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Abstract 
 

Estimation of Persistent Organic Pollutants (POPs) in Fish Collected at Sapelo Island, GA: 
Statistical Methods Using Left Censored Data 

 
By Allyson Mateja 

 
Background: Persistent organic pollutants (POPs) are resistant to degradation and 
bioaccumulate in food webs. Although many have been banned, they are still pervasive threats to 
marine animal health. Dolphins in the Turtle/Brunswick River Estuary (TBRE), a nationally 
designated Superfund site, were exposed to very high levels of polychlorinated biphenyls 
(PCBs). Sapelo Island, GA has minimal urbanization, so was used as a control for the TBRE. 
However, research shows dolphins at Sapelo Island also have elevated PCB levels.  
 
Objective: We were interested in examining whether there is a difference in analyte levels 
between fish at four different sites at Sapelo Island and in three different species for different 
chemical classes. The majority of chemical concentration measurements were below a limit of 
detection (left-censored).  
 
Methods: The mean for each site/species/analyte combination was estimated using a maximum 
likelihood approach and a two-way ANOVA (model [1]). This model was simplified to assume 
no interaction between site and species (model [2]), and to a one-way ANOVA to compare only 
between species (model [3]).      
 
Results: Sea trout have lower summed mean concentrations across all chemical classes 
compared to mullet and silver perch, with the exception of Aroclor 1268, for which mullet have 
the lowest concentrations. Mullet and silver perch have similar summed mean concentrations 
across chemical classes, with mullet higher for DDTs and metals and silver perch higher for 
pesticides and PCBs. We found statistically significant differences between species for all 
chemical classes except polybrominated diphenyl ethers (PBDEs) in model [2]. Only pesticides 
were significantly different across species in model [1]. Aroclor 1268 was significantly different 
between sites in model [2], after removal of outliers. Otherwise, we found no significant 
differences between sites.  
 
Conclusion: Our results are limited due to large amounts of left-censored data and large 
variances of estimates. Even after removing outliers, most analytes did not have maximum 
likelihood estimates with stable standard errors. The small number of fish and large number of 
left-censored measurements create statistical challenges for accurate estimation and must be 
considered when interpreting results. We recommend future studies include larger sample sizes 
or focus on analytes present at higher concentrations.  
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1. Introduction 
 

Persistent organic pollutants (POPs) threaten marine animal health due to 

bioaccumulation and biomagnification in high-level predators11. Bottlenose dolphins (Tursiops 

truncatus) in the Turtle/Brunswick River Estuary (TBRE), a nationally designated Superfund 

site, have been shown to have been exposed to very high levels of POPs, such as the 

polychlorinated biphenyl (PCB) congener Aroclor 1268, which was produced at this site6. Sapelo 

Island, GA, about 40 miles north of the TBRE, has minimal urbanization, so was originally used 

as a control site in studies of exposures in the TBRE27. However, recent research shows 

bottlenose dolphins at Sapelo Island also have elevated PCB levels, leading some to hypothesize 

that fish off Sapelo Island may similarly have high exposure levels to many chemicals which 

may transfer through the local food web6.  

The Georgia Aquarium led a study in which three different species of fish were caught at 

four different sites off the coast of Sapelo Island. One-hundred forty-four different analytes were 

measured in order to compare concentration levels of various POPs across sites and species. 

Over 60% of the measured data points are below the limit of detection; an accurate estimate for 

these analytes are unknown, and the exposure level is between zero and that limit (yielding a 

high proportion of left-censored data). Current statistical methods to handle left-censored data 

include substituting one-half the limit of detection or the limit of detection divided by the square 

root of two for all left censored data points. However, this method is not reliable with such a 

large amount of left-censored data. Other statistical methods to handle left-censored data include 

maximum likelihood estimation and multiple imputation. Little work has been done to compare 

these statistical methods in data sets with such high percentages of concentration measurements 

below the limit of detection. This project was conducted in the spirit of One Health, an 
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interdisciplinary effort to address public health issues through collaborations between animal, 

human, and environmental health25. The goal of this thesis was to examine these different 

statistical methods of comparing analyte concentration levels between sites and species with high 

levels of left-censored data. 

 

2. Background 
 

 
Persistent organic pollutants (POPs), including pesticides, polychlorinated biphenyls 

(PCBs), polybrominated diphenyl ethers (PBDEs), and dichlorodiphenyltrichloroethane (DDTs), 

are fat soluble compounds that are resistant to chemical and biological degradation, widely 

distributed, and bioaccumulate in food webs5. Although many have been banned or out of 

production for many years, concentrations are still found at toxicologically relevant levels, and 

thus are still pervasive threats to marine animal health11. For example, DDT was previously used 

in the United States as a pesticide but banned in this country in 1972; however, it is still used in 

some African countries to control malaria3. Similarly, the manufacture of PCBs, used primarily 

as coolants and lubricants in electrical equipment, was halted in the United States in 1977 

because of evidence that they harmed the environment and human health2,10. Pesticides such as 

mirex, used for fire ant control in the Southeastern U.S., and aldrin/dieldrin have also been out of 

production in the United States since the 1970s1,4. However, use of aldrin and dieldrin for termite 

control remained persistent until 19874. Finally, PBDEs are lipophilic compounds that are used 

primarily as flame retardants, as well as in epoxy resins, polyesters, and textiles8. All of these 

compounds can have widespread impacts on environmental, human, and animal health1,2,3,4.   

Oceans often act as sinks for these POPs from wastewater outfalls (sewage treatment 

plants), atmospheric deposition, and downstream runoff from industrial and urban areas5. Higher 
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levels are typically associated with industrial areas, as POPs can get into the environment via 

emissions to the air and surface waters from manufacturing plants and release during the life 

cycle of consumer products5. The Turtle/Brunswick River Estuary (TBRE) in Brunswick, GA 

was designated as a National Priority List (Superfund) site in 1996 due to extensive 

environmental contamination, specifically from the PCB mixture Aroclor 12686. Aroclor 1268 

was the most highly chlorinated Aroclor (the trade name for combinations of various congeners 

of PCBs) manufactured and was used as a fire retardant in the navy and in diverse industrial 

applications10. Striped mullet (Mugil cephalus) and spotted sea trout (Cynoscion nebulosus) in 

the TBRE had PCB concentrations three times higher than levels in fish 100 km north6. In 

addition, bottlenose dolphins (Tursiops truncatus) in the TBRE have been shown to have been 

exposed to some of the highest levels of PCBs near this Superfund site compared to other regions 

sampled along the Atlantic seaboard6. 

Marine mammals can be used as bio-monitors to indicate the presence and levels of POPs 

in the coastal environment. For example, bottlenose dolphins can be used to reflect the POP 

contamination in that area, and to establish geographic trends of environmental contamination 

because they live in population subgroups that demonstrate high site fidelity for coastal 

embayments17. In addition, they accumulate POPs in their lipid-rich blubber throughout their 

lives, and biomagnification occurs as they are a top-level marine predator26. POPs can be 

damaging to bottlenose dolphins because research shows such exposures can lead to 

compromised immune systems, increased disease susceptibility, and negative effects on 

reproduction, including a delay in the first reproductive event and death of fetuses during 

gestation26. In 1987-1988, there was a mass mortality event of coastal bottlenose dolphins caused 
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by Morbillivirus-induced disease along the mid-Atlantic coast of the US, and contaminant-

induced immunosuppression was hypothesized as a contributing factor14.  

 

Study site 

 

Sapelo Island, GA, located about 40 miles north of the TBRE, is mainly undeveloped and 

is composed mostly of salt marsh and sand; ninety-seven percent of the island consists of nature 

preserves owned by the state of Georgia27. The only private land on the island is inhabited by a 

Geechee/Gullah community, descendants of slaves from a large plantation on the island27. The 

Geechee/Gullah community relies on local seafood as a staple in their diet, so any potential 

human health effects of these POPs is of concern9. In humans, current epidemiological and 

experimental evidence suggests that background exposure to POP mixtures can result in an 

increased risk of Type II Diabetes (T2D)19. In addition, there is some evidence in animal studies 

that low exposure to POPs can cause obesity, although this relationship has not been shown to be 

consistently true in humans19. Epidemiological studies in humans have shown associations 

between long-term exposure to POPs and high cholesterol, reproductive impairment, thyroid 

disorders, and weakened immune systems9. In addition, POPs have been shown to compromise 

liver function in rats, causing fat accumulation, lipid toxicity, and nonalcoholic fatty liver19. It is 

possible that in the future, more strict advisories on seafood consumption may exist due to the 

mixture of contaminants found in fish9.  

The Sapelo Island National Estuarine Research Reserve (SINERR) is a state-federal 

partnership between the Georgia Department of Natural Resources and the National Oceanic and 

Atmospheric Administration23. Given that Sapelo Island has minimal urbanization, it was 
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originally used as a control for the TBRE, and nearby bottlenose dolphins were examined for 

POP levels. However, Balmer et al. demonstrated that bottlenose dolphins in SINERR also have 

elevated PCB and Aroclor 1268 levels, a somewhat surprising result, based on the undeveloped 

nature of Sapelo Island6. Since Aroclor 1268 is hydrophobic, water transport is unlikely, and it is 

likely that sediment or prey from the TBRE is contaminated and is transferred to the Sapelo 

Island area6. This evidence suggests that Aroclor 1268 contamination extends further outside the 

TBRE than previously documented, although the exact route of transport has yet to be 

determined. The PCB profiles between Sapelo Island and TBRE are more similar to that 

observed in fish tissues than for sediment, indicating that fish (and their tissues) are a more likely 

source of transport than sediment30. Still, in order to further document potential transfer from fish 

to bottlenose dolphins, more research needs to be done to examine the predator/prey associations 

between the bottlenose dolphins and their lower trophic level prey, such as mullet. 

The goal of the present study was to monitor the prey of bottlenose dolphins near Sapelo 

Island, GA to assess POP levels in order to determine the source of high PCBs (including 

Aroclor 1268) in the blubber of Georgia animals. Fish were caught off the coast of Sapelo Island 

at four different sites – Bell Marsh Road (1), Cabretta (2), UGA (3), and the Main House (4) 

(Figure 1). Three different species of fish were caught and examined at each site – silver 

perch/yellowtail (Bairdiella chrysoura), sea trout, and mullet. Bottlenose dolphins are 

opportunistic predators and there is large geographic variation in their diet7. The three specific 

fish species above are all prey of the bottlenose dolphin, with mullet being the most commonly 

consumed7. 
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Figure 1: Map of Sapelo Island, GA, with indications of the four sites where fish were caught 
for this study24. 

 

We were primarily interested in examining whether there are differences between the 

four different sites and the three different species for each chemical class (DDTs, PCBs, PBDEs, 

pesticides, and metals), with a specific focus on the PCB congener Aroclor 1268, which is 

specific to the Brunswick Superfund site. While site and species differences were both taken into 

consideration, species differences were of particular importance and interest. It may be difficult 

to distinguish differences between sites, given the similarity in physical characteristics (including 

the possibility of mixing of water and species due to both fish and water movement) of the 

coastal sites (sites 2, 3 and 4).  

 

Sample collection and processing 

 

The Georgia Aquarium was responsible for all methods related to study design and 

sample collection and processing. For each site/species combination, three composites of fish 
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were caught by local fisherman on Sapelo Island. Each composite is made up of three to five fish 

that were combined before concentrations of environmental exposures were measured. Mullet 

between 15-30 centimeters (total length), spotted sea trout 33 centimeters (total length) or larger, 

and silver perch between 7-15 centimeters (total length) were caught, wrapped in foil, and placed 

in plastic bags before being placed on ice. Care was taken to ensure that the buckets that the fish 

were placed in were free of any contaminants that could interfere with study results. Fish were 

then sent to the National Oceanic and Atmospheric Administration (NOAA) laboratory in 

Charleston for homogenization, extraction, and assays to measure POPs. The sampling scheme is 

shown in Table 1. At site number one, only mullet was caught, and at site number two, only 

silver perch and mullet were caught as a result of fishermen eating the fish instead of providing 

them to the research study. This provides direct links between this study and human health. Only 

sites numbers three and four have data for all three species of fish, leading to nine different 

site/species combinations.   

 

Table 1: Distribution of samples that were collected for our study. Colored squares indicate 
samples that have been collected.  
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1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Composite 3Composite 3 Composite 1 Composite 2 Composite 3 Composite 1 Composite 2

MULLET
SITE 1 (Bell Marsh Road) Site 2 (Cabretta) Site 3 (UGA) Site 4 (Main House)

Composite 1 Composite 2 Composite 3 Composite 1 Composite 2

Composite 1 Composite 2 Composite 3 Composite 1 Composite 2 Composite 3
SITE 1 (Bell Marsh Road) Site 2 (Cabretta) Site 3 (UGA) Site 4 (Main House)

Composite 1 Composite 2 Composite 3 Composite 1 Composite 2 Composite 3

Composite 1 Composite 2 Composite 3
Site 4 (Main House)

SILVER PERCH/YELLOWTAIL

SEA TROUT

Composite 3
Site 2 (Cabretta)

Composite 1 Composite 2 Composite 3
Site 3 (UGA)

Composite 1 Composite 2 Composite 3
SITE 1 (Bell Marsh Road)

Composite 1 Composite 2



 

 

8 

Data Description 

 

Data points are available for a total of 27 composites. In each composite, the level of 144 

different analytes (chemicals) was measured. The analytes are in the following chemical classes: 

DDTs, PCBs, PBDEs, pesticides, and metals (see Appendix I for a full listing of all measured 

analytes). The organics (DDTs, PCBs, PBDEs, and pesticides) were all measured in ng/g, while 

the inorganics (metals) were measured in µg/g. Of note, aluminum, zinc, and iron had much 

higher measurements than the other metals, so they were analyzed as a separate group. Congener 

Arcoclor 1268 was singled out as an analyte of focus given its significance to the Brunswick 

Superfund site. According to Kucklick et al., Aroclor 1268 is composed of PCB congeners 201, 

180+193, 207, 194, 202, 187, 196, 199, 208, 209, and 20617. PCBs 196 and 199 were not 

measured in this study, so they are excluded from the summed Aroclor 1268 concentration here. 

PCBs 196 and 199 compose 7.1% and 9.1%, respectively, of total PCBs in sediment adjacent to 

the Aroclor 1268 Brunswick Superfund site17.    

 

Approaches for handling left-censored data 

 

Preliminary analysis of the data shows that 61.29% of all data points fall below the limit 

of detection (left-censored). For example, of the six different DDT analytes measured, the 

majority are reported as less than the limit of detection, with the exception of 4, 4’-DDE, for 

which all data points were reportable and above the detection limit (Figure 2). In some cases, 

reportable data are less than the detection limit recorded. This is a result of the limit of detection 

being a function of the mass of the sample. One hundred-ten PCB analytes were measured, and 
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there is a large distribution of left censored versus reportable data (Figure 3). The majority of 

PBDEs were found to be below the limit of detection, with the exception of PBDE 47, for which 

ten out of 27 total data points were reportable (Figure 4). Some pesticides, such as aldrin, only 

have data points that are below the detection limit; other pesticides, including cis- and trans-

nonachlor yield all reportable data (Figure 5). The majority of metals yield reportable data, 

including aluminum, iron, and zinc, which had considerably higher concentrations than any other 

metals. Only a few metals, including silver, uranium, and beryllium, had all data points below 

the limit of detection (Figure 6).  

 

 
Figure 2: A comparison of data points that are detectable versus those that are below the 
detection limit for all six DDTs measured.  
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Figure 3: A comparison of data points that are detectable versus those that are below the 
detection limit for all PCBs measured.  
 
 

 
 
Figure 4: A comparison of data points that are detectable versus those that are below the 
detection limit for all PBDEs measured.  
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Figure 5: A comparison of data points that are detectable versus those that are below the 
detection limit for all pesticides measured.  
 

 
Figure 6: A comparison of data points that are detectable versus those that are below the 
detection limit for all metals measured. It can be seen that aluminum (Al), iron (Fe), and zinc 
(Zn) generally have higher concentrations than the other metals that were measured.  
 
 

With such a large amount of left-censored data, it is difficult to estimate a mean and 

standard deviation for any given analyte, site, and species combination. For this project, a mean 
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for each analyte, site, and species combination will be estimated, then each of those means will 

be summed within each chemical class. The limit of detection is determined as a function of the 

error involved in measuring the level of each analyte29. It is determined for a specific assay by 

measuring samples with known analyte levels (such as blanks) in series to determine the standard 

deviation of any background level (noise)29. Analyte values that are considered to be below the 

limit of detection indicates that any level of the analyte that cannot be confidently distinguished 

from instrument noise; there may or may not be some level of that analyte present. The limit of 

detection varies from sample to sample because it is calculated as a function of the mass of the 

sample (as well as the fixed instrument detection limit). Since the mass varies, the amount of 

sample will affect the calculated detection limit, leading to different limits for each sample.  As a 

result, we see some reportable observations (above the detection limit) from a given analyte that 

are lower than observations that are below the detection limit for the same analyte in the figures 

above.   

In practice, the most commonly used methods to handle left-censored data involve 

substitution of either one-half the detection limit, the detection limit divided by the square root of 

two, or the detection limit itself16. This substitution approach is not an ideal method, as it 

imposes patterns on the data that may not reflect the original pattern of the outcome of interest16. 

Substitution is sometimes employed when relatively few data points are below the limit of 

detection but would not be an ideal method for our data as over 60% of the data points are left-

censored. Maximum likelihood estimation can also be used to estimate the mean and variance of 

left-censored data, but does require a distributional assumption of the data, typically a log-

normal distribution for exposure concentrations22. In addition, maximum likelihood estimates 

often have unstable and inestimable standard errors with large amounts of left-censored data. 
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Turnbull proposed a non-parametric estimator for the mean of left-censored data, also known as 

the reverse Kaplan-Meier estimator; that estimates the right-continuous cumulative distribution 

function using a product-limit estimator12,13. All reportable (non-censored) values, xj, are ordered 

from smallest to largest; nj is defined as the number of values (either censored or not) less than or 

equal to xj and dj is the number of non-censored values equal to xj12. For each x, Turnbull’s 

estimator is the product of all ("#$%#)
"#

	for all xj > x12. This results in a step function that “jumps” at 

each non-censored (reportable) data point12. However, this approach does not converge when all 

of the data points in a given group are below the detection limit, which happens in over half of 

the combinations of site, species, and analytes in our dataset. Multiple imputation is another 

technique to handle incomplete data in which each value below the limit of detection is replaced 

by m appropriate values (imputed from the range of the concentration levels) resulting in m 

complete datasets15. Each complete (imputed) dataset is analyzed, resulting in m mean estimates, 

which can be combined to create a final estimate15. Standard multiple imputation requires the 

assumption that the data are missing at random and requires some data to be reportable15. In 

general, it is difficult to statistically analyze a dataset where such a large percentage of the data 

points are below the limit of detection, and it is unclear which of these methods, if any, provide 

the best estimates of means and standard errors in our setting.           

 
3. Methods 

 

In addition to this dataset having a majority of the data points left-censored, there was 

also a very small sample size; each combination of site, species, and analyte combination only 

contained three data points. These issues made it difficult to use some of the existing methods for 

estimating means with left-censored data, such as Turnbull’s estimator, because of situations 
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when all three of these data points were below the limit of detection. All of the analytes except 

for 30 had at least one missing data point, and the majority were missing at least half of their 

measurements (Appendix II). We simply do not have enough data to apply a number of our 

current statistical methods in a stable manner to the context of our problem. In addition, we do 

not have complete data to compare across all three species and all four sites. We are missing data 

from two of the three species (silver perch and sea trout) at site 1, and from one species (sea 

trout) at site 2. Since we have no data to inform us about the analyte concentrations at these sites, 

we will only focus on comparing sites 3 and 4 for our analysis.     

Estimating the mean of the cumulative concentrations within each chemical class 

presents two different problems: first, we must estimate the mean of each individual analyte at a 

given site/species combination. Given the large amount of left-censored data, this estimation is 

not straightforward. Second, after estimating the mean, we must sum all of the individual 

analytes within a given class to perform a two-way analysis of variance (ANOVA); in this step, 

we have already addressed the left-censoring problem, so no further adjustments are necessary. 

The summing of pollutants within a chemical class are justified because, with the exception of 

the metals class, all of the analytes within each class are measured on a similar scale. In addition, 

all analyte measurements within a given chemical class are assumed to be independent of each 

other. Within the metals, three of them, aluminum, zinc, and iron, are present in much larger 

concentrations than the other metals. This makes summing all metals together a less reliable 

exercise than in the other classes, so we will analyze all metals with the exception of aluminum, 

zinc, and iron, which will be analyzed separately from the others. In total, three groups of metals 

will be analyzed: metals group 1 (all metals), metals group 2 (aluminum, iron, and zinc only), 

and metals group 3 (all metals excluding aluminum, iron, and zinc). 
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An ideal method to estimate the mean level of each analyte at each of the site/species 

combinations is Turnbull’s estimator, a non-parametric method to estimate descriptive statistics 

involving left-censored data12, 13. However, Turnbull’s estimator will not converge when all of 

the values are left-censored. This occurs in 725 of the 1320 total site/species/analyte 

combinations in our data. Only 595/1320 (45.076%) have at least one non-censored data point, 

and the mean for this site/species/analyte combination can be estimated using a non-parametric 

approach. Unfortunately, as noted above, we simply do not have enough data to support 

conducting a separate analysis for each site/species/analyte combination individually.  

 

Maximum Likelihood Estimation 

 

Instead, we use a maximum likelihood estimator to estimate the mean22. If there are n 

measurements, and m < n of those measurements are left-censored at a limit of detection (LOD) 

c, then the likelihood generally follows the form  

.  

In our case, the probability density function for the log-normal distribution is: 

 

and the cumulative density function is: 

. 



 

 

16 

In the above formulas, x represents the measured analyte level, µ represents the mean of a given 

analyte, s represents the standard deviation for that analyte, and c represents the limit of 

detection. The likelihood that we aim to maximize is given by: 

 

where c=LOD is different for each sample. A limit of this approach is that is requires a 

distributional assumption, typically the log-normal for exposure data as assumed above, in which 

the log-transformed concentrations approximate a normal distribution. To see if this was a good 

fit, we constructed Q-Q plots, substituting in one-half the limit of detection (Figure 7) and the 

limit of detection itself (Figure 8) for the left censored data points. These plots are similar to each 

other and show deviations from the normal line for all of the chemical classes. Since the limit of 

detection varies from sample to sample, using a truncated version of the log-normal is not 

possible. While the Q-Q plots of the observed data points for each chemical class display tails 

that tend to verge very far from the log-normal line (Figure 9), this can be misleading because 

the plots ignore all of the censored data. In addition, because we are working based off of 

chemical classes, each site/species/analyte grouping likely follows a slightly different model, 

meaning that the Q-Q plots generally may not represent the grouped data well. We simulated 

some data from a log-normal distribution with the same mean and variance of each chemical 

class, and the Q-Q plots still have wide tails (Appendix III).  
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Figure 7: Q-Q plots substituting one half the detection limit for left censored data, plotted 
against the log-normal line 
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Figure 8: Q-Q plots substituting the detection limit for left censored data, plotted against the log-
normal line 
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Figure 9: Q-Q plots using the observed data only, plotted against the log-normal line 
 
 

Then, we attempted to fit a linear regression model using effects coding to account for the 

site and species:  

1] Y = µ + a1X1 + a2X2 + bAZA + g1AX1ZA + g2AX2ZA + e, where: 

Y = concentration 

X1 = (
1	𝑖𝑓	𝑠𝑝𝑒𝑐𝑖𝑒𝑠 = 𝑚𝑢𝑙𝑙𝑒𝑡
0	𝑖𝑓	𝑠𝑝𝑒𝑐𝑖𝑒𝑠 = 𝑠𝑒𝑎	𝑡𝑟𝑜𝑢𝑡

−1	𝑖𝑓	𝑠𝑝𝑒𝑐𝑖𝑒𝑠 = 𝑠𝑖𝑙𝑣𝑒𝑟	𝑝𝑒𝑟𝑐ℎ
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X2 = (
1	𝑖𝑓	𝑠𝑝𝑒𝑐𝑖𝑒𝑠 = 𝑠𝑒𝑎	𝑡𝑟𝑜𝑢𝑡
0	𝑖𝑓	𝑠𝑝𝑒𝑐𝑖𝑒𝑠 = 𝑚𝑢𝑙𝑙𝑒𝑡

−1	𝑖𝑓	𝑠𝑝𝑒𝑐𝑖𝑒𝑠 = 𝑠𝑖𝑙𝑣𝑒𝑟	𝑝𝑒𝑟𝑐ℎ
  

ZA = < 1	𝑖𝑓	𝑠𝑖𝑡𝑒 = 3
−1	𝑖𝑓	𝑠𝑖𝑡𝑒 = 4  

In the linear model using effects coding, µ represents the overall mean, which in this case 

in the overall mean concentration of an analyte across all sites and species. Each a represents the 

difference between the mean of that species and the overall mean. For example, a1 is the 

difference between the mean analyte concentration for mullet and the overall mean. Similarly, a2 

is the difference between the mean analyte concentration for sea trout and the overall mean, and 

bA is the difference between the mean analyte concentration for site 3 and the overall mean. The 

maximum likelihood parameter g1A is the mean analyte concentration for mullet at site 3, minus 

the mean analyte concentration for mullet, minus the mean analyte concentration for site 3, plus 

the overall mean. Likewise, the maximum likelihood parameter g2A is the mean analyte 

concentration for sea trout at site 3, minus the mean analyte concentration for sea trout, minus 

the mean analyte concentration for site 3, plus the overall mean. Finally, e represents the error 

term.        

We fit this linear regression model for each chemical class, substituting half the detection 

limit for censored data, and observed the residual plots that result (Appendix IV). The plots 

suggest a good fit for log-normal data for DDTs, PBDEs, and pesticides, but not for PCBs and 

metals. The same was true when the detection limit itself was used for censored data (Appendix 

V). Therefore, using a log-normal distribution and the maximum likelihood approach for DDTs, 

PBDEs, and pesticides appears to be justified. However, due to limitations of using Q-Q plots 

with censored data noted above, prior literature for such concentrations assuming a log-normal 
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distribution17, 22, 26, and the lack of an alternative distribution, the log-normal was also used for 

metals and PCBs as a baseline. 

We used PROC NLMIXED in SAS® to evaluate the maximum likelihood estimates for 

the parameters in the linear regression model listed above: µ, a1, a2, bA, g1A, and g2A (see 

Appendix VI for example SAS® code). An estimate for s2 is also given by SAS® PROC 

NLMIXED. We defined the outcome as the log-transformed concentration or detection limit 

where appropriate. This was done for each analyte individually. From there, the mean 

concentration for each analyte can be determined for each site and species combination.   

To determine the mean concentration for each composite within each analyte, we used 

the linear regression model, the calculated maximum likelihood estimates for the parameters, and 

the effects coding (note that these results are still on the log scale): 

E [Y | mullet, site 3] = g1A + µ + a1 + bA 

E [Y | sea trout, site 3] = g2A + µ + a2 + bA 

E [Y | silver perch, site 3] = µ - a1 - a2 + bA - g1A - g2A 

E [Y | mullet, site 4] = µ + a1 - bA - g1A 

E [Y | sea trout, site 4] = µ + a2 - bA - g1A 

E [Y | silver perch, site 4] = µ - a1 - a2 - bA + g1A + g2A 

After obtaining the mean of each site/species combination for each analyte, we 

exponentiated them to get the log-concentration back to the original concentration scale. When 

the outcome is on the log-normal scale, the mean concentration is 𝑒(?@
AB

B ). To compare the data 

between sites and species, all the mean concentrations within each chemical class were summed 

together5, 6, 11, 17, 30. This is valid because the sum of the expected value is the same as the 

expected value of the sum. As previously mentioned, aluminum, zinc, and iron had consistently 
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much higher concentrations than the other metals, so while all metals were analyzed together 

(group 1), separate analyses on just the summed aluminum, zinc, and iron (group 2) 

concentrations, as well as the summed concentration of all metals excluding aluminum, iron, and 

zinc (group 3), were performed. 

To compute the variance for each site/species/analyte combination, we calculate the 

variance of the log-normal distribution via: [𝑒DB − 1]𝑒(F?@	DB). This formula gives us the 

variance of the analyte concentration for that species at that site, rather than the variance of the 

estimated mean analyte concentration. Since the analytes are assumed to be independent of each 

other, the sum of the variances from each analyte provides the variance for the entire chemical 

class. To compare the summed concentrations across sites and species, a two-way ANOVA with 

a randomized block design was used, as there is only one observation per site/species cell18. 

SAS® PROC GLM was used to obtain the relevant p-values for the effect of site and species. 

Both site and species are treated as fixed effects. Since the variance is not homogenous by cell, 

the analysis was weighted by the inverse of the variance. The randomized block design has some 

limitations, namely that it assumes no interaction between site and species and there is no test for 

this interaction. Tukey’s method was used to compare the pairwise mean sums. P-values were 

taken from the Type III sum of squares table in the output of SAS® PROC GLM.     

We are attempting to estimate six parameters in our maximum likelihood model using at 

most 18 data points (for each analyte, there are three measurements – one from each composite – 

at each of two sites and for each of three species). In most cases, we do not have enough data for 

a stable estimate of the standard error of the maximum likelihood estimates, leading to inflated 

variance estimation of the analytes. There was a very large discrepancy in variance, particularly 

for metals and PCBs. Stable estimates will only occur when all eighteen measurements for each 
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analyte have at least one reportable estimate (in other words, the analyte measurement from each 

composite at each site and each species was above the detection limit). This occurs for only 30 

out of the 144 various analytes. Drawing conclusions from our results is difficult because it is not 

clear that we have enough data to support our conclusions. Therefore, we will also create a 

maximum likelihood model assuming no interactions between site and species. This is a large 

assumption but allows us to only estimate four different parameters with our limited data. 

Therefore, we create model [2]: 

[2] Y = µ + a1X1 + a2X2 + bAZA + e, where Y, X1, X2, ZA, µ, a1, a2, bA, and e are 

defined the same as in model [1].  

Then, the mean concentration for each site/species combination within each analyte can 

be determined as above, using the linear regression model, the calculated maximum likelihood 

estimates for the parameters, and the effects coding (again, note that these results are still on the 

log scale): 

E [Y | mullet, site 3] = µ + a1 + bA 

E [Y | sea trout, site 3] = µ + a2 + bA 

E [Y | silver perch, site 3] = µ - a1 - a2 + bA  

E [Y | mullet, site 4] = µ + a1 - b 

E [Y | sea trout, site 4] = µ + a2 - bA  

E [Y | silver perch, site 4] = µ - a1 - a2 - bA  

 These log-concentration means can be converted to the concentration scale using the 

same formula, 𝑒(?@
AB

B ), as before, and the variance for each can also be determined similarly, 

using the formula [𝑒DB − 1]𝑒(F?@	DB). A two-way ANOVA using the randomized block design 

and weighting by the inverse of the variance can be used to determine any differences by site and 
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species. Tukey’s test can be used to test for any significant pairwise differences. This variation 

on the MLE approach allows us to utilize our limited data to estimate fewer parameters, with the 

goal of achieving more stable estimates.  

 Finally, we utilize maximum likelihood to compare exclusively by species. Given that 

sites 3 and 4 are located relatively close to each other on Sapelo Island and the analyte 

concentrations are likely similar to each other at those two sites, it is reasonable to combine 

them. In addition, fish likely move between the two sites. For this method, more data points are 

used to estimate fewer parameter estimates, which may make our estimates more robust. 

Therefore, we create model [3]: 

[3] Y = µ + a1X1 + a2X2 + e, where Y, X1, X2, µ, a1, a2, and e are defined the same as in 

model [1].  

Then, the mean log concentration for each site/species combination within each analyte 

can be determined as above, using the linear regression model, the calculated maximum 

likelihood estimates for the parameters, and the effects coding (again, note that these results are 

still on the log scale): 

E [Y | mullet] = µ + a1 

E [Y | sea trout] = µ + a2  

E [Y | silver perch] = µ - a1 - a2  

 These log-concentration means can be converted to the concentration scale using the 

same formula, 𝑒(?@
AB

B ), as before, and the variance for each can also be determined similarly, 

using the formula [𝑒DB − 1]𝑒(F?@	DB). Then, we can compare these three mean summed 

concentrations to determine if there are any differences between species ignoring the distinction 

between sites 3 and 4. Unfortunately, we cannot obtain a p-value for these analyses, since we are 
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comparing only one observation per cell. However, general trends can be examined to determine 

the relationship between the analyte levels across species.  

     

Extreme Observations 

 

 In order to maximize data support, we also examined outliers in our data. An outlier was 

defined as have a reportable analyte concentration level that was more than three standard 

deviations away from the mean concentration level (substituting in the limit of detection for 

values that were left-censored) of that analyte. There is a trade-off here between the quality of 

our data and the quantity; we want as much data as possible to inform our maximum likelihood 

estimates and provide stability. However, we also want to ensure that the data we are using to 

inform our estimates falls inside a standard range of values. Although these measurements are 

valid and may not be due to measurement error, it is important to ensure that they are not too 

different from the other measurements. Using this method of identifying outliers, we eliminated 

three data points from the metals chemical class, one each from manganese (mullet from site 4), 

chromium (silver perch from site 4), and arsenic (silver perch from site 4); one data point from 

the pesticides chemical class (mirex), which was a silver perch from site 3; one data point from 

the DDTs chemical class (4, 4’-DDD), which was a mullet from site 4; no data points from the 

PBDE chemical class; and 19 data points from the PCBs chemical class, one each of PCB 104, 

PCB 146, PCB 149, PCB 154, PCB 156, PCB 172, PCB 174, PCB 180/193, PCB 183, PCB187, 

PCB 194, PCB 200/IUPAC 201, PCB 201/IUPAC 199, PCB 202, PCB 203/196, PCB 206, PCB 

207, PCB 208, and PCB 209. All PCB outliers were silver perch, and all except PCB 104 were 

from site 4. Additionally, all PCB outliers, with the exception of PCB 104, were from a single 
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composite. We then refit models [1], [2], and [3], to this reduced data set to compare these 

estimates to those obtained from using the full data. It is interesting to note that the majority of 

outliers were silver perch from site 4, and there were no outliers that were sea trout. 

The maximum likelihood approach is not a perfect solution for our data analysis, because 

it does not allow us to compare all four sites and all three species in one model. However, it is 

currently our best option for incorporating all of the data that we have. A different model can be 

used if we can assume no interaction between site and species or if we are not interested in 

comparing between sites. The maximum likelihood estimation method has some limitations – it 

assumes that the log-normal distribution is appropriate for our outcomes, which may not be the 

case. In particular, it has been shown that the log-normal distribution may not be a good match 

for PCBs and metals, leading us to question if assuming the log-normal is a good idea. However, 

because of the small sample size, it is not logical to attempt to customize the distribution any 

further, and the log-normal assumption provides a set of baseline results for future comparisons 

with more complicated models. In addition, it is not clear if we have enough data for maximum 

likelihood to work well, and therefore some sacrifices in our analysis must be made. For 

example, we lose information when we ignore interactions between site and species and combine 

the data from sites 3 and 4.  

 

4. Results 
 

In general, and as we might expect, we see an increase in the number of stable estimates 

as the number of parameters we are estimating decreases. For example, in model [1], 40 analytes 

lead to stable maximum likelihood estimates. In model [2], there are 57, and in model [3], there 

are 60. When we remove the outliers, these numbers change to 42 stable estimates for model [1], 
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58 stable estimates for model [2], and 70 stable estimates for model [3].  Only ten total PBDE 

measurements are reportable, so there is not enough reportable data in each site/species 

combination to result in stable estimates for the analytes in this chemical class. Every other 

chemical class has at least one stable estimate. This shows that estimating fewer parameters, 

using data without any outliers will increase the stability of our estimates. Although this is 

interesting and important to note, it still does not lead to stable estimates for the majority of 

analytes. This leads us to conclude that there is simply not enough data available to fully monitor 

the prey of bottlenose dolphins near Sapelo Island, GA and assess their POP levels. Results 

presented below include estimated sums from all analytes, even those that did not have stable 

estimates.   

 

DDTs 

 
Preliminary graphical analysis, substituting in the limit of detection for left-censored data 

points, appears to show that the summed DDT concentration is lowest in sea trout and highest in 

silver perch; in addition, all three species appear to have densities that are right skewed (Figure 

10, Appendix VII). A similar distinction for site in not seen; it is not obvious which of the four 

sites tend to have higher summed concentrations of DDTs (Figure 11, Appendix VIII). These 

graphs provide a nice visual representation of our data; however, given that they do not take 

censoring into account, they may not be accurate. In model [1], sea trout appears to have a lower 

summed DDT concentration at both site 3 and 4 as compared with mullet and silver perch (Table 

2). Mullet has the highest summed DDT concentration at both sites, and sea trout has the lowest.  
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Table 2: Results of model [1], by chemical class. Values are displayed as mean (variance). 
 

 DDTs   PBDEs   
Site  Site   

Species 3 4  Species 3 4   
Mullet 2.92 (0.90) 3.90 (1.48)  Mullet 0.30 (0.0003) 0.35 (0.0012)   
Sea Trout 1.59 (0.26) 1.24 (0.17)  Sea Trout 0.40 (0.0018) 0.45 (0.0024)   
Silver 
Perch 

2.30 (0.64) 2.28 (0.55)  Silver 
Perch 

0.19 (0.0001) 0.52 (0.0010)   

              
 PCBs   Aroclor 1268 

Site  Site 
Species 3 4  Species 3 4 
Mullet 19.31 (5.27) 17.10 (20.58)  Mullet 7.59 (3.42) 4.48 (1.02) 
Sea Trout 14.38 (11.93) 16.09 (6.40)  Sea Trout 6.47 (2.43) 9.14 (4.93) 
Silver 
Perch 

29.31 (21.27) 52.20 (68.56)  Silver 
Perch 

7.64 (3.75) 26.42 (41.15) 

 
 Metals Group 1 (All) 

Site 
Species 3 4 
Mullet 77.97 (52.92) 142.55 (221.06) 
Sea Trout 35.39 (8.55) 33.72 (7.53) 
Silver 
Perch 

77.18 (45.56) 72.11 (36.46) 

 
 Metals Group 2 (Al, Zn, Fe)   Pesticides  

Site  Site 
Species 3 4  Species 3 4 
Mullet 24.71 (51.42) 49.67 (207.22)  Mullet 1.24 (0.02) 1.43 (0.04) 
Sea Trout 13.48 (8.22) 12.71 (7.15)  Sea Trout 0.48 (0.004) 0.53 (0.006) 
Silver 
Perch 

26.84 (44.53) 25.13 (35.22)  Silver 
Perch 

1.67 (0.04) 1.82 (0.04) 

       Metals Group 3 
Site 

Species 3 4 
Mullet 8.13 (1.50) 18.73 (13.85) 
Sea Trout 4.44 (0.33) 4.84 (0.38) 
Silver 
Perch 

7.84 (1.04) 9.04 (1.25) 
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Figure 10: Histogram and density of summed DDT concentrations after substituting the limit of 
detection for left censored data points, separated by species.  
 

 
Figure 11: Histogram and density of summed DDT concentrations after substituting the limit of 
detection for left censored data points, separated by site.  
 

This same pattern is seen in model [2] (Table 3); in model [3], mullet has the highest 

summed DDT concentration overall, followed by silver perch, then sea trout (Table 4). When 

one outlier was removed, the same general trends are seen for all three models; mullet has the 

highest summed DDT concentration overall, followed by silver perch, then sea trout for both 

sites and when sites are combined (Tables 6, 7, and 8). The variance for DDTs in all three 

models is not inflated and is reasonable. However, in model [1], the difference in summed mean 

DDT concentrations was not significantly different for either site or species (Table 5. Model 1: 

site, p-value = 0.7369, species, p-value = 0.094). In model [2], the difference in summed mean 
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DDT concentrations was significantly different between species but not site (Table 5. Model 2: 

site, p-value = 0.094, species, p-value = 0.0103). By Tukey’s test, all three pairwise comparisons 

of species were significantly different from each other (Table 5. Sea trout vs. mullet p-value = 

0.011, sea trout vs. silver perch p-value = 0.0267, silver perch vs. mullet p-value = 0.05). When 

one outlier was removed, the same pattern of significance was seen. In model [1] without 

outliers, there is no significant difference by site or species (site, p-value = 0.3637, species, p-

value = 0.0783). However, in model [2], there is a significant difference across species (site, p-

value = 0.7245, species, p-value = 0.0054), with Tukey’s test indicating that there is a pairwise 

difference between all three species (Table 9. Sea trout vs. mullet p-value = 0.006, sea trout vs. 

silver perch p-value = 0.0135, silver perch vs. mullet p-value = 0.0323).  
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Table 3: Results of model [2], by chemical class. Values are displayed as mean (variance).  
 

 DDTs   PBDEs   
Site  Site   

Species 3 4  Species 3 4   
Mullet 3.4 (1.25) 3.62 (1.49)  Mullet 0.4 (0.00081) 0.37 (0.001)   
Sea Trout 1.48 (0.24) 1.61 (0.33)  Sea Trout 0.48 (0.0033) 0.34 (0.0013)   
Silver 
Perch 2.58 (0.67) 2.41 (0.65) 

 Silver 
Perch 0.42 (0.00053) 0.38 (0.0006) 

  

              
 PCBs   Aroclor 1268 

Site  Site 
Species 3 4  Species 3 4 
Mullet 16.75 (4.25) 21.17 (25.62)  Mullet 5.23 (2.45) 7.21 (4.49) 
Sea Trout 14.62 (14.62) 17 (11)  Sea Trout 7 (4.8) 9.62 (8.82) 
Silver 
Perch 43.8 (40.95) 38.37 (52.3) 

 Silver 
Perch 13.37 (16.53) 18.56 (30.62) 

 
 Metals Group 1 (All) 

Site 
Species 3 4 
Mullet 

99.03 (190.75) 
114.26 
(255.23) 

Sea Trout 32.73 (13.73) 37.2 (17.32) 
Silver 
Perch 70.74 (73.78) 80.44 (93.98) 

 
 Metals Group 2 (Al, Zn, Fe)   Pesticides  

Site  Site 
Species 3 4  Species 3 4 
Mullet 88.28 

(185.57) 99.74 (244.83) 
 Mullet 

1.41 (0.039) 1.32 (0.037) 
Sea Trout 28.58 (13.38) 31.89 (16.65)  Sea Trout 0.59 (0.0066) 0.55 (0.0067) 
Silver 
Perch 63.14 (72.6) 70.71 (91.74) 

 Silver 
Perch 1.81 (0.056) 1.72 (0.053) 

 
 
 
 
 
 
 
 

       Metals Group 3 
Site 

Species 3 4 
Mullet 10.75 (5.18) 14.52 (10.41) 
Sea Trout 4.15 (0.38) 5.31 (0.67) 
Silver 
Perch 7.59 (1.18) 9.73 (2.24) 
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Table 4: Results of model [3], by chemical class. Values are displayed as mean (variance).  
 
 

 DDTs PBDEs Pesticides Metals 
Group 1 
(All) 

Metals 
Group 2 
(Al, Zn, Fe) 

Metals 
Group 3 

PCBs Aroclor 
1268 

Mullet 3.52 
(1.37) 

0.43 
(0.001) 

1.35 
(0.038) 

106.66 
(237.44) 

94.01 
(228.75) 

12.65 
(8.69) 

63.39 
(51.65) 

6.27 
(3.61) 

Sea Trout 1.54 
(0.27) 

0.26 
(0.0007) 

0.56 
(0.007) 

34.97 
(16.72) 

30.24 
(16.13) 

4.73 
(0.58) 

18.3 
(26.31) 

8.3 
(7.05) 

Silver 
Perch 

2.51 
(0.68) 

0.43 
(0.0006) 

1.79 
(0.055) 

75.56 
(89.93) 

66.93 
(87.98) 

8.63 
(1.95) 

79.99 
(61.58) 

16.01 
(24.59) 
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Table 5: P-values from model [1] and [2]. Bolded cells indicate significant differences (p-value 
< 0.05). 
 
 

 DDTs   Tukey Model 2  
 Site Species   Mullet Sea Trout Silver Perch 

Model 1 0.3637 0.0783  Mullet  0.006 0.0323 
Model 2 0.7245 0.0054      

    Sea Trout 0.006  0.0135 
        
    Silver Perch 0.0323 0.0135  
        
 Metals Group 1 (All)   Tukey Model 2  
 Site Species   Mullet Sea Trout Silver Perch 

Model 1 0.7581 0.1174  Mullet  0.0066 0.0437 
Model 2 0.1201 0.0045      

    Sea Trout 0.0066  0.0087 
        
    Silver Perch 0.0437 0.0087  
        

 
Metals Group 2 

(Al, Zn, Fe)   Tukey Model 2 
 

 Site Species   Mullet Sea Trout Silver Perch 
Model 1 0.9438 0.1749  Mullet   0.0056 0.0387 
Model 2 0.1126 0.0038          

    Sea Trout 0.006   0.0071 
            
    Silver Perch 0.039 0.0071   
        
 Metals Group 3   Tukey Model 2  
 Site Species   Mullet Sea Trout Silver Perch 

Model 1 0.891 0.1748  Mullet  0.022 0.0872 
Model 2 0.0975 0.0146      

    Sea Trout 0.022  0.0256 
        
    Silver Perch 0.0872 0.0256  
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 PCBs   Tukey Model 2  
 Site Species   Mullet Sea Trout Silver Perch 

Model 1 0.5568 0.0757  Mullet  0.6857 0.0495 
Model 2 0.3554 0.0375      

    Sea Trout 0.6857  0.0376 
        
    Silver Perch 0.0495 0.0376  
        
        
 Aroclor 1268   Tukey Model 2  
 Site Species   Mullet Sea Trout Silver Perch 

Model 1 0.6068 0.5325  Mullet  0.0031 0.0009 
Model 2 0.0404 0.0009      

    Sea Trout 0.0031  0.0037 
        
    Silver Perch 0.0009 0.0037  
        
        
 Pesticides   Tukey  Model 1  
 Site Species   Mullet Sea Trout Silver Perch 

Model 1 0.477 0.009  Mullet  0.02 0.1644 
Model 2 0.6895 0.009      

    Sea Trout 0.02  0.0118 
        
    Silver Perch 0.164 0.0118  
        
     Tukey  Model 2  
     Mullet Sea Trout Silver Perch 
    Mullet  0.0019 0.0191 
        
    Sea Trout 0.0019  0.0011 
        
    Silver Perch 0.0191 0.0011  

 
 
 PBDEs 
  Site Species 
Model 1 0.1907 0.5844 
Model 2 0.179 0.8557 
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Table 6: Results of model [1], with outliers removed, by chemical class. Values are displayed as 
mean (variance). 
 

 DDTs   PBDEs   
Site  Site   

Species 3 4  Species 3 4   
Mullet 2.92 (0.90) 3.74 (1.44)  Mullet 0.30 (0.0003) 0.35 (0.0012)   
Sea Trout 1.59 (0.25) 1.24 (0.17)  Sea Trout 0.40 (0.0018) 0.45 (0.0024)   
Silver 
Perch 2.31 (0.64) 2.29 (0.55) 

 Silver 
Perch 0.19 (0.0001) 0.52 (0.0010) 

  

              
 PCBs   Aroclor 1268 

Site  Site 
Species 3 4  Species 3 4 
Mullet 18.56 (2.13) 16.55 (19.63)  Mullet 7.06 (1.13) 4.11 (0.32) 
Sea Trout 13.68 (9.95) 15.09 (2.19)  Sea Trout 5.94 (0.78) 8.39 (1.59) 
Silver 
Perch 25.87 (10.59) 33.82 (13.93) 

 Silver 
Perch 7.15 (1.13) 11.72 (2.85) 

 
 Metals Group 1 (All) 

Site 
Species 3 4 
Mullet 77.89 (52.76) 141.26 (217.84) 
Sea Trout 35.33 (8.45) 33.65 (7.37) 
Silver 
Perch 77.09 (45.37) 70.83 (35.95) 

 
 Metals Group 2 (Al, Zn, Fe)   Pesticides 

Site  Site 
Species 3 4  Species 3 4 
Mullet 24.71 (51.42) 49.67 (207.22)  Mullet 1.24 (0.02) 1.44 (0.04) 
Sea Trout 13.48 (8.22) 12.71 (7.15)  Sea Trout 0.51 (0.004) 0.54 (0.003) 
Silver 
Perch 26.84 (44.53) 25.13 (35.22) 

 Silver 
Perch 1.57 (0.03) 1.81 (0.04) 

 
 
 
 
 
 
 
 

       Metals Group 3 
Site 

Species 3 3 
Mullet 8.05 (1.34) 8.05 (1.34) 
Sea Trout 4.38 (0.24) 4.38 (0.24) 
Silver 
Perch 7.75 (0.84) 7.75 (0.84) 
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Table 7: Results of model [2], with outliers removed, by chemical class. Values are displayed as 
mean (variance). 
 

 DDTs   PBDEs   
Site  Site   

Species 3 4  Species 3 4   
Mullet 3.37 (1.22) 3.46 (1.29)  Mullet 0.4 (0.00081) 0.37 (0.001)   
Sea Trout 1.48 (0.23) 1.54 (0.25)  Sea Trout 0.48 (0.0033) 0.34 (0.0013)   
Silver 
Perch 2.58 (0.67) 2.41 (0.65) 

 Silver 
Perch 0.42 (0.00053) 0.38 (0.0006) 

  

              
 PCBs   Aroclor 1268 

Site  Site 
Species 3 4  Species 3 4 
Mullet 16.97 (2.12) 18.74 (20.61)  Mullet 5.35 (0.95) 5.58 (1.0) 
Sea Trout 14.75 (11.12) 14.14 (2.71)  Sea Trout 7.09 (1.87) 7.46 (1.97) 
Silver 
Perch 34.87 (14.33) 28.73 (13.38) 

 Silver 
Perch 9.15 (2.65) 9.6 (2.8) 

 
 Metals Group 1 (All) 

Site 
Species 3 4 
Mullet 

98.69 (189.46) 
112.98 
(251.86) 

Sea Trout 32.82 (13.65) 36.92 (17.06) 
Silver 
Perch 70.44 (73.52) 79.44 (93.15) 

 
 Metals Group 2 (Al, Zn, Fe)   Pesticides  

Site  Site 
Species 3 4  Species 3 4 
Mullet 88.28 

(185.57) 99.74 (244.83) 
 Mullet 

1.4 (0.037) 1.33 (0.035) 
Sea Trout 28.58 (13.38) 31.89 (16.65)  Sea Trout 0.59 (0.005) 0.58 (0.0051) 
Silver 
Perch 63.14 (72.6) 70.71 (91.74) 

 Silver 
Perch 1.74 (0.048) 1.68 (0.044) 

 
 
 
 
 
 
 

       Metals Group 3 
Site 

Species 3 4 
Mullet 10.4 (3.89) 13.24 (7.03) 
Sea Trout 4.23 (0.27) 5.04 (0.41) 
Silver 
Perch 7.3 (0.92) 8.73 (1.41) 
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Table 8: Results of model [3], with outliers removed, by chemical class. Values are displayed as 
mean (variance). 
 
 

 DDTs PBDEs Pesticides Metals 
Group 1 
(All) 

Metals 
Group 2 
(Al, Zn, Fe) 

Metals 
Group 3 

PCBs Aroclor 
1268 

Mullet 3.41 
(1.25) 

0.43 
(0.001) 

1.35 
(0.036) 

105.79 
(234.65) 

94.01 
(228.75) 

11.77 
(5.9) 

62.25 
(47.93) 

5.5 
(0.98) 

Sea Trout 1.51 
(0.24) 

0.26 
(0.0007) 

0.58 
(0.005) 34.88 (16.5) 

30.24 
(16.13) 

4.64 
(0.37) 

16.95 
(20.13) 

7.27 
(1.92) 

Silver 
Perch 

2.51 
(0.68) 

0.43 
(0.0006) 

1.74 
(0.047) 

74.88 
(89.25) 

66.93 
(87.98) 

7.95 
(1.27) 

69.89 
(31.29) 

9.38 
(2.72) 
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Table 9: P-values from model [1] and [2] using data with outliers removed. Bolded cells indicate 
significant differences (p-value < 0.05). 
 
 

 DDTs   Tukey Model 2  
 Site Species   Mullet Sea Trout Silver Perch 

Model 1 0.3637 0.0783  Mullet  0.006 0.0323 
Model 2 0.7245 0.0054      

    Sea Trout 0.006  0.0135 
        
    Silver Perch 0.0323 0.0135  
        
 Metals Group 1 (All)   Tukey Model 2  
 Site Species   Mullet Sea Trout Silver Perch 

Model 1 0.7581 0.1174  Mullet  0.0066 0.0437 
Model 2 0.1201 0.0045      

    Sea Trout 0.0066  0.0087 
        
    Silver Perch 0.0437 0.0087  
        
 Metals Group 3   Tukey Model 2  
 Site Species   Mullet Sea Trout Silver Perch 

Model 1 0.891 0.1748  Mullet  0.022 0.0872 
Model 2 0.0975 0.0146      

    Sea Trout 0.022  0.0256 
        
    Silver Perch 0.0872 0.0256  
        
        
 PCBs   Tukey Model 2  
 Site Species   Mullet Sea Trout Silver Perch 

Model 1 0.5568 0.0757  Mullet  0.6857 0.0495 
Model 2 0.3554 0.0375      

    Sea Trout 0.6857  0.0376 
        
    Silver Perch 0.0495 0.0376  
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 Aroclor 1268   Tukey Model 2  
 Site Species   Mullet Sea Trout Silver Perch 

Model 1 0.6068 0.5325  Mullet  0.0031 0.0009 
Model 2 0.0404 0.0009      

    Sea Trout 0.0031  0.0037 
        
    Silver Perch 0.0009 0.0037  
        
        
 Pesticides   Tukey  Model 1  
 Site Species   Mullet Sea Trout Silver Perch 

Model 1 0.477 0.009  Mullet  0.02 0.1644 
Model 2 0.6895 0.009      

    Sea Trout 0.02  0.0118 
        
    Silver Perch 0.164 0.0118  
        
     Tukey  Model 2  
     Mullet Sea Trout Silver Perch 
    Mullet  0.0019 0.0191 
        
    Sea Trout 0.0019  0.0011 
        
    Silver Perch 0.0191 0.0011  

 

PCBs 

 

Similar to DDTs, graphical analysis shows that sea trout have lower summed 

concentrations of PCBs and silver perch have higher summed PCB concentrations, after 

substituting the limit of detection for the left-censored data points (Figure 12, Appendix VII). 

Silver perch appear to have higher summed Aroclor 1268 concentrations than the other two 

species, and mullet appears to have slightly lower summed Aroclor 1268 concentrations than sea 

trout (Figure 12, Appendix VIII). Again, as with DDTs, there is not a clear distinction between 
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sites for summed PCB concentrations or summed Aroclor 1268 concentrations (Figure 13). In 

model [1], sea trout has the lowest summed concentration of PCBs at both sites, and mullet 

similar summed concentrations (Table 2). In particular, summed PCB concentrations for silver 

perch at site 4 is extremely high as compared to the other two species and is much higher than 

silver perch at site 3 (although silver perch at site 3 is also much higher than mullet and sea 

trout). However, it is important to note that the variance for summed PCB concentrations in 

mullet and silver perch at site 4 is extremely large. When examining only Aroclor 1268 (a subset 

of the PCBs) using model [1], mullet, sea trout, and silver perch at site 3 all have similar 

summed concentrations, while that for silver perch at site 4 is much higher. Again, this may be 

due to the extremely high variance of silver perch at site 4. Mullet at site 4 has the lowest 

summed concentration, which is a departure from previous patterns, as typically sea trout is the 

lowest. However, none of the summed concentrations were significantly different from one 

another by model [1] (Table 5. PCBs: site, p-value = 0.6726, species, p-value = 0.2273, Aroclor 

1268: site, p-value = 0.961, species, p-value = 0.7521). 
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Figure 12: Histogram and density of summed PCBs (top panel) and summed Aroclor 1268 
concentration (bottom panel) after substituting the limit of detection for left censored data points, 
separated by species. 
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Figure 13: Histogram and density of summed PCB (top panel) and summed Aroclor 1268 
concentration (bottom panel) after substituting the limit of detection for left censored data points, 
separated by site. 
 
 

In model [2], mullet and sea trout have similar summed concentration of PCBs at site 3, 

while silver perch is much higher. Similarly, silver perch has a much higher summed PCB 

concentration at site 4, while those for mullet and sea trout are lower, with sea trout having the 

lowest (Table 3). Aroclor 1268 follows the same pattern. Silver perch in general has a very large 

variance at both sites. This is not unreasonable given the number of PCBs that are being summed 

together, and the large spread in concentration values seen for some analytes. In model [2], we 

see a significant difference in both summed PCBs and summed Aroclor 1268 concentration 

across species, but not site, although a site difference is marginally significant for Aroclor 1268 
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(Table 5. PCBs: site, p-value = 0.3289, species, p-value = 0.0321, Aroclor 1268: site, p-value = 

0.0578, species, p-value = 0.0246). Tukey’s test found that for both summed PCBs and summed 

Aroclor 1268 concentrations, there is a significant difference between mullet and silver perch 

(PCBs: p-value = 0.035, Aroclor 1268: p-value = 0.023), and silver perch and sea trout (PCBs: p-

value = 0.0311, Aroclor 1268: p-value = 0.041), but not sea trout and silver perch (PCBs: p-

value = 0.614, Aroclor 1268: p-value = 0.164). In model [3], we can see that sea trout has a 

much lower summed concentration of PCBs than the other two species (Table 4). Mullet and 

silver perch both have fairly high summed PCB concentrations and large variances, with silver 

perch again having the largest. For Aroclor 1268 specifically, mullet has the lowest summed 

concentration, with sea trout being not much larger. Silver perch has the highest summed 

concentration of Aroclor 1268 (Table 4, Figure 12).  

The removal of outliers in the PCB chemical class caused the biggest change in the mean 

summed concentrations and variances as compared with the other chemical classes. In model [1], 

we again see that sea trout has the lowest summed concentration of PCBs, followed by mullet, 

then silver perch at both sites (Table 6). However, mullet and sea trout are similar, and the 

variances are much less inflated. For Aroclor 1268 specifically, sea trout has the lowest 

concentration at site 3, but mullet has the lowest concentration at site 4. Mullet and sea trout 

concentrations are very similar at site 3.  As before, there are not significant differences between 

site or species using model [1] with outliers removed for either PCBs or Aroclor 1268 (Table 9. 

PCBs: site p-value = 0.5568, species p-value = 0.0757, Aroclor 1268: site p-value = 0.6068, 

species p -value = 0.5325). In model [2] with outliers removed, we see a similar pattern with the 

summed PCB concentration. Sea trout has the lowest, followed by mullet, then silver perch, and 

the concentrations are similar at both sites (Table 6).  
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However, when we look at Aroclor 1268, we see mullet with the lowest concentration, 

followed by sea trout and silver perch. Summed PCBs are significantly different by species but 

not by site, according to model [2] (Table 9. Site p-value = 0.3554, species p-value = 0.0375). 

Tukey’s test showed that there is a difference between silver perch and mullet (p-value = 

0.0495), silver perch and sea trout (p-value = 0.0376), but not sea trout and mullet (p-value = 

0.6857), just as with model [2] using the full data. Interestingly, Aroclor 1268 showed a 

significant difference by both site and species (site p-value = 0.0404, species p-value = 0.0009). 

This is the only time we observed a significant difference by site. By inspection of the mean 

values (Table 7), the sites do not look to be significantly different. Tukey’s test showed a 

significant pairwise difference between all three fish species (Table 9. Sea trout vs. mullet p-

value = 0.0031, silver perch vs. mullet p-value = 0.0009, silver perch vs. sea trout p-value = 

0.0037). Finally, model [3] with no outliers shows sea trout with the lowest summed 

concentration of PCBs, and mullet and silver perch much higher and similar (Table 8). However, 

according to model [3], mullet has the lowest summed concentration of Aroclor 1268, followed 

by sea trout and silver perch.     

 

PBDEs 

 

Graphical display of summed concentrations of PBDEs also show that sea trout appears 

to have the lowest summed concentrations and silver perch has the highest, after substituting the 

limit of detection for the left-censored data points (Figure 14, Appendix VII). Again, there is not 

a clear distinction by site for summed PBDE concentrations (Figure 15, Appendix VIII). Similar 

to DDTs, PBDEs do not appear to differ significantly across sites and species. In model [1], 
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silver perch at site 3 has the highest summed concentration of PBDEs, while silver perch at site 4 

has the highest (Table 2). Summed concentration of PBDEs is similar between sites 3 and 4 in 

sea trout and mullet. However, summed concentrations of PBDEs are relatively small across all 

sites and species, and in model [1], the difference in summed mean PBDEs was not significantly 

different for either site or species (Table 5. Model 1: site, p-value = 0.1907, species, p-value = 

0.5844). In model [2], summed concentrations of PBDEs are similar across all three species at 

both sites, and there is no significant different between site or species (Table 3. Model 2: site, p-

value = 0.179, species, p-value = 0.8557). In model [3], sea trout have a lower summed 

concentration of PBDEs than the other two species, which have the same summed PBDEs (Table 

4). Variance estimates for PBDEs are very small and are similar across site and species 

combinations. No outliers were removed from the PBDE chemical class.  

 
 
Figure 14: Histogram and density of summed PBDE concentrations after substituting the limit 
of detection for left censored data points, separated by species. 
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Figure 15: Histogram and density of summed PBDE concentrations after substituting the limit 
of detection for left censored data points, separated by site. 
 

Metals 

 

To reiterate, metals were analyzed as three separate groups: metals group 1 (includes all 

metals), metals group 2 (aluminum, iron, and zinc only), and metals group 3 (all metals 

excluding aluminum, iron, and zinc). Across metals group 1, we see a similar pattern as with the 

other chemical classes; sea trout has the lowest summed concentrations and silver perch has the 

highest, but no clear distinction is seen by site after substituting the limit of detection for the left-

censored data points (Figure 16, Appendix VII and Figure 17, Appendix VIII). In model [1], sea 

trout has a much lower summed concentration of all metals at both sites as compared to mullet 

and silver perch (Table 2). Silver perch has a similar summed concentration of all metals 

between sites 3 and 4, while mullet at site 4 is much higher than site 3 (which is similar to the 

summed concentrations in silver perch). However, both mullet and silver perch tend to have 

large variances at both sites, with the variance for mullet at site 4 being extremely large.  

When looking at metals group 2, for which concentrations were higher than for metals 

group 3, mullet and silver perch have much higher summed concentrations than sea trout in 

model [1]. Mullet at site 4 again have the highest value, while silver perch at both sites are 
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comparable to mullet at site 3. Sea trout have similar concentrations at both sites. When 

examining the summed concentration for metals group 3, mullet at site [4] is again the highest in 

model [1], although not as drastically different as with metals groups 1 and 2. Sea trout has the 

lowest concentration and is similar at both site 3 and 4. However, none of these differences were 

statistically significant (Table 5. Metals Group 1: site, p-value = 0.9376, species, p-value = 

0.1167, Metals Group 2: site, p-value = 0.9438, species, p-value = 0.1749, Metals Group 3: site, 

p-value = 0.5497, species, p-value = 0.1822). 
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Figure 16: Histogram and density of summed metals (metals group 1) concentrations (top 
panel), summed aluminum, zinc, and iron (metals group 2) concentrations (middle panel), and 
summed all other metals (metals group 3) concentrations (bottom panel) after substituting the 
limit of detection for left censored data points, separated by species. 
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Figure 17: Histogram and density of summed metals (metals group 1) concentrations (top 
panel), summed aluminum, zinc, and iron (metals group 2) concentrations (middle panel), and 
summed all other metals (metals group 3) concentrations (bottom panel) after substituting the 
limit of detection for left censored data points, separated by site. 
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According to model [2], metals group 1 has the lowest summed concentration in sea 

trout, and these concentrations are similar at both sites (Table 3). Silver perch have the next 

lowest concentration, and mullet have the highest. Metals group 1 has a very large variance, 

driven particularly by the variances of aluminum, iron, and zinc. This same pattern of 

concentration levels is seen for both metals group 2 and metals group 3. For both groups 2 and 3, 

there does not seem to be a large difference by site. This is confirmed by our two-way ANOVA 

results; there is a significant difference between species for all three metals groups, but not by 

site (Table 5. Metals Group 1: site, p-value = 0.1141, species, p-value = 0.005, Metals Group 2: 

site, p-value = 0.1126, species, p-value = 0.0038, Metals Group 3: site, p-value = 0.0914, 

species, p-value = 0.0211). For metals groups 1 and 2, this difference is significant for mullet vs. 

sea trout (Metals Group 1 p-value = 0.007, Metals group 2 p-value = 0.006), mullet vs. silver 

perch (Metals Group 1 p-value = 0.048, Metals group 2 p-value = 0.039), and silver perch vs. sea 

trout (Metals Group 1 p-value = 0.0095, Metals group 2 p-value = 0.0071); however, for metals 

group 3, the difference was only significant for mullet and sea trout (p-value = 0.033), and sea 

trout and silver perch (p-value = 0.035), but not silver perch and mullet (p-value = 0.137) (Table 

5). Model [3] shows no significant differences in the pattern as seen previously; for all three 

groups, sea trout has the lowest summed concentration, followed by silver perch, then sea trout 

(Table 4). This is a deviation from other chemical classes, for which silver perch tends to have 

the highest concentrations.  

Following the removal of some outliers (none of which were aluminum, iron, or zinc 

analytes), we see similar summed mean concentrations in metals group 1 as before using model 

[1]. Sea trout still have the lowest summed concentration of all metals, and their concentration is 

similar across both sites (Table 6). Silver perch have the next highest summed concentrations 
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(which again is similar across sites), while mullet have the highest concentration, which is much 

higher at site 4 than site 3. This same pattern is seen for metals group 3. Using model [1], there is 

not a significant difference between site or species looking either at all metals group 1 or 3 

(Table 9. Metals Group 1: site, p-value = 0.7581, species, p-value = 0.1174, Metals Group 3: 

site, p-value = 0.891, species, p-value = 0.1748). Model [2] without outliers shows the same 

pattern as with model [1], except there is not as large of a difference between summed 

concentrations for mullet at the two sites (Table 7). However, there is a significant difference 

between species in this case, but not for site (Table 9. Metals Group 1: site, p-value = 0.1201, 

species, p-value = 0.0045, Metals Group 3: site, p-value = 0.0975, species, p-value = 0.0146). As 

with model [1], for metals group 1 this difference is significant for mullet vs. sea trout (p-value = 

0.0066), mullet vs. silver perch (p-value = 0.0437), and silver perch vs. sea trout (p-value = 

0.0087); however, for metals group 3, the difference was only significant for mullet and sea trout 

(p-value = 0.022), and sea trout and silver perch (p-value = 0.0256), but not silver perch and 

mullet (p-value = 0.0872) (Table 9). Finally, model [3] with no outliers shows the same ordering 

of species, although the variance for mullet is extremely large (Table 8).   

 

Pesticides 

 

Pesticides also graphically seem to display a pattern in terms of summed concentrations 

by species, with sea trout having the lowest summed concentration and silver perch having the 

highest, after substituting the limit of detection for the left-censored data points (Figure 18, 

Appendix VII). Again, no clear distinction is seen by site (Figure 19, Appendix VIII). In model 

[1], sea trout have a lower summed concentration of pesticides at both sites 3 and 4, while mullet 
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and silver perch are similar across both sites (Table 2). There was a significant difference 

between species in model 1 (Table 5, p-value = 0.004), and according to Tukey’s test, that 

difference was between mullet and sea trout (p-value = 0.0087) and silver perch and sea trout (p-

value = 0.0052), although the difference between mullet and silver perch was not significant (p-

value = 0.0617). Site was not significantly different in model [1] (p-value = 0.187).  

 
Figure 18: Histogram and density of summed pesticide concentrations after substituting the limit 
of detection for left censored data points, separated by species. 
 

 
Figure 19: Histogram and density of summed pesticide concentrations after substituting the limit 
of detection for left censored data points, separated by site. 
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In model [2], all three fish species have similar summed pesticide concentrations across 

the two sites (Table 3). However, concentrations in sea trout were much lower than in the other 

two species, with those in mullet additionally being lower than those in silver perch. In model 

[2], concentrations by site are not significantly different (Table 5, p-value=0.1158), but are by 

species (p-value=0.0006). Tukey’s test revealed all three pairwise comparisons of species were 

significantly different from each other (sea trout vs. mullet p-value = 0.001, sea trout vs. silver 

perch p-value = 0.0008, silver perch vs. mullet p-value = 0.011). In model [3], sea trout had 

lower summed concentrations of pesticides than mullet and silver perch, which are similar (Table 

4). When one outlier was removed, similar patterns are seen for all three models (Table 6, 7, 8). 

The variance of pesticides was not very large or variable across sites and species. The same 

significance trends were seen in pesticides when one outlier was removed. In both model [1] and 

[2], there was a significant different between species, but not site (Table 9. Model 1: site p-value 

= 0.477, species p-value = 0.009. Model 2: site p-value = 0.6895, species p-value = 0.009). In 

model [1], there were significant pairwise differences between mullet and sea trout (p-value = 

0.02), and sea trout and silver perch (p-value = 0.0118), but not silver perch and mullet (p-value 

= 0.164). In model [2], there were pairwise differences between all three species of fish (sea trout 

vs. mullet p-value = 0.0019, sea trout vs. silver perch p-value = 0.0011, silver perch vs. mullet p-

value = 0.0191). 

 

5. Discussion 
 
 

It is promising that we see an increase in the number of stable estimates as the number of 

parameters that we estimate decreases. However, we are still not able to get enough reliable 
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estimates from the available sample sizes. We do not get enough stable estimates from all 

chemical classes to get an accurate summed concentration; for example, PBDEs are never stable 

in any of the three models because there is simply too much data below the limit of detection. It 

is challenging to pool such a limited amount of data together for each analyte, especially when 

some analytes have a wide range of concentration values across sites and species. We are seeing 

extremely high variances for some of the analytes, which seems to be caused by having some 

high concentrations and some lower, but no outliers; this, combined with having some 

measurements below the detection limit, results in large deviations from a mean value. We are 

currently at the limit of which standard analyses will work; at present, there is not statistical 

methodology that can reliably deal with so much missing data. 

In general, we tend to see stable estimates when either all of the data points in a given 

site/species/analyte combination are reportable, or only one or two are below the limit of 

detection. In addition, we notice that stable estimates are present when those few values that are 

below the limit of detection are relatively high and/or close to the reportable estimates; greater 

stability is achieved when there is a smaller range of concentration values, either for reportable 

data or detection limits. Even if there are no outliers, but there is a wide range of values 

especially with extremely small concentration measurements, estimates are more unstable.   

Although we do not have a lot of reportable data above the detection limit, we tend to 

trust the results from the models without any outliers more than those that include outliers. This 

is because the range of concentration values is smaller, and we see analytes that had unstable 

estimates become stable when outliers are removed. In addition, although we cannot make any 

statistical conclusions from model [3], it did result in the largest number of mean analyte 

estimates with reasonable and stable standard errors. Therefore, it can still be used to visually 
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compare summed concentrations across species. However, given that it only includes 

information on species, loses the site data, and can’t be used for statistical tests, we don’t 

recommend its use. We recommend the use of model [2] in future studies. Model [2] loses some 

biological information (the potential interaction between site and species), but still allows us to 

compare across both sites and species. Model [2] resulted in a moderate number of stable 

estimates, which could potentially increase even more in number with additional data.  

In general, we feel comfortable comparing the general trends across site and species, but 

the statistical results from the two-way ANOVA should be examined with caution due to the 

high variance and low stability of the estimates. It does appear as though sea trout has lower 

chemical concentrations than the other species, and there do not appear to be any significant 

differences between the chemical concentrations at the two different sites. The current results can 

be used to inform the design of future studies; our baseline results suggest the need for larger 

sample sizes, i.e., more fishermen will need to be employed to catch more fish. Although this 

will increase the cost of a future study, it will lead to better statistical accuracy in results overall.  

This project helps fill in the picture of pollutant levels in the environment near Sapelo 

Island. We know that bottlenose dolphins located off the coast of Sapelo Island have high levels 

of the PCB congener Aroclor 1268, despite being miles away from the Superfund site where this 

compound was produced6. Since bottlenose dolphins’ blubber allows for bioaccumulation of 

environmental exposures, this study was done to examine the exposure levels in bottlenose 

dolphins’ prey. The results of this study can help to explain why bottlenose dolphins at Sapelo 

also have high exposure levels similar to that of bottlenose dolphins near the Brunswick 

Superfund site.      
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According to Balmer et al., the chemical class with the highest summed mean 

concentrations in bottlenose dolphins off the coast of Sapelo Island was PCBs6. Summed mean 

DDT concentrations in bottlenose dolphins were much smaller, summed mean PBDE 

concentrations were the lowest, and summed mean pesticides were lower than DDTs but higher 

than PBDEs6. Kucklick et al. found the similar trends in the blubber of bottlenose dolphins 

caught off the coast of Sapelo Island17. This trend of high summed PCB concentrations, smaller 

summed DDT concentrations, even lower summed pesticide concentrations, and the lowest 

summed PBDE concentrations is consistent in all three species of fish and across the two sites in 

this study.    

 

Limitations 

 

As noted above, there were a number of analytic challenges in attempting to compare 

mean differences in sites to species. While all of the mixed models converged, standard error 

estimates were over-inflated and often unstable. Reasonable standard error estimates for the 

maximum likelihood parameter estimates were only present in the models for which no left 

censoring or very little left censoring was present. Using the model without the interaction terms 

did provide more estimates that were stable, since we are estimating less parameters, with the 

downside of losing biological information. This assumption is probably reasonable, given that 

graphical representation of the densities of the summed concentrations for each chemical class 

(after substituting the limit of detection for the left-censored data), do not appear to display any 

clear trends for species by site or vice versa (Appendix IX). Additional estimates became stable 

after removing the site component and only focusing on species. This shows that estimating less 
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parameters does improve stability, even with limited data. However, we do not have enough 

reportable data points to reasonably estimate the means of most analytes, even when only 

estimating three maximum likelihood parameters.  

In order to provide additional data to hopefully produce more reliable estimates, we could 

combine all of the data in a chemical class and fit the same maximum likelihood models. Instead 

of fitting the model for each analyte, it would be fit by chemical class. This removes many of the 

intricacies of the data but allows for more data to be used to estimate the mean at each site for 

each species. However, estimates for most chemical classes using this method were still unstable 

with large variances, indicating that we may be past the limit of an acceptable amount of left-

censored data.        

There is a question of whether the independence assumption we used to sum the variance 

of each analyte within a chemical class is valid. It is possible that analytes within a chemical 

class are related to each other; perhaps they were both used in the manufacture of a given 

product, and we therefore expect their concentrations to be related. Although previous literature 

has consistently summed the concentration measurements, it is possible that this assumption is 

not valid and should be considered further and evaluated in future research.  

In addition, we were not able to compare mean summed concentrations across all sites 

and species due to the missing data at sites 1 and 2. We do not have information about analyte 

concentrations from silver perch and sea trout at site 1 and sea trout at site 2. Without any 

information to inform about the possible values of the missing data there, we are not able to 

impute or simulate any representative data. This limited our analyses to only sites 3 and 4, which 

had complete data.   
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Ideally, we would be able to come up with a mean summed concentration of each 

chemical class by site and species. However, there are so much data below the detection limit 

that our model does not have enough flexibility to provide stable estimates necessary to answer 

our research question. In our highly censored setting, the maximum likelihood estimates have an 

identifiability problem, and the results may not be accurate due to all of the instability problems 

we are observing.   

 

Future Work   

 

In the future, we would like to adjust the Q-Q plots created to adjust for the censored 

data. This has been done previously for right-censored data by using the empirical distribution28. 

It is possible that this technique could be extended to left-censored data as well in order to 

provide further justification for using the log-normal distribution to obtain our maximum 

likelihood estimates. Although this would be interesting to examine, it was not explored in this 

thesis simply because we do not have an alternative distribution to use for this data. This shows 

another limitation of our analysis; we are limited in the potential distributions we can work with 

to obtain estimates of our maximum likelihood parameters.  

Future work could examine addressing our limit of detection challenges by utilizing a 

multiple imputation approach to impute the values that are below the limit of detection. Each 

concentration below the limit of detection could be replaced by 10 appropriate values (imputed 

from the range of the concentration levels below the limit of detection) resulting in 10 complete 

datasets15. Each complete (imputed) dataset would be analyzed, resulting in 10 mean estimates, 

which can be combined to create a final estimate15. The imputations involved are drawn 
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conditional on knowing the underlying distribution of the data; in our case, we assume that the 

data lies between 0 and the known limit of detection. Since each imputed concentration is an 

individual draw and not a mean, the estimate is valid for a wide range20. It is important to note 

that in for imputed values, there are two variance components, within- and between- 

imputation20, that together provide an estimate of the overall variance of our estimates. This 

technique is preferred over single imputation (such as substituting one half of the LOD), which 

does not provide a variance estimate.   

Multiple imputation relies on a distributional assumption for the values that are below the 

limit of detection. It uses the values in the reportable range to inform about the data points below 

the detection limit. However, as mentioned previously, less than half of the analytes have enough 

reportable data to inform accurately about the missing data. Therefore, we will not do multiple 

imputation in this thesis, as we likely need much more data in order for it to perform well. We 

cannot impute values below the detection limit if we do not know anything about the values 

above the limit. Previous literature has shown that maximum likelihood estimation and multiple 

imputation perform similarly and provide similar results21. Therefore, it is likely we will come to 

the same conclusions with both methods. Future work could also explore using a simulation to 

see the maximum amount of missingness that is tolerated to still produce uninflated variances. 

Finally, we would like to find a way to incorporate the data from sites 1 and 2, despite the fact 

that they did not have any data for some of the fish species.  

It would be helpful for future work to include a larger sample size with more composites 

in each site/species combination. We need much larger numbers of fish to provide the most 

reliable estimates. In addition, focusing only on exposures that are either present at higher levels 

in general or can be accurately detected at low levels would allow for more stable estimates. 
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Missing data and data below detection limits are common in environmental exposure studies. It 

is especially challenging when such a large number of analytes are being measured, and some are 

on differing scales than others. This work can help to inform about the level of missingness that 

can be tolerated, as well as the expected results from using maximum likelihood estimation in the 

presence of left-censored data. The estimation of fewer parameters results in more stable 

estimates, and this further improves with the removal of outliers. Even having a few reportable 

data points can result in stable estimates when only a few parameters are estimated. Future 

studies can focus on analytes that can be reported even in just a few samples if there are specific 

analytes of interest; however, the purpose of this exploratory study was to gain a general 

overview of POP levels in the prey of bottlenose dolphins by examining many different POPs.     

 

Conclusions 

 
Overall, we found there to be a significant difference in pesticide concentrations between 

species, but not site, using both models. Given that this occurred in both models, and pesticides 

consistently had a majority of analytes with stable standard errors, we believe these results are 

robust. In model [1], mean summed pesticide concentration was different only between mullet 

and sea trout and silver perch and sea trout; however, in model [2], it was different between all 

three species. In addition, PBDE concentrations were not significantly different between sites or 

species in either model. There were no stable estimates by analytes in the PBDE chemical class, 

due to such a large amount of the data being below the limit of detection. In general, we found 

that sea trout tend to have the lowest concentration across all chemical classes, except for 

Aroclor 1268, for which mullet has the lowest concentration. This is true for all models, both 

with and without outliers. Mullet and silver perch generally tend to have similar summed mean 



 

 

61 

concentration levels across the chemical classes, with mullet higher for DDTs and metals and 

silver perch higher for pesticides and PCBs.  

We found that there was a significant difference between species for almost all chemical 

classes when using model [2] when no interaction between site and species is present in the 

model. We do not have enough data presently to test if this is a fair assumption and these 

interaction terms can reasonably be removed from the model. For DDTs and metals, all three 

species are significantly different from each other both with and without outliers present in the 

data. Aluminum, iron, and zinc as a distinct group of metals also yield significantly different 

concentrations between all three species in model [2], while the concentrations of other metals 

are only significantly different between mullet and sea trout and silver perch and sea trout, again 

both with and without outliers present. PCB concentrations are only significantly different 

between mullet and silver perch and between sea trout and silver perch. Aroclor 1268 as a 

subgroup of PCBs shows significant differences in concentrations between mullet and silver 

perch and between sea trout and silver perch in model [2] when outliers are present in the data 

but shows significant differences between all three species when outliers are removed. In 

addition, Aroclor 1268 shows a significant difference in concentration between site using model 

[2] when outliers are removed, the only time this happens in the data. However, in looking at the 

actual mean summed concentrations of Aroclor 1268 at both sites, they do not appear to be that 

different in magnitude, so this result should be interpreted with caution.  

Given that there are no significant differences in concentrations between sites, and the 

values obtained from models [1] and [2] appear similar at sites 3 and 4, it is justifiable to create 

model [3]. In model [3], we can only examine trends across species in each chemical class. 

Results tend to be similar in the model with and without outliers, although the mean summed 
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concentrations are lower in the model without outliers. We see very large variances, particularly 

in the metals and PCB classes, although these also improve when outliers are removed. It is 

important to note, however, that site not being significantly different could be either because 

there truly is no difference in the contaminant levels between sites 3 and 4, or because we do not 

have enough power to detect any differences as a result of our small sample size and large 

amount of missing data.  

There was a very large discrepancy in variances of concentrations, particularly for metals 

and PCBs. Therefore, although there are means that may look significantly different, the variance 

is so large for some of the larger summed concentrations that it makes sense that the differences 

are not in fact statistically significant. For example, aluminum, zinc, and iron have high variance 

which drives the overall high metals variance. However, these estimates of variance (not 

standard deviation) are valid given the data and the overall large means of these specific metals. 

All of the analytes with large variances make sense from the data and are a result of either that 

analyte having a larger mean overall or having a wider spread of data. In addition, with so many 

PCB analytes measured, it follows that they would generally have larger variances. 

After summing together the mean summed concentrations of all five chemical classes, we 

find that sea trout is the least contaminated species overall. Mullet is the most contaminated 

species overall. This result is not consistent across chemical classes, as we find mullet has higher 

summed mean concentrations DDTs and metals and silver perch have higher summed mean 

concentrations for pesticides and PCBs. The summed mean concentrations for PBDEs are similar 

between silver perch and mullet, and it is not different which species has a higher summed mean 

concentration depending on the model and site. Bottlenose dolphins that consume greater 

amounts of mullet and silver perch as compared to sea trout are more likely to be exposed to 
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POPs that will then bioaccumulate in their blubber and result in adverse health effects. We know 

from previous research that bottlenose dolphins most commonly consume mullet7. Given that it 

was the most contaminated in our study, this could mean that the chemical exposure levels in the 

mullet are driving the high POP levels seen in bottlenose dolphins. Similarly, humans that 

consume more mullet and silver perch are more likely to be exposed to POPs. Interestingly, 

mullet was caught at all four sites used in the study and was not kept by the fisherman to eat. 

Silver perch was only missing at one site, compared with sea trout that was missing at two. Since 

sea trout was the least contaminated species overall, this is good as it shows humans may already 

be consuming less contaminated fish.       

 In closing, we note that the fact that so many of the analyte measures are below the limit 

of detection is good news from the perspective of pollutant exposures and environmental health. 

We want these exposure levels to be minimal. This means that fish have generally low exposure 

levels to the environmental toxicants, meaning that the humans consuming these fish are also 

hopefully exposed at low levels. We can question whether these fish are really contaminated to a 

point that would impact their health and human health. However, it is important to note here that 

the majority of the outliers removed from the analysis were silver perch at site 4. These fish may 

actually be contaminated. Given such low levels of exposure, it is possible that the impacts of 

these pollutants are minimal. However, this presents a statistical challenge for obtaining accurate 

and reliable estimates of concentrations within and between species and locations.   
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7. Appendix 
 
Appendix I. List of all analytes measured.  
 

Chemical Name Chemical Class 
2,4'-DDD DDTs 
2,4'-DDE DDTs 
2,4'-DDT DDTs 
4,4'-DDD DDTs 
4,4'-DDE DDTs 
4,4'-DDT DDTs 

Silver (Ag) Metals 
Aluminum (Al) Metals 

Arsenic (As) Metals 
Barium (Ba) Metals 

Beryllium (Be) Metals 
Cadmium (Cd) Metals 

Cobalt (Co) Metals 
Chromium (Cr) Metals 

Copper (Cu) Metals 
Iron (Fe) Metals 

Mercury (Hg) Metals 
Lithium (Li) Metals 

Manganese (Mn) Metals 
Nickel (Ni) Metals 
Lead (Pb) Metals 

Antimony (Sb) Metals 
Selenium (Se) Metals 

Tin (Sn) Metals 
Thallium (Tl) Metals 
Uranium (U) Metals 

Vanadium (V) Metals 
Zinc (Zn) Metals 
PBDE 100 PBDEs 
PBDE 138 PBDEs 
PBDE 153 PBDEs 
PBDE 154 PBDEs 
PBDE 17 PBDEs 
PBDE 183 PBDEs 
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Chemical Name Chemical Class 
PBDE 190 PBDEs 
PBDE 28 PBDEs 
PBDE 47 PBDEs 
PBDE 66 PBDEs 
PBDE 71 PBDEs 
PBDE 85 PBDEs 
PBDE 99 PBDEs 

PCB 1 PCBs 
PCB 101 PCBs 
PCB 103 PCBs 
PCB 104 PCBs 
PCB 105 PCBs 

PCB 108/107/123 PCBs 
PCB 110 PCBs 
PCB 114 PCBs 

PCB 118/106 PCBs 
PCB 119 PCBs 
PCB 12 PCBs 
PCB 126 PCBs 
PCB 128 PCBs 
PCB 130 PCBs 

PCB 132/153/168 PCBs 
PCB 138/158 PCBs 

PCB 141 PCBs 
PCB 146 PCBs 
PCB 149 PCBs 
PCB 15 PCBs 
PCB 151 PCBs 
PCB 154 PCBs 
PCB 156 PCBs 
PCB 157 PCBs 
PCB 159 PCBs 

PCB 164/163 PCBs 
PCB 165 PCBs 
PCB 167 PCBs 
PCB 169 PCBs 

PCB 170/190 PCBs 
PCB 172 PCBs 
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Chemical Name Chemical Class 
PCB 174 PCBs 
PCB 177 PCBs 
PCB 18 PCBs 

PCB 180/193 PCBs 
PCB 183 PCBs 
PCB 184 PCBs 
PCB 187 PCBs 
PCB 188 PCBs 
PCB 189 PCBs 
PCB 194 PCBs 
PCB 195 PCBs 
PCB 198 PCBs 
PCB 2 PCBs 
PCB 20 PCBs 

PCB 200 / IUPAC 201 PCBs 
PCB 201 / IUPAC 199 PCBs 

PCB 202 PCBs 
PCB 203/196 PCBs 

PCB 206 PCBs 
PCB 207 PCBs 
PCB 208 PCBs 
PCB 209 PCBs 
PCB 26 PCBs 

PCB 28/31 PCBs 
PCB 29 PCBs 
PCB 3 PCBs 
PCB 37 PCBs 
PCB 44 PCBs 
PCB 45 PCBs 

PCB 47/48 PCBs 
PCB 49 PCBs 
PCB 50 PCBs 
PCB 52 PCBs 

PCB 56/60 PCBs 
PCB 61 PCBs 
PCB 63 PCBs 
PCB 66 PCBs 
PCB 69 PCBs 
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Chemical Name Chemical Class 
PCB 70 PCBs 
PCB 74 PCBs 
PCB 76 PCBs 
PCB 77 PCBs 
PCB 8/5 PCBs 
PCB 81 PCBs 
PCB 82 PCBs 
PCB 84 PCBs 

PCB 87/115 PCBs 
PCB 88 PCBs 

PCB 89/90 PCBs 
PCB 9 PCBs 
PCB 92 PCBs 
PCB 95 PCBs 
PCB 99 PCBs 
Aldrin Pesticides 

Alpha-HCH Pesticides 
Beta-HCH Pesticides 

Chlorpyrifos Pesticides 
Cis-chlordane (alpha-chlordane) Pesticides 

Cis-nonachlor Pesticides 
Dieldrin Pesticides 

Endosulfan I Pesticides 
Endosulfan II Pesticides 

Endosulfan Sulfate Pesticides 
Endrin Pesticides 

Gamma-chlordane Pesticides 
Gamma-HCH (g-BHC, lindane) Pesticides 

Heptachlor Pesticides 
Heptachlor epoxide Pesticides 
Hexachlorobenzene Pesticides 

Mirex Pesticides 
Oxychlordane Pesticides 

Trans-nonachlor Pesticides 
PBDE 209 PBDEs 

PCB 101/90 PCBs 
PCB 106 PCBs 

PCB 107/123 PCBs 
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Chemical Name Chemical Class 
PCB 108 PCBs 
PCB 115 PCBs 
PCB 118 PCBs 
PCB 138 PCBs 
PCB 158 PCBs 
PCB 163 PCBs 
PCB 164 PCBs 
PCB 170 PCBs 
PCB 180 PCBs 
PCB 190 PCBs 
PCB 193 PCBs 
PCB 28 PCBs 
PCB 31 PCBs 
PCB 47 PCBs 
PCB 48 PCBs 
PCB 5 PCBs 
PCB 56 PCBs 
PCB 60 PCBs 

PCB 63/76 PCBs 
PCB 8 PCBs 
PCB 87 PCBs 

PCB 88/95 PCBs 
PCB 92/84/89 PCBs 
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Appendix II. Percent of total measurements within each analyte that are considered reportable 
data. 
 
Percent of Total Analyte Measurements that 
are Reportable 

Percent of all Analytes 

0% 30.99% 
5.56% 4.09% 
8.33% 1.75% 
11.11% 7.02% 
16.67% 3.51% 
22.22% 1.17% 
25% 0.58% 
27.78% 0.58% 
33.33% 6.43% 
38.89% 1.17% 
41.67% 0.58% 
44.44% 2.92% 
50% 2.34% 
55.56% 2.92% 
58.33% 0.58% 
61.11% 2.34% 
66.67% 3.51% 
72.22% 1.17% 
77.78% 1.17% 
83.33% 0.58% 
88.89% 2.92% 
91.67% 1.17% 
94.44% 2.92% 
100% 17.54% 
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Appendix III. Simulated results from a log-normal distribution. 
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Appendix IV. Residual plots using half of the LOD as the outcome.  
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Appendix V. Residual plots using the LOD as the outcome variable. 
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Appendix VI. Example code from SAS® PROC NLMIXED. 
 

%macro mlEstimator(dsn); 
 
PROC NLMIXED data=&dsn maxiter=100 maxfunc=1000 tech=trureg cov;   
parms mu=2 alphMullet=2 alphSeaTrout=2 bet3=2 gamm3Mullet=2 gamm3SeaTrout=2 
sigsq=2; 
bounds sigsq >= 0; 
pi = constant("pi"); 
f1=1; 
eta1 = mu + alphMullet*effA + alphSeaTrout*effB + bet3*eff3 + gamm3Mullet*A3ef + 
gamm3SeaTrout*B3ef; 
if censored=0 then do; 
f1 = (1 / sqrt(2*pi*sigsq))*exp(-0.5*((log_concentration-eta1)**2)/sigsq); 
end;    
else if censored=1 then do;  
    f1 = CDF("NORMAL", log_concentration, eta1, sqrt(sigsq)); 
end; 
ll = log(f1); 
model log_concentration ~ general(ll); 
title "Maximum Likelihood Estimation for &dsn"; 
run; 
 
%mend mlEstimator; 
 
Appendix VII. Comparing across fish species, substituting the LOD for values lower than the 
detection limit. 
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Appendix VIII. Comparing across site, substituting the LOD for values lower than the detection 
limit. 
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Appendix IX. Comparing summed concentrations of each chemical class by site and species, 
substituting the LOD for values below the limit of detection. 
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