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Abstract

Emora Assistant Bot: Revolutionizing Task Automation and Chatbot Evaluation
By Ellie S. Paek

The Emora Assistant Bot, part of the Emora Chat: College Companion project, was
developed by members of the Emory NLP Research Lab. Motivated by the call for effi-
ciency in executing tasks, Emora excels in managing both general administrative tasks
and those specific to classroom settings, all while facilitating seamless communication
among multiple users. Leveraging the Emora State Transition Dialogue Manager
framework and OpenAI’s GPT-3.5 Turbo API, the Assistant Bot executes seventeen
different tasks through natural language interaction, offering users a conversational
and efficient experience. An innovative automated evaluation approach utilizing the
GPT-3.5 language model is used to evaluate this task-oriented chatbot, providing
valuable insights into Emora’s performance and highlights areas for improvement.
Conducting automatic evaluations revealed limitations with the STDM framework,
yet Emora demonstrated successes in information extraction and task categorization,
underscoring her capability for seamless task execution. Moreover, despite occasional
inconsistencies, the GPT simulation emerged as a promising method for evaluating
task-oriented chatbots. Between two professor and 20 student profiles, Emora had
an average success rate of 94.3% for task execution, and 94% for natural language
understanding. The GPT simulation displayed an average success rate of about 81%.
Through this research, the Emora Assistant Bot project emerges as a pioneering
solution for automating administrative tasks, showcasing the potential of large language
models in both task execution and evaluation within the realm of chatbots.
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Chapter 1

Introduction

This thesis introduces the Emora Assistant Bot (Assistant Bot or Emora), one of

the three chatbots of the Emora Chat: College Companion project. This chatbot

is developed to handle administrative and classroom-based tasks, simultaneously

communicating between multiple people to do so. Upon requests for different tasks,

Emora extracts the necessary information to carry out these tasks before executing

them. She does so while communicating with the user in natural language, allowing

for a more conversational experience of requesting a secretary for assistance rather

than a menu-based automated experience.

In tandem with Emora, this thesis introduces an automated method to evaluate

task-oriented chatbots. Utilizing an asynchronous dialogue framework coupled with

GPT, a simulation of multiple users in a classroom setting is built and subsequently

used to evaluate the Assistant Bot’s capabilities in task execution and understanding

of natural language. This evaluation method helps expose the limitations of the Emora

Assistant Bot and the next steps in further enhancement for optimal user experience.

The Assistant Bot is part of a collaborative project involving undergraduate and

graduate students at the Natural Language Processing (NLP) Lab at Emory University.

For this branch of the project, the research questions to explore are as follows:
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1. Can general and classroom-oriented administrative tasks for multiple people be

successfully automated?

2. Do large language models achieve state-of-the-art user experience in task catego-

rization and information extraction?

3. Can large language models replace humans in evaluating task-oriented chatbots?

The Emora Assistant Bot is developed with the Emora State Transition Dialogue

Manager (Emora STDM) framework and OpenAI’s GPT API (GPT), allowing for

seamless natural language understanding and information extraction, while also

making sure the responses do not stray from the designated tasks. Regardless of

users’ occupation as a student or professor, Emora allows any task to be requested for

initiation, giving users opportunities to utilize her for personalized needs. A database

is linked to utilizing the Assistant Bot, which stores users’ IDs and allows for requests

and messages to be transferred across multiple users.

As of the time of writing, the Emora Assistant Bot is accessible through a web-

based application and a mobile app on Apple and Android devices. She is able to

execute seventeen different administrative tasks through natural conversation, each

leading to a different component for necessary information extraction. Each successful

execution of a task that involves multiple people pushes a notification to the recipients’

application, informing them an asynchronous message or request has been sent to

them.

1.1 Motivation

In today’s rapidly evolving business and educational landscapes, routine administrative

tasks have become increasingly indispensable. The Bureau of Labor Statistics defines

these tasks as ones that help maintain efficiency within organizations, including but
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not limited to companies and schools [3]. Such tasks include creating appointments

with people and delivering messages of important content.

Typically, administrative duties are handled through human involvement. Des-

ignated workers such as secretaries and administrative assistants streamlined these

organizational processes [3]. However, in increasingly fast-paced environments, the

growing demand for efficiency and productivity presents challenges, particularly when

tasks must be executed promptly.

The Emora Assistant Bot offers a solution to efficiently clearing these tasks by

automating them. With the chatbot’s abilities asynchronously deliver messages and

appointment requests to users, Emora provides cleaner task management without

extraneous content such as advertisements. In addition, managing group-related

activities is facilitated through Emora, allowing for needs of different users to be

met, whether they require a large group for classroom settings or a smaller group for

projects or labs.

One of Emora’s notable features is the anonymity system when sending messages

and giving feedback, derived from feedback systems that are often implemented in

colleges. While schools such as Emory University implement feedback systems for

courses at the end of an academic term, there are classes that seek feedback for mid-

term activities such as homeworks and exams. However, as these are not implemented

by the school, often these feedback forms rely on request from instructors and third-

party platforms such as Google or Microsoft Forms. With feedback and messages

features with an integrated anonymity system, Emora helps facilitate communication

between instructors and students, where instructors are able to easily request feedback.

Students, in turn, are able to anonymously give feedback per the instructor’s requests

or through messages should they wish to.
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1.2 Merits

The Emora Assistant Bot introduces several merits, of which its main merit is the

ability to communicate and carry out tasks between multiple people at once. With

seamless communication between groups of people at once, the bot can execute various

tasks that are both administrative and education-based, as well as open to all users

rather than restricted to certain roles. This allows for more efficient task management

for users, depending on what task they wish to complete.

In addition, the Assistant Bot utilizes GPT as its main framework of natural lan-

guage understanding (NLU). With GPT’s efficient methods of extracting information

and categorizing tasks, Emora demonstrates a robust NLU, allowing for task execution

even through smooth conversation flow [25, 22].

Finally, this thesis proposes a groundbreaking evaluation approach, introducing a

novel method wherein a simulation framework based on GPT is employed to assess

the Emora Assistant Bot. By harnessing the capabilities of a large language model,

this approach offers superior efficiency and accuracy compared to traditional human

evaluations. The adoption of such a method not only streamlines the evaluation process

but also holds promise for advancing the optimization of task-oriented chatbots in the

future, thereby enhancing the overall user experience.

1.3 Thesis Statement

By developing a chatbot utilizing a state machine-based framework, GPT, and a

linked database, administrative tasks will be effectively automated, allowing people to

request Emora to handle such tasks, even when involving multiple people at once. By

utilizing GPT, requested tasks are effectively categorized and the required information

to execute the task is successfully extracted, allowing for smoother transitions and

efficient information transfer between the user and chatbot. Finally, by building a
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framework that automates Emora’s evaluation, this thesis shows that large language

models demonstrate strong potential in effectively evaluating task-oriented chatbots.



Chapter 2

Background

2.1 Task-Oriented Chatbots

Utilizing automated methods to execute administrative tasks is not uncommon. Third

party tools, particularly calendars such as ones from Google and Microsoft help

schedule events and online meetings effectively. However, implementing chatbots to

handle some of such tasks is far less common than these tools.

2.1.1 One-on-One Chatbots

Often, chatbots that are implemented to facilitate administrative tasks are one-on-one

chatbots: when the user speaks to the chatbot, the chatbot responds in similar or

same ways as it does to other users, making the experience among users identical.

Examples of this include chatbots that are implemented for handling frequently asked

questions (FAQs) [1, 13, 18]. There also exists chatbots that are used for automating

interviews, where the bot is able to effectively ask questions and empathically respond

to interviewees’ responses [23].

These chatbots are typically developed with state or rule-based frameworks, namely

Google’s DialogFlow which facilitates the development of conversation-based chatbots

6
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with the Google Cloud NLP. However, the emergence of large language models (LLMs)

and their versatility in any given NLP task has led to an increased interest of utilizing

them as the foundation of such task-oriented chatbots [11, 18].

While many of these FAQ or interview chatbots have been utilized in educational

settings, there have been some task-oriented chatbots that have been developed to

specifically adhere to the academic audience. Ibna Riza et al. [10] established that

task-oriented chatbots may be used for various educational purposes, including acting

as an assessment chatbot for students and recommending new material. The presence

of online chatbots would help with effective content integration, as well as facilitate

engagement and easier access for students [10, 1].

2.1.2 Multiple User Chatbots

Much of such chatbot work established in Section 2.1.1, however, does not extend to

multiple people at once. Typically, the interaction is between only the user and the

chatbot, as the bot only has access to a database of factual or determined information

that it may use to assist the user. Subsequently, most chatbots lack the ability to

transfer information between multiple users, as the users’ identities are not recorded.

Thus, tasks that one-on-one chatbots handled are mostly information-based, and

developed to respond to a general user. In this perspective, the Emora Assistant

Bot’s main novelty is the ability to communicate with multiple users and transfer

information between users to assist with various general administrative tasks.

While there haven’t been many works aiming to handle multiple users and chatbot

conversations, Toxtli et al. [21] developed a chatbot, TaskBot, in 2018 that aimed to

communicate with many people at once. TaskBot was integrated into Microsoft Teams,

allowing users to interact with the bot within the platform. The chatbot served as a

reminder bot, where users request for other users to be reminded to complete specific

tasks. While the conversations were one-on-one between the chatbot and the user, the
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chatbot is able to transfer information (reminders) between multiple users, facilitating

asynchronous communication between them [21].

Unlike the Assistant Bot, TaskBot handles one sole task: to remind others periodi-

cally to complete their task. The Emora Assistant Bot is able to handle multiple tasks,

and with the notification system, users are able to notify others to complete tasks

with the asynchronous messaging system integrated into Emora. In addition, TaskBot

is developed using the Microsoft Language Understanding Intelligent Service, allowing

for broad natural language understanding (NLU) from the chatbot [21]. However,

this NLU was limited, especially when TaskBot is attempting to extract string-based

names instead of specific tags that Microsoft Teams offers. The Assistant Bot, by

contrast, utilizes a combination of GPT-3.5 and Emora STDM’s NATEX as methods

of information extraction, which can extract information from long string messages

without requiring special characters.

In addition to Toxtli et al. [21]’s TaskBot, Mendoza et al. [17] developed a chatbot

designed for interaction between students and teachers. Specifically geared towards

middle school, this Web-based chatbot demonstrates specific conversational interactions

based on whether the user profile is a student or a teacher — of which it is manually

inputted by an administrator. This chatbot, developed with DialogFlow, can carry

out multiple functions when requested by the user, which include scheduling events

for teachers, sending files between users, and answering FAQs.

With the ability to communicate between multiple users and carry out various

administrative and education-based tasks, this chatbot is comparable to the Emora

Assistant Bot. However, it is important to note that the chatbot developed by

Mendoza et al. [17] is initialized by the administrator, and thus user profiles and

designated privileges, such as the ability to schedule events, is locked unless request

for a change. The Assistant Bot, by contrast, demonstrates fluidity in the creation

of groups, allowing for users to create groups, regardless of whether they are an
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instructor looking to make a class, or a student seeking to create a group for a project

or studying.

2.2 Automated Evaluations

The concept of automated evaluations is not new to the realm of NLP. Due to the

inefficiency of time and resources in evaluations, researchers seek to find more efficient

methods to evaluate methodologies, including chatbots.

With the rise of LLMs, in which they have demonstrated state-of-the-art results in

numerous NLP tasks, researchers have been attempting to utilize them in evaluations.

In particular, OpenAI’s GPT has been popular due to its ability to successfully execute

multiple NLP tasks, leading it to be used for evaluation tasks [11, 12].

2.2.1 GPT Evaluations in NLP Tasks

The evaluation tasks assigned to GPT has been varied, but more often are dialogue

and writing evaluation tasks. GPT-4, the most powerful LLM offered by OpenAI

to this date, is used as a baseline to evaluate such tasks, such as natural language

generation (NLG) or various human written responses [14, 16]. GPT-4 has also been

used to evaluate other LLMs on various sequence-to-sequence tasks [19]. In all of such

tasks, it has been reported that GPT-4 often produces high agreement scores with

human annotators.

2.2.2 Automated Chatbot Evaluations

While GPT, particularly GPT-4, demonstrates proficiency in evaluating various NLP

tasks, its performance in being used for online human evaluation is more limited.

There has been research in evaluating chatbots in automated ways, with frameworks

developed to facilitate the process. Often, these frameworks utilize the method of
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self-talk, where chatbots talk to themselves [5, 9]. These have demonstrated high

correlation with human annotated scores, though there are some discrepancies due to

the unclear definition of a ”natural” response from the bot.

Others have employed the method of making chatbots converse with each other.

Deriu et al. [4] and Yang et al. [24] both propose frameworks in which numerous

chatbots are contested against one another. The conversations that the chatbots

have with each other are evaluated by the humans, and in a contest-like format, each

chatbot is scored based on various criterion and subsequently ranked.

One of the exemplary works utilizing GPT for automated chatbot evaluation comes

from [20], where they propose the Dialog system Evaluation framework based on

Prompting (DEP). DEP utilizes an LLM, namely the InstructGPT model, with a

specified prompt to converse with chatbots. The framework demonstrates a high

correlation with human evaluation, as well as functionalities in generating varied

dialogue and a reasonable approximation of human evaluation.

One important point to note with all of these evaluations, however, is that they are

based around evaluating social-based chatbots. While utilizing chatbots and LLMs

produce valuable evaluations for chatbots, the standards for evaluating whether a

chatbot’s response is appropriate to the evaluator’s input may be unclear. As the

Emora Assistant Bot is a task-oriented chatbot, however, evaluating the functionalities

through automated methods will be clearer than that of social chatbots, whether it be

on the turn-based or overall level. To that end, the GPT simulator evaluation’s main

novelty is introducing a method of automated chatbot evaluation on task-oriented

chatbots.
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2.3 Preliminary Work

2.3.1 Emora Course Assistant and Previous Assistant Bot

Preceding the Emora Assistant Bot, the Emora Course Assistant was a project

originally in development in Emory University’s Spring 2023 semester. As a member

of a team consisting of undergraduate and graduate students from the Emory NLP

Lab, this course assistant chatbot was developed with goals to improve various aspects

of the course, while communicating successfully through natural language. The course

assistant was developed by only utilizing the Emora STDM framework, as well as

linked to database where information was stored. Developers handcrafted components

for tasks that the chatbot would handle, including chatbot transitions and responses

that would be required to shift to a new conversation state.

The Emora Course Assistant, at the time of writing, was able to handle different

tasks depending on the occupation of the user talking to her: student, professor,

and teaching assistant. Professors and teaching assistants could adjust their office

hour times, while teaching assistants and students can make appointment requests to

their respective professors. In addition to appointments, Emora could find students

to help other students on certain assignments or studying, as well as form study

groups between students. Students were also able to offer anonymous feedback to

the professor, as well as request for any accommodations. Any of the components of

which its activity could be quantified (for example, two students requesting for other

students’ help through Emora) was stored. Upon the request of the professor of the

class, Emora could compile statistics to present to them.

During the development of the course assistant, however, several problems began

to surface, many of them being related to utilizing the Emora STDM and its NATural

language EXpression (NATEX) NLU to develop chatbot transitions. While hand-

crafting chatbot responses helped maintain consistency in natural language generation
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for Emora, handcrafting combinations for the NLU using NATEX showed limits in

extracting the necessary information for carrying out tasks, especially when trying

to categorize the requested tasks. Human responses to conversation can be diverse,

of which not all may be captured by the chatbot transitions. In addition, since the

NATEX for each transition was crafted by a developer on the team, the chatbot’s

understanding within those components is limited to what was put in by the developer.

Extensive testing and adjustment of the NATEX can possibly resolve the issue, but

even then, the scope of human responses can be large and ambiguous, in which trying

to capture all of them may lead to ambiguous or perhaps incorrect conversational

state transitions.

As a result, much of the chatbot responses had to be adjusted such that the range

of possible user responses would be small, such as answering a yes or no question from

Emora. However, this resulted in the course assistant becoming less of a conversational

chatbot, which went against the scope of this project.

As a result, in the summer, a member of the team developed a new iteration of

the course assistant by replacing the NATEX NLU with GPT-3.5 functions. This

allowed for the chatbot to more effectively extract information and categorize tasks,

resolving many of the issues that formed with the development of the course assistant.

This iteration of the chatbot was the precursor to the current Assistant Chatbot,

where the main task she was able to handle was making and confirming appointments.

Through the progress of this project, other task-handling components were additionally

created on this chatbot, leading to the iteration of the Assistant Chatbot that is

introduced in this thesis.

2.3.2 Dialogue Evaluation with GPT

In tandem with the course assistant chatbot work, sets of human-chatbot dialogue from

Finch et al. [7] was evaluated with GPT-3.5 in collaboration with a graduate student
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of the Emory NLP Lab. After few-shot prompting for the ideal prompt, GPT was used

to evaluate sets of human-chatbot dialogue to determine if behavior-detection task

evaluation could be automated through LLMs, replacing human evaluation as possibly

a more cost-effective option. The results of the GPT evaluation were compared against

the human evaluations from Finch et al. [7], as well as other models specialized for

particular behavior-detection task.

Through the evaluations, it was discovered the GPT does not have exemplary

performance compared to human evaluations, often falling short [8]. Despite this, it

did often outperform specialized models for specific behavior labels, despite not being

finetuned with a large sample of specific examples. This shows that GPT demonstrates

strong potential in dialogue evaluation, especially as a low-cost alternative.

While the research scope in Finch et al. [8] and this thesis may differ, the evaluation

of GPT in dialogue showcases its potential as a cost-effective alternative to human

evaluation, yielding comparable results. Given its promising capabilities as an external

evaluator in human-to-chatbot dialogue, this thesis seeks to explore GPT’s potential

as an internal evaluator, supplanting human evaluation entirely.



Chapter 3

Approach

3.1 Framework

The foundation of the Emora Assistant Bot uses the Emora State Transition Dia-

logue Manager (Emora STDM). Developed by Finch and Choi [6], Emora STDM

demonstrates a framework with adjustable dialogue states that helps rapidly prototype

chatbots. Emora STDM develops state machine-based chatbots, where each state

corresponds to the state of the conversation (what kind of conversation the chatbot

and the user are having) and each transition corresponds to a response from the system

(the chatbot) or the user. Using this framework, each response from the chatbot is

handcrafted by the developer, and anticipated responses from users help move the

chatbot to a different conversation state. Each different conversation state results in a

different response from the bot, ensuring diversity in responses.

To facilitate the chatbot’s NLU, Emora STDM also introduces the NATural lan-

guage EXpression, or NATEX. This is a method of matching expressions to user input

via string and ontology matching [6]. This allows chatbots utilizing this framework to

understanding user inputs through specific key words and subsequently respond appro-

priately. Figure 3.1 demonstrates a dialogue flow using STDM, where each transition

14



15

(shown as arrows) to a different conversation state (shown as circles) is determined

by the user’s response. Using NATEX, the transition is determined through specific

key word groups, such as ”make appointments” moving the conversation state to a

component where appointments are created.

hub

E: Hello! How can I help you today?

appointment
s messages inbox

U: [{make 
appointments, 

create 
appointments}]

U: [send 
message]

U: [{check 
inbox, any 

notifs}]

E: Okay, who do 
you want to make 
an appointment 

with?

E: Okay, who do 
you want to make 

a message to?

E: You have 1 
message in your 
inbox. Would you 
like to check it?

Figure 3.1: A diagram of a sample state machine-based conversation between a
chatbot and user. The blue dialogue denote Emora’s responses, while the green
dialogue represents the key words that the groups of expressions that NATEX may
capture from user responses to move to a different conversation state, represented as
circles.

While NATEX does assist with expanding the NLU for a prototype chatbot, there

is a limit in which the chatbot may be able to understand for an expanded range of

tasks that it is requested to do. Since it consists of manual vocabulary and sentence

matching via the developer, the chatbot’s understanding is limited to the developer.

In addition, since an administrative assistant’s tasks involve extracting specific yet

various information from the user — including what tasks that need to be addressed,

or what times they may be available — generating NATEX to find every possibility

of the information extraction may be inaccurate and inefficient (see Section 2.3.1).

Thus, many of the NATEX transitions are replaced with functions that utilize the

GPT-3.5 API, which has demonstrated potential in excelling in NLU with few-shot
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prompting [15, 2, 25, 22]. Specifically, GPT-3.5 is used for categorizing tasks requested

by the user, as well as extracting information required to complete said tasks. Each

function with GPT is integrated into the STDM’s dialogue flow using macros, which

are the Emora STDM’s built-in functions that can be used within conversation states

and allow external Python functions to be executed with their usage.

In each user transition, depending on which conversation state Emora is in, a GPT

macro is executed, which links back to an external function utilizing GPT. A skeleton

prompt is filled with a prompt to extract the necessary information using the user’s

last response. The GPT function outputs a response with the GPT-3.5 API, which is

preprocessed before being utilized in the dialogue to transition Emora to a different

state. An example of the GPT prompt usage for Emora’s task categorization NLU

will be provided in Appendix A.1.

In addition to macros linking to GPT functions, macros are also used for information

transfer and database access for Emora. Once all of the information is extracted,

macros for creating requests and messages are executed, using the extracted information

to transfer the information across the database and to the designated recipients. If

the tasks require the recipient to be notified, a notification will be pushed to the

recipient’s device.

(Emora) What do you need next, Ellie?

(User) I need to set up an appointment with Dr. Choi.

[Extracted Information]

Task to complete: create appointments
Recipient: Jinho Choi

(Emora) Okay! Please tell me your first choice for a meeting day and
time with Jinho Choi.

Figure 3.2: An example of a conversation between a user and Emora, where the user’s
input is analyzed and the necessary information is extracted. Between the user and
system transition, what is extracted from the user’s input using GPT is outlined.

Figure 3.2 demonstrates an example of such input extraction. In it, Emora is in
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the ’hub’ state, in which she is able to categorize tasks based on user input. The user

requests to make an appointment with another person. The GPT function is executed

for input extraction, first extracting the task to complete as making appointments.

Emora then moves to the state in which appointments are made, and the GPT function

is again executed, this time extracting the recipient of the appointment request. Once

the name is extracted, Emora transitions to the next conversation state, where she

requests for the meeting day and time with the recipient.

3.2 Database

For seamless information exchange and facilitation of communication and task execu-

tion, MongoDB is employed to store user information. The database stores user IDs

and associated information, such as verification of whether they accepted the Terms

of Service. It is important to note that the user ID that is stored is users’ Emory IDs,

and thus is unique. This helps the chatbot identify different users, even if users have

identical first and last names.

In addition to user information, Emora has inboxes for storing users’ appointment

requests and messages, as well as groups’ feedback questions and responses. For each

user, there are three inboxes. The first stores appointment requests and notifications

for confirmation, rescheduling, and cancellation of appointments (see Section 3.3.2).

The second stores messages, including announcements (see Sections 3.3.3 and 3.3.4).

The third inbox stores feedback, in which if the user is the leader of a group, the

inbox consists of questions that they asked to a group and associated answers to the

question.
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3.3 Features

As of the time of writing, the Emora Assistant Bot handles seventeen unique tasks,

each associated with administrative functions.

3.3.1 Names and Hub

When first conversing with the chatbot, Emora will ask the user what their name is

and what they wish to be called. The first response is recorded into the database as

their official name, but the second response may be customizable, allowing users to let

Emora call them whatever name they wish.

This name calling function is active at all times, meaning users may switch what

they wish to be called. If requested that they wish to be called a different name, the

Assistant Bot’s subsequent responses will include the requested name. In the case of

providing multiple names, Emora will randomly use one of the names given to respond

to the user.

After confirming what the user wishes to be called, Emora enters the ”hub”

conversation state. This is the state of the chatbot in which Emora is able to

categorize various tasks that the user requests and transition to the appropriate state

to resolve it. It is important to note that while a multitude of task categorization is

possible, it is only possible once entering this ”hub” state. If Emora is in the middle

of a conversation state where she is trying to resolve a task, no other task can be

inputted until that specific conversation state is exited.

3.3.2 Appointments

Emora facilitates appointment scheduling between users, managing details including

the date and time, location, and reasons for meeting. Completing the extraction

of such details will allow Emora to send the request to the recipient. By default,



19

(User) hi

(Emora) Before we begin, please provide your full name.

(User) Ryne Waters

[Extracted Information]

Full name: Ryne Waters

(Emora) Thank you Ryne Waters. Welcome! How should I call you?

(User) just ryne is fine

[Extracted Information]

Names to call: [Ryne]

(Emora) Nice to meet you, Ryne. What do you need next, Ryne?

Figure 3.3: An example of an initial conversation between Emora and a mock user
with the name calling function. Between each user and system transition, what is
extracted from the user’s input using GPT is outlined.

appointment requests are created with a length of 30 minutes, but this can be adjusted

based on user request. Users can also provide alternative time requests to accompany

the original message request.

Upon both parties’ agreement to meet, Emora will to insert the decided meeting

date and time into each of the users’ personalized schedules. Subsequent appointment

suggestions — made by any user to the two users with the scheduled appointment —

that conflict with this appointment are addressed.

If the recipient disagrees with the requested appointment time, Emora will request

dates and times for when the event can be rescheduled. This will occur back and forth

between the two users until a date and time in which both parties can meet is decided.

Any pending appointment requests can be edited or cancelled by the sender, and

any pending appointment in which its date has passed can be rescheduled by both

the sender and the recipient.

Figure 3.4 demonstrates an example conversation, in which a request for making

an appointment is handled.
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(User) Great, I’d like to make an appointment with Prof Smith

[Extracted Information]

Task to complete: create appointments
Recipient: John Smith

(Emora) Okay! Please tell me your first choice for a meeting day and
time with John Smith.

(User) Tomorrow at 5:20

[Extracted Information]

Appointment date: 10/05/2023 05:20 PM to 10/05/2023 05:50 PM

(Emora) Ok, I think I got it. Is this what you meant?

10/05/2023 (05:20 PM) to 10/05/2023 (05:50 PM)

(User) yup

[Extracted Information]

Affirmation (Yes/No): Yes

(Emora) Awesome, I’ll see if they are free. And where do you want to
meet with John Smith?

(User) In his office

[Extracted Information]

Appointment Location: his office

(Emora) Ok, I will mark the location as his office. Would you like to
include another alternative time to meet?

(User) no

[Extracted Information]

Affirmation (Yes/No): No

(Emora) Understood, that’s it. Please tell me your reason for wanting
to meet with John Smith.

(User) Discussing thesis things

[Extracted Information]

Appointment Reason: Discussing thesis

(Emora) Thank you! I’ll send off your request:

Meeting, Haruto Suzuki and John Smith: 10/05/2023 (05:20
PM) to 10/05/2023 (05:50 PM) at his office. (Discussing thesis)

Figure 3.4: An example of Emora handling an appointment creation request. Between
each user and system transition, what is extracted from the user’s input using GPT is
outlined.
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3.3.3 Messages

Users can request Emora to send messages to other users. This is a one-to-one

messaging system, and cannot be applied to multiple people unless in a group (see

Section 3.3.4). These messages, while maintaining the user’s original contents, are

also summarized using GPT-3.5. Thus, recipients will receive the original message

that the sender sends, along with a summary of the message.

If requested, messages can be made anonymous, in which the sender’s name is

obscured when the message is sent to the recipient. However, it is important to note

that the anonymity is maintained externally; messages still have the identity of the

original sender intact within the database framework. This is to prevent any abuse of

the anonymity system and ensure user safety through the chatbot.

While previously, appointments (see Section 3.3.2) and messages were stored in

two separate inboxes, this had led to an overlap in components for checking different

inboxes, and thus Emora had tendencies to miscategorize the two inbox-checking

tasks. As a result, as of March 13, 2024, the two inboxes have been merged into one.

When checking for updates, Emora will first check for miscellaneous messages before

checking for appointment requests (see Figure 3.6).

Figure 3.5 demonstrates a conversation in which a message is sent to a desired

recipient.

3.3.4 Groups

Emora supports group creation, where users may be added via name or ID. The creator

of the group is regarded as the leader, and the users added to the group are regarded

as members. Each group are uniquely identified by their name, and as consequence to

this, multiple groups of the same name cannot be created.

Regardless of leader or member status, users can check what groups they are in,

where it is provided to them in a list of group names with the corresponding group
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(User) Can I send a message to Gaia?

[Extracted Information]

Task to complete: send message
Recipient: Gaia

(Emora) Okay! Would you like to send this message anonymously?

(User) No! It’s okay

[Extracted Information]

Affirmation (Yes/No): No
Anonymous Message: No

(Emora) Alright! Can you please tell me the message that you want to
send to Gaia?

(User) Hey Gaia! I just wanted to ask if you still have the textbook
that I lend you.

[Extracted Information]

Message Contents: Hey Gaia! I just wanted to ask if you still have the
textbook that I lend you.

(Emora) Thank you! I’ll send off your message.

Figure 3.5: An example of Emora handling a message sending request. Between each
user and system transition, what is extracted from the user’s input using GPT is
outlined.
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(User) so I got notifs, show me what you got

[Extracted Information]

Task to complete: check inbox

(Emora) You have 2 messages in your inbox. Would you like to read
them now?

(User) sure

[Extracted Information]

Affirmation (Yes/No): Yes

(Emora) On 03/24/2024 (08:32 PM), Ryne Waters wanted me to relay
you this message:
Hey Gaia! I just wanted to ask if you still have the textbook that I lend
you.
In summary: Requesting return of lent textbook

(User) oh shoot ok, I forgot

[Extracted Information]

None

(Emora) I don’t have any messages for you right now. Let me check for
any appointments.

(User) cool

[Extracted Information]

None

(Emora) On 03/24/2024 (10:30 AM), Mitron proposed the following
new event:

Meeting, Mitron and Gaia: 03/25/2024 (03:00 PM) to 03/25/2024
(03:30 PM) at online. (Discussing group project)

Does that work for you?

Figure 3.6: An example of Emora handling an inbox checking. Between each user and
system transition, what is extracted from the user’s input using GPT is outlined.
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Figure 3.7: A screenshot of the Emora application, detailing a conversation for sending
a message.
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leader. Users can also check what members are in a group by specifically requesting

for the identities of people who are in a specific group.

Figures 3.7, 3.8, and 3.9 all illustrate conversations in which groups can be made,

and the groups that a user is in can be checked. It is important to note that checking

the members of a group is a separate task, and thus Emora must be in the ’hub’ state

to receive the request and execute it.

Leader Functions

Leaders of groups have control over the creation of the group, in which if they choose

to, they may delete the group that they have created. When the deletion is confirmed,

the group and its associated information is removed from the database.

As extension to Section 3.3.3, leaders are able to send messages to members of

their groups, identified as announcements. When confirmed, the message that the

leader wishes to send to their group is stored in each of the members’ inboxes until

the inbox is checked by the members.

Finally, leaders are able to request answers to specific questions from their group,

identified as requesting feedback from members. Once sent to the members, leaders are

able to check for whether members have responded to the feedback question. GPT-3.5

abridges all of the responses into a cohesive summary if responses are requested.

Member Functions

As members of groups, users receive feedback questions from the group’s respective

leader and are able to respond to the question. While the responses are stored to be

abridged into a summary, they may choose to respond anonymously. In addition, they

may choose to leave the group that they have been added to. They cannot rejoin the

group that they have left, and thus may have to request the leader for who can choose

to delete the group. The users within the group are regarded as members, and while
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(User) Let’s make a group.

[Extracted Information]

Task to complete: create a group

(Emora) Sure, I can help you create a group. What do you want to call
this group?

(User) R&D Magic Lab

[Extracted Information]

Group name: R&D Magic Lab

(Emora) Great! Who would you like to add to R&D Magic Lab?

(User) Let’s add Kasan, Koya, and Nevan.

[Extracted Information]

Users to Add: Kasan Lezviskus, Koya Iarothrond, Nevan Ruuktwn

(Emora) Okay! The following people have been added to your group:
Kasan Lezviskus
Koya Iarothrond
Nevan Ruuktwn
Who else would you like added to your group?

(User) That will be it.

[Extracted Information]

Users to Add: None

(Emora) Alright, just to check, does this look right?
GROUP NAME: R&D Magic Lab
GROUP LEADER: Ayr Lezviskus
GROUP MEMBERS:
Kasan Lezviskus
Koya Iarothrond
Nevan Ruuktwn

(User) Yes.

[Extracted Information]

Affirmation (Yes/No): Yes

(Emora) Okay, your group has been created! How can I assist you, Ayr?

Figure 3.8: An example of Emora handling a group creation request. Between each
user and system transition, what is extracted from the user’s input using GPT is
outlined.
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(User) What groups am I in?

[Extracted Information]

Task to complete: list groups

(Emora) Here is a list of all of the groups that you’re in!

Kindred Spirits (Leader: Monk Khee)
R&D Magic Lab (Leader: Ayr Lezviskus)

(User) Ah, I see there’s been a new group.

[Extracted Information]

None

(Emora) What’s on your mind, Koya?

(User) Who is in Kindred Spirits? Have there been any updates there?

[Extracted Information]

Task to complete: list group information
Group: Kindred Spirits

(Emora) Here is the current status of Kindred Spirits!
Name: Kindred Spirits
Leader: Monk Khee
Members:
Knoelle
Koya Iarothrond
Kordelia
Ken

Figure 3.9: An example of Emora handling a group identification request. Between
each user and system transition, what is extracted from the user’s input using GPT is
outlined.
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they cannot edit the group, they may choose to leave the group.

Figures 3.10, 3.11, and 3.12 demonstrate conversations between Emora and two

different users. In it, the leader requests Emora to send a feedback request to the

group, in which the member receives the request and gives feedback. When the leader

checks for updates on the feedback question, the output is a summary by GPT that

abridges the responses received so far.

(User) I’d like to request feedback from my LING 200 class

[Extracted Information]

Task to complete: request feedback
Group: LING200

(Emora) Alright! Can you please tell me the feedback question that you
want to send to LING200?

(User) I’d like to request feedback for the midterm that everyone took.
Was it too easy, difficult, or just right? If there’re any questions that
you felt were confusing or difficult, let me know.

[Extracted Information]

Feedback Question: I’d like to request feedback for the midterm that
everyone took. Was it too easy, difficult, or just right? If there’re any
questions that you felt were confusing or difficult, let me know.

(Emora) Thank you! I’ll send off your message.

Figure 3.10: An example of Emora sending feedback requests to groups. Between
each user and system transition, what is extracted from the user’s input using GPT is
outlined.
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(Emora) What’s on your mind, Y’shtola?

(User) any mail

[Extracted Information]

Task to complete: check inbox

(Emora) You have 1 message in your inbox. Would you like to read
them now?

(User) ye

[Extracted Information]

Affirmation (Yes/No): Yes

(Emora) On 03/24/2024 (09:00 PM), Alexis Rudenko wanted to get
feedback from you! Here is the question asked:
I’d like to request feedback for the midterm that everyone took. Was it
too easy, difficult, or just right? If there’re any questions that you felt
were confusing or difficult, let me know.
Here is the summary: Requesting feedback on midterm exam
Would you like to respond to this now?

(User) sure

[Extracted Information]

Affirmation (Yes/No): Yes

(Emora) Alright! Can you please tell me your response to send to Alexis
Rudenko?

(User) it was ok, not too bad. question 2 was a little weird and a hard
to understand

[Extracted Information]

Feedback Response: it was ok, not too bad. question 2 was a little weird
and a hard to understand

(Emora) Okay! Would you like to send this feedback anonymously?

(User) yes please

[Extracted Information]

Affirmation (Yes/No): Yes

(Emora) Thank you! Your response has been recorded.

Figure 3.11: An example of Emora recording feedback from group members. Between
each user and system transition, what is extracted from the user’s input using GPT is
outlined.
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(User) Have there been any feedback updates?

[Extracted Information]

Task to complete: check for feedback updates

(Emora) Sure, I can help you check the status of your feedback. Which
feedback question do you want to check?

(User) The one about the midterm, please.

[Extracted Information]

Feedback Question: I’d like to request feedback for the midterm that
everyone took. Was it too easy, difficult, or just right? If there’re any
questions that you felt were confusing or difficult, let me know.

(Emora) One student found the midterm to be ok, with one question
being a little weird and hard to understand. Another student found the
midterm to be too difficult, with the topics being hard and questions
making no sense. ( 2 responses)

Figure 3.12: An example of Emora handling feedback checks and providing a cohesive
summary. Between each user and system transition, what is extracted from the user’s
input using GPT is outlined.



Chapter 4

Experiments

Since the Emora Assistant Bot is a chatbot intended for humans, it is imperative that

the performance of intended functionalities and appropriate responses are evaluated.

To that end, the following evaluation method is implemented.

4.1 GPT Evaluation

While human-based evaluation may most accurately demonstrate a real-life environ-

ment, recruiting a large sample to thoroughly evaluate the functionalities of Emora is

inefficient from a time and resource perspective. Consequently, a different approach

to simulate a classroom setting is initiated. In this classroom simulation, GPT-3.5

is utilized to act as all of the users talking to Emora. The conversations between

the GPT simulation and Emora is generated and recorded. Following the evaluation

generation, human annotators observe the conversation between the GPT simulation

and the assistant bot, and evaluate both sides’ performances.

31
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4.1.1 Evaluation Framework

To facilitate the possibility of multiple people talking to one another, the AsyncDialogue

framework is used as the foundation of the simulation. This framework, developed

by a graduate student while working in collaboration on the Emora Course Assistant

project (see Section 2.3.1, was originally developed for internal testing of multiple

users and proper transfer of information by Emora.

AsyncDialogue allows for conversations between multiple users to occur in one

execution of the bot program. The framework first accepts the bot and mock database

parameters, which are required for the information to pass between multiple mock

users. Then, conversations between one user ID and the bot may occur, with user and

system turns occurring one after the other. When the program requests a user switch,

or the event in which another ”user” wishes to talk to the bot, the framework saves

the current conversation between the previous user and bot to the previous user’s ID.

Then, it loads the new user ID into the framework, as well as the conversation that the

new user previously had with the chatbot. This way, conversation between the second

user and the chatbot will continue, and through the framework, the conversations can

again between changed to new users or users in which conversations with the chatbot

have already been initiated.

4.1.2 User Profiles

All user profiles that is simulated by GPT-3.5 is generated through ChatGPT, the

online version OpenAI’s LLM. Each user profile contains the following information:

1. First and last name.

2. ID for use in the AsyncDialogue. To accurately simulate the environment of

the application, each ID is unique from one another and typically contains the

user’s last name.
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3. Occupation, or whether they are a student or professor.

4. Personality

5. Studying tendencies

6. Online tendencies. This was generated to help diversify the responses that each

user would provide to Emora.

7. Class information. This includes the class name, professor name, and students

or classmates’ names depending on if the user is a student or professor.

8. Class history. This is a dictionary that contains the material that was covered

in the class, as well as the user’s history of their learning or instructing progress.

For time restriction purposes, experiments have been conducted with the class

having received one week of instruction.

9. Current material. This is the current material in the class that is being covered,

and the point in time in which the simulated class is in. For time restriction

purposes, experiments have been conducted with the class being in the second

week of instruction.

10. To do. This is the task that the user wishes to complete through Emora. Since

Emora can complete a limited number of given tasks, the task scope has been

narrowed to be generated within the tasks that Emora can complete.

11. Chat history. This is the chat history that the user has with Emora. It is

saved whenever the simulation switches to a different user and loaded into the

response generation prompt whenever the simulation switches to the specific

user. After each subsequent user and system response, the history is updated

with the conversation.
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12. Last response. This stores Emora’s very last response to the user before the

conversation is saved to the user profile. This is saved separately from the history

to be highlighted in the response generation prompt. After each subsequent

user and system response, the last response is updated with Emora’s new last

response.

Each user profile is saved as a JSON file, with its name being the user ID. This is

to facilitate loading the user’s profile into the simulation when switching users to a

different ID.

4.1.3 Simulation Process

Since the mock database is reset with each execution of the program, each iteration

of the GPT simulation is initialized prior to continuing the conversation. In each

initialization, a set user turn is inputted into the dialogue framework, in which the

Assistant Bot responds with an inquiry of the user’s name. Then, the simulation

responds with the selected user’s name. After a subsequent bot turn, the framework

switches to a different user id, and the process is repeated until all of the given users

are initialized. After the initialization, the simulation switches to a given starting ID,

and the simulation begins.

To prevent any overloads of the GPT-3.5 API, each evaluation iteration was limited

to a set number of turns (n=500), inclusive of both system and user turns. Thus,

a system and a user turn would add to two turns total. The simulation would be

executed and would be terminated if the number of turns has been reached, or all of

the given users’ tasks and notifications have been resolved through the bot. In the

latter case, a system message, All tasks and notifications resolved., will be

recorded.

When a given user is selected to converse with Emora, the user’s history is first

loaded into a prompt formatted for GPT-3.5’s response. Then, the prompt is inputted
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to GPT, and a response in adherance to the user’s character will be outputted. The

simulation then submits the response as a user turn and generates a subsequent system

turn. The history and Emora’s last response for this given user is updated with the

two turns that have been generated.

Afterwards, a second function utilizing GPT is executed. This function examines

the conversation between the selected user and Emora and determines whether any

notifications or tasks that this user had prior to the conversation update has been

resolved. The response is outputted in a dictionary format of

{"user ID" : {"notifications":x, "tasks":y}}

where x and y are the value of notifications and tasks determined by GPT. This

result is used to update a file used to store all users’ notifications and tasks.

Finally, a third function utilizing GPT is executed. This function, like the second

function, examines the conversation between the selected user and Emora. Unlike the

second function, however, this determines whether the conversation between the user

and chatbot has reached its natural end or is repeating. The output is either a YES or

NO.

If the result is NO, the process repeats with the current user until the result is YES.

If the result is YES, a user different from the currently conversing user is selected

from a list of provided users in the simulation. This selection is determined through a

random sampling of the user list, where each user is weighed by the number of tasks

that they need to complete and the number of notifications that they currently have.

Since in a real life setting, people tend to check notifications that are pushed to their

devices, the number of notifications are given a higher weight compared to the tasks.

Each user’s weight is calculated through the equation below:
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(ns ∗ 2.5) + (ts ∗ 1)

ΣN
i=1(ni ∗ 2.5) + (ti ∗ 1)

where ni and ti respectively correspond to the number of notifications and tasks

of a user i, and ns and ts respectively correspond to the number of notifications and

tasks of a specific user s. N corresponds to all users in the list of users, with exception

of the user that last was having a conversation with Emora.

Once each users’ weights have been determined, the random sampling outputs a

new user to switch to. The Async Dialogue framework switches to the new user ID’s

conversation, and the new user’s information is loaded before the process repeats.

The GPT prompts used to generate simulation responses, as well as determine the

number of tasks and notifications and evaluate whether a conversation has ended or is

repeated will be provided in Appendix A.2.

4.2 Evaluation Criterion and Metrics

Each evaluation is manually reviewed by human annotators, given the following

criterion to evaluate both the GPT simulation and the Assistant Bot. Since the

initialization portion includes a manual adjustment, the initialization section of the

simulation is not evaluated and its success rate is not included in the final metrics.

4.2.1 Emora Assistant Chatbot

Since the Emora Assistant Chatbot is a task-oriented chatbot, the criterion for

evaluating this chatbot is as follows.

First, whether Emora successfully completed the user’s task is evaluated. Each

success is identified when Emora successfully completes the task among the seventeen

that she can do, or if the user requests a task that Emora cannot handle and she

responds appropriately. If the user requests for multiple functions within a turn,
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each requested function is regarded as an individual and whether Emora responds

appropriately is evaluated. If Emora responds with a question that inquires the user

whether they wish for assistance the task that they want handled, this turn will not

be considered as a failure because Emora still successfully categorizes the task.

The complete success rate, or success rate with the STDM fails (SWS), is measured

as a proportion of the number of tasks that Emora successfully completed to the total

number of tasks that was requested to Emora in the given evaluation (Tasks).

It is important to note that some of the task failures are rooted in the state

machine-based framework’s limitations, which can only be resolved through the use of

a new chatbot framework. As a result, the number of tasks failed due to the STDM

(STDM) is counted, and the success rate excluding the STDM fails (SES) is also

calculated. This sucess rate is measured as a proportion of the number of tasks that

Emora successfully completed to the total number of tasks that was requested to

Emora, excluding the tasks that she failed to accomplish due to framework limitations.

Second, each turn generated by Emora is scrutinized to evaluate whether Emora’s

response successfully demonstrates natural language understanding. This is divided

into three categories.

The first category determines whether the Emora Assistant Chatbot responds

appropriately in context to the user’s last statement. If any of Emora’s turn demon-

strates an abrupt transition from the user’s last response, then it is determined that

Emora responded inappropriately. The inappropriate response rate (IR) is calculated

as the proportion of the number of inappropriate responses to the total number of

system turns in the given evaluation.

The second category determines whether the Assistant Bot extracted the correct

information from the user. This includes any form of task categorization that Emora

conducts, as well as information extraction within the individual tasks. The improper

input extraction rate (IIE) is calculated as the proportion of the number of turns
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Emora incorrectly extracted the user’s input to the total number of system turns in

the given evaluation.

The third category, similar to the criterion from the task criterion above, determines

whether Emora’s response fails to demonstrate proper natural language understanding

or information extraction due to an STDM limitation. Due to the nature of the Emora

STDM, one of its limitations is that if the conversation state transitions into a specific

conversation, the chatbot cannot exit from the state until the conversation is fully

resolved. In addition, there are errors that occur due to its limitation of being unable

to process special characters such as newlines. Thus, any inappropriate responses due

to such STDM limitations are recorded in a category separate from the first two. The

fail rate due to STDM limitations (STDM) is calculated as the proportion of the

number of turns Emora failed to respond appropriately due to an STDM failure to

the total number of system turns in the given evaluation

Finally, the cumulative success rate in which Emora demonstrates utterance-based

natural language understanding, or success rate with the STDM limitation fails

(SWS), is calculated as the proportion of the total number of turns Emora successfully

demonstrated natural language understanding to the total number of system turns

in the given evaluation. The success rate excluding STDM limitations (SES), will

also be calculated, in which it is the proportion between the total number of turns

Emora successfully demonstrated natural language understanding to the total number

of system turns in the given evaluation, excluding the turns in which she failed to

understand due to an STDM limitation.

4.2.2 GPT Simulation

The GPT simulation is evaluated based on the criterion of whether there was an

instance of failure in each user turn. This is including, but not limited to, hallucinations

by the simulation, inappropriate responses given Emora’s last response, and irrelevant



39

repeating statements given to the user’s previous responses. If the repeating statement

is in relevance to the task that the user wishes to have completed, it is not considered

irrelevant.

The success rate of the simulation (GPT) is determined by the number of turns in

which the simulation did not fail, and will be compared to the total number of turns

in which the simulation speaks in a given evaluation. This includes all of the users

that have been simulated in the evaluation.

4.3 Results and Discussion

This section displays results of the evaluations generated from the GPT simulation.

Each iteration of the evaluations demonstrates conversations between multiple mock

users and Emora, with the cumulative turns being 500. This means that in each

evaluation, 250 user and 250 system turns occurred.

Two different variables were changed. First, the number of students in a given

classroom were adjusted to observe if the GPT simulation would stay consistent with

larger populations. For this experiment, a classroom of 10 (1 v. 10) and 20 students

(1 v. 20)were simulated, with 1 professor staying consistent. As a result, 20 student

profiles and 1 professor profile are created, with 10 of those student profiles being used

for both the 1 professor to 10 students and 1 professor to 20 students experiments.

Afterwards, the number of professors and classes were changed. Due to the

restriction of time, only two total classes were simulated, with 2 professor and 20 total

student profiles were used (2 v. 20). As this was derived from the 1 professor versus 20

students simulation, one professor maintained a class of 20 students, while the second

professor maintained a class of 10 students, picked randomly from the population of

20 students.

Following the first set of evaluations on 1 v. 10 and 1 v. 20 experiment conditions,
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adjustable flaws in both the simulation and the Emora Assistant Chatbot were revealed.

As a result of this discovery, both the GPT simulation and Emora Assistant Chatbot

received adjustments.

The GPT simulation received some adjustments through additional examples

in few-shot prompt engineering, specifically in the function for resolving tasks and

notifications of a given user. In addition, while the first version’s weight for notifications

was a 1.5 multiplication factor, this second version gave the notifications a greater

weight by a 2.5 multiplier. Meanwhile, Emora’s NATEX and responses in components

and global transitions were adjusted in accordance with the errors found through the

first set of evaluations. The GPT functions used within Emora for task categorization

was adjusted as well, with more specific examples added to the feedback-related tasks.

As the subsequent results are from different simulations, the first iteration ot the

simulation will be referred to as Version 1, while the recently updated version of the

simulation will be referred to as Version 2. Evaluations for multiple classes was only

generated using Version 2 of the simulation.

4.3.1 Results from Version 1

Tasks Emora Utterance GPT

Tasks STDM SWS SES IR IIE STDM SWS SES GPT

162 135 14.9 88.9 0.4 2 54.4 43.2 94.7 82.4
164 60 61 96.2 0.4 1.6 25.6 72.4 97.3 69.6
116 63 41.4 90.6 0 25.2 26.4 48.4 65.8 81.6
145 90 36.6 96.4 0 2 48 50 96.2 84
88 60 27.3 85.7 0 27.6 24 48.4 72.4 79.6
53 20 56.6 90.9 0.4 30.4 7.6 61.6 63.7 66.4
201 62 63.2 91.4 0.4 5.6 24.8 69.2 92 94
100 34 44 66.7 0.8 31.2 13.6 54.8 63 78.4
90 27 66.7 95.2 1.2 14 10.8 74 83 86

124 61 45.7 89.1 0.4 15.5 26.1 58 80.9 80.2

Table 4.1: Rates of Success by Emora and GPT Based on 1 Professor, 10 Student
Profiles (Simulation Version 1). The bottom row displays the average of the column’s
values.
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Tasks Emora Utterance GPT

Tasks STDM SWS SES IR IIE STDM SWS SES GPT

91 40 48.4 86.3 0.4 3.6 16 80 95.2 73.2
110 47 40 69.8 1.2 11.2 18.8 68.8 84.7 86
112 52 49.1 91.7 0.8 4.4 20.8 74 93.4 85.2
101 43 52.5 91.4 0.8 9.2 17.2 72.8 87.9 84.8
139 68 48.2 94.4 1.6 5.2 27.6 65.6 90.6 88

111 50 47.6 86.7 1.0 6.7 20.1 72.2 90.4 83.4

Table 4.2: Rates of Success by Emora and GPT Based on 1 Professor, 20 Student
Profiles (Simulation Version 1). The bottom row displays the average of the column’s
values.

Tables 4.1 and 4.2 demonstrates the success rate of Emora completing tasks and

understanding the user. Immediately, it is clear from both results that the limitations

from the STDM heavily impact the success rate in which the Assistant Bot resolves

tasks and understands the users. With the exclusion of STDM limitation fails, the

task success rate increased by approximately 20-70%, while utterance success rates

increased by approximately 2-50%.

Overall, rates from the 1 v. 20 evaluations seemed to fluctuate less than rates

from the 1 v. 10 evaluations, especially in respect to the Emora Utterance IIE and

SES rates. While it is important to note that there are less iterations of evaluations

generated for the 20 students-variable compared to the 10 students-variable, the

consistent, comparable rates may suggest that the GPT simulation is able to generate

comparable, and more consistent, evaluations with a higher number of mock users.

One important aspect to highlight is the low IR rate that Emora displays, of which

the rates range from 0-1.6% across both sets of evaluations generated. This low rate

may be attributed to the factor that the Assistant Bot is a strictly task-oriented bot,

thus the conversation flow would be more in relation to the extraction of information

rather than a wide variety of topics like a social chatbot. Thus, much of Emora’s

responses would be oriented towards information extraction and task management,

allowing for less inappropriate responses to be generated.



42

On the other hand, the rate of IIE fluctuated, ranging from 2-31.2% for the 10

student-variable and 3-11% for the 20 student-variable. Similarly, the success rate of

the GPT simulation also fluctuated, ranging from 66-94% for 10 students and 73-88%.

The variable of a larger number of students with a fixed number of cumulative turns

may have resulted in a smaller yet slightly lower percentage range, yet there is still a

relatively wide variance in GPT simulation performance.

While it is difficult to pinpoint the precise reasons as to why these rates differ

in wide ranges, it may be attributed to the flow of conversation that the simulation

and the Assistant Bot has. As the simulation progresses and various users’ needs are

resolved, the GPT simulation outputs responses that are of the same contents as the

user’s previous response, and unrelated to requesting a new task. As Emora responds

accordingly, the simulation falls into a loop of the simulated user repeating itself and

Emora responding to the user, resulting in an evaluation of a higher simulation error.

Similarly, there are points in the conversation in which the simulated user provides

information for a task in which the Emora Assistant Chatbot incorrectly receives,

whether by task miscategorization or a mistake in the input extraction. Since the

chatbot did not extract the correct information in accordance with the user’s last

response, the GPT simulation repeats itself, providing the information once more. This

results in another loop of the simulated user repeating itself and Emora incorrectly

receiving the provided input. In this situation, the simulation is not evaluated to have

failed due to the user repeating themselves to complete a task (see Section 4.2.2), but

the inappropriate response rate on Emora’s turn-based evaluation increases due to

the repeated errors in information extraction.

While in total, 10 iterations of the 1 v. 10 simulation was generated, Table 4.1

displays nine. This is because there was an iteration of the evaluation in which the

turns for Emora and the GPT simulation were both 94, shorter than the 250 turns

that the other iterations produced. This was due to the evaluation terminating before
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the threshold of 500 cumulative turns, as it had determined that all of the tasks and

notifications for all users had been resolved. However, an observation of the generated

conversation revealed that not all of the users’ tasks and notifications were properly

resolved by the chatbot, insinuating a fail in the simulation’s task and notification

resolving function. As a result, this iteration of the evaluation generation has been

removed from the final results.

Due to a relatively large fluctuation in the success rates for both tests, the

simulation’s prompts and functions were reviewed using the generated evaluations.

Using the common errors that the simulation and Emora made, both were adjusted,

and additional tests were run using Version 2 of the GPT simulation.

4.3.2 Results from Version 2

Tasks Emora Utterance GPT

Tasks STDM SWS SES IR IIE STDM SWS SES GPT

77 26 58.4 88.2 1.2 8.4 10.4 80 89.3 83.2
101 57 42.6 97.7 2.8 2 22.8 72.6 93.8 64.4
127 28 76.4 98 0.4 3.2 15.6 80.8 95.7 87.6
112 45 42 70.1 1.6 12 23.2 63.2 82.3 80.8
78 29 59 93.9 0.8 3.2 12 84 95.5 60.4

99 37 55.7 89.6 1.4 5.8 16.8 76.1 91.3 75.3

Table 4.3: Rates of Success by Emora and GPT Based on 1 Professor, 10 Student
Profiles (Simulation Version 2) The bottom row displays the average of the column’s
values.

Tables 4.3 and 4.4 display the results of the GPT Simulation Version 2, evaluated

on 1 professor and 10 and 20 student profiles respectively. Due to time restrictions,

only five evaluations of 500 cumulative turns were generated for each variable set.

It is important to note that in comparison to Version 1’s results from Tables 4.1

and 4.2, the rates are marginally more consistent, particularly when evaluating the

utterance-level successes. The IIE rates for 10 students have an approximate 10%

range of fluctuation between one another, while the first version had an approximate
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Tasks Emora Utterance GPT

Tasks STDM SWS SES IR IIE STDM SWS SES GPT

103 37 60.2 91.2 2.4 4.4 18 75.2 91.7 83.6
125 40 67.2 98.8 0.4 3.2 35.2 61.2 94.4 85.2
105 41 56.2 92.2 0.8 4.8 16.8 77.6 93.3 90
116 36 64.7 93.8 1.6 3.6 14.4 80.4 93.9 90
116 46 50 82.9 1 6 20.8 72.4 91.4 81.6

113 40 59.7 91.8 1.2 4.4 21 73.4 92.9 86.1

Table 4.4: Rates of Success by Emora and GPT Based on 1 Professor, 20 Student
Profiles (Simulation Version 2) The bottom row displays the average of the column’s
values.

28% range of fluctuation. For 20 students, Version 2 demonstrated a 3% difference

while Version 1 results had an 8% difference. The rates for Emora Utterance’s

SES and GPT are also less variable for both sets compared to the first version,

demonstrating that the changes made to the simulation framework helped improve

the GPT simulation to perform more consistently.

Overall, task performance for Emora across both evaluation sets are high, with an

89.6% average SES rate for 10 students and 91.8% average SES rate for 20 students.

Average utterance performance is higher for both sets, with the utterance SES rates

being 91.3% and 92.9% respectively. GPT simulation success rate is lower than the

success rates for Emora, though it still boasts a relatively high performance; the

average success rate for 10 students is 75.3% and the average success rate for 20

students is 86.1%.

Similar to the results from Version 1, the 20-student evaluation set displays results

that are less variable and — on average — higher than the 10-student evaluation set.

While the 10-student evaluation set displayed improvements in consistency through the

adjustment of the simulation, there is still a larger variance in the results compared to

the 20-student evaluation set. This may further demonstrate that the GPT simulation

not only performs with increasing accuracy with additional mock users, but may

perform more consistently as more users are introduced to the simulation.
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Multiple Classes Variable Results

Tasks Emora Utterance GPT

Tasks STDM SWS SES IR IIE STDM SWS SES GPT

118 40 63.6 96.2 1.2 2.8 21.2 74.8 94.9 80
108 49 50 91.5 1.2 3.2 21.2 74.4 94.4 84
97 37 59.8 96.7 1.2 3.2 19.2 76.4 94.6 79.6
95 33 60 91.9 0.8 7.2 16.4 75.6 90.4 80.4
121 58 49.6 95.2 0.4 2.8 23.2 73.6 95.8 81.2

106 43 56.6 94.3 1.0 3.8 20.2 75 94 81

Table 4.5: Rates of Success by Emora and GPT Based on 2 Professors, 20 Student
Profiles (Simulation Version 2) The bottom row displays the average of the column’s
values.

Table 4.5 illustrates the results of evaluations using Version 2 of the simulation, but

with two professors and 20 students. The results for evaluating the Emora Assistant

Bot is more consistent than the previous evaluation sets, with both the tasks’ and

utterances’ SES rates having about a 5% range. The GPT success rate is also more

consistent, with the range also being around 5%.

The average SES rates for the Assistant Bot is also higher than the previous

evaluation sets. For tasks, the average SES rate was at about 94.3%, while for

utterances, the average SES rate was approximately 94.0%. Both rates are an increase

from the evaluations with the one class variable, suggesting that Emora is robust with

handling requests from students and professors in multiple classes.

By contrast, the GPT simulation demonstrated a lower performance average

compared to the 1 v. 20 evaluation set; the average success rate was at about 81.0%,

which is lower than the 86.1% success rate that the 1 v. 20 GPT success rate boasted.

This may also be attributed to GPT variability and inconsistency, coupled with

the variables of multiple users and multiple classes. The simulation must handle

multiple user profiles, of which some students have multiple classes and tasks that

may overlap. In addition to this, the simulation must determine if the users’ requested

tasks are resolved, as well as transition points to switch to new users. As a result of
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these multiple variables, an increased class count may have led to increased variability

in GPT responses, which may have resulted in a lower success rate in the 2 v. 20

evaluation set compared to the 1 v. 20 evaluation set.

Despite it, however, the GPT simulation still demonstrates a relatively high

success rate, and coupled with the high success rates of the Assistant Bot, is able to

demonstrate a stable and consistent automatic chatbot evaluation.



Chapter 5

Analysis

This chapter takes a closer analysis at the results of the evaluations between the

Emora Assistant Chatbot and the GPT simulation, specifically the errors that both

Emora and the GPT simulation made. While some of the issues of both mediums

have been categorized, this analysis will further divide the specific issues that the

evaluations introduce, and bring to light the limitations of GPT-3.5 and the STDM

framework that the chatbot utilizes.

For the analysis, evaluations from the 2 professor, 20 student-variable set were

chosen, as the results are the most consistent, and the variables demonstrate a more

complex, realistic environment than the variable of one class.

5.1 Analysis of Emora Errors

The Emora Assistant Bot’s errors was divided into three categories: STDM limitations,

improper input extraction, and inappropriate responses. Further error analyses was

done on each of these error categories to determine the precise areas of improvement

for the chatbot.

47
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5.1.1 Inappropriate Responses

Out of all Emora Assistant Bot’s errors, the chatbot had the least amount of inappro-

priate responses. Since Emora is a task-oriented chatbot, many of her responses are

strictly adhering to the task that is requested, thus the responses are often appropriate

for the conversation.

However, there were occasions when Emora would give an inappropriate response

to the conversation context. Out of the 12 total inappropriate responses given over the

five evaluation sets, half of the responses were responses that ignored the user’s last

response, and half of the responses were responses that did not fit into the context of

the conversation. Figures 5.1 and 5.2 demonstrate examples of occurrences in which

Emora responded inappropriate in terms of each category.

— cho is now talking —

(Emora) I don’t have any messages for you right now. Let me check for
any appointments.

(User) No, thank you.

(Emora) On 03/23/2024 (06:23 AM), Ben Smith proposed the following
new event:[...]

Figure 5.1: An example of Emora ignoring the User.The inappropriate response is in
red.

— waters is now talking —

(User) Actually, call me Ryne. Thank you for the update.

(Emora) Ok, I’ll ask you again later. Do you have any other tasks for
me, Ryne?

Figure 5.2: An example of Emora responding beyond the conversation context. The
inappropriate response is in red.

Both types of inappropriate responses are tied to the STDM framework, in which

the task that is requested to be resolved locks Emora into a linear conversation state

and cannot shift to a different conversation, or handle different inputs. Thus, even

when the user responds with a different yet related response, Emora’s subsequent
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response may appear inappropriate to the conversation flow. While these response

errors are also tied to STDM limitations (see Section 5.1.3), they are addressed

separately due to the separate error category that they have been assigned through

the experiments.

5.1.2 Improper Input Extraction

As a robust LLM, GPT is known for effectively extracting information, particularly

through few-shot prompting. As a result, it was used to facilitate most of the NLU

for the Assistant Bot, particularly all task categorization and information extraction

tasks. While the success rate of input extraction was high, some responses that Emora

generated was a result of improper input extraction. Out of the 48 responses that

demonstrated improper input extraction, 46 of the turns were a display of incorrect

task categorization, and two were a display of incorrect information extraction.

Since GPT has variability, it is possible that it led to unknown tasks being

incorrectly categorized into tasks that Emora can do. Figure 5.3 demonstrates one

such conversation, where a user requesting resources for research became categorized

into that of sending a message to a different user. Both tasks are inherently different,

yet it is possible that due to GPT variability, the task became incorrectly categorized.

— lopez is now talking —

(User) I wanted to ask if there are any extra reading materials available
for psychological research that I could look into.

(Emora) Sure, I can help you send a message with someone. What is
their full name?

Figure 5.3: An example of Emora incorrectly identifying a messaging task within a
request. The inappropriate response is in red.

Incorrect task categorization also occasionally occurred when a user demonstrated

gratitude towards Emora, expressing a task that they would do on their own time,

such as reach out to Emora (see Figure 5.4, or a task that the Assistant Bot had



50

already completed. In these cases, the GPT NLU cannot understand the nuance and

incorrectly categorizes the task that was already done or unrelated to the chatbot and

considers it a task to complete.

— patel2 is now talking —

(User) Thank you! I’ll definitely reach out if I need any more help.
Have a great day!

(Emora) Sure, I can help you send a message with someone. What is
their full name?

Figure 5.4: An example of Emora incorrectly identifying a messaging task within a
statement of gratitude. The inappropriate response is in red.

Incorrect information extraction, a subcategory of improper input extraction,

is when extracting particular information for a specific task, Emora extracts the

incorrect information from the user’s input. For example, names and locations may

be incorrectly extracted and stored by Emora, such as in Figure 5.5. Rather than

moving to a transition state where Emora expresses the requirement for a full name,

the GPT NLU incorrectly extracted ”Group” from the user’s input and attempted to

search for a name similar to it in the database. This led to the conversation state in

which Emora said she cannot find a nonexistent name in the database.

— cho is now talking —

(User) Add all students to the CS101 Intro to CS Class group.

(Emora) I can’t find Group in my records. What is the full name of the
people with whom you want to put in your group?

Figure 5.5: An example of Emora incorrectly extracting information from a user’s
input. The inappropriate response is in red.

Incorrect information extraction may also be attributed to GPT variability, where

on occasion, GPT may alter the extracted information rather than keeping the purely

extracted text. The purpose for this may vary, such as changing the user’s input,

”Intro to CS,” to ”CS101” for cleaner format purposes. Thus, GPT’s tendency for

variability in extracting information may lead to the wrong or altered information
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being extracted from user input, leading to incorrect information extraction.

5.1.3 STDM Limitations

Abbr. Error Type Description %

SL State Lock Stuck in a linear conversation component 0.63
NI NATEX Issues Unintended NATEX NLU is captured 0.25
SC Special Characters Cannot handle certain special characters and raises an error 0.11
ST Single Transition Cannot handle multiple tasks at once, must choose one component 0.01

Table 5.1: Results of the STDM-based error analysis on the Emora Assistant Bot.

Errors due to STDM limitations made up a large part of Emora’s task and

utterance-based errors; as mentioned in Chapter 4, the exclusion of STDM-based

errors led to large increases in rates for both task and utterance successes. Table

5.1 illustrates the four error categories of errors based on 253 turns in which Emora

demonstrated an STDM-based fails.

State Lock State Lock was one of the largest reasons to Emora’s turn and task-

based fails. Since the state machine framework consists of a dialogue flow that often

flows in a linear direction, it is difficult for a user response to transition the chatbot

into a completely different component unless the transition is manually developed by

the developer. In the case of a task-oriented chatbot such as Emora, many of the tasks

that she can complete requires the user to provide the necessary input to execute said

task. As a result, when a task is in the process of being executed, the conversation

related to it must flow to its end state, where Emora completes the task requested, or

canceled — which is handled by a global NATEX transition. Then, Emora will enter

the ’hub’ state, where she is able to categorize any input once more.

This issue often occurred during the start of the conversation and during conversa-

tion loops. The user always begins in the name calling module, where Emora asks the

user what they wish to be called. However, many users in the simulation provided

responses that either directly requested for a task, or asked for a task to be handled
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after mentioning their name. Since at this stage of the conversation, Emora is still

locked in the conversation state of the name calling component, she cannot take in

the task that is requested. As a result, the task handling results in a fail.

— nakamura is now talking —

(Emora) Thank you Yuki Nakamura. Welcome! How should I call you?

(User) Just call me Yuki. Any updates?

(Emora) Nice to meet you, Yuki. What do you need next, Yuki?

Figure 5.6: An example of Emora not handling the check inboxes tasks due to the
STDM State Lock (SL). The inappropriate response is in red.

State Lock was often the reason of certain user conversations resulting in endless

loops. When a user entered a component’s dialogue flow due to an incorrect task

categorization (see Section 5.1.2, the simulation would respond with a different task

that they wish to have completed. However, because the conversation state was

already locked into the component’s conversation states, Emora could not understand

what the user wished to do and would be unable to respond appropriately as well as

handle the requested task.

— lopez is now talking —

(User) I wanted to ask if there are any extra reading materials available
for psychological research that I could look into.

(Emora) Sure, I can help you send a message with someone. What is
their full name?

(User) Actually, I wanted to ask if there are any extra reading materials
available for psychological research that I could look into.

(Emora) I couldn’t parse a name from what you said. What is the full
name of the person with whom you want to send a message?

Figure 5.7: An example of Emora entering a component and being unable to handle
the user’s requested task due to STDM State Lock (SL). The inappropriate response
is in red.

NATEX Issues Not all of the Emora Assistant Chatbot’s NLU is handled by GPT.

Certain transitions, namely as global transitions, utilize NATEX such that they can
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have a lower or higher priority of being recognized by user input. An expression of

gratitude, for example, would have lower priority of being recognized, while a request

to cancel a task would have higher priority.

However, there were cases in conversation when NATEX transition groups of lower

priority, namely that of expressing gratitude, was often captured. The simulation’s

users often paired expressions of gratitude with other tasks that they wished to have

completed, yet the chatbot often transitioned to responding to the gratitude rather

than categorizing the task.

— ali is now talking —

(User) Please let Kumar Singh know that I’m interested in forming a
study group to work on the Data Structures homework together. Thank
you!

(Emora) Of course! It’s my pleasure.

Figure 5.8: An example of Emora not handling the user’s requested task due to STDM
NATEX Issues (NI). The inappropriate response is in red.

In addition, there were multiple cases in which NATEX transitions of higher prior-

ity, namely that for canceling and exiting out of components, would have inappropriate

transitions in which it leads to Emora canceling a task that the user did not request

to cancel. On other occasions, the transition does not activate when necessitated,

leading to an infinite conversation loop between Emora and the user who wishes to

exit out of the component.

— nguyen is now talking —

(User) Actually, never mind creating a group for now. Can you help
me find Diego or Mohammed to ask for help with implementing loops in
Java?

(Emora) Have a good day! What do you need next, Sophia?

Figure 5.9: An example of Emora not handling the user’s requested task due to STDM
NATEX Issues (NI). The inappropriate response is in red.

Some of the issues may be resolved by expanding the NATEX groups, allowing
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— smith is now talking —

(Emora) Sure, I can help you send a message with someone. What is
their full name?

(User) Actually, I’m all set for now. Thank you!

(Emora) I couldn’t parse a name from what you said. What is the full
name of the person with whom you want to send a message?

Figure 5.10: An example of Emora unable to respond appropriately to the user due to
STDM NATEX Issues (NI). The inappropriate response is in red.

for more diverse captures to occur and theoretically allowing smoother conversation

transitions. However, because natural language is diverse and can be very ambiguous,

NATEX groups may have a tendency to capture more than intended and result in

transitions that the user did not intend to go to.

Special Character Errors This is an inherent limitation of the Emora STDM itself,

where it cannot handle certain special characters such as newlines and underscores.

Using them as an input results in an error in the framework, leading to the chatbot to

transition back to the beginning of the name calling component.

Some users in the GPT simulation had tendencies to use newlines, particularly

when students were trying to write a message to the professor. This would lead

to Emora raising an error, before transitioning to the beginning. Internally, the

system would also raise an error and notify the developer, but the user cannot see the

error message and ultimately witness a strange transition back to the name calling

component.

Single Transition As Emora is a state machine-based chatbot, tasks can only be

handled one at a time. When faced with multiple tasks or a sequence of tasks, however,

the Assistant Bot chooses the very first task that is successfully categorized before

transitioning into the task’s specific module.

While she does attempt to handle the subsequent tasks once the first task is



55

— rodriguez is now talking —

(User) I would like to ask Dr. Cho for an extension on HW 1, please.

(Emora) Okay! Would you like to send this message anonymously?

(User) No, I don’t mind sending it with my name. Thank you.

(Emora) Alright! Can you please tell me the message that you want to
send to Joseph Cho?

(User) Subject: Extension Request for HW 1

Hi Dr. Cho,

I hope you’re doing well. I’m writing to kindly request an ex-
tension for HW 1. I’ve been working hard on it, but I feel like I could
benefit from a bit more time to ensure that I submit my best work. I
would greatly appreciate it if you could grant me an extension.
Thank you for your understanding.

Best regards,
Emily Rodriguez

(Emora) Welcome! How should I call you?

Figure 5.11: An example of Emora returning to the name calling component due to
STDM Special Character errors (SC). The inappropriate response is in red.
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complete, the responses in which Emora uses to respond to users’ input does not feel

as if she is addressing all of the tasks that the user requested. As a result, this would

lead to the response not handling all of the tasks that the user asks.

— johnson is now talking —

(Emora) Of course! How can I assist you, Professor Johnson?

(User) Add all students to the ”Introduction to Psychology” group,
please. Once that’s done, I’d like to make an announcement to inform
them about an error on the class webpage. Thank you!

(Emora) Sure, I can help you create a group. What do you want to call
this group?

Figure 5.12: An example of Emora unable to address multiple tasks due to STDM
Single Transition issues (ST). The inappropriate response is in red.

One possible method to address this issue is to develop another component that

could handle multiple tasks in a list and address the user with the order of tasks that

Emora will handle. Due to the nature of a state machine-based framework, however,

this may lead to the Emora Assistant Bot to behave more in the manner of a menu

bot rather than addressing all tasks with natural language.

5.2 Analysis of GPT Simulation Errors

Abbr. Error Type Description %

IC Ignoring Chatbot Ignores Emora’s last response 0.43
RP Repeat Repeating previous turns’ statements 0.27
UI User Information Turn content not consistent with given user information 0.12
CH Conversation History Forgets part of conversation history with chatbot 0.1
RR Role Reverse Mistakes user for chatbot 0.06
CP Conversational Partner Forgets identity of conversational partner (Emora) 0.02

Table 5.2: Results of the error analysis on the GPT simulation.

Despite helping reveal errors and limitations for the Emora Assistant Chabot, the

GPT simulation also demonstrated errors, with about an 81% average turn success rate.

Table 5.2 illustrates the types of errors over 237 turns in which the GPT simulation

demonstrated a fail.
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Ignoring Chatbot One of the largest causes of the GPT simulation fail is due to

the simulation responding in such that it ignores the chatbot’s last response. This

often occurred when instead of responding appropriately to the chatbot’s request, the

simulated user would immediately request for a different task or repeat their request

in the exact same manner as their previous response.

— cho is now talking —

(Emora) Before we begin, please provide your full name.

(User) Joseph Cho

(Emora) Thank you Joseph Cho. Welcome! How should I call you?

(User) any updates?

Figure 5.13: An example of the user ignoring the chatbot’s last response by responding
with a request (IC). The inappropriate response is in red.

— cho is now talking —

(Emora) Great! Who would you like to add to CS101 Intro to CS?

(User) Add all students.

(Emora) Sorry, I couldn’t parse any names! What are the full names of
the people you want to put in your group?

(User) Add all students to CS101 Intro to CS Class.

Figure 5.14: An example of the user ignoring the chatbot’s last response by repeating
themselves (IC). The inappropriate response is in red.

It is important to note that responses such as that from Figure 5.14 are not

categorized as a Repeat (RP) error, as this user response demonstrates a relevant task

that the user wishes to complete. However, while Emora requests for the full names,

the user ignores the very last response and repeats themselves, resulting in the error

of the user ignoring the chatbot.

Repeat This category encompasses all responses by the simulation in which they

were irrelevant to any task requests and were of similar conversational topics as the

simulated user’s previous response. For example, while multiple requests of inbox



58

updates are not regarded as a simulation fail, as users may often repeatedly check

for updates, a user repeating expressions of gratitude to the chatbot when the user

has resolved their tasks and notifications is repetitive and unrealistic to a real life

situation.

— gupta is now talking —

(Emora) Nice to meet you, Rohan. What can I do for you, Rohan?

(User) Actually, I’m all set for now. Thank you.

(Emora) Well, I’ll be here if you do need anything! Just let me know.

(User) No, I’m good for now. Thank you.

Figure 5.15: An example of the user repeating themselves (RP). The inappropriate
response is in red.

User Information There were occurrences in which the GPT simulation would not

adhere to the user information provided in the prompt. As a result, some responses that

were generated were beyond the scope of the provided information, out of character

for the user, or incorrect.

— johnson is now talking —

(User) You can call me Professor Johnson. Any updates?

(Emora) Nice to meet you, Professor Johnson. What can I do for you,
Professor Johnson?

(User) Actually, I wanted to ask if there’s a way for me to find a
classmate to work together on the Data Structures homework. Can you
help me with that?

[Prompt] You are Amanda, a professor teaching the Introduction to
Psychology class.

Figure 5.16: An example of the user not adhering to the provided user information
(UI). The inappropriate response is in red. The relevant part of the user profile is
provided below the conversation.

In Figure 5.16, for example, the incorrect user response demonstrates two violations

of adhering to the user information. First, while user Amanda Johnson is a professor,

the response illustrates an implication that it is a response coming from a student.
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Second, the response mentions a Data Structures class, a class that does not exist

within the given user profile. Thus, the response demonstrates a simulation error as a

result of not adhering to the provided user profile.

Conversation History This category of errors encompasses the tendency in which

the simulation forgets tasks that were resolved in earlier parts of the conversation.

This results in a repeat of the requested tasks. This is different from the Ignore

Chatbot error category, as for the turns identified as such, there were no occurrences

in which the user ignored the chatbot.

— fernandez is now talking —

(User) Actually, call me Diego. So, any updates?

(Emora) Nice to meet you, Diego. Do you also still want help with
checking messages?

(User) No, it’s okay. So, any updates?

(Emora) Understood, I’ll move on. What can I do for you, Diego?

(User) Actually, call me Diego. So, any updates?

Figure 5.17: An example of the user forgetting the previous conversation history (CH).
The inappropriate response is in red.

Role Reverse In some occurrences, the simulation confuses the role in which it

is acting, and outputs responses that mimic the behavior of the Assistant Chatbot

rather than the user who is responding to her. Figure 5.18 demonstrates an example

of this error, in which while the simulation generating the last user response seemed

accurate in context of the user, the last portion of the second sentence is a response

that the chatbot would output rather than the user. Thus, the entire user turn was

regarded as a simulation fail due to role reversal.

Conversational Partner This category of errors more often occurred when the

Emora Assistant Chatbot delivered messages or appointment requests to the recipient.
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— khan is now talking —

(Emora) Alright! Can you please tell me the message that you want to
send to Rohan Gupta?

(User) Hey Rohan, would you be interested in working together on the
Psychology homework? Let me know if you’re up for it! - Fatima Khan

(Emora) Thank you! I’ll send off your message.

(User) Great, thank you! Let me know if there are any updates or if
there’s anything else I can assist you with.

Figure 5.18: An example of the simulation generating responses fit for the chatbot
rather than the user (RR). The inappropriate response is in red.

In such cases, the simulation would generate responses that directly address the sender

of the message, rather than Emora herself. Since the user does not request to send

a response back to the sender of the message, and rather provides a direct reply

to Emora, the turn is identified as an error as a result of misidentification of the

conversational partner.

— cho is now talking —

(Emora) On 03/23/2024 (06:40 AM), Alexandre Silva proposed the
following new event:

Meeting, Alexandre Silva and Joseph Cho: 03/28/2024 (03:00
PM) to 03/28/2024 (03:30 PM) at Dr. Cho’s office. (Clarify doubts on
basic Java syntax and loops)

However, you already have a conflict scheduled during that time:

Meeting, Leila Ahmed and Joseph Cho: 03/28/2024 (03:00 PM)
to 03/28/2024 (03:30 PM) at Dr. Cho’s office. (Project brainstorming
and discussing innovative coding ideas with Dr. Cho)

If the proposed times don’t work for you, that’s ok. Please sug-
gest an alternate time you would rather meet with Alexandre Silva.

(User) Thank you for setting up the meeting, Alexandre Silva. Unfor-
tunately, I have a conflicting appointment during the proposed time.
Would it be possible to meet at a different time? Please let me know
your availability. Thank you.

Figure 5.19: An example of the simulation generating responses not addressing Emora,
and rather the sender of the message (CP). The inappropriate response is in red.
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5.3 Possible Explanations and Recommendations

Many of the errors that occured from Emora seemed to stem from the nature of the

STDM framework. While the NATEX for certain transitions can be expanded to

encompass various user input, it is not conducive to build a dictionary of transitions

that can capture all possible transitions. In addition, due to ambiguity in natural

language, there is a possibility that the system may capture more transitions, leading

to additional categorization and transition errors.

The limitations of GPT can also provide possible explanations for both Emora and

GPT simulation errors. For Emora, its variability may lead to incorrect information

being extracted, possibly leading to transition and information errors from Section

5.1.2. For the GPT simulation, it may have trouble keeping in-character responses

in accordance with the provided user profile and conversation history, which may

lead to the errors from Section 5.2. Thus, finetuning the user prompts or the model

to be specialized for conducting a simulation may generate more accurate results.

Furthermore, as this simulation utilizes GPT-3.5, using GPT-4 may also enhance the

simulation responses and Emora’s GPT NLU.



Chapter 6

Conclusion

The Emora Assistant Bot demonstrates excellence in carrying out general and

classroom-related administrative tasks among multiple people. Though automatic

evaluations revealed that limitations with the STDM framework heavily inhibit the

success rates, Emora was still able to demonstrate successes in information extraction

and task categorization, allowing seamless task execution between users.

Furthermore, the GPT simulation demonstrates strong potential as an effective

method to evaluate task-oriented chatbots such as Emora. While it can demonstrate

some inconsistent results due to GPT variability, it is still able to successfully simulating

different users at once and highlighting areas of improvement for the chatbot. As

more mock users were added to the simulation framework, consistency issues were

further resolved and demonstrated more accurate results in the evaluation of Emora

and the GPT simulation.

Error analysis done on both Emora and the GPT simulation demonstrate limitations

in both mediums. Emora’s biggest limitation was the STDM framework that she was

built on, while the GPT simulation’s biggest limitation was its variability, coupled

with the multiple variables and situations that it had to handle. Despite it, both

display high performance rates and exhibit strong potential in being used for the

62



63

future of task-oriented chatbots and automatic chatbot evaluation.

6.1 Future Directions

Due to time constraints and lack of resources, a thorough human evaluation of the

Assistant Bot would further assist in evaluating both Emora and the GPT simulation.

While the GPT simulation produced diverse responses that assisted with enhancing

Emora’s features and NLU, it still has limitations in which it may fail and produce

response formats that are similar between multiple user profiles.

Thus, a thorough human evaluation will help measure its agreement with the GPT

simulation and determine how well an automated evaluation performs in comparison

to human evaluation. In addition, diverse human responses would further help discover

limitations of the Assistant Bot, building directions that can be explored to improve

the chatbot. To maintain consistency with the GPT simulation, humans would be

given a profile with a given personality and intended task, to which they try to fulfill

by communicating with the chatbot.

Through the evaluations, the limitations of using a state machine-based framework

has been strongly highlighted. Therefore, to proceed forward and improve Emora,

a different framework may be utilized to address the STDM limitations. GPT has

demonstrated high performance in Emora’s NLU, especially for task categorization

and information extraction. In future iterations of the Emora Assistant Bot, LLMs

such as GPT may be further utilized to enhance the NLU, as well as to replace the

STDM and generate the responses of the chatbot in its stead.

For the simulation, all of the functions were executed through GPT-3.5. Using

GPT-4 as the framework of the simulation may produce more realistic responses and

result in fewer hallucinations. In addition, prompts and variables may be further

adjusted to more realistically simulate a real life classroom, such as increasing the
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number of classes or students in a class. One possible update to improve the simulation

is to update the users’ class material and tasks to complete such that the simulation

demonstrates temporal progress through a school year. Furthermore, the randomness

in which the Async Dialogue framework switches to a different user may be improved

to take into account the factor in which how often students and teachers choose to

access the chatbot.

6.2 Research Insights

Through this thesis, the research questions introduced in Chapter 1 are answered.

The introduction of the Emora Assistant Bot offers a solution to automating general

and classroom-oriented administrative tasks, especially among multiple people. The

utilization of a database and framework that allows tasks to be effectively executed,

the Emora Assistant Bot is one of the first chatbots that can assist with tasks for all

kinds of users, whether they are in industry or academia.

LLMs exhibit state-of-the-art performance in task categorization and information

extraction, especially when used as a method of natural language understanding for

task-oriented chatbots. Though there are occasions of improper input extraction, GPT

enhanced the NLU of the Emora Assistant Bot to become greatly robust. Additional

finetuning for LLMs may help improve the results even further, advancing the future

of natural language understanding for artificial intelligence.

While not perfect, large language models also demonstrate relatively high per-

formance in the evaluation of task-oriented chatbots. Through automatic chatbot

evaluation through a GPT-based simulation, limitations and errors by Emora were

highlighted, giving directions as to how to enhance the chatbot. Leveraging large lan-

guage models for automatic chatbot evaluation holds significant promise for advancing

the field, and further enhancements to the simulation framework are poised to drive
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continued progress in this domain.



Appendix A

Appendix

A.1 GPT Function Used for Emora’s Input Extrac-

tion

The skeleton prompt used for Emora’s natural language understanding and input

extraction is as follows:

{full request} Respond only in the JSON schema such as {examples}.

Analyze this quote: ”{quote to analyze}

where {full request} corresponds to the prompt to use for the specific task catego-

rization or information extraction, {examples} demonstrates the specific format the

function should output, and {quote to analyze} corresponds to the user input that

should be analyzed, typically the last user response.

The following example utilizes the skeleton of the GPT function with the task

categorization prompt:

Consider these categories and examples of requests that fall within: {’call names’:

[’I want to be called John’, ’call me Harry’, ’my name is Bill’], ’make appt’:

[’I want/need to schedule an appointment’, ’I want/need to meet with
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Bill’, ’help me schedule an appointment with my teacher’, ’is John free

to meet’], ’cancel appt’: [’I want/need to cancel/reschedule/edit an ap-

pointment’, ’I cannot meet with Bill on Tuesday anymore’, ’change my

appointment with Bill to be 4 pm’], ’list roster’: [’who are the users on

the app’, ’what are the names of all my students/classmates’, ’who can I

meet with’, ’tell me everyone who is registered with you’, ’who is available

to meet’, ’who can I schedule appointments with’], ’send message’: [’I

want/need to send a message’, ’I want/need to tell Bill news’, ’I have a

question to ask Prof Smith’, ’help me send a message to my teacher’, ’I

want to find a classmate for help’], ’check misc messages’: [’do I have any

appointment requests’, ’do I have any messages’, ’does anyone want/need

to meet with me’, ’do I have mail’, ’do I have any messages’, ’tell me if

I have any messages’, ’any updates’, ’did Bill reply about the meeting’],

’make group’: [’I want/need to make a group’, ’I am in a group with Jill’,

’I am partners with John’, ’help me create a class/group’], ’check groups’:

[’I want/need to check my groups’, ’what groups am I in’], ’delete group’:

[’I want/need to delete/remove my group’, ’can I remove/delete a group’,

’I want to cancel/remove/delete the group I am in’, ’delete/remove my

group’], ’request feedback’: [’I want/need to request feedback’, ’I would

like to ask my group/class for feedback’, ’can you make a feedback form for

my class/group’], ’check members group’: [’who is in this group’, ’I want

to check who is in this group’, ’what other members are in cs371’, ’what

people are in my group’, ’who is in the same group as me’], ’leave group’:

[’I want/need to leave my group’, ’can I leave cs371’, ’I do not want to be in

this group anymore’], ’check feedback’: [’I want/need to check the answers

to the questions I asked to my group’, ’what did the class say about hw1’,

’can i check if people gave feedback/answers’, ’any feedback updates’],
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’send announcements’: [’I want/need to send an announcement’, ’help me

send an announcement’]}. Which categories does this quote belong in?

Respond only in the JSON schema such as {”new tasks”: [”call names”,

”office hours”]} or {”new tasks”: [”unrecognized”]} if unavailable. Analyze

this quote: ”I’d like to make an appointment”

A.2 GPT Prompts Used for GPT Simulation

The prompt used for generating student simulation responses is as follows:

You are {name}, a student in the {sim class} class. You are {personality},

with studying tendencies of {studying tendencies}. Online, you tend to

{online tendencies}. Your professor is {professor}, and your classmates

are {classmates}. The class history so far is as such: {class history}. This

week, the material covered was {current material}.

You have {num notifs} notifications you MUST check through the bot first.

After the bot APPROPRIATELY RESPONDS, you want to complete this

task: {todo}.

You are talking to an assistant chatbot. Its functionalities are ONLY as

follows:

- makes appointments with other students or professor

- sends messages to people (anonymized or not anonymized) to other stu-

dents or professor

- create and delete groups/classes with leaders and members

- leave a group if you are a MEMBER and in a GROUP

- check what groups you are in

- make announcements within groups if you are a LEADER and in a

GROUP
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You will be given a conversation history and the assistant chatbot’s last

response. Using the information and the given identity and personal-

ity, respond IN CHARACTER and APPROPRIATELY to the assistant

chatbot’s last response. Pay attention to what the bot is asking for and

carefully consider your own tasks that you want to get done. Respond

as if YOU are the one typing and asking for assistance; do NOT add

role-playing details such as ”John Doe: hi” or ”user: hi” or ”how can

I assist you today?”. In addition, do NOT REPEAT yourself, such as

repeating ”Thank you” or ”add all students”. If the conversation has

ended, consider asking for any updates if you received notifications. If it

is not, respond with something DIFFERENT. If the bot is repeating itself,

CANCEL the current functionality the bot is in to return to the hub state.

AN EXAMPLE of how it should be responded is provided below:

user prompt =

History:

user: hi

Using the conversation history provided above as context, respond in

character to the chatbot’s last response below:

bot: Before we begin, please provide your full name.

CORRECT RESPONSE:

John Smith

AN EXAMPLE of how it should be responded is provided below:

user prompt =

History:

user: hi

bot: Before we begin, please provide your full name.
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user: Talyn Fan

bot: Thank you Talyn Fan. Welcome! How should I call you?

user: Talyn

Using the conversation history provided above as context, respond in

character to the chatbot’s last response below:

bot: Nice to meet you, Talyn. Anything I can do for you, Talyn?

CORRECT RESPONSE:

any updates?

ANOTHER CORRECT RESPONSE:

actually call me Fan

AN EXAMPLE of how it should be responded is provided below:

user prompt =

user: Can you help me schedule a study group session with my classmates

for this week?

Using the conversation history provided above as context, respond in

character to the chatbot’s last response below:

bot: Sure, I can help you schedule an appointment with someone. What

is their full name?

CORRECT RESPONSE:

let’s see if David is free

ANOTHER CORRECT RESPONSE:

Never mind

AN EXAMPLE of how it should be responded is provided below:

user prompt =

user: Call me Jasmine. Any updates?

Using the conversation history provided above as context, respond in

character to the chatbot’s last response below:
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bot: Nice to meet you, Jasmine. So, how’s it going, Jasmine?

CORRECT RESPONSE:

so any mail

ANOTHER CORRECT RESPONSE:

I want to send a message to Dr Yin about a bug in the hw

AN EXAMPLE of how it should be responded is provided below:

user prompt =

user: You can call me Fatima. Thank you.

bot: Nice to meet you, Fatima. So what’s up, Fatima?

user: I wanted to ask if there’s a way for me to find a classmate to work

together on the Data Structures homework?

bot: You’re not in any groups right now, or you don’t have any groups

that you can request feedback from!!

user: Actually, I wanted to ask if there’s a way for me to find a classmate

to work together on the Data Structures homework. Can you help me

with that?

Using the conversation history provided above as context, respond in

character to the chatbot’s last response below:

bot: Do you also still want help with check the members in a group?

CORRECT RESPONSE:

no, it’s ok

AN EXAMPLE of how it should be responded is provided below:

bot: Understood, I’ll move on. Anything I can do for you, Joseph?

user: Any updates?

bot: There are no new messages in your inbox. Anything I can do for you,

Joseph?

user: No, I’m all set for now. Thank you.
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Using the conversation history provided above as context, respond in

character to the chatbot’s last response below:

bot: You have 1 message in your appointment inbox. Would you like to

respond to it now?

CORRECT RESPONSE:

yes

History:

{history}

Using the conversation history provided above and the characterś per-

sonality and class details as context, respond IN CHARACTER TO the

chatbotś last response below:

Chatbotś Last Response:

{emora last response}

The prompt used for generating professor simulation responses is as follows:

You are {name}, a professor teaching the {sim class} class. You are

{personality}, with studying tendencies of {teaching tendencies}. Online,

you tend to {online tendencies}.

Your students are {students}. The class history so far is as such: {class history}.

This week, the material covered was {current material}.

You have {num notifs} notifications you MUST check through the bot first.

After the bot APPROPRIATELY RESPONDS, you want to complete this

task: {todo}.

You are talking to an assistant chatbot. Its functionalities are ONLY as

follows:

- makes appointments with other students or professor
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- sends messages to people (anonymized or not anonymized) to other stu-

dents or professor

- create and delete groups/classes with leaders and members

- leave a group if you are a MEMBER and in a GROUP

- check what groups you are in

- make announcements within groups if you are a LEADER and in a

GROUP

You will be given a conversation history and the assistant chatbot’s last

response. Using the information and the given identity and personal-

ity, respond IN CHARACTER and APPROPRIATELY to the assistant

chatbot’s last response. Pay attention to what the bot is asking for and

carefully consider your own tasks that you want to get done. Respond

as if YOU are the one typing and asking for assistance; do NOT add

role-playing details such as ”John Doe: hi” or ”user: hi” or ”how can

I assist you today?”. In addition, do NOT REPEAT yourself, such as

repeating ”Thank you” or ”add all students”. If the conversation has

ended, consider asking for any updates if you received notifications. If it

is not, respond with something DIFFERENT. If the bot is repeating itself,

CANCEL the current functionality the bot is in to return to the hub state.

AN EXAMPLE of how it should be responded is provided below:

user prompt =

History:

user: hi

Using the conversation history provided above as context, respond in

character to the chatbot’s last response below:

bot: Before we begin, please provide your full name.
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CORRECT RESPONSE:

John Smith

AN EXAMPLE of how it should be responded is provided below:

user prompt =

History:

user: hi

bot: Before we begin, please provide your full name.

user: Talyn Fan

bot: Thank you Talyn Fan. Welcome! How should I call you?

user: Talyn

Using the conversation history provided above as context, respond in

character to the chatbot’s last response below:

bot: Nice to meet you, Talyn. Anything I can do for you, Talyn?

CORRECT RESPONSE:

any updates?

ANOTHER CORRECT RESPONSE:

actually call me Fan

AN EXAMPLE of how it should be responded is provided below:

user prompt =

user: Can you help me schedule a study group session with my classmates

for this week?

Using the conversation history provided above as context, respond in

character to the chatbot’s last response below:

bot: Sure, I can help you schedule an appointment with someone. What

is their full name?

CORRECT RESPONSE:

let’s see if David is free
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ANOTHER CORRECT RESPONSE:

Never mind

AN EXAMPLE of how it should be responded is provided below:

user prompt =

user: Call me Jasmine. Any updates?

Using the conversation history provided above as context, respond in

character to the chatbot’s last response below:

bot: Nice to meet you, Jasmine. So, how’s it going, Jasmine?

CORRECT RESPONSE:

so any mail

ANOTHER CORRECT RESPONSE:

I want to send a message to Dr Yin about a bug in the hw

AN EXAMPLE of how it should be responded is provided below:

user prompt =

user: You can call me Fatima. Thank you.

bot: Nice to meet you, Fatima. So what’s up, Fatima?

user: I wanted to ask if there’s a way for me to find a classmate to work

together on the Data Structures homework?

bot: You’re not in any groups right now, or you don’t have any groups

that you can request feedback from!!

user: Actually, I wanted to ask if there’s a way for me to find a classmate

to work together on the Data Structures homework. Can you help me

with that?

Using the conversation history provided above as context, respond in

character to the chatbot’s last response below:

bot: Do you also still want help with check the members in a group?

CORRECT RESPONSE:
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no, it’s ok

AN EXAMPLE of how it should be responded is provided below:

bot: Understood, I’ll move on. Anything I can do for you, Joseph?

user: Any updates?

bot: There are no new messages in your inbox. Anything I can do for you,

Joseph?

user: No, I’m all set for now. Thank you.

Using the conversation history provided above as context, respond in

character to the chatbot’s last response below:

bot: You have 1 message in your appointment inbox. Would you like to

respond to it now?

CORRECT RESPONSE:

yes

History:

{history}

Using the conversation history provided above and the characterś per-

sonality and class details as context, respond IN CHARACTER TO the

chatbotś last response below:

Chatbotś Last Response:

{emora last response}

For both the student and professor prompts, the brackets {} are replaced with the

information provided in the selected user profile (see Section 4.1.2).

The prompt used for determining the number of tasks and notifications for a given

user is as follows:

You will be given a conversation history between a user and an assistant
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chatbot.

Using it and the information provided, determine if there are any notifica-

tions are NOT resolved and tasks that are NOT completed. A notification

is ONLY resolved when the user has completely received the message

that the bot is delivering. A task is ONLY completed when the bot has

completed the task the user requests and concludes as such. Respond

ONLY in a dictionary format such as {’notifications’ : 1, ’tasks’: 1}, or

’N/A’ if unable to be determined.

An EXAMPLE of how it should be responded is provided below:

user prompt =

This user has received 0 notification and their task is as follows: send a

message to Talyn about studying together. The number of notifications

and tasks is presented in a dictionary format below:

{’notifications’: 0, ’tasks’ : 1}

History:

— smith is now talking —

user: hi

bot: Before we begin, please provide your full name.

user: Gabriel Smith

bot: Thank you Gabriel Smith. Welcome! How should I call you?

user: How about Darth Vader

bot: Nice to meet you, Darth Vader. How can I assist you, Darth Vader?

Based on the history above, how many remaining tasks and notifica-

tions does this user have?

CORRECT RESPONSE:
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{’notifications’: 0, ’tasks’ : 1}

An EXAMPLE of how it should be responded is provided below:

user prompt =

This user has received 2 notifications and their task is as follows: send a

message to Ben about studying together. The number of notifications and

tasks is presented in a dictionary format below:

{’notifications’: 2, ’tasks’ : 1}

History:

— fan is now talking —

user: You can call me Talyn.

bot: Nice to meet you, Talyn. What do you need next, Talyn?

user: I need to send a message to Ben about studying together.

bot: Okay! Would you like to send this message anonymously?

user: No, I don’t need to send the message anonymously.

bot: Alright! Can you please tell me the message that you want to send

to Ben Smith?

user: Sure! Here’s the message I want to send to Ben: ”Hey Ben, I was

wondering if you’d be interested in studying together for our Intro to CS

class. I find that collaborating with someone helps me understand the

material better. Let me know if you’re available and we can set up a study

session. Thanks!”

bot: Thank you! I’ll send off your message.

Based on the history above, how many remaining tasks and notifica-

tions does this user have?

CORRECT RESPONSE:
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{’notifications’: 2, ’tasks’ : 0}

An EXAMPLE of how it should be responded is provided below:

user prompt =

This user has received 2 notifications and their task is as follows: send a

message to Dr. Cho about bug. The number of notifications and tasks is

presented in a dictionary format below:

{’notifications’: 2, ’tasks’ : 1}

History:

— ali is now talking —

user: I need to send a message to Dr. Cho.

bot: Okay! Would you like to send this message anonymously?

user: No, I don’t need to send the message anonymously.

bot: Alright! Can you please tell me the message that you want to send

to Ben Smith?

user: Subject: Possible Bug in Homework Assignment

Hi Dr. Cho,

I hope you’re doing well. I wanted to bring to your attention a possible

bug that I’ve noticed in the current homework assignment. After reviewing

the requirements, I believe there may be an issue with the expected output

for a specific problem. I have detailed my findings and suggestions for

resolving this in the document attached to this message.

Thank you for your attention to this matter.

Best regards,

Muhammad Ali

bot: Welcome! How should I call you?
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Based on the history above, how many remaining tasks and notifica-

tions does this user have?

CORRECT RESPONSE:

{’notifications’: 2, ’tasks’ : 1}

An EXAMPLE of how it should be responded is provided below:

user prompt =

This user has received 1 notifications and their task is as follows: create a

group for school project with Daniel and Han. The number of notifications

and tasks is presented in a dictionary format below:

{’notifications’: 1, ’tasks’ : 1}

History:

— tenali is now talking —

user: any updates?

bot: You have 1 message in your appointment inbox. Would you like to

respond to it now?

user: yes

Based on the history above, how many remaining tasks and notifica-

tions does this user have?

CORRECT RESPONSE:

{’notifications’: 1, ’tasks’ : 1}

An EXAMPLE of how it should be responded is provided below:

user prompt =

This user has received 0 notifications and their task is as follows: make

an appointment with Professor Johnson. The number of notifications and
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tasks is presented in a dictionary format below:

{’notifications’: 0, ’tasks’ : 1}

History:

— patel is now talking —

user: You can call me Aisha.

bot: Nice to meet you, Aisha. What can I do for you, Aisha?

user: I would like to make an appointment with Professor Johnson for

help with hash tables.

bot: Okay! Please tell me your first choice for a meeting day and time

with Amanda Johnson.

user: I would prefer to meet with Professor Johnson on Thursday afternoon

around 3:00 PM.

bot: Ok, I think I got it. Is this what you meant?

03/07/2024 (03:00 PM) to 03/07/2024 (03:30 PM)

user: Yes, that’s correct. Thank you for scheduling the appointment with

Professor Johnson on Thursday afternoon from 3:00 PM to 3:30 PM.

bot: Awesome, I’ll see if they are free. And where do you want to meet

with Amanda Johnson?

Based on the history above, how many remaining tasks and notifica-

tions does this user have?

CORRECT RESPONSE:

{’notifications’: 0, ’tasks’ : 1}

This user has received {notifs} notifications and their task is as follows:

{todo}. The number of notifications and tasks is presented in a dictionary
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format below:

{user notif data}

History:

{history}

Based on the history above, how many remaining tasks and notifications

does this user have?

The prompt used for determining whether a conversation between the user and

system has ended or is repeating is as follows:

You will be given a conversation history between a user and an assistant

chatbot.

Using it, determine if the conversation has ENDED or is REPEATING

between the bot and user.

Your output should be EITHER YES or NO.

An EXAMPLE of how it should be responded is provided below:

user prompt =

History:

— smith is now talking —

user: hi

bot: Before we begin, please provide your full name.

user: Gabriel Smith

bot: Thank you Gabriel Smith. Welcome! How should I call you?

user: How about Darth Vader

bot: Nice to meet you, Darth Vader. How can I assist you, Darth Vader?

Based on the history above, is the conversation between the user and

the bot ENDED or REPEATING?
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CORRECT RESPONSE:

NO

An EXAMPLE of how it should be responded is provided below:

user prompt =

History:

— fan is now talking —

user: You can call me Talyn.

bot: Nice to meet you, Talyn. What do you need next, Talyn?

user: I need to send a message to Ben about studying together.

bot: Okay! Would you like to send this message anonymously?

user: No, I don’t need to send the message anonymously.

bot: Alright! Can you please tell me the message that you want to send

to Ben Smith?

user: Sure! Here’s the message I want to send to Ben: ”Hey Ben, I was

wondering if you’d be interested in studying together for our Intro to CS

class. I find that collaborating with someone helps me understand the

material better. Let me know if you’re available and we can set up a study

session. Thanks!”

bot: Thank you! I’ll send off your message.

user: Great, thank you! I appreciate your help. I’ll let you know if there’s

anything else I need help with. Have a great day!

bot: Of course! It’s my pleasure.

Based on the history above, is the conversation between the user and

the bot ENDED or REPEATING?

CORRECT RESPONSE:
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YES

An EXAMPLE of how it should be responded is provided below:

user prompt =

History:

— patel is now talking —

user: You can call me Aisha.

bot: Nice to meet you, Aisha. What can I do for you, Aisha?

user: I would like to make an appointment with Professor Johnson for

help with hash tables.

bot: Okay! Please tell me your first choice for a meeting day and time

with Amanda Johnson.

user: I would prefer to meet with Professor Johnson on Thursday afternoon

around 3:00 PM.

bot: Ok, I think I got it. Is this what you meant?

03/07/2024 (03:00 PM) to 03/07/2024 (03:30 PM)

user: Yes, that’s correct. Thank you for scheduling the appointment with

Professor Johnson on Thursday afternoon from 3:00 PM to 3:30 PM.

bot: Awesome, I’ll see if they are free. And where do you want to meet

with Amanda Johnson?

Based on the history above, is the conversation between the user and

the bot ENDED or REPEATING?

CORRECT RESPONSE:

NO
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History:

{history}

Based on the history above, is the conversation between the user and the

bot ENDED or REPEATING?

Similar to the response prompts from above, the brackets {} in the prompts above

are replaced with the information provided in the selected user profile.
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