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Abstract 
 

An Exploratory Analysis of Associations between Drought and 
Coccidioidomycosis Incidence in Arizona and California 

By Gwendolyn Parker 
 

Coccidioidomycosis is an infectious disease caused by inhalation of the 
fungal pathogens Coccidioides immitis and Coccidioides posadasii, endemic to the 
southwestern United States. The past two decades have seen a striking increase 
in disease incidence, particularly in Arizona and California. This increase is 
hypothesized to have been impacted by climate and environmental conditions. 
Previous studies have analyzed the impact of climate conditions on 
coccidioidomycosis incidence in multiple counties in California and Arizona, 
establishing a link between sequences of wet and dry/warm climate conditions 
and coccidioidomycosis incidence in Arizona, although not in California. This 
study analyses the associations between coccidioidomycosis case counts and 
temperature, precipitation, and two drought indices in 3 counties in Arizona and 
20 counties in California through bivariate and multivariate regression analyses. 
Patterns of alternating wet and dry climate conditions were associated with 
coccidioidomycosis case counts in both Arizona and California, captured through 
both precipitation and drought index variables. Conclusions from this study 
reveal a previously unidentified pattern of climate conditions impacting 
coccidioidomycosis in California; inclusion of drought indices is shown to have 
utility in elucidating this pattern. These results will contribute to our 
understanding of how disease patterns may change in light of expanding and 
intensifying drought in the region.  
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Introduction  

Coccidioidomycosis, or “Valley Fever,” is an infectious disease caused by a 

soil-dwelling fungus, the incidence of which has been rapidly increasing in recent 

years.1 In the past two decades, the incidence of coccidioidomycosis, typically a 

pulmonary infection but sometimes with other manifestations, has risen 

dramatically in the southwestern United States, from 5.3 cases per 100,000 in 1998 

to 42.6 cases per 100,000 in 2011.2 Coccidioidomycosis infection can induce lifelong 

morbidities, making it a serious burden to public health.  This study attempts to 

characterize climate factors—specifically those relating to drought—associated 

with increased coccidioidomycosis incidence in California and Arizona.  

Coccidioidomycosis 

Coccidioidomycosis is a fungal infection, caused by the inhalation of 

Coccidioides immitis and Coccidioides posadasii spores, which produces a spectrum 

of disease. Coccidioides spp. are dimorphic fungi, meaning they go through two 

different phases—saprophytic and invasive—during their lifecycles. In the 

saprophytic phase, tubular hyphae (or mycelia) penetrate the soil. Arthroconidia are 

then formed by the segmentation of hyphae.3 The arthroconidia are carried by the 

wind following a disturbance to the soil, and are either re-implanted in the soil or 

inhaled by a host.4,5 If returned to the soil, arthroconidia can grow into more hyphae, 

repeating the cycle described above.6  

The invasive phase is initiated when arthroconidia are inhaled by a host, 

such as a human, dog, horse, or other mammal; these hosts represent dead-ends to 

the transmission of coccidioidomycosis. The inhaled arthroconidia then deposit in 
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the lungs and transform their cell walls into specialized structures called spherules.7 

The spherules are able to produce and release endospores, which propagate 

themselves by developing additional spherules within the host tissues.8 Currently, 

there is no research suggesting differential pathogenicity between the two 

Coccidioides species.  

Following exposure, coccidioidomycosis can manifest in multiple ways. It has 

been established that around 60% of exposed humans do not experience adverse 

health effects, while the remaining 40% experience a range of pulmonary 

manifestations.9 Immunosuppression status, pregnancy, comorbidities including 

diabetes and cardiovascular disease, and ethnicity are all risk factors for developing 

symptomatic infection.10 Pulmonary manifestations associated with 

coccidioidomycosis range from benign pulmonary infection—considered primary 

disease—to moderately severe respiratory disease.11,12 Those with primary disease 

typically recover without treatment and maintain immunity to exogenous 

reinfection; however, endogenous reinfection and subsequent dissemination is 

possible.12,4 

Of the aforementioned range of pulmonary manifestations, between 5% and 

10% result in residual pulmonary nodules or thin-walled cavities, which may or 

may not be symptomatic, and may resolve spontaneously or require antifungal or 

surgical treatment.7,11  Up to 1% of these manifestations result in extrapulmonary 

dissemination.11 The most common sites of dissemination are the skin, bones, and 

meninges.11 

Geographic Range 
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 Coccidioides spp. is found in arid/semi-arid ecological zones in the Western 

Hemisphere, between the 40° latitudes, north and south.13 These ecological zones 

are characterized by warm summers, mild winters, and precipitation ranging from 

10 – 50 cm.10,13 Coccidioides spp. thrive in sandy and alkaline soils.14 In the United 

States, this translates to Arizona, California, Nevada, New Mexico, Texas, and Utah; 

however, soil samples from south central Washington were positive for C. immitis in 

2010, suggesting that the hospitable range may be larger than previously 

considered.15 

 Interestingly, C. posadasii and C. immitis maintain discrete habitats; C. immitis 

is found in Central and Southern California. C. posadasii is found from Arizona to 

West Texas, as well as parts of California, Central and South America, and 

throughout Mexico.13,16 

Attempts to isolate Coccidioides spp. from the soil have been largely 

unsuccessful as a result of the highly sporadic and localized distribution of the 

fungus; as a result, the geographic range described above has been extrapolated 

primarily from epidemiologic studies and population surveys utilizing dermal 

hypersensitivity mapping.10 This represents a major challenge to the study of this 

pathogen; several barriers exist between climate impacts on fungal growth and 

epidemiological data. 

Climate Pressures 

Coccidioides spp. require a series of environmental mechanisms to survive 

and disseminate—described in the literature as the “grow and blow hypothesis.” 

The first hypothesized mechanism –grow – refers to the increased fungal growth 
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facilitated by an increase in soil moisture that results from precipitation. Studies in 

Arizona have identified several positive associations relating coccidioidomycosis 

incidence to precedent precipitation—ranging from one-month lags to seasonal 

precipitation lagged one year.6,17,18  

 However, research in California has yielded no such associations.19-21 This is 

potentially due to differential precipitation patterns; California precipitation occurs 

mainly in the winter, whereas Arizona experiences monsoon rains during late 

summer in addition to winter precipitation.19,22 It has also been suggested that the 

regional difference in Coccidioides species plays a role in the heterogeneity of these 

results.19 

The subsequent mechanism – blow—refers to dry conditions driving 

sporulation, desiccation and aerosolization of the pathogen, thus allowing for 

exposure via respiration. This mechanism has been corroborated in the literature 

through negative associations identified between precedent and concurrent 

precipitation and current coccidioidomycosis incidence, suggesting the suppression 

of spore-carrying dust by precipitation.17,18  

It has also been hypothesized that, since Coccidioides spp. are poor 

competitors, an initial stage of soil heating and drying facilitates the “grow and blow” 

hypothesis by partially sterilizing competitors from the soil surface, as Coccidioides 

spp. remain viable 10-30 cm below the soil surface.7 Following a period of 

precipitation, Coccidioides spp. surface soils regain hospitable conditions, resulting 

in Coccidioides spp. returning to the soil surface to continue growth.23  

Drought 
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 Given the climate conditions associated with coccidioidomycosis, drought 

stands out as an interesting potential driver of increased incidence. The 

southwestern United States is typically drier and hotter than the rest of the United 

States; however, future climate projections suggest this already parched region will 

become even hotter and drier.22,24 In the southwestern US, the 2001-2010 decade 

was the warmest on instrumental record, with greatest warming occurring during 

the spring and summer seasons—when Coccidioides spp. are likely growing after 

winter precipitation.22  

Since 2000, the southwestern United States has also experienced sustained 

episodes of drought. The 2001-2010 decade saw the second largest areal extent of 

drought in the southwest since 1901.22 Drought can generally be characterized in 

four ways—meteorological, agricultural, hydrological, and socioeconomic.25 This 

study pertains to hydrological drought—that is, drought associated with the effects 

of periods of precipitation shortfalls on surface and/or subsurface water supplies, 

such as soil moisture.25 This is captured through a drought index, which is a proxy 

based on climatic information, maintained on the assumption that it will quantify 

the true degree of drought hazard exerted.26   

Previous studies have assessed the relationship between coccidioidomycosis 

incidence and various climatic and environmental variables, including precipitation, 

temperature, wind speed, PM10 concentration, and drought.6,17-19,27,28 Drought, in 

these studies, has been represented by two of the Palmer indices—Palmer Z and 

Palmer Drought Severity Index (PDSI).6,27 These indices, representing short 

(meteorological)- and long (hydrological)-term drought, are calculated from 
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precipitation, temperature, evapotranspiration, soil moisture loss and recharge, and 

runoff components.27,29 Combined with the Palmer Hydrological Drought Index 

(PDHI), these three indices form the Palmer Index.29  

There are currently many indices aimed at capturing the impact of drought, 

with varying strengths and weaknesses. The Palmer Index represents monumental 

developments in drought monitoring; it was created in 1965, and remains one of the 

most widely used indices today.29,30 The index is based on a water balance model 

and measures both wet (positive) and dry (negative) conditions. However, the 

Palmer Index has shortcomings, including its inability to account for changes in 

vegetation in its water balance equations, inability to account for frozen 

precipitation/ground, and lack of comparability between locations and/or 

timescales.31  

 Additional indicators of drought have been validated and popularized in 

recent years; among them, the Standardized Precipitation Index (SPI) and the 

Standardized Precipitation Evapotranspiration Index (SPEI). In assessments of 

drought index performance in hydrologic, ecological and agricultural contexts, SPI 

and SPEI both met or outperformed Palmer Index and any offspring of Palmer 

Index.26  

 The Standardized Precipitation Index, as its name indicates, is based on 

precipitation alone. Using long-term monthly precipitation records (>30 years), a 

probability distribution function is fit to the data. Then, the cumulative distribution 

is transformed to a normal distribution with a mean of zero and standard deviation 

of one.32 This calculation relies on the assumptions that the variability of 
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precipitation is higher than that of other potential inputs, and that other potential 

inputs are stationary—in short, that any other variables are negligible.33 SPI has 

many strengths—among them is the ability to calculate SPI for a variety of 

timescales, allowing both short-term and longer-term water resources to be 

monitored. Additionally, because SPI is, by its own calculation, normally distributed, 

the frequency of extremes according to this index are consistent at any location 

and/or timescale.32,34  

 The Standardized Precipitation Evapotranspiration Index is based on both 

precipitation and potential evapotranspiration (PET), which is the water that would 

be removed via evaporation and transpiration, assuming water amount is not a 

limiting factor.35 Where the SPI is calculated using historic monthly precipitation in 

the calculation, SPEI utilizes the monthly difference between precipitation and PET, 

as a simplified representation of climatic water balance.33,36 PET can be calculated 

using multiple methodologies. A probability distribution is then fit to the data, at 

which point the cumulative distribution is transformed to a log-normal distribution, 

with a mean of 0 and standard deviation of 1. Similar to SPI, this index is 

advantageous in that it standardized, and can thus be compared with other SPEI 

values at any location and/or timescale. Additionally, SPEI accounts for 

evapotranspiration processes that stand to be impacted based on future climate 

projections.33  

 Given the benefits and drawbacks of each of these drought indices, the SPI 

and SPEI appear to be superior to the Palmer Index within the context of the 

southwestern United States. Both the SPI and SPEI excel in their standardization 
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across different climate zones, an important characteristic considering the 

differential climates of Arizona and California.  

Purpose of Study 

 The purpose of this study is to add to the body of literature relating climate 

conditions to coccidioidomycosis incidence. Previous studies have assessed the 

impact of climate and the environment in coccidioidomycosis incidence, primarily 

focused on Kern County in California, and Pima and Maricopa Counties in Arizona. 

This overall objective of this retrospective observational study is to describe the 

temporal characteristics of coccidioidomycosis incidence in relation to drought-

specific climate and environmental variables. This study is set in a broader 

geographic region than has been previously studies, encompassing 3 counties in 

Arizona and 20 counties in California. Further, this study attempts to apply 

additional drought characterization methods—SPI and SPEI—toward quantifying 

the association between drought and coccidioidomycosis. This study will improve 

our understanding of coccidioidomycosis and provide an opportunity to better 

understand temporal and geographic influences on factors controlling this pathogen.  

Methods 

Data Collection  

Coccidioidomycosis has been a nationally notifiable disease since 1995; as 

such, confirmed cases are to be reported to the Nationally Notifiable Diseases 

Surveillance System (NNDSS). Cases from California and Arizona meeting the 

Council of State and Territorial Epidemiologists (CSTE) case definition of laboratory 

and clinical confirmation of infection were included in the dataset. Cases confirmed 
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only by a single positive serological test in Arizona were included in the dataset 

starting in 2008, when the CSTE updated the case definition.2  

Cases were tabulated by county. Aggregate case counts were calculated for 

Maricopa, Pima and Pinal counties in Arizona and Contra Costa, Fresno, Kern, Kings, 

Los Angeles, Madera, Merced, Monterey, Orange, Placer, Riverside, Sacramento, San 

Bernardino, San Diego, San Luis Obispo, San Joaquin, Solano, Stanislaus, Tulare, and 

Ventura counties in California for every month from 2000 – 2013 to form a case 

count Excel dataset, which was imported into SAS software v. 9.3 (Cary, NC).37  

Censal and intercensal population estimates were obtained from the United 

States Census Bureau for each county in the study area from 2000-2013.38 

Population estimates were linearly interpolated to generate monthly population 

estimates for each county. The estimates for July of 2014 were unavailable during 

analysis, so interpolation lines from July of 2012 to July of 2013 were extended to 

December of 2013. Population estimates were added to the case count dataset in 

SAS.  Demographic data for each county was collected for the 2000 geography as 

well as the 2010 geography.  

State and county shapefiles were obtained from the 2013 TIGER/Line 

Shapefiles created by the United States Census Bureau.39 These files were created 

using the North American Datum 1983 Geographic Coordinate System.  Climate 

Division shapefiles were obtained from NOAA’s National Climatic Data Center 

(NCDC).40 Climate division boundaries were overlaid on county boundaries; using 

ArcGIS v. 10.2 (Redlands, CA), counties were assigned to climate divisions according 

to majority land area—that is to say, if a county was located in multiple climate 
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divisions, it was assigned to the division in which the majority of the county’s land 

area fell.41  

SPI, SPEI, average precipitation, and average, minimum and maximum 

temperature values were collected for each month from 1998 to 2008. The data was 

downloaded as a 3 by 3 kilometer gridded product from NCDC, with each grid 

representing the average parameter value for a given month. SPI and SPEI both 

range from -3 to 3, with negative values indicating dry conditions and positive 

values indicating wet conditions. Precipitation is expressed in millimeters, while 

temperature is expressed as degrees Celsius. The gridded data was converted to 

match county and climate division health boundaries using ArcGIS. Detailed data 

processing methods can be found in appendix I.  The converted data was then 

exported to SAS, where it was merged with the case count and population dataset.  

Temperature and precipitation averages were detrended in SAS by 

subtracting a line of best fit from each variable’s time series to create anomaly 

variables.  

Descriptive Analysis 

 Initially, a series of descriptive statistics were generated from the data. A 

crude incidence rate per 100,000 people was calculated in SAS for each county and 

climate division, using the linearly interpolated population estimates.  

Monthly and yearly crude incidence rates and cumulative case counts were 

then plotted graphically. Monthly and yearly climate and environmental variables 

were also plotted graphically. Graphs were compared, visually noting any patterns 

or trends.  
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Chloropleth maps of yearly averages for each variable were generated in 

ArcGIS as a method of visualizing the progression of coccidioidomycosis incidence 

and drought, and understanding changes in precipitation and temperature.  

Finally, associations between coccidioidomycosis and relatively static 

demographic variables were assessed using Pearson Product-Moment Correlation 

Coefficients.  

Bivariate Analysis 

Preceding bivariate analysis, correlations between all climate variables were 

assessed using Pearson Product-Moment Correlation Coefficients (table 1). Of the 80 

correlations, 73 were significant, suggesting similar variables may not contribute 

significantly or uniquely toward future modeling processes. Therefore, averages for 

precipitation, temperature, SPI and SPEI were retained for future analysis; all other 

climate variables were excluded.  

To assess bivariate relationships, the remaining variables were lagged up to 

24 months, as established in the literature, to better understand the temporal 

influence on climate-coccidioidomycosis associations.6 Lagged variables were 

created by assigning a given month’s value to the lagged month—for example, a 2-

month lag assigns the January SPI value to March. The assignment of lagged values 

was conducted in SAS. 

An initial exploration of bivariate relationships was conducted looking at the 

entire dataset, without stratifying for state or month. Multiple regression techniques 

equipped to handle case counts, including Poisson Regression, Zero-Inflated Poisson 

Regression, and Negative Binomial Regression were fit to the data; Negative 
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Binomial Regression was ultimately selected as the most appropriate technique for 

the data, as the count data are highly over-dispersed (mean=107.0; 

variance=44832.0). Case counts were set as the dependent variable, each climate 

parameter was set as the independent variable, and the natural log of the population 

served as the offset term. Regression coefficient estimates and their associated p-

values were recorded.  

Next, the exploration of bivariate relationships was expanded by stratifying 

by state, climate division and month, using the methods described above.    

Multivariate Analysis  

The bivariate analysis allowed for a simple assessment of precedent 

conditions on disease ecology; however, it did not capture the impact of both short-

term and seasonal mechanisms. To get at this relationship, seasonal variables were 

created based on a priori knowledge drawn from the literature; six-month averages 

were created for each climate variable, averaging 2- to 7-month lags.27 Proximal 

variables, which give some indication of conditions controlling exposure, were 

simply 1-month lagged climate variables. The 1-month lag was chosen over 

concurrent conditions as a means of accounting for the incubation period of the 

pathogen.  

Next, multivariate negative binomial regression models were constructed. 

Each model adhered to the following equation: 

ln(case count) = ß0 + ß1(proximal X1) + ß2(seasonal X1) + ß3(proximal X2) +  

ß4(seasonal X2) + ln(population) 
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where X1 always represents temperature, as it diverged most often from the other 

variables (table 1). X2 represents precipitation, SPI or SPEI. Models were 

constructed for the entire dataset, before stratifying by state, climate division, and 

month.  

Results 

Exploratory Analysis 

Climate 

Climate conditions in the study region varied both spatially and temporally. 

Temperatures ranged from -17.3oC to 46.5oC across the study region and period. 

Throughout the study period, yearly temperature values varied minimally (fig. 1). 

Looking at intra-annual temperature variability revealed an expected pattern of a 

gradual summer peak and winter trough across minimum, average and maximum 

values (fig. 2).  This same pattern held when sub-setting for state, though Arizona 

experienced warmer values across the time series for minimum, average, and 

maximum temperature variables (fig. 3).  

Precipitation patterns proved to be less uniform than temperature in this 

study region and period. Precipitation ranged from no precipitation to 1256.9 mm. 

Inter-annual variability in precipitation varied across the time series; notable peaks 

in precipitation were experienced by all variables in 1998, 2005 and 2010, captured 

most acutely by the maximum precipitation variable (fig. 4). Figure 5, characterizing 

intra-annual variation, shows a distinct winter peak in precipitation, with a very 

slight secondary peak in late summer. Sub-setting for state revealed distinct 
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precipitation patterns; Arizona experienced both late summer and winter peaks in 

precipitation, whereas California experienced only winter peaks (fig. 6).  

SPI and SPEI exhibited similar trends. Both indices experienced maxima and 

minima to the fullest extent the scale would allow (-3.0 to 3.0). Across the study 

period, drought conditions fluctuated. The SPI and SPEI captured similar patterns of 

peaks and troughs; the study region experienced extremely dry conditions in 2002 

and from 2006-2009, whereas more moist conditions were captured in 1998, 2005 

and 2010 (fig. 7, 10). Intra-annual variation in drought revealed fluctuation from 

January to May for SPI and SPEI minima, averages and maxima (fig. 8, 11).  The SPI 

and SPEI maxima gradually increased until July, before gradually decreasing into 

December. The SPI and SPEI minima gradually declined until September, before 

increasing into December. Sub-setting by state revealed similar patterns of 

fluctuation from January to May for SPI and SPEI minima, averages and maxima (fig. 

9, 12). Maximum and average SPI variables captured periods of drier conditions in 

California than those captured Arizona, whereas all SPEI variables depicted 

generally drier conditions in Arizona. An exception to this occurred during the 

summer season—June through September. During this period, California 

superseded Arizona as the drier region, as captured by the SPEI, owing to the 

summer precipitation period in Arizona. Interestingly, this phenomenon was not 

captured by the SPI.  

Assessing each of these climate components spatially revealed similar spatial 

trends. As determined in figures 3, 6, 9, and 11 and confirmed in figures 12-16, the 

warmest, driest conditions were found in the southeastern portion of the study area 
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(Arizona). The coolest, most damp conditions were found in the northwestern 

portion of the study area (N. California); the region in between served as a gradient 

between the two.  

Coccidioidomycosis 

Between 2000 and 2013, over 125,000 cases were reported in the study 

region. Of these cases, 86,250 (68.5%) occurred in Arizona and 39,580 (31.5%) 

occurred in California. Coccidioidomycosis incidence in this study area increased 

steadily from 2000 to 2006. From 2008 to 2011 incidence rose from 2.4 to just 

under 6 cases per 100,000, before falling to just above 2.5 cases per 100,000 in 2013 

(fig. 17).  Inter-annual variation remained low from January to November; in 

December, there was a striking increase in incidence (fig. 18). Sub-setting by state 

confirmed that far more cases occurred in Arizona than California (fig. 19). 

Additionally, while both states experienced a strong winter peak in incidence, 

Arizona showed a small secondary summer peak. Spatially, Arizona appears 

homogenous across the divisions and counties represented, while California showed 

highest incidence in the central, San Joaquin Valley area (fig. 20).   

Bivariate Analysis 

 Negative binomial regression analysis of the entire dataset, without 

stratification, revealed many significant bivariate associations. Table 2 displays the 

results of each negative binomial regression, summarized as the sign of the 

regression coefficient for each variable at each lag; significant associations are 

displayed. Temperature was positively associated with coccidioidomycosis case 

counts at all lags, while precipitation was negatively associated with counts at all 
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lags. SPI and SPEI were negatively associated with case counts up to 5- and 7-month 

lags, respectively; this means that as SPI/SPEI increased (i.e. conditions become less 

dry), case counts decreased. SPI and SPEI were intermittently negatively associated 

with case counts at later lags (SPI: 9-, 21- and 23-month lags; SPEI: 15-, 19-, 21-, 23- 

and 24-month lags).  

 Stratifying by state yielded dissimilar results to the previous analysis (table 

3). In Arizona, temperature was positively associated with case counts at 3-, 4- and 

15-month lags. Precipitation, SPI and SPEI were negatively associated with case 

counts from 1- to 3- month lags. Precipitation was also negatively associated from 6- 

to 9-month lags, while SPEI underwent a sign change and was positively associated 

with case counts at 11-, 12- and 16-month lags. Differing from Arizona, California 

temperature was exclusively negatively associated with case counts, at 1-, 7- 

through 13-, 16-, and 19- through 24-month lags. Precipitation underwent a 

dry/wet/dry pattern, with negative associations from 1- to 6-month lags, positive 

associations from 9- to 11-month lags, and negative associations again from 15- to 

18-month lags. SPI and SPEI were positively associated with case counts 

intermittently from 1- to 17-month lags (SPI) and 7- to 14-month lags (SPEI).  

 Stratification by climate division (table 4) revealed alternating patterns of 

heating and cooling—shown by alternating positive and negative associations 

between temperature and case counts—for the Central Coast Drainage, San Joaquin 

Drainage and Southeast Desert Basin Divisions in California, as well as the Southeast 

Division in Arizona. Similarly, alternating positive and negative associations 

between precipitation and case counts were seen in these same California climate 
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divisions, at similar lag periods. In the Southeast Division, periods of positively 

associated precipitation lined up with negatively associated temperature. SPI and 

SPEI in these four climate divisions appeared to generally line up with periods of 

positively associated precipitation. The remaining three climate divisions—

Sacramento and South Coast Drainage Divisions in California, and South Central 

Division in Arizona—showed no discernable patterns of positive or negative 

associations for any climate variable.  

 Assessing monthly relationships (table 5) revealed a strong seasonal pattern 

to the associations between monthly case counts and precipitation. Alternating 

patterns of positive and negative associations between precipitation and case 

counts occurred from January to December, descending one lag as each month 

progressed. Interpreting this phenomenon revealed a repeating pattern of positive 

associations between precipitation from July to September and case counts, 

followed by negative associations between precipitation from October to May and 

case counts. Temperature was positively associated with case counts at all lags, 

across all months. SPI lags from around July through September appeared to be 

negatively associated with case counts from January to May, at which point the 

pattern disappeared.  

Multivariate Analysis 

 Multivariate analysis of the entire dataset yielded three models, all with 

significant terms (table 6). All terms in model 1 were significant (seasonal and 

proximal temperature and precipitation). Seasonal temperature and SPI, as well as 

proximal temperature, were significant in model 2. Model 3 yielded only proximal 
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and seasonal temperature as significant parameters. Regression coefficients for 

proximal and seasonal temperature remained positive regardless of model, while 

coefficients for proximal and seasonal precipitation, SPI and SPEI were all negative.  

 Stratification by state revealed differentiation in regression coefficient signs 

and levels of significance for each model (table 7). Proximal and seasonal 

precipitation were the only terms whose sign and significance remained unchanged 

by stratification. Overall, Arizona models more closely resembled the unstratified 

models.  

 Stratification by climate division revealed similar models among the Arizona 

climate divisions, with few differences in sign and significance (table 8). In 

California, the San Joaquin Drainage, South Coast Drainage and Southeast Desert 

Basin Divisions maintained similar models. The Central Coast Drainage model had 

some similarities to the previous four models, in that the seasonal temperature was 

consistently positive for all models, as well as some characteristics of the SPI and 

SPEI variables. The Sacramento Drainage Division model was highly dissimilar to 

other models.  

Discussion 

 The differences between the SPI, SPEI and precipitation patterns in 

descriptive analyses suggested SPI and SPEI inclusion in climate-coccidioidomycosis 

analyses may have utility in capturing soil moisture conditions not fully captured by 

precipitation alone. In previous analyses, precipitation has been favored due to its 

predictive power as well as its purported ability to evaluate soil moisture 

conditions.17,18 However, the differential inter- and intra-annual patterns between 
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SPI/SPEI and precipitation suggested that precipitation may not provide a complete 

picture of drought and soil moisture conditions impacting Coccidioides spp.  The 

results of the bivariate analysis, however, did not testify to such an impact of SPI 

and SPEI. Consistent with the existing body of literature, precipitation is strongly 

associated with coccidioidomycosis in bivariate analyses. 

Analyses of the entire dataset (both bivariate and multivariate) provide an 

ambiguous first look into climatic impacts on coccidioidomycosis. While highly 

significant, these results did not resemble a “grow and blow” pattern—none of the 

variables undergo changes in coefficient sign, and temperature and precipitation 

remain significant at all lags. Stratification by month in the bivariate analysis 

demonstrated a strong seasonal pattern, particularly with regard to precipitation. 

The consistency of the pattern indicates a strong seasonal effect on case counts, 

however, it is unclear why this pattern emerged; months associated with peaks in 

precipitation are captured in both the negative and positive regions of the lagged 

associations.  

Stratification by state in both the bivariate and multivariate analyses showed 

tentative evidence of the “grow and blow” hypothesis. In Arizona, the bivariate 

analysis revealed precipitation was negatively associated with cases within the first 

three lagged months, suggesting that more immediate precipitation may suppress 

the “blow” component of the hypothesis, preventing fungal spores from 

aerosolizing; this same pattern was seen with SPI and SPEI.  In California, a more 

pronounced pattern emerged—precipitation up to 6 months prior to the month of 

interest was negatively associated with case counts, again suggesting suppression of 
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dust that, in otherwise dry conditions, may have facilitated spore exposure. This was 

preceded by positive associations between case counts and precipitation from 9- to 

11-month lags. It is unclear whether this represents the “grow” component of the 

hypothesis, or rather some unknown ecological process acting upon the fungus.  

Interestingly, patterns of alternating dry and wet conditions were more 

pronounced in California than Arizona—a phenomenon not previously seen in the 

literature. This novel pattern continued in the state stratified multivariate analysis. 

California models revealed that, taken together with proximal and seasonal 

temperature, proximal SPI and SPEI regression coefficients, though insignificant, 

were negative, while seasonal SPI and SPEI regression coefficients were significant 

and positive. This indicated that more intense proximal drought conditions 

(decreasing along the -3.0 to 3.0 scale) were associated with increased case counts, 

while more intense seasonal drought components were associated with decreased 

case counts. These results suggest that a sequence of dry and wet climate conditions 

is controlling some part of the Coccidioides spp. transmission process, potentially 

fungal growth—a pattern that has been established in Arizona. It is possible that 

these novel findings are a result of data processing and analysis; future studies 

should seek to confirm that these are not spurious results by adjusting for multiple 

comparisons. It is important to note that this pattern is captured in the multivariate 

analysis largely by the drought indices, rather than precipitation, suggesting climate 

conditions captured by these indices are not fully captured by precipitation. 

Limitations 
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A number of limitations emerged throughout the research process. One 

limitation inherent to this study is its emphasis on the relationship between climate 

and reported human cases as a proxy for the relationship between climate and 

Coccidioides spp. proliferation, due to fungal concentration data. Human cases are 

far removed from the climate and environmental mechanisms acting upon the fungi. 

Further, the resolution of the data available for this analysis proved to add another 

level of complexity and complication to disentangling the relationship between 

climate and coccidioidomycosis. The health data used in this analysis are very 

coarse—they represent only the month of reporting for cases, and do not include 

additional information concerning date of symptom onset or estimated date of 

exposure. As a result, the health data are further removed from influencing climate 

and environmental mechanisms. Though sensitivity analyses have established that 

explanatory power is retained using monthly reporting, models gain clarity and 

explanatory power when incorporating exposure adjustments.28 This is because the 

exposure-to-report date lag is highly variable, introducing additional noise into the 

analysis.42 

A number of uncertainties should be noted regarding the data used in this 

analysis. One such uncertainty pertains to the population estimates; migrant 

populations were likely not captured in the analysis. Two particular migrant 

populations come to mind, the first known as “snow birds,” or retired/semi-retired 

residents who come to the region for the winter. The second migrant population 

underestimated in population estimates is undocumented immigrants. It is 

unknown how these two populations contribute to coccidioidomycosis case counts.  
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Finally, this study is limited in its consideration of the coccidioidomycosis 

exposure pathway. This study assessed how proximal dry conditions facilitate 

exposure; however, many steps of the exposure pathway remain between proximal 

dry conditions and infection. These steps include disturbance of the soil, suspension 

of spores in the air, and human activity that may put people at risk. In analysis, these 

missing steps may be incorporated through inclusion of land use datasets that give 

indication of novel soil disturbance (construction or agricultural activity), as well as 

particulate matter/dust datasets.  

Recommendations for Future Study 

As mentioned previously, many important environmental, demographic and 

climatologic variables were not able to be included in this analysis. Future studies 

should develop methods of adjusting population offsets to account from migrant 

groups in both states. Inclusion of additional environmental factors – particularly 

dust, land use and soil moisture parameters—may provide a more nuanced 

understanding of conditions impacting fungal growth and dispersion. These data, 

previously difficult to estimate, are newly available through innovative modeling 

processes.43,44 

Additionally, future studies may incorporate a sensitivity analysis to better 

understand how the summarization of spatially variable climate data to health 

boundaries impacts findings. In this study, as previously mentioned, the unit of 

analysis was the climate division. One method of sensitivity analysis would be to 

replicate analyses using county as the unit of analysis. An additional method of 

sensitivity analysis would be to assign spatial weights to climate factors based on 
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population—likely utilizing census tracts—to understand if summarization to such 

large spatial unit is masking important climate exposures at a smaller scale.  

Conclusion 

This study builds on the existing literature relating climate variables to 

coccidioidomycosis incidence data to gain a better understanding of the impact of 

climate and seasonality on the ecology of this disease. Various statistical approaches 

were employed to explore the complex role of drought on this pathogen. Resultant 

associations, achieved through both bivariate and multivariate regression 

techniques, corroborate the “grow and blow” hypothesis in Arizona, as well as 

provide evidence for a similar pattern in California. The discovery of this pattern 

was facilitated through inclusion of robust drought indices in analyses, indicating 

that further investigation into the role of drought on the ecology of and exposure to 

Coccidioides spp. is warranted. 
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Figures & Tables 
 
TABLE 1. Pearson Product-Moment Correlation Matrix for all Climate Variables; insignificant associations bolded and 
italicized 
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FIGURE 1: Inter-Annual Variation in Minimum/Average/Maximum 
Temperature (1998 – 2013); Entire Study Area 
 

 
FIGURE 2. Intra-Annual Variation in Minimum/Average/Maximum 
Temperature; Entire Study Area 

 
FIGURE 3. Intra-Annual Variation in Minimum/Average/Maximum 
Temperature; by State 
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FIGURE 4: Inter-Annual Variation in Minimum/Average/Maximum Precipitation 
(1998 – 2013); Entire Study Area 

 
FIGURE 5. Intra-Annual Variation in Minimum/Average/Maximum 
Precipitation; Entire Study Area 
 

 
FIGURE 6. Intra-Annual Variation in Minimum/Average/Maximum 
Precipitation; by State 
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FIGURE 7: Inter-Annual Variation in Minimum/Average/Maximum SPI (1998 – 
2013); Entire Study Area 
 

 
FIGURE 8. Intra-Annual Variation in Minimum/Average/Maximum SPI; Entire 
Study Area 
 

 
FIGURE 9. Intra-Annual Variation in Minimum/Average/Maximum SPI; by State 
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FIGURE 10: Inter-Annual Variation in Minimum/Average/Maximum SPEI (1998 
– 2013); Entire Study Area 
 

 
FIGURE 11. Intra-Annual Variation in Minimum/Average/Maximum SPEI; Entire 
Study Area 
 

 
FIGURE 12. Intra-Annual Variation in Minimum/Average/Maximum SPEI; by 
State 
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FIGURE 13. Average Temperature by Climate Division 
 

 
FIGURE 14. Average Precipitation by Climate Division 
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FIGURE 15. Average SPI by Climate Division 
 

 
FIGURE 16. Average SPEI by Climate Division 
 



31 
 

 
FIGURE 17. Inter-Annual Coccidioidomycosis Mean Incidence (per 100,000); 
Entire Study Area 
 

 
FIGURE 18. Intra-Annual Coccidioidomycosis Mean Incidence (per 100,000); 
Entire Study Area 
 

 
FIGURE 19. Intra-Annual Coccidioidomycosis Mean Incidence (per 100,000); by 
State 
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FIGURE 20. Mean Coccidioidomycosis by County (left) and Climate Division 
(right) 
 
TABLE 2. Bivariate Negative Binomial Regression; Entire Study Area, Entire 
Study Period 

 
 
 
 
 
 

Lag Temp Prcp SPI SPEI
1 (+) (-) (-) (-)
2 (+) (-) (-) (-)
3 (+) (-) (-) (-)
4 (+) (-) (-) (-)
5 (+) (-) (-) (-)
6 (+) (-) (-)
7 (+) (-) (-)
8 (+) (-)
9 (+) (-) (-)

10 (+) (-)
11 (+) (-)
12 (+) (-)
13 (+) (-)
14 (+) (-)
15 (+) (-) (-)
16 (+) (-)
17 (+) (-)
18 (+) (-)
19 (+) (-) (-)
20 (+) (-)
21 (+) (-) (-) (-)
22 (+) (-)
23 (+) (-) (-) (-)
24 (+) (-) (-)
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TABLE 3. Bivariate Negative Binomial Regression; by State, Entire Study Period 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Lag Temp Prcp SPI SPEI Temp Prcp SPI SPEI
1 (-) (-) (-) (-) (-)
2 (-) (-) (-)
3 (+) (-) (-) (-) (-)
4 (+) (-) (+)
5 (-) (+)
6 (-) (-)
7 (-) (-) (+) (+)
8 (-) (-) (+) (+)
9 (-) (+)

10 (-) (+) (+) (+)
11 (+) (-) (+) (+) (+)
12 (+) (-) (+) (+)
13 (-) (+)
14 (+) (+)
15 (+) (-) (+)
16 (+) (-) (-) (+)
17 (-) (+)
18 (-)
19 (-)
20 (-)
21 (-)
22 (-)
23 (-)
24 (-)

Arizona California
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TABLE 4. Bivariate Negative Binomial Regression; by Climate Division, Entire Study Period 

Lag Temp Prcp SPI SPEI Temp Prcp SPI SPEI Temp Prcp SPI SPEI Temp Prcp SPI SPEI Temp Prcp SPI SPEI Temp Prcp SPI SPEI Temp Prcp SPI SPEI
1 (-) (-)
2 (+) (-) (-) (+) (-)
3 (-) (+) (-) (+) (-) (+)
4 (+) (+) (+) (-) (+) (+) (-) (+)
5 (+) (+) (+) (-) (+) (-) (+)
6 (+) (-) (-) (+)
7 (+) (+) (+) (-) (-)
8 (+) (+) (-) (+) (+) (-) (+) (+)
9 (-) (+) (-) (-)

10 (-) (+) (+) (+) (-) (+) (+) (-) (+) (+) (+) (-) (+) (+)
11 (-) (+) (+) (-) (+) (+) (-) (+) (+) (-) (+)
12 (-) (+) (+) (+) (+) (-) (+) (+) (+) (-) (+) (+) (+) (-) (+) (+) (+)
13 (-) (+) (+) (+)
14 (+) (+) (+) (+) (+) (+)
15 (+) (+) (-) (+) (+)
16 (+) (+) (+) (+) (-) (+) (+) (+)
17 (+) (-) (+) (+) (+)
18 (+) (+)
19 (+)
20 (-) (+) (-)
21 (+) (-) (+) (-)
22 (-) (+) (-) (+) (-) (+) (-) (+)
23 (-) (+) (-) (-) (-)
24 (-) (+) (+) (-) (+) (+) (-)

SoutheastCentral Coast Sacramento San Joaquin South Coast Southeast Desert South Central
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TABLE 5. Bivariate Negative Binomial Regression; Entire Study Area, by Month 

             
 
 
  
 
 
 
 
 
 
 
 
 

Lag Temp Prcp SPI SPEI Temp Prcp SPI SPEI Temp Prcp SPI SPEI Temp Prcp SPI SPEI Temp Prcp SPI SPEI Temp Prcp SPI SPEI
1 (+) (-) (+) (-) (+) (-) (-) (+) (-) (+) (-) (-) (+) (-)
2 (+) (-) (-) (+) (-) (+) (-) (+) (-) (-) (+) (-) (+) (-) (-)
3 (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+) (-)
4 (+) (+) (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (-)
5 (+) (+) (-) (+) (+) (+) (-) (-) (-) (+) (-) (+) (-) (+) (-)
6 (+) (+) (+) (+) (-) (+) (+) (+) (-) (-) (+) (-) (-) (+) (-)
7 (+) (+) (+) (+) (+) (-) (+) (+) (+) (-) (-) (-) (+) (-)
8 (+) (-) (+) (+) (+) (+) (+) (+) (+) (+) (-) (-) (-)
9 (+) (-) (-) (+) (-) (+) (+) (+) (+) (+) (-) (+) (+)

10 (+) (-) (+) (-) (+) (-) (+) (-) (+) (+) (+) (+)
11 (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+) (+)
12 (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+)
13 (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+) (-)
14 (+) (-) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+) (-)
15 (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+) (-)
16 (+) (+) (-) (+) (+) (-) (-) (+) (-) (+) (-) (+) (-)
17 (+) (+) (+) (+) (+) (+) (-) (-) (+) (-) (+) (-)
18 (+) (+) (+) (+) (-) (+) (+) (-) (+) (+) (-) (+) (-)
19 (+) (+) (+) (+) (+) (-) (+) (+) (-) (+) (+) (-)
20 (+) (-) (+) (+) (+) (+) (+) (-) (+) (+) (-) (+)
21 (+) (-) (+) (-) (+) (+) (+) (-) (+) (+) (+) (+)
22 (+) (-) (+) (-) (+) (-) (+) (-) (+) (+) (+) (+) (-)
23 (+) (-) (+) (-) (+) (-) (+) (-) (+) (+) (+)
24 (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+)

Lag Temp Prcp SPI SPEI Temp Prcp SPI SPEI Temp Prcp SPI SPEI Temp Prcp SPI SPEI Temp Prcp SPI SPEI Temp Prcp SPI SPEI
1 (+) (+) (+) (+) (+) (-) (+) (+) (+) (-) (-) (-) (+) (-) (-)
2 (+) (-) (+) (+) (+) (+) (+) (-) (+) (+) (+) (-)
3 (+) (-) (+) (-) (+) (+) (+) (+) (+) (+) (+)
4 (+) (-) (+) (-) (+) (-) (+) (+) (+) (+) (+)
5 (+) (-) (+) (-) (+) (-) (+) (-) (+) (+) (+)
6 (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+)
7 (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+)
8 (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+) (-)
9 (+) (-) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+) (-)

10 (+) (+) (+) (-) (+) (-) (+) (-) (+) (-) (+) (-)
11 (+) (+) (+) (+) (+) (-) (+) (-) (+) (-) (+) (-)
12 (+) (+) (+) (+) (+) (+) (+) (-) (+) (-) (+) (-)
13 (+) (+) (+) (+) (+) (+) (+) (+) (-) (+) (-)
14 (+) (-) (+) (+) (+) (+) (+) (+) (+) (+)
15 (+) (-) (+) (-) (+) (+) (+) (+) (+) (+) (+)
16 (+) (-) (+) (-) (+) (-) (+) (+) (+) (+) (+)
17 (+) (-) (+) (-) (+) (-) (+) (-) (+) (+) (+) (+)
18 (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+)
19 (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (-) (+) (-)
20 (+) (-) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (-)
21 (+) (+) (-) (-) (+) (-) (+) (-) (+) (-) (+) (-)
22 (+) (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+) (-)
23 (+) (+) (-) (+) (+) (+) (+) (-) (-) (+) (-) (+) (-)
24 (+) (+) (+) (+) (-) (+) (+) (-) (+) (-) (-) (+) (-) (-) (+) (-)

December

January February March April May June

July August September October November
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TABLE 6. Multivariate Negative Binomial Regression; Entire Study Area, Entire 
Study Period 

 
 
TABLE 7. Multivariate Negative Binomial Regression; by State, Entire Study 
Period 

 
 

1 2 3
Proximal (+)* (+)* (+)*
Seasonal (+)* (+)* (+)*
Proximal (-)*
Seasonal (-)*
Proximal (-) 
Seasonal (-)*
Proximal (-)
Seasonal (-)

*Significant at α=0.05

SPI

SPEI

1: ln(count) = β0 + β1(Proximal Temperature) + β2(Seasonal Temperature) 
+  β3(Proximal Precipitation) + β4(Seasonal Precipitation) + 
ln(population)

2: ln(count) = β0 + β1(Proximal Temperature) + β2(Seasonal Temperature) 
+  β3(Proximal SPI) + β4(Seasonal SPI) + ln(population)

3: ln(count) = β0 + β1(Proximal Temperature) + β2(Seasonal Temperature) 
+  β3(Proximal SPEI) + β4(Seasonal SPEI) + ln(population)

Model
Model Parameter

Temperature

Precipitation

1 2 3 1 2 3
Proximal (-) (+) (+) (-)* (-)* (-)*
Seasonal (+)* (+)* (+) (-)* (-) (-)
Proximal (-)* (-)*
Seasonal (-)* (-)*
Proximal (-)* (-)
Seasonal (-)* (+)*
Proximal (-)* (-)
Seasonal (-)* (+)*

*Significant at α=0.05

1: ln(count) = β0 + β1(Proximal Temperature) + β2(Seasonal Temperature) +  β3(Proximal Precipitation) + 
β4(Seasonal Precipitation) + ln(population)

2: ln(count) = β0 + β1(Proximal Temperature) + β2(Seasonal Temperature) +  β3(Proximal SPI) + β4(Seasonal SPI) + 
ln(population)

3: ln(count) = β0 + β1(Proximal Temperature) + β2(Seasonal Temperature) +  β3(Proximal SPEI) + β4(Seasonal SPEI) 
+ ln(population)

Model Parameter

Temperature

Precipitation

SPI

SPEI

Model
Arizona California
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TABLE 8. Multivariate Negative Binomial Regression; by Climate Division, Entire Study Period  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
Proximal (-) (-) (-) (-) (-) (-) (+) (+)* (+) (-) (+) (+) (+) (+) (+) (-) (+) (-) (+) (+) (+)
Seasonal (+) (+)* (+)* (-) (-) (-) (+)* (+)* (+)* (+)* (+)* (+)* (+)* (+)* (+)* (+) (+) (+) (+)* (+) (+)
Proximal (-) (-) (-) (-) (-) (-)* (-)*
Seasonal (+) (-) (-) (-) (+) (-)* (-)*
Proximal (+) (-) (-) (-) (-) (-)* (-)
Seasonal (+) (-) (+) (+) (+) (-)* (-)
Proximal (-) (+) (-) (-) (-) (-)* (-)
Seasonal (+)* (+)* (+)* (+) (+)* (-) (-)

*Significant at α=0.05

1: ln(count) = β0 + β1(Proximal Temperature) + β2(Seasonal Temperature) +  β3(Proximal Precipitation) + β4(Seasonal Precipitation) + ln(population)

2: ln(count) = β0 + β1(Proximal Temperature) + β2(Seasonal Temperature) +  β3(Proximal SPI) + β4(Seasonal SPI) + ln(population)

3: ln(count) = β0 + β1(Proximal Temperature) + β2(Seasonal Temperature) +  β3(Proximal SPEI) + β4(Seasonal SPEI) + ln(population)

Model Parameter

Temperature

Precipitation

SPI

SPEI

Model
Central Coast Sacramento San Joaquin South Coast Southeast Desert South Central Southeast
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Appendix I. Converting NetCDF files  
1. Import NetCDF files to ArcGIS by selecting the Make NetCDF Feature Layer 

tool from the Multidimension Toolset in ArcToolbox. Though Make NetCDF 
Raster Layer is the more commonly used tool, the climate data pulled from 
the National Climatic Data Center has variable spacing between coordinate 
values, yielding errors in this method.  

Note: If processing multiple dimensions at once (months, years, etc.)  
batch processing the import step may save time. To batch process,  
right click on the Make NetCDF Feature Layer tool and select Batch…  

2. Enter field values as prompted by the Make NetCDF Feature Layer window as 
prompted. Though Row Dimensions is presented as an optional field, fill with 
latitude and longitude variables; this will prevent error. Additionally, fill the 
Dimension Values field with the desired dimension (months, years, etc.). 

3. Run the tool once fields have been appropriately filled. 
4. Import a shapefile of desired health boundaries (counties, states, etc.). 
5. Spatially join each imported NetCDF dimension to the health boundary 

shapefile by right clicking the shapefile and selecting Join from Joins and 
Relates.  

6. Elect to “Join data from another layer based on spatial location.”  Select the 
desired NetCDF feature layer as the layer to join. Select appropriate summary 
statistics.  

7. Run the tool once fields have been appropriately filled. 
8. Export output shapefiles to SAS to be sorted, concatenated, and merged with 

health dataset.   
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