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Abstract 

 

Exploration of Normalization Methods on Bulk RNA-seq Data and Single-cell RNA-

seq Data 

By Yawei Wang 

 

 

Background: RNA-seq and single-cell RNA-seq are powerful new technologies in 

biomedical research. To eliminate the inherent technical errors associated with factors 

like sequencing depth and gene length, RNA-seq data from different samples need to 

be normalized so that they are comparable. However, the presence of abundant zeros 

in the data, especially in single-cell RNA-seq data, makes the normalization effect 

extremely challenging.  

 

Method and Materials: In the bulk RNA-seq normalization section, I used a novel 

normalization method, named Group method, and compared its performance with other 

bulk RNA-seq data normalization methods, Upper Quantile, Quantile, Median, TMM, 

and DESeq, by calculating Spearman correlation between normalized RNA-seq data 

and TaqMan qRT-PCR data. We also compared their effectiveness on simulated data 

and differential expression analysis respectively. For the single-cell RNA-seq part, I 

merge genes based on the KEGG pathway and use the Quantile method to normalize 

pathway-cell data, which was named the Pathway-Quantile method. I compared this 

method with log normalization method, scran, and Linnorm on 3k PBMC data (without 

spike-in genes) and human pancreas data (with spike-in genes) by using the results after 

UMAP reducing dimension and Seurat package, version 4.0.1 visualizing.  

 

Results: For simulated and real bulk RNA-Seq data, all normalization methods 

performed similarly in terms of the Spearman correlation between normalized real 

RNA-Seq data and MAQC TaqMan qRT-PCR data. And Group method does not 

perform better compared to other methods. For differential expression analysis, all 

methods showed similar performance. For single-cell RNA-seq data, Pathway-Quantile, 

is better than pathway-level data, but its performance was inferior to other methods 

when test on 3k PBMC data.  

 

Conclusion: We found the group method is competitive for normalizing bulk RNA-seq 

data. However, more studies are needed for normalizing single-cell RNA-seq data using 

the Group-Quantile method. 
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1. Introduction 

Microarrays provide the ability to study many genes in organisms under different 

biological conditions and significantly reduce cost and time. In recent years, high-

throughput sequencing, also named next-generation sequencing (NGS), is applied to a 

technique for sequencing DNA and RNA in a rapid and low-cost manner and plays an 

increasingly important role in detecting gene behavior and has been used in related 

research.[1]  

High-throughput transcriptomic sequencing, also known as RNA-seq, first fragmented 

and then reversely transcribed to cDNA. Then the fragments would be sequenced and 

compared with known reference genomes or gene transcriptomes or assembled without 

reference. The number of readings mapped to a gene was used to quantify its expression 

[2]. During these procedures, many factors may influence the reading counts of gene, 

including within-sample factors and inter-sample factors. In sample factors, like gene 

length and GC content, will affect the comparison of different genes within a sample. 

Inter sample factors, sequencing depth (i.e. library size), influence comparison of same 

genes’ read count between different samples, that is longer transcripts tend to be cut 

into more fragments than shorter transcripts [3]. Therefore, the number of reads in the 

transcript is not only directly proportional to its expression level but also directly 

proportional to its length. The high expression level of the long sequence gene 

misestimates the true expression level of the gene. Thus, to reduce these noises and 

make them comparable, normalization, including in sample normalization and inter-

sample normalization, are necessary. In this study, we focus on inter-sample 



2 

normalization [4].  

Over the past decade, high-throughput sequencing technology has been widely used in 

various fields of biology and medicine with many successes. Among them, 

transcriptomic sequencing (RNA-seq) has been widely used to determine and 

characterize the expression of genes or transcripts of various species. Bulk RNA-seq, a 

traditional transcriptomic sequencing technique, that is based on a population of cells 

with tens of thousands of cells per sample. It mostly reflects the average level of gene 

expression of a population of cells, and therefore masks the heterogeneity of expression 

of different cells. In recent years, single-cell RNA-seq (scRNA-seq) technology has 

been rapidly developed, which enables genome-wide expression of all genes to be 

revealed at the single-cell level, which is very beneficial for understanding 

heterogeneity in inter-cell expression [5]
. 

However, it is typical that there are abundant zeros in RNA-seq data, which might 

influence the results of normalization. In this study, we propose a novel normalization 

method in bulk RNA-seq data, named the Group method. We compared the 

performance of the Group method and other bulk RNA-seq normalization methods in 

the bulk RNA-seq data, simulated data, and their performances on detecting differential 

gene expression. Single-cell RNA sequencing (scRNA-seq) has the characteristics of 

low capture rate, high noise, high variability, and more sparse counts, so we also 

proposed a new method, named the Pathway-Quantile method, which merges genes 

according to the pathway sets and then use Quantile method to perform normalization. 

We compared the Pathway-Quantile method with other single-cell normalization 
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methods in 10X Genomics real data set of peripheral blood mononuclear cells (PBMCs) 

and spike-in Single-cell RNA-seq data of the human pancreas. In this study, we used 

KEGG pathway gene sets. 

2. Data Sources 

2.1 Bulk RNA-seq data 

2.1.1 Real data 

High-throughput RNA-Seq data used in this study were collected from Gene 

Expression Omnibus (GEO), The dataset series is GSE47774, the data are primary 

results from the Sequencing Quality Control (SEQC) project. The well-characterized 

reference RNA Sample A: Universal Human Reference RNA (UHRR) from Stratagene 

and ERCC Spike-In controls; Sample B: Human Brain Reference RNA (HBRR) from 

Ambion and ERCC Spike-In controls. Samples C and D were then constructed by 

combining A and B in mixing ratios, 3:1 and 1:3, respectively. The information of 

sample data we used is shown in Table 1. 
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Table 1. Description of RNA-Seq data 

Term Sample Platform Site Library ID Lane 

SRX302874 Sample A (UHR) Illumina HiSeq 2000 MAY 1 01 

SRX302876 Sample A (UHR) Illumina HiSeq 2000 MAY 1 02 

SRX302890 Sample A (UHR) Illumina HiSeq 2000 MAY 2 01 

SRX302130 Sample A (UHR) Illumina HiSeq 2000 BGI 1 01 

SRX302954 Sample B (HBR) Illumina HiSeq 2000 MAY 1 01 

SRX302956 Sample B (HBR) Illumina HiSeq 2000 MAY 1 02 

SRX302970 Sample B (HBR) Illumina HiSeq 2000 MAY 2 01 

SRX302210 Sample B (HBR) Illumina HiSeq 2000 BGI 1 01 

SRX303034 Sample C (A:B=3:1) Illumina HiSeq 2000 MAY 1 01 

SRX303036 Sample C (A:B=3:1) Illumina HiSeq 2000 MAY 1 02 

SRX303050 Sample C (A:B=3:1) Illumina HiSeq 2000 MAY 2 01 

SRX302290 Sample C (A:B=3:1) Illumina HiSeq 2000 BGI 1 01 

SRX303114 Sample D (A:B=1:3) Illumina HiSeq 2000 MAY 1 01 

SRX303116 Sample D (A:B=1:3) Illumina HiSeq 2000 MAY 1 02 

SRX303130 Sample D (A:B=1:3) Illumina HiSeq 2000 MAY 2 01 

SRX302370 Sample D (A:B=1:3) Illumina HiSeq 2000 BGI 1 01 

2.1.2 MAQC TaqMan qRT-PCR data 

In this study, we used MAQC TaqMan qRT-PCR data, GSE5350, as the benchmark to 

qualify the different normalization methods’ performance, which can be downloaded 

from the Gene Expression Omnibus on the platform GPL4097. We chose GSM129638 

whose source name is MAQC sample A to be the benchmark to qualify real RNA-Seq 

data of sample A; GSM129642, source name is MAQC sample B, to be the benchmark 

to qualify real RNA-Seq data of sample B; GSM129646, source name is MAQC sample 

C, to be the benchmark to qualify real RNA-Seq data of sample C and GSM129650 

with source name sample D to be the benchmark to qualify real RNA-Seq data of 

sample D. The MAQC TaqMan qRT-PCR data is comprised by 1044 genes from two 

types of samples (HBR and UHR). We matched the Gene Expression Omnibus genes 

and genes in MAQC TaqMan qRT-PCR data by gene ID and there were 996 genes left 
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[5]. 

2.1.3 Simulated data 

We selected SRX302874 (sample A), SRX302954 (sample B), SRX303034 (sample A: 

sample B=3:1), SRX303114 (sample A: sample B=1:3) to be basic dataset and 

simulated each genes’ read count by Binomial (n, p), n is the read count of each gene 

and p is the probability we would specify, then simulated datasets will be generated. 

2.2 Single-cell RNA-seq data   

2.2.1 Peripheral Blood Mononuclear Cell (PBMC) data 

This dataset is collected from PBMCs from a Healthy Donor, and it is a Single Cell 

Gene Expression Dataset from 10X Genomics' latest GemCode platform containing 

many datasets used in scRNA-seq studies, typically dealing with a larger number of 

cells at a sparser level. There is no spike-in gene and 2700 PBMCs, 2638 of which were 

used in this study. This dataset was used to compare the Group-Quantile method and 

other single-cell RNA-seq normalization methods. 

2.2.2 Single-cell RNA-seq data with spike-ins 

Spike-in RNA is an RNA transcript with known sequence and quantity, which could be 

used to calibrate RNA hybridization. Based on assumption that spike-ins and 

endogenous transcripts have similar expression levels across cells, adding spike-in 

RNA could eliminate the noise of sing-cell RNA-seq data and improve the efficiency 

of normalization [6]. In this study, we used a spike-in dataset from ArrayExpress. The 

dataset, E-MTAB-5061, is a single-cell RNA-seq analysis of the human pancreas from 

healthy individuals and type 2 diabetes patients. In this study, there are 1936 cells were 
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used. This dataset was also used to compare the Group-Quantile method and other 

single-cell RNA-seq normalization methods. 

2.2.3 KEGG pathway gene sets 

KEGG pathway gene sets were used to collect genes from all fully sequenced genomes 

and some partial genomes of the gene catalog. In this study, we used the KEGG pathway 

gene sets containing 189 gene sets and 12797 genes. KEGG gene sets with Gene 

Symbols could download from http://www.gsea-msigdb.org/gsea/downloads.jsp. 

3. Methods 

3.1 Bulk RNA-seq normalization Methods 

To eliminate the sequencing depth (library size) effects between samples, inter-sample 

normalization is necessary. Usually, in RNA-seq data, many genes have zero expression 

and would be filtered out by some normalization methods, which possibly generate bias 

for normalization results. In this study, we used the Group method to reduce the effect 

of zero read count and compare it with the Upper Quartile method [7], Quantile method 

[7], Median method [8], Trimmed Mean of M-values (TMM) [9] and DESeq [10]. After 

normalization, we calculated the Spearman correlation between normalized gene data 

and MAQC TaqMan qRT-PCR data. We also calculated the Spearman correlation 

between raw data that do not have been normalized and MAQC TaqMan qRT-PCR data 

by using 996 matched genes between GEO data and MAQC TaqMan qRT-PCR data. 

Then we used the Spearman correlation to evaluate different normalization methods on 

simulated data. At last, we compared the performance of normalization methods on 

detecting differential expression genes. 

http://www.gsea-msigdb.org/gsea/downloads.jsp
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3.1.1 Traditional normalization methods with real RNA-Seq data 

RC represents the raw read count of genes in RNA-Seq data; the Upper Quartile method 

is applying the upper quartile (75th) to all read count of genes. It is a scaling 

normalization method that forces the upper quartile of each lane to be the same. In this 

study, we used the function “BetweenLaneNormalization” in package “EDASeq” of R 

studio and specify “upper” in method selection; the Quantile method is one of the 

widely used preprocessing techniques, which could be used to remove technical noise 

from genomic data. It is a non-linear full quantile normalization method, which is the 

same as the Upper Quartile except specifying the method to be “full” in function 

“BetweenLaneNormalization”; Median approach is also a scaling normalization that 

forces the median of each lane to be the same; Trimmed Mean of M-values (TMM) is 

a method used in package “edgeR” of R studio. The assumption of TMM is most of the 

genes are not differential expression genes. This method removes all genes which do 

not express and then the sample with a relatively average data trend is used as a 

reference sample and all others are test samples. For each test sample, the scaling factor 

is calculated based on the weighted mean of log ratios between the test sample and the 

reference sample. The weighted average represents the normalized factor for the sample. 

DESeq method is applied in package “DESeq2” of R studio. Use the 

“estimateSizeFactors” function to calculate a factor for each sample which is named as 

size factor, then raw read count of each sample would be divided by the corresponding 

sample’s size factor and get the normalized result. This method is based on the negative 

binomial distribution. 
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3.1.2 Group method 

In real RNA-Seq data, it is common that a lot of genes have zero read count. When do 

normalization, some methods will remove the genes with zero reads count, such as 

TMM, or genes expression characters will be masked by robust normalized method, 

like Quantile, which may lead to bias to some extent. To reduce the influence of genes 

with zero read count for normalization and keep their characteristics at the same time, 

we try to group genes and use each group’s mean of read count to do normalization by 

using the Quantile method. Then each original RNA-Seq read count will be divided by 

its corresponding mean of the group’s read count and multiply the normalized each 

mean of the group’s read count. Using the mean of the groups’ read count to do 

normalization could reduce the number of zero read count and decline their influences 

on normalization results. The reason for choosing the Quantile method is it will not 

remove any gene and it is a robust method when the number of zero read count is small. 

Using the original RNA-Seq data divided by its corresponding mean of the group’s read 

count is a method to reduce the library size effect. Multiplying the normalized mean of 

the group’ s read count could make results to be more powerful. The model of the Group 

method is shown as follows. 

 

𝑁𝑅𝐶𝑖𝑗𝑘 =
𝑅𝐶𝑖𝑗𝑘

𝑀𝑖𝑗
× 𝑁𝑀𝑖𝑗  

 

NRC: normalized gene read count 

RC: non-normalized gene read count 

M: the mean of group’ read count 

NM: normalized mean of group’ read count 

i : index of sample 
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j : index of group 

k : index of each gene read count in certain group and certain sample 

 

In this study, we randomly grouped 43919 transcript ID with its corresponding read 

count into 1187 groups and the group size is 37. Calculating each group’s mean of the 

read count in each sample and using the Quantile method to normalize the mean of the 

read count and get the normalized the mean of the read count. Then the original RNA-

Seq data was divided by its corresponding mean of the group’ read count and multiplied 

the normalized mean of its mean of the group’s read count, we would get the normalized 

dataset at last. 

3.1.3 Normalization with simulated data 

SRX302874 (sample A), SRX302954 (sample B), SRX303034 (sample A: sample 

B=3:1), SRX303114 (sample A : sample B=1:3) are basic dataset and simulate each 

gene’s read count in four samples by Binomial (n, 1), Binomial (n, 0.5), Binomial (n, 

0.25), Binomial (n, 0.125), Binomial (n, 0.05), Binomial (n, 0.1) respectively. Use the 

Group method, upper quantile method, quantile method, median method, trimmed 

mean of M-values (TMM), and DESeq to do normalization and then calculate 

Spearman correlation between MAQC TaqMan qRT-PCR data and normalized 

simulated data. 

3.1.4 Differential expression analysis 

(1) Simulate SRX302874 (sample A) dataset by Binomial (n, 0.05) five times and get 

samples named as A1, A2, A3, A4, A5. (2) Randomly select 10% transcript ID 

(4392) with their corresponding read count from SRX302874 (sample A) as 
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differential expression genes. (3) For differential expression genes, stimulate read 

count by Binomial (n, p=0.1) and the remaining 90% genes by using binomial (n, 

p=0.05) to generate samples named as B1-B5. Here n is the read count for each 

gene in sample A. (4) Then use Upper Quartile method, Quartile method, Median 

method, Trimmed Mean of M-values (TMM), and DESeq and Group method to do 

normalization. (5) Use normalized A1-A5 and B1-B5 to calculate the ratio 

(B1+B2+…+B5+0.5)/ (A1+A2+…+A5+0.5), adding 0.5 could avoid zero in the 

denominator. Rank all ratios, select the top 4000 ratios, and count the number of 

differential expression genes which are correctly detected. (6) Repeat step three to 

step five 10 times and report mean and standard deviation. (7) Change the percent 

of differential expression genes from 10% to 20%, 30%. Change the p in Binomial 

(n, p) from 0.10 to 0.15 and 0.20, so there are 9 combinations and do the same things 

as before.  

3.2 Sing-cell RNA-seq normalization methods 

In this section, to compare the performance of different scRNA-seq normalization 

methods, including log normalization method, linnorm, scran, and our new method—

Pathway-Quantile, we employed Uniform Manifold Approximation and Projection 

(UMAP) [11] analysis, which is a technique used for dimension reduction. It is suitable 

for large datasets and the analysis is performed by the runUMAP() function within the 

Seurat package, version 4.0.1. The Dimplot() function in the Seurat package is used to 

visualize the results.  

3.2.1 Log Normalization 
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We used the NormalizeData() function to perform a global normalization, that is gene 

counts of each cell are divided by the total counts of the corresponding cell and 

multiplied the scale factor, then we used log(x+1) to transform the results. 

3.2.2 Linear Model and Normality Based Normalizing Transformation Method 

(Linnorm) 

Linnorm.Norm() function was used to do normalization. The assumption of Linnorm is 

genes are stably expressed across different samples and normalization parameters were 

calculated by utilizing these stably expressed genes [12]. 

First, normalizing each sample into a relative scale as the formula shown, where Eij is 

the expression level of the gene i and sample j, m be the total number of genes and n be 

the total number of samples.  

 

Then we define gene expression level as Gij as Gij=ln(λRij), where λ represents the 

median of total counts across all cells. The expression means zi are expressed as 

zi=ajXij+bj, where parameters a and b are estimated through the linear model. At last, 

use the normalization strength coefficient c (0≤c≤1) and set it to 0.5 by default in the 

following process, then the normalized data can be generated: 

 

aupdated
j=c(aj−1) +1 

 

bupdated
j=bj*c 

 

Bij=exp (aupdated
j Gij+bupdated

j) 
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Yij=ln (Bij+1) 

 

3.2.3 Scran method 

Scran uses a variation of the counts per million (CPM) method designed for scRNA-

seq. This method eliminates problems from zero counts by combining groups of cells 

and then calculates normalized factors in a CPM manner. Since a single cell will appear 

in multiple combined sets (pools), cellular-specific factors can be calculated by linear 

algebra by deconvolution from nonspecific factors. 

This method has better performance on batch correction and difference analysis [13]. 

This method could be implemented in the “scran” package of R studio. 

3.2.4 Group-Quantile method 

After mapping with 3k PBMC data, there are 8501 genes and 2700 cells left and after 

mapping with E-MTAB-5061 data, there are 11711 genes and 1937 cells left. Then 

group genes and sum up their counts according to corresponding pathways for each cell. 

Then the gene-cell data was replaced by pathway-cell data. At last, using Quantile 

method to normalize the pathway-cell data. 

4.  Result 

4.1 Results of bulk RNA-seq data 

For real RNA-Seq data, normalization methods, Upper Quartile method, Quantile 

method, Median method, Trimmed Mean of M-values (TMM), DESeq, and Group 

method do not result in significant difference on Spearman correlation between 

normalized real RNA-Seq data and MAQC TaqMan qRT-PCR data compared with the 

Spearman correlation between raw RNA-Seq data and MAQC TaqMan qRT-PCR data. 
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The performances of the six normalization methods are similar (Table 1). 

Table 1 Spearman correlation between normalized RNA-Seq data and MAQC TaqMan qRT-

PCR data 

  RC UQ Median TMM Quantile DESeq Group 

sampleA 

SRX302874 0.873 0.873 0.873 0.873 0.873 0.869 0.873 

SRX302876 0.872 0.872 0.872 0.872 0.872 0.870 0.871 

SRX302890 0.873 0.874 0.873 0.872 0.874 0.871 0.873 

SRX302130 0.875 0.875 0.875 0.874 0.875 0.870 0.875 

sampleB 

SRX302954 0.871 0.871 0.871 0.870 0.871 0.870 0.871 

SRX302956 0.872 0.872 0.872 0.870 0.871 0.871 0.871 

SRX302970 0.872 0.872 0.872 0.871 0.872 0.869 0.872 

SRX302210 0.869 0.869 0.869 0.868 0.869 0.866 0.868 

sampleC 

SRX303034 0.843 0.843 0.843 0.843 0.843 0.839 0.843 

SRX303036 0.841 0.841 0.841 0.841 0.872 0.837 0.841 

SRX303050 0.843 0.843 0.843 0.842 0.843 0.839 0.843 

SRX302291 0.845 0.845 0.845 0.844 0.845 0.835 0.845 

sampmeD 

SRX303114 0.832 0.830 0.830 0.829 0.830 0.827 0.830 

SRX303116 0.832 0.832 0.832 0.8291 0.832 0.830 0.832 

SRX303130 0.830 0.830 0.830 0.828 0.830 0.825 0.829 

SRX302370 0.829 0.829 0.829 0.828 0.829 0.827 0.829 

 

The results of normalization on the simulated dataset are similar among the six methods, 

we can see that there is no obvious difference in the Spearman correlation between 

RNA-Seq data and MAQC TaqMan qRT-PCR data, no matter the normalized is the 

Group method or the traditional methods (Figure 2). 
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Figure 2 

For differential expression genes detection, there is no obvious difference for means of 

the number of correctly detected differential expression genes among normalization 

methods, shown in Table 2. Under the same percentage of differential expression genes 

set (same n for Binomial distribution (n, p)), with the p increased, the number of correct 

detections of differential expression genes is increased for all methods and with the 

percentage of differential expression genes increased, the ratio of correct detection has 

little increase. There is no significant difference observed between the Group method 

and traditional methods no matter the means of correctly detection, the correct detection 
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ratio, or standard deviation (figure 3). 

Table 2. Percentage of differential expression genes correctly detected 

 

Method 

10% DE 

P=0.10 P=0.15 P=0.20 

Mean 

(%) 

SD (%) Mean 

(%) 

SD (%) Mean 

(%) 

SD (%) 

UQ 58.49 0.65 62.29 0.57 68.57 0.54 

Median 50.84 0.59 63.99 0.57 67.88 1.50 

Quantile 49.51 0.86 63.03 0.53 68.49 0.57 

TMM 50.39 0.62 63.48 0.40 68.15 0.51 

DESeq 50.28 0.57 63.90 0.49 68.73 0.49 

Group 50.61 0.67 63.92 0.54 68.67 0.40 

 

 

 

Method 

20% DE 

10%:5% 15%:5% 20%:5% 

Mean 

(%) 

SD (%) Mean 

(%) 

SD (%) Mean 

(%) 

SD (%) 

UQ 62.44 0.35 71.43 0.28 74.00 0.33 

Median 62.01 0.50 70.92 0.28 74.02 0.30 

Quantile 64.01 0.42 70.97 0.42 72.98 0.36 

TMM 64.26 0.45 71.28 0.40 73.25 0.34 

DESeq 63.83 0.42 71.46 0.37 73.78 0.31 

Group 64.07 0.46 70.97 0.39 73.11 0.32 

 

 

 

Method 

30% DE 

10%:5% 15%:5% 20%:5% 

Mean 

(%) 

SD (%) Mean 

(%) 

SD (%) Mean 

(%) 

SD (%) 

UQ 68.67 0.32 73.49 0.25 75.08 0.41 

Median 68.64 0.25 73.98 0.18 75.24 0.30 

Quantile 67.72 0.33 72.95 0.26 75.20 0.32 

TMM 68.22 0.41 72.54 0.23 73.99 0.42 

DESeq 67.29 0.32 72.41 0.25 74.33 0.37 

Group 67.90 0.36 74.02 0.29 76.34 0.36 
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Figure 3 

 

4.2 Results of single-cell RNA-seq data 

4.2.1 PBMC data visualization 

The results for the UMAP visualization are shown in Figure 4. Single-cell 

normalization methods, log transform, scran, and Linnorm, have similar performances 

with relatively clear division among the eight-cell types, but there is no distinct 

improvement compared with the original data. In comparison, the data which just using 

the pathway to merge genes and the data normalized by the Pathway-Quantile method 

were not grouped so clear as the above three methods and original data. However, the 

Pathway-Quantile method has improved the results compared with the result without 

the Quantile method normalized. Besides, there are just 6 clusters were grouped after 

using the pathway to merge genes. 
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Figure 4 

 

4.2.2 Spike-in single-cell RNA-seq data visualization 

As Figure 5 shows, for pancreas data, no method separate conditions very well, though 

scran comes closest to doing so, which has the best performance with the clearest 

division among all methods and has improved compared with the original data. The 

result of data merged according to pathway’s genes sets and the results of the Pathway-

Quantile normalization have better performance than the Linnorm method, and the 

Pathway-Quantile method also has a little bit of contribution to more clearly identify 

clusters than just using the pathway to merge genes.  
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Figure 5 

5. Conclusion and Discussion 

In bulk RNA-seq part, the Group method does not have a better performance on real 

RNA-Seq data and simulated data, compared to the Upper Quartile method, Quartile 

method, Median method, Trimmed Mean of M-values (TMM), and DESeq according 

to Spearman correlation between normalized real RNA-Seq data and MAQC TaqMan 

qRT-PCR data. Also, all methods do not improve the Spearman correlation between 

normalized data and MAQC TaqMan qRT-PCR data compare with the Spearman 

correlation between raw data and MAQC TaqMan qRT-PCR data. In terms of detecting 

differential expression genes, all methods have similar performances. The challenging 

part for the Group method is the number of genes in each group, it should be guaranteed 

that the means of gene counts in each group for each cell should not be zero, because 

zero could not be the denominator. So, the group size will be varied in different data.  

In the single-cell RNA-seq section, based on dimension reduction and SNN 

classification used in UMAP function of Seurat package, the Pathway-Quantile method 

did not contribute to noticeable improvements and did not perform as well as other 

single-cell RNA-seq normalization methods, log normalization, scran, Linnorm, cross 

3k PBMC data. However, the Pathway-Quantile method outperforms only using the 
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pathway to merge genes. Additionally, there are fewer clusters were identified after 

using pathway, no matter Pathway-Quantile normalized data or just using pathway 

without Quantile normalization because using pathway genes sets to filter genes will 

lead to loss of some features. Currently, there is also a limitation for pathway - it is not 

available to label clusters’ cell type based on pathway-cell data. 

For human pancreas data, which contains spike-in genes, although no methods could 

cluster cells clearly, the Pathway-Quantile method and just using pathway without 

Quantile normalization are more effective than Linnorm in terms of visualization. 

Similar to the results found in 3k PBMC data, there are fewer clusters were identified 

after using the pathway to merge genes due to some features lost. There are no advanced 

known cell makers in this dataset so that we could not effectively label cell types of 

clusters. 

For future work, firstly, besides using visualization to evaluate the efficiency of 

different methods, we may consider using other statistics such as K-nearest neighbors 

(KNN) [15]
,
 to evaluate the performance of normalization methods. KNN has non-

parametric nature and could work beyond two-group classification. Cohen's statistic [16] 

also could be used to test inter-rater reliability for categorical items. We may also 

explore the use of machine learning methods, like Random Forest classifiers, trajectory 

inference, on classifying. Secondly, we plan to evaluate the effectiveness of the 

Pathway-Quantile method on simulated data with greater differences in expression 

level between cells and differential expression genes’ detecting analysis. Finally, we 

may use Pathway-Quantile method on other datasets and use different pathway gene 
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sets to merge genes. 
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