

discharge summary, outpatient clinic notes, outpatient clinic letter, and inpatient 

discharge medication report.  

II) Ground truth 

The test data sets are independently hand-annotated by domain expert annotators from 

Emory Clinical Cardiovascular Research Institute. An arbitrator – an independent 

cardiovascular disease researcher reconciles incompatible outputs of the system and the 

manual annotations to produce the final ground truth.  
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III) Evaluation Metrics  

For validation, precision, recall, and F1 scores are used to estimate the effectiveness of 

extraction by comparing the system predicted results (before human revision) and the 

ground truth.  

IV) Experiment Settings 

We aim to evaluate the effectiveness of the system with respect to using online learning 

and controlled vocabularies, and to understand their applicability to different report forms. 

By analyzing the report styles and vocabularies, we discover that online learning is more 

suited for semi-structured or template based narration reports, and controlled vocabulary 

guided data extraction would be more effective on complex narration with a finite 

vocabulary. Thus, we design three experiments:  

 1) Online learning based data extraction, where controlled vocabularies are not 

provided, based on Dataset 1 (semi-structured) and Dataset 2 (template based narration);  

 2) Controlled vocabularies based data extraction, where online learning is not 

used, based on Dataset 3 (complex narration);  

 3) Controlled vocabularies guided data extraction combined with online learning, 

based on Dataset 3.  

6.1.3 Performance Evaluation 

Experiment 1: Online Machine Learning Based Data Extraction 

This experiment is based on Dataset 1 and 2. The system starts in interactive mode with 

an empty decision model. The defined data elements are summarized in Table 1 and 
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Table 2 in Appendix. The user processes one report at a time, and each system predicted 

value (including empty values for the first few reports) before user revision is recorded 

for calculating precision and recall.   

 Results are summarized in Table 6.1 and Table 6.2 for the two datasets, 

respectively. The results are divided into two stages to demonstrate how quickly the 

system learns: reports 1 to 20, and reports 21 to 100. Within the first 20 reports, IDEAL-

X achieves precisions higher than 96% for both datasets. Over the 80 reports in the 

second stage, we observe notable improvements on recall (from 90% and 74% for the 

first 20 reports to over 97% for the last 80 reports).  

Dataset 

Numbers of 

Data 

Elements 

Number of 

Values Precision Recall F1 

Report 1-20 19 247 99.5% 90.2% 94.6% 

Report 21-100 19 1025 99.9% 98.0% 98.9% 

Overall 19 1272 99.8% 96.5% 98.1% 

Table 6.1. Results of data extraction from semi-structured reports (Dataset 1)  

Table 6.2 Results of data extraction from template based narration reports (Dataset 2)  

Dataset 

Number of 

Data 

Elements 

Number of 

Values Precision Recall F1 

Report 1-20 16 138 96.2% 74.6% 84.0% 

Report 21-100 16 590 97.4% 97.6% 97.5% 

Overall 16 728 97.2% 93.2% 95.2% 
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Experiment 2: Controlled Vocabularies Guided Data Extraction 

In this experiment, online learning is disabled and data extraction is performed in batch 

using controlled vocabulary. Diseases and medications are extracted from Dataset 3 

(values to be extracted are shown in Table 3 in Appendix). Customized controlled 

vocabularies, including terminology and structural properties, have been created by 

physicians through analyzing another development report dataset of 100 patients, disjoint 

from Dataset 3.  

 The results in Table 6.3 show that controlled vocabularies are highly effective for 

data extraction over complex narratives. Domain-specific data, for example cardiology 

related diseases and medications, have limited numbers of possible values (or domain 

values), and a carefully customized controlled vocabulary can achieve high extraction 

accuracy.  

 

Type of 

Data 

Elements 

Number of 

Data 

Elements 

Number of 

Ground Truth 

Values 

Precision Recall F1 

Diseases 15 418 94.5% 99.0% 96.7% 

Medications 10 437 98.6% 99.7% 99.2% 

All 25 855 96.5% 99.4% 97.9% 

 

Table 6.3 Results of controlled vocabularies guided data extraction from complex 

narration (Dataset 3) 
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Experiment 3: Controlled Vocabularies Guided Data Extraction Combined with Online 

Machine Learning 

In this experiment, we perform two tests. Test 1 generates the baseline for comparison, 

and Test 2 demonstrates the effectiveness of combining online machine learning and 

controlled vocabularies.  Dataset 3 is used to extract all diseases and medications.  

 For Test 1, terminology is used and online machine learning is disabled, so the 

test is guided by controlled vocabulary without any structural properties. We notice that 

comprehensive terminology contributes directly to high recall rate, which means that the 

system seldom misses values to be extracted. However, if structural properties are not 

included, compared to the result in Experiment 2, the precision is much lower. This 

highlights the value of positive and negative contexts in an extraction task.  

 For Test 2, both terminology and online machine learning are used. Online 

machine learning will support learning structural properties. To show how quickly the 

system learns, only reports of the first 10 patients are processed with interactive online 

learning, and all following reports are processed in batch. Results in Table 6.4 show an 

overall precision of 94.97%, which demonstrates that online learning could quickly learn 

structural properties. 

Test  Controlled Vocabulary Online learning Precision Recall F1 

1 Terminology Only N/A 80.9% 99.4% 89.2% 

2 Terminology Only Applied to first 10 patients 94.9% 99.4% 97.1% 

 

Table 6.4 Results of controlled vocabularies guided data extraction combined with online 

learning 



61 
 

 
 

6.1.4 Discussion 

Online learning is highly effective for reports with relatively clear structural patterns, 

such as semi-structured or template based narration. For complex narration constrained 

by finite data domain, controlled vocabularies are highly effective for supporting 

extraction. In addition, structural properties such as section constraints can greatly assist 

in improving the accuracy of extraction.  

 In most clinical information such as procedure, diagnosis and medicine, the 

relevant terminology is a finite set. For example, the possible values for specimen 

receiving status consists of only “Fresh”, “In formalin”, etc. For these cases, preparing a 

comprehensive terminology is feasible. A comprehensive enumeration of structural 

properties is more challenging, as it requires an understanding of the report structure and 

contextual pattern that may be specific to the local reporting environment. However, 

online learning is capable of learning these structural properties. The combination is thus 

complementary and effective.  

6.2 Use Case 2: Support Patient Search on 

Pathology Reports 

6.2.1 Background and Motivation 

Synoptic reporting [82-84] has become a powerful tool for providing summarized 

findings through predefined data element templates such as CAP Cancer Protocols [4]. 

Meanwhile, standard groups such as IHE are proposing structured reporting standards 
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such as Anatomic Pathology Structured Reports [3] in HL7. While the community is 

tending towards structured reporting, a vast amount of pathology reports exists in legacy 

systems in unstructured format, and the standardization effort only captures major data 

elements, leaving useful research information in free text that is difficult to process and 

search.    

 We explore the adaptive vocabulary feature of IDEAL-X, which employs an 

initial controlled vocabulary that is continuously refined through online learning during 

the extraction process. We also provide a built-in query interface to support searching 

patients based on extracted data elements. 

6.2.1 Experiment Setup 

To test the performance of information extraction, we conduct two experiments.  

Experiment 1 examines the effectiveness of online learning, and experiment 2 studies the 

importance of adaptive vocabulary. The driving medical research is brain tumor study, in 

which pathology reports need to be queried based on demographic data, disease, 

procedure, etc, in order to locate patients with certain traits.  The Human Disease 

Ontology, Cell Cycle Ontology  and NCI Treasure were used as seed vocabulary.  

I) Dataset 

We randomly selected and annotated 50 anatomic pathology reports manually as the test 

dataset for this study. These pathology reports were from patients that had been 

diagnosed with a grade II or grade III infiltrating glioma and had their tumors resected at 

Emory University Hospitals. Another 50 reports, disjoint from the test set, were used for 

development.  
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II) Experiment settings 

All experiments began with an empty model, without prior training or predefined 

constraints. We performed tests on extracting personal information such as age and 

gender, and most frequently queried medical information such as diagnosis, genetic 

marker and therapy/procedure (See table 6.5 for details). To support extraction, we 

employ a seed vocabulary consisting of diagnosis, genetic marker (both gene and protein) 

and procedure lexicon, which are loaded from the Human Disease Ontology [85], the 

Cell Cycle Ontology [86] and the NCI Thesaurus [80] Ontology respectively.  

 

Attributes Seed Vocabulary Sources Value Amount 

 Age & Gender None  100 

Diagnosis Human Disease Ontology 147 

Gene & Protein Cell Cycle Ontology  146 

Therapy & Procedure NCI Treasure 324 

Table 6.5. Test cases of data extraction 

III) Evaluation Metrics 

We compared the system’s output with the manually annotated ground truth with respect 

to precision, recall and F-1 measure. 

6.2.3 Performance Evaluation 

Results of experiment 1 are shown in Table 6.6. Age and gender typically appear in 

report headers with limited contextual variation. For these, the system achieved very high 

precision and recall. Values related to diagnosis, genetic marker and therapy appear in 
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text with larger structural and narrative variation. With the support of the seed vocabulary, 

the system achieved F1 scores of 88%, 93% and 97% respectively. To study the 

effectiveness of learning, for each test case, we divided the 50 reports into two groups: 

the first 20 reports (as they appear in the directory), and the last 30 reports. The 

improvements between these two groups were significant, reflecting a high-rate of 

learning. For the four classes of attributes, F1 scores between the first and second groups 

increased from 94.7%, 82.1%, 90.0% and 95.3% to 100%, 91.2%, 95.3% and 99.5%, 

respectively.  

 

Attributes Subsets Precision Recall F-1 

 Age & Gender 

First 20 100% 90.0% 94.7% 

Last 30 100% 100% 100% 

Overall 50 100% 96.0% 97.9% 

Diagnosis 

First 20 90.6% 75.0% 82.1% 

Last 30 94.3% 88.2% 91.2% 

Overall 50 93.1% 83.5% 88.0% 

Genetic Marker 

First 20 90.0% 90.0% 90.0% 

Last 30 94.8% 95.8% 95.3% 

Overall 50 93.1% 93.8% 93.5% 

Therapy and 

Procedure 

First 20 97.4% 93.3% 95.3% 

Last 30 100.0% 99.0% 99.5% 

Overall 50 99.0% 96.9% 97.9% 

 

Table 6.6. Test result of experiment 1: study of online learning 
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Attributes Adaptive Vocabulary Precision Recall F-1 

Diagnosis 
Off 90.0% 36.9% 52.4% 

On 93.1% 83.5% 88.0% 

Genetic Marker 
Off 84.1% 86.9% 85.5% 

On 93.1% 93.8% 93.5% 

Therapy and 

Procedure 

Off 89.3% 66.9% 76.5% 

On 99.0% 96.9% 97.9% 

 

Table 6.7. Test result of experiment 2: study of adaptive vocabulary  

 Results of experiment 2 show that the ability to refine the vocabulary significantly 

improves the extraction accuracy. For diagnosis, genetic marker, therapy and procedure, 

Table 6.7 shows the difference between using the seed vocabulary with and without 

refinement. When the system used the seed vocabulary directly without updating, 

performance of the extraction relies on how closely the vocabulary content aligns with 

the extraction task. For genetic marker, a comparatively small difference in the F1 score 

was observed. For diagnosis and procedure, on the other hand, the downloaded ontology 

subsets contain considerable irrelevant information for pathology. This impacted the 

precision by 3.1% for diagnosis, and 10.3% for procedure. Moreover, many terms were 

missing, and it negatively affected the recall by 46% for diagnosis and 30% for procedure. 

These results show the sometimes large discrepancy between standard ontology and the 

needs of extraction projects, as well as the benefits of updating vocabulary during 

extraction.   
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6.2.4 Discussion 

We chose representative attributes for testing the effectiveness of online machine 

learning and the utility of refining the seed vocabulary. The system showed high accuracy 

and high learning efficiency. In the most ideal scenario, the user is able to enumerate 

comprehensive terminology to provide a well-defined dictionary. However, when the 

terminology set is large, for example genetic marker, building a complete controlled 

vocabulary a priori may be unattainable. The adaptive vocabulary feature allows the user 

to take advantage of existing dictionary resources, and to use feedback during the 

extraction process to closely align the vocabulary with the needs of the extraction task.  

 As a next step, we will consider a broader set of attributes and enrich the data 

types the system can support. Values that the system can manage currently are limited to 

numerical value and nominal value. Extracting temporal information, for example, will 

improve the utility of the system. In pathology research, medical events such as 

procedure are time sensitive. Augmenting  the output with timelines would contextualize 

and help to connect the extracted values in important ways.  

 We will also study the possibility of use of IDEAL-X to structure anatomic 

pathology reports and synoptic pathology reports. Most existing medical report systems 

still allow for free-format text and uncontrolled vocabulary. During extraction with 

IDEAL-X, it may be possible to simultaneously translate the input text according to 

structured pathology report standards.  The resulting text is still easy to read, but will 

additionally facilitate subsequent analysis and algorithmic processing.   
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6.3 Use Case 3: Information Extraction Supported 

Disease Surveillance 

6.3.1 Background and Motivation 

Venous thromboembolism (VTE), including deep vein thrombosis (DVT) and pulmonary 

embolism (PE), is associated with significant morbidity and mortality [87]. VTE can be 

diagnosed by several radiolographic studies, including lower or upper extremity 

ultrasonography and computerized tomography (CT) of the chest. Federally mandated 

reporting of VTE defined by the Agency for Healthcare Research and Quality Patient 

Safety Indicator 12 (AHRQ PSI-12) [88] is based on administrative and billing data, 

whose accuracy for detecting VTE has yet to be demonstrated. We use IDEAL-X to 

evaluate its accuracy for identifying VTE diagnosis directly from radiology reports in 

electronic medical records. 

6.3.2 Experiment Setup 

Full text of radiology reports, which are complex narration style, and clinical data were 

extracted from the electronic medical records (Cerner Corp, Kansas City, MO) of 13,248 

patients admitted to Emory University Orthopedic and Spine Hospital from 2009-2014. 

Patient encounters were defined as a hospital admission where both surgery (of the spine, 

hip, or knee) and a radiology diagnostic study for VTE were performed. A physician 

manually reviewed each radiology report for diagnosis of a DVT or PE. We use IDEAL-

X to analyze the same radiology report under two separate modes: i) controlled 

vocabulary mode, where the user specifies upfront terminology and contextual 
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information (such as relevant and irrelevant report sections) to be extracted, and ii) online 

machine learning mode, where all terminology and contextual information is learned 

incrementally. Performance was analyzed for total radiology reports, and patient 

encounters (multiple reports per encounter possible). 

6.3.3 Performance Evaluation 

Among 2083 radiology reports in the testing dataset, IDEAL-X in controlled vocabulary 

mode correctly identified 176/181 VTE events, achieving a sensitivity of 97.2% (95% 

Confidence Interval [CI] 93.7-99.1%) and specificity of 99.3% (95% CI 98.9-99.7%) 

when compared to manual review (Table 6.8). This performance was superior to online 

machine learning mode, which achieved an overall sensitivity of 92% (95% CI 88.3%-

96.1) and 99% specificity (95% CI 98.5%-99.4%), and required approximately 50% of 

reports to be processed before achieving >95% sensitivity and specificity (Figure 6.1).  

Event Radiology Report Types 
Total 

Reports  

Positive 

Reports 

By 

Manual 

Review 

Positive 

Reports 

By 

IDEAL-X 

Measure 
IDEAL-X 

Performance (95% CI)  

 DVT 
Ultrasonography of  

Upper or Lower Extremity 
1153 112 109 

Sensitivity 97.3% (92.4-99.4%) 

Specificity 99.4% (98.7-99.8%) 

 PE 
 CT and  

MRI of Chest 

930 69 67 

Sensitivity 97.1% (89.9-99.6%) 

Specificity 99.3% (98.5-99.7%) 

Either 

DVT or PE 
All four types above 2083 181 176 

Sensitivity 97.2% (93.7-99.1%) 

Specificity 99.3% (98.9-99.7%) 

 

Table 6.8. Performance of IDEAL-X system in controlled vocabulary mode, analyzing 

total radiology reports 
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Figure 6.1 Sensitivity and specificity changes over processed records 

  

 Among 422 surgical encounters with diagnostic radiographic studies for VTE, 

IDEAL-X in controlled vocabulary mode correctly identified 41/42 VTE events, 

achieving a sensitivity of 97.6%  (95% CI 87.4-99.6%) and specificity of 99.8% (95% CI 

98.7-100.0%) (Table 6.9).  The performance surpasses that of AHRQ-PSI 12[88], which 

has sensitivity of 92.9% (95% CI 80.5-98.4%) and specificity of 92.9% (95% CI 89.8-

95.3%), though only the difference in specificity was statistically significant (p<0.01).   
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Event 
Total 

Patients 

Events 

by 

Manual 

Review 

Events 

by 

IDEAL-

X 

Events 

by 

AHRQ-

PSI 12 

Measure 
IDEAL-X  

(95% CI) 

AHRQ-PSI 12  

(95% CI) 

P 

Value 

DVT 422 17 16 13 

Sensitivity 
94.1%  

(71.2-99.0%) 

76.5%  

(50.1-93.0%) 
0.38 

Specificity 
100.0%  

(99.1-100.0%) 

96.1%  

(93.7-97.7%) 
<0.01 

PE 422 25 25 25 

Sensitivity 
100.0%  

(86.2-100.0%) 

100.0%  

(86.16-100.0%) 
1.00 

Specificity 
99.8%  

(98.6-100.0%) 

95.7%  

(93.-97.5%) 
<0.01 

Either  

DVT or PE 
422 42 41 39 

Sensitivity 
97.6%   

(87.4-99.6%) 

92.9%  

(80.5-98.4%) 
0.63 

Specificity 
99.8%  

(98.7-100.0%) 

92.9%  

(89.8-95.3%) 
<0.01 

 

Table 6.9. Performance of IDEAL-X system in controlled vocabulary mode, compared to 

Agency for Healthcare Research and Quality Patient Safety Indicator 12, analyzed by 

patient surgical encounter  

6.3.4 Discussion 

IDEAL-X is capable of correctly identifying VTE from the free text of radiology reports 

with very high sensitivity and specificity, surpassing the performance of identification 

based on AHRQ PSI-12. Clinical quality metrics sourced from clinical records may have 

increased validity compared to those from administrative data sources.  

 Customized controlled vocabulary simplifies the deployment process, and is 

better suited for instances with low positive incidences, including VTE. See Figure 6.1, 

the system’s sensitivity takes more than 400 records to reach 90%. The reason is because 
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when the system constructs its model with online learning mode, it needs enough positive 

instances to collect features of value to be extracted. When prevalence of a disease is low, 

it will take more records to accumulate enough positive instances. However, with 

controlled vocabulary mode, knowledge to be learned is injected by user directly, which 

alleviated the learning process directly.   

 IDEAL-X’s convenient workflow requires no linguistic expertise from the user, 

and can be easily adapted to different clinical applications to improve detection and 

surveillance of medical conditions. 

6.4 Summary 

The three use cases cover major clinical reports and various narrative styles. As 

information extraction for simple narration text (semi-structured and template base ones) 

is straightforward, our discussion here focuses on extraction from complex narration. In 

general, whether to use interactive annotation or controlled vocabulary depends on 

several factors: data type, domain of attribute and prevalence of instance. 

 For numerical data such as age and heart rate, a lexicon is not available. 

Extraction primarily relies on contextual information, which could be collected during 

interactive annotation. For nominal data, especially clinical terms which self-express 

entity they belong to (For example: term “diabetes” refers to a disease, and term “biopsy” 

refer to a surgical procedure), a controlled vocabulary will be very useful.  

 Another factor in whether controlled vocabulary is applicable is the domain of 

attribute. Enumerating terminology manually is simple when the domain is small, for 
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example: race and gender. When a domain is large but still finite, referring to existing 

knowledge base can ease the effort of vocabulary building. For example, to extract 

genetic marker, one can start from Cell Cycle Ontology. To nominal data that has infinite 

domain, such as hospital names, extraction has to be conducted based on contextual 

information without the support of terminology.  This represents the most challenging 

extraction scenario. And finally, when the prevalence of training instances is low, 

inputting knowledge directly in the form of controlled vocabulary might be more efficient.   
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Chapter 7 

Online Learning Based Clinical 

Information Classification 

 

Clinical Decision Support Systems (CDSS) assists healthcare providers in clinical 

decision making. Most clinical decision support systems employ batching machine 

learning that do not adapt to changing data environment easily.  In this chapter, we study 

the challenges in clinical classification and extend the online learning functionality of 

IDEAL-X with integrated classification solutions.  

7.1 Motivations and Goals 

The impetus for the work comes from providing early stage warning for venous 

thromboembolism (VTE). Figure 7.1 shows the typical VTE diagnosis scenario of 
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postoperative VTE: First, a patient is admitted to a hospital and undergoes surgery. A 

blood clot may form in a vein after surgery depending on risk factors like to body habitus, 

risk of surgery, and other factors. If the blood clot significantly disrupts bloodflow, the 

patient then develops symptoms. Based on these symptoms, the patient will be 

recommended for a radiographic test, which may confirm or reject the diagnosis of VTE.  

 

 

Figure 7.1 VTE development and detection scenario 

 In the US, there are an estimated 350,000-900,000 VTEs per year, resulting in 

approximately 100,000 deaths per year [87]. To reduce this disease burden among 

hospitalized patient, patients who are high risk for VTE could be identified either upon 

hospital admission or before surgery by CDSS.  A CDSS could then prompt clinicians to 

consider additional measures to prevent the development of VTE.   

 To a successful CDSS, according to the systematic review [14] of former 

researches, the following features are critical:  
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 1) The CDSS should operate automatically as an integrated procedure in the 

regular clinician workflow. 

 2) The system has to support decision making when patient is hospitalized.   

 3) The system should be able to recommend clinical care, instead of simple 

assessment.  

 Following these guidelines, we use IDEAL-X to implement a VTE CDSS 

prototype. It integrates with the current VTE diagnosis workflow to provide an early 

stage warning for a hospitalized patient. The VTE CDSS serves as a virtual symptom, 

supplementing common reasons. For prevention, patients would be examined by the 

CDSS immediately after surgery, and ones with high risk could be recommended for 

additional medical tests. In this way, the CDSS enhances the clinical workflow without 

altering its practice.  

7.2 Challenges 

The following are important challenges to the implementation of a CDSS in a clinical 

environment. 

I) Imbalanced (skewed) data  

Most diseases and symptoms have low prevalence. To this type of dataset, positive 

instances typically represent a very small portion of the overall data set. This presents a 

challenge to most classification techniques.  The situation may be somewhat simplified 

when the positive data points are close together (see the left diagram of figure 7.2).  But 
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in general, distribution of the positive data points does not deviate from the rest of the 

data (the right diagram of figure 7.2), and it makes classification difficult [89, 90].  

 

       Simple Case                                                           Complicated Case  

Figure 7.2 Conditions of skewed data 

 Techniques for classifying imbalanced data include the following: over-sample 

minority classes, under-sample majority classes, and modifying cost or prediction 

threshold of different classes for given algorithm [91].  

II) Heterogeneous data format 

Data warehouse and database of a clinical system store EMR in different formats and 

with varying degrees of structure (as we have seen previously in Chapter 6).  Besides 

extraction, some data transformation may be necessary. For example, to computer 

algorithm, time span, such as length of hospitalization, will be more meaningful than 

admission date and discharge date themselves. Therefore, to many classification tasks, 

data transformation is an indispensable preprocess procedure. In addition, external 

knowledge could provide important domain specific information to improve data quality. 

For example, procedure names may be mapped to degrees of risk.   
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III) Algorithm design 

Imbalanced data challenges traditional machine learning algorithm,.  In the extreme case, 

a dataset dominated by negative instances would lead many machine learning algorithms 

to classify all instances as negative. As we will show, several algorithms can be adapted 

for online learning.   

7.3 System Architecture 

The system inputs information from heterogeneous data sources to generate classification 

result in real time. It consists of three modules, integrating, transformation and 

classification, as shown in Figure 7.3.  

I) Integration Module  

The module integrates information from various sources. Based on unique ID, such as 

MRN and SSN, information extracted from free text could be merged with structured 

values pulled from database or data warehouse to form a single structured view.  

II) Transformation Module 

This module provides various converters for data transformation, which allows the user 

to normalize the original data to formats that are easy to process. User can also use 

external knowledge to map raw data to target domain, for example, from the body mass 

index to risk factors of a given disease. 

III) Classification Module  
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This module analyzes transformed data with online learning based classification 

algorithms, and predicts class labels. A confidence score is also indicated with each label. 

The user may select a classification algorithm from the algorithm set provided below. 

 

 

Figure 7.3 Modules of classification 

7.4 Algorithms 

We have identified several well-known algorithms that can be adapted to work with for 

online learning in the presence of imbalanced data. An alternative to algorithm 
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modification is through sampling strategies.  But sampling is typically performed as a 

preprocess to classification, and it does not fit the online context.  

7.4.1 Naïve Bayesian 

Naïve Bayesian [92] is well-known for its scalability: both training and testing have time 

complexity O(n). To adapt the algorithm for online learning, the training step needs to be 

modified to update the count of classes and attributes after each instance is processed.  

The probability of each class p (Ck)and the probability of p (xi |  Ck) are updated 

accordingly (xi is the value of input vector X = (x1, x2, x3, ……, xi) ). These updates can be 

made in time O(1), hence the overall modified algorithm remains O(n). 

 To predict output, the original prediction function of Naïve Bayesian can be 

applied directly in constant time:  

prediction = arg max P(Ck)∏P(xi | Ck) 

 To handle skewed data, especially when costs of misclassification for different 

classes are not equivalent, bias may be applied to p (Ck) of the prediction function so as 

to prioritize the preference of different classes.  

7.4.2 Neural Network 

Neural network [93] is naturally adaptive. It makes prediction for one input and use the 

feedback to update model immediately, so as to make improvement after each epoch. In 

every epoch, both prediction and updating can be accomplished in real time with O(1) 

time complexity.  
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Regular backprogation algorithm [94] may be applied directly for training. For instance, 

weights of a three layers neural network could be updated with the following three steps: 

1) The errors of output layer is computed using the function 

currentError = output * (1 - output) * (target - output) 

    Weight adjustment is computed with 

adjustment = learnignRate * currentInput.get(i) * currentError 

2) Then, error in hidden layer is computed with the following function: 

currentError = currentOutput * (1 - currentOutput) * sumOfOutputlayer 

 where sumOfOutputLayer is obtained with the following: 

 sumOfOutputlayer = Sum(error of output neuron * weight between this hidden 

neuron and the output neuron) 

 Weight adjustment is computed with: 

 adjustment = learnignRate * currentInput.get(i) * currentError 

3) At the end, input weights in both hidden and output layer are updated by 

 UpdatedWeight = OriginalWeight + adjustment 

Neural network makes prediction by generating output for each layer in sequence: 

1) To input layer: 

Original Sum = ∑inputs of neuron 

2) To inputs of hidden and output layers, the original sum were applied with an activation 

function:  

f(x) = 1 / (1 + e
-x

) 
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With this sigmoid function, values used to feed the output layer or generate final result 

are normalized to the range (0, 1).Prediction is made based on values of output neurons. 

By adjusting the learning rate of positive and negative cases during training (in step 1 and 

2), the algorithm may weigh the impacts of positive and negative instances differently. In 

this way, the effects of data imbalance may be cushioned. 

7.4.3 k-Nearest Neighbors 

kNN [95] uses local information to make prediction and its computation only happens at 

prediction stage. Training of KNN is straightforward.  Each new data point is inserted 

into the dataset without computation. To make a prediction, an input instance acts as a 

query on the entire dataset.  The goal is to find the k closest data points. The most 

frequent label in the subset is used to label the input instance. To calculate the distance 

between a query point and other data points, various distance function may be applied: 

Euclidean, Manhattan, Minkowski, among others. 

 To identify the nearest data points, the algorithm has to examine all the data 

points in the corpus.  This is time complexity O(n). This is a potential bottle for large 

dataset. Dividing the dataset into blocks and judicious use of indexes would help to 

improve the efficiency of searching. 

 To rebalance skewed data, bias could be implemented to weigh instances of 

different classes differently. A majority vote for the prediction will be based on the 

weighted sum.   
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7.5 Results 

I) Datasets  

We obtained electronic medical record data on patients who were admitted to Emory 

University Orthopedic and Spine Hospital during 2009 to 2014 and obtained 13,248 

encounters. Forty-one positive cases, defined as patients who had hip fracture, hip 

replacement, knee replacement, or spine surgery and were diagnosed with VTE during 

the hospitalization, were identified. All the other instances were defined as negative cases. 

The test data was manually annotated by physician annotators from Emory Hospital.  

II) Evaluation Metrics  

In clinical decision support, a positive case can be rare but critical. Instead of inspecting 

the overall accuracy, we focus on positive predictive value (PPV) and true positive rate 

(Sensitivity). In other words, the precision and recall of positive case are reported. The 

detail of each metric and its clinical impact in this use case are as follows: 

Precision of Positive Case (PPV):  

    PPV = TP / (TP + FP) 

This indicates that if a case is detected, what is the probability of having VTE. 

Recall of Positive Case (TPR):  

    TPR = TP / (TP + FN) 

This indicates that if a case is detected, what is the percentage of VTE patient we can 

detect based on prediction. 



83 
 

 
 

III) Experiment Setting  

We ordered records in the dataset based on admission date to simulate real world data 

stream. Input attributes used for classification include age, BMI, surgery, pharmacologic 

prophylaxis medication, mechanical prophylaxis and ICD code of cardiovascular disease. 

All these input attributes have been transformed to boolean values, 0 or 1, in order to 

make the implemented algorithms, both numeric and categorical, comparable. 

 When a radiology test was ordered, the physician specified the symptom or reason 

for ordering the test. We collect statistics on the reasons as background information based 

on radiation reports from 2009 to 2014. Table 7.1 shows major reasons (with recall above 

3%) for radiation tests and their precision and recall for VTE prediction. This data can be 

used as the baseline for comparing clinical effectiveness of VTE CDSS. 

 

Symptom Precision Recall 

edema 8.9% 17.6% 

acute shortness of breath 13.7% 18.0% 

pain in limb 7.7% 8.5% 

chest pain unspecified 9.0% 5.2% 

pulmonary embolism 8.8% 3.3% 

vein thrombosis lower leg 13.5% 4.7% 

 

Table 7.1 Common reasons of VTE 
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IV) Performance Evaluation 

 

Figure 7.4 Testing result of VTE identification 

Figure 7.4 shows the results for the algorithms that we have implemented. The 

predictions of Naïve Bayesian and kNN are more accurate than the “best” real symptom 

“acute shortness of breath”. In particular, if one only relies on the result of Naïve 

Bayesian, the CDSS “symptom” can predict VTE with 41.4% probability. If the CDSS 

predicts “VTE”, the chance of VTE is 19.5%. The precision and recall of negative case 

are above 99% for all algorithms.  

 Using bias parameters, all the algorithms could be tuned to increase either the 

precision or recall. For example, to detect more VTE patient, one can adjust parameter to 

improve recall, though precision will correspondingly decrease. The system also allows 

the user to select multiple algorithms to construct an ensemble model. This ensemble 

model uses majority voting to generate the final predication result.   

0

10

20

30

40

50

60

Naïve Baysian Neural Network kNN Sympton

Precision Recall



85 
 

 
 

7.6 Conclusion 

The built-in online learning classification component further improved the functionality 

of IDEAL-X. Combined with the information extraction module, the system provides a 

powerful architecture for clinical decision support based on information integrated from 

heterogeneous sources. Motivated by the VTE early prediction case, we study the special 

challenges and guidelines of CDSS deployment, and examine available algorithms to 

provide concrete solution. Experiment results reveal the clinical value this kind of system. 

We implement algorithms as a toolkit, and allow extension to incorporate new 

classification algorithms conveniently. 
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Chapter 8 

Conclusion and Future Work 

 

8.1 Conclusion 

This dissertation has focused on resolving clinical information extraction and 

classification tasks using online machine learning based algorithms and human computer 

interaction. While considerable attention has been given to structured and standardized 

reporting, most medical reporting systems still allow for (and thus encourage) narrative 

text descriptions. There is a lack of effective tools to ease the process of information 

extraction, data transformation and normalization.  

 IDEAL-X provides a bridge between free-form text reports and structured reports. 

Its workflow follows the conventional process for manual extraction of information from 

text, but it noninvasively learns and gradually improves its ability to automatically locate 

relevant information. The system is powered by an online learning based engine with 
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customizable domain knowledge, and comes with a natural workflow and interface. 

Using the system requires no linguistic expertise, and the internal algorithms are generic, 

thus adaptable to diverse clinical reports. In addition, IDEAL-X supports standardizing 

and integrating extracted data to enhance the utility of the output. A similar online 

machine learning based solution has also been implemented for classification to facilitate 

clinical decision support.   

8.2 Future Work  

A number of extensions are possible to improve the usage and applicability of IDEAL-X 

and its conceptual framework. 

I) Explore a broader set of machine learning algorithms 

Machine learning is the most promising technique for identifying candidate text chunks. 

Besides HMM, we have explored other classifiers such as Naive Bayes classifier and 

neural networks. A systematic study of different classifiers and their combinations 

(including Conditional Random Field and Support Vector Machine [96]) for online 

machine learning based data extraction would be provide invaluable insights. The key 

challenges in adapting any algorithm in an interactive, online setting are responsiveness 

and scalability.   

II) Automating controlled vocabulary driven standardization 

Extracted values might be highly heterogeneous in their raw form, and therefore 

standardization is a necessary step to increase the utility of the output results. Traditional 

coding systems [97-101] annotate information with standardized dictionaries. Besides 
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static mapping, one can enhance the mapping at running time with online learning 

enhanced with semi-automated assistance. Other domain knowledge, such as report 

standards, controlled vocabulary and ontology, can also be used to enhance medical 

coding process.  

III) Advanced extraction template 

Currently the system supports single and multiple value extraction in tabular format, but 

alternative, more flexible schemas may be useful for representing complex relationships. 

Examples include semi-structured, hierarchical and network models that can support 

advance information extraction use cases such as event extraction [69, 102, 103], relation 

extraction [104, 105] and template extraction [65, 106, 107]. Important challenges 

include finding suitable user interaction models and machine learning techniques.  

IV) Extensible extraction model 

To maximize its applicability and portability, IDEAL-X employs generic tactics to 

support information extraction. However, we also recognize that given a particular task, 

domain specific information extraction strategies are likely to be more effective. To 

accommodate potential extraction strategies that take advantage of domain knowledge, an 

approach would be to allow user-defined plug-ins for tasks such as filtering or searching. 

Such an open implementation will enable reuse of the system interface and the 

standardization of the user interaction, and would reduce the cost for the development of 

similar systems for other research projects. 
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Appendix 

 

Table 1. Attributes for Cardiac Catheterization Procedure Reports (Dataset 1) Test Case 

Aortic  Diastolic (Ao)  

Pressure 

Aortic  Diastolic (Ao) 

Systolic Pressure 

Aortic  Diastolic (Ao) 

Mean Pressure 

Left Ventricular End Diastolic 

Pressure (LVEDP) 
Left Ventricular (LV) Systolic Heparin Amount 

Bivalirudin Amount Abciximab Amount Fentanyl Amount 

Midazolam Amount Nitroglycerin Amount Acetylcholine Amount 

Heparin Dosage Bivalirudin Dosage Abciximab Dosage 

Fentanyl Dosage Midazolam Dosage Nitroglycerin Dosage 

Acetylcholine Dosage   

 

Table 2. Attributes (Stenosis Values of) for Coronary Angiogram Reports (Dataset 2) 

Test Case 

Stenosis value of: 

Left Main Coronary Artery First Diagonal Branches Second Diagonal Branches 

Proximal Circumflex 

Coronary Artery 

Mid Circumflex Coronary 

Artery 

Distal Circumflex 

Coronary Artery 

Ramus 
First Obtuse Marginal 

Branches 

Second Obtuse Marginal 

Branches 

Third Obtuse Marginal 

Branches 

Proximal Right Coronary 

Artery 

Mid Right Coronary 

Artery 

Distal Right Coronary 

Artery 

Proximal Circumflex 

Coronary Artery 

Mid Circumflex Coronary 

Artery 

Distal Circumflex Coronary 

Artery 
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Table 3. Attributes for Complex Narration Data Extraction for Dataset 3 Test Case  

a. Diseases: 

Diabetes 
Coronary Artery Bypass Grafting Heart Transplant 

Stroke Peripheral Vascular Disease Coronary Artery Disease 

Asthma 
Chronic Obstructive Pulmonary 

Disease 

Percutaneous coronary 

intervention  

Myocardial 

Infarction 
Hypertension Atrial Flutte 

Alcohol Heart Failure Atrial Fibrillation 

 

b. Medications: 

Angiotensin II Receptor Blocker Thiazides Warfarin 

Aspirin Thienopyridine Calcium Channel Blockers 

Beta-Blockers Statin Loop Diuretics 

Angiotensin-Converting-Enzyme 

Inhibitor 
  

 

 

 


