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Abstract 

Representation Theory of Finite Groups and its Applications 
By Siwei Xu 

In this paper, we give an exposition of the representation theory of finite groups: character 
theory, and Frobenius-Schur descent of complex representations to real ones. We also give 
the applications of representation theory in proofs to the following three theorems: 
Burnside theorem, on the degree of α+β, Eckmann’s proof on Hurwitz’s theorem.
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0. Introduction

The aim of this thesis is two fold. We give an exposition of the representation
theory of finite groups: character theory, and Frobenius-Schur descent of com-
plex representations to real ones. We give three applications of representation
theory to solution of problems.

Theorem 0.1. (Burnside) Let G be a finite group of order paqb, a, b ∈ Z+, p
and q primes. Then G is solvable.

The famous Feit-Thomson theorem asserts that every finite group of odd
order is solvable. The proof runs through 250 pages.

Theorem 0.2. Let F be a field of characteristic zero, and L is a finite extension
of F. Suppose α, β ∈ L, [F (α) : F ] = m and [F (β) : F ] = n with m and n
coprime. Then F (α, β) = F (α + β).

In general, F (α, β) = F (α + cβ) for almost all c ∈ F . But in the coprime
degree case, α + β serves as a primitive element for F (α, β) over F.

Theorem 0.3. (A theorem of Hurwitz) Let n ∈ Z+, n = u ·24α+β, with u odd,
and β = 0, 1, 2, 3. There exists z1, ...zn bilinear in x1, ...xp and y1, ...yn with
complex coefficients satisfying

(1) (x21 + x22 + ...+ x2p)(y
2
1 + y22 + ...+ y2n) = (z21 + z22 + ...+ z2p)

if and only if p ≤ 8α + 2β. Further, we can choose the solutions to be real.

An algebra structure on Rn is called a composition algebra if ||v · w|| =
||v|| · ||w|| where ||z|| = z21 + ...+ z2n for z = (z1, .., zn).

Corollary 0.4. The only composite algebras over R occur in dimension 1,2,4,
or 8 and they are R, C, H (quaternions algebra), and O (Octonion algebra).

We present complete proofs of the above results using results from represen-
tation theory of finite groups which we give an exposition in the thesis. The
proof of theorem 2 is due to Isaacs ([5]). The proof of theorem 3 presented
here is due to Eckmann ([4]).

Here is a brief description of the contents of the the thesis. In section
1, we recall some standard results from algebra, concerning Sylow theorems,
algebraic integers, Galois theory, and linear algebra. In section 2, we recall
results from representation theory of finite groups required for the proofs in
later sections. Sections 3, 4, and 5 are devoted to the proof of the three
theorems listed earlier.

1. Preliminaries

1.1. Sylow Theorems.

Lemma 1.1. Let p be a prime dividing |G|, then G has an element of order
p.

Theorem 1.2. Let G be a group of order pkm, k ≥ 1, and p - m, then G has
a subgroup of order pk (which is called the p-Sylow subgroup of G).
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Proof. The proof is by induction on the order of G.
(case 1) p divides |Z(G)|. By 1.1, ∃x ∈ Z(G) such that order(x) = p. The
group generated by x: <x> has order p, and is a normal subgroup of G, so
G/ < x > is a quotient group. Observe that |G/ < x > | = pk−1m. If k=1,
< x > is the p-Sylow subgroup we are looking for. By induction, G/ < x > has
a subgroup P̄ of order pk−1. We look at the quotient map φ : G→ G/ < x >.
Then, ker(φ) =< x >, and it is onto. P ′ = φ−1(P̄ ) is a subgroup of G. Now,
map P ′ to P̄ by restricting φ to P ′. The kernel is < x >, and ∃ a isomorphism
φ̃ from P ′/ < x > to P̄ . Thus, |P ′| = ppk−1 = pk. Thus, P ′ is the p-Sylow
subgroup of G.
(case 2) p does not divide |Z(G)|. By class equation, p - [G : CG(x)] for some
x not in Z(G). Then, pk | |CG(x)|, and |CG(x)| < |G|. By induction, CG(x)
has a subgroup P of order pk. Therefore, P is the p-Sylow subgroup of G. �

1.2. p-groups.

Lemma 1.3. The center of a p-group is nontrivial

Proof. Suppose G = pm, m ≥ 1. We have the class equation,

pm = |Z(G)|+
∑

[xi] noncentral

[G : CG(x)]

where CG(x) = {g ∈ G|gx = xg}. We know that p divides [G : CG(x)]
for all noncentral x. Hence, p divides |Z(G)|. Thus, |Z(G)| ≥ 1, and it is
nontrivial. �

1.3. Nilpotent and Solvable Groups.

Definition 1.4. A group G is solvable if there is a chain of subgroups
1 = G0 ⊆ G1 ⊆ G2 ⊆ ... ⊆ Gs = G

such thatGi is normal inGi+1 for all i, andGi+1/Gi is abelian for i = 0, 1, ., s−1

Theorem 1.5. Suppose G has a normal subgroup H. If H and G/H are both
solvable, G is solvable

Proof. Let φ : G→ G/H be the quotient map. Since G/H is solvable, there is
a chain of subgroups: G/H = G

′
0 ⊇ G

′
1 ⊇ ...G

′
n = e, such that G′i+1 is normal

in G′i and G
′
i/G

′
i+1 is abelian. Now, take φ−1 of every term in the chain, and

we get the following new chain:
G ⊇ G1 ⊇ G2 ⊇ ... ⊇ H

with Gi+1 normal in Gi and Gi/Gi+1 ' G
′
i/G

′
i+1 is abelian. Since H is also

solvable, we have H ⊇ H1 ⊇ ... ⊇ Hm = e, such that Hi+1 is normal in Hi

and Hi/Hi+1 is abelian. Combining the two chains, we conclude that G is
solvable. �

We recall the following standard facts on p-groups. (cf. [1])

Lemma 1.6. Let G be a p-group and H be a normal subgroup of G. Then
H ∩ Z(G) 6= {1}
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Definition 1.7. A subgroup H of G is maximal if H 6= G, and if H $ H ′,
H ′ = G

Lemma 1.8. Let |G| = pn, then there is a maximal subgroup in G, and all
maximal subgroups of G are normal and have order pn−1

Lemma 1.9. |G| = pn, and H is a normal subgroup of G. Suppose pb | |H|,
then H has a subgroup K of order pb that is normal in G.

Theorem 1.10. p-groups are solvable

Proof. Suppose |G| = pn. By 1.8, ∃G1 such that G1 is of order pn−1, and
it is normal in G. By 1.9, since pn−2 divides |G1|, G1 has a subgroup G2 of
order pn−2 that is normal in G. We can repeat this process, and get a chain of
subgroups:

G ⊇ G1 ⊇ G2 ⊇ ... ⊇ Gn = {1}
Each Gi/Gi+1 is abelian since it is a prime order group. Therefore, G is
solvable. �

1.4. Algebraic Integer.

Definition 1.11. α ∈ C is an algebraic integer if it is the root of a monic
polynomial with coefficients in Z

Theorem 1.12. α is an algebraic integer if and only if Z[α] is a finitely
generated Z-module

Proof. (⇒) Let α be an algebraic integer. Z[α] is a Z-module generated by
{1, α, α2, ...}. There ∃ a monic polynomial f(x) ∈ Z[x] such that f(α) = 0,
which means αn can be expressed as a linear combination of {1, α, α2, ..., αn−1}.
Therefore, Z[α] is finitely generated Z-module.
(⇐) Suppose Z[α] is a finitely generated Z-module and it is generated by
{β1, ..., βk}. Since αβi ∈ Z[α] for all i, there exists aij ∈ Z such that

αβi =
k∑
j=1

aijβj

Let A = (aij), then we have the following equation:

(αIk − A)

β1...
βk

 =

0
...
0


Let (αIk − A)∗ be the adjoint matrix so that

(αIk − A)∗(αIk − A) = det(αIk − A) = f(α)

Hence, f(α) · βi = 0 for 1 ≤ i ≤ k. Since 1 is a linear combination of
{β1, ...βk}, f(α) · 1 = 0. Since f(x) is a monic polynomial with coefficients in
Z, we conclude that α is an algebraic integer. �

Theorem 1.13. Let R ⊆ C be a subring containing Z which is finitely gener-
ated Z-module. Then every α ∈ R is an algebraic integer.
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Proof. Since Z is Noetherian, and R is finitely generated Z-module, given
α ∈ R, Z[α] ⊂ R is also a finitely generated Z-module. By 1.12, α is an
algebraic integer. �

Theorem 1.14. The algebraic integers in C form a ring

Proof. Let α, β be two algebraic integers, then Z[α, β] is a finitely generated
Z-module and α − β ∈ Z[α, β] is an algebraic integer by 1.12. Similarly,
α · β ∈ Z[α, β] is also an algebraic integer. The set of algebraic integers is
closed under multiplication and addition. Thus, it forms a ring. �

Theorem 1.15. The algebraic integers in Q are the elements of Z
Proof. Suppose α ∈ Q,we can write it as c

d
. Since it is an algebraic integer,

∃f(x) = xn + an−1x
n−1 + ...+ a1x+ a0 such that f(α) = 0. Plug it in and get

a0 + a1
c

d
+ a2(

c

d
)2 + ...+ (

c

d
)n = 0

Multiply both side by dn, and get
a0d

n + a1cd
n−1 + ...+ cn = 0

This is equivalent to
d(a0d

n−1 + ...+ an−1c
n−1) = −cn

By the equality of rational numbers, c and d are coprime. Since d | cn, d=1.
Hence, α is an integer. �

1.5. Field Extensions and Galois Theory.

Theorem 1.16. Let p(x) ∈ F [x] be irreducible. Let E be a field extension of
F and a be a zero of p(x) in E. Then, there is an F-isomorphism:

φ :
F [x]

< p(x) >
→ F (a)

which maps x+ < p(x) > to α.

Corollary 1.17. Let p(x) ∈ F [x] be irreducible. Let E be a field extension of
F and a, b be distinct zeros of p(x) in E. Then, there is an F-isomophism:

φ : F (a)→ F (b)

such that φ(a) = b.

Theorem 1.18. If K is a field extension of F and α, β ∈ K, with α, β alge-
braic over F and deg(α) = m, deg(β) = n, such that m,n are coprime, then
[F (α, β) : F ] = mn.

Proof. By the multiplicativity of degree in a tower of field extensions, we get
the following two equations:

[F (α, β) : F ] = [F (α, β) : F (α)][F (α) : F ] = t1 ·m
[F (α, β) : F ] = [F (α, β) : F (β)][F (β) : F ] = t2 · n

Since m, and n are coprime, [F (α, β) : F ] ≥ mn. We also know that [F (α, β) :
F ] ≤ mn. Therefore, [F (α, β) : F ] = mn. �
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1.6. Linear Algebra/Spectral Theorem.
We recall spectral theorem (cf. [2]).

Theorem 1.19. Given a real symmetric matrix A, ∃C ∈ GLn(R), CCT = In

and CAC−1 =

λ1 . . . 0
... . . .
0 λn


Theorem 1.20. Given a hermitian symmetric matrix A, i.e. ĀT = A, ∃

unitary matrix V ∈ GLn(C) such that V AV −1 =

λ1 . . . 0
... . . .
0 λn


Remark 1.21. Given a hermitian symmetric positive definite matrix A over

C, by 1.20, ∃ unitary matrix V such that V AV −1 =

λ1 . . . 0
... . . .
0 λn


Hence, A = V −1

λ1 . . . 0
... . . .
0 λn

V . Let B = V −1


√
λ1 . . . 0
... . . .
0

√
λn

V

In this case, A = B2, and B is a hermitian symmetric positive definite matrix.
Further, B is a real polynomial in A (∃P ∈ R[x] such that P (λi) =

√
λi for

1 ≤ i ≤ n and hence P(A)=B). Suppose A = T 2. Since P (T 2) = B, T
commutes with B.

2. Representation Theory of Finite Groups

In this section, we recall the following facts of representation theory of finite
groups. (cf. [3])

2.1. Introduction.
Let V be a vector space over the field C of complex numbers and let GL(V)

be the group of isomorphisms of V onto itself. The group GL(V) is identifiable
with the group of invertible square matrices of order n. Let G be a finite group.

Definition 2.1. A linear representation of G in V is a homomorphism ρ
from the group G into the group GL(V ).

Definition 2.2. Let ρ and ρ
′ be two representations of group G in vector

spaces V and V ′ . Then, we say ρ and ρ′ are isomorphic if ∃ a linear isomor-
phism φ : V → V

′ such that

φ ◦ ρs = ρ
′

s ◦ φ ∀s ∈ G

Definition 2.3. Let g be the order of G and let V be a vector space of
dimension g, with a basis (et)t∈G indexed by the elements t of G. For s ∈ G,
let ρs be the linear map of V into V which sends et to est; this defines a linear
representation, which is called the regular representation of G.
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Lemma 2.4. Given a representation ρ : G → GL(V ). For every s ∈ G, the
absolute value of eigenvalue of ρs is 1.

Proof. Since G is a finite group, element s has order k, and ρks = id. Suppose
λ is an eigenvalue of ρs. We have λk = 1. Taking the absolute value of both
side, we get that |λ| = 1. �

Theorem 2.5. Let ρ : G → GL(V ) be a linear representation of G in V and
letW be a vector subspace of V stable under G. Then there exists a complement
W0 of W in V which is stable under G, i.e. V = W ⊕W0.

Proof. Let W ′ be an arbitrary complement of W in V, and let p be the corre-
sponding projection of V onto W. Define

p0 =
1

|G|
∑
t∈G

ρt · p · ρ−1t

Since ρt preserves W, we have p0 maps V into W. For x ∈ W , we have ρ−1t x ∈
W . Since p is a projection onto W, pρ−1t x = ρ−1t x. This implies p0x = x.
Hence, p0 is a projection onto W. Let W0 = ker(p0). Claim that W0 is stable
under G: We have ρs · p0 = p0 · ρs for all s ∈ G. Suppose x ∈ W0, p0x = 0, and
p0 · ρs(x) = ρs · p0(x) = 0. This implies that ρs(x) ∈ W0. Hence, W0 is stable
under G. �

Definition 2.6. Let ρ be a linear representation of G. We say that it is irre-
ducible if V is not 0 and if no vector subspace of V is stable under G, except
for course 0 and V

Theorem 2.7. Every representation is a direct sum of irreducible representa-
tions.

Proof. Let V be a linear representation of G. We perform induction on dim(V )
If dim(V ) = 0, the theorem is obviously true. For V of degree larger than 0,
if V is irreducible, we are done. If V is not irreducible, there is a nonzero
G-invariant subspace W and W 6= V . By 2.5, we have V = W ⊕ W0 with
dim(W ) < dim(V ), dim(W0) < dim(V ), and W,W0 both stable under G.
By induction hypothesis, both W and W0 can be written as a direct sum of
irreducible representations. Therefore, V can be written as a direct sum of
irreducible representations. �

Definition 2.8. Let ρ1 : G → GL(V1) and ρ2 : G → GL(V2) be two linear
representations of a group G. For s ∈ G, define an element ρs of GL(V1 ⊗ V2)
by the condition:

ρs(v1 ⊗ v2) = ρ1s(v1)⊗ ρ2s(v2)
We write ρs = ρ1s ⊗ ρ2s. Then ρs defines a linear representation of G in V1⊗ V2
which is called the tensor product of the given representations.

Let V be a representation of group G, and let θ be an automorphism of
V ⊗ V such that θ(x ⊗ y) = y ⊗ x for all x, y ∈ V . Then, θ2 = id and θ has
{1,−1} as eigenvalues.
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Theorem 2.9. The space V ⊗ V decomposes into a direct sum:

V ⊗ V = Sym2(V )⊕ Alt2(V )

where
Sym2(V ) = {w ∈ V ⊗ V |θ(w) = w}
Alt2(V ) = {w ∈ V ⊗ V |θ(w) = −w}

Both Sym2(V ) and Alt2(V ) are G-invariant subspace of V ⊗ V .

2.2. Character.

Definition 2.10. Let ρ : G → GL(V ) be a linear representation of a finite
group G in the vector space V. For each s ∈ G,

χρ(s) = Tr(ρs) =
∑
i

Aii =
∑
i

λi

where λi is the eigenvalues of the matrix representation A of ρs. The complex
valued function χρ is called the character of the representation ρ.

Theorem 2.11. If X is the character of a representation ρ of degree n, we
have:
(i) χ(1) = n
(ii)χ(s−1) = χ(s)∗ for s ∈ G
(iii) χ(tst−1) = χ(s) for all s,t ∈ G
Property (iii) implies χ is constant on elements in the same conjugacy class.

Theorem 2.12. (Schur’s Lemma) Let ρ1 : G→ GL(V1), ρ2 : G→ GL(V2) be
two irreducible representations of G and let f be a linear mapping of V1 into
V2 such that ρ2s ◦ f = f ◦ ρ1s for all s ∈ G. Then:
1) If ρ1 and ρ2 are not isomorphic, we have f = 0.
2) If V 1 = V 2 and ρ1 = ρ2, f is scalar multiple of the identity map.

Proof. Suppose ρ1 and ρ2 are not isomorphic. Now, suppose f 6= 0. Let
W1 = ker(f). For x ∈ W1, fρ1sx = ρ2sfx = 0. Hence, ρ1sx ∈ W1, and W1 is
stable under ρ1. Since ρ1 is irreducible,W1 = 0 or V1. IfW1 = V1, ker(f) = V1
and f = 0. That is not the case, so W1 = 0. Let W2 = Img(f). For y ∈ W2,
∃x ∈ W1 such that f(x) = y. We have ρ2sfx = fρ1sx ∈ W2, so ρ2sy ∈ W2 and
W2 is stable under ρ2. Since ρ2 is irreducible, W2 = 0 or V2. Since f 6= 0,
W2 = V2. Hence, f is bijective. This contradicts the assumption that ρ1 and
ρ2 are not isomorphic (2.2). Therefore, f = 0.

Suppose now that V = V1 = V2, and ρ = ρ1 = ρ2. Let λ be an eigenvalue
of f, and f ′ = f − λ. Let W be the kernel of f ′. For all x ∈ W and s ∈ G, we
have f ′ρs(x) = ρsf

′(x) = 0. So ρs(x) ∈ W , and W is stable under G. Since ρ
is irreducible, W is either equal to V or 0. It is not zero, since there exists at
least one eigenvector in ker(f ′). Thus, W = V and f ′ = 0. Thus, f is equal to
λI. �

Remark 2.13. Let h be a linear mapping of V1 into V2 and g = |G|. Let

h0 =
1

g

∑
t∈G

(ρ2t )
−1hρ1t
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It’s easy to verify that ρ2sh0 = h0ρ1s.
(case 1) Suppose ρ1 and ρ2 are not isomorphic. Then, by (1) in Schur’s lemma,
h0 = 0.
(case 2) Suppose V = V1 = V2 and ρ = ρ1 = ρ2. Let n = dim(V ). Then, by
(2) in Schur’s lemma, h0 = λI. Furthermore,

Tr(h0) =
1

g

∑
t∈G

Tr(ρ−1t )Tr(h)Tr(ρt) = Tr(h)

We know that Tr(h) = Tr(h0) = nλ, so λ = Tr(h)
n

. Hence, h0 = Tr(h)
n
I.

Now we rewrite the remark assuming that ρ1, ρ2, h, h0 are given in matrix
form:

ρ1t = r(t), ρ2t = d(t), h = x, h0 = y

Then, for arbitrary i1, i2, we have:

yi2i1 =
1

g

∑
t,j1,j2

di2j2(t
−1)xj2j1rj1i1(t)

We plug in case 1 and case 2 to the equation above and get the following
corollary:

Corollary 2.14. For arbitrary i1, j1, i2, j2,
1) If ρ1, ρ2 are not isomorphic,

1

g

∑
t∈G

di2j2(t
−1)rj1i1(t) = 0

2) If ρ1 = ρ2 of degree n,

1

g

∑
t∈G

ri2j2(t
−1)rj1i1(t) =

{
1
n
, if i1 = i2 and j1 = j2.

0, otherwise.
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Definition 2.15. Let φ and ψ be complex valued functions on G. Define

(φ|ψ) =
1

g

∑
t∈G

φ(t)ψ(t)∗

< φ,ψ >=
1

g

∑
t∈G

φ(t)ψ(t−1)

Remark 2.16. If χ is the character of a representation of G, (φ|χ) =< φ, χ >
for all function φ on G by (ii) in 2.11: χ(t−1) = χ(t)∗ ∀t ∈ G

With this new notation, corollary 2.14 can be written as:

Corollary 2.17. Let ρ1, ρ2 be two irreducible representations. Writing ρ1, ρ2
in matrix form:

ρ1t = r(t), ρ2t = d(t)

For arbitary i1, j1, i2, j2,
1) If ρ1, ρ2 are not isomorphic, < ri1j1 , di2j2 >= 0
2) If ρ1 = ρ2 of degree n,

< ri1j1 , ri2j2 >=

{
1
n
, if i1 = i2 and j1 = j2.

0, otherwise.

Theorem 2.18. (i) Let χ be the character of an irreducible representation ρ
of degree n, we have (χ|χ) = 1
(ii) If χ and χ′ are the characters of two nonisomorphic irreducible represen-
tations, we have (χ|χ′) = 0

Proof. (i) Let ρ be an irreducible representation with character χ, given in
matrix form ρt = (rij(t)). We have χ(t) =

∑
i rii(t). Hence, by case 2 in 2.17

(χ|χ) =< χ|χ >=
∑
i,j

< rii, rjj >=
n

n
= 1

(ii) is proved in the same way, by applying case 1 in 2.17. �

Theorem 2.19. Let V be a linear representation of G with character φ, and
suppose V decomposes into a direct sum of irreducible representations:

V = W1 ⊕W2 ⊕ ....⊕Wk

Then, if W is an irreducible representation with character χ, the number of
Wi isomorphic to W is equal to (φ|χ) =< φ, χ >

Proof. Let χi be the character of Wi, we have φ = χ1 + ...+ χk, and

(φ|χ) = (χ1 + ...+ χk|χ) = (χ1|χ) + ...+ (χk|χ)

By 2.18, (χi|χ) = 0 for Wi not isomorphic to W , and (χi|χ) = 1 for Wi

isomorphic to W . Therefore, (φ|χ) is equal to the number of Wi isomorphic
to W . �
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LetW1, ...,Wh be all non-isomorphic irreducible representations of group G.
Let χ1, ..., χh be its corresponding character function, and n1, n2, ..., nh be the
degree of the representations. Let R be the regular representation of G, rG
be its character function, and let g = dim(R) = |G|. Hence, rG(1) = g, and
rG(s) = 0 for s 6= 1.

Theorem 2.20. Every irreducible representationWi is contained in the regular
representation with multiplicity equal to its degree ni.

Proof. By 2.19, number of irreducible representations that are isomorphic to
W in regular representation is equal to

< rG, χi >=
1

g

∑
t∈G

rG(t)χi(t
−1) =

g

g
· χi(1) = ni

�

Corollary 2.21. The degree ni satisfy the relation:
∑h

i=1 n
2
i = g

Proof. By 2.20, for s ∈ G, rG(s) =
∑

i χi(s)ni. Plugging in s = 1 to the
equation, we get

h∑
i=1

n2
i = rG(1) = g

�

Corollary 2.22. If s ∈ G is different from 1, we have
∑r

i=1 niχi(s) = 0

Proof. Plugging in s 6= 1 to the equation in the last proof, we get
r∑
i=1

niχi(s) = rG(s) = 0

�

Lemma 2.23. Let f be a class function on G, and ρ : G→ GL(V ) be a linear
representation of G. Define ρf : V → V as

ρf =
∑
t∈G

f(t)ρt

If ρ is irreducible of degree n and character χ, ρf = λI, where λ = g
n
(f |χ∗).

Proof. Suppose ρ : G→ GL(V ) is irreducible representation of degree n with
character χ. It is easy to verify that ∀s ∈ G, ρsρf = ρfρs. By Schur’s lemma,
ρf = λI. By construction of ρf , we have

nλ = Tr(ρf ) =
∑
t∈G

f(t)χ(t) = g(f |χ∗)

Hence, λ = g
n
(f |χ∗). �
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Theorem 2.24. Let H be the space of class functions on G. Then, {χ1, χ2, .., χh}
form an orthonormal basis of H.

Proof. Theorem 2.18 shows that χi is orthonormal and linearly independent
in H. It remains to prove that they generate H. Since χ∗i is spanned by
χi, it is enough to show that for every f ∈ H orthogonal to χ∗i for all i,
f = 0. Let f ∈ H and (f |χ∗i ) = 0 for all i. Let ρ be a representation of G,
and ρf =

∑
t∈G f(t)ρt. By 2.23, ρf = 0 if ρ is irreducible. From direct sum

composition, we conclude that ρf is always zero. Now, suppose ρ : G→ GL(V )
is the regular representation of degree n. Let (et)t∈G be the basis of V that is
indexd by t ∈ G and e1 corresponds to 1 ∈ G. We have

ρfe1 =
∑
t∈G

f(t)ρte1 =
∑
t∈G

f(t)et

Since ρf = 0, we have f(t) = 0 for all t ∈ G. Hence, f = 0. �

Theorem 2.25. Number of irreducible representations (up to isomorphism)
of G is equal to number of conjugacy classes in G.

Proof. Let C1, ..., Ck be the conjugacy classes in G. Let fi be the class function
on G such that fi(x) = 1 ∀x ∈ Ci, and 0 for all other elements. It is easy to
verify that f1, ...fk forms a basis of the space H. By 2.24, χ1, ...χh also forms
a basis of H, we have h = k. Hence, the number of irreducible representations
of G is equal to number of conjugacy classes in G. �

2.3. Real Representation.

Definition 2.26. Let ρ : G → GL(V ) be a representation of G over C. We
say ρ is realizable over R if there is a G-invariant R−subspace V0 of V such
that V = V0 ⊕ iV0. We say (V, ρ) descends to (V0, ρ0) where ρ0 = ρ/V0.

Definition 2.27. A Hermitian scalar product on V is a map: V ×V → C
denoted as (x|y) satisfying, for a, b ∈ C, x, y ∈ V,
1) (ax|y) = a(x|y)
2) (x|by) = b(x|y)

3) (x|y) = (y|x)
4) (x|y) is biaddictive
(x|y) is positive definite if (x|x) > 0 for all x ∈ V, x 6= 0.
(x|y) is G-invariant if given a representation ρ, (x|y) = (ρsx|ρsy) ∀s ∈ G.

Remark 2.28. Let ρ : G→ GL(V ) be a representation of G over C. Then V
admits a Hermitian positive definite scalar product that is G-invariant:
Define a map A : Cn×Cn → C by A((x1, ...xn), (y1, ..., yn)) = x1y1 + ...+xnyn.
Then, A is a positive definite hermitian product on Cn. Let φ : V → Cn

be an isomorphism of C-vector spaces. We can construct a positive definite
hermitian product (x|y) on V by

(x|y) = A(φ(x), φ(y))
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Since (x|y) is a positive definite hermitian product on V, we define

(x, y) =
1

|G|
∑
g∈G

(ρgx|ρgy)

which is a G-invariant positive definite hermitian scalar product on V .

Remark 2.29. Let ρ : G → GL(V ) be a representation of G over C. Let
V
′

= Hom(V,C) be the dual vector space. Define a linear representation
ρ
′
: G→ GL(V

′
), for every f ∈ V ′ , v ∈ V :

ρ
′
(s)(f)(v) = f(ρ−1v)

Let B : V × V → C be a G-invariant symmetric bilinear form. It induces a
map:

B̃ : V → V
′
by B̃(x)(y) = B(x, y)

which is G-module homomorphism. For g ∈ G, x, y ∈ V ,

B̃(ρgx)(y) = B(ρgx, y) = B(x, ρ−1g y) = B̃(x)(ρ−1g y) = ρ̃gB̃(x)(y)

Hence, B̃(ρx) = ρ̃B̃(x).

Theorem 2.30. (Frobenius-Schur Theorem) Let ρ : G → GL(V ) be a repre-
sentation of G over C. Then, ρ is realizable over R (2.26) if and only if there
is a nonzero G-invariant symmetric bilinear form on V.

Proof. Let ρ : G→ GL(V ) be a representation of G over C.
We first prove the forward direction. Suppose ρ is realizable over R. By
definition, there ∃ a G-invariant R-subspace V0 ⊆ V such that V = V0 ⊕ iV0.
This implies every vector in V can be written as v0 + v1i, v0, v1 ∈ V0
Suppose {v1, ..., vn} is basis of the R-subspace V0. Let φ : V0 → Rn map∑

i civi to (c1, c2, ..., cn). We have the scalar product on Rn:

(x1, ..., xn) · (y1, ..., yn) =
∑

xiyi

Define B′0 : V0 × V0 → R by B′0(x, y) = φ(x) · φ(y). Since we are taking the
inner product of two vectors, B′0 is a symmetric and bilinear form on V0. We
set B0 : V0 × V0 → R to be

B0(x, y) =
1

|G|
∑
g∈G

B
′

0(ρgx, ρgy)

Then, we know that B0 is a G-invariant symmetric bilinear form. We can
extend B0 to B : V × V → R by

B(v0 + v1i, w0 + w1i) = B0(v0, w0)−B0(v1, w1) + i(B0(v0, w1) +B0(v1, w0))

We verify that B is a nonzero symmetric bilinear G-invariant form on V by
the fact that B0 is a nonzero symmetric bilinear G-invariant form on V0.
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Now, we prove the opposite direction. Suppose there is a symmetric bilinear
G-invariant form B : V × V → C. Then B induces a G-isomorphism B̃ : V →
V
′ (2.29) by

B̃(x)(y) = B(x, y)

Step 1: Let (x|y) be the G-invariant positive definite hermitian scalar product
on V defined in 2.28. For x ∈ V , let fx : V → C be the map fx(y) = (x|y).
Check that f is linear: for λ ∈ C

fx(λy) = (x|λy) = (λy|x) = λ(y|x) = λ(x|y) = λfx(y)

Therefore, fx ∈ V ′, and we can define a map from V → V ′ by mapping x to
fx. We claim that this map is an isomorphism by proving the kernel is zero.
Suppose x ∈ V and fx(y) = 0 ∀y ∈ V . This means (x|y) = (y|x) = 0 ∀y ∈ V .
Hence (x|x) = 0. Since the hermitian product is positive definite, we have
x = 0. Therefore, x→ fx is an isomorphism.

Step 2: For x ∈ V , B̃(x) ∈ V ′ . Then, ∃y ∈ V such that fy = B̃(x). We call
this transform y = φ(x). Then the map φ : V → V satisfies the following
relationship:

B(x, y) = B̃(x)(y) = fφ(x)(y) = (φ(x)|y) ∀x, y ∈ V

First, we claim that φ is semilinear. For all x, y ∈ V ,

B(λx, y) = (φ(λx)|y) = (y|φ(λx))

λB(x, y) = λ(φ(x)|y) = λ(y|φ(x)) = (y|λφ(x))

Since B is bilinear, B(λx, y) = λB(x, y). Hence, (y|φ(λx)) − (y|λφ(x)) =
(y|φ(λx)− λφ(x)) = 0 implies that φ(λx) = λφ(x).
Second, we claim that φ and φ2 are both G-invariant. Since (x|y) is G-
invariant, we have:

B(x, y) = (φ(x)|y) = (y|φ(x))

B(ρgx, ρgy) = (φ(ρgx)|ρgy) = (ρgy|φ(ρgx)) = (y|ρ−1g φ(gx))

Since B is G-invariant, B(x, y) = B(ρgx, ρgy). Hence, ρ−1g φ(ρgx) = φ(x), and
φ(ρgx) = ρgφ(x). With the same deduction and the fact that φ is G-invariant,
we get that φ2 is also G-invariant.
Third, we claim that φ2 is Hermitian symmetric. Since B is symmetric, we
have:

(y|φ2(x)) = (φ2(x)|y) = B(φ(x), y) = B(y, φ(x)) = (φ(y)|φ(x)) = (φ(x)|φ(y))

For similar reasons,
(φ2(y)|x) = (φ(x)|φ(y))

Hence, (y|φ2(x)) = (φ2(y)|x).
Last, we claim that φ2 is positive definite:

(φ2(x)|x) = (φ(x)|φ(x)) > 0 if x 6= 0
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Therefore, φ2 : V → V is a C-linear, hermitian symmetric, positive definite,
and G-invariant map.

Step 3: By 1.21, there ∃ C-linear, hermitian symmetric, positive definite map
u : V → V , which is a polynomial in φ2 such that φ2 = u2. Then, u is G-
invariant and commutes with φ. Define σ : V → V by σ = φu−1. Since φ and
u are both G-invariant, σ is also G-invariant. Since φ is semilinear, and u is
linear, we get that σ is semilinear. Because u commutes with φ, we have:

σ2 = φu−1φu−1 = φ2u−2 = id

Therefore, σ : V → V is a semilinear automorphism G-invariant map with
σ2 = id. Considering σ as an R-isomorphism, σ is R-linear, and σ2 = id.
Hence, {1,−1} are the only eigenvalues of φ. The corresponding eigenspaces
are:

V0 = {v ∈ V |σ(v) = v}
V1 = {v ∈ V |σ(v) = −v}

We have V = V0 ⊕ V1. Further, V1 = iV0, so V = V0 ⊕ iV0. Since σ is G-
invariant, V0 is G-invariant, Therefore, (V, ρ) is realizable over R from (V0, ρ0)
where ρ0 = ρ/V0. �

Theorem 2.31. Let ρ : G→ GL(V ) be a representation of G over C, and B
be a symmetric bilinear form on V . Then, B is G-invariant if and only if ρg
is orthogonal for every g ∈ G.
Remark 2.32. By Frobenius-Schur’s theorem, and 2.31, those orthogonal rep-
resentations are equivalent to real representations.

Theorem 2.33. Let ρ : G → GL(V ) be an irreducible representation of G
over C of degree n, and let X be its character. Define

S =
1

g

∑
s∈G

χ(s2)

Then, S is equal to 1, -1, or 0.

Proof.
Step 1: By theorem 2.9,

V ⊗ V = Sym2(V )⊕ Alt2(V )

Let χ2
τ , χ2

λ be the character of Sym2(V ) and Alt2(t) respectively. Then, for
every s ∈ G

χ2
τ (s) =

1

2
[χ(s)2 + χ(s2)]

χ2
λ(s) =

1

2
[χ(s)2 − χ(s2)]

Subtracting the bottom equation from the upper one, and summing it over
every s, we get ∑

s

χ(s2) =
∑
s

(χ2
τ (s)− χ2

λ(s))
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By definition,

S =
1

g

∑
s∈G

χ(s2) =< 1, χ2
τ > − < 1, χ2

λ >

By 2.19, < 1, χ2
τ > is the number of times the irreducible trivial representation

occurs in Sym2(V ), and < 1, χ2
λ > is that of Alt2(V ).

Step 2: Suppose φ is a G-invariant bilinear form on V , then φ is either sym-
metric or alternating.

Proof. The G-invariant bilinear form φ induces G-homomorphism φ̃ : V →
V
′ by φ̃(x)(y) = φ(x, y). Suppose ∃ another G-invariant bilinear form ψ, it

induces ψ̃ : V → V
′ , which is also a G-isomorphism. Hence, ψ̃−1φ̃ : V → V

is an G-automorphism, which implies it commutes with ρs for all s ∈ G.
By Schur’s Lemma, ψ̃−1φ̃ = λI and φ̃ = λψ̃. Therefore, φ is unique upto
homothety.

Since φ is bilinear on V , it induces a homomorphism V ⊗V → C. Hence, we
can consider φ as living in the vector space V ′ ⊗ V ′ . By 2.29 and 2.9, we can
define a representation on the vector space with the following decomposition:

V
′ ⊗ V ′ = Sym2(V

′
)⊕ Alt2(V ′)

We can write φ = φ+ + φ− with φ+ symmetric and φ− alternating, then φ+

and φ− are also G-invariant bilinear forms. Since φ is unique upto scalar, we
have either φ+ = 0 (φ is alternating) or φ− = 0 (φ is symmetric).

�

Step 3: There exists a G-invariant symmetric (alternating) bilinear form φ
on V if and only if there is an irreducible trivial representation in symmetric
(alternating) square of V ′ .

Proof. If φ is symmetric, φ ∈ Sym2(V
′
). Since φ is G-invariant, ρs(φ) = φ for

all s ∈ G. Therefore, we find a irreducible trivial representation W spanned
by {φ} in Sym2(V

′
). We omit the other way around since it is similar. �

Suppose there is a G-isomorphism φ̃ : V → V
′ , the number of trivial rep-

resentations in symmetric square of V ′ is the same as that of V . Combining
Step 2, and Step 3, we exhaust all possibilities with the following three cases:
case 1: G does not have a nonzero invariant bilinear form on V. In this case,
there is no irreducible trivial representation in symmetric or alternating square
of V. Hence, S = 0− 0 = 0
case 2: G has a symmetric nonzero invariant bilinear form on V. In this
case, there is a trivial representation in Sym2(V ), and it is unique. Hence,
S = 1− 0 = 1
case 3: G has an alternating nonzero invariant bilinear form on V. In this
case, there is a trivial representation in Atl2(V ), and it is unique. Hence,
S = 0− 1 = −1. �

Corollary 2.34. An irreducible representation V comes from a real represen-
tation if and only if S = 1.
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Proof. First, suppose V comes from a real representation, then by the Frobenius-
Schur theorem (2.30), ∃ G-invariant symmetric bilinear form on V over C. By
2.33, this is in according to case 2, and S = 1. Now, we prove the other way
around. Suppose S = 1, there is an irreducible trivial representation in sym-
metric square of V, and ∃ G-invariant symmetric bilinear form on V. Hence,
V comes from a real representation. �

Corollary 2.35. When S = 0 or -1, there exists an irreducible representation
of G over R of degree 2n.

Proof. Let ρ : G → GLn(C) be a irreducible representation of G with S =
0 or − 1. It induces ρ̃ : G → GL2n(R) by mapping ρ(g) = A + iB to ρ̃(g) =(
A −B
B A

)
. Claim that ρ̃ is an irreducible real representation. Suppose ρ̃

is not irreducible, then ∃V0 ⊆ R2n, V0 6= 0, V0 6= R2n that is G-invariant,
i.e. ρ̃(g)(V0) ⊆ V0. We know that Cn = R2n. Hence, ρ(g)(V0) ⊆ V0, and
ρ(g)(iV0) = iρ(g)(V0) ⊆ iV0. Thus, V0 ⊕ iV0 6= 0 is a G-invariant C-subspace
of Cn. Since Cn is irreducible, we have V0⊕ iV0 = Cn. This contradicts to the
fact that ρ does not come from a real representation. Therefore, ρ̃ is a real
irreducible representation of G with degree 2n. �

Theorem 2.36. Given a group G. Every real irreducible representation of G
occurs as one of the following:
1) ρ : G→ GLn(C): a complex irreducible representation which comes from a
real representation. The dimension of the real representation is n.
2) ρ : G → GLn(C): a complex irreducible representation which does not
come from a real representation. Then ρ̃ : G → GL2n(R) is a real irreducible
representation and dim(ρ̃) = 2n.

This theorem uses the decomposition of the semisimple algebra R[G] as a
product of simple algebra of the form Mn(R), Mn(C), or Mn(H), where H is
the quaternion algebra, and every irreducible representation of G corresponds
to one of these simple algebras. We do not give a proof here of these results.

3. Burnside’s Theorem

Theorem 3.1. (Burnside) Let G be a finite group of order paqb, a, b ∈ Z+, p
and q primes. Then G is solvable. (1.4).

The rest of the section is devoted to the proof of the theorem.

Lemma 3.2. For every character ψ of the finite group G, ψ(x) is an algebraic
integer for all x ∈ G

Proof. Given x ∈ G, let its matrix representation be ρx. Since G is finite, we
can assume the order of x is k, then (ρx)

k = I. ρx can be written as AJA−1,
where J is in Jordan canonical form, thus, a lower triangular. ψ(x) = Tr(ρx) =
Tr(J). Since (ρx)

k = I, Jk = I, and Jkii = 1 for i = 1, .., n, implying that Jii is
a root of xk − 1. Thus, Jii is an algebraic integer, and Tr(J) =

∑n
1 Jii is also

an algebraic integer by 1.14. Therefore, ψ(x) is an algebraic integer. �
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Given a group G, let χ1,χ2, ..., χr be all the characters of the distinct
irreducible representations of G. Let K1, K2, ..., Kr be the conjugacy classes
of G. Let φi be the matrix representation of irreducible representations with
character χi.

Theorem 3.3. Define a complex valued function ωi on {K1, K2, .., Kr} for
each i by

ωi(Kj) =
|Kj|χi(g)

χi(1)

where g is any element of Kj. Then ωi(Kj) is an algebraic integer for all i
and j.

Proof. Let X =
∑

g∈Kj
φi(g). For any element p in G,

φi(p)
−1Xφi(p) =

∑
g∈Kj

φi(p
−1)φi(g)φi(p) = X

since every element of form p−1gp is in the conjugacy class Kj. Thus, X
commutes with φi(p) for all p. Since X is a linear mapping from a vector
space to itself, by Schur’s lemma 2.12, X = αI for some α ∈ C.

α · χi(1) = tr(X) =
∑
g∈Kj

tr(φi(g)) = |Kj|χi(g)

From this equality, we conclude that α =
|Kj |χi(g)

χi(1)
and X = ωi(Kj)I.

Substituting ωi(Kj) with X, we get, for all i, j, t in 1,2,..,r:

ωt(Ki)ωt(Kj)I = (
∑
g∈Ki

φt(g))(
∑
g∈Kj

φt(g)) =
∑
gi∈Ki

∑
gj∈Kj

φt(gigj) =
r∑
s=1

∑
g∈Ks

aijsφt(g)

where aijs is the the number of pairs of (gi, gj) such that gigj = g, g in Ks.
This value is independent of choice of g because for other elements in Ks of
form xgx−1, xgix−1, and xgjx−1 will pair up and return such an element (vice
versa). We apply this property to the equation above,

ωt(Ki)ωt(Kj)I =
r∑
s=1

aijs
∑
g∈Ks

φt(g) =
r∑
s=1

aijsωt(Ks)I

Hence, ωt(Ki)ωt(Kj) =
∑r

s=1 aijsωt(Ks).
Thus, the ring M = Z[ωt(K1), ωt(K2), ..., ωt(Kr)] is a finitely generated Z-
module, generated by 1, ωt(K1), ..., ωt(Kr). Since Z is Noetherian, and Z[ωt(Ki)]
is a submodule of M, it is also finitely generated. By 1.12, ωt(Ki) is an algebraic
integer for all t and i.

�

Corollary 3.4. χi(1) divides |G| for all i = 1, 2, .., r
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Proof. Since χi(gj) and χi(gj)∗ is the same for every element gj ∈ Kj, we have

|G|
χi(1)

=
|G|
χi(1)

(χi|χi)

=
r∑
j=1

|Kj|χi(gj)χi(gj)∗

χi(1)

=
r∑
j=1

ωi(Kj)χi(gj)
∗ =

r∑
j=1

ωi(Kj)χi(g
−1
j )

By 3.2, χi(g−1j ) is an algebraic integer, and by 3.3, ωi(Kj) is also an algebraic
integer. Thus, the right hand side is an algebraic integer (1.14). Since the left
hand is rational, it is an integer (1.15). �

Lemma 3.5. If G is any group with conjugacy class K and an irreducible
matrix representation φ with character χ such that gcd(|K|, χ(1)) = 1, then
for g ∈ K, either χ(g) = 0 or φ(g) is a scalar matrix.

Proof. By hypothesis, ∃s, t ∈ Z such that s|K| + tχ(1) = 1. Pick g ∈ K, and
multiplying both sides by χ(g), and dividing both sides by χ(1), we get

sω(K) + tχ(g) =
χ(g)

χ(1)

We know that the left side is an algebraic integer. Thus, a1 = χ(g)
χ(1)

is also
an algebraic integer. Let p(x) be the minimal polynomial of a1 over Q. Let
a1, a2, .., am be roots of p(x). Let n = χ(1), then a1 = λ1+λ2+...+λn

χ(1)
, where λi

is an eigenvalue of φ(g) for each i from 1 to n, and |λi| = 1 by 2.4. Thus,
|a1| ≤ 1, and so are ai for all i. Now, we go back and find minipolyQ(a1) =
(x − a1)(x − a2)...(x − am) ∈ Q[x], which means the constant term of the
polynomial is a rational number. Thus, b = Πm

i=1ai is rational, and by 1.15, an
integer as well. Further, |b| ≤ 1 since |ai| ≤ 1 for all i.
(case 1) b = 0 ⇒ a1 = 0 ⇒ χ(g) = 0
(case 2) b = ±1 ⇒ |ai| = 1 for all i ⇒ |χ(g)| = χ(1). Since φ(g)l = id for
some l, φ(g) is a diagonalizable matrix. Let C =< ε1, ε2, ..., εn > be a diagonal
matrix conjugate to φ(g). If there exists i, j such that εi 6= εj, then |χ(g)| =
|ε1 + ... + εn| < n by triangle inequality, which contradicts to |χ(g)| = χ(1).
Thus, C = εI. Since φ(g) is similar to C, φ(g) = εI.

�

Lemma 3.6. If |K| is a power of a prime for some nonidentity conjugacy
class K of G, then G is not a non-abelian simple group.

Proof. Suppose G is a non-abelian simple group and |K| = pc Let g ∈ K,
g 6= 1
case 1: c = 0 ⇒ |K| = 1 ⇒ ∃g ∈ Z(G), g 6= 1. This contradicts to the fact
that non-abelian simple group has a trivial center.
case 2: c 6= 0. Recall that χ1, χ2, ..., χr are the character functions of irreducible



20

representations of G. Assign χ1 to be the character of trivial representation.
Pick g ∈ G, and g 6= 1. Then, by 2.22

0 =
r∑
i=1

χi(1)χi(g)

= 1 +
r∑
i=2

χi(1)χi(g)

Suppose p divides χj(1) for all j such that χj(g) 6= 0, then

0 = 1 + p
∑
j

djχj(g)

∑
j

djχj(g) = −1

p

Left hand side of the equation is an algebraic integer. Thus, −1
p
is an algebraic

integer, and an integer as well. Since p is a prime number, this leads to a
contradiction. The hypothesis is wrong: ∃j such that p does not divide χj(1)
and χj(g) 6= 0. Thus, gcd(pc, χj(1)) = 1 ⇒. By 3.5, φj(g) is a scalar matrix.
Since G is a simple group, the normal subgroup of G, ker(φj) = {1}, and φj
is injective. For any a ∈ G

φj(ag) = φj(a)φj(g) = φj(g)φj(a) = φj(ga)

Then ag = ga, and g ∈ Z(G), which contradicts to the fact that non-abelian
simple group has a trivial center. Thus, we conclude that G is not a non-
abelian simple group.

�

Proof of Burnside Theorem: Let G be a group of order paqb. We prove the
theorem by induction on |G|. If p = q or if a or b is zero, then G is solvable
(1.10). Otherwise, let G be a counterexample with minimal order, i.e. G is
a non solvable group of form |G| = paqb, where p, q are distinct primes and
a > 0, b > 0, and |G| is the least. Suppose G has a proper, nontrivial normal
subgroup N . Thus, both N and G/N are solvable by induction hypothesis,
and by (1.5), G is solvable, which is not true. Hence, G is a non-abelian
simple group. Let P be a p-Sylow group in G (1.2). ∃g ∈ Z(P ) such that
g 6= 1 (1.3). By definition, P ⊆ CG(g). If CG(g) = G, then g ∈ Z(G).
Since g 6= 1, G has a nontrivial normal subgroup Z(G), which contradicts
to G is simple. Hence, CG(g) $ G, and |CG(g)| = paqx with x < b. Thus,
|Cl(g)| = [G : CG(g)] = qb−x, which means in G, there ∃ a nonidentity conju-
gacy class K, whose order is a power of a prime. By 3.6, G is not a non-abelian
simple group, and this leads to contradiction. This completes the proof of
Burnside’s Theorem.



21

4. On the Degree of α + β

Theorem 4.1. Let F be a field of characteristic zero, and L is a finite extension
of F. Suppose α, β ∈ L, [F (α) : F ] = m, and [F (β) : F ] = n. Suppose that m,
n are coprime, then F (α, β) = F (α + β).

The rest of the section is devoted to the proof of the theorem.

Let f(x) = minipolyF (α), g(x) = minipolyF (β). Then deg(f(x)) = m, and
deg(g(x)) = n. Since char(F ) = 0, f and g has no multiple zero. Let A, B
be the set of zeros of f(x), g(x) respectively. i.e. A = {α = α1, ..., αm}, B =
{β = β1, ..., βn}. Let F be the algebraic closure of F. Let F (A), F (B), F (A,B)
be the subfields of F generated by A, B, and A ∪B respectively.

Lemma 4.2. Let H be Aut(F (A)/F ). Then H acts transitively on A, i.e.
given (i, j), ∃σ ∈ H such that σ(αi) = αj.

Proof. Suppose αi, αj are two distinct zeros in set A. Since αi, and αj are zeros
of the same irreducible polynomial f(x) ∈ F [x], there is an F-isomorphism:

φ : F (αi)→ F (αj)

such that φ(αi) = αj (1.17). Since F (A) is a splitting field of f(x) over F , we
can extend φ to σ : F (A)→ F (A), such that σ|F (αi) = φ. Hence, ∃σ ∈ H such
that σ(αi) = αj. And H acts transitively on A. �

Lemma 4.3. Let G be Aut(F (A,B)/F ). Then G acts transitively on A×B.

Proof. First, show that g(x) is irreducible in F (α)[x]. Suppose g = g1g2, where
g1, g2 ∈ F (α)[x]. Given that m, and n are coprime, by 1.18, we show that

[F (α, β) : F (α)] =
[F (α, β) : F ]

[F (α) : F ]
=
mn

m
= n

Since β is a root of g(x), β is also a root of either g1(x) or g2(x). Suppose β
is a root of g1(x). Then deg(g1(x)) ≥ degree of minipolyF (α)(β) = [F (α, β) :
F (α)] = n. Thus, deg(g(x)) = deg(g1(x)), and g(x) is irreducible in F (α)[x].
There is an F-isomorphism:

φ : F (αi)→ F (αj)

such that φ(αi) = αj (1.17). Since g(x) is irreducible in F (αi)[x], and βr, βt
are zeros of g(x), ∃ an isomorphism:

ψ : F (αi, βr)→ F (αj, βt)

such that ψ(βr) = βt, and ψ|F (αi) = φ implying that ψ(αi) = αj. Since
F (A,B) is a splitting field of f · g over F , we can extend ψ to σ : F (A,B)→
F (A,B). Then, ∃σ ∈ G such that σ(α1) = σ(α2), and σ(β1) = β2 for arbitrary
α1, α2, β1, β2. Thus, G acts transitively on A×B. �

Let VA, VB denote the F-subspace of F (A,B) generated by A and B respec-
tively. Let G be Aut(F (A,B)/F ). Since A is the set of zeros of an irreducible
polynomial f(x) ∈ F [x], G permutes elements of A, and VA is a G-invariant



22

subspace of F (A,B), For the same reason, VB is a G-invariant subspace of
F (A,B). Hence, we can define the following representation

ρA : G→ GL(VA)

ρB : G→ GL(VB)

by ρA(σ) = σ|VA , and ρB(σ) = σ|VB .

Lemma 4.4. Suppose φ : VA → VB is a G − homomorphism, then it maps
the entire module VA to the trivial G-module

F · (β1 + ...+ βn)

Proof. Set Gαi
= {σ ∈ G|σ(αi) = αi}. By 4.3, Gαi

acts transitively on
{αi} ×B, i.e. given (αi, βj), and (αi, βk), there exists σ ∈ Gαi

such that

σ(αi, βj) = (αi, βk)

Suppose φ(αi) = c1β1 + ...+ ckβk + ...+ cnβn, ci ∈ F . Let σk ∈ Gαi
map αi to

αi, and β1 to βk. Since φ is a F [G]− homomorphism,

φ(αi) = φ(σkαi) = σkφ(αi) = c1σk(β1) + ...+ cnσk(βn)

= c1βk + c2σk(β2) + ...+ cnσk(βn)

Comparing the two different expressions for φ(αi), we get that c1 = ck.
Varying k from 1 to n, we conclude that c1 = c2 = ... = cn, and φ(αi) =
c1(β1 + ... + βn). This applies to αi for 1 ≤ i ≤ m. Therefore, φ(VA) =
F · (β1 +β2 + ...+βn), and the G action on F · (β1 +β2 + ...+βn) is trivial. �

Proof of 4.1: Suppose that F (α + β) ( F (α, β). This implies

|Aut(F (α, β)/F (α + β))| = [F (α, β) : F (α + β)] ≥ 2

and we can pick σ ∈ G, σ 6= id such that σ(α + β) = α + β, but σ(α) 6= α,
or σ(β) 6= β. In this case, σ(α) 6= α and σ(β) 6= β. Set δ to be σ(α) − α =
β − σ(β) 6= 0. We claim that δ /∈ F . Suppose δ ∈ F , and σ is of order l in G.
Then,

σl(α) = σ...σ(α + δ) = σ...σ(α + δ + δ) = α + lδ = α

Since char(F ) = 0, l 6= 0, we get δ = 0. But δ 6= 0, so δ /∈ F .
Let U be the F-subspace of F (A,B) spanned by {gδ, g ∈ G}. We have

δ = σ(α)− α ∈ VA. For every g ∈ G, gδ ∈ VA since VA is G-invariant, hence,
U ⊆ VA. Further, U is a G-invariant subspace of VA. Since char(F ) = 0, we
have a direct sum decomposition VA = U⊕V ′A by 2.5. Since δ = β−σ(β) ∈ VB,
U ⊆ VB is G-invariant, and VB = U ⊕ V ′B. Let p : VA → U be the projection
which is a G-homomorphism. Composing p with the inclusion mapping q :
U → VB, we get a G-homomorphism φ : VA → VB whose image is U . By 4.4,
U ⊆ F · (β1 + ... + βn). Since F · (β1 + ... + βn) has trivial G-action, U has
trivial G-action. Hence, gδ = δ for all g ∈ G, and δ ∈ F which leads to a
contradiction. Therefore, F (α, β) = F (α + β).
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5. Eckmann’s proof on Hurwitz’s Theorem

We want to find n bilinear forms z1, ..., zn in x1, ...xp, and y1, , , , yn with
complex coefficients such that the following equation holds:

(2) (x21 + x22 + ...+ x2p)(y
2
1 + y22 + ...+ y2n) = z21 + ...+ z2n

Theorem 5.1. Let n = u · 24α+β, where u is odd, and β = 0, 1, 2, 3, there
exists complex solutions to equation (2) if and only if p ≤ 8α + 2β. Further,
we can choose the solutions to be real.

Proof. Step 1: Suppose the original equation has solutions. Then we can
express zk as

∑
1≤i≤p,1≤j≤n

akijxiyj for k = 1, .., n. Now, we construct matrices

with the coefficients of the solutions: [Ak]ij = ajki and Ak is a n × n matrix.
By equation (2), for a fixed pair of i and j, we know that

∑
1<k<n

akij = 1 since

the coefficients before (xiyj)
2 is 1. On the other hand, the coefficients of every

other possible term is 0, so we get that AkATk = I, which is equivalent to
saying Ak is orthogonal for k = 1, ...p. We also get the following equation:

(3) AkA
T
l + AlA

T
k = 0, k, l = 1, ..., p; k 6= l

Therefore, the original problem is equivalent to the following matrix prob-
lem: Find p complex orthogonal n×n matrices A1, ..., Ap that satisfy equation
(3). The case p=1 is trivial, so we assume p ≥ 2.

Now, we multiply all matrices with the orthogonal matrix ATp and obtain a
different solution to the problem, where the new Ap is I, and ATk +Ak = 0 for
k = 1, ..., p− 1. Plugging ATk = −Ak into equation (3):

AkAl + AlAk = 0, k, l = 1, .., p− 1; k 6= l

and because AkATk = I,

A2
k = −I, k = 1, ..., p− 1

Therefore, it is sufficient to solve the problem in the following form: Find p-1
complex orthogonal n×n matrices A1, ..., Ap−1 such that the following relation
is satisfied:

(4) A2
k = −I, AkAl = −AlAk, k, l = 1, .., p− 1; k 6= l

Step 2: We construct the group G, generated by p elements, a1, ..., ap−1, ε with
the following relations:

ε2 = 1, a2k = ε, εak = akε, akal = εalak, k, l = 1, ..., p− 1; k 6= l

Then, the problem can be expressed as following: We look for a complex or-
thogonal representations of G in which ε is mapped to -I.

Step 3: All elements in group G can be listed as follows:

ak1ak2 ...akr and εak1ak2 ...akr , r = 0, ..., p− 1
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where ki is a number from 1 to p-1 such that k1 < k2 < ... < kr. Therefore, G
is of order 2 · 2p−1 = 2p.

For p = 2, G is the cyclic group of order 4, and there are 4 irreducible
representations of G. Then, there exists real solutions to the original equation
if and only if n = 2m. Take n=2 as an example:

(x21 + x22)(y
2
1 + y22) = (x1y1 + x2y2)

2 + (x1y2 − x2y1)2

For bigger n, we pair up yi with yi+1, and perform the same trick above. In
conclusion, we only need to consider p ≥ 3.

The set of commutators in G is {1, ε}. The commutator subgroup K has
order 2, and the abelian group G’ = G/K has order 2p−1. Irreducible rep-
resentations of an abelian group are in degree one. Therefore, G has 2p−1

inequivalent representations of degree 1.

Step 4: Let h be the number of conjugacy classes in G:

h = 2p−1 + 2 if p is even

h = 2p−1 + 1 if p is odd

Proof. case a) Let g = ak1 ...akr , 1 ≤ r ≤ p− 1, in which r is even,

a−1k1 gak1 = εak1(ak1 ...akr)ak1 = (ak2 ...akr)ak1 = εr−1g = εg

There are no other elements that is conjugate to g since the aj conjugates of
g do not change. Hence, the conjugacy class of an element g of such form
including a1a2...ap−1 (p odd) is {g, εg}.
case b) Let g = ak1 ...akr , 1 ≤ r ≤ p− 2, in which r is odd, and we can choose
k to be a distinct number from {k1, ..., kr},

a−1k gak = εak(ak1 ...akr)ak = εεra2kg = εr+2g = εg

so the conjugacy class of an element g of such form is {g, εg}
Combining case a) and b), we get that when p is odd, Z(G) = {1, ε}, and
g 6= 1 or ε is conjugate to εg. Therefore,

h = 2 + (2p − 2)/2 = 2p−1 + 1

Now, suppose p is even, case a) and b) do not cover the case when g = a1...ap−1.
We show that b−1gb = g for all b ∈ G. It is sufficient to show that for all the
generators:

a−1k gak = εaka1a2...ap−1ak = εεp−2a2ka1a2...ap−1 = εpa1a2...ap−1 = g

(Remark: the switch is one less since ak is the same as one of the terms in g)
So we get that Z(G) = {1, ε, g, εg}, and

h = 4 + (2p − 4)/2 = 2p−1 + 2

�

Step 5: By 2.25, h is the number of inequivalent irreducible representations of
G. From Step 3, we know the number of degree 1 representations, so we get
that when p is even, there are two inequivalent irreducible representations of



25

G of degree greater than 1 (degree denoted by f, f ′), and when p is odd, there
is only one such representation (degree denoted as f). By 2.21,
1) when p is odd,

f 2 + 2p−1 · 12 = 2p

so,
f = 2

p−1
2

2) when p is even,
f 2 + f ′2 + 2p−1 · 12 = 2p

so,
f 2 + f ′2 = 2p−1

By 3.4, f, f ′ divides 2p, so we let f = 2v, and f ′ = 2u. Plugging it into the
equation above and get u = v = p−1

2
, f = f ′ = 2

p−2
2

Step 6: Since representations of degree 1 map ε to the identity, we only consider
irreducible representations ρ of degree greater than 1. They do not map ε to
I, because G′ = G/(1, ε) is abelian, and representations of G′ are of degree
1. Since ε is in the center, ρ(ε)ρ(g) = ρ(g)ρ(ε) for all g ∈ G and ρ(ε) is a
G-homomorphism that maps V to V. Hence, by Schur’s Lemma, ρ(ε) = λI,
λ ∈ C∗. Since ε2 = 1, we have λ2 = 1, and λ = −1. Therefore, irreducible
representations of G of degree larger than one map ε to −I.

For odd p, there exists only one inequivalent irreducible representation of
higher degree: 2

p−1
2 . For even p, there are two irreducible representations of

higher degree: 2
p−2
2 . Since we only consider p > 2, p−2

2
> 0, and the degree is

greater than 1. For an arbitrary representation of G that maps ε to −I, it can
be decomposed into direct sum of irreducible representations, each of degree
greater than 1, mapping ε to −I:

V = W1 ⊕W2 ⊕ ...⊕Wm

Let the degree of representation be n, then the following equations hold:

n = m · 2
p−1
2 when p is odd

n = m · 2
p−2
2 when p is even

Suppose n = u · 2t, where u is odd. Then G has representations that maps ε
to −I if and only if p−1

2
≤ t when p is odd, and p−2

2
≤ t when p is even. After

simplification, G has such representations if and only if p ≤ 2t + 2. In other
words:

Let n = u · 2t with odd u, there exists p-1 complex n×n matrices A1, ..Ap−1,
that satisfy equation (4) if and only if p ≤ 2t+ 2.

Step 7: We now look for representations of G which are equivalent to orthog-
onal representations. By the remark of Frobenius-Schur theorem 2.30, those
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orthogonal representations are equivalent to real representations. Every solu-
tion of the representation problem is thus equivalent to a real solution to the
original problem.

Let χ be the character function of a complex irreducible representation D
of G of degree (denoted as f) larger than 1. We define:

S =
1

|G|
∑
g∈G

χ(g2)

S can only be 1, -1, or 0. (2.33) When S = 1, D comes from a real representa-
tion (2.34). When S = −1, D is not equivalent to a real representation, but we
can construct an irreducible real representation of degree 2f from D. If S=0,
χ(D) is not real, but we can again construct an irreducible real representation
of degree 2f from D (2.35). The representations described above are all real
irreducible representations of G (2.36).

For an arbitrary element g ∈ G,

g = ak1ak2 ...akr or g = εak1ak2 ...akr

so,

g2 = (ak1ak2 ...akr)
2 = εr+r−1+...+2+1 = ε

r(r+1)
2

so,
g2 = 1 if r ≡ 3, 0 mod 4

g2 = ε if r ≡ 1, 2 mod 4

Since the irreducible representation D maps ε to −I, we have:

for r ≡ 3, 0 mod 4, χ(g2) = f

for r ≡ 1, 2 mod 4, χ(g2) = −f
Summing over 2p elements of G, we have

S =
2

|G|
[f − f · number of choices of (ak1)− f · number of choices of (ak1ak2)

− f · number of choices of (ak1ak2ak3) + ...]

We simplify the equation and get:

S =
2fσ

|G|

where

σ =

(
p− 1

0

)
−
(
p− 1

1

)
−
(
p− 1

2

)
+

(
p− 1

3

)
+

(
p− 1

4

)
−−...±

(
p− 1
p− 1

)
To compute the sign of σ, we construct the complex number

z = (1− i)p−1 = x+ iy, x,y are real
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Expanding the polynomial, we get that σ = x + y. Since argz = −π
4
(p − 1),

we can determine the sign of σ:

σ > 0, if − π

4
(p− 1) ≡ 0,

π

4
,
2π

4
(mod 2π)

σ = 0, if − π

4
(p− 1) ≡ 3π

4
,
7π

4
(mod 2π)

σ < 0, if − π

4
(p− 1) ≡ 4π

4
,
5π

4
,
6π

4
(mod 2π)

Therefore, S = 1 for p ≡ 7,0,1 (mod 8), S = −1 for p ≡ 3,4,5 (mod 8), and
S = 0 for p ≡ 2,6 (mod 8). Combining the property we said about S, we get:

When p ≡ 7,0,1 (mod 8), D of degree f is a real irreducible representation;
otherwise, there exists a real irreducible representation of degree 2f that comes
from D.

Step 8: The degree n of an irreducible real representation that maps ε to −I
is given by:

(5)

a) for p ≡ 7, 1(mod 8), p is odd, n = f = 2
p−1
2

b) for p ≡ 0(mod 8), p is even, n = f = 2
p−2
2

c) for p ≡ 3, 5(mod 8), p is odd, n = 2f = 2 · 2
p−1
2 = 2

p+1
2

d) for p ≡ 2, 4, 6(mod 8), p is even, n = 2f = 2 · 2
p−2
2 = 2

p
2

Complex orthogonal representations of G of degree n = m · 2s for which ε is
assigned to -I exists in the following cases:

(6)

a)p ≡ 7, 1(mod 8), 2s = 2
p−1
2 → s ≡ 3, 0 (mod 4) and p = 2s+ 1

b)p ≡ 0(mod 8), 2s = 2
p−2
2 → s ≡ 3 (mod 4) and p = 2s+ 2

c)p ≡ 3, 5(mod 8), 2s = 2
p+1
2 → s ≡ 2, 3 (mod 4) and p = 2s− 1

d)p ≡ 2, 4, 6(mod 8), 2s = 2
p
2 → s ≡ 1, 2, 3 (mod 4) and p = 2s

Suppose the degree of an arbitrary orthogonal complex representation that
maps ε to −I is n = u · 2t, with u odd. We can find the greatest possible
number p by solving for s ≤ t. Take t = 4α as an example. Let s = t,
s ≡ 0 (mod 4), and by case a), p = 2s+ 1 = 2t+ 1 = 8α+ 1. Let s = 4α− 1,
s ≡ 3 (mod 4), and by case b), p = 2s + 2 = 2(4α − 1) + 2 = 8α. Hence, the
greatest possible p for t = 4α is 8α+ 1. Applying the steps above to each case
below and we get:

(7)

for t = 4α : p = 2t+ 1 = 8α + 1

for t = 4α + 1 : p = 2t = 8α + 2

for t = 4α + 2 : p = 2t = 8α + 4

for t = 4α + 3 : p = 2t+ 2 = 8α + 8

We conclude:
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Suppose n = u · 24α+β with u odd, and β = 0, 1, 2, 3, there exists p-1 complex
orthogonal matrices satisfying equation (2) if and only if p ≤ 8α + 2β. Those
matrices can be chosen to be real.

�

Corollary 5.2. When p = n, there exists real solutions to the original problem
if and only if n = 1, 2, 4, 8

Proof. Plugging p = n into the condition we concluded, we get that
u · 24α+β ≤ 8α + 2β

case 1: α = 0, u · 2β ≤ 2β, then u = 1, β can be 0,1,2, or 3, and the
corresponding n is 2β = 1, 2, 4, 8
case 2: α ≥ 1, the left hand is always larger than the right hand by induction.
Therefore, the original problem has real solutions if and only if n = 1, 2, 4, 8.

�

Remark 5.3. The composition law on Rn for n = 1, 2, 4, 8 is given by

(x1, ..., xn) · (y1, ..., yn) = (z1, ..., zn)

where zi is the real solution found in corollary 5.2. Hence, composition algebra
structure exists on Rn for n=1,2,4,8 and these are all the possible composition
algebra.

We list all the composition algebra:
a) n=1: ∀x, y ∈ R, x · y = xy. This satisfies the composition algebra structure
since N(x)N(y) = N(xy) where N(t) = t2

b) n=2: C = R⊕ Ri. ∀x, y ∈ C, let x = a+ bi, y = c+ di,

x · y = (ac− bd) + (ad+ bc)i

This satisfies the composition algebra structure since N(x)N(y) = N(xy)
where N(t) = t21 + t22. i.e. (a2 + b2)(c2 + d2) = (ac− bd)2 + (ad+ bc)2

c) n=4: H = R⊕Ri⊕Rj⊕Rij, ij = −ij. ∀x, y ∈ H, let x = a+bi+cj+dk, y =
e + fi + gj + hk, x · y again satisfies the composition algebra structure given
that N(t) = tt.
d) n=8: It is called the Octonion algebra. It is obtained by doubling H : O =
H⊕ pH. We omit the discussion of the exact group structure here.
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