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Renormalization Group Solution of the Chutes&Ladder Model 

 

 

By 

 

Lauren Ball 

 

Stefan Boettcher 

Adviser 

 

 

 

 

 

 

A thesis submitted to the Faculty of Emory College of Arts and Sciences 
of Emory University in partial fulfillment 

of the requirements of the degree of 
Bachelor of Sciences with Honors 

 

 

Physics 

 

2014 



 

Acknowledgements 

Dr. Stefan Boettcher 

Clare Boothe Luce Foundation 

Caitlin Davis 

Dr. Jacob Shreckengost 

Dr. Leah Roesch 



Table of Contents 

1. Introduction

1.1 Introduction to scaling behavior and universality 

1.2 Background of Renormalization Group 

1.3 Motivation 

2. Network Design

3. Renormalization Group Analysis

4. Conclusion

5. References

List of Figures 

1. Depiction of HN3

2. Sample of system showing hopping probabilities and corresponding equations

3. Definition of renormalizable hopping parameters

4. Extrapolation of the data obtained for the mean square displacement



Renormalization Group Solution of the

Chutes&Ladder Model

L. Ball, S. Boettcher

April 16, 2014

Abstract

We analyze a semi-infinite one-dimensional random walk process with
a biased motion that is incremental in one direction and long-range in
the other. On a network with a fixed hierarchy of long-range jumps we
find with exact renormalization group calculations that there is a dynam-
ical transition between a localized adsorption phase and an anomalous
diffusion phase in which the mean-square displacement exponent depends
non-universally on the bias of the system. We compare these results with
similar findings of unconventional phase behavior in hierarchical networks,
as well as with related systems involving Levy-distributed backjumps.

1 Introduction

The variety of real networks found in biology, engineering, social sciences, and
communication provides a need for new ideas to explore and classify the full
range of critical phenomena that emerge as a result of the complex geometry[1].
Recently, networks with a hierarchical organization of its sites have received
considerable attention due to the exotic phase transitions that can be observed
in such structures for well-known equilibrium models such as percolation[2] and
Ising ferromagnets[3]. However, here we are concerned with non-equilibrium
systems, for transport processes are a flow through time towards equilibrium.
Such complex dynamics can be studied on a designed structure that is intricate
enough for interesting results, yet simple enough to reveal analytic insights.
The network we are working with is labeled the Hanoi Network 3 (HN3) and
is described in Section 2[4]. Initial numerical simulations upon this network for
the system studied here showed non-universal scaling behavior. We performed
a renormalization group analysis to study this system and determine explicitly
its scaling behavior.

1.1 Introduction to scaling behavior and universality

A power law is a relationship that exhibits scale invariance, that is, given a
function f(x) = axk, scaling the argument by a constant factor c causes only a
proportionate scaling of the function itself by a factor of ck. Power laws with
particular scaling exponents are therefore equivalent up to constant factors, and
thus can be defined by their particular scaling exponent. The scaling exponents
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of systems with phase transitions are referred to as the critical exponents of the
system. Systems with the same critical exponent display identical scaling be-
havior as they approach criticality. Diverse systems can therefore be shown, via
renormalization group theory, to share the same fundamental dynamics. The
phenomenon of sharing dynamics is referred to as universality. Those systems
with precisely the same critical exponents are said to belong to the same uni-
versality class. Each member in a particular universality class exhibits identical
critical behavior, often unifying very different physical phenomena. For exam-
ple, the universality class to which the Ising model belongs not only applies to
magnetic spins, but also to boiling fluids, and even the Higgs mechanism that
gives all particles their masses [3]. Almost all physical systems with phase tran-
sitions belong to a relatively small collection of universality classes, which are
specified by the critical exponents.

1.2 Background of Renormalization Group

Physics often wishes to relate the present theories in an attempt to find a more
general unifying theory that can be applied to broader scales. Often the search
for a final theory is impeded by singularities that arise at length scales far from
observation[5]. The renormalization group, as developed by Kenneth Wilson,
serves as the primary mathematical tool used in physics to connect these theories
at different length scales.

In statistical mechanics, phase transitions are necessarily connected with
singularities which require infinite systems to deal with. In 1937, all statistical
mechanics theories of thermodynamics, which were mean field theories, failed
near critical points [6]. Any theory describing critical points must take into
account all scales of length because changes in a system occur at widely varying
size scales near a critical point or phase transition. For example, when water
is brought near its critical point fluctuations in density develop at all possible
scales and extend over an indefinite range. The distinction between gas and
liquid disappears, for there are drops of liquid interspersed with bubbles of gas
of all sizes, varying from single molecules up to the size of the system. For a
theory to describe water near its critical point, it must take into account all of
these possible length scales [7]. The renormalization group is a tool for dealing
with such problems that involve many scales of length. Mean field theories have
no manifestation of infinities in their descriptions of phase transitions, and so
the RG method was developed to supplement mean field theories, and unites “a
breaking of internal symmetries with a proper description of spatial infinities,”
allowing for a sufficient tool with which to describe and understand these types
of problems [5]. The RG is a tool used to make a problem as simple as possible,
but not simpler [8]. It is not an exact nor completely controlled process, and
should be regarded as a largely conceptual framework, relying fundamentally
only on scaling, which can be adapted to the particular problem at hand. John
Cardy explains that “all renormalization group studies have in common the
idea of re-expressing the parameters which define a problem in terms of some
other, perhaps simpler set, while keeping unchanged those physical aspects of a
problem which are of interest” [9].

The general application of the RG is as follows: (1) There is a flow through
space of all dynamic equations involved (could be of Hamiltonians, master equa-
tions, etc.) with “coupling constants” as coordinates. (2) At each level of
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renormalization, the “coupling constants” are related back to the previous set
of constants. The critical point of a system is the fixed point towards which
these constants flow. (3) These fixed points define particular universality classes.
(4) The RG transformation that describes the flow can typically be linearized
about the fixed point. The eigenvalues of this linearization describe the how the
system flows towards the critical point. The eigenvalues can therefore by used
to determine the critical exponent of the power law.

The foundation for the RG began in 1944 when Onsager computed exactly
the partition function and thermodynamic properties of a simple ferromagnet -
a model which became known as the Ising model - and found that the explicit
properties disagreed completely from the mean field theory predictions used at
that time [10]. Next, at King’s College School, the mean field theory criti-
cal indices were found to be wrong, further supporting the need for a revised
theory [5]. Patashnskii and Pokrovsky then begin looking at correlations in
fluctuations at different scales. Following this, Ben Widom realized significant
scaling properties of critical phenomena, but had not determined their origin.
In 1966, Kadanoff suggested a theory that fully described scaling behavior, and
incorporated universality, but still was not complete[5]. In 1971, Wilson finally
produced a complete theory of RG [10].

In Wilson’s theory he considers all possible couplings, instead of guessing
which couplings to use. The scale change then produces a closed algebra of
couplings. His theory also considers a succession of renormalizations, unlike the
previous theories that would consider just one[5]. After many renormalizations
you reach a fixed point, where the couplings stop changing. Each fixed point
can be considered to be its own separate physical theory, which gave rise to
universality classes. This theory has proven to be a powerful tool in physics,
having treated the following broad range of problems[10]:

1. The KAM (Kolmogorov-Arnold-Moser) theory of Hamiltonian stability

2. The constructive theory of Euclidean Fields

3. Universality theory of the critical point in statistical mechanics

4. Onset of chaotic motion in dynamical systems

5. The convergence of Fourier series on a circle

6. The theory of the Fermi surface in Fermi liquids

7. The theory of polymers in solutions and in melts

8. Derivation of the Navier-Stoker equations for hydrodynamics

9. The fluctuations of membranes and interfaces

10. The existence and properties of ‘critical phases’

11. Phenomena in random systems, fluid percolation, electron localization,
etc.

12. The Kondo problem for magnetic impurities in nonmagnetic metals
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Wilson earned the Nobel Prize in Physics in 1982 for this brilliant “...theory of
critical phenomena in connection with phase transitions” [8].

We will use this RG theory to determine the critical scaling exponent dw
that defines how the time scale of the system changes with the mean square
displacement. There is assumed to be a relation between the length scale,
denoted L, and the time scale, denoted T of the form

L ∼ T dw , (1)

where
T ′ = λT L′ = 2L. (2)

The λ in equation (2) is determined by the largest eigenvalue of the Jacobian
of the recursion equations, because this eigenvalue gives the time dependence
of the equations flowing into the fixed point. Solving equations (1) and (2) for
the exponent gives

dw ∼
lnλ

ln 2
(3)

, which is the scaling behavior we are looking for in this system.

1.3 Motivation

First and foremost, our study here serves as a simple example of the unusual
- and often non-universal – scaling behavior for dynamic processes on complex
networks. However, our model also provides a sense of what might happen
in an ordinary, one-dimensional lattice with an incremental bias to walk one
direction and back-jumps in the opposite direction, drawn randomly from a
Levy-flight distribution., which is a mix of long trajectories and short random
movements. Among other applications, the Levy-Flight is considered to be a
model of animal behavior particularly when hunting[11]. This could also be
extended, for example, to model the behavior of directional transport of kinesin
proteins interrupted with finite failure rate that leads to dissociation off the
filament to reset the process.

Previous renormalization group studies of random walks on this particular
network have led to distinct universal behavior. However, as suggested in the
numerical simulations, the asymptotic behavior of our model exhibits anoma-
lous behavior with non-universal exponents. Anomalous diffusion is a diffusion
process with a nonlinear relationship to time, in contrast to a typical diffusion
process, in which the mean square displacement (MSD) of a particle is a lin-
ear function of time.[12] Anomalous diffusion has been shown to describe many
different physical scenarios, for example protein diffusion within cells, diffusion
through porous media, telomeres in the nucleus of cells, and other biological
system including heartbeat intervals and in DNA sequences [13]. This model
can help us to better understand the behavior of such systems with anomalous
diffusion.

2 Network Design

The network we are discussing in this paper consist of a simple geometric back-
bone, a one-dimensional line of N = 2k sites

(
0 ≤ n ≤ 2k, k →∞

)
. Each site
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Figure 1: Depiction of HN3 on a semi-infinite line. The leftmost site here is
n = 0.

on the one-dimensional lattice backbone is connected to its nearest neighbor.
To generate the small-world hierarchy in these graphs, consider parameterizing
any integer n (except for zero) uniquely in terms of two other integers (i, j),
i ≥ 0, via

n = 2i (2j + 1) . (4)

Here, i denotes the level in the hierarchy whereas j labels consecutive sites
within each hierarchy. For instance, i = 0 refers to all odd integers, i = 1 to
all integers once divisible by 2 (i.e., 2, 6, 10,...), and so on. In these networks,
aside from the backbone, each site is also connected with (one or both) of its
nearest neighbors within the hierarchy. We obtain the 3-regular network HN3
by connecting first all nearest neighbors along the backbone, but in addition
also 1 to 3, 5 to 7, 9 to 11, etc, for i = 0, next 2 to 6, 10 to 14, etc, for i = 1,
and 4 to 12, 20 to 28, etc, for i = 2, and so on, as depicted in Figure 1.

3 Renormalization Group Analysis

We will study biased random walks on HN3. All walks are controlled by the
parameter p, which is the probability of a walker to jump off the lattice in a long
range jump back towards the origin. The walker will move forward along the
backbone with probability (1 − p) if there is a long range jump available, and
with probability 1 if there is no such option. These probabilities are displayed
in Figure 2. If p were set to zero we would return to a simple one-dimensional
walk.

In order to have a finite set of closed equations to work with, we closed the
lattice, as shown in Figure 3, by connecting the 8th site to the 16th site, instead
of the 24th site as it would have otherwise been by the rules of construction of
the network. This small change does not affect the long term behavior of the
system, for after renormalization it leaves no effect on the asymptotic behavior.

Here we demonstrate the RG process used to determine the recursion equa-
tions by starting on a 16 site network and renormalizing to an 8 site network,
revealing the self-similar probability coefficients. We begin with time dependent
probability of a walker to be at a given sight at time t + 1 in terms of proba-
bilities of the system at time t. The master equations for this system are given
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Figure 2: Sample of system showing hopping probabilities at each site and the
corresponding equations describing the probability of the site being occupied at
time t+ 1.

by

P0,t+1 = 1

P1,t+1 = P0,t + pP3,t

P2,t+1 = P1,t + pP6,t

P3,t+1 = P2,t

P4,t+1 = (1− p)P3,t + pP12,t

P5,t+1 = P4,t + pP7,t

P6,t+1 = P5,t

P7,t+1 = (1− p)P6,t

P8,t+1 = (1− p)P7,t + pP16,t (5)

P9,t+1 = P8,t + pP11,t

P10,t+1 = P9,t + pP14,t

P11,t+1 = P10,t

P12,t+1 = (1− p)P11,t

P13,t+1 = (1− P4,t + pP7,t

P14,t+1 = P13,t

P15,t+1 = (1− p)P14,t

P16,t+1 = (1− p)P15,t

We introduce the generating function

Pl(z) =

∞∑
t=0

Pl,tz
t, (6)
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in order to eliminate time dependence with this Laplace transform. We then
have the following master equations in terms of z and p, where z represents time
such that as z goes to 1, time goes to infinity:

P̃0 = 1

P̃1 = zP̃0 + zpP̃3

P̃2 = zP̃1 + zpP̃6

P̃3 = zP̃2

P̃4 = z(1− p)P̃3 + zpP̃12

P̃5 = zP̃4 + zpP̃7

P̃6 = zP̃5

P̃7 = z(1− p)P̃6

P̃8 = z(1− p)P̃7 + zpP̃16 (7)

P̃9 = zP̃8 + zpP̃11

P̃10 = zP̃9 + zpP̃14

P̃11 = zP̃10

P̃12 = z(1− p)P̃11

P̃13 = z(1− p)P̃12 + zpP̃15

P̃14 = zP̃13

P̃15 = z(1− p)P̃14

P̃16 = z(1− p)P̃15

We then introduce generalized hopping parameters,

a = z b = zp c = z d = zp,

e = z(1− p) f = z(1− p) g = z k = z(1− p). (8)

These parameters were determined to be the minimum necessary parameters
through analysis of the RG. We began with the maximum possible parame-
ters, and looked for those that renormalized identically to find the minimal set.
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Inserting these parameters in equations 8 gives

P̃0 = 1

P̃1 = aP̃0 + bP̃3

P̃2 = cP̃1 + dP̃6

P̃3 = gP̃2

P̃4 = eP̃3 + dP̃12

P̃5 = aP̃4 + bP̃7

P̃6 = cP̃5

P̃7 = fP̃6

P̃8 = eP̃7 + dP̃16 (9)

P̃9 = aP̃8 + bP̃11

P̃10 = cP̃9 + dP̃14

P̃11 = gP̃10

P̃12 = eP̃11

P̃13 = kP̃12 + bP̃15

P̃14 = cP̃13

P̃15 = fP̃14

P̃16 = eP̃15

This system of equations is depicted in Figure 3, and is considered to be the
master equations determining the system’s behavior.

A single step of the RG involves solving the master equations (10) for Pl with
odd values of l, and then eliminating them from every other equation, which
would have even values of l. We are then left with the equations:

P̃0 = 1

P̃2 =
ac

1− bcg
P̃1 +

d

1− bcg
P̃6

P̃4 = egP̃3 + dP̃12

P̃6 =
ac

1− bcf
P̃5

P̃8 = efP̃7 + dP̃16 (10)

P̃10 =
ac

1− bcg
P̃9 +

d

1− bcg
P̃14

P̃12 = egP̃11

P̃14 =
ck

1− bcf
P̃13

P̃16 = efP̃15

Comparing the coefficients of these equations to the coefficients of equations
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Figure 3: Definition of renormalizable hopping parameters for the biased walk
along HN3. During each RG-step, every second site is eliminated algebraically
and a new set of equations result which are identical in form to the previous
set. Comparing the hopping parameters in these equations before and after each
step leads to the RG-flow equations 11. Note that d = zp does not renormalize.

(11) gives us the RG recursion equations describing the flow of the system:

a′ =
ac

1− bcg
,

b′ =
zp

1− bcg
,

c′ = eg,

e′ = ef, (11)

f ′ =
ck

1− bcf
,

g′ =
ac

1− bcf
,

k′ =
ck

1− bcg
.

We verified the recursion equations by beginning with graphs of 64 sites
and confirmed that the recursion equations maintained their self-similarity at
each RG step, and therefore closed. Each renormalization gave a self-similar
expression, and we determined that the seven unique parameters given in the
16 site graph shown in Figure 3 sufficiently explain the behavior of the system
[14].

As was described in Section 1.2, the most important information we look to
gain from the RG comes from the system’s fixed point, for it is the behavior
near this point that we are analyzing. Now that we have determined the RG-
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flow equations, we can find this fixed point of the system, where the evolution
of the recursion equations stabilizes. We solve for this by setting each primed
parameter in the set {a’, b’, c’,e’,f’,g’,k’} equal to the corresponding parameter
in the set {a, b, c, e, f, g, k}. Say the parameters {a, b, c, e, f, g, k} represent
the kth RG-step, then the set of parameters {a’, b’, c’,e’,f’,g’,k’} represent
the k + 1 step, therefore setting the respective parameters equal and solving
the system of equations (11) gives us the point at which the system stabilizes.
However, when we solved the equations (11) we were unable to eliminate all of
the parameters, and therefore know that we were missing a condition within
our set of master equations. In order to find this missing relation between
the hopping parameters, we numerically analyzed the recursion equations by
evolving them for z = 1 and various values of p, and discovered the conservation
law b = pa. Adding this to the set of master equations, we were then able to
solve for the fixed point of

a → z(pz − 1)

pz2 + pz − 1

b → pz(pz − 1)

pz2 + pz − 1

c → pz2 + pz − 1

pz − 1

e → −(pz2 + pz − 1)

z
(12)

f → 1

g → z

1− pz

k → −(pz − 1)2

pz2 + pz − 1

This means that these recursion equations converge for k → ∞ towards this
fixed point 12, which characterizes the dynamics of the system in the infinite-
time limit. This corresponds to the limit as z → 1.

The next step is to linearize the recursion equations (11) describing the
RG-flow about the fixed point. We do this by taking the Jacobian J of these
recursion equations, which is the matrix consisting of the first order derivatives
of each recursion equations with respect to each parameter, shown in equation
(13).

J =



c
1−bcg

ac2g
(bcg−1)2

a
(bcg−1)2 0 0 ac2b

(bcg−1)2 0

0 zpcg
(bcg−1)2

zpbg
(bcg−1)2 0 0 zpcb

(bcg−1)2 0

0 0 0 g 0 e 0
0 0 0 f e 0 0

0 kc2f
(bcf−1)2

k
(bcf−1)2 0 kc2b

(bcf−1)2 0 c
1−bcf

c
1−bcf

ac2f
(bcf−1)2

a
(bcf−1)2 0 bc2a

(bcf−1)2 0 0

0 kc2g
(bcg−1)2

k
(bcg−1)2 0 0 kc2b

(bcg−1)2
c

1−bcg


(13)

Since we are concerned with the infinite-time limit, we set the parameters
equal to their respective fixed point values, and set z = 1, leaving p as our only
variable in the matrix, shown in equation (14).
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J =



1 1
1−2p

(p−1)3
(2p−1)3 0 0 p(p−1)2

(2p−1)2 0

0 p
1−2p − (p−1)2p2

(2p−1)3 0 0 (p−1)2p2

(2p−1)2 0

0 0 0 − 1
p−1 0 1− 2p 0

0 0 0 1 1− 2p 0 0

0 − 2p−1
(p−1)2 − 1

2p−1 0 − p
p−1 0 − 2p−1

(p−1)2

− 2p−1
(p−1)2

2p−1
(p−1)3

1
(p−1)(2p−1) 0 p

(p−1)2 0 0

0 p−1
2p−1 − (p−1)4

(2p−1)3 0 0 − (p−1)3p
(2p−1)2 1


(14)

We then look at the eigenvalue of this Jacobian, and take λ to be equal to the
largest of these eigenvalues,

λ =
2− 3p

1− 2p,
,

for the largest eigenvalue dictates the behavior in the long-time limit. This λ
is related to the mean square displacement exponent dw by equation (3), which
gives the exponent of

dw =
ln2

ln 2−3p
1−2p

, (0 ≤ p ≤ 1

2
). (15)

For p > 1
2 , the walker will stay confined near the origin, because long-range

jumps backwards along the network will be taken frequently. This means that
as space rescales by 2 (eliminating every odd site), the rescaling of time is
dependent on the chosen p, for any given value of p < 1

2 . This is why this
system exhibits non-universal behavior, for the long-term behavior of the system
is dependent upon the micoscopic detail of the value of p.

We compare the extrapolation of the numerical data obtained for the mean
square displacement for the walk at different values of p in Figure 4, and find
the simulation to be consistent with our exact RG-result.

4 Conclusion

In this project I have learned how to use the powerful tools of the dynamic
renormalization group in order to dissect the biased random walk problem on
the hierarchical network HN3. Our study serves as a simple example of the
unusual scaling behavior for dynamic processes on complex networks. Previ-
ous renormalization group studies of random walks on this particular network
have led to distinct universal behavior [4]. However, as suggested in the nu-
merical simulations, we have found a dynamical transition between a localized
adsorption phase and an anomalous diffusion phase in which the mean-square
displacement exponent depends non-universally on the bias p of the walker to
jump back down the lattice at a long-range jump. We hope this model can pro-
vide insight into the phenomenon of anomalous diffusion on complex networks,
since the causes of anomalous diffusion are often not fully understood and are
thus a topic of ongoing research interest[12]. Additionally, we hope that these
results can also be useful in a more direct application of this system as it com-
pares to similar models, such as the behavior of kinesin proteins. We also hope
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Figure 4: Extrapolation of the data obtained for the mean square displacement
(left) for the walk at different values of the back-jump probability p from sim-
ulations run up to a temporal cutoff at t = 227. We used simply a linear fit to
the data set for each value of p deep in the asymptotic regime for large t, as in-
dicated by the fitted lines, data for all smaller t were ignored. Large corrections
to linear behavior are apparent for larger p, suggesting large errors. The fitted
values for 1/dw of the extrapolation for t→∞ are marked as blue stars at the
intercept. These extrapolated values (blue stars) for the exponent dw are shown
plotted as a function of p (right). The line corresponds to the exact RG-result
from Eq. 15. For 0 ≤ p ≤ 1

2 , the numerical results fit the exact result within
errors. However, near and above the transition p = 1

2 large errors are observed,
as expected from the imperfect linear fits above.

that having a system which contains both a regime of a universal exponent,
as well as a regime of non-universality can provide insight into the universality
hypothesis of critical phenomena.
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