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Abstract 
 

Design Strategies for Studies Using Logistic Regression to Analyze Data on Pooled Samples 
 

By Xiaobo Yan 
 
 

We review logistic regression modeling to estimate the risk of potential factors' odds ratios and 
predict disease prevalence using pooled samples via the maximum likelihood (ML) approach. 
We determine the preferred methods to deal with either categorical variables or continuous 
variables. For categorical variables, random pooling within subsets stratified by the variables of 
interest yields the most accurate and most efficient estimate on both coefficient and prevalence. 
We take advantage of statistical software for continuous variables to pool samples with a 
prespecified number of pools by the k-means clustering algorithm to optimize the estimation 
performance. We also modify the k-means clustering function embedded in SAS to constrain the 
maximum pool size to consider laboratory operability and test limitation. We compare the 
estimates between incorporating perfect and imperfect testing (sensitivity and sensitivity) to 
demonstrate the necessity of adjustment ML for test bias. Both of our proposed strategies 
showed the most efficacy while keeping good performance accuracy for the Malaria data and 
simulated data. Further potential study on imperfect tests is also discussed at the end of the study. 
 
KEY WORDS: Pooled testing, Prevalence, Logistic regression, K-means clustering, Malaria.  
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1 Introduction 

 In disease surveillance and epidemiological studies, pooled testing has been widely 

suggested as an alternative to testing individual samples for saving laboratory capacity and 

reducing required numbers of diagnostic tests (Chang-Xing Ma, 2011). Pooled testing is a 

screening approach that combines several samples into one test, and which can be traced back to 

the mid 20th century when used to diagnose syphilis (Dorfman, 1943). Usually, if the pooled 

sample is tested negative, all individual specimens in the pool are attributed negative results, 

which can save the cost of testing each member at a time. However, if the pooled test is positive, 

each sample in the pool must be re-tested to identify the pool's positive sample(s). Recent 

applications involve COVID-19 screening and diagnostic testing (U.S. FDA, 2020) and it also 

has been successfully applied to prevalence estimation (Brynildsrud, 2020). Pooling is not a 

design novel to COVID-19, and pooled testing has been employed for many years to avoid 

infections being spread through the blood supply, as was HIV, hepatitis B, hepatitis C, West 

Nile, and Zika (CDC, 2020). Pooling has also been demonstrated to be an effective strategy 

when regression modeling is a focus of study under the scenarios in which outcome or predictive 

variables are measured on pooled biospecimens with or without measurement errors (Clarice R. 

Weinberg, 1999; S. Vansteelandt, 2000; Enrique F Schisterman, 2010; Emily M. Mitchell, 2014; 

Dane R Van Domelen, 2018), and it has been suggested that pooling strategies minimize the loss 

of information compared to other partition strategies such as random sampling (Enrique F. 

Schisterman, 2008).  

 Some studies have developed statistical methodologies under regression settings to 

address various cases. For example, Weinberg and Umbach (Clarice R. Weinberg, 1999) showed 

how to fit logistic regression models when a continuous exposure variable is measured in pools, 
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while Vansteelandt, Goetghebeur and Verstraeten (S. Vansteelandt, 2000) focused on the case 

where the binary outcome is determined in pools. A refined method of allocating pools based on 

a k-means clustering algorithm (Emily M. Mitchell, 2014) took computational advantage of 

software that can “perfectly” generate a prespecified number of pools comprised of individuals 

who are relatively homogeneous with respect to characteristics that could be associated with 

outcome status. However, the embedded k-means clustering functions in commercial software 

such as SAS (FASTCLUS procedure, 2020) is not able to constrain the pool size which may 

cause trouble in terms of feasibility and test effectiveness. A severe concern with large pool sizes 

is that any positive sample may be sufficiently diluted to become undetectable by the test when 

screened in pools, introducing false-negative bias to the results; this phenomenon termed a 

dilution effect (Lawrence M. Wein, 1996). Taking account of this test efficiency issue, in this 

thesis we propose a novel modification to the k-means clustering algorithm to incorporate a pool 

size limitation by specifying the largest acceptable size prior to the pool allocation stage. In our 

motivating study, a dataset containing 4670 individual subpatent malaria test results and 

corresponding pooled testing results on subjects from West Kenya is used to demonstrate the 

accuracy and efficacy of these various pooling strategies for estimating odds ratios associated 

with specified factors, as well as disease prevalence. Several simulation studies were also 

implemented to evaluate maximum likelihood-based estimators based on logistic regression 

applied to poolwise test results, comparing the precision attained by the alternative pooling 

strategies and adding support to our findings in the Malaria analysis. 
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2 Methodology 

2.1 Standard multiple logistic regression 

 This study focuses on the binary outcome with either positive or negative results, such as 

being diagnosed with a disease or disease-free. To predict the disease prevalence (the probability 

of being tested positive) and estimate the factors that characterize the prevalence via odds ratios, 

we propose a logistic regression model to describe the relationship between multiple predictors 

and the prevalence and estimate odds ratios and prevalence through the maximum likelihood 

approach. 

 Logistic regression (LR) is the most common the regression analysis to address the case 

in which the outcome is dichotomous. First being devised to describe population growth and the 

progress of chemical reactions (Cramer, 2002), the LR model has been widely adopted in 

bioassay and statistical fields over time. The outcome Y has two levels (1 = event, 0 = event-

free).  Conditional on covariates, we assume Y follows a Bernoulli distribution with the 

probability of Y = 1, indicated by p, ranging from 0 to 1. In an epidemiological setting, Y usually 

represents disease status. Thus, p describes the disease prevalence for subjects with specified 

covariate values. Unlike multiple linear regression, which fits straight line or hyperplane surfaces 

to continuous outcome data, the logistic regression model utilizes the logit function to transform 

the linear equation's output between 0 and 1. The logit function is defined as: 

𝑙𝑜𝑔𝑖𝑡(𝑝!) = 𝑙𝑛 +
𝑝!

1 − 𝑝!
. (1) 

Based on the logit transformation of p, the generalized multiple logistic regression (MLR) model 

can be expressed as: 
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𝑙𝑜𝑔𝑖𝑡(𝑝!) = 𝛽" +	2𝛽#𝑋!#

$

#%&

 (2) 

where Xi1 … Xip are a set of predictor variables of interest for subject i.  

 Since 𝑙𝑛 4 $!
&'$!

5 is the log odds that Y = 1 (given all X's), each parameter (𝛽#) in a first-

order logistic model is interpreted as the log odds ratio for a 1-unit increase in X while keeping 

other X's constant, and its estimation can be fulfilled by the maximum likelihood method. To 

review, the log-likelihood of a MLR model with p predictors can be written as: 

ℓ7𝛽", 𝛽&, … , 𝛽$; 𝑦< = 	27𝑦!𝑙𝑛(𝑝!) + (1 − 𝑦!)𝑙𝑛(1 − 𝑝!)<
(

!%&

 (3) 

By setting the (p+1) derivatives of the log-likelihood with respect to 𝛽", 𝛽&, … , 𝛽$equal to 0, we 

can numerically obtain the ML estimate of the vector of coefficients using standard software. 

 The method of estimating the variances and covariances of the estimated coefficients 

follows from well-developed theory of maximum likelihood estimation (Rao, 1973). According 

to this theory, the estimators are obtained from the matrix of second partial derivatives of the 

log-likelihood function (David W. Hosmer, 2013), which have the following general form, 

𝜕)𝐿(𝛽)
𝜕𝛽#)

=	−2𝑋!#)𝑝!(1 − 𝑝!)
(

!%&

 
(4) 

𝜕)𝐿(𝛽)
𝜕𝛽#𝜕𝛽*

=	−2𝑋!#𝑋!*𝑝!(1 − 𝑝!)
(

!%&

 
(5) 

For j, k = 0, 1, 2…, p. Let the (𝑝 + 1) × (𝑝 + 1) matrix called the observed information matrix 

containing the negative of the terms given in equations (4) and (5) be denoted as 𝐼(𝜷). The 

variances and covariances of the estimated coefficients are obtained from the inverse of this 

matrix, which we denote as 𝑉𝑎𝑟(𝜷) = 𝐼'&(𝜷). It is difficult to write down the explicit 
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expression for the elements in this matrix except in special cases. We utilize software programs 

to obtain the observed information matrix and take square roots of the diagonal elements of the 

estimated variance-covariance matrix to estimate the standard errors associated with the 

collection of (𝛽"E,𝛽&E,…	𝛽$E	). 

 After fitting the model to data, the maximum likelihood estimates of p conditional on the 

covariate values can be estimated based on the regression model in model 2 

𝑝+F = 	
1

1 +	𝑒',-"
./	∑ -#.2!$

%
$&' 3

 (6) 

where 𝛽4H  is the maximum likelihood estimate calculated from equation 3.  

2.2  Pooling strategies 

 In epidemiological studies requiring linear or logistic regression modeling, pooling has 

been demonstrated to be a valuable tool to constrain laboratory costs (Clarice R. Weinberg, 

1999; Emily M. Mitchell, 2014). From a statistical standpoint, minimizing the loss of efficiency 

in estimating coefficients can be fulfilled by optimizing the pool design. 

 Vansteelandt, Goetghebeur, and Verstraeten (S. Vansteelandt, 2000) proposed a binary-

outcome test on pools in the logistic regression setting. Coefficients corresponding to covariates 

and prevalence conditional on covariate values can be estimated via maximum likelihood (ML) 

theory that can adequately manage 1) multiple covariates, 2) different pool sizes, and 3) errors in 

test results (sensitivity and specificity). Vansteelandt's study illustrated that the pool design in 

terms of pool composition and size strongly impacted precision and cost-efficiency.   

 With regard to pool composition in multiple covariate settings, pools randomly composed 

on any given X would conceal X's effect and generate imprecise estimates (S. Vansteelandt, 

2000). To generate X-homogeneous pools, VGV suggested to "… sort samples according to the 
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most important regressor Xj, next sorting the samples with equal Xj according to the second most 

important regressor Xk, and so on". This strategy can be perfectly applied to multiple categorical 

variables, and the sorting in terms of importance can be imposed based on the aims of the study. 

One can then perform random pooling within strata defined by single or multiple categorical 

covariates to assemble pools homogeneous on factors of interest. 

 However, when dealing with multiple continuous variables, creating strata by sorting 

covariates may not guarantee the homogeneity of all variables of interest.  In Mitchell's study 

(Emily M. Mitchell, 2014), a novel application of k-means clustering was applied for allocation 

of specimens to pools in linear regression analysis with pooling to assess the continuous 

outcome. The k-means clustering algorithm classifies individual samples to a pre-specified 

number of clusters by maximizing the between-cluster weighted sum of squares (J.A. Hartigan, 

1979). In other words, homogeneous groupings of individuals comprise the optimal pools. The 

main benefit of the k-means clustering is its flexibility when applied to the case in which 

multiple continuous predictors are of interest. The k-means algorithm provides an automated 

way for investigators to design the pool formulation. For example, k-means clustering can be 

applied to improve precision for estimating a single coefficient of primary interest, or to assign 

different weights to several coefficients. Figure 1 (Emily M. Mitchell, 2014) illustrates the pool 

allocation strategies of sorting and k-means clustering on one and two continuous variables, 

respectively. On the left panel, 40 observations (see figure’s caption for the detailed generation 

procedure) are grouped into 5 clusters with an equal size of 8 after sorting by X1, which can be 

viewed as the primary interest covariate (VGV). Thus, the five pools are relatively homogenous 

on X1, while random concerning X2. In contrast, the five pools on the right panel are 
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automatically generated by k-means clustering on both X1 and X2, promoting the efficient 

estimation of multiple covariates in regression settings. 

 
Figure 1 Contrasting pool allocations via sorting by a continuous covariate (X1) to form 5 pools of size 8 (left 

panel), vs. those based on k-means clustering applied to both continuous covariates (X1 and X2) to form 5 pools of 
varying size (right panel). The 40 (x1, x2) pairs were generated as follows: X1 ~ N (0,1), X2=0.25-0.5X1 + 0.75Z, Z ~ 

N (0,1). 

 Although pool size has been a critical factor in the strategy performance, here we do not 

undertake a specific investigation on optimizing pool size. We note that satisfying a single user-

prespecified pool size is easily achievable when sorting. However, we note that the built-in k-

means functions available in standard software can only allow specifying the cluster number, 

while allowing cluster size to vary; this may be impractical in realistic lab assay settings. As 

such, one of our key objectives is to modify the original k-means function, to implement an 

approach we call “Controlled k-means”. The objective of this procedure is to control the 

maximum pool size at a level feasible for laboratory processing.  
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 To conduct the “Controlled k means” algorithm for allocating subjects’ specimens to 

pools, we begin by specifying the desired number of pools and the maximum allowable pool 

size. We then implement a standard k-means clustering function targeting the specified number 

of pools. The process of controlling the maximum pool size is fulfilled by iterating standard k-

means clustering and dividing large clusters in a recursive manner, as presented in Figure 2. 

Original pools that are of the specified maximum size are set aside to be retained in the final pool 

allocation, while original pools larger than the specified maximum size are divided into one or 

more pools of that maximum size that are likewise set aside. The subjects left over are collected 

together with the subjects who comprised the original pools that were smaller than the specified 

maximum size. These individuals are then subjected to the next implementation of the k-means 

clustering function, targeting the original number of pools minus the number set aside, and we 

repeat all steps above recursively until we obtain the desired number of pools (the majority will 

typically be of the maximum size that was specified). 
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Figure 2 Flowchart of controlled K-means clustering process 
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2.3 Logistic regression in the pooling setting 

 Unlike testing on individuals, we can only observe pool-wise outcomes instead of 

individual results. In that case, the logistic regression modeling needs to be modified 

accordingly. Given a perfect test that does not introduce any bias, a pooled sample's positive 

result is interpreted as indicating at least one sample in the pool being positive. Intuitively, the 

negative result on pools indicates that all components are negative within the pool. Let Yi denote 

the result of the ith pool, where Yi = 0 if the pool tests negative and Yi = 1 if the pool tests 

positive. So, the observed data likelihood is given by 

𝐿 = 	I(1 − 𝜋!")5!𝜋!"
(&'5!)

*

!%&

 (7) 

where 

𝜋!" 	= 	 Pr 	(𝑃𝑜𝑜𝑙	𝑖	𝑖𝑠	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) 	= 	IP1 + expT𝛽" 	+ 	2𝛽8𝑥!#9

8

9%&

VW

'&(!

#%&

 (8) 

 Considering the test's bias on the pool level, equation (8) can be modified to account for 

imperfect poolwise tests by introducing sensitivity (Se) and specificity (Sp). In the current work, 

we assume that both are known in advance and independent of pool size. The assumption also 

implies that the pooled test's sensitivity and specificity are approximately the same as those for 

an individual test (David W. Cowling, 1999). As shown by Vansteelandt et al. (2000), the 

modified probability of pool i being negative becomes: 

𝜋!"∗ = (1 − Se) +	(Se + Sp − 1)×IP1 + expT𝛽" 	+ 	2𝛽8𝑥!#9

8

9%&

VW

'&(!

#%&

 (9) 
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 We can still utilize maximum likelihood theory to numerically estimate odds ratios and 

prevalence under the modified logistic regression model, just as we can for poolwise logistic 

regression without misclassification and for the standard MLR model (Section 2.1). 

3 Results 

3.1 Motivational study 

 Malaria is a mosquito-borne disease caused by a parasite. Although preventable and 

curable, 409,000 people died of Malaria worldwide in 2019 (Parasites - Malaria, 2021), and 94% 

of cases and deaths were from the African region (Malaria, 2020). Subpatent malaria infections, 

which harbor infections at lower parasite densities, represent those below the detection threshold 

of microscopy or malaria rapid diagnostic testing (RDT)To identify subpatent infections, 

resource-intensive molecular tools such as polymerase chain reaction (PCR) are required. A 

previous sub-study (Aaron M Samuels, 2020; Meghna R. Desai, 2020; Shah) aimed to estimate 

the prevalence of PCR positive infections among RDT negative samples using a pooled testing 

strategy and provides a practical dataset upon which to apply our pooling strategies in a logistic 

regression setting. The dataset contains 4,670 RDT negative participants, together with the PCR 

test results obtained on all the individuals and on pools of size 5 (934 pools). According to WHO 

(Malaria, 2020), children aged under five years are the most vulnerable group affected by 

malaria. and the original pool allocations were randomly generated within each of three areas. To 

characterize the pooling test characteristics, we therefore focus on the participant's age and 

residence’s areas with different transmission intensity as the factors of key interest.  

 In Monica's study (Shah), the PCR test was conducted in Asembo (n = 1735), Gem (n = 

2145), and Karemo (n = 790) between 2013 to 2015 in western Kenya. The percentages of 

positive subpatent parasitemia by individual PCR tests are 10.89% (Asembo), 14.13% (Gem), 
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and 18.35% (Karemo). The average age among the 4670 individuals was 28.19 years old, 

ranging from 0.08 to 93.59. In the current study, we consider treating age as both a continuous 

variable and a categorical variable (less than 5 years old, 5 to 15 years old and greater than 15 

years old) to apply k-means clustering and sorting strategies, respectively. We initially fit the 

following two logistic regression models to the malaria data: 

𝑙𝑜𝑔𝑖𝑡(𝑝) = 	−1.525 + 0.001 × 𝐴𝑔𝑒 − 0.604 × 𝐴𝑟𝑒𝑎1 − 0.307 × 𝐴𝑟𝑒𝑎2 (10) 

𝑙𝑜𝑔𝑖𝑡(𝑝) = 	−1.424 − 0.759 × 𝐴𝑔𝑒1 + 0.572 × 𝐴𝑔𝑒2 − 0.603 × 𝐴𝑟𝑒𝑎1 − 0.293 × 𝐴𝑟𝑒𝑎2   (11) 

where “Age” in model 10 represented the continuous age, “Area1” stands for Asembo and 

“Area2” for Gem (with Karemo as the referent group). In model 11, “Age1” represented age less 

than 5 years old and “Age2” indicated age between 5 to 15 years old. The coefficients from 

models 10 and 11 were estimated from complete individual tests (n = 4670) containing all 

information from the study sample, so in that sense we regard them as the “ideal” coefficients. 

We note that model selection efforts leading to the two models above demonstrated no 

significant interaction between age and area.  
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3.1.1 Age as a categorical variable 

Table 1 Coefficient estimates of logistic regression model when treating age as categorical variable 

Estimates 
(SE) 

Intercept Age < 5 Age 5-15 Asembo Gem 

Complete sample 
(n = 4670) 

-1.424 
(0.095) 

-0.759 
(0.151) 

-0.057 
(0.104) 

-0.603 
(0.121) 

-0.293 
(0.112) 

Random sampling 
(n = 934) (1) 

-1.370 
(0.204) 

-0.817 
(0.351) 

-0.079 
(0.240) 

-0.859 
(0.278) 

-0.323 
(0.243) 

Random pooling 
(n = 934) (2) 

-1.548 
(0.213) 

-0.381 
(0.461) 

-0.382 
(0.242) 

-0.748 
(0.319) 

-0.241 
(0.284) 

Random pooling on area strata with perfect pooled 
test result 

(n = 934) (3) 

-1.309 
(0.130) 

-1.386 
(0.811) 

-0.281 
(0.303) 

-0.676 
(0.148) 

-0.362 
(0.140) 

Random pooling on area strata with actual pooled 
test result 

(n = 934) (4) 

-1.871 
(0.143) 

-1.367 
(0.954) 

-0.418 
(0.369) 

-0.382 
(0.163) 

-0.183 
(0.155) 

Random pooling on area strata with actual pooled 
test result (adjusted for Se*, Sp*) 

(n = 934) (5) 

-1.374 
(0.186) 

-2.051 
(1.972) 

-0.495 
(0.449) 

-0.466 
(0.205) 

-0.232 
(0.197) 

Random pooling on 9 (age, area) strata 
(n = 937**) (6) 

-1.405 
(0.119) 

-0.788 
(0.170) 

0.001 
(0.127) 

-0.653 
(0.147) 

-0.340 
(0.138) 

*  SE: the proportion of pools containing at least one true positive individual that tested positive; SP: the 
proportion of pools containing no true positive individuals that returned a negative pooled test result. 
** Since the sample sizes of 6 (age, area) strata were not divisible by 5, the reminder (< 5) of each stratum was 
classified as a pool. 

 

 The estimates for each coefficient and corresponding standard errors from applying 

different sampling or pooling strategies are listed in Table 1. Those strategies considered include: 

1) Random sampling: randomly selecting 934 individual samples (consistent with the 

number of pools with size 5) out of 4670 samples, using individual test result as binary 

outcome. 

2) Random pooling: randomly dividing 4670 samples into 934 pools of size 5, using the 

poolwise result as a binary outcome. In this case, the poolwise result is inferred based on 

the known individual test results (which are assumed to be perfect). 
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3) Random pooling within area strata with perfect pool test result (henceforth referred to as 

“R.P. on area (perfect)”): randomly pooling samples into pools of size 5 within each area 

stratum, using perfect pooling test results as the binary outcome. In this case the poolwise 

test results are again perfect (no bias, as in (2) above). 

4) Random pooling within area strata with actual pool test result (henceforth referred to as 

“R.P. on area (actual)”): This is the analysis of the actual randomly pooled samples into 

pools of size 5 within each area stratum as performed by the malaria study investigators. 

We expect bias here, since sensitivity (74.3% overall) and specificity (98.3% overall) 

were not perfect when applying the PCR assay to pools. 

5) Random pooling within area strata with actual pool test result adjusted for Se, Sp 

(henceforth referred to as “R.P. on area (adjusted)”): randomly pooled samples into pools 

of size 5 within each area stratum were analyzed using actual pooling test results as the 

binary outcome but adjusting to account for the poolwise sensitivity (74.3%) and 

specificity (98.3%) in ML estimation (equation 9). 

6) Random pooling on 9 (Age, Area) strata (henceforth referred to as “9 strata”): randomly 

pooling samples into pools of size 5 within 9 (age, area) strata, using perfect individual 

test results to infer the correct poolwise binary outcomes. In this case the poolwise test is 

perfect (no bias). 

 In Table 1 with the exception of methods 4 and 5, either individual test results or pooled 

test results were regarded as perfect. In other words, there was no misclassification in the test 

results. To distinguish from the actual pooled test result inherently contained in the malaria 

dataset (hereinafter called "actual pooled test results"), we manipulated "perfect pooled test 

results". The "perfect pooled test result" was assigned positive if at least one positive individual 
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existed in the pool and negative otherwise. Compared to random pooling, both the accuracy and 

efficiency of estimates delivered by random sampling were better. When we applied random 

pooling on each area stratum, all individuals in a pool were homogeneous on the area. The 

standard errors of the two area-covariates (Asembo, Gem) decreased significantly, becoming 

smaller than those obtained by random sampling. Intuitively, homogenous pools strengthened the 

information for a given covariate effect on the outcome, delivering more precise estimates. This 

conclusion could be further proved by random pooling within samples stratified by the two 

covariate factors (age and area) simultaneously. The standard errors of all four covariates (two 

age and two area coefficients) were smaller than those from either random pooling or random 

sampling. Random pooling on 9 (age, area) strata yielded the most efficient estimates by mining 

the precision benefits from the pooling strategy of producing covariate-homogeneous pools, and 

most closely approached the precision obtained in the complete sample individual-level analysis. 

 The malaria dataset provided a rare opportunity to dive into the imperfect test setting. It 

contained both individual test results and pooled (random pooling on area strata of size 5) test 

results. In this study, the individual test results were considered perfect. There is evidence, 

however, that the pooled test results were subject to some misclassification errors. The 

inconsistency between certain individual test results and the pooled test results containing those 

individual specimens was the source of bias in the regression analysis of the actual pool-wise test 

outcomes, as well as the source of information about the poolwisie sensitivity and specificity. In 

this case, sensitivity was defined as the proportion of pools testing positive given that they 

contained at least one true positive individual. Specificity was the proportion of pools testing 

negative given that they contained no true positive individuals. Overall, the estimated poolwise 

sensitivity and specificity in the malaria study were 74.3% and 98.3%, respectively. We inserted 
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these estimates into equation 9 to obtain the adjusted probability of a negative pool in the ML 

calculations. Comparing the estimates of regression coefficients between the "perfect" results 

and "actual" results, although area-homogeneous pools took some advantage of precision, the 

impact on the accuracy of estimates introduced by the “actual” test bias was non-neglectable and 

also contributed to imprecise estimates of disease prevalence. However, when we modified the 

likelihood function to account for the estimated sensitivity and specificity (here treating those 

values as known), we can see that both areas' coefficient estimates were pulled closer to the 

"true" values as opposed to the unadjusted ones. 

Table 2 Prevalence estimates of 9 Malaria subsets stratified on age and area categories by different strategies 

Prevalence 
(SE) 

Asembo 
(p = 0.109) 

Gem 
(p = 0.141) 

Karemo 
(p = 0.184) 

Age < 5 5 – 15 > 15 < 5 5 – 15 > 15 < 5 5 – 15 > 15 
Complete sample 

(n = 4670) 
0.058 

(0.009) 
0.123 

(0.012) 
0.117 

(0.009) 
0.078 

(0.011) 
0.160 

(0.013) 
0.152 

(0.009) 
0.101 

(0.015) 
0.203 

(0.020) 
0.194 

(0.015) 
Random 
sampling 
(n = 934) 

0.045 
(0.016) 

0.091 
(0.022) 

0.097 
(0.018) 

0.075 
(0.024) 

0.145 
(0.029) 

0.155 
(0.021) 

0.101 
(0.035) 

0.190 
(0.042) 

0.203 
(0.033) 

Random pooling 
(n = 934) 

0.064 
(0.024) 

0.129 
(0.030) 

0.091 
(0.018) 

0.103 
(0.034) 

0.197 
(0.032) 

0.143 
(0.020) 

0.127 
(0.049) 

0.238 
(0.052) 

0.175 
(0.031) 

R.P. on area 
(perfect)  
(n = 934) 

0.033 
(0.025) 

0.094 
(0.022) 

0.121 
(0.013) 

0.045 
(0.033) 

0.124 
(0.028) 

0.158 
(0.015) 

0.063 
(0.046) 

0.169 
(0.040) 

0.213 
(0.022) 

9 strata 
(n = 937*) 

0.055 
(0.009) 

0.113 
(0.013) 

0.113 
(0.010) 

0.074 
(0.011) 

0.149 
(0.015) 

0.149 
(0.011) 

0.100 
(0.017) 

0.197 
(0.025) 

0.197 
(0.019) 

* Since the sample sizes of 6 (age, area) strata were not divisible by 5, the reminder (< 5) of each stratum was 
classified as a pool. 

 

 The estimates of subpatent malaria prevalence were obtained by taking advantage of the 

SAS NLMIXED procedure (NLMIXED Procedure, 2020). Remarkably, the prevalence of a 

particular subset population is also readily estimable in the poolwise logistic regression setting. 

Since there are three levels of age and three areas, we have 9 (3 × 3) (age, area) strata in total, 

for which ML estimates of prevalence could be calculated from the poolwise logistic regression 
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model we fitted. We summarized the sub-prevalence of 9 strata attained by different strategies 

(Table 2) for comparison purposes. Compared to using complete samples, random pooling within 

the nine strata yields almost fully efficient estimates for prevalence. 

Table 3 Prevalence estimates of 3 areas by complete sample and 4 strategies 

Prevalence 
(SE) Asembo (p = 0.109) Gem (p = 0.141) Karemo (p = 0.184) 

Complete sample 
(n = 4670) 

0.109 
(0.007) 

0.141 
(0.008) 

0.184 
(0.014) 

Random sampling 
(n = 934) 

0.087 
(0.015) 

0.138 
(0.017) 

0.192 
(0.030) 

Random pooling 
(n = 934) 

0.093 
(0.017) 

0.148 
(0.016) 

0.182 
(0.030) 

R.P. on area (perfect)  
(n = 934) 

0.102 
(0.008) 

0.132 
(0.008) 

0.187 
(0.017) 

9 strata 
(n = 937*) 

0.103 
(0.008) 

0.134 
(0.009) 

0.183 
(0.017) 

* Since the sample sizes of 6 (age, area) strata were not divisible by 5, the reminder (< 5) of each stratum was 
classified as a pool. 

 

 The prevalence of subpatent malaria in each area was estimated based on the individual 

test results in the malaria dataset. The estimates for the three areas and the standard errors were 

obtained from the following logistic regression model 

𝑙𝑜𝑔𝑖𝑡(𝑝) = 𝛽! + 𝛽" × 𝐴𝑠𝑒𝑚𝑏𝑜 + 𝛽" × 𝐺𝑒𝑚 (12) 

which only contained reference coded indicator variables for two areas. The prevalence of each 

area was estimated by inserting the MLEs (equation 6) of the model coefficients into the 

following equations after fitting the model to data: 

𝑝(𝐴𝑠𝑒𝑚𝑏𝑜) =
1

1 +	𝑒'(-"/-')	
 

𝑝(𝐺𝑒𝑚) =
1

1 +	𝑒'(-"/-()	
 

𝑝(𝐾𝑎𝑟𝑒𝑚𝑜) = &
&/	;)*"

. 
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 The results were listed in Table 3. Either random sampling or random pooling were 

strategies that create a loss of accuracy and efficiency in the estimates. Especially for the high-

risk area (Karemo), the large significant standard error reflects substantial uncertainty in the 

estimates.  

 

Figure 3 Comparison of point and 95% confidence interval estimates by complete sample and 4 strategies 

 Figure 3 displays both point estimates and 95% confidence intervals for the prevalence in 

the three areas derived from different sampling or pooling strategies. It was also noticeable that 

in the low-risk area (Asembo), the point estimates by random pooling on the area or random 

pooling within the 9 (age, area) strata were much more accurate than those obtained from 

random pooling or sampling. Concerning prevalence estimation, random pooling performances 

on the area and random pooling on 9-strata are pretty similar and far better than the arbitrary 

pooling or sampling, which generated heterogeneous pools.
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3.1.2 Age as a continuous variable 

Table 4 Coefficient estimates of logistic regression model when treating age as a continuous variable 

Estimate 
(SD) 

Intercept Age Asembo Gem 

Complete sample 
(n = 4670) 

-1.525 
(0.111) 

0.001  
(0.002) 

-0.604  
(0.120) 

-0.307 
(0.111) 

Random sampling 
(n = 934) (1) 

-1.552 
(0.246) 

0.003 
(0.005) 

-0.894 
(0.277) 

-0.368 
(0.243) 

Random pooling 
(n = 934) (2) 

-1.622 
(0.252) 

0.005 
(0.004) 

-1.008 
(0.350) 

-0.219 
(0.262) 

Random pooling on area strata with perfect pool test result 
(n = 934) (3) 

-1.612 
(0.190) 

0.004 
(0.005) 

-0.691 
(0.147) 

-0.398 
(0.139) 

Uncontrolled k-means on area strata 
(n = 934) (4) 

-1.603 
(0.153) 

0.001 
(0.002) 

-0.482 
(0.158) 

-0.201 
(0.151) 

Controlled k-means on area strata with maximum pool size = 5* 

(n = 934) (5) 
-1.580 
(0.136) 

0.001 
(0.002) 

-0.507 
(0.144) 

-0.303 
(0.138) 

Controlled k-means on area strata with maximum pool size = 6 
(n = 934) (6) 

-1.831 
(0.143) 

0.003 
(0.002) 

-0.468 
(0.150) 

-0.255 
(0.142) 

Controlled k-means on area strata with maximum pool size = 10 
(n = 934) (7) 

-1.691 
(0.149) 

0.004 
(0.002) 

-0.533 
(0.155) 

-0.264 
(0.148) 

* 934 pools of 5 are generated under this setting. 
 

 The estimate of each coefficient and its standard error from different sampling or pooling 

strategies were listed in Table 4. Those strategies considered include: 

1) Random sampling: randomly selecting 934 individual samples (consistent with the 

number of pools with size 5) out of 4670 samples, using individual test result as binary 

outcome. 

2) Random pooling: randomly dividing 4670 samples into 934 pools of size 5, using pooling 

test result as binary outcome. In this case, the poolwise result is inferred based on the 

known individual test results (which are assumed to be perfect). 

3) Random pooling within area strata with perfect pool test result (henceforth referred to as 

“R.P. on area (perfect)”): randomly pooling samples into pools of size 5 within each area 
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stratum, using perfect pooling test results as the binary outcome and assuming the test is 

perfect (no misclassification bias). 

4) Uncontrolled k-means within area strata (henceforth referred to as “Uncontrolled K-

means”): implementing k-means clustering embedded in SAS 9.4 (FASTCLUS 

procedure, 2020) within each area stratum. 

5) Controlled k-means on area strata with maximum pool size of 5 (henceforth referred to as 

“Controlled K-means (5)”): implementing the proposed controlled k-means approach 

with maximum pool size of 5 within each area stratum. 

6) Controlled k-means on area strata with maximum pool size of 6 (henceforth referred to as 

“Controlled K-means (6)”): implementing the proposed controlled k-means approach 

with maximum pool size of 6 within each area stratum. 

7) Controlled k-means on area strata with maximum pool size of 10 (henceforth referred to 

as “Controlled K-means (10)”): implementing the proposed controlled k-means approach 

with maximum pool size of 10 within each area stratum. 

 Similar to the findings conveyed by Table 1, random pooling on samples stratified by 

area still gains more precise estimates of the two area coefficients compared to completely 

random pooling. When we applied k-means on age within each area stratum, it was apparent that 

both accuracy and efficiency of the age coefficient increased significantly. Pooling samples by k-

means clustering on a continuous variable provided an invaluable efficiency for the coefficient 

estimate, consistent in spirit with the findings of Mitchell et al. (2014). However, one of the main 

drawbacks of the original k-means implemented in SAS is that the maximum pool size is 

uncontrolled. Large pools could be unwieldy for the lab and could significantly decrease the test 

sensitivity (Maryza Graham, 2020), leading to biased conclusions. In the malaria dataset, the 
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pool size based on 4670 samples based on uncontrolled k-means specifying 934 pools ranged 

from 1 to 29. The proposed controlled k-means algorithm, in contrast, allows users to determine 

both the total number of pools and the maximum pool size to address this issue. 

 For the comparison, we fixed the total pool number as 934, which was consistent with the 

pool number in the random pooling strategies. When specifying the maximum pool size at 5, we 

obtained 934 pools of equal sizes of 5; this was because five is the average pool size for 4670 

samples to generate 934 pools (4670/934 = 5). In other words, the algorithm could not create a 

pool with a size less than 5. Otherwise, another pool would contain more than five individuals. 

For practical application, the maximum pool size should be no less than the average pool size. 

We did not see a notable difference in point estimates and standard errors when comparing the 

estimates between uncontrolled k-means and the controlled versions. This indicates that the 

additional constraint on pool size did not harm the efficiency of estimated regression 

coefficients, while in practice it is likely to have great benefits in terms of feasibility in the lab 

and reducing the risk of misclassification bias. 

3.2 Simulation 

 We used simulations to verify our proposed pooling strategies' performance on both 

categorical and continuous variables in logistic regression settings. We generated 2000 

replications for both continuous age and categorical age variables, each generating 4670 

individual observations under model 10 (continuous age) and model 11 (age categorized into 

three levels). In both simulations, all variables were generated independently for simplification. 

  



 22 

3.2.1 Age as a categorical variable 

 In the categorized age setting, "Area" was generated from a tabled probability distribution 

(0.37, 0.46, 0.17), representing the proportion of Asembo (low risk area), Gem (mid risk area), 

and Karemo (high risk area) in the Malaria dataset. Two dummy variables were created for 

Asembo and Gem, respectively. "Age" was generated from a tabled probability distribution 

(0.16, 0.21, 0.63), representing the proportion of less than five years old, 5 to 15 years old, and 

greater than 15 years old in the Malaria dataset. Two dummy variables were created for less than 

five years old and 5 to 15 years old. The true coefficient vector was (-1.4, -0.8, 0.06, -0.6, -0.3). 

 The simulation results to compare different pooling strategies were summarized in Table 

5. Also, the imperfect test and adjusted test results were included as well. To manipulate the 

biased pooled test result, we generated a new variable accounting for sensitivity (74.3%) and 

specificity (98.3%). If the "perfect" pooled test result is positive (at least one individual is 

positive), the "imperfect" result will be assigned a random value (1/0) from a binary distribution 

with a probability of 0.743. If the "perfect" test result is negative (no individual is positive), the 

"imperfect" result will be assigned a random value (0/1) from a binary distribution with a 

probability of 0.983. 

 Compared to completely random pooling, random sampling delivered more efficient 

estimates (smaller MSE). However, applying random pooling on samples stratified by area first, 

the two area factors' coefficients were much more accurate than with random sampling. This 

conclusion is consistent with the Malaria dataset. Similarly, the 9-strata pooling strategy yielded 

the most efficient and precise estimates of coefficients for the four predictors, demonstrating that 

allocating samples to predictor-homogeneous pools maximizes the precision benefits in logistic 

regression settings. Regarding imperfect test settings, if we did not adjust the data likelihood 
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function accordingly for test bias (incorporating Se and Sp), we found the covariate estimates 

deviated noticeably on average from the true values. However, this deviation could be reduced 

by plugging in test sensitivity and specificity in the likelihood function to estimate the 

coefficients. Those estimates/SD/MSE marked in red look implausible and will be further 

discussed in the Discussion section.  

Table 5 Simulation estimates of logistic regression model when treating age as categorical variable 

Mean estimate (SD) 
[MSE] 

Intercept 
𝛽+ = −1.4 

Age < 5 
𝛽, = −0.8 

Age 5 – 15 
𝛽- = 0.06 

Low-risk area 
𝛽. = −0.6 

High-risk area 
𝛽/ = −0.3 

Complete sample 
(n = 4670) 

-1.403 (0.095) 
[0.097] 

-0.810 (0.150) 
[0.151] 

0.060 (0.099) 
[0.103] 

-0.597 (0.119) 
[0.120] 

-0.301 (0.112) 
[0.111] 

Random sampling 
(n = 934) 

-1.413 (0.223) 
[0.219] 

-0.837 (0.360) 
[0.347] 

0.056 (0.235) 
[0.231] 

-0.600 (0.273) 
[0.271] 

-0.294 (0.252) 
[0.251] 

Random pooling  
(n = 934) 

-1.408 (0.219) 
[0.216] 

-1.079 (1.601) 
[12.813] 

0.037 (0.265) 
[0.259] 

-0.600 (0.316) 
[0.306] 

-0.296 (0.269) 
[0.267] 

R.P. on area (perfect)  
(n = 934) 

-1.396 (0.139) 
[0.141] 

-1.080 (1.592) 
[10.713] 

0.045 (0.252) 
[0.262] 

-0.602 (0.142) 
[0.145] 

-0.305 (0.138) 
[0.137] 

R.P. on area (actual)  
(n = 934) 

-1.894 (0.153) 
[0.154] 

-0.893 (1.536) 
[9.913] 

0.026 (0.295) 
[0.296] 

-0.489 (0.159) 
[0.159] 

-0.242 (0.150) 
[0.149] 

R.P. on area (adjusted)  
(n = 934) 

-1.395 (0.200) 
[0.202] 

-1.436 (2.634) 
[34.329] 

0.030 (0.295) 
[0.296] 

-0.611 (0.204) 
[0.204] 

-0.313 (0.197) 
[0.196] 

9 strata 
(n*) 

-1.400 (0.121) 
[0.122] 

-0.808 (0.167) 
[0.166] 

0.064 (0.123) 
[0.124] 

-0.600 (0.144) 
[0.146] 

-0.304 (0.139) 
[0.138] 

* The pool numbers are varying because the number of strata which is divisible by 5 in each replication are 
different. 

 
 Similarly, the estimated prevalence for the 9 (area, age) strata and empirical standard 

deviations and MSEs from 2000 simulations were summarized in Table 6. Estimation yielded by 

random pooling within the 9-strata was most efficient in all subsets and came closest to 

competing with complete sampling. The result was consistent with that obtained using the actual 

Malaria data. In contrast with Table 5, we did not observe any doubtful estimates for prevalence. 
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Table 6 Simulated prevalence estimates of 9 subsets stratified on age and area categories by different strategies 

Prevalence 
(SD) 

[MSE] 
Low risk area Mid risk area High risk area 

Age < 5 5 – 15 > 15 < 5 5 – 15 > 15 < 5 5 – 15 > 15 
Complete 

sample 
(n = 4670) 

0.057 
(0.008) 
[0.008] 

0.126 
(0.012) 
[0.012] 

0.120 
(0.009) 
[0.009] 

0.076 
(0.010) 
[0.010] 

0.162 
(0.013) 
[0.013] 

0.154 
(0.009) 
[0.009] 

0.100 
(0.015) 
[0.015] 

0.208 
(0.020) 
[0.020] 

0.198 
(0.015) 
[0.015] 

Random 
sampling 
(n = 934) 

0.058 
(0.019) 
[0.019] 

0.126 
(0.027) 
[0.027] 

0.119 
(0.019) 
[0.019] 

0.076 
(0.024) 
[0.023] 

0.163 
(0.030) 
[0.030] 

0.155 
(0.020) 
[0.020] 

0.100 
(0.033) 
[0.032] 

0.208 
(0.045) 
[0.044] 

0.198 
(0.035) 
[0.034] 

Random 
pooling 

(n = 934) 

0.057 
(0.026) 
[0.025] 

0.125 
(0.030) 
[0.029] 

0.120 
(0.021) 
[0.020] 

0.075 
(0.033) 
[0.032] 

0.161 
(0.031) 
[0.031] 

0.155 
(0.020) 
[0.019] 

0.099 
(0.044) 
[0.043] 

0.206 
(0.046) 
[0.045] 

0.199 
(0.034) 
[0.034] 

R.P. on area 
(perfect) 
(n = 934) 

0.057 
(0.025) 
[0.025] 

0.126 
(0.023) 
[0.023] 

0.120 
(0.012) 
[0.012] 

0.075 
(0.032) 
[0.031] 

0.162 
(0.027) 
[0.028] 

0.155 
(0.014) 
[0.014] 

0.099 
(0.042) 
[0.041] 

0.208 
(0.036) 
[0.037] 

0.199 
(0.022) 
[0.022] 

9 strata (n*) 
0.058 

(0.009) 
[0.009] 

0.127 
(0.014) 
[0.014] 

0.120 
(0.010) 
[0.010] 

0.076 
(0.011) 
[0.011] 

0.163 
(0.016) 
[0.016] 

0.154 
(0.011) 
[0.011] 

0.100 
(0.017) 
[0.017] 

0.209 
(0.025) 
[0.025] 

0.198 
(0.019) 
[0.019] 

* The pool numbers are varying because the number of strata which is divisible by 5 in each replication are 
different. 

 

3.2.2 Age as a continuous variable 

 The area's settings were the same in the continuous age model, but we generated age ~ N 

(28.19, 22.322), where 28.19 was the mean and 22.32 was the standard deviation based on the 

4670 individual samples in the Malaria dataset. The true coefficient vector was (-1.5, 0.001, -0.6, 

-0.3). The mean estimate of coefficients with empirical standard deviation and MSE were listed 

in Table 7. Besides the precision benefits gained from the stratification by area, k-means 

clustering significantly increased the precision of estimates for the age coefficient. Even though 

the maximum pool size of 6 was specified (controlled k-means), it did not reduce the efficiency 

of the age coefficient estimate relative to uncontrolled k-means and maintained good 

performance in terms of the area factor coefficients. The simulation results show that controlled 
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k-means yielded the most efficient estimation of coefficients for both continuous and categorical 

variables in this logistic regression modeling setting. 

Table 7 Simulation estimates of logistic regression model when treating age as a continuous variable 

Mean estimate (SD) 
[MSE] 

Intercept 
𝛽+ = −1.5 

Age 
𝛽, = 0.001 

Low risk area 
𝛽- = −0.6 

Mid risk area 
𝛽. = −0.3 

Complete sample 
(n = 4670) 

-1.502 (0.109) 
[0.106] 

0.001 (0.002) 
[0.002] 

-0.597 (0.116) 
[0.119] 

-0.299 (0.110) 
[0.110] 

Random sampling 
(n = 934) 

-1.515 (0.245) 
[0.240] 

0.001 (0.004) 
[0.004] 

-0.589 (0.277) 
[0.269] 

-0.297 (0.251) 
[0.248] 

Random pooling 
(n = 934) 

-1.513 (0.249) 
[0.247] 

0.001 (0.005) 
[0.005] 

-0.604 (0.306) 
[0.308] 

-0.299 (0.263) 
[0.268] 

R.P. on area (perfect) 
(n = 934) 

-1.508 (0.186) 
[0.184] 

0.001 (0.005) 
[0.005] 

-0.602 (0.143) 
[0.144] 

-0.301 (0.137) 
[0.136] 

Uncontrolled K-means 
(n = 934) 

-1.499 (0.142) 
[0.141] 

0.001 (0.002) 
[0.002] 

-0.599 (0.154) 
[0.157] 

-0.300 (0.150) 
[0.149] 

Controlled K-means (6) 
(n = 934) 

-1.497 (0.138) 
[0.134] 

0.001 (0.002) 
[0.002] 

-0.601 (0.146) 
[0.148] 

-0.301 (0.141) 
[0.140] 

 

4 Discussion 

4.1 Imperfect tests 

 In an epidemiological study, the test's bias (sensitivity and specificity) is not neglectable 

because of its impact on estimate precision. In table 1, all covariate estimates based on actual test 

results (method 4) depart further from the ideal estimates compared to those based on perfect test 

results (method 3). The assumptions we made for the imperfect test include (1) both Se and Sp 

are known in advance and independent of pool size, (2) the sensitivity and specificity of the 

pooled test are approximately the same as it is for an individual test (David W. Cowling, 1999). 

In the Malaria data, we applied Se and Sp calculated from pooled test results to all pools 

regardless of size. The accuracy of estimates improved when we adjusted the data likelihood for 

the "rough" Se, Sp (method 5 in Table 1), indicating that accounting for the test bias estimating 

process benefits the precision. A former study (Claudia Muñoz-Zanzi, 2006) has shed light on 
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the fact that Se and Sp would be influenced by the pool size and the number of negative 

individual samples in the pool, providing an idea for a more precise estimation of Se, Sp if more 

information about the pools is known in advance.  

4.2 Overall prevalence 

 In this study, we focused on estimating the Malaria prevalence in each of the three areas 

via the logistic regression model that only contained area-covariates. From figure 1, we could see 

that the random pooling within 9-strata performed as well as random pooling within each area on 

both point estimates and interval estimates. One advantage of random pooling within 9-strata is 

that it yields more precise and more efficient estimates within each subgroup stratified by the 

covariates specified (Table 1), which might benefit those interested in a disease's subgroup 

prevalence. To estimate the overall prevalence (across all 3 areas) and its variance based on the 

area-specific prevalence estimates, a straightforward approach weighs each of the three area-

specific estimates by the proportion (w) of the total population residing in that area. The overall 

prevalence and its variance become: 

𝑃_<=;>?@@ = 𝑤AB;CD<𝑃_AB;CD< +	𝑤E;C𝑃_E;C +	𝑤F?>;C<𝑃_F?>;C< 

𝑉𝑎𝑟7𝑃_<=;>?@@< = 𝑤AB;CD<) 𝑆𝐸7𝑃_AB;CD<<
) +	𝑤E;C) 𝑆𝐸7𝑃_E;C<

) +	𝑤F?>;C<) 𝑆𝐸7𝑃_F?>;C<<
) 

4.3 Investigating implausible simulation results 

 In the simulation study, we noticed that some estimates/SD/MSE attained by random 

pooling and random pooling on area-strata (based on three ways to deal with the outcome: 

assuming perfect test, using actual test result, and adjusted with Se/Sp) seemed implausible 

(highlighted in red in Table 5). After checking the code and ensuring no flaws in the simulation 

process, we believe this was due to the coefficient setting since we use the estimates from the 

logistic regression model based on complete samples to imitate the "true" situation. Then we 
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took a more in-depth look at how the implausible results were generated. We extracted all 

datasets and listed the coefficient estimates together with the standard errors from 2000 

replicates and sorted by the magnitude of the estimated coefficient for age less than 5. The ten 

most extreme observations yielded by random pooling and the three random pooling on area 

strata strategies were shown in Table 8. While the actual coefficient was set as -0.8, it was clear 

that the biased estimates and large SDs and MSEs in Table 5 were due to those simulations 

yielding extreme coefficient estimates for age less than 5 with high standard errors.   

Table 8 Ten most extreme values from R.P. and three R.P. on area strata with different setting with the outcomes 

Estimate for Age < 5 
(SD) 

Random pooling R.P. on area (perfect) R.P. on area (actual) R.P. on area (adjusted) 
𝛽, = −0.8 

1 -16.46 
(1798.18) 

-16.24 
(1823.13) 

-15.76 
(1222.64) 

-17.00 
(2176.21) 

2 -16.05 
(2054.93) 

-16.22 
(1112.22) 

-15.74 
(1457.17) 

-16.80 
(2584.98) 

3 -15.94 
(1694.31) 

-15.89 
(1516.55) 

-14.86 
(578.42) 

-16.63 
(2137.67) 

4 -15.56 
(1488.84) 

-15.58 
(1042.90) 

-14.72 
(606.82) 

-16.54 
(2086.57) 

5 -15.223 
(1844.38) 

-15.52 
(777.98) 

-14.36 
(787.95) 

-16.47 
(2098.59) 

6 -14.99 
(860.09) 

-15.45 
(941.96) 

-14.20 
(1143.62) 

-16.12 
(1800.71) 

7 -14.90 
(1116.26) 

-15.15 
(671.12) 

-14.09 
(1294.26) 

-15.42 
(681.09) 

8 -14.68 
(716.98) 

-14.97 
(1010.98) 

-13.97 
(723.84) 

-15.23 
(1012.26) 

9 -14.38 
(892.59) 

-14.959 
(764.78) 

-13.95 
(1087.36) 

-15.18 
(855.60) 

10 -14.38 
(583.18) 

-14.82 
(698.87) 

-13.94 
(608.11) 

-15.14 
(712.43) 

  

 To double confirm the simulation process was reasonable, we checked the medians of the 

2000 estimates for age less than 5 from the four strategies and recalculated the mean, SD, and 

MSE after removing the most extreme 5% (100 replications). The results were summarized in 

Table 9. Since the median is less susceptible to extreme values than the mean, we can see that the 

medians of all four strategies were much closer to the true coefficient (-0.8) compared to the 
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means. Alternatively, removing the 5% most extreme estimates yielded results comparable to the 

medians of complete simulation. In all, the unreasonable estimates in   

Table 5 were due to the extremes among the 2000 simulations. Regardless, we note that the 

recommended strategy of random pooling on 9 (age, area) strata yielded the best performance in 

terms of both accuracy and precision in Table 5 and was not subject to any such extreme results.  

Table 9 Medians of coefficient for age < 5 from 2000 simulations and the Mean/SD/MSE of coefficient for age < 5 
from 1900 simulations (after removing most 5% extremes) 

Simulation 
number Statistics 

Random 
pooling 

R.P. on area 
(perfect) 

R.P. on area 
(actual) 

R.P. on area 
(adjusted) 

2000 Median -0.818 -0.814 -0.651 -0.815 

1900 
Mean 
(SD) 

[MSE] 

-0.835 (0.470) 
[0.538] 

-0.834 (0.480) 
[0.553] 

-0.659 (0.491) 
[0.561] 

-0.891 (0.741) 
[0.918] 
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