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Abstract 

 

PUBLIC HEALTH SURVEILLANCE SYSTEMS FOR DISEASE MONITORING, SITUATIONAL 

AWARENESS, AND DECISION MAKING SUPPORT 

 

 

BY 

Dimitrios G. Koutsonanos 

 

 

Disease surveillance and population health monitoring represents one of the cornerstones of public health 

surveillance, early disease identification and prevention, and situational awareness. Constant monitoring 

for potential emerging public health threats is one of the most important missions of public health. Public 

health surveillance is the ongoing, systematic collection, analysis, interpretation, and dissemination of 

data regarding a health related event for use is public health actions to reduce morbidity and mortality and 

to improve health. Early detection of a new outbreak and rapid response to a public health threat could 

result in saving of millions of lives but also great financial savings from preventing hospitalizations, 

deaths and all the socio-economic effects associated with it.  

 

In order to provide early disease detection and situational awareness, different public health surveillance 

systems were developed that monitor population health and report different public health events and 

threats. These systems perform different functions and can be classified in three different categories: i) 

syndromic surveillance systems, ii) laboratory surveillance systems, iii) web-based public health 

surveillance systems. All of these systems have significant contributions in early disease detection and 

monitoring, situational awareness, and decision making support.  

 

In this study we provided an overview of major public health surveillance systems for syndromic 

surveillance including BioSense, ESSENCE, and ILINet, laboratory surveillance including NNDSS, 

FoodNet, and eHARS, and web-bases surveillance including HealthMap, ProMED-mail, and BioCaster. 

We provided a summary of the different functionalities each system offers and supports as well as 

limitations associated with each system. Finally, we identified challenges in public health surveillance 

systems and we proposed potential tools and surveillance models that could be used to improve data 

collection, analysis, and reporting and enhance the functionality of public health surveillance systems. 
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CHAPTER 1: OVERVIEW OF PUBLIC HEALTH SURVEILLANCE  

Disease surveillance represents one of the cornerstones of public health surveillance, 

early disease identification and prevention, and situational awareness (Adams et al., 

2014; L. M. Lee, Thacker, Centers for Disease, & Prevention, 2011; Thacker, Qualters, 

Lee, Centers for Disease, & Prevention, 2012). Constant monitoring for potential 

emerging public health threats is one of the most important missions of public health 

("Addressing emerging infectious disease threats: a prevention strategy for the United 

States. Executive summary," 1994). Public health surveillance is the ongoing, 

systematic collection, analysis, interpretation, and dissemination of data regarding a 

health related event for use in public health action to reduce morbidity and mortality and 

to improve health (Buehler, Centers for Disease, & Prevention, 2012; Smith et al., 2013; 

Thacker et al., 2012). Early detection of a new outbreak could result in saving of millions 

of lives but also great financial savings from preventing hospitalization, deaths and all 

the socio-economic effects associated with it. Public health surveillance is based on the 

ongoing, systematic collection and analysis of health-related data. Based on this 

analysis, data will be interpreted and further support decision making, strategic 

planning, and evaluation of existing public health practices and programs for disease 

control and prevention (Nsubuga et al., 2006). Public health surveillance goals include 

the assessment of population health, the identification of public health priorities, the 

evaluation of existing public health programs, and the development of new effective 

interventions and strategies to protect and improve public health (Nsubuga et al., 2006; 

Thacker, Berkelman, & Stroup, 1989). Public health surveillance covers all aspect of 

public health threats and diseases, such as communicable and non-communicable 
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diseases, environmental health, toxic exposures, natural and man-made disasters, and 

health behaviors (2007; Alwan et al., 2010; Hay, George, Moyes, & Brownstein, 2013; 

Heymann & Rodier, 1998). Public health surveillance provides an estimate about the 

magnitude of the problem, the characteristics of the affected population, the 

geographical distribution of the condition, and characteristics and the natural history of 

the condition that impact the population.  

1.1 GOALS OF PUBLIC HEALTH SURVEILLANCE 

Public health surveillance is being used from National agencies in order to monitor 

disease trends over time to support policy changes and implementation of specific 

regulations but also to protect the public from potential biological threats. Public health 

surveillance is also being used by State and local health departments and agencies for 

Goals of Public Health Surveillance 

1) To early identify signs and symptoms within the population associated with a specific disease 

or condition. 

2) Deploy rapid interventions to prevent transmission or to reduce morbidity and mortality.  

3) Measure public health trends and determinants of public health.  

4) Demonstrate the value behind public health intervention programs. 

5) Allocate resources for public health according to specific state or organization needs.  

6) Monitor the effectiveness of existing prevention programs and intervention strategies.  

7) Develop new highly effective communication, prevention, and intervention public health 

strategies.  

8) Identify high-risk groups within the population or high risk geographic areas.  

9) Support research and analytical studies related to disease factors within the population.  

Figure 1. Goals of public health surveillance 
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managing population health exposures, assuring accurate diagnosis and treatments of 

affected populations, detect outbreaks, and guide public health prevention and control 

programs. According to the Centers for Disease Control and Prevention (CDC) and the 

blueprint for a national public health surveillance system for the 21st century, the goals 

of public health surveillance are summarized into Figure 1 (Smith et al., 2013). 

 1.2 TYPES OF PUBLIC HEALTH SURVEILLANCE 

In order to protect and improve public health, achieve early disease detection and 

situational awareness, several surveillance systems have been developed that monitor 

and register the appearance of signs and symptoms among the general population, 

record laboratory results and clinical diagnosis, but also monitor social behaviors and 

social events in order to indicators of public health interest and potential health risks 

(Berkelman & Buehler, 1990; Buehler et al., 2012; Choi, 2012; Howard, 2000; Jajosky & 

Groseclose, 2004; Morse, 2012; Wojcik, Brownstein, Chunara, & Johansson, 2014). 

According to these specifications, different types of public health surveillance systems 

have been developed. Among these, three distinct types of surveillance systems with 

significant public health functions can be identified based on reporting requirements as 

shown in figure 2; syndromic surveillance, laboratory surveillance, and web-based 

surveillance systems.  

Syndromic surveillance systems have been designed as early event detection and 

situational awareness systems (Buehler et al., 2009; Samoff, Fangman, Hakenewerth, 

Ising, & Waller, 2014; Uscher-Pines et al., 2009). In order to achieve these goals, their 
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general framework was based on the collection of pre-diagnostic data, such as chief 

symptoms and complaints. By grouping these symptoms and complains in different sub-

syndromes and syndromes, the potential etiological factor behind the reported condition 

could be identified and thus provide early recognition of emerging trends for the 

community being monitored (Betancourt, Hakre, Polyak, & Pavlin, 2007; Buckeridge et 

al., 2004; Chen et al., 2005; Pattie, Atherton, & Cox, 2009; Reis & Mandl, 2004). 

Currently, there are several systems used by different states and jurisdictions in the 

United States for monitoring population health. Some of the most widely used systems 

with high adoption rates from local and state health departments include BioSense, the 

Electronic Surveillance System for the Early Notification of Community-based 

Epidemics (ESSENCE), and the Influenza-Like Illness Netwrok (ILINet) (Buehler et al., 

2009; Espino et al., 2004; Fricker, Hegler, & Dunfee, 2008; Howard, 2000; Lazarus, 

Kleinman, Dashevsky, DeMaria, & Platt, 2001; Lemay, Mawudeku, Shi, Ruben, & 

Achonu, 2008; J. S. Lombardo, Burkom, & Pavlin, 2004; Morse, 2012; Xing, Burkom, & 

 

Figure 2. Types of surveillance based on disease stage 
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Tokars, 2011). Syndromic surveillance systems provide a rapid, near real time method 

for disease monitoring and reporting.  

Laboratory surveillance systems are based on data generated and reported from clinical 

and/or public health laboratories (McElwain, 2010). Laboratory based surveillance 

monitors for a range of food and waterborne pathogens, sexually transmitted and blood-

borne diseases, respiratory pathogens, zoonotic diseases, toxins and environmental 

pollutants, as well as non-communicable diseases and conditions such as diabetes, 

hypercholesterolemia, cancer markers, etc (Henao, Crim, & Hoekstra, 2012; MacIntosh, 

Tastad, & Eick-Cost, 2013; Respess, Rayfield, & Dondero, 2001; Richardson et al., 

2010; Sintchenko & Gallego, 2009). Furthermore, since laboratory results are highly 

standardized based on well-established protocols and standard operating procedures, 

laboratory surveillance can represent a sensitive method for disease and condition 

monitoring (Bronnert et al., 2014; Hunscher, Boyd, Green, & Clauw, 2006; L. H. Lee, 

Gross, Hartung, Liou, & Rahm, 2014; Mok, Ho, Tsui, Ng, & Fung, 2013; Paraiso, Perez 

Del Rey, Bucur, Claerhout, & Alonso-Calvo, 2014; Ranallo et al., 2013). In contrast to 

syndromic surveillance systems, laboratory surveillance systems are based on 

laboratory confirmed results that can be traced back to the individual patient level and 

can allow direct patient intervention and contact tracing since all laboratory samples and 

specimens are linked to the individual using unique identifiers. Some of the most 

important laboratory surveillance systems with critical public health roles include CDC’s 

National Notifiable Diseases Surveillance System (NNDSS) and National Electronic 

Disease Surveillance System (NEDSS), Foodborne Diseases Active Surveillance 

Network (FoodNet), and CDC’s National HIV Surveillance System. (Cohen, Gray, 
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Ocfemia, Johnson, & Hall, 2014; "Communicable diseases surveillance. Presentation of 

NNDSS data," 2001; Hurd et al., 2012; Jajosky & Groseclose, 2004; National Electronic 

Disease Surveillance System Working, 2001; Paz-Bailey, Raymond, Lansky, & Mermin, 

2014; Scallan & Mahon, 2012).  

Web-based surveillance systems have been designed to use near real-time information 

from the internet, social media, news media, and reports and by applying filtering 

methods, natural language processing algorithms, and machine learning techniques, 

identify signs and symptoms reported by individuals and may be associated with 

specific diseases and conditions (Brownstein, Freifeld, & Madoff, 2009; Milinovich, 

Williams, Clements, & Hu, 2014). These systems can search through millions of online 

sources, internet posts, reports, and blogs in multiple languages and geographic 

regions and identify individual cases or cluster of cases that indicate the presence of a 

disease or condition. HealthMap and the Program for Monitoring Emerging Diseases 

(ProMED-mail) are the most widely used and well recognized web-based surveillance 

systems due to identification or recent outbreaks such as the Ebola and the Middle East 

Respiratory Syndrome Coronavirus (MERS-CoV). Other web-based surveillance 

systems include Biocaster, Global Public Health Intelligence  Network (GPHIN), and 

others (Freifeld, Mandl, Reis, & Brownstein, 2008; Lyon, Nunn, Grossel, & Burgman, 

2012; Madoff, 2004; Madoff & Woodall, 2005; Morse, 2012).  

 1.3 SOURCES OF DATA FOR PUBLIC HEALTH SURVEILLANCE 

Several of the described public health surveillance systems can use multiple sources for 

health-related data. According to the World Health Organization (WHO) these sources 

can include: mortality reports, morbidity reports, epidemic reports, laboratory reports, 
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reports of individual case investigations, reports of epidemic investigations, special 

surveys (e.g., hospital admissions, disease registers, and serologic surveys), 

information on animal reservoirs and vectors, demographic data, and environmental 

data (Buckeridge et al., 2004; Buehler et al., 2004; Morse, 2012; Sosin, 2003a). In 

addition, alternative sources of data can include emergency-department visit data, 

intensive care unit data, outpatient visits, hospital admission and discharge systems, 

illness-related 911 calls, pre-diagnostic laboratory data (ICD-9 codes), over-the-counter 

medication purchases, social data (school and work absenteeism), nurse hotline calls 

and others (T. Andersson et al., 2014; Betancourt et al., 2007). Finally, unconventional 

sources for health related data include social media such as Facebook and Twitter, 

RSS feeds, blogs, as well as media and news reports (Hay et al., 2013; Milinovich et al., 

2014). All these sources can directly or in-directly provide health-related data. In the 

United States, all these conventional and alternative data sources are being used to 

support public health surveillance systems and public health surveillance efforts. A high 

level overview of the processes from data source identification to data analysis and 

response to a condition is illustrated in Figure 3.  

1.4 SCOPE OF THESIS 

Here we provided an overview of the functionality of the major surveillance systems 

used in syndromic, laboratory, and web-based surveillance in the United States. To 

 

Data source 
identification

Data 
collection

Data analysis 
and data 
validation

Data 
reproting

Mitigation 
strategy

Inform public

Figure 3. Flow of processes involved in public health surveillance 
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achieve this, we used a multidimensional approach and collected relevant information 

based on literature reviews, published data, reports and evaluations of these systems, 

as well as information gained from functional communities, user guides, and information 

provided by the official pages of each surveillance system. In addition, we collected 

relevant information from state and local health departments but also from federal 

sources (CDC, HHS), the Association of State and Territorial Health Officials (ASTHO), 

the Council of State and Territorial Epidemiologists (CSTE), the National Association of 

County and City Health Officials (NACCHO) and the International Society for Disease 

Surveillance (ISDS). Collecting data from multiple sources allowed us to locate the most 

updated and accurate information about public health surveillance systems currently 

used in different local and state health departments and organizations throughout the 

US. Finally, we identified challenges and limitations associated with different types of 

surveillance systems and proposed tools, approaches, and methodologies that can be 

used to improve the effectiveness of existing surveillance systems or design new and 

highly effective public health surveillance systems. The materials and methods used for 

this study including literature sources, reports, and keywords are shown in figure 4.    

                                                                                                               

 

 

 

 

MATERIALS AND METHODS 

Literature search  PubMed 
 Google Scholar 
 Web of Science  

Keywords 
Health surveillance, syndromic surveillance, laboratory surveillance, BioSense, 
ESSENCE, RODS, NNDSS, NEDSS, FoodNet, ILInet, HealthMap, ProMED-mail, 
Biocaster, detection algorithm, disease detection, NLP, NoSQL, disease predictive 
models, predictive analytics, electronic health records 

Other sources Official reports, federal agencies (HHS, CDC, FDA, etc.), official sites, ASTHO, CSTE, 
NACCHO, local and state health departments 

 
Figure 4. Materials and Methods sources and collection methodology 
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CHAPTER 2: SYNDROMIC SURVEILLANCE SYSTEMS 

It is widely accepted that syndromic surveillance is one of the foundations of public 

health prevention (Dorea, Lindberg, McEwen, Revie, & Sanchez, 2014; Kaufman & 

Shohat, 2014; Samoff et al., 2014; Wojcik et al., 2014). Early disease identification and 

situational awareness are crucial elements that can support decision making and rapid, 

well organized, and effective response to public health threats. These approaches have 

a direct public health impact by protecting and saving millions of lives and additionally 

an economic impact by reducing financial loss associated with disease hospitalization, 

outpatient visits, life-years loss and the overall disease burden (Katz, May, Baker, & 

Test, 2011; O'Connell, Zhang, Leguen, Llau, & Rico, 2010). Syndromic surveillance has 

been developed as a strategy for early event detection, situational awareness and 

monitoring of public health. In order to achieve these goals, it was designed with a 

general framework of collecting pre-diagnostic data, such as chief symptoms and 

complaints (i.e. coughing, fever) and by grouping them in different sub-syndromes and 

syndromes (respiratory, gastrointestinal, etc.), match them with potential etiological 

factors and pathogens and identify emerging trends that appear in the community being 

monitored (Buckeridge et al., 2004; Buehler et al., 2004; Centers for Disease & 

Prevention, 2002; Guasticchi et al., 2009; Sosin, 2003b). Because these systems are 

based on syndrome monitoring and reporting, before formal diagnoses is made, they 

were named syndromic surveillance systems. The effectiveness of different syndromic 

surveillance systems for accurate disease identification trends and decision making 

support depends on several factors such as the number of providers contributing data to 

the system, the number of patients and reports the system captures, the geographic 
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distribution /coverage of providers and patients, the frequency these sources submit 

data to the system, the quality of reported data (completeness of data, duplication of 

data), the type and sensitivity of the algorithms these systems use for disease detection, 

the frequency reported data are being analyzed by system users, and finally the use of 

automated mechanisms or tools for data reporting, data validation and data analysis 

(Buehler et al., 2004; Dorea et al., 2014; Karami, 2012; Kashiouris, O'Horo, Pickering, & 

Herasevich, 2013). 

The development of syndromic surveillance systems became essential as a result of the 

2001 anthrax terrorist attacks and the realization that a real-time or near real-time 

alarming system that will monitor population health and provide situational awareness 

was needed (Buehler et al., 2009; Centers for Disease & Prevention, 2002; Nordin et 

al., 2005; van den Wijngaard, van Pelt, Nagelkerke, Kretzschmar, & Koopmans, 2011). 

These systems should be able to provide notification earlier than conventional 

/traditional surveillance systems that are based on disease case and laboratory results 

reporting. In order to achieve this, these systems collect data related to early states and 

clinical manifestation of a disease and by further analyzing these syndromes and 

frequency of 

reported complaints 

to predict the 

emerge of diseases 

or conditions 

occurring in the 

population. The 

 

Figure 5. Time between detection by syndromic (pre-diagnostic) 

surveillance and detection by traditional (diagnoses-based) surveillance 

*Source CDC, MMWR: Sep.24, 2004/ 53(Suppl);5-11 
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concept behind syndromic surveillance and reporting of disease syndromes and 

symptoms for early disease detection is illustrated in figure 5.  

Since their inception, these systems have advanced and are currently used not only for 

the detection of bioterrorism attacks, but also for the recognition of emerging infectious 

disease and other conditions that represent a public health threat. There are currently 

multiple systems used for syndromic surveillance including BioSense, ESSENCE, and 

ILINet with significant operational differences related to sensitivity, specificity, sources of 

syndromic data, and detection algorithms. Multiple public health sources can support 

the function of these systems by providing different types of syndromic surveillance data 

in real-time, emergency-department visits, intensive care units, outpatient visits, hospital 

admission and discharge systems, illness-related 911 calls, pre-diagnostic laboratory 

data (ICD-9, ICD-10 codes), over-the-counter medication purchases, social data (school 

and work absenteeism), nurse hotline calls and others (T. Andersson et al., 2014; 

Betancourt et al., 2007; Sugawara et al., 2007; Velardi, Stilo, Tozzi, & Gesualdo, 2014). 

All these data can have indicators of possible public health events occurring in different 

populations and different geographic locations and could infer patterns suggestive of an 

outbreak. All these syndromic surveillance systems need to perform 4 basic functions: 

1) early disease detection in the population and rapid reporting, 2) rapid analysis our 

collected data and data cross validation, 3) support decision making and response 

support, and 4) provide support for evaluating current interventions and support health 

care policies and programs. In this chapter we will provide a description, functionality, 

differences, and public health role of the most widely used syndromic surveillance 

systems currently used for public health purposes. 
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2.1 BIOSENSE 

BioSense is the main CDC effort in supporting early disease detection against potential 

biological threats and other events of public health concern on a national level (Bradley, 

Rolka, Walker, & Loonsk, 2005; Loonsk, 2004; Ma et al., 2005). The original BioSense 

system was first developed in 2003-2004 and incorporated data from three different 

data sources, the Department of Defense, the Department of Veterans Affairs, and 

laboratory data from the Laboratory Corporation of America (LabCorp) (Bradley et al., 

2005; Loonsk, 2004; Sokolow et al., 2005). In 2008 BioSense was redesigned in order 

to collect and analyze data from state and local health departments, health care 

facilities and hospitals, outpatient pharmacy data, and other laboratory sources such as 

Quest Diagnostics. The sources the current BioSense iteration uses to collect health 

related data and related reporting requirement timelines are shown in figure 6.  

An overview of the current BioSense system architecture is illustrated in figure 7 

(Bradley et al., 2005; Tokars, English, McMurray, & Rhodes, 2010). 

 

BioSense Data Sources 

Civilian Hospitals 
~640 facilities (~12% ED coverage in US, Chief complains: 
median 24 hour latency, Diagnoses: median 6 days latency 

Veterans Affairs and Department of 
Defense 

~1400 facilities in 50 states and DC (final diagnosis 2-5 
days latency) 

National Labs (LabCorp and Quest) ~47 states and DC (24 hour latency) 

Hospital Labs ~49 hospital labs in 17 states/jurisdiction (24 hour latency) 

Pharmacies ~50.000 in 50 states (24 hour latency) 

Figure 6. BioSense data sources and reporting timelines, *Source CDC, 

http://www.cdc.gov/biosense/index.html 



15 | P a g e  
 

BioSense 

categorizes 

reported 

data into 

eleven 

different  

groups 

/syndrome 

categories 

including botulism-like, fever, gastrointestinal, hemorrhagic illness, localized cutaneous 

lesion, lymphadentitis, neurological, respiratory, rash, severe illness or death, and 

specific infection as shown 

in figure 8 (Tokars et al., 

2010; Xing et al., 2011). 

These 11 syndromes were 

defined in 2003 by a multi-

agency working group to 

contain the prodromes of 

infectious diseases 

potentially caused by bioterrorism. Based on these and categories and information from 

existing systems, 78 sub-syndromes were defined to allow for analysis of more specific 

symptoms such as cough, asthma, difficulty breathing, etc. and to account for infectious 

diseases, chronic diseases, injuries, and exposures. As a result, BioSense provides the 

BioSense Syndrome Groups 

Botulism-like Fever 

Gastrointestinal Hemorrhagic illness 

Localized cutaneous lesion Lymphadentitis 

Neurological Respiratory 

Rash Severe illness or death 

Specific infection   

 

 

Figure 7. Overview of BioSense system, *Source CDC and U.S Government 

Accountability Office (GAO),  GAO analysis of CDC data, www.gao.gov 

Figure 8. BioSense syndromic group categorization 
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ability to state and local health departments to perform syndromic surveillance within 

their own jurisdictions and share collected data with all interested stakeholders. 

BioSense has evolved into a syndromic surveillance system that provides:   

 A Meaningful Use-ready, HIPAA-compliant environment that provides a 

“Catcher’s Mitt” where health departments can receive and store automated, 

health-related data. 

 Analytics tools that jurisdictions can use for data analysis within the BioSense 

infrastructure. 

 A shared space for easy data exchange with other jurisdictions on an ad hoc or 

routine basis as selected by users. 

 A method to accept electronic data in many forms and formats, including HL7, as 

well as convert these data to new formats for easier health department use. 

Upon data reception and assignment into one of the 11 main syndrome groups and 78 

sub-syndromes, disease detection is done using a modified version of the C2 algorithm 

for signal analysis. There are 3 main disease detection algorithms used in disease 

surveillance systems, C1, C2, and C3. These algorithms can establish a functional 

baseline (background) based on analyzed data and detect signals that differentiate/ 

deviate from this baseline.  Briefly, the C1, C2, and C3 algorithms were intended to be 

CUSUM-like methods (Fricker et al., 2008; O'Brien & Christie, 1997; Zikos & Diomidous, 

2012). Though, the C1 and C2 are actually Shewhart procedure variants that use a 

moving sample average and sample standard deviation to standardize each 

observation. Based on these parameters, the sensitivity of each algorithm differs. The 

C1 algorithm uses the seven days prior to the current observation to calculate the 
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sample average and sample standard deviation. The C2 is similar to the C1 but uses 

the seven days prior to a two-day lag. The C3 algorithm combines information from C2 

statistics as described below. C1 is the less sensitivity, with C3 the most sensitive, and 

C2 with intermediate sensitivity. BioSense uses a modified version of the C2 algorithm 

named W2 for disease/anomaly detection. This algorithm uses a sliding baseline of 7 

consecutive recent days’ counts to calculate a mean (µ) and SD (st). The test statistic is 

(xt – µ)/st, the number of SDs by which the current value xt exceeds µ, or 0 if xt does not 

exceed µ.  

Once the data gets analyzed, they can be visualized in the main BioSense user 

interface that demonstrates the geographic location of the data/cases, as well as a 

histogram of reported cases compared to base line. More advanced analytical tools can 

be used for further analysis (Benoit, McDonald, English, & Tokars, 2011; Buehler et al., 

2009; Xing et al., 2011). The main user interface for data visualization can be seen in 

 

Figure 9. Data visualization in BioSense, *Source CDC, http://www.cdc.gov/biosense/action.html 
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figure 9 and includes results of the analysis, case counts, time series graphs, 

geolocation, and detailed case reports.  

BioSense represents the first Department of Health and Human Services system to 

move completely to a distributed cloud computing environment governed jointly by local, 

state, and federal public health representatives and one of the largest currently 

operational syndromic surveillance (Bradley et al., 2005; Loonsk, 2004). BioSense 

program aims to become the main syndromic surveillance system used by state and 

local health departments and jurisdictions and be used as a tool for early disease 

detection or conditions circulating in the population, and improve public health 

situational awareness and support rapid decision making. Since its inception though, 

BioSense has faced several challenges with most important relating to data collection 

and reporting at the local and state level, delays with data transport to CDC, and delays 

in data analysis (Buehler et al., 2009; Sokolow et al., 2005).  

2.2 ELECTRONIC SURVEILLANCE SYSTEM FOR THE EARLY NOTIFICATION OF 

COMMUNITY-BASED EPIDEMICS (ESSENCE) 

The Electronic Surveillance System for the Early Notification of Community-Based 

Epidemics (ESSENCE) represents one of the oldest, most mature syndromic 

surveillance systems built and currently used by multiple states and public health 

departments nation-wide (Holtry, Hung, & Lewis, 2010). ESSENCE development started 

in 1999 as a collaboration between the Johns Hopkins University Applied Physics 

Laboratory (JHU/APL) and Dr. Joseph Lombardo, and the Walter Reed Army Institute of 

Research (WRAIR) under the sponsorship of the Defense Advanced Research Projects 

Agency (DARPA). The system was intended to be used in the Department of Defense 
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Global Emerging Infections System (DoD-GEIS) (J. Lombardo et al., 2003; J. S. 

Lombardo et al., 2004).  

ESSENCE was a revolutionary system that combines nontraditional health status 

indicators and data with new analytical approaches to identify abnormal health 

conditions in the population. ESSENCE is constructed by multiple components 

developed in parallel and linked under a unified platform. The multi-component 

architecture allows for different components to be upgraded in a nonproprietary 

environment with other cost effective modules or software (J. Lombardo et al., 2003; J. 

S. Lombardo et al., 2004). According to JHU/APL, ESSENCE was developed as a 

syndromic surveillance system that can provide the following functionalities:  

 Policies to ensure the privacy of personal health care information 

 Policies to govern the exchange of information among other surveillance or 

reporting systems 

 A data archive 

 Processes for detection of and issuing alerts about abnormalities in the indicator 

data 

 Processes for notification of users of special events or environmental conditions 

that warrant changes in detection parameters 

 Processes that allow the user to exploit the archive fully to identify false positives 

or obtain information about current or historical trends in the indicator data 

 Visualization and user interfaces 

 Processes for injecting simulated data for training and measuring the 

performance of ESSENCE detectors and indicators 
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A diagram of ESSENCE’s architecture is illustrated in figure 10 (J. Lombardo et al., 

2003; J. S. Lombardo et 

al., 2004).   

In contrast to BioSense, 

ESSENCE classifies all 

reported conditions into 7 

syndrome groups 

including, respiratory, 

gastrointestinal, rash, 

shock/coma, neurological, hemorrhagic, and Botulism-like as shown in figure 11 (J. 

Lombardo et al., 2003; J. S. Lombardo et al., 2004).  

ESSENCE collects data from sources that can be categorized in three groups: sensitive 

health care information, publicly available 

information, and products of external 

surveillance. Under these three categories, a 

variety of data can be collected including 

Emergency Department (ED) chief complaints 

(ICD-9, ICD-10 codes), over-the-counter 

(OTC) pharmaceutical sales, 911 calls, nurse hotline calls, poison control center calls, 

visits to private practice physicians and military clinics, requests for laboratory work,  

laboratory results, emergency room visits, prescription medications, as well as 

environmental and weather data as shown in figure 12 (Betancourt et al., 2007; Henry, 

Magruder, & Snyder, 2004; Holtry et al., 2010).  

ESSENCE Syndrome Groups 

Botulism-like Gastrointestinal 

Neurological Hemorrhagic 

Respiratory Rash 

Shock/coma  

 

Figure 10. Overview of ESSENCE system, Lombardo et al. 2004 

Figure 11. ESSENCE syndromic grouping 

Simulation/Training/Performance Evaluation 
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ESSENCE is capable of performing automatic analysis of reported data against a 

baseline that is established based on a 28-day average and identify statistically 

significant changes. As a result, ESSENCE will “flag” a syndrome group that falls 

outside the baseline measurement defined by historical data. Using this approach, 

ESSENCE can provide early warning for anomalies that are detected among the 

general population (J. Lombardo et al., 2003; J. S. Lombardo et al., 2004).  

ESSENCE allows users 

in local and state health 

departments to define 

the sensitivity of alerts 

depending of public 

health needs and current 

conditions by selecting 

one of the three 

detection algorithms C1, C2, and C3. In addition, ESSENCE provides additional 

algorithms and automatically selects between a regression-based algorithm and an 

ESSENCE Data Sources 

 
 Sensitive Health 

Care Information 
 

 Publicly Available 
Information 
 

 Products of 
External 
Surveillance 

 Emergency Department (ED) chief complaints (ICD-9, 
ICD-10 codes) 

 Over-the-counter (OTC) pharmaceutical sales 
 911 calls 
 Nurse hotline calls 
 Poison control center calls 
 Visits to private practice physicians and military clinics 
 Requests for laboratory work 
 Laboratory results 
 Emergency room visits 
 Prescription medication  
 Environmental and weather data 

Figure 13. Overview of ESSENCE analytical interface, Lombardo et al. 

2004 

Figure 12. ESSENCE data sources 
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adaptive Exponentially Weighted Moving Average (EWMA) chart, with the selection 

determined by a goodness-of-fit measure for the regression model (Carnevale et al., 

2011; Dorea, McEwen, McNab, Sanchez, & Revie, 2013; Fricker et al., 2008; Zikos & 

Diomidous, 2012). Based on this algorithms, ESSENCE can display a time series 

analysis graph of the results and other advanced analytical options as seen in figure 13 

(J. Lombardo et al., 2003; J. S. Lombardo et al., 2004; Savory, Cox, Emch, Alemi, & 

Pattie, 2010).  

Finally, ESSENCE provides the option for geospatial analysis and data visualization 

(cluster analysis) 

as illustrated in 

figure 14 (Holtry et 

al., 2010; J. S. 

Lombardo et al., 

2004). 

Overall, 

ESSENCE has 

been one of the 

most successful syndromic surveillance systems with high rates of adoption from 

several state and local health departments and positive results regarding early disease 

detection, notification, and protection of public health (Centers for Disease & 

Prevention, 2011; Holtry et al., 2010; Schirmer, Lucero, Oda, Lopez, & Holodniy, 2010).  

  

 

Figure 14. Geospatial analysis in ESSENCE, Lombardo et al. 2004 
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2.3 INFLUENZA-LIKE ILLNESS NETWORK (ILINet) 

The Influenza-Like illness network (ILINet) is a syndromic surveillance system that 

exclusively focuses in monitoring and reporting influenza activity in the United States 

(Scarpino, Dimitrov, & Meyers, 2012). ILINet is a national outpatient influenza illness 

surveillance program where healthcare providers that participate in the network report 

data related to patient visits with symptoms associated with influenza illness 

(Patwardhan & Bilkovski, 2012; Scarpino et al., 2012). For ILINet surveillance the 

following case definition for influenza-like illness (ILI) is used: Fever (>100oF or 

>37.8oC) and cough and/or sore throat without a known cause other than 

influenza (Centers for Disease & Prevention, 2010; Scarpino et al., 2012). According to 

this case definition, ILINet will collect all cases report by network providers and we 

categorize them in five different age groups: 0-4 years, 5-24 years, 25-49 years, 50-64 

years, and 65+years of age. Network participants provide weekly reports about 

influenza cases directly to 

CDC. Besides reports, 

ILINet providers can 

additionally submit patient 

samples for laboratory 

characterization. Medical 

providers of any specialty in 

any facility are eligible to become ILINet providers including Emergency Medicine 

departments, family practices, infectious disease clinics, internal medicine clinics, 

OB/GYN, pediatric facilities, student health centers, and urgent care centers as shown 

ILInet Data Sources 

Medical Providers Pediatric Facilities 

Emergency Departments Student Health Care Centers 

Family Practices Urgent Care Centers 

Internal Medicine Clinics Geriatric Facilities 

Infectious Disease Clinics OB/GYN 

 

Figure 15. ILINet data source provides 
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in figure 15. Currently there are more than 2,900 outpatient health care providers in all 

50 states and the District of Columbia that participate in the network and report more 

than 30 million patient visits annually (Scarpino et al., 2012).  

ILINet collects reported data and the percentage of patient visits to healthcare providers 

for ILI reported each week is weighted on the basis of state population. This percentage 

is compared each week with the national baseline of 2.0% calculated by the mean 

percentage of patient visits for ILI during non-influenza weeks for the previous three 

seasons and adding two standard deviations (Centers for Disease & Prevention, 2010). 

A non-influenza week is defined as periods of two or more consecutive weeks in which 

each week accounted for less than 2% of the season’s total number of specimens that 

tested positive for influenza.  Due to wide variability in regional level data, it is not 

appropriate to apply the national baseline to regional data; therefore, region specific 

baselines are calculated using the same methodology. Based on this analysis, ILINet 

reports influenza activity throughout the US in all age groups as illustrated in figure 16 

(Centers for 

Disease & 

Prevention, 

2010; 

Patwardhan & 

Bilkovski, 2012). 

As a result, 

ILINet allows 

for monitoring 

 

Figure 16. Analysis of influenza activity in ILINet, *Souce CDC, 

http://www.cdc.gov/flu/weekly/fluactivitysurv.htm 
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of influenza activity at the local, state at national level, supporting efforts to reduce 

influenza associated morbidity and mortality and identification of new influenza strains, 

and outbreaks in the US population. ILINet could be improved by developing a real-time 

reporting component that would replace the weekly reports from ILINet providers and 

the development of tools for automated data reporting, analysis, and visualization.  

2.4 OTHER SYNDROMIC SURVEILLANCE SYSTEMS 

There are several other syndromic surveillance systems that have been used by federal 

agencies such as the CDC, and state and local health departments. These syndromic 

surveillance systems include RODS, EARS, BioDefend, BioStorm, BioPortal, INFERNO, 

and several other home-grown custom systems that states and local health 

departments developed for monitoring of population health ("BioSTORM: a test bed for 

configuring and evaluating biosurveillance methods," 2007; Dorea et al., 2014; Espino 

et al., 2004; Fricker et al., 2008; Naumova, O'Neil, & MacNeill, 2005; O'Connor et al., 

2003; Patterson-Lomba et al., 2014; Salvadores, Alexander, Musen, & Noy, 2013). All 

these systems operate under the same principles of identifying specific symptoms and 

syndromes associated with a disease or condition and use similar detection algorithms 

like the ones already described.  
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CHAPTER 3: LABORATORY SURVEILLANCE SYSTEMS 

Laboratory surveillance is another form of public health surveillance. While syndromic 

surveillance is based on pre-diagnostic data, laboratory surveillance is based on 

laboratory confirmation and reporting of laboratory results (Hu et al., 2012; M. G. 

Johnson, Williams, Lee, & Bradley, 2014; McElwain, 2010; Niesters et al., 2013; Vogt, 

1996). These laboratory data originate from clinical and public health laboratories. 

Laboratory surveillance is conducted for a wide range of pathogens that can induce 

disease such as, food and waterborne diseases, sexually transmitted and blood-borne 

diseases, respiratory pathogens, zoonotic diseases, etc ("Building rotavirus laboratory 

capacity to support the Global Rotavirus Surveillance Network," 2013; Canas et al., 

2000; De Florentiis et al., 2011; Dombrowski, Buskin, Bennett, Thiede, & Golden, 2014; 

Hall et al., 2012; Jeremy Sueker et al., 2010; J. Lee et al., 2014; Matheny et al., 2014; 

Sabharwal, Braunstein, Robbins, & Shepard, 2014; Shult & Kirk, 2003). Laboratory 

surveillance besides monitoring population health also evaluates the impact of control 

measures and prevention programs against pathogens of interest. In this chapter we will 

provide a description of major laboratory surveillance systems currently used from 

federal, local, and state public health agencies. 

3.1 NATIONAL NOTIFIABLE DISEASES SURVEILLANCE SYSTEM (NNDSS) 

The National Notifiable Diseases Surveillance System (NNDSS) is a nationwide 

collaboration between local, state, territorial, federal, and national public health 

agencies to monitor, control, and prevent the spread of nationally notifiable infectious 

and non-infectious conditions (N. B. Johnson et al., 2014). NNDSS was designed as a 

surveillance program that will collect, analyze, and share health data reported by 
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participating labs, but also share information related to health policies and laws, public 

health standards, information systems, stakeholder information, as well as processes, 

and resources at the local, state, and national levels (Adams et al., 2014; 

"Communicable diseases surveillance. Presentation of NNDSS data," 2001; Vogt, 

1996). According to the CDC, NNDSS is used in order to:  

 Collect, manage, share, analyze, interpret, and disseminate health-related data 

for state-reportable and nationally notifiable diseases and conditions. 

 Develop and maintain national standards—such as consistent case definitions 

and electronic messaging standards. 

 Monitor regional and national trends in diseases and health conditions. 

 Work with other jurisdictions and partners to implement and assess prevention 

and control programs. 

 Designate certain diseases and conditions as nationally notifiable. 

 Submit data on nationally notifiable diseases to CDC. 

 Maintain and publish the official national notifiable diseases statistics from 57 

state, territorial, and local reporting jurisdictions in the Morbidity and Mortality 

Weekly Report (MMWR). 

The list of reportable diseases and conditions that state and local health departments 

are required to report to CDC through NNDSS is shown in figure 17 (Adams et al., 

2014). These conditions are classified in three different categories; conditions classified 

as extremely urgent and require immediate notification within four hours of laboratory 

confirmation by the most rapid means available, conditions classified as urgent and 

require notification within twenty four hours of laboratory confirmation, and conditions 
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classified as standard and require notification within the next normal reporting cycle. 

(Centers for Disease & Prevention, 2013; Jajosky & Groseclose, 2004).  
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Figure 17. List of reportable conditions, *Source CDC and CSTE, http://www.cste.org/ 
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Based on case notification reported by states to NNDSS, the CDC will analyze these 

data and monitor the incidence of these conditions in the US population as shown in 

figure 18 (N. B. Johnson et al., 2014). 

Based on analyzing laboratory confirmed cases, the CDC can monitor population 

health, evaluate the effectiveness of public health prevention and intervention programs, 

and propose new strategies and policies to protect and improve health of the US 

population. One of the key components of NNDSS is the National Electronic Disease 

Surveillance System (NEDSS) (National Electronic Disease Surveillance System 

Working, 2001; Robinson, 2014). NEDSS ensures the electronic transfer of public 

health surveillance data between public health departments using public health 

standards including Public Health Information Network (PHIN) standards and 

vocabulary standards such as LOINC, SNOMED, and HL7. Under NEDSS, the following 

requirements need to be met by public health information systems:  

 

Figure 18. Analysis and visualization performed under NNDSS for MMWR (N. B. Johnson, Hayes, 

Brown, Hoo, & Ethier, 2014) 
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 Disease data entry directly through an Internet browser-based system, thereby 

creating a database accessible by health investigators and public health 

professionals. 

 Electronic Laboratory Reporting (ELR) that enables labs to report cases to health 

departments. 

 Integration of multiple health information databases into a single repository. 

 Electronic messaging capabilities, enabling states to share information efficiently 

with CDC and other health agencies. 

Adoption of these standards can ensure that data reported by states are shared with the 

CDC rapidly, securely and in a common/structured format. NNDSS could benefit from 

tools that would allow automated data analysis as well as dedicated systems for data 

visualization and geospatial analysis.   

3.2 FOODBORNE DISEASES ACTIVE SURVEILLANCE NETWORK (FOODNET) 

The Foodborne Diseases Active Surveillance Network, or FoodNet, was developed in 

1996 to track and monitor infections commonly transmitted through food including 

Campylobacter, Cryptosporidium, Cyclospora, Listeria, Salmonella, Shiga toxin-

producing Eschericia coli (STEC) O157 and non-O157, Shigella, Vibrio, and Yersinia 

(Allos, Moore, Griffin, & Tauxe, 2004; Angulo et al., 1998; Henao et al., 2012; 

Manikonda et al., 2012; Scallan & Mahon, 2012; Yang, 1998). FoodNet requires 

diagnosis of these pathogens by laboratory testing of samples from patients. FoodNet is 

a collaborative effort between CDC, the Food and Drug Administration (FDA), the U.S. 

Department of Agriculture’s Food Safety and Inspection Service (USDA-FSIS), and 10 
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state health departments and covers approximately 15% of the US population with more 

than 650 testing sites (laboratories). The 10 states enrolled in FoodNet include 

California, Colorado, Connecticut, Georgia, Maryland, Minnesota, New Mexico, New 

York, Oregon, and Tennessee as shown in figure 19.  

Collected data 

are transmitted 

to CDC 

monthly. If the 

patient 

requires 

hospitalization 

within 7 days 

of the 

specimen 

collection are also recoding with the status of the patient at hospital discharge. In 

addition, travel information within 7 

days prior to illness is also recorded 

for Salmonella and STEC O157 

cases (Gould, Rosenblum, 

Nicholas, Phan, & Jones, 2013; 

Henao et al., 2012; L. R. Johnson 

et al., 2011; Scallan & Mahon, 

2012).  

 

 

Figure 20. Analysis of foodborne diagnosed conditions in 

FoodNet, *Source CDC, http://www.cdc.gov/foodnet/ 

Figure 19. Geographic coverage of FoodNet, *Source CDC, 

http://www.cdc.gov/foodnet/ 
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Based on reported data, CDC monitors the activity and incidence on foodborne disease 

within the US population and provides annual reports related to disease incidence, 

affected groups of the population, seasonality, location, and other disease 

characteristics as show in figure 20. FoodNet not only monitors foodborne related 

conditions but also provides a foundation for food safety policy and prevention efforts. 

Overall, FoodNet could be improved by incorporating Advanced Molecular Detection 

(AMD) and Next Generation Sequencing (NGS) tools, more frequent reporting 

approaches and automated tools for data reporting, analysis, and visualization.   

3.3 ENHANCED HIV/AIDS REPORTINS SYSTEM (eHARS) 

The Enhanced HIV/AIDS Reporting System (eHARS) is the replacement surveillance 

system for the previous HIV/AIDS Reporting System (HARS) used by local and state 

health departments 

to conduct HIV/AIDS 

case reporting, and 

collect data in a 

secure information 

system designed by 

CDC (Youmans, 

Tripathi, Gibson, 

Stephens, & 

Duffus, 2011). 

eHARS is a relational database system that was developed in 2005 as a browser-based 

application to collect, manage and report HIV/AIDS case surveillance data to CDC (Mu, 

 

Figure 21. Geospatial analysis of HIV related data in eHARS, *Source 

AIDSVu/org/map/ 
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Rutledge, Mills, & Paul, 2014; Youmans et al., 2011). In addition, eHARS allows for the 

analysis of discrete events over time, a useful feature for surveillance of chronic 

diseases and condition like HIV infection as shown in figure 21. eHARS supports core 

HIV/AIDS surveillance data activities and projects, and offers tools to support 

investigation of potential HIV/AIDS cases, management of current data, import and 

export of data, transfer of data to CDC, reporting, and analysis. eHARS collects and 

presents HIV/AIDS data via fields displayed in electronic documents, such as the 

eHARS versions of case reports, birth certificates, death certificates, and lab reports. 

Data collected from eHARS are used by public health practitioners and HIV planning 

groups for HIV/AIDS surveillance, prevalence and disease monitoring, identification of 

epidemiologic trends, as well as evaluation of HIV prevention programs and strategies 

(Mu et al., 2014; Youmans et al., 2011).  

3.4 OTHER LABORATORY SURVEILLANCE SYSTEMS 

Laboratory surveillance is conducted for numerous pathogenes and conditions, such as the 

Influenza Hospitalization Surveillance Network (FluSUrv-NET) for population based surveillance 

of laboratory confirmed influenza related hospitalizations in children and adults (Jhung et al., 

2014), genomic surveillance for identifying mutations or new reassortants of different pathogens 

or genetic markers in the population associated with a specific disease (Gire et al., 2014; Yuan et 

al., 2014), the National Respiratory and Enteric Virus Surveillance System (NREVSS) for 

virologic surveillance throughout the US (Rabon-Stith et al., 2013), mortality surveillance using 

the nationwide mortality reporting system (N. B. Johnson et al., 2014) etc. All these systems 

require laboratory confirmation of the disease and condition they monitor and they operate using 

similar standards and procedures as the one already described.  
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CHAPTER 4: WEB-BASED PUBLIC HEALTH SURVEILLANCE SYSTEMS 

Web-based public health surveillance systems are surveillance systems that were 

designed to collect near-real time information from internet sources and by applying 

data mining, machine learning, and filtering techniques, identity new cases of infectious 

diseases and conditions within the population (Lyon et al., 2012; Milinovich et al., 2014; 

Velardi et al., 2014; Wojcik et al., 2014). These systems collect information from 

multiple and diverse internet data sources and multiple languages such as news feeds, 

social media, and online reports. The amount of information flow that can be found on 

the internet has revolutionized how epidemic information are being collected and can 

offer real-time cost effective solutions to supplement existing surveillance systems or 

opportunities for stand-alone event-based public health surveillance systems. In multiple 

cases, these online data can contain individual reports and descriptions of symptoms 

associated with a disease or condition. By applying data mining techniques and Natural 

Language Processing (NLP) algorithms, public health value can be extrapolated from 

these data. Because these systems collect and analyze information reported online by 

individuals (self-reporting) related to symptoms and signs related to a disease or 

condition before they seek professional care and be reported by a physician or health 

care professional, they precede syndromic surveillance systems (Milinovich et al., 

2014). Analyzing these various information from diverse internet sources and using 

internet based tools, initial evidence and signs of an outbreak can be detected. In 

addition, these systems can be proven valuable in areas that are not currently 

performing any type of public health or the capabilities of these systems are limited. 

Although these systems have been associated with early disease detection and 
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outbreaks in previous cases (MERC-CoV, Ebola, etc.) and served as sources to 

enhance existing syndromic surveillance systems, they have also been associated with 

high levels of false positive reporting and other issues associated with detection 

sensitivity, signal detection, and background noise. One of the most well-known cases 

of false reporting and difficulties with accurate signal detection and separation from 

noise is google flu trends (Santillana, Zhang, Althouse, & Ayers, 2014). Google flu 

trends, owned and operated by Google Inc. claimed that just by collecting search terms 

related to influenza disease, the could accurately predict influenza activity in the 

population. Google flu trends model is based on the relationship between how many 

people search for influenza related topics and actually positive influenza cases. This is a 

linear model that compute the log-odds of physician visits associated with influenza like 

illness (ILI) and the log-odds of ILI-related search query (Fearnhead, Giagos, & 

Sherlock, 2014). Despite successful initial results published in high impact medical 

journals that predicted influenza activity in the US (Carneiro & Mylonakis, 2009), further 

analysis demonstrated that google flu trends made inaccurate forecasts for at least 100 

of 108 weeks and overestimating influenza cases for as much as 50% in many cases 

(Lazer, Kennedy, King, & Vespignani, 2014). The reason behind this overestimation and 

incorrect forecasting was located in the amount of noise behind the big data analyzed 

by google (Lazer et al., 2014; Santillana et al., 2014). Developing algorithms that can 

accurately calculate the signal-to-noise ratio in these systems is crucial for building 

accurate web-based public health predictive models. To reduce the noise, these 

systems require continuous analysis of web-based data and validation with an 

alternative high quality set of data. Furthermore, these systems require constant 



37 | P a g e  
 

modification of its predictive and machine learning algorithms based on the changes 

recorded on social patterns from the various online sources. Based on these changes, 

re-training and recalibrating these models and adapting them based on all new 

parameters is required to maintain the high accuracy of the system.  

Despite these challenges, these web data mining and crowd-sourced public health 

tracking systems can provide the real-time signal indicative of a disease or condition in 

the population that syndromic or laboratory surveillance systems lack. In this chapter we 

will provide a description of major web-based surveillance systems with significant 

impact and results in early disease detection. . 

 4.1 HEALTHMAP 

 HealthMap is an automated system established in 2006 that collects and display 

information about new outbreaks in humans and animals according to geographic 

location, time, and infectious agent (Lyon et al., 2012). HealthMap has been funded in 

part by Google.org, and has been collaborating with the U.S. Department of Health and 

Human Services to map seasonal influenza and H1N1 in the U.S. The system integrates 

outbreak data from multiple electronic sources, including online news wires (e.g., Google 

News), Really Simple Syndication (RSS) feeds, expert-curated accounts (e.g., ProMED-

HealthMap Data Sources 

Google News WHO alerts 

RSS feeds Weather reports 

ProMED-mail News articles 

Eurosurveillance Twitter feeds/Social media 

Community news reports SOSO 

User eyewitness reports Baidu 

Figure 22. HealthMap primary data sources 
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mail, a global electronic mailing list that receives and summarizes reports on disease 

outbreaks), multinational surveillance reports (e.g., Eurosurveillance), and validated 

official alerts (e.g., from WHO). Overall, HealthMap collects information from Baidu, 

EuroSurveillance, Google, Community News Reports, OIE, ProMED-mail, SOSO, User 

Eyewitness Reports, WDIN and WHO as shown in figure 22 and scans for articles in 

multiple languages.  

It also has a mapping system that allows users to view reports and apply a number of 

filters. Users can also comment on articles and rank them for significance (Brownstein & 

Freifeld, 2007; Brownstein, Freifeld, Reis, & Mandl, 2008; Freifeld et al., 2008; Lyon et 

al., 2012; Morse, 2012). 

As a result, HealthMap collects data in real time from more than 20 000 websites daily 

and processes an average of 133.5 disease alerts/day with approximately 50% 

categorized 

as breaking 

news (65.3 

reports per 

day) that 

can be 

plotted on 

an 

interactive 

map based on the Google Maps API as seen in figure 23 (Brownstein & Freifeld, 2007; 

Freifeld et al., 2008; Lyon et al., 2012).  

 

Figure 23. Visualization of results in HealthMaps’ main user interface, *Source 

HealthMap, http://healthmap.org/en/ 
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Surveillance is conducted in several languages, including Arabic, Chinese, English, 

French, Portuguese, Russian and Spanish and there are currently efforts to expand the 

system to collect data from other languages. The system receives 1,000–10,000 

visits/day from around the world with the most frequent visitors originating from 

government-related domains, including WHO, CDC, European Centre for Disease 

Prevention and Control, and other national, state, and local bodies worldwide. 

HealthMap also provides advanced filtering capabilities. After the first categorization 

step into locations and diseases, a second round of category tags is applied to the 

articles to improve filtering. The primary tags include 1) breaking news (e.g., a newly 

discovered outbreak); 2) warning (initial concerns of disease emergence, e.g., in a 

natural disaster area; 3) follow-up (reference to a past outbreak); 4) background/context 

(information on disease context, e.g., preparedness planning); and 5) not disease-

related (information not relating to any disease). Duplicate reports are also removed by 

calculating a similarity score based on text and category matching. The tagged data 

gets analyzed using NLP methodologies, detection algorithms, and predictive analysis 

tools for disease and condition detection among the population. Finally, in addition to 

providing mapped content, each alert is linked to a related information window with 

details on reports of similar content as well as recent reports concerning either the same 

disease or location and links for further research (e.g., WHO, CDC, and PubMED). 

Finally, it can represent the locations of events with a coloured marker depending on 

disease severity and event type. 

One of the strongest advantages of this system in collaboration with other international 

organizations including CrisisMappers and Humanity Road, is the integration of social 
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media reporting during disasters  (for example social media integration during the Haiti 

cholera outbreak) that allows real-time data collection and detailed health information in 

a crisis setting. As a result, the web resource (healthmap.org/haiti) mapped informal 

outbreak reports from news and social media as well as key information on the 

availability of healthcare and clean water facilities. 

HealthMap was the first surveillance system that detected reports about hemorrhagic 

fever cases in southeastern Guinea in March 14 2014, 9 days before the World Health 

Organization (WHO) formally announced the Ebola outbreak, the largest Ebola 

epidemic ever reported in history.   

4.2 ProMED-mail 

Program for Monitoring Emerging Diseases (ProMED) is an early warning and disease–

reporting system that was established in 1994 with the support of the Federation of 

American Scientists and SatelLife (Pollack, Pringle, Madoff, & Memish, 2013). Since 

October 1999, ProMED-mail has operated as an official program of the International 

Society for Infectious Diseases, a nonprofit professional organization with 20,000 

members worldwide (Stewart & Denecke, 2010). ProMED monitors outbreaks of 

infectious diseases that can affect humans, animals or plants but also acute exposures 

to toxins that affect human health, including those in animals and in plants grown for 

food or animal feed (Cowen et al., 2006). The system’s sources of information include 

ProMED-mail Data Sources 

Media reports Official reports 

Online summaries Local observers 

Subscribed users News articles 

Figure 24. ProMED-mail primary sources of information and data collection 
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media reports, official reports, online summaries, local observers, and others. Reports 

are often contributed by ProMED-mail subscribers as shown in figure 24. ProMED-mail 

has been supported by various organizations including Google.org, the Gates 

Foundation, the Rockefeller Foundation, the Oracle Corporation, the Nuclear Threat 

Initiative, and others and closely collaborates with HealthMap. 

ProMED-mail collects data in real time that have been submitted to health agencies and 

international organizations, media sources or reports submitted directly from subscribers. 

These reports are initially being screened by a moderator for their validity and can either 

reject them or send them further to subject moderators that will categorize and analyze 

them accordingly. There are 12 different categories that include 4 for veterinary and 

zoonotic diseases, 2 for viral diseases, and 1 each for bacterial diseases, parasitic 

diseases, plant diseases, epidemiology and surveillance, and medical entomology. Upon 

analysis of the data, a report will be generated with the description of the event as seen 

in figure 25 

(Antohi et al., 

2007).  

Reports 

generated by 

the system are 

distributed by 

email to direct 

subscribers and posted immediately on the ProMED-mail web site. ProMED-mail 

currently reaches over 60,000 subscribers in at least 185 countries and the geographic 

Figure 25. Data analysis screen in ProMED-mail, *Source ProMED-mail, 

http://www.promedmail.org/ 
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visualization of the data is accomplished through a partnership with Healthmap.org 

(Antohi et al., 2007; Cowen et al., 2006; Freifeld et al., 2008; Madoff, 2004; Stewart & 

Denecke, 2010).  

ProMED-mail was the first surveillance system to report cases of individuals getting sick 

with symptoms associated with an unknown pathogen similar to the ones reported during 

the severe acute respiratory syndrome coronavirus (SARS) outbreak. Later on it was 

identified that these cases were induced by a new virus strain, the Middle East respiratory 

syndrome coronavirus (MERS-CoV) (Pollack et al., 2013). 

4.3 BioCaster 

BioCaster is an automated early warning system that was established in 2006. The goal 

of the system is monitoring of biological events that affect humans, animals and plants 

as a result of chemical or radio nuclear event or after natural disasters such as 

earthquakes, typhoons, floods etc (Collier et al., 2008; Lyon et al., 2012). The system is 

supported and operates from the Japanese National Institute of Informatics (NII) in 

Tokyo and the Japan Science and Technology Agency’s PRESTO fund. BioCaster 

collects data in real time from a variety of sources such as Google News, World Health 

Organization (WHO), MeltWater News, ProMED-mail, European Media Monitor Alerts 

(MedISys) as shown in figure 26.  

BioCaster Data Sources 

Google News  WHO 

MeltWater News ProMED-mail 

European Media Monitor Alerts (MedISys) RSS feeds 

Figure 26. BioCaster primary sources of information and data collection 
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The system continuously analyzes documents reported from over 1700 RSS feeds daily 

in 10 different languages including Arabic, Chinese, English, French, Japanese, Korean, 

Portuguese, Russian, Spanish, Thai and Vietnamese and classifies them for topical 

relevance and plots onto a Google Map using geocoded information.  

BioCaster contains a web/database server and a backend cluster computer equipped 

with a variety of text mining algorithms which continuously scan hundreds of RSS 

newsfeeds from local and national news providers. Since the text mining system has a 

detailed knowledge about the important concepts such as diseases, pathogens, 

symptoms, people, places, and drugs. This allow to semantically index relevant parts of 

news articles, enabling users to have quicker and highly precise access to information 

Figure 27. BioCaster’s main visualization screen, *Source BioCaster, http://born.nii.ac.jp/ 
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(Collier et al., 2008; Lyon et al., 2012). The reported data comes from annotated text 

collections, gazetteer lists of nomenclature and the BioCaster ontology, all of which are 

currently under development. Users can access the results by accessing the BioCaster 

site as shown in figure 27, where they are presented with a “live” map of events 

occurred over the last 30 days. The system provides filtering capabilities based on date, 

language, geographical location, and type of disaster and other parameters for 

improved sensitivity and specificity of the system in disease detection.   

4.4 OTHER WEB-BASED SURVEILLANCE SYSTEMS 

Currently, there are several web-based biosecurity intelligence systems that collect 

information related to disease outbreak. All these systems have as a main goal to 

gather and analyze information relevant to public health and provide an early warning 

during an outbreak. Some other web-based surveillance systems besides the ones 

described include EpiSPIDER, MappyHealth, MedISys, the Global Public Health 

Intelligence Network (GPHIN), USHAHIDI, and others (Lyon et al., 2012; Ting, Tsang, 

Ip, & Ho, 2011).   

Although these systems operate under similar principals of monitoring, collecting and 

reporting of data, there are significant differences related to the sources and languages 

these systems use to collect the information, the geographic regions it covers, but also 

differences in the NLP algorithms, machine learning techniques, data filtering 

approaches, and the methods to analyze data. The plethora of systems operating in this 

space points out to the possibilities offered for public health surveillance by collecting and 

analyzing social media and other self-reporting information in real-time.   
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CHAPTER 5: THE FUTURE OF PUBLIC HEALTH SURVEILLANCE SYSTEMS 

Public health surveillance systems have transformed the way we conduct public health. 

Since their inception, public health surveillance systems have evolved from tools for 

warning of possible bioterrorism attacks, to tools for early detection not only of infectious 

diseases, but health conditions affecting the population in general. As a result, public 

health surveillance systems have become the perfect tools for monitoring infectious 

diseases but also not infectious conditions such as injuries, chronic conditions, toxic 

exposures, drug use, environmental and occupational exposures, birth defects, mental 

illness, etc. Thus, they can provide an overall assessment of population health, situational 

awareness, rapid decision making support, and public health policy evaluation and 

support.   

Although these systems were built using the best tools, technologies, and system 

architecture standards that were available during their design, several technological 

advancements in the areas of predictive analytics, Electronic Health Records (EHRs), as 

well as the development of NoSQL databases can offer new and highly effective 

enhancement tools to existing systems or alternative solutions for re-designing new public 

health surveillance systems that would incorporate these new technologies 

5.1 PREDICTIVE ANALYTICS IN PUBLIC HEALTHL 

Predictive analytics is a new area of interest in public health surveillance that combines 

new technologies such as machine learning (Marella, Sparnon, & Finley, 2014; Z. Wang 

et al., 2012; Worden & Manson, 2007), predictive modeling (Farran, Channanath, 

Behbehani, & Thanaraj, 2013; Mathias et al., 2013; Tabak, Sun, Nunez, & Johannes, 
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2014), and data mining (Lucas, 2004; Partington, Papakroni, & Menzies, 2014; Velardi 

et al., 2014), in order to analyze current and historical public health data and to make 

predictions about future health trends, enhance automated data analysis, and improve 

sensitivity when analyzing large data sets.    

Machine learning is a computer science discipline that focuses on developing 

algorithms that will allow the automated process of learning from analyzed data 

(Boxwala, Kim, Grillo, & Ohno-Machado, 2011; Fidahussein & Vreeman, 2014; 

Khondoker, Dobson, Skirrow, Simmons, & Stahl, 2013; Marella et al., 2014). This 

approach can find great application in automatic detection of public health events by 

analyzing massive sets of data that contain public health related information. Once the 

system “learns” the parameters and the distinction between normal/baseline and 

abnormal conditions based on developing and optimizing these learning algorithms, it 

will be capable of automatic monitoring, detection, and reporting of public health events 

of interest. There are several machine learning techniques currently used in public 

health systems, such as classifiers, clustering, Bayesian statistic, and genetic 

algorithms (Lucas, 2004).  

Predictive modeling is a mathematical method by which different statistical models are 

developed to try to predict the probability of an outcome based on available data. In the 

case of public health these outcomes may be disease spread, morbidity and mortality, 

impact on the population, identification of high risk groups, etc. (Andersson, Faverjon, 

Vial, Legrand, & Leblond, 2014; Burr et al., 2006; Miller et al., 2007; Perry, Korenberg, 

Hall, & Moore, 2011; Tabak et al., 2014; Valencia-Mendoza & Bertozzi, 2008). 

Predictive models collect data and look for mathematical relationships between 
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dependent variables and various independent variables and measuring the probability 

of these relationships to occur in the future. In addition, since these relationships are 

never perfect in practice, certain degree of improbability is added to the model. There 

are several different predictive modeling techniques that can be used such as, lineal 

regression, K-means clustering, traditional decision trees, neural networks, random 

forests, etc. All these predictive modeling techniques use different algorithms and 

different levels of relationships between the data.   

Data mining is the process of exploring large amounts of data/Big Data in search of 

identifying consistent patterns and relationships between data elements (Cubillas, 

Ramos, Feito, & Urena, 2014; Cunningham et al., 2014; Gotz, Wang, & Perer, 2014; 

Partington et al., 2014). Once a pattern is identified, it gets validated by applying it in a 

new set of data. The main goals behind data mining are prediction and predictive data 

mining, but also finding value behind non-traditional sources/types of data. Data mining 

is a computationally intense process that requires several prior steps related to data 

preparation, data reduction, and data analysis. 

Because of the value these new technologies bring in automated data analysis and 

reporting, there is great interest in adopting/implementing them in healthcare and public 

health surveillance. Currently, these techniques are being used to some degree from 

web-based surveillance systems that use machine learning, NLP, data mining, and 

predictive models to identify and predict potential threats circulating within the general 

population.  
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5.2 ELECTRONIC HEALTH RECORDS (EHRs) 

EHRs are digital versions of patient’s records containing the entire medical history as well 

as other personal identifiable (sensitive) information (Goedert, 2008; Hayrinen & 

Mykkanen, 2011; Lanham, Leykum, & McDaniel, 2012; Mold et al., 2012; Sittig, Singh, & 

Longhurst, 2013; Spyropoulos et al., 2014). EHRs contain a patient’s full medical history, 

medication, insurance plans, treatment plans, diagnoses, imagine and laboratory results, 

immunization dates, provider information, etc.  Adoption of EHRs has been an important 

initiative and adoption of EHR systems has been incentivized and facilitated by the Health 

Information Technology for Economic and Clinical Health (HITECH) Act in the United 

States and offers incentives to providers that adopt and use EHRs in clinical settings 

(Barnes, 2011; Golder, 2010; Joseph, Snow, Furukawa, Posnack, & Chaffee, 2014; 

Mehta, 2010; Terry, 2010; T. Wang, Wang, & Biedermann, 2013). The main goal of this 

effort is to modernize the health system by promoting and expanding the adoption of 

health information technology and reduce medical costs. EHRs adopt existing standards 

about message transport mechanisms (HL7), ICD-9 diagnostic codes (transition to ICD-

10), and laboratory reporting using LOINC and SNOMED codes. Since EHRs contain 

highly structured health related data, they can ensure interoperability with existing public 

health surveillance systems and further enhance their functionality. This can be achieved 

by rapidly reporting chief complains as captured by ICD-9 and ICD-10 codes, laboratory 

orders, and laboratory results. In addition, the high quality and completeness of EHRs 

can reduce the time required for data validation and data curation and support rapid 

analysis. All these advantages can improve system functionality, reduce reporting lags, 

and decrease operating costs.  
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5.3 NOT ONLY STRUCTURED QUERY LANGUAGE (NoSQL) DATABASES 

NoSQL are modern database/data model systems for document stores, key value stores, 

XML databases, graph databases, column stores, and object stores. They assume that 

data storage does not require fixed table schemas and do not follow the relational 

database management systems traditional SQL databases require (K. K. Lee, Tang, & 

Choi, 2013; Ningthoujam et al., 2014). Since NoSQL systems do not have to follow these 

requirements, they have a simpler design, better data management system, dynamic 

schemas (or schema-less), are horizontally scalable, and have an open architecture. As 

a result, NoSQL databases can store and handle/analyze large volumes of not only 

structured but also unstructured data (data that do not fit under fixed table schemas). In 

addition, since NoSQL architecture allows for scaling and distributed use across a large 

number of servers, they can support parallel processing of massive volumes of data in 

cloud instances, virtual machines, and servers, thus improving performance of data 

analysis when compared to SQL based systems. Several NoSQL solutions have been 

developed for different database types and purposes such as MongoDB, Cassandra, and 

Apache Hadoop (Dong et al., 2013; Ningthoujam et al., 2014). Because of these benefits, 

NoSQL databases have been gaining in popularity in healthcare applications over the 

traditional SQL databases 

Implementing these technologies in existing public health surveillance systems or 

designing new systems based on these architectures would be the next major step for 

public health surveillance. These tools have the potential to improve data reporting 

times, eliminate lack of interoperability between systems due to data format limitations, 

introduce predictive modeling tools for disease spread within the population as 
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integrated parts of surveillance systems, and support automated data analysis. The 

maturity level, reliability, and potential these technologies offer and the possibility of 

implementing them in existing system architectures or using them as the base for 

designing new unified systems, could advance public health surveillance systems into 

tools for near real-time monitoring of population health and disease outbreaks, with 

enhanced situational awareness and rapid decision making support and response 

capabilities. 

5.4 DESIGNING THE IDEAL PUBLIC HEALTH SURVEILLANCE SYSTEM 

Throughout the description of these public health surveillance systems for syndromic, 

laboratory, and web-based surveillance, several limitation can be identified. A summary 

of these limitations is show on figure 28.  

LIMITATIONS OF PUBLIC HEALTH SURVEILLANCE SYSTEMS 

Interoperability Lack of data exchange, data sharing, data 
interpretation, synchronous operation, or 
communication between different systems 

Data Sources Use of different and diverse data sources between 
different systems 

Data Collection Use of different approaches, mechanisms, and 
methodologies, for scanning and collecting data 
from sources 

Data Reporting Lag in data reporting and lack of visualization tools 
for certain surveillance systems 

Data Analysis Lack of automated data analysis or tools to support 
data analysis during data collection. Lag in data 
analysis 

Data Quality Lack of validation mechanisms for data 
completeness, and data duplication 

Signal Detection Different signal detection algorithms with different 
levels of sensitivity and specificity for each system 

Automation Lack of tools for automated data ingestion, data 
analysis, and data reporting 

Standardization Use of different standards for data collection, 
data/message transport, and data reporting 

Data Ownership Policies, regulations, and legal frameworks 
regarding data ownership rights 

Data Security Policies and regulations related to data storage, 
data transport, and data sharing of data containing 
PII and PHI  

Figure 28. Limitation and challenges of public health surveillance systems 
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Currently, public health surveillance systems that provide nationwide coverage operate 

under a model that focuses on distributing all surveillance data and efforts in a centralized 

location within the CDC. Under this model, public health providers that collect public 

health related data such as chief-complains, disease symptoms and syndromes, 

laboratory orders, laboratory sample/specimen collection, laboratory results, etc. are 

required to share with public health professional from the federal government. Based on 

public health policies and regulations related to data ownership rights, any sharing of 

public health data outside the state level requires the approval and release of these data 

at the local and state level. As a result, all public health data require to be reviewed and 

approved by local and state health officials before being shared with CDC and other 

federal stakeholders.   

In addition, due to safety concerns and regulations about PII and PHI as defined under 

HIPAA, all PII and PHI are removed from this data. As a results, further linking this data 

to laboratory results and laboratory based surveillance becomes impossible. As a result, 

syndromic surveillance is disconnected from laboratory surveillance. 

Once the data gets released from the state and local health departments to CDC, further 

analysis of these data including establishing a functional signal background, application 

of detection algorithms, and identification of potential diseases and conditions within the 

population can be achieved. In addition, normalization of data collected from various 

sources and conversion into a common format that can support data ingestion and 

analysis from this centralized system occurs during this stage, introducing further delays 

in abnormal signal detection within the population. Furthermore, CDC and federal 
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stakeholder cannot address potential issues with the data directly with the health care 

providers since the involvement of local and states officials is required.  

All these limitations result in serious lags in data transport, data analysis, and data 

reporting, and overall delays in early disease detection, laboratory confirmation, and 

decision making support. This linear condition model of public health surveillance 

between health care providers, local and state health departments, and CDC and federal 

stakeholders is shown in figure 29.   

 

 

Figure 29. Current model of public health surveillance 



53 | P a g e  
 

Although resolving several of these limitations can be a major challenge, a possible 

solution could be achieved by decentralizing public health surveillance and crowdsourcing 

it to the state, local, and hospital setting level as a more agile and effective approach for 

conducting public health surveillance. This would allow for easier and cost effective 

integration of automated solutions for data collection and analysis in the existing systems 

currently used at the local level. Suspected cases could be “flagged” as potential threats 

and only these cases would be reported at a higher level such as the CDC for further 

investigation. Under this model, data collection, analysis, and reporting would be 

performed at the local level. Detection of signals that could indicate a potential disease 

or condition in the population would be directly reported to both local and state health 

departments as well as CDC and federal stakeholders. A monthly data dump would 

provide access to un-identified PII and PHI data to federal stakeholders for further 

analysis, longitudinal studies, and archiving purposes. This model could overcome 

limitations associated with data ownership and data reporting while it would still provide 

situational awareness and rapid decision making support to federal stakeholders.  

There are several advantages that can be identified with this approach. Since disease 

trends and conditions can be significantly different among different states, jurisdictions, 

or different groups in the local population depending on local policies and prevention 

strategies, socio-economic factors, but also geographic location, demographics of the 

population, and disease seasonality, the background baseline for different diseases could 

be different between different states. For example, the rates of cancer, HIV, or influenza 

can be significantly different depending on environmental factors, prevention and 

educational programs and strategies, or vaccination coverage. Defining the baseline 
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based on local parameters or developing detection algorithms based on these parameters 

can be a much more effective approach to improve sensitivity and specificity of public 

health surveillance systems but also allow for immediate and more organized response 

to population health and community needs when compared to national surveillance. 

Furthermore, this approach would allow for better understanding of local population health 

needs and shaping of local health policies and intervention strategies that could directly 

target high priority problems. In addition, since this approach is performed at a local level, 

it would allow the connection of both syndromic and laboratory surveillance under the 

same system. This can further ensure the validity of syndromic surveillance models by 

constantly comparing them against high quality laboratory confirmed data. In addition, 

this model would allow for more direct and immediate engagement of medical 

professionals and subject matter experts with issues related to population health, and 

evaluating potential abnormal signals detected in the population.  

From a system implementation stand point, although previously described tools such as 

predictive analytics, EHR adoption, NoSQL database architecture, cloud computing and 

analytics represent highly effective solutions that can improve system automation 

throughout the entire process of data collection, validation, analysis, and reporting, 

implementation of these solutions under a unified system with multiple parameters and 

dependencies from existing systems can be challenging. Implementing these tools in 

smaller scale systems that can be tailored according to each system’s parameters would 

be a more compatible and cost-effective approach than a “one size fits all” solution.  

Finally, this model would allow for updating single system components without requiring 

major system re-designs, or compromising the functionality of the entire system. 
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Transferring surveillance actions and responsibilities to local level could be supported 

through The Office of the National Coordinator for Health Information Technology (ONC) 

initiatives, such as the HITECH act for IT adoption, the Meaningful Use initiative under 

The American Recover and Reinvestment Act, or the Health Information Exchange (HIE) 

initiative. Through these initiatives, incentives could be offered to local health departments 

and clinics to overtake this important function of performing real-time processing and 

analysis of health related data and support public health surveillance efforts.  

This multilateral/bidirectional model of public health surveillance between health care 

providers, local and state health departments, and CDC and federal stakeholder is shown 

in figure 30. 

Figure 30. Suggested crowdsourcing public health surveillance model  
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Public health surveillance systems play a crucial role in protecting the population from 

potential threats and conditions. Improving these systems based on the knowledge and 

experience that we have gained so far, integrating new technologies and tools that can 

further enhance and improve their functionality, but also supporting policy changes 

related to health data ownership and sharing would be the next necessary steps that will 

transform these systems to valuable tools for rapid disease detection, situational 

awareness, and decision making support.   
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