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Abstract

Region of Interest Image Reconstructions using IR Tools

By Sherry X. Huang

In this thesis, we consider large-scale, ill-posed inverse problems that arise

in image processing applications. These problems can be modeled as linear

systems, where the matrix that models the forward problem is extremely

ill-conditioned. In addition, the observed data is contaminated by noise.

Due to the ill-conditioning of the matrix and the presence of noise in the ob-

served data, it is necessary to employ regularization to compute a meaningful

approximation of the solution.

Although there has been some very effective but expensive image re-

construction algorithm, those algorithms cannot be applied to large images

because of their cost. This thesis focuses on using inexpensive, fast methods

to obtain an initial image reconstruction first, combined with more expensive

methods to improve specific subimages, called region of interest (ROI) areas

in the image.
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Chapter 1

Introduction

A digital image, commonly obtained from cameras, scanners, or printers,

is a rectangular grid of pixels. In its numeric representation, the image is a

matrix, where each entry of the matrix contains a specific pixel value. Those

pixel values are then scaled according to the colormap to represent different

colors visually.

In real applications, it is very likely that a measured image is blurred, such

as blur caused by defocus aberration or motion blur. The blur is typically

modeled as the convolution of a point spread function (PSF). We assume the

point spread function can be modeled mathematically. Given the degraded

image and the blurring function, we want to find the true unknown image.

This is an example of an inverse problem. In most cases, there is insufficient

information in the blurred image to uniquely determine a plausible original

image, making it an ill-posed problem. In addition, the blurred image often
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contains additional noise which complicates the task of determining the orig-

inal image. This is generally solved by the use of a regularization method to

attempt to eliminate implausible solutions.

1.1 Mathematical Background

In this section we provide some mathematical background material that

will be needed throughout the thesis.

1.1.1 Inverse Problem

In image processing applications, when an unknown image is recorded,

it is often degraded by blur. A mathematical model of this problem can be

expressed in the continuous setting as an integral equation [8] [15]:

b(s) =

∫ d

c

a(s, t)x(t)dt

where the function b(s) is the observed (blurred) image, x(t) is the original

image, and the kernel a(s, t) is a function that specifies how the points in the

image are distorted, and is therefore called the point spread function (PSF).

In a realistic setting, images are collected only at discrete points (pixels)

and are also only available in a finite region. Therefore, in real cases, one

normally work directly with the discrete model of this linear system obtained

from discretization of the continuous model.
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1.1.2 Discretization Issues

Recall that in numerical analysis, a quadrature rule gives an approximation

of the definite integral of a function, usually stated as a weighted sum of

function values at specified points within the domain of integration

R(x) ≡
N∑
i=0

wix(ti)

given points t0 < t1 < ...tN and weights w0, w1, ...wN .

Therefore, the integral equation can be approximated as follows

b(si) =

∫ d

c

a(si, t)x(t)dt ≈
N∑
j=0

wja(si, tj)x(tj)

For i = 0, 1, ...N , this will give separate linear equations. Hence the above

discretization method leads to a matrix equation of the form

Ax = b

where A is a matrix (called the PSF or blurring matrix) that models the

blurring operation:

A =



w1a(s1, t1) w2a(s1, t2) . . . wNa(s1, tN)

w1a(s2, t1) w2a(s2, t2) . . . wNa(s2, tN)

...

w1a(sN , t1) w2a(sN , t2) . . . wNa(sN , tN)
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x and b are vectors that represent the true and blurred images:

x =



x(t1)

x(t2)

...

x(tN)


b =



b(s1)

b(s2)

...

b(sN)



1.2 Conditioning of the Problem

In the mathematical model, we might assume that the PSF matrix A and

b are known. However, in almost all cases, there is insufficient information

in the blurred image, thus two problems exist:

• There may not not be a unique solution, x. Hence there may not be

a unique image corresponding to the given blurred image and point

spread function.

• A small change in the observed image, b, can lead to large changes in

the solution, x.

Image restoration is thus called an ill-posed problem.

In the equivalent matrix-vector equation obtained from the ill-posed in-

tegral equation, we can obtain the Singular Value Decomposition (SVD) of

the PSF matrix A. The SVD is defined as follows:
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• Singular Value Decomposition. If A is an n × n matrix, then

there exist n× n orthogonal matrices U and V , and a diagonal matrix

Σ = diag(σ1, σ2, ...σn) such that

A = UΣV T

where σ1 ≥ σ2 ≥ · · ·σn ≥ 0 are called singular values of A, and columns

of U and V are called singular vectors of A.

By definition, if the condition number of A, κ2(A) = σ1/σn is large, then the

matrix A is said to be ill-conditioned.

It turns out that if the matrix A comes from discretizing an ill-posed

problem, as in the case in image restoration, then the SVD of A typically

has the following properties:

• A is very ill-conditioned. That is, κ2(A) = σ1/σn is large.

• The singular values decay smoothly to zero. So it is difficult to deter-

mine a cutoff between large and small singular values.

• The singular vectors u and v tend to oscillate more and more as i

increases, causing the true image to be hidden by the noise - discussed

in Chapter 2.

To summarize: The image restoration problem is an ill-posed problem, and

the PSF matrix A is also ill-conditioned in the sense that the singular value

of A gradually decay and cluster at zero.
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1.3 Computational Difficulties

We are concerned with large-scale problems, where the PSF matrix A

is normally represented by a sparse, ill-conditioned matrix. Also, in most

cases, even the observed blurred image b = Ax is not known exactly. Rather,

the observed data is typically of the form

bη = b+ η = Ax+ η

where η is a vector representing noise or measurement errors.

Recall the singular value decomposition (SVD) for A exists:

A = UΣV T

where U and V are orthogonal matrices. By definition of orthogonal matrix,

there are orthonormal bases :

{u1, u2, ...un} {v1, v2, ...vn}

for Rn, in which we can always find scalar coefficients xi and ηi such that

n∑
i=1

xivi = x
n∑
i=1

ηiui = η

6



Then, bη can be written as

bη = Ax+ η = A
n∑
i=1

xivi +
n∑
i=1

ηiui

Since from A = UΣV T , the property Avi = σiui holds. Hence

bη =
n∑
i=1

σiuixi +
n∑
i=1

ηiui =
n∑
i=1

(σixi + ηi)ui

In idealistic cases, the observed image b does not contain any noise in it,

such that Axe = b. We can reconstruct the true image xe using

xe = A−1b = V Σ−1UT b =
n∑
i=1

uTi b

σi
vi

In real applications, however, only bη can be obtained. If we use what we

really have, namely A and observed image with noise bη to compute x, the

computed solution will be of the form:

x = A−1bη =
n∑
i=1

uTi bη
σi

vi =
n∑
i=1

uTi (σixi + ηi)ui
σi

vi =
n∑
i=1

σixi + ηi
σi

vi

x =
n∑
i=1

(xi +
ηi
σi

)vi

Since A is very ill-conditioned, its singular values, σi, decay smoothly to zero.

When i is large, σi is very small, and the noise contributions ηi for large

indices i are highly magnified. Thus the computed solution is dominated by
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noise.

The computed solution x also has the variant form:

x = A−1bη = A−1(Axe + η) = xe + A−1η = xe +
n∑
i=1

uTi η

σi
vi

Since the singular vectors ui and vi tend to oscillate more as i increases, the

exact true image xe is also hidden by such oscillation.

As discussed above, a potential problem of image deblurring is that the

computed x is very sensitive to noise η. Regularization is therefore needed

to produce stable solutions to this problem.

So far, we have covered some background on inverse problem, some basics

of numerical linear algebra, and the need to use regularization. We intro-

duce two basic regularization methods in Chapter 2: Truncated Singular

Value Decomposition and Classical Tikhonov regularization. In Chapter 3,

we provide some background materials on image deblurring problems, ex-

amples are also presented. Then some iterative methods that can be used

to solve those image deblurring problems are discussed in Chapter 4. After

that, we introduce the new idea of image reconstruction: region of interest

(ROI) computations. This idea is discussed in detail in Chapter 5, where

new approaches and tools are described. These tools will be added to the IR

Tools software package [6]. Finally, concluding remarks are given in Chapter

6.
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Chapter 2

Regularization

Several approaches can be applied to reduce noise contributions in the

reconstruction of x. Discrete regularization is a scheme to “filter out” the

influence of noise in those noise dominated terms. In particular, a desirable,

regularized solution xreg may have the following form:

xreg =
n∑
i=1

φi
σixi + ηi

σi
vi

where φi is a scalar called the “filter factor”. It has value between 0 and 1,

and satisfies the property that as i increases, the value of φi tends to zero

in such a way that the increasing noise contribution in
σixi + ηi

σi
vi is filtered

out accordingly.

There are various regularization schemes, depending on how the filter

factors φi are defined.

9



2.1 Truncated SVD

One simple regularization method is implemented by replacing all but

the first k “large” singular values of A by zero. Therefore, in a truncated

SVD (TSVD) of A, only the first k columns of U and V are included in the

solution:

xreg =
k∑
i=1

bTui
σi

vi

where k ≤ n and b is the observed blurred image with noise.

Suppose we truncate all singular values of A that fall below a certain

tolerance, τ , that is, σk ≥ τ ≥ σk+1. The vector of filter factors, φ, is then

defined as that the first k values of the vector are 1, and the rest are zero.

2.2 Tikhonov Regularization

More generally, regularization is achieved by solving a penalized lease-

squares problem of the form

min
x
{‖Ax− b‖22 + λ2Ω(x)}

where λ is the regularization parameter that controls the “smoothness” of

the regularized solution, and penalty term Ω(x) is chosen to reflect a specific

type of regularization that is suited for the problem.

In the case where Ω(x) = ‖x‖22, the filtering method is called the classical

10



Tikhonov Regularization. It can be shown that solving the least squares (LS)

problem

min
x
{‖Ax− b‖22 + λ2‖x‖22}

is equivalent to solve the following LS problem

min
x

∥∥∥∥∥∥∥
A
λI

x−
b

0


∥∥∥∥∥∥∥
2

2

Recall solving the normal equation gives the solution to a LS problem.

The normal equation for the problem above is given by

(ATA+ λ2I)xreg = AT b

According to the SVD of A, the normal equation can be transformed as

follows:

(V ΣTΣV T + λ2V V T )xreg = V ΣTUT b

V (ΣTΣ + λ2)V Txreg = V ΣTUT b

diag(σ2
i + λ2)V Txreg = diag(σi)U

T b

11



Multiply the inverse of the diagonal matrix on both sides:

V Txreg = diag

(
1

σ2
i + λ2

)
diag(σi)U

T b

xreg = V diag

(
σi

σ2
i + λ2

)
UT b

xreg =
n∑
i=1

σiu
T
i b

σ2
i + λ2

vi

Hence the Tikhonov regularized solution is

xreg =
n∑
i=1

φi
uTi b

σi
vi

where the filter factors φi for this case are φi =
σ2
i

σ2
i + λ2

.

To summarize: The TSVD method corresponds to sharp filter that simply

cuts off the last (n − k) components which are dominated by noise beyond

some tolerance. In Tikhonov regularization, the filter factor is smooth that

damps the components corresponding to σi < λ.
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Chapter 3

Image Deblurring

Image deblurring, which is sometimes referred to as image restoration

or deconvolution, is the process of removing blurs and noise from degraded

images to recover the original true images. This field of image processing

technology becomes increasingly significant in many scientific applications

such as astronomy [1] [3] [20], medical imaging [1] [18], and microscopy [21].

For example, viewing distant star fields, space vehicles, and satellites

using ground based telescopes and obtaining pictures from it may be bothered

by the distortion of the real view caused by the random interfering light rays

coming from various sources, or the turbulent mixing in the atmosphere of

Earth which causes variations of the optical refractive index. Due to such

factors, various types of blurs may be incurred. We will use the MATLAB

package - IR tools [6], to generate a series of large-scale image deblurring test

problems [9].
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3.1 Spacially Invariant Blur

The simpler type of blurs are spacially invariant blurs, which are inde-

pendent of the position of the point source. In this case, one point spread

function can completely describe the blurring operation.

We can use IR tools to generate the following spacially invariant blurring

operations:

− PRblurdefocus - the blur caused by being out of focus

− PRblurgauss - result of blurring an image by a Gaussian function

− PRblurshake - the blur caused by random shaking of a camera

− PRblurspeckle - the blur caused by atmospheric turbulence

To start, call the test problems in the IR tools package using the following

MATLAB statement:

[A, b, x, ProbInfo] = PRblur (n, options);

Fill the blank indicated by with the name corresponding to one of the

blurs listed above. The two inputs in the function are optional. n is the size

of the image and can be either a scalar n (so that the size of the image is

n × n), or a vector of the form [nrow ncol] (so that the size of image is

nrow × ncol). If n is not specified, the default value is 256. option is a

structure that can be used to set the optional fields such as:

− trueImage - image to be used in this test problem; the package contains

‘hst’(default, image of Hubble space telescope), ‘satellite’...

14



− BlurLevel - severity of the blur; may have value ‘mild’, ‘medium’

(default), or ‘severe’

− BC - specify boundary condition *

− CommitCrime - whether to get the exact system Ax = b *

For the last two, recall that each pixel in the blurred image is formed by

integrating a PSF with pixel values of the true image. However, pixels of

the blurred image near the boundary of the “viewable” region are affected

by information outside the region we can observe. Therefore, in constructing

matrix A, one needs to incorporate boundary conditions to model how the

image scene extends beyond the boundaries. When CommitCrime option is

set to ‘On’, it means the specified boundary condition used to construct A

exactly model how x behaves outside the viewable region. However, this

situation is unrealistic.

For simplicity, we will only consider various values of trueImage and

BlurLevel to generate our test problems.

3.1.1 Example: Satellite

We can generate a speckle blur test problem, choose the non-default image

of satellite of default size, and set the blur level to severe:

options = PRset(‘trueImage’, ‘satellite’, ‘BlurLevel’, ‘severe’);

[A, b, x, ProbInfo] = PRblurspeckle(options);

Since it is a spacially invariant blur, this function returns a PSF matrix

15



A, the vector representation of the blurred image b, and the true image x.

Information of this test problem is stored as well. Then the vectors b and x

produced by this test problem can be displayed using the following command:

PRshowb(b, ProbInfo);

PRshowx(x, ProbInfo);

We can also display the visual effect of the PSF using either of the functions:

PRshowx(ProbInfo.psf, ProbInfo);

mesh(ProbInfo.psf);

where ProbInfo.psf is the point spread function.

True Image Blurred Image The PSF

Figure 3.1: Example of an image deblurring problem, where the blur is caused
by atmospheric turbulence with a severe blurring level. The PSF which defines
the matrix A is shown on the right.

3.1.2 Example: Dots with Noise

We now generate another test problem, using the non-default image of

small Gaussian shaped dots with default blurring level. Show the correspond-

16



ing blurred image from a simulation for camera shaking motion:

options = PRset(‘trueImage’, ‘dotk’);

[A, b, x, ProbInfo] = PRblurshake (options);

True Image Blurred Image

Figure 3.2: Example of an image deblurring problem, where the blur is caused
by random shaking of a camera with a medium blurring level.

Adding noise to the data

Use built-in IR toolds function PRnoise to add noise to the blurred image

data b:

[bn, NoiseInfo] = PRnoise(b, NoiseLevel, kind);

where the output bn = b + noise is the blurred image contaminated by

noise. The information about the noise is stored in structure NoiseInfo,

such as the vector of perturbations noise.

17



The inputs NoiseLevel and kind are optional. The NoiseLevel defines

the relative level of noise, with default value NoiseLevel = 0.01. Given the

noise level, the noise vector noise is scaled in such a way that

‖noise‖2/‖b‖2 = NoiseLevel

Three kinds of noise that can be added to the data b are listed as follows:

− ‘gauss’ (default) - Gaussian noise, created by means of MATLAB’s

randn function.

− ‘laplace’l - Laplacian noise, generated as follows [6]:

r = rand(numel(b),1);

r = sign(0.5-r).*(1/sqrt(2)).*log(2*min(r,1-r));

noise = ((NoiseLevel*norm(b(:)))/norm(r))*r;

− ‘multiplicative’ - Multiplicative noise, where each element of bn

equals the corresponding element of b times a random variable following

a Gamma distribution with mean 1, scaled to approximately the desired

noise level.

For example, we can then add Gauss and Laplacian noise to the dots

image and specify NoiseLevel = 0.01:

NoiseLevel = 0.01

[bn1, NoiseInfo] = PRnoise(b, NoiseLevel, ‘gauss’);

[bn2, NoiseInfo] = PRnoise(b, NoiseLevel, ‘laplace’);

18



Blurred Image Blurred Image with Gaussian noise

Figure 3.3: The blurred dots image caused by random shaking of a camera,
compared to the blurred image with Gaussian noise.

Blurred Image Blurred Image with Laplacian noise

Figure 3.4: The blurred dots image caused by random shaking of a camera,
compared to the blurred image with Laplacian noise.
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3.2 Spacially Variant Blur

The situation is more difficult if the blurs are spacially variant, where the

blurs depend on the positions. In this case, a single PSF does not completely

describe the blurring operation.

3.2.1 Example: Dots with Rotation Blur

For example, we generate a test problem of spacially variant blur, using

the following blurring operation:

− PRblurrotation - a spacially variant rotational motion blur around

the center of the image

Set the blurring level to severe and obtain the corresponding blurred image:

options = PRset(‘trueImage’, ‘dotk’, ‘Blurlevel’, ‘severe’);

[A, b, x, ProbInfo] = PRblurrotation (options);

Notice in this case, a single PSF matrix cannot completely describe the blur-

ring operation, and the output A is a sparse matrix. Also notice it takes

much longer to generate this test problem.
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True Image Blurred Image

Figure 3.5: Example of an image deblurring problem, where the blur is caused
by rotation around the center of the image, with a severe blurring level.
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Chapter 4

Iterative Methods for Image

Deblurring

We have introduced some basic regularization techniques that help to

filter out noise contributions in the computed solution, such as truncated

SVD and Tikhonov regularization. A different way to achieve regularization

is to apply an iterative method on the fit-to-data term

min
x
‖Ax− b‖22

and terminate the iteration when a desired approximation is obtained, before

noise starts to show up in the solution. This method is often referred to as

iterative regularization. Iterative regularization allows for the incorporation

of various types of prior knowledge about the class of feasible solutions, and
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it is shown that noise effects can be minimized by terminating the algorithms

after a finite number of iterations.

IR tools package contains several iterative solvers to the image deblurring

problem [12]. We will use some of them in our region of interest (ROI)

computations, as discussed in Chapter 5.

4.1 Iterative Solvers in IR Tools

Methods relying on semi-convergence

In methods relying on semi-convergence mechanism, regularization can

be enforced by terminating the iteration before its convergence to the un-

regularized and undesired least squares solution. Some examples of iterative

methods in IR tools based on semi-convergence are listed below:

− IRart - The algebraic reconstruction technique also known as Kacz-

marz’s method.

− IRcgls - The conjugate gradient least squares (CGLS) algorithm ap-

plied implicitly to the normal equations.

− IRnnfcgls - The implementation of the flexible CGLS algorithm that

ensures convergence to a non-negative solution.
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Methods solving penalized LS problems

Some iterative methods relying on semi-convergence can also be used to

solve the penalized least squares problems

min
x
{‖Ax− b‖22 + λ2Ω(x)}

with Ω(x) = ‖Lx‖22 (i.e. Tikhonov Regularization). In this case, such solvers

ignore the semi-convergence mechanism and instead, rely on the convergence

to the penalized solution [7]. For example,

− IRcgls - When solving penalized least squares problems, the matrix L

in ‖Lx‖22 is not required to be the identity matrix.

− IRfista - The first-order optimal method that solves the Tikhonov

problem with box and/or energy constraints. L can only be the identity

matrix [2].

Hybrid Krylov subspace methods

Penalized least squares problems can also be solved in hybrid Krylov

subspace methods [5] [4]. In hybrid Krylov subspace methods, the penaliza-

tion is moved from the “original problem” as shown above to the “projected

problem” - the least squares problem restricted to the Krylov subspace.

There is one main advantage of doing so: the search for a good regulariza-

tion parameter, λ, that controls the “smoothness” of the regularized solution,
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is done on the projected subproblem. This means the cost of computation is

relatively small since the projected problem has relatively small dimensions

and is less computationally demanding than the original large-scale problem.

The regularization parameter in hybrid Krylov subspace problem is iteration

dependent, and is adjusted as the Krylov subspace grows. When the dis-

crepancy principle is ensured, the iteration stops. Following hybrid Krylov

subspace methods are included in IR tools:

− IRhybrid lsqr - Hybrid version of built-in lsqr function that applies

a 2-norm penalty term to the projected problem based on the Krylov

subspace [19].

The underlying lsqr method explicitly builds an orthonormal basis for this

space, which allows us to easily formilate and solve the penalized projected

problem. We will use this hybrid Krylov subspace method as our “inex-

pensive”, fast method to obtain an initial image reconstruction in Chapter

5.

4.2 Solve 2D Image Deblurring Problems

In IR tools, the iterative solvers are called as follows:

[X, Info] = IR (A, b, K, options);

where A is the discrete forward operator and is of one of the forms: (1) a full

or sparse matrix; (2) a user-defined function handle; (3) a matrix object that
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performs the matrix × vector operation. b is the measured data, probably

with noise in it.

K and options are optional inputs. K is an integer vector that specifies

which iterations during the process are returned and stored as columns in X.

The maximum number of iterations is assumed to be the largest element in

K. options is a structure that defines the algorithm parameters, including:

− x0 - initial guess for the iterations, with a default value zero vector.

− x true - true solution to the problem, which allows the function to

return error norms (relative) with respect to the provided true solution

at each iteration.

− NoiseLevel - the information that can be used along with the discrep-

ancy rule to determine a good stopping iteration, without knowing the

true image.

− RegParam - regularization parameter λ, to be employed if CGLS is used

to solve the regularized problem.

− NoStop - specifies whether the iterations should proceed after a stop-

ping criterion has been satisfied.

There are other parameters in the options structure, but we will not cover

them in this thesis.

For the outputs, X is the matrix of computed solutions, stored column-

wise, corresponding to the kth iterations listed in K. Information about the
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behavior of the solver is stored in Info, such as:

− its - number of the last computed iteration.

− StopFlag - a string that describes the stopping conditions and is of

one of the following: (1) reached max number of iterations; (2) residual

tolerance (discrepancy principle) satisfied; (3) normal equation residual

tolerance satisfied.

− Enrm - relative error norms at each iteration (requires x true)

− StopReg - struct containing the information about the solution that

satisfies the stopping criterion: (1) X - the solution satisfying the stop

criterion; (2) It - iteration where the stopping criterion is satisfied; (3)

Enrm - the best relative error.

− BestReg - struct containing the information about the solution that

minimizes the relative error among all iterations (requires x true): (1)

X - the best solution; (2) It - iteration where the best solution is at-

tained; (3) Enrm - best relative error that can be achieved.

Again, these are just some of the parameters stored in Info. For details, see

[6].

If optional inputs are not provided, default values are used for maximum

number of iterations (100), regularization parameters, and stopping criteria,

depending on different solvers being called. In this case, X only contains the

approximate solution at the final iteration. If additional information about
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the test problem is provided in options, additional information about the

behavior of the iterative solver can be stored in the output structure Info.

For instance, if the true solution to the problem, x true is provided, then the

relative errors can be computed at each iteration and returned in Info.Enrm,

and the best regularized solution is also saved in Info.BestReg.X.

4.2.1 Example: Hubble Space Telescope Deblurring

by CGLS Method

First, generate a speckle blur test problem, choose the default image of

Hubble space telescope, set the blur level to mild, and then add noise to the

data:

options = PRset(‘BlurLevel’, ‘mild’);

[A, b, x, ProbInfo] = PRblurspeckle (options);

NoiseLevel = 0.01;

[bn, NoiseInfo] = PRnoise (b, NoiseLevel, ‘gauss’);

We begin the deblurring process by running IRcgls without specifying

any optional parameters except the true image. So the maximum number

of iterations is the default value (100), iteration continues until the stop-

ping condition for IRcgls is reached, and the output X only contains the

approximate solution at the final iteration.

options = IRset(‘x true’, x);

28



True Image Blurred Image with Noise

Figure 4.1: Example of an image deblurring problem, where the blur is caused
by atmospheric turbulence. The blurred image with a mild blurring level and noise
is shown on the right.

[xvec, infocgls] = IRcgls(A, bn, options);

We obtain the information about the behavior of the solver:

infocgls.its = 100

infocgls.BestReg.It = 23

It shows that the convergence criteria for IRcgls is not satisfied, so the

solver reached the maximum number of iterations and thus xvec is a vector

representation of the solution only at iteration 100. However, among all

the 100 iterations, the solution with the minimum relative error to the true

solution is obtained at iteration 23, which is saved in Info.BestReg.X.

A plot of the relative errors can be displayed, with the iteration where

the optimal solution is reached being marked:

plot(infocgls.Enrm);
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plot(infocgls.BestReg.It, min(infocgls.Enrm), ‘mo’);

In figure 4.2, the semi-convergence behavior of CGLS is clearly shown. We

can observe that the smallest relative error is attained at iteration 23.

Figure 4.2: Relative error plot for image deblurring problem from the Hubble
space telescope image with a mild speckle blur. The blue line shows the relative
errors of IRcgls at each iteration, the magenta circle marks the iteration 23 where
the best solution is achieved, and the magenta square marks the iteration 16 where
the best solution based on discrepancy principle (true image is not provided) is
obtained.

In the case when true image is not known, we are unable to compare the

relative errors and find a best solution. However, we can use other schemes

such as noise level to determine a good stopping iteration. Basically, the

knowledge of noise level can be used along with the discrepancy principle to

help determine a good stopping point for the iterations. Hence in this case,

the iterative solver will not reach to the maximum number of iterations, but

will stop at where the ‘best solution’ chosen by the NoiseLevel along with
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the discrepancy rule is obtained.

Compared to previous set of the options, we need to add information of

the noise level:

options = IRset(options, ‘NoiseLevel’, 0.01);

[Xdp, infocgls dp] = IRcgls(A, bn, options);

We obtain the information about the behavior of the solver:

infocgls dp.its = 16

Notice this time, since NoiseLevel is applied to help determine a stopping

iteration, the solver has only run for total 16 iterations. The output Xdp thus

stores the solution at iteration 16.

Display the best solution with minimum relative error and the optimal

solution based on discrepancy rule when true image is not provided:

PRshowx(infocgls.BestReg.X, ProbInfo);

PRshowx(xdp, ProbInfo);

Figure 4.3: Blurred Hubble space telescope image, compared with a restored
image using 23 iteration of IRcgls, and a restored image using 16 iteration of
IRcgls.
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4.2.2 Example: Hubble Space Telescope Deblurring

by Hybrid Method

We can also restore the blurred Hubble space telescope image with the

hybrid method. The hybrid method can recommend a regularization param-

eter, which is not provided by those non-hybrid methods such as IRcgls and

IRfista. Hence the hybrid method is more efficient in the case when we

need to have the method recommend a regularization parameter. In Chapter

5, we use a hybrid method in our initial reconstruction of the image.

Here, we restore the same Hubble space telescope image generated in

section 4.2.1 using the hybrid method in IR tools, IRhybrid lsqr, without

changing the value of options set before:

[Xhybrid, infohybrid] = IRhybrid lsqr(A, bn, options);

The method terminates at iteration 33, and the solution obtained at the rec-

ommended stopping point is thus saved in both Xhybrid and infohybrid.

StopReg.X. However, from x true we know that the optimal solution with

the minimum relative error is attained at iteration 30, as indicated by infohy

brid.BestReg.It.

Since this scheme enforces regularization at each iteration, it avoids the

semi-convergence behavior as seen in IRcgls. Rather, iterations keep con-

verging to a regularized solution and stop when the stopping criteria is
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Figure 4.4: Blurred Hubble space telescope image, compared with a restored
image using 33 iteration of IRhybrid lsqr (the solution at the recommended stop-
ping iteration).

satisfied (discrepancy rule). To show this method indeed avoids the semi-

convergence behavior, we modify the options structure to make it run more

iterations after the stopping condition is reached:

options = IRset(options, ‘NoStop’, ‘on’);

[Xhybrid2, infohybrid2] = IRhybrid lsqr(A, bn, options);

With the NoStop option turned on, the iterations continue to default

maximum number of 100, as indicated by infohybrid2.its. In this case,

the vector Xhybrid2 stores the solution at the final iteration 100. However,

the solution where the discrepancy principle is satisfied occurs at the rec-

ommended stopping iteration 33, as indicated by infohybrid2.StopReg.It,

and the solution is stored in infohybrid2.StopReg.X. What’s more, because

x true is specified among the input options, the method is able to compute
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and compare the relative error norms and thus find the optimal solution with

the minimum error to the true solution is attained at iteration 30, as indi-

cated by infohybrid2.BestReg.It and stored in infohybrid2.BestReg.X.

Figure 4.5: Relative error plot for image deblurring problem from the Hubble
space telescope image with a mild speckle blur. The blue line shows the relative
errors of IRhybrid lsqr at each iteration, the red circle marks the iteration 30
where the best solution is achieved, and the red cross marks the iteration 33 where
the solution at recommended stopping iteration (based on discrepancy principle)
is obtained.
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Chapter 5

Region of Interest

Computations

In chapter 4, we have discussed some iterative solvers in IR tools that

can be used for image deblurring problems. The methods we have illustrated

before are relatively inexpensive, and can be applied to the whole test image.

However, in real applications, sometimes there may be the need to recover

more details from the observed, blurred image, and thus further improvement

with more effective methods is required. Although IR tools indeed include

more effective restoration algorithms which can provide better reconstruction

quality, it may be unrealistic to apply those methods to the entire image

because of their cost, especially when the image is very large.

In this chapter, we claim that we can first obtain an initial restored image

using those inexpensive methods. After a general reconstruction of the image,
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we can further improve the quality of a small part of the image, called the

region of interest (ROI) area, in which we want more detailed reconstruction

[17]. We develop the techniques to (1) extract ROI subimages, that is, to

generate the corresponding PSF submatrices and subvectors; (2) apply more

expensive solvers to those subimages; (3) put together multiple improved

regions back to the initial restored image.

5.1 Extract ROI Subimages

Notice in order to extract a an ROI subimage which can be restored using

a more expensive solver, we need to construct a subproblem of the form

Asxs = bs

where As is the PSF submatrix corresponding to the subimage, bs is the

observed subimage (probably with some noise). We need to obtain As and bs

first from the original problem so that they can be provided as inputs when

we call the iterative solver.

Notice that for large scale problems, the matrix A is not formed explic-

itly. What’s more, since the matrix plays an effect on the entire true image,

extracting a submatrix from it which works only on the subimage is not a

trivial operation.
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5.1.1 Construction of the Subproblem

Assume the original image has dimension n× n. Consider the problem:

Ax = b

• A - PSF matrix, has size N ×N , where N = n2

• b - vector representation of measured image, has size N × 1

• x - unknown true image, has size N × 1

Also, assume the subimage has dimension r × c, and thus

• bs - vector representation of measured subimage, has size S × 1, where

S = rc

• xs - unknown true subimage, has size S × 1

Let E be a matrix with size N × S. Each column of E is a unit vector

(with only one nonzero entry equal to 1) corresponding to a pixel in the true

subimage, that is:

ETx = xs

where each row of ET extracts one entry from x to form one entry in xs.

Similarly, let Ē with size N × (N −S) have columns corresponding to the

pixels not in the subimage:

ĒTx = xt
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It can be shown that [
E Ē

]ET

ĒT

 = I

so we can transform the original problem into:

Ax = (A

[
E Ē

]
)(

ET

ĒT

x) = b

Ax =

[
Âs Ât

]xs
xt

 = b

where Âs = AE, and Ât = AĒ. Therefore, the subproblem we want to

construct is as follows:

Âsxs = b− Âtxt (1)

where b− Âtxt on the right hand side is the bs.

Constructing a smaller subproblem

Now, suppose we can partition the original problem Ax = b as follows:


A11 A12 A13

A21 A22 A23

A31 A32 A33



x1

x2

x3

 =


b1

b2

b3
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If x2 is our region of interest, based on the subproblem equation we have

discussed before, the problem can be written as:


A12

A22

A32

x2 =


b1

b2

b3

−

A11 A13

A21 A23

A31 A33


x1
x3



However, based on the property of partitioning of a matrix, we can continue

to construct a smaller subproblem of the form:

A22x2 = b2 − A21x1 − A23x3

Suppose a good initial approximation of the unknown true image can be

computed, and x1 and x3 have the values x̂1 and x̂3 respectively, we can

rewrite the above equation as:

A22x2 = b2 − A21x̂1 − A23x̂3 (2)

Therefore, As = A22, xs = x2, and bs = b2 − A21x̂1 − A23x̂3.

5.1.2 Compute the Subvector

We begin by constructing the subvector, bs, corresponding to the observed

subimage. Let Ê be a matrix, similarly defined to the matrix E, but each
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column is a unit vector corresponding to a row of A22. That is:

ÊT Âs = A22

where each row of ÊT extracts a row from Âs to form A22.

Then, after an initial reconstruction of the image, where x̂ is the com-

puted solution, we can obtain the bs in this way:

(1) Map the computed solution x̂ to a vector z in such a way that:

− z(i) = 0 if in the subimage

− z(i) = x̂(i) if outside the subimage

This can be achieved through the following operation:

z =

[
E Ē

] 0

ĒT

 x̂ =

[
E Ē

] 0

x̂t


Notice [E Ē] works as a permutation matrix that makes entries in z have

a correct order.

(2) Compute b̂ = b− Az, that is:

b̂ = b− A
[
E Ē

] 0

ĒT

 x̂ = b−
[
Âs Ât

] 0

ĒT

 x̂ = b− Âtxt
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Recall in equation (1), we have Âsxs = b − Âtxt. Hence b̂ = Âsxs, and we

have obtained the right hand side of the equation as follows:


A12

A22

A32

x2 =


b1

b2

b3

−

A11 A13

A21 A23

A31 A33


x1
x3



(3) Compute bs = ÊT b̂.

Recall ÊT is defined in such a way that ÊT Âs = A22. Hence we have

ÊT b̂ = ÊT Âsxs = A22xs, which is exactly the left hand side of the equation

(2):

A22x2 = b2 − A21x̂1 − A23x̂3

Therefore, bs = b2 − A21x̂1 − A23x̂3 is obtained.

5.1.3 Compute the Submatrix

Now we turn to construct the PSF submatrix, As, which works on the

subimage. According to equation (2) which describes the subproblem we

want to solve, As = A22. Hence A22 is what we try to compute. Recall the

definition of Ê:

ÊT Âs = A22

Since Âs = AE, we can get

A22 = ÊT Âs = ÊTAE
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Claim: It can be shown that A, E, and ÊT can all be decomposed into a

Kronecker product [13] [14].

• Kronecker product. If C is an m×n matrix, and D is a p×q matrix,

then the Kronecker product of C and D is the mp × nq matrix of the

form:

C ⊗D =



c11D c12D . . . c1nD

c21D c22D . . . c2nD

...

cm1D cm2D . . . cmnD


(1) For spacially invariant blurs, it is given that the N ×N matrix A can be

decomposed into [11]:

A =
k∑
i=1

Ci ⊗Di

where k = rank(P ), P is a p × p matrix containing the coefficients of the

PSF. Ci and Di are banded n× n Toeplitz matrices.

(2) Recall E is an N × S matrix which extracts xs from x. When it comes

to the two-dimensional image X where x = vec(X), we expect E of another

form to extract the submatrix Xs from X. Therefore, E has a Kronecker

product decomposition [10] [16]:

E = Ep ⊗ Eq
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where Ep is an n × r matrix with each column a unit vector corresponding

to a row of Xs, and Eq is an n × c matrix with each column a unit vector

corresponding to a column of Xs.

The decomposition above can be illustrated by a simple example. Recall

the Kronecker product has the following properties:

• (A⊗B)T = AT ⊗BT

• (A⊗B)(C ⊗D) = AC ⊗BD

• y = (A⊗B)x⇔ Y = BXAT where x = vec(X);

Since xs = ETx, replacing E with its Kronecker product form yields:

xs = (Ep ⊗ Eq)Tx

xs = (ET
p ⊗ ET

q )x

Xs = ET
q XEp

Suppose n = 4, r = 2, c = 2:

X =



x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44


Xs =

x22 x23

x32 x33
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Then Ep is a 4× 2 matrix of the form:

Ep =



0 0

1 0

0 1

0 0


where each column corresponds to one row of Xs, and ET

q is a 2× 4 matrix

of the form:

ET
q =

0 1 0 0

0 0 1 0


where each row corresponds to a column of Xs.

(3) Analogous to the Kronecker product decomposition of E, the matrix Ê

also has a Kronecker product decomposition:

Ê = Êp ⊗ Êq
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Therefore, here is how we compute the submatrix As

As = ÊTAE

= (Êp ⊗ Êq)T (
k∑
i=1

Ci ⊗Di)(Ep ⊗ Eq)

=
k∑
i=1

(ÊT
p CiEp)⊗ (ÊT

q DiEq)

5.2 ROI Experiments

5.2.1 Simple Square ROI Computation

We begin by a generating a test problem using IR tools. For simplicity,

we specify the size of the image to be relatively small (256× 256):

options = PRset(‘trueImage’, ‘satellite’);

[A, b, x, ProbInfo] = PRblurspeckle(256, options);

[bn, NoiseInfo] = PRnoise(b);

Next, we obtain an initial restored image using an inexpensive method, such

as the hybrid method discussed in Chapter 4:

[xinitial, IterInfo] = IRhybrid lsqr(A, bn);

Other than PRshowx and PRshowb, we can also display the image by convert-

ing the vector back to the two-dimensional image with the built-in MAT-

LAB function reshape, where the size vector of the matrix sz is provided in
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ProbInfo.xSize and ProbInfo.bSize, and display the data using imagesc.

Such as:

xImage = reshape(xinitial, ProbInfo.xSize);

imagesc(xImage);

We can also change the colormap of the displayed image with function

colormap.

Figure 5.1: The satellite image and its intial reconstruction using inexpensive
method.

Next, we specify a square as our region of interest area and want to further

improve the restoration quality of that region. We draw one arbitrary point

on the image as the center of the square using MATLAB function ginput.

Desired side length of subimage is also provided. In the function, we check

if the square is within the boundary. The coordinates of four corners of the

subimage will be returned to the vector region only if the square is in the

image. For example, we draw a 100× 100 square centered at (84, 172) in the

image.
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Figure 5.2: A square in the original image as the region of interest area. We will
further improve the reconstruction of this subimage with another more expensive
and effective method.

Afterwards, we use the coordinates stored in region to obtain the two-

dimensional subimage, and according to the subimage, we compute the sub-

vector bs and submatrix As following the steps discussed in Section 5.1.2 and

5.1.3.

After we compute the subvector and submatrix, we can then apply more

expensive solvers to the subimage. For instance, we can use the modified

flexible CGLS for nonnegativity constrained LS problems - IRnncgls in this

step:

xSubImage = xImage(region(1):region(2),region(3):region(4));

[xs, IterInfo2] = IRnnfcgls(As, bs);

SubImage = reshape(xs, size(xSubImage));
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Figure 5.3: The subimage after the initial reconstruction, compared with the
subimage after a further restoration using IRnncgls shown on the right.

We can “embed” the improved subimage back to the initial restored image

(rescaling of the colormap is required), which will be covered in another

example in Section 5.2.3.

5.2.2 Singular Value Analysis at Different Locations

Recall the PSF matrix is ill-conditioned, and the singular values of the

matrix smoothly “decay” to zero, making it hard to get the real matrix.

Generally, the faster the decay of the singular value, the harder to get the

real image. However, this is only for the “decay” case. If singular values

of the matrix suddenly “drop” very close to zero (that is, there is a clear

“cutoff” between large and small singular values), then the problem is much

easier to solve.

In this experiment, we analyze how the singular values of the submatrix
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change as the location and size of the subimage varies. Using the same test

problem generated in Section 5.2.1, we draw three arbitrary points on the

image as three different centers of the ROI squares with MATLAB func-

tion gintput. At each center, we set the initial size of the square as 11× 11.

Again, in the function obtaining the subimages, we check if the initial squares

are within the boundary. If any of the squares is outside the image, we draw

the three points again. The coordinates of four corners of each of the three

ROI squares will be stored in region, where each row represents coordinates

of one square. For instance, the three centers of the subimages are (90, 162),

(135, 123), (164, 190) respectively.

Figure 5.4: The three initial 11×11 ROI squares centered at (90, 162), (135, 123),
(164, 190) respectively.

Next, for each of the three locations, we increases the size of the square

from 11 × 11 to 21 × 21 with an increasing rate of the side length equal to
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2. At different sizes, we first check if the current square is within the image.

If any of them is outside the image, we will stop the iteration. Otherwise,

we continue to compute the submatrix from the current subimage, input the

submatrix to the MATLAB function full to convert it to a full storage or-

ganization, conduct singular value decomposition on this matrix with svd,

and plot its singular values. Here is what we obtain:

Figure 5.5: The singular values of the submatrices corresponding to subimages
centered at (90, 162). As the size of the subimage increases, compared to the
smaller one, the singular values of the submatrix of larger subimage generally tend
to decay flatter and slower. However, after some specific point, their singular
values suddenly decay much faster to very close to zero.

As it shows in Figure 5.5, we can see a general trend of the decay of
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singular values of submatrix, corresponding to different size of the subim-

age. In all cases, it seems there is no clear “cutoff” between large and small

singular values. The singular values of submatrices corresponding to larger

subimages tend to decay slower at first, but after some specific point, they

suddenly decay much faster to very close to zero. This change in decay pat-

tern makes the comparison more complicated. Hence smaller subimage does

not necessarily imply that the real image is easier to be restored.

When we compare the singular values at different locations, however,

there is no obvious difference. In fact, singular values of submatrices corre-

sponding to the same size of subimage at different locations seem to have

nearly the same decay. What’s more, they all present the similar trend as

size of the subimage increases, shown in Figure 5.6.
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Figure 5.6: The singular values decay of submatrices corresponding to subimages
centered at (135, 123), (164, 190) respectively.
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5.2.3 Multiple ROI Computation

Notice that the ROI does not necessarily need to be the square shape.

Based on previous experiments, we can design more complicated shaped ROIs

and obtain the restored subimage. For instance, we can design a “Z” shaped

region of interest area, which consists of three separate rectangle regions

combined together:

Figure 5.7: The true image with Z-shape ROI box on it, compared to the initially
reconstructed image shown on the right.

In the function we designed, we draw two points on the image with ginput

to specify the upper left corner and lower right corner of the “Z”. Then the

subimage is automatically generated according to some prescribed scale. For

each of the three subimages, we again apply a more expensive solver such as

IRnncgls to them to obtain an improved subimage:
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Figure 5.8: The true image of the first rectangle of the Z-shape ROI, the initially
reconstructed subregion, compared to the improved subimage shown on the right.

Figure 5.9: The true image of the second rectangle of the Z-shape ROI, the
initially reconstructed subregion, compared to the improved subimage shown on
the right.

Figure 5.10: The true image of the third rectangle of the Z-shape ROI, the
initially reconstructed subregion, compared to the improved subimage shown on
the right.

After that, the new task is to “embed” the improved subregion back to

the bigger initially reconstructed image. However, since the initially restored

image and those subregions may not have the same color scale, in order to

have a better visual effects, we need to rescale the color scales of the initially

reconstructed image and all improved subimages to the true image before we
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put multiple regions all together. To achieve this, we scale the max value of

pixels in each region to the max value of pixels in the original true image:

maxtrue = max(x);

maxintial = max(xImage(:));

xImage = maxtrue * xImage/maxinitial;

Suppose xlsSubImage is the improved subregion of one of the three rect-

angles that constitute the “Z”,

maxsub = max(xlsSubImage(:));

xlsSubImage = maxtrue * xlsSubImage/maxsub;

Once the rescaling is done, suppose the coordinates of four corners of the rect-

angle is stored in reg = [rs, rf, cs, cf], we can then put xlsSubImage

back into the initially restored image xImage by the following operation:

xImage2 = xImage;

xImage2(reg(1):reg(2), reg(3):reg(4)) = xlsSubImage;
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Figure 5.11: The resulting restored image of Gaussian dots after the initial re-
construction with inexpensive solver, combined with a Z-shape improved subregion
solved by more expensive method.

In real applications, we can modify the shape of the region of interest area

at our own ease, tailored to different needs. This will be very efficient, since

the only work to do is the modification of the function in which we obtain

the subimage(s) and return a vector region that stores coordinates of the

subimage. Also, notice that since we do not apply the expensive method

to the entire image but only apply it to specific subregion we are interested

in, the reconstruction process is much more effective and efficient than those

general image deblurring process, especially when the problem size is very

large.
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Chapter 6

Concluding Remarks

We have demonstrated how we can use the MATLAB package IR tools to

generate image deblurring test problems and reconstruct the blurred image

using various iterative solvers. After that, we proposed the idea that when we

want a more detailed reconstruction of a blurred image, instead of applying

the expensive method to the whole image after the initial restoration, which

has a high cost and low efficiency, we can specify a region of interest (ROI)

area. The ROI area is basically the part of the image we want more details,

and we can then apply the more expensive solver only to this part. We have

found efficient ways to construct the submatrix and subvector according to

the subimage. Numerical experiments were conducted to demonstrate and

compare the efficiency and quality of the image reconstruction.

In the experiments, we also analyzed how the singular values of the PSF

matrix (submatrix) change as the subimage varies in sizes and locations. It
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shows that although the pattern of singular values decay does not present a

significant difference when the same size of subimage is chosen at different

locations, the pattern of decay does varies when the size of the subimage

changes. As the size of the subimage increases, the decay generally tends

to be flatter and slower. However, for most test sizes of the subimage, after

some point, the singular values all suddenly decay to very close to zero. A

smaller subimage does not necessarily imply the real image is easier to be

restored, though.

We have extended the subimage restoration to multi-subregion recon-

struction with more complicated shapes. We demonstrated how we “em-

bedded” the improved image back to the initially restored image to make

it a whole one. We also claimed that we can modify the shape of the ROI

tailored to different needs, and this process is very efficient since we only

need to modify the function in which we obtain the coordinates of the subre-

gion(s). To conclude, ROI computation is much more effective and efficient

than the general image reconstruction using one method for all, especially in

large-scale image deblurring problems.
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