
Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for

an advanced degree from Emory University, I hereby grant to Emory University and

its agents the non-exclusive license to archive, make accessible, and display my thesis

or dissertation in whole or in part in all forms of media, now or hereafter known,

including display on the world wide web. I understand that I may select some access

restrictions as part of the online submission of this thesis or dissertation. I retain

all ownership rights to the copyright of the thesis or dissertation. I also retain the

right to use in future works (such as articles or books) all or part of this thesis or

dissertation.

Signature:

Samy Wu Fung Date



Large-Scale Parameter Estimation in Geophysics and Machine Learning

By

Samy Wu Fung

Doctor of Philosophy

Mathematics

Lars Ruthotto

Advisor

James Nagy

Committee Member

Joyce Ho

Committee Member

Accepted:

Lisa A. Tedesco, Ph.D.

Dean of the James T. Laney School of Graduate Studies

Date



Large-Scale Parameter Estimation in Geophysics and Machine Learning

By

Samy Wu Fung

A.A., Miami Dade College, 2011

B.Sc., Brown University, 2014

Advisor: Lars Ruthotto, Ph.D.

An abstract of

A dissertation submitted to the Faculty of the

James T. Laney School of Graduate Studies of Emory University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in Mathematics

2019



Abstract

Large-Scale Parameter Estimation in Geophysics and Machine Learning

By Samy Wu Fung

The ability to collect large amounts of data with relative ease has given rise to

new opportunities for scientific discovery. It has led to a new class of large-scale

parameter estimation problems in geophysics, machine learning, and numerous other

applications. Traditionally, parameter estimation aims to infer parameters in a phys-

ical model from indirect measurements, where the model is often given by a partial

differential equation (PDE). Here, we also phrase machine learning as a parameter

estimation problem, where rather than having a PDE as the model, we have a hypoth-

esis function; for instance, the hypothesis function may be a neural network with the

parameters of interest corresponding to the weights of the network. A common thread

in these problems is their massive computational expense. In both cases, the under-

lying parameter space is typically very high-dimensional, making the optimization

computationally demanding, sometimes intractable, when large amounts of data are

available. This thesis addresses two general approaches to reduce the computational

burdens of large-scale parameter estimation in geophysics and machine learning: 1)

model order reduction (MOR), which aims to reduce the computational complex-

ity of the model, and 2) parallel/distributed optimization which aims to reduce the

time-to-solution in parameter estimation.

For the MOR approach, we present an adaptive scheme tailored to problems in

geophysics, where the number of PDE simulations required to accurately reconstruct

the parameter is correlated to the amount of measurements. To this end, we apply

the multiscale finite volumes (MSFV) to solve high-dimensional geophysics parameter

estimation problems. Given a finite volume discretization of the PDE on a fine mesh,

the MSFV method reduces the problem size by computing a parameter-dependent



projection onto a nested coarse mesh. A novelty in our work is the integration of

MSFV into a PDE-constrained optimization framework, which updates the reduced

space in each iteration. This adaptivity of the projection basis allows us to project

to an aggressively coarsened mesh while achieving highly accurate solutions. We

also present a computationally tractable way of explicitly differentiating the MOR

solution that acknowledges the change of basis. We illustrate the effectiveness of this

approach on the direct current resistivity survey.

For the parallel/distributed approach, we propose two methods. In the first

method, we present an asynchronous, uncertainty-weighted alternating direction

method of multipliers (ADMM). In particular, we consider a global variable con-

sensus ADMM algorithm to estimate parameters in geophysics and machine learning

asynchronously and in parallel. Motivated by problems with many measurements,

we partition the data and distribute the resulting subproblems among the available

workers. Since each subproblem can be associated with different models and right-

hand-sides, this provides ample options for tailoring the method to different appli-

cations. Our contribution is a novel weighting scheme that empirically improves the

progress made in the early iterations of the consensus ADMM scheme and is attractive

when using a large number of subproblems. The weights in our scheme are related to

the uncertainties associated with the solutions of each subproblem and can be com-

puted efficiently using iterative schemes. We exemplarily show that the weighting

scheme leads to accelerated convergence for a series of linear and nonlinear parame-

ter estimation problems. We also show that the asynchronous implementation further

reduces the time-to-solution of 3D problems in geophysics. In the second method, we

present an ADMM-based technique (ADMM-Softmax) which aims to efficiently learn

the weights in multinomial logistic regression (MLR) problems. In each iteration, our

algorithm decomposes the training into three steps; a linear least-squares problem

for the weights, a global variable update involving a separable MLR problem, and



a trivial dual variable update. The least-squares problem can be factorized in the

off-line phase, and the separability in the global variable update allows for efficient

parallelization, leading to faster convergence. We outline the potential of our method

for the MNIST and CIFAR-10 datasets, and show that ADMM-Softmax leads to

improved generalization and convergence compared to the current state-of-the art

methods.
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Chapter 1

Introduction

The ever-increasing ability to collect data at massive scales with relative ease has

led to new opportunities for scientific discovery. This trend, often referred to as big

data, has led to a new class of large-scale parameter estimation problems in geo-

physics [14, 34, 42, 60, 127, 131, 154], machine learning [102, 107, 144, 151], medical

imaging [5, 6, 22, 31, 111], hydrology [32, 89], signal processing [128], and numerous

other applications. Traditionally, parameter estimation is an inverse problem that

aims to infer parameters in a physical model from indirect measurements, where the

model is often given by a partial differential equation (PDE). In this dissertation, we

define parameter estimation more broadly by also including machine learning, where

rather than having a PDE as the forward model, we have a hypothesis function, e.g.,

a neural network, and the parameters of interest correspond to the weights.

One way to estimate the parameter of interest is to phrase it as a Bayesian inverse

problem and compute the maximum a posteriori (MAP) estimate, which after taking

into account prior information about the parameter, conveys the most probable pa-

rameters that led to the measured observations. To this end, we first construct the

posterior probability density function (PDF), which assigns a given set of param-

eters the probability that a certain candidate is the true parameter that gave rise
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to the observed data. This is done using the data likelihood PDF, which describes

the relationship between the data and the parameters, and the prior PDF, which

describes any apriori knowledge we may have about the parameter. The MAP esti-

mate is then obtained by finding the parameter that maximizes the posterior density

function. A common thread in MAP estimation for machine learning and geophysics

applications is their massive computational expense. The underlying parameter space

is usually high-dimensional, making the MAP estimation very computationally de-

manding, sometimes intractable, when large amounts of data are available.

1.1 Contribution and Related Works

This thesis focuses on two general approaches to reduce the computational burdens

of large-scale parameter estimation in geophysics and machine learning.

1.1.1 Model Order Reduction

The first approach is via model order reduction (MOR) techniques aimed at reduc-

ing the complexity of the parameter-to-observables map (or forward model). Our

proposed MOR method can be used in geophysics and medical imaging where every

evaluation of the forward model requires solving a partial differential equation (PDE);

this incurs immense computational costs as the PDEs must be solved in every itera-

tion of the optimization scheme. In MOR, the idea is to project the controls (i.e., the

parameter) and/or the states (i.e., the PDE solutions) onto lower-dimensional sub-

spaces [12]. Several techniques have been used recently to compute subspaces with

good approximation properties, e.g., reduced basis methods [122], moment match-

ing [44], empirical interpolation [8, 31], Krylov subspace methods [124], and perhaps

most commonly proper orthogonal decomposition (POD) [18, 91, 100, 111]. In or-

der for MOR to be effective, the solutions obtained using MOR need to accurately



3

approximate solutions of the original problem for a sufficiently large set of parame-

ters [18]. For example, the success of POD-based methods relies on the availability

of sufficiently many well-distributed snapshots - solutions of the original problem for

given parameters that are used to build an MOR basis. While sampling the parame-

ter space is feasible in low-dimensional settings, the problem becomes more difficult

or intractable for high-dimensional parameter spaces. Similar restrictions apply to

interpolatory MOR techniques.

Our contribution in this work is the use of multiscale finite volume methods

(MSFV) [24–26, 39, 69, 70, 86, 87, 105, 129] to build a parameter-dependent interpo-

lation between grid functions on a nested coarse mesh and solutions on the original

fine mesh. The interpolation is computed by solving fine-mesh versions of the original

problem separately for each coarse-mesh block, which can be parallelized, and, in con-

trast to, e.g., POD, can avoid solving the fine-mesh problem altogether. The MSFV

method bears similarity with other adaptive meshing techniques, e.g., [79,110], how-

ever, the homogenization applied to obtain the reduced problem is operator-dependent

and can thus capture larger variety in the parameters. MSFV methods have been

employed successfully to reduce the cost of PDE solves in porous media flow prob-

lems [30,37,81,84,85,90,113,116,120] and more recently in electromagnetics [65].

Rather than using a fixed reduced space throughout the iterative scheme, we use

a computationally tractable way to adaptively update the basis within the derivative-

based optimization process [30]. In our discretize-then-optimize framework, this re-

quires explicit differentiation of the MSFV method. Derivatives of MSFV meth-

ods have also been approximately computed using interpolation [99], adjoint meth-

ods [48,49], and more recently using a general algebraic framework [30]. In contrast to

these works, we explicitly differentiate the solution of the discretized problem obtained

with the MSFV solver with respect to the parameter of interest. Our contribution in

this part of the dissertation is closely related to to [30], however, we use local sensitiv-
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ity equations to alleviate the need for automatic differentiation. We demonstrate the

potential of our proposed adaptive multiscale method on the direct current resistivity

(DCR) survey.

1.1.2 Parallel and Distributed Optimization

The second approach consists of parallel and distributed techniques to reduce the

time-to-solution of large-scale parameter estimation problems.

Uncertainty-Weighted Consensus ADMM

We consider the global variable consensus reformulation of the MAP estimate and

use the alternating direction method of multipliers (ADMM) [16, 55, 83] as well

as its asynchronous variant (async-ADMM) [162] for its computation. Consensus

ADMM has previously been applied to high-dimensional inverse problems in data

sciences [114, 119], machine learning [16, 55, 148, 159], and imaging [54, 75, 88]. The

algorithm tackles large-scale problems by partitioning the data into, say, N smaller

batches that can be solved in parallel, and in some cases explicitly. This often leads to

an improved ratio of local computation and communication. More specifically, each

iteration of the algorithm breaks down into:

1. N subproblems using parts of the data that are solved locally and independently,

2. an averaging step that is performed once their corresponding processors have

solved all N subproblems, and

3. an explicit update of the dual variable.

In the async-ADMM variant, the averaging step is performed once Na < N sub-

problems have been solved, reducing the overall latency. As we demonstrate in our

numerical experiments, a straightforward implementation of consensus ADMM con-

verges slowly, particularly when the information contained in the split data sets is
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complementary and the number of batches, N , is large. One problem in these cases

is that the averaging step in consensus ADMM gives equal weight to all the solutions

corresponding to each batch, leading to an uninformed averaged reconstruction. This

renders consensus ADMM prohibitive for large-scale problems since often only a few

iterations are affordable.

Our contribution is a novel weighting scheme that improves the convergence of

consensus ADMM. The weights are obtained in a systematic and efficient way using

the framework of uncertainty quantification (UQ) proposed in [46]. We demonstrate

the effect of the weights on a collection of linear inverse problems, a multinomial lo-

gistic regression problem, and 3D single-physics and multiphysics problems consisting

of the direct current resistivity (DCR) and travel-time tomography surveys.

Classification using Multinomial Logistic Regression and ADMM

We also present an efficient learning algorithm for solving large-scale classification

via multinomial logistic regression (MLR) and ADMM (ADMM-Softmax). There

are a variety of algorithms that can be used to train the classifying weights for the

MLR problem, e.g., steepest descent [117], Newton and quasi-Newton methods [157],

and perhaps most commonly, stochastic gradient descent (SGD) [101,163]. However,

parallelization of these methods is not trivial as methods like SGD are sequential;

this can result in very slow convergence when the problem is ill-conditioned.

Our contribution consists of a reformulation of the MLR problem into a con-

strained one whose objective function is separable along the examples and whose

coupling is enforced by the constraints. This allows for efficient parallelization of

the optimization via ADMM. Specifically, each iteration of ADMM decomposes the

optimization into three subproblems:

1. a weight update that involves solving a least-squares problem,

2. a global variable update that involves a cross-entropy problem that is separable
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along the examples, and

3. a trivial dual update variable.

The least-squares problem arising from the weights can be efficiently solved using

direct or iterative solvers [56, 137]. The convex and smooth softmax problem arising

from the global variable update can also be solved efficiently since the separability

along examples renders it highly parallelizable. Finally, the dual variable update is

a trivial step requiring only a matrix-vector product. The reformulation of the MLR

problem in this case is different from that of the global variable consensus formulation

previously described. More details can be found in Section 5.3.

We test our method on two common machine learning datasets: MNIST [104],

which consists of 60,000 images of handwritten digits, and CIFAR-10 [97], which con-

sists of 60,000 images containing ten different classes: airplanes, cars, birds, cats,

deer, dogs, frogs, horses, ships, and trucks. To improve accuracy and generalization,

we adjust the inputs propagating the features through either a fixed random layer (ex-

treme learning machines [82]), or propagating the features through a network which

has been pre-trained on a simiar data set (transfer learning [130]). In particular,

for transfer learning we extract the features from a pre-trained AlexNet [97] on the

Imagenet dataset [33] to classify CIFAR-10 images. This is done by removing the clas-

sification layer in AlexNet, and re-training the classification layer using the CIFAR-10

data [35].

1.2 Thesis Overview

This thesis is organized as follows. In Chapter 2, we present the mathematical back-

ground relevant for this dissertation. The general formulation of MAP estimation and

uncertainty quantification is reviewed as well as some common numerical optimiza-

tion techniques for their computation. We conclude this chapter with a description of
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the applications we will use in our numerical experiments. In Chapter 3, we motivate

the use of model reduction techniques with an overview of the discretized DCR for-

ward and inverse problem. We then present our proposed adaptive multiscale model

reduction technique based on MSFV, and show a tractable way for computing the

projection bases and their derivatives. We compare our model reduction scheme us-

ing adaptive and fixed bases on the DCR survey. In Chapter 4, we shift focus to

parallel and distributed methods. We present an uncertainty-weighted, asynchronous

ADMM method whose weights depend on the uncertainties of the model and can

be computed efficiently using iterative schemes. We test this scheme on a series of

least-squares problems, a multinomial logistic regression problem, and 3D geophysics

parameter estimation problems consisting of the travel-time tomography survey as

well as a multi-physics problem consisting of travel-time tomography and DCR. We

also present an additional ADMM-based scheme (ADMM-Softmax) in Chapter 5,

which is tailored to classification problems via multinomial logistic regression prob-

lems. We test our method on the MNIST and CIFAR-10 dataset, and compare its

performance to that of SGD and Newton-PCG. We improve generalization by prop-

agating our features on a fixed hidden layer for the MNIST dataset and through a

pre-trained Alex-Net [98] for the CIFAR-10 dataset. We conclude with a summary

and discussion of future work in Chapter 6.
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Chapter 2

Preliminaries

In this chapter, we present the mathematical background relevant for this thesis.

We first present MAP estimation and uncertainty quantification (UQ) in the con-

text of geophysics and machine learning. For simplicity, we limit the discussion

to the finite-dimensional case since in our examples, we follow the discretize-then-

optimize approach and have a fixed discretization. However, an overview of the

infinite-dimensional case can be found in [143]. We then review two numerical op-

timization techniques, the Gauss-Newton-PCG and ADMM, which will be pertinent

for our experiments, and conclude with an overview of the geophysics and machine

learning applications we will use to test our proposed schemes.

2.1 MAP Estimation and UQ

We consider additive noise-corrupted observations

D = F(X) + E, (2.1)

where F :Rn 7→ Rm is the parameter-to-observable map, and D,X, and E are random

vectors corresponding to the observations, the model parameter, and the measurement
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noise, respectively. We denote their corresponding realizations by d ∈ Rm, x ∈ Rn,

and ε ∈ Rm.

In MAP estimation, one seeks to infer the parameter x using prior information

and indirect observations d. To compute the MAP estimate, we first to construct

the posterior density function (PDF) πpost:Rn 7→ R, which assigns to a given set

of parameters the probability that the candidate x of this set is the true parameter

that gave rise to the observed data d. The MAP estimate thus consists of the most

probable (or maximum) point in the posterior density function.

There are two ingredients to construct the posterior density. The first one is

the prior PDF, πprior:Rn 7→ R, which allows us to encode prior information we may

have about our model. The second one is the likelihood function π(d|x):Rn 7→ R,

which describes the relationship between the measurements d and the unknown model

parameters x. With these two at hand, we can then use Bayes’ theorem to obtain

the posterior PDF. Namely, Bayes’ theorem states that

πpost(x) =
πprior(x)π(d|x)

π(d)

∝ πprior(x)π(d|x),

(2.2)

where, as commonly done, the marginal density of the data, π(d), is dropped since it

does not depend on the parameter x. The MAP point can thus by maximizing the

posterior PDF, that is,

xMAP = argmax
x

πpost(x). (2.3)

For simplicity, we assume that X and E are statistically independent and limit the

discussion to the case where the prior PDF is Gaussian, and E is a random vector

whose entries are independently and identically distributed so that E ∼ N (0,Γnoise),

where Γnoise ∈ Rm×m is the diagonal noise-covariance matrix. In this case, the likeli-
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hood and prior PDFs are given by

π(d|x) ∝ exp(−Φ(x)) and πprior(x) ∝ exp(−R(x)), (2.4)

respectively, where due to the assumptions above,

Φ(x) =
1

2
‖F(x)− d‖2

Γ−1
noise

and R(x) =
1

2
‖x− xref‖2

Γ−1
prior

. (2.5)

Here, xref is the mean of the model parameter prior PDF, and Γprior ∈ Rn×n is the

covariance matrix of the prior PDF. Using (2.2) and (2.4), we can restate the posterior

PDF in closed form as

πpost(x) ∝ exp
(
− Φ(x)−R(x)

)
. (2.6)

Computing xMAP in this case is equivalent to minimizing the negative log-posterior;

this is done for conventional purposes. The MAP estimate can thus be found by

solving

xMAP = argmin
x

Φ(x) +R(x). (2.7)

In this instance, computing the MAP estimate is exactly the deterministic solution

of the Tikhonov functional [121]. In particular, the likelihood term corresponds to the

data misfit, and adding prior knowledge corresponds to regularizing the problem. We

note that encoding prior information into our MAP computation serves to remedy

the ill-posedness of the problem so that a unique solution exists, and if possible, the

problem is more stable. Examples of prior knowledge of a desired solution include

regularity, sparsity, or smallness of the solution. Since solving (2.7) is a deterministic

inverse problem, we will use the terms commonly used in the literature [121]. In
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particular, we will refer to Φ as the misfit, andR as the regularizer in the remainder of

this dissertation. However, it should be noted that their design is based on statistical

knowledge of of the problem (when available).

In this thesis, we are also interested in quantifying the uncertainties of our model,

which are given by the diagonal entries of the posterior covariance Γpost (see Chap-

ter 4). When F is a linear operator, that is, F = A ∈ Rm×n, the posterior PDF is

also Gaussian and we can write its covariance matrix Γpost ∈ Rn×n in closed form as

Γpost = (A>Γ−1
noiseA + Γ−1

prior)
−1, (2.8)

which can be used for quantifying uncertainties of the model parameter x. In the

nonlinear setting, we approximate the Hessian with the Gauss-Newton Hessian (see

(2.17)), evaluated at some reference model. In the context of large-scale parameter

estimation, however, the Hessian of Φ, let alone its inverse, is seldom constructed.

Thus, naively computing the diagonals of Γpost is intractable. To quantify the uncer-

tainties of our model efficiently, we follow [46] and use efficient iterative schemes to

obtain a low-rank approximation of Γpost. More details can be found in Section 4.2.2.

2.1.1 MAP Estimation in Classification

In machine learning classification problems, where there are a finite number of discrete

outcomes, the aforementioned approach to compute the MAP estimate is known as a

generative classifier, where assumptions on the model are made apriori, e.g., Gaussian

noise. A more common alternative to compute the MAP estimate in classification

problems is through multinomial logistic regression (MLR). MLR is known as a dis-

criminant classifier, which makes no assumptions on the underlying distribution of

the model [47]. The MAP estimate in this case is computed by minimizing the cross-

entropy loss function with the softmax function as the parameter-to-observables map.
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In particular, given training data (D,C), where D = [d1 d2 . . .dne ]
> ∈ Rne×nf is the

feature matrix and C = [c1 c2 . . . cne ]
> ∈ Rne×nc the class label matrix, the MAP

estimate is given by

xMAP = argmin
X

(
ΦCE(X) +R(X)

)
, (2.9)

where X ∈ Rnf×nc are the weights to be trained, R:Rnf×nc 7→ R is a regularization

term, ΦCE:Rnf×nc 7→ R is the cross-entropy loss function is given by

ΦCE(X) = −trace(C> log(hX(D))), (2.10)

and hX is the softmax function given by

Cpred = hX(D) = diag

(
1

exp (DX)enc

)
exp (DX). (2.11)

Here, Cpred ∈ Rne×nc are the predicted classes generated by the softmax function,

enc ∈ Rnc is a vector of all ones, and the diagonal, exponential, and division are

performed element-wise. The softmax function is a natural forward model used in

classification problems since it outputs a probability distribution, and each entry in

its outputs corresponds to the probability the observed data belongs to a particular

class. We note that we treat the variable X as a matrix since it simplifies the notation

for the MLR problem. We will revisit the MLR problem in Chapter 5.

2.2 Numerical Optimization

In this section, we discuss some of the current state-of-the-art optimization meth-

ods for computing the MAP estimate in geophysics [60, 136] and classification prob-

lems [16,147]. There are many ways to solve (2.7) and (2.9), including stochastic op-
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timization methods, e.g., stochastic approximation [133], stochastic average approxi-

mation [94], and the method of simultaneous sources [62]. Deterministic methods (po-

tentially applied to a stochastic average approximation) include quasi-Newton meth-

ods, e.g., l-BFGS [157], nonlinear conjugate gradient methods [68], Gauss-Newton

methods [60,92], and distributed methods [16]. These methods are well studied, and

summaries of these methods can be found in optimization textbooks [16,92,157].

In this section, we limit the discussion to two methods of particular relevance to

this dissertation. The first method is Gauss-Newton-PCG, which has proven effec-

tive for large-scale problems in geophysics [60, 136], and the second method is the

alternating direction method of multipliers (ADMM), whose parallel properties are

attractive to problems in geophysics [50] and machine learning [16,147].

2.2.1 Gauss-Newton-PCG

The Gauss-Newton-PCG algorithm is an inexact Gauss-Newton method that has

proven to work well for these large-scale problems in geophysics [60,136]. The method

is a gradient-based local optimization scheme that only requires first-order deriva-

tive information of the residual. In particular, consider again the objective function

from (2.7) given by

Φ(x) =
1

2
r(x)>Γ−1

noiser(x), (2.12)

where r(x) = F(x)− d is the residual term. The gradient is then given by

∇xΦ = J(x)>Γ−1
noiser(x), (2.13)
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where J =
∂r

∂x

>
∈ Rm×n is the sensitivity matrix (also known as the Jacobian of the

resdual). Finally, the Hessian can be computed as

∇2
xΦ = J(x)>Γ−1

noiseJ(x) +
∂
(
J(x)>Γ−1

noiser
fix
)

∂x
,

= J(x)>Γ−1
noiseJ(x) + C(x),

(2.14)

where rfix = r(x) is the residual assumed to be fixed as part of the product rule.

Here, the Hessian consists of two parts. The first is a symmetric positive semidefinite

(SPSD) matrix J(x)>Γ−1
noiseJ(x). The second term, C, is a nonlinear term which

depends on the curvature of the objective function, and may be indefinite.

The Gauss-Newton step offers an alternative to the Newton's method step up-

date. The method solves a Newton-like system where the Hessian is approximated

by dropping the nonlinear term C, that is,

H(x) = J(x)>Γ−1
noiseJ(x) ≈ ∇2

xΦ(x). (2.15)

In particular, the search direction, ∂x, is given by solving the Gauss-Newton system

H(x)∂x = −∇xΦ(x). (2.16)

We show the entire Gauss-Newton scheme in Algorithm 2.1.

Convergence

It is possible to show that C is small when the residual is small at the solution,

or for problems that are not very nonlinear [92]. In this case, the Gauss-Newton

method can be shown to have similar convergence properties to Newtons method [157].

The Gauss-Newton method is guaranteed to converge to a local minimum under the

following assumptions [92]:
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Algorithm 2.1: Gauss-Newton-PCG

• initialize x(0)

• for k = 0, 1, 2, . . .

1. compute Φ(x),R(x),∇xΦ(x),∇xR(x)

2. compute H(x) from (2.17)

3. solve system (2.16) to obtain δx using PCG

4. set x(k+1) = x(k) + γ∂x, where γ is set by Armijo linesearch

5. check convergence criteria

1. the line search satisfies the Wolfe conditions,

2. the Jacobian J(x) has full rank, i.e, J(x)>Γ−1
noiseJ(x) is symmetric positive defi-

nite (SPD), for every x in the region of interest, and

3. each entry in the residual function r(x) is Lipschitz continuous within a neigh-

borhood of the level set L = {x | Φ(x) ≤ Φ(x0)}.

In practice, J may be rank-deficient for some x in the region of interest (this is

expected in our case). Thus, adding a regularization term helps the Gauss-Newton

converge. In particular, the Gauss-Newton Hessian approximation is given by

H(x) = J(x)>Γ−1
noiseJ(x) +∇2

xR(x). (2.17)

The regularization term R is typically convex, so that even if J is rank-deficient for

some x, the Hessian can remain SPD, and a descent direction can be obtained. In

our numerical experiments, we solve (2.16) iteratively using the preconditioned con-

jugate gradients method (PCG), which makes our method an inexact Gauss-Newton

method. This adds further regularization if stopped early enough to avoid small or

zero eigenvalues since the PCG method has a built-in mechanism to approximate the

eigenvalues of H [137]. More details can be found in [157].
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Stopping Criteria

In practice, there are different ways to stop the Gauss-Newton algorithm. As is

commonly done in iterative gradient-based algorithms [157], one way to stop the

algorithm is to compute the norm of the gradient at the current iterate and stop the

method when this value falls below a chosen tolerance,

‖∇xΦ(x(k))‖2
2< ε. (2.18)

This choice follows from the fact that the first-order optimality condition for Gauss-

Newton states that the gradient should converge to the zero vector when the method

reaches a local minimum. Another way to stop the method is when the algorithm

stagnates. That is, the norm of the difference between successive iterates fall below

some selected tolerance,

‖x(k+1) − x(k)‖2
2< ε, (2.19)

or similarly, the objective function values stagnate

‖Φ(x(k+1))− Φ(x(k))‖2
2< ε. (2.20)

As a final note, neither of the latter two criteria guarantee that the method has reached

a minimum. For instance, these values may fall below the prescribed tolerance if the

step length γ in Algorithm 2.1 is too short.

2.2.2 Alternating Direction Method of Multipliers

The alternating direction method of multipliers (ADMM) is a distributed optimiza-

tion scheme that has gained popularity in the machine learning community [16], and

more recently, in geophysics [50]. It takes the form of a decomposition-coordination
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procedure, where small local subproblems are solved in a coordinated manner to find

a solution of a large global problem. ADMM can be viewed as an attempt to blend

the benefits of dual decomposition [11, 28] and augmented Lagrangian methods for

problems [76] of the form

argmin
x1,x2

Φ1(x1) + Φ2(x2)

s.t. B1x1 + B2x2 = c,

(2.21)

with variables x1 ∈ Rn1 ,x2 ∈ Rn1 , where B1 ∈ Rp×n1 ,B2 ∈ Rp×n2 , and c ∈ Rp.

ADMM aims at solving (2.21) by finding a saddle point of the augmented Lagrangian

Lρ(x1,x2,y) =

Φ1(x1) + Φ2(x2) + y>(B1x1 + B2x2 − c) +
ρ

2
‖B1x1 + B2x2 − c‖2

2,
(2.22)

via the following iterations

x
(k+1)
1 = argmin

x1

Lρ(x1,x
(k)
2 ,y(k)), (2.23)

x
(k+1)
2 = argmin

x2

Lρ(x(k+1)
1 ,x2,y

(k)), (2.24)

y(k+1) = y(k) + ρ
(
B1x

(k+1)
1 + B2x

(k+1)
2 − c

)
, (2.25)

where ρ > 0 is the penalty parameter. When ρ = 0, Lρ corresponds to the standard

unaugmented Lagrangian. The necessary and sufficient optimality conditions for

(2.21) are determined by the primal feasibility,

rpri = B1x
(k)
1 + B2x

(k)
2 − c, (2.26)
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and dual feasibility, which can be shown to be

rdual = ρB>1 B2(x
(k+1)
2 − x

(k)
2 ). (2.27)

Convergence

The method is guaranteed to converge under the following assumptions [16].

1. The (extended-real-valued) functions Φ1:Rn1 7→ R ∪ {+∞} and

Φ2:Rn2 7→ R ∪ {+∞} are closed, proper, and convex.

2. The unaugmented Lagrangian L has a saddle point.

The first assumption implies that the local problems (2.23) and (2.24) are solvable,

and the second implies existence of a solution for (2.21). Under these assumptions,

the ADMM iterates satisfy the following:

• Residual convergence: r
(k)
pri → 0 as k → ∞, that is, the iterates approach

feasibility.

• Objective convergence. Φ1(x
(k)
1 ) + Φ2(x

(k)
2 )→ p∗, where p∗ is the optimal value

of (2.21). That is, the objective function of the iterates approaches the optimal

value.

• Dual variable convergence. y(k) → y∗ as k → ∞, where y∗ is a dual optimal

point.

For non-convex problems, it has been shown that ADMM converges to a local

minimum under some modest assumptions, most importantly, requiring ρ to be suf-

ficiently large [78, 115, 157] These assumptions ensure that the Hessian of the La-

grangian of (2.22) remains positive definite throughout the ADMM iterations.
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Stopping Criteria

For ADMM, a common termination criterion is that the primal and dual residuals be

small, i.e.,

‖rpri‖2≤ εpri and ‖rdual‖2≤ εdual, (2.28)

where εpri > 0 and εdual > 0 are feasibility tolerances for the primal and dual feasibility

conditions. These tolerances can be chosen using an absolute and relative criterion,

for instance,

εpri =
√
n1εabs + εrel max{‖B1x

(k)
1 ‖2, |B2x

(k)
2 ‖2, ‖c‖2}

εdual =
√
n2εabs + εrel‖B>1 y(k)‖2,

(2.29)

where εabs > 0 is an absolute tolerance and εrel > 0 is a relative tolerance.

Varying Penalty Parameter

To improve the performance of ADMM, a standard extension is to use adaptive

penalty parameters for each iteration. This makes the performance of the algorithm

less dependent on the initial choice of the penalty parameter. Though it can be

difficult to prove the convergence of ADMM when ρ varies by iteration, the same

theory for the case of fixed ρ still applies when one assumes ρ becomes fixed after

a finite number of iterations. A simple, yet effective adaptive scheme recommended

in [16,74,153] is given by

ρ(k+1) =


τ incrρ(k) if ‖rpri‖2> µ‖rdual‖2

ρ(k)/τdecr if ‖rdual‖2> µ‖rpri‖2

ρ(k) otherwise,

(2.30)
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where µ > 1, τ incr > 1, and τdecr > 1 are parameters commonly chosen to be 10, 2,

and 2, respectively [16]. This updating scheme aims at balancing the primal and dual

residual norms within a factor of µ of one another as they both converge to zero.

2.3 Applications in Geophysics and Machine

Learning

We conclude this chapter with a description of the applications that will be used in

our numerical experiments. We begin with a description of two geophysical imaging

techniques, the direct current resistivity (DCR) and travel-time tomography survey,

as well as their associated PDEs. We also describe image classification in machine

learning and two commonly used datasets used in the field: MNIST [104] and CIFAR-

10 [97].

Direct Current Resistivity

The DCR survey is an exploration technique used in many geophysical applica-

tions [34,118]. DCR is commonly used to estimate a spatial image of the conductivity

of the subsurface from indirect measurements obtained on the earth’s surface. It uses

electrical sources to introduce direct currents into the ground, thereby creating electric

potential fields that are sensitive to variations of the conductivity in the subsurface.

Measurements of these potential fields are then collected with receivers on the surface

and are used to reconstruct a three-dimensional image of the conductivity in the sub-

surface. Because it is an inverse problem aiming at estimating the conductivity, the

DCR survey is also known as the inverse conductivity problem and is closely related

to, e.g., electrical impedance tomography [5,6, 22,111].

The governing equations for DCR are given by the steady-state heterogeneous
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Figure 2.1: Experimental setup of the direct current resistivity survey.

diffusion operator, particularly,

∇ · (σ(x(ξ))∇uj(ξ)) = qj(ξ), ξ ∈ Ω,

∇uj(ξ) · ~n(ξ) = 0, ξ ∈ ∂Ω, (2.31)

uj(ξ0) = uj,0 j = 1, . . . , Ns.

Here, x ∈ Ω 7→ R is the parameter of interest, σ:R 7→ R is the conductivity function,

which is parameterized by x, e.g., σ(x) = exp(x), and uj is the potential field induced

by the jth source qj. An illustration of the experiment is shown in Figure 2.1

Travel-Time Tomography

Another exploration technique is travel-time tomography (also known as first-arrival

travel-time tomography), which uses seismic waves to map the structure of the sub-

surface. In this technique, the travel time of seismic waves emitted from sources on

the surface are measured, and a velocity model is estimated from the seismic data.

The experiment in this case is modeled by the eikonal equation, namely,

|∇τj(ξ)|2 = x(ξ) ξ ∈ Ω,

τj(ξj) = 0 j = 1, . . . , Ns, (2.32)
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Figure 2.2: Example of 30 hand-written images from MNIST dataset [104].

where | · | is the Euclidean norm in Rd, τj: Ω 7→ R is the arrival time of the first

wave that evolves from the jth source that is located at ξj ∈ Ω, and the parameter

of interest, x is the compressibility parameter of the subsurface, also known as the

squared slowness. The experimental setup for travel-time tomography is similar to

that of the DCR survey shown in Figure 2.1.

Image Classification

Parameter estimation in geophysics is done for scientific interpretation purposes, e.g.,

subsurface imaging. Parameter estimation in machine learning, on the other hand,

serves more predictive purposes, e.g., classification of unseen text or images. In this

thesis, we will focus on image classification problems.

Classification is the process of identifying the class to which a new observation be-

longs. There are different ways to perform classification in machine learning, including

k-nearest neighbors [1], artificial neural networks [47], support vector machines [27],

and multinomial logistic regression (MLR) [47]. Thus, unlike in geophysics, where the

forward model is fixed with a PDE, classification in machine learning can be done us-

ing different forward models. As seen in Section 2.1.1, in this thesis we focus on MLR,

where the forward model is given by the softmax function shown in (2.11). Details

about other classifiers can be found in [47]. Indeed, the softmax function in (2.11) is

a natural forward model in classification, since it outputs a probability distribution.

More specifically, given an example d ∈ Rnf , the softmax function returns a vector

hX(d) = cpred ∈ Rnc whose ith entry corresponds to the probability the observed data
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truck

Figure 2.3: Example images for the CIFAR-10 dataset obtained from the official
CIFAR-10 dataset

belongs to ith class. The goal is then to train the softmax classifier by solving (2.9),

which aims at finding the weights X that classifies any given data correctly. We note

that for training data, we typically have a corresponding class vector c for each data

d. However, we also wish for hX to correctly classify a given data d for which we

may not have a label, that is, we wish for hX to generalize well.

For classification problems in this thesis, we experiment on two datasets. The

first is the MNIST dataset [104], which database consists of 60,000 gray-scale hand-

written images of digits ranging from 0 to 9. Some examples are shown in Figure 2.2.

The second dataset is CIFAR-10 [97], which consists of 60,000 32 × 32 RGB-valued

images in the following 10 classes: airplane, automobile, bird, cat, deer, dog, frog,

horse, ship, and truck.

https://www.cs.toronto.edu/~kriz/cifar.html
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Chapter 3

Adaptive Multiscale Model

Reduction

The results and content in this chapter are based on [51] and are done in collabora-

tion with L. Ruthotto. In this chapter, we present an adaptive model order reduction

technique to reduce the computational costs of large-scale geophysics parameter es-

timation problems. The key novelty of our method is the combination of MSFV and

the numerical optimization scheme used for parameter estimation. This chapter is

organized as follows. We first motivate our approach with an overview of the dis-

cretized DCR forward and inverse problem. We then present our proposed adaptive

multiscale model reduction technique for problems in geophysics. We conclude the

chapter with numerical experiments using the DCR survey.

3.1 DCR Forward and Inverse Problem

Let Ω ⊂ Rd be the computational domain with d = 2, 3 and let x: Ω→ R be a model

function describing the parameter of interest. We consider measurement data of the

form

Dij = Fij(x) + εij, (3.1)
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where the forward operator (or parameter-to-observables map) is given by

Fij(x) = (pi, uj(x)), (3.2)

for each i = 1, . . . , Nr, j = 1, . . . , N. Here, pi: Ω → R is the ith receiver function,

uj: Ω → R is the field induced by the jth source qj: Ω → R, D ∈ RNr×N are the

discrete measurements, and Nr and N are the number of receivers and sources, re-

spectively. We assume that the measurements are given by the L2 inner product

denoted by (·, ·) between pi and uj plus some additive noise εij that for simplicity is

assumed to be Gaussian white noise. The field uj (also called the state) satisfies

A(x)uj = qj, (3.3)

where A(x) is the underlying PDE operator that includes the boundary conditions.

To solve the DCR problem, we follow the discretize-optimize approach in [60,65].

We discretize the domain Ω on a uniform meshMh consisting of n cells and m nodes.

Here, h > 0 is a parameter that denotes the discretization size. Moreover, let x ∈ Rn,

uj, qj, pi ∈ Rm, and εj ∈ RNr be the discretizations of the model x, the field uj, the

receiver pi, the source qj, and the measurement noise εij given in (3.1) on Mh. The

discrete data measurements are given by

dj = Fj(x) + εj, j = 1, . . . , N, (3.4)

with the forward problem

Fj(x) = P>A(x)−1qj = P>uj, (3.5)

where A ∈ Rm×m is the discretization of (3.3) using finite volume methods pre-
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sented in [60], P ∈ Rm×Nr is the receiver matrix that maps the fields to the data,

{q1, q2, . . . ,qN} are the sources, {u1,u2, . . . ,uN} are the induced fields, and

{ε1, ε2, . . . , εN} are the measurement noise. Upon suitable discretization, A is non-

singular because of the boundary conditions in (2.31), which consists of homogeneous

Neumann boundary conditions as well as Dirichlet boundary conditions. This renders

the fields uj uniquely defined and differentiable with respect to the model parameter

x. In the optimal control literature, x corresponds to the discrete control and the

fields, uj, are the discrete states [53, 139].

The DCR problem aims at estimating the underlying model x given the data

dj, sources qj, and receivers P. In this case, (2.7) can be formulated as the PDE-

constrained optimization problem

min
x

N∑
j=1

Φj

(
P>A(x)−1qj − dj

)
+R(x),

s.t. xL ≤ x ≤ xH ,

(3.6)

where Φj : RNr × RNr×N → R are the misfits and R : Rn → R is Tikhonov regular-

ization terms corresponding to the, likelihood and priors in (2.7), respectively, and

xL and xH can be used to enforce physical bounds for the model parameters. Since

the dimensions of x are typically very large, we approximately solve (3.6) using the

Gauss-Newton-PCG method described in Section 2.2.1

3.1.1 Sensitivity Computation

A key ingredient of derivative-based methods for solving (3.6) is the sensitivity matrix

J(x) (see Section 2.2.1), which characterizes how small changes in the model affect

the measurements in (3.5). Since similar techniques will be used to differentiate

the multiscale basis in Chapter 3, we review the concept of sensitivity computations

discussed in [60]. To simplify notation, we consider the case for a single source q. We
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know from Taylor series approximations that for any small perturbation δx ∈ Rn, the

sensitivity matrix J(x) satisfies

P>u(x + δx) ≈ P>u(x) + J(x)δx +O(‖δx‖2). (3.7)

As a consequence, we have that the sensitivity matrix is given by

J(x) = P>(∇x u(x))> (3.8)

To obtain the derivatives of the fields with respect to the model parameter, we use

implicit differentiation. We begin by writing the discretized PDE-constraint as

A(x)u(x) = q.

Applying the product rule to differentiate both sides with respect to x, we obtain

∇x(A(x)ufix)> + A(x)(∇x u(x))> = 0, (3.9)

where we use the notation ufix = u(x) to denote the current values of the fields

assumed to be constant as part of the product rule. For nonsingular A(x) this is

equivalent to

∇x u(x)> = −A(x)−1(∇x(A(x)ufix))>. (3.10)

Finally, inserting this into (3.8) gives the sensitivity matrix

J(x) = −P>A(x)−1(∇x(A(x)ufix))>. (3.11)

As can be seen in (3.6) and (3.11), each evaluation of Φ and product with J or
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its transpose requires one PDE simulation per source. This renders solving (3.6)

very expensive, particularly for parameter estimation problems involving hundreds of

thousands or even millions of sources; see, e.g, [61, 152]. This observation motivates

lowering the cost of the PDE solves through model order reduction techniques as we

will see in Section 3.2

3.2 Model Order Reduction

MOR can be applied both to the model, reducing the dimensionality of the nonlinear

optimization problem (3.6), and the fields, reducing the dimensionality of the PDE-

constraint. In the following, we assume that the model is represented efficiently, e.g.,

using a tensor or OcTree mesh [64], and focus on the latter part. A common theme

in MOR is to project the PDEs onto a small, k-dimensional subspace (where k � m)

that is spanned by the basis

S = [s1 s2 . . . sk] ∈ Rm×k. (3.12)

We can then replace the forward problem in (3.5) with the following reduced forward

approximation

Fj,red(x) = P>uj,red(x), (3.13)

where

uj,red(x) = SAred(x)−1S>qj (3.14)

is the reduced approximation of the fields, j = 1, . . . , N , and

Ared(x) = S>A(x)S ∈ Rk×k (3.15)
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is the reduced PDE. Inserting the reduced forward problem into (3.6) yields the

surrogate problem

min
x

Φ
(
P>SAred(x)−1S>Q,D

)
+R(x),

s.t. xL ≤ x ≤ xH .

(3.16)

Since the approximate fields Uk(x) change for every iteration in the optimization

scheme (3.16), a key challenge in solving the reduced optimization problem is finding

a good basis S so that Uk(x) is a good approximation of U(x) for all possible x.

Prominent examples for finding these bases are moment matching [44], superposi-

tion of locally reduced models [112], matrix interpolation [4,126], Interpolatory Model

Order Reduction [9,31], Proper Orthogonal Decomposition [59,156] and a Greedy pro-

cedure [18,41,108], all of which have been explored in parameter estimation. Most of

these techniques use an offline phase in which the PDEs are solved for a large num-

ber of right hand sides and a basis is constructed from these solutions. While these

methods have been shown to be effective for many problems, they are more difficult

to apply for the problem at hand in which the dimensionality of x is typically in the

order of millions and sampling the parameter space becomes intractable.

To avoid the challenge of sampling the high-dimensional parameter space, we

propose using an adaptive basis

S(x) = [s1(x) s2(x) . . . sk(x)],

where now the projection basis depends on the model parameter x. This leads to the

optimization problem

min
x

Φ
(
P>S(x)Ared(x)−1S(x)>Q,D

)
+R(x),

s.t. xL ≤ x ≤ xH . (3.17)
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Figure 3.1: Outline of the construction of a multiscale basis function using a bilinear
piecewise Lagrangian polynomial as boundary conditions. Here, m(x) = 10 in Ω1

H , and
m(x) = 1 everywhere else. The adaptivity of the basis is evident by looking at its values
on Ω1

H .

In the following subsection, we use the multiscale finite volume method [39] to con-

struct the basis S. As we show in the next section, where we compute the sensitivities

of (3.17) with MSFV, this leads to a computationally tractable smooth optimization

scheme. While the adaptive basis approach is not limited to MSFV, computing

derivatives might be more involved for other techniques.

3.3 Multiscale Finite Elements/Volumes

We now introduce the basic steps of the MSFV method to construct the basis S

used in (3.13). Our discussion closely follows [39]. Each multiscale basis function is

constructed in the following manner.

1. Partition the fine meshMh into a nested coarse meshMH =
Nc⋃
j=1

Ωj
H where Ωj

H

is the jth coarse cell, and Nc is the number of coarse cells.

2. Choose a forcing term q, and prescribe values to a particular multiscale basis

function s:Rm → R on the boundary of the coarse grid cells – denote these

block-boundary values by sbc.

3. Obtain the values of the multiscale basis function inside each coarse cell by solv-

ing the underlying PDEs on the local fine mesh using the prescribed boundary
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conditions for each coarse cell from step 2, i.e.,

A(x(ξ))s(ξ) = q(ξ), ξ ∈ Ωi
H , s(ξ) = sbc, ξ ∈ ∂Ωi

H , (3.18)

for each i = 1, ..., Nc, where in the case of the DCR survey, A corresponds

to the diffusion operator, and s is a particular multiscale basis function. In

general, non-zero boundaries for the coarse cells are prescribed with q = 0 (or

vice-versa). See below for some common options.

The multiscale basis functions are thus obtained by solving the underlying PDEs

locally and independently on each coarse-mesh cell given specialized boundary condi-

tions and/or forcing terms. Each column in the projection basis S corresponds to one

multiscale basis function; the number of columns in S therefore depends on the num-

ber of boundary conditions and/or forcing terms assigned. Furthermore, (3.18) shows

that S is an operator-induced interpolation, thus allowing for the multiscale projec-

tion basis to adapt to the current optimal parameter in the optimization scheme. For

a detailed convergence analysis, we refer to [23,40,80].

The scheme is illustrated in Figure 3.1. The specific choice of boundary condi-

tions and/or forcing terms offers the flexibility to introduce application-specific prior

knowledge into the construction. We consider the following techniques:

• Piecewise Lagrange Polynomials: We construct multiscale basis functions

by assuming sbc to be piecewise Lagrange polynomials on the coarse mesh, and

solving (3.18) with q = 0. The polynomial basis is a modular component of

multiscale methods [39] and other choices have been used, e.g., in [65]. Here,

Lagrange polynomials are adequate since piecewise linear finite elements are

known to be effective for solving the PDE problem at hand. Due to the depen-

dency of A on m, the obtained basis function captures the local conductivity

structure. For example, unless the PDE parameters are constant in the coarse-
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mesh cell the obtained multiscale basis functions generally differ considerably

from the generic FEM basis functions [39] .

• Source Bases: multiscale basis functions are constructed by solving (3.18)

with q as the restricted sources from (3.3) and setting sbc = 0 [39,65].

• Global Skeleton: multiscale basis functions are constructed by first computing

the fields uref using a fixed reference parameter mref. The values of uref on the

coarse mesh (global skeleton) are then used as sbc in (3.18) with q = 0.

• Local Bases: multiscale basis functions are constructed by solving for the

fields uref using a fixed reference parameter mref. Subsequently, boundary con-

ditions for each coarse-mesh block are constructed. For example, on the jth

cell, we apply a principal component analysis to the values of the fields uref

on the boundary ∂Ωj
H to identify the r most important boundary conditions

uj1, u
j
2, . . . , u

j
r. The associated multiscale basis functions are then obtained by

solving (3.18) in Ωj
H with sjl = ujl on ∂Ωj

H for each l = 1, 2, . . . , r, q = 0, and by

keeping the values of the basis as zero in the rest of the domain.

3.4 Optimization with MSFV Methods

We now revisit the sensitivity computation of the reduced misfit in (3.17). In this

section, we derive the gradient, or sensitivities, of the reduced misfit and design an

efficient mechanism for their implementation. A similar derivation has also been

proposed recently in [30], however, we avoid the use of automatic differentiation by

using local sensitivity equations (see Section 3.4.5).
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3.4.1 Reduced Optimization

We exemplarily compute the derivative of a data vector d obtained from a single

source, q, in (3.13). The general case can be obtained by decomposing the misfit

function into a sum over the sources. Furthermore, we assume the sum-of-squared

misfit

Φ(x) =
1

2
‖rred(x)‖2,

where the residual function is

rred(x) = P>S(x)Ared(x)−1S(x)>q− d. (3.19)

In this case, the gradient is simply

∇x Φ = Jred(x)> rred(x),

where Jred(x) is the sensitivity (or Jacobian) of the reduced forward model, that is,

Jred(x)> = ∇x

(
P>S(x)Ared(x)−1S(x)>q

)
. (3.20)

In the remainder of this section, we derive the sensitivity of the misfit for the case of

a fixed basis in the reduced forward model. We then give a detailed derivation of the

(more complicated) gradient of the misfit when the basis is adapted to the model.

Finally, we compare both results and provide an intuition about the difference of the

gradients using the fixed and adaptive basis.
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3.4.2 Optimization with Fixed Reduced Space

For problems where S does not depend on x, Jred(x) in (3.20) can be computed by

the following sensitivity calculation. Writing

S>A(x)Su(x) = S>q,

and differentiating both sides with respect to x, we obtain that

S>G + S>A(x)S ∇x(u(x))> = 0,

where the matrix G is obtained by differentiating A(x)Su assuming u is constant,

that is,

G = ∇x(A(x)Sufix)>. (3.21)

This implies that

∇x u(x)> = −(S>A(x)S)−1S>G.

Multiplying by the receiver matrix we see that the Jacobian of the reduced residual

is

Jred(x) = −P>S(S>A(x)S)−1S>G. (3.22)

3.4.3 Optimization with Adaptive Reduced Space

Computing the sensitivity is more involved when using an adaptive reduced basis in

which S depends on the model [30]. In this case, we need to differentiate the basis

vectors, s1(x), . . . , sk(x), with respect to the model x. This derivation is not standard

and provided in detail below. We also provide a description of our implementation

that makes computing matrix-vector products with these derivatives tractable.

Similar to the previous section, the sensitivities for the general case are computed
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using implicit differentiation. Consider the following equation:

S(x)>A(x)S(x)u(x) = S (x)> q. (3.23)

Differentiating both sides, we get

∇x

(
S(x)>A(x)S(x)u(x)

)
= ∇x

(
S (x)> q

)
. (3.24)

Applying the product rule to (3.24), we obtain

∇x

(
S(x)>AfixSfix

k ufix
)

+ S(x)>∇x (A(x)S(x)u(x))> = ∇x

(
S (x)> q

)
, (3.25)

where Afix = A(x),Sfix
k = S(x), and ufix = u(x) are treated as constants as part of

the product rule.

For ease of presentation, we denote the operators that compute the directional

derivatives of S(x) and its transpose by

Y(v,x) = ∇x (S(x)v)> (3.26)

and

X (w,x) = ∇x

(
S(x)>w

)>
. (3.27)

Using this notation, and applying the product rule to (3.25), we obtain

X (q,x) =X ((A(x)S(x)u(x),x) + S(x)>G + S(x)>A(x)Y(u,x)Ared(x)(∇x u(x))>,

where G is as defined in (3.21). Assuming that the reduced discrete PDE is non-
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singular, this implies that

∇x u(x)> = Ared(x)−1
(
X (q−A(x)S(x)u,x)− S(x)>

(
G + A(x)Y(u,x)

))
.

(3.28)

Multiplying by the receiver matrix, P>, the current basis, S(x), and applying the

product rule to (3.19) yields the Jacobian of the reduced forward problem

Jred(x) = P>
(
Y(t(x)) + S(x)(∇x u(x)>)

)
, (3.29)

where the coefficients of the fields with respect to the multiscale basis are denoted by

t(x) =
(
S(x)>A(x)S(x)

)−1
S(x)>q. (3.30)

Clearly, there is a difference between the Jacobian obtained for a fixed basis in (3.22)

and the Jacobian obtained for the adaptive basis given in (3.29). Note that even if

S(x) changes slowly with respect to x, the term A(x)Y(u,x) may not be small since

A(x) is the discretization of a differential operator. This might cause problems in

the optimization when computing the gradients between iterates using the Jacobian

in (3.22). Indeed, if one ignores the dependence of S(x) on x and uses the Jacobian

in (3.22), the error in the gradient can be rather large.

3.4.4 Illustrating the Error

Ignoring the dependency of S(x) on the model x might not always lead to a large

error in the gradient computation. Consider first the ideal case where the subspace
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(a) Setup (b) Adaptive Difference (c) Fixed Difference

Figure 3.2: (a): Example of test-problem setup containing one dipole source (blue and
red dot), and a conductive block (corresponding to the perturbation δx) in the center of
the domain. Here, we have 1369 receivers, which corresponds to having a receiver node in
every fine-mesh node on the top surface of the domain. (b-c): Difference plot of fine-mesh
and multiscale sensitivities on the surface of the domain. We obtain relative errors of 0.011
and 0.025 for the multiscale adaptive and fixed sensitivities, respectively. The color axis is
chosen identically to allow for comparison.

S(x) is chosen in such a way that

P>A(x)−1q = P>S(x)Ared(x)−1S(x)>q (3.31)

for every x. In this case, it is clear that the dependence of S(x) on x does not affect

the quality of the multiscale solution. We denote the error between the full and the

reduced forward problem by

ek(x) = P>
(
A(x)−1q− S(x)Ared(x)−1S(x)>q

)
, (3.32)

and assume that for some ε > 0, the reduced forward problem satisfies the relaxed

version of (3.31)

‖ek(x)‖≤ ε, ∀x. (3.33)
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From the Taylor expansion of ek(x), we have that for any small perturbation δx,

ek(x + δx) = ek(x) + Jek
δx +O(‖δx‖2), (3.34)

where

Jered
= ∇x

(
P>
(
A(x)−1q− S(x)Ared(x)−1S(x)>q

))>
= J− Jred (3.35)

is the Jacobian of the error ek. This implies that

‖ek(x + δx)− ek(x)‖ = ‖Jek
δx +O(‖δx‖2)‖ (3.36)

≤ ‖(Jred − J)δx‖+O(‖δx‖2) (3.37)

≤ 2ε. (3.38)

Since the choice of δx is arbitrary, we obtain that the columns of J and Jred are at

most 2ε away.

Now, consider the solution of the optimization problem where the reduced model

yields an accurate approximation to the desired function. In this case, if the change

in x is not too large, ignoring the dependence of S on x may not lead to any serious

complications. Nonetheless, if the subspace approximation of the reduced model to

the true model is not negligible, then ignoring it in the computation may lead to

gross errors in the evaluation of the derivatives and to the lack of convergence of the

optimization problem. As a small example, we compare the sensitivities computed

using the fine-mesh discretization with those obtained for the fixed and adaptive

multiscale method. We use a test problem with a fine mesh containing 36× 36× 12

cells and a coarse mesh containing 12 × 12 × 12 cells discretizing the domain Ω =

(0, 1)3. We use one dipole source and 1369 receivers located at the top surface of

the domain. Following the finite volume discretization described in [60], sources,
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receivers, and fields, are discretized at the nodes of the mesh, whereas the model x is

discretized at the cell centers. As a background model we use chose mref(x) ≡ 10−2.

To simulate a conductive block we add δm(x) = 10−2 for all x ∈ (.25, .5)3 and

δm(x) = 0 elsewhere. We compare the multiscale fixed and adaptive sensitivities,

Jfix
red(x)v and Jadapt

red (x)v, with the fine-mesh sensitivities J(x)v. Here, v = [1, . . . , 1]>

is needed for the computation of the sensitivities since we do not compute J,Jadapt
red ,

and Jfix
red explicitly but rather their action on a vector. For Jfix(x), the matrix S

in (3.22) is evaluated at xref and therefore ignores the dependence on x, whereas for

Jadapt
red (x), S is evaluated at x in (3.29). We obtain relative errors of

‖J(x)v − Jadapt
red (x)v‖2

2

‖J(x)v‖2
2

≈ 0.011 and
‖J(x)v − Jfix

red(x)v‖2
2

‖J(x)v‖2
2

≈ 0.025. (3.39)

As expected, ignoring the dependence of S on x may lead to large errors in the the

sensitivity computations as can be seen in Figure 3.2.

Finally, Eq. (3.23) shows that when the coarse mesh approaches the fine mesh, we

obtain the fine-mesh system (see also [80]). Hence, the reconstruction obtained using

the multiscale approaches the fine-mesh reconstruction, and will be identical when

k = m.

3.4.5 Local Sensitivity Computation

The directional derivatives Y(v,x) and X (w,x) are key components in the compu-

tation of the reduced adaptive sensitivities; see (3.29). The computations of Y(v,x)

and X (w,x) require the multiscale basis S to be differentiable, which is ensured when

using MSFV methods.

Let the discretized version of (3.18) in a particular coarse cell be given by

A(x)sj(x) = qj
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for j = 1, ..., k, where sj is the discretized version of the jth multiscale basis function.

By construction of each multiscale basis function sj, j = 1, . . . , k, this implies that

A(x)S(x)v = Qv, (3.40)

where as before, S(x) = [s1(x) s2(x) . . . sk(x)], Q = [q1 q2 . . . qk], and v ∈ Rk is

the vector corresponding to the directional derivative Y(v,x).

We exemplarily discuss the case of Dirichlet boundary conditions on the coarse

block. Derivatives for local forcing terms can be computed along the same lines.

We reduce the linear system (3.40) in the following manner. For ease of presentation,

denote S(x)v by f(x) ∈ Rm. Let NI and NB be the number of interior and boundary

nodes in the current cell, respectively, and define fI(x) ∈ RNI and fB ∈ RNB as the

corresponding values of f(x) at the interior and boundary nodes of the chosen coarse

cell (note that xB is known and does not depend on the model). Similarly, let q̂ = Qv,

and define q̂I ∈ RNI and q̂B ∈ RNB as the entries of q̂ in the inner and boundary

nodes, respectively. We can then rewrite (3.40) in terms of the interior nodes as

AII(x)fI(x) = q̂I −AIB(x)fB, (3.41)

where we partition the matrix A as follows

A =

AII AIB

ABI ABB

 . (3.42)

Differentiating both sides of (3.41) with respect to x, and using the product rule, we

can isolate the term ∇x fI(x) to obtain

∇x fI(x)> =−AII(x)−1(∇x(AII(x)fI) + ∇x(AIB(x)fB))>, (3.43)
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Algorithm 3.1: Construction of Local Sensitivities X and Y

1 given current model x and vectors v and w :
2 for each coarse cell: do
3 compute inner and boundary node indices Iin, Ibc
4 obtain x, v and w values on current coarse cell
5 compute local basis S(x) (see Section 3.3)
6 assemble local PDE operator A(x)
7 use Iin and Ibc to obtain AII(x) and AIB(x) (see Eq. (3.42))
8 construct inner node basis RI

9 solve for (3.45) and (3.44) to get X (w,x) and Y(v,x) on current cell

10 patch all local X (w,x) and Y(v,x) to form global directional derivatives

which can be rewritten as

∇x f(x)> = −RIAII(x)−1RI
>(∇x(A(x)f))>, (3.44)

where RI ∈ Rm×NI is the basis for the inner nodes constructed by eliminating the

columns of the identity matrix I ∈ Rm×m corresponding to the indices of the boundary

nodes. The above computation yields

Y(v,x) = ∇x S(x)v = ∇x f(x)

on a local coarse cell. This procedure is repeated for each coarse cell, and the solutions

are merged together as it is done in the construction of S. The construction of X (w,x)

is along the same lines and is given by

X (w,x) = ∇x S(x)>w = −(∇x(A(x)S)>RIAII(x)−>RI
>w. (3.45)

We present an outline of the algorithm for computing Y and X in Algorithm 3.1. We

would like to emphasize that, similar to the construction of the multiscale basis S,

computing Y(v,x) and X (w,x) can be done locally and independently on each coarse

cell, leading to a parallelizable implementation. With S(x), Y(v,x), and X (w,x), we
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are thus able to solve the reduced adaptive optimization using gradient or Hessian-

based methods.

3.5 Numerical Results

In this section, we demonstrate the potential of the multiscale MOR parameter esti-

mation method for a DCR survey. We show that the multiscale inversion can reduce

the time-to-solution compared to iterative PDE solvers, which are necessary for large-

scale parameter estimation problems, with a moderate loss of reconstruction quality.

We provide results for the fixed and adaptive multiscale basis; see Section 3.4.2 and

Section 3.4.3, respectively. We experiment on two test data: a block model that

consists of two conductive blocks and that is homogeneous in the rest of the domain

for proof-of-concept, and a more realistic 3D SEG/EAGE model of a salt reservoir

described in [3]. We also perform a strong scaling test for the construction of S(x),

Y(v,x), and X (w,x) to show the parallel efficiency of our current implementation.

Our multiscale framework is implemented as an extension to jInv [136], an open-

source package for PDE parameter estimation written in Julia [13]. For the discretiza-

tion of the PDE operators, we use built-in methods in jInv, which are based on the

mimetic finite volume method described in [60]. We use jInv’s methods for optimiza-

tion, misfit functions, and regularizers. For brevity, we omit the term ”multiscale”

when referring to the multiscale adaptive and multiscale fixed inversions and refer to

them as adaptive and fixed inversions instead.

3.5.1 Block Model Test Problem

We compare the reconstructions of the block model using the fine-mesh inversion on

a mesh containing 36 × 36 × 12 cells discretizing the domain Ω = (0, 1)3, and the

multiscale inversion using fixed and adaptive bases for two different coarse meshes.
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The first one contains 9 coarse cells with 123 fine cells per coarse cell, and the second

one contains 72 coarse cells with 63 fine cells per coarse cell. The test problem features

25 sources and 1, 369 receivers located on the top surface. Following the finite volume

discretization presented in [60], we use a cell-centered discretization of the model x

and nodal discretizations of the sources, receivers, and fields.

To construct the multiscale basis, we use boundary conditions obtained from

Lagrange polynomials which correspond to the standard multiscale finite ele-

ment/volume method [39]. We augment the basis by adding 25 basis functions of

the global skeleton, and 93 and 400 local basis boundary conditions (see Section 3.3)

for the coarse meshes with the 123 and 63 coarsenings, respectively. In our case, we

do not use the source basis functions (see Section 3.3) since the sources in our exper-

iments are located on the boundary (top surface) of the domain. The construction

of these bases are done using 0 boundary conditions and would therefore lead to the

trivial s ≡ 0 bases in our experiment.

Constructing these boundary conditions required 25 fine-mesh PDE solves in an

offline phase which took about 0.24 seconds. The overall number of basis functions

is k = 150 and k = 572 for the 123 and 63 respective coarsening strategies. To solve

the fine-mesh forward problem, we use MUMPS [2] and a block CG method [125]

with at most 100 iterations and stopping tolerance of 10−6. To make the block CG

competitive, we use symmetric successive over-relaxation (SSOR) as a preconditioner

and use the implementation from KrylovMethods [134] that uses direct BLAS [36]

access for efficiency and that uses multithreaded matrix-vector products. We choose

a stopping criteria that provides a good trade-off between efficiency and accuracy of

the gradient; see Table 3.1. The reduced multiscale forward problems are all solved

using MUMPS as we assume they are always small enough to be solved using a direct

solver. For the inversions, we use 10 projected Gauss-Newton iterations with at most

15 CG iterations for each step. We add 1% noise to the data, and enforce smoothness
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k time (seconds) relative error
fine mesh (MUMPS) 17,797 26.7 0
fine mesh (block CG) 17,797 423.9 6.7e-2

MS fixed 63 572 26.5 3.8e-2
MS adaptive 63 572 306.6 2.1e-2

MS fixed 123 150 25.4 4.9e-2
MS adaptive 123 150 114.7 2.6e-2

Table 3.1: Relative errors and runtimes for the block model test problem in Section 3.5.1.
Here, k corresponds to the total number of basis functions (and size of the PDE linear
system), MS Fixed 63 and MS Adaptive 63 correspond to the multiscale inversions using
coarse cells consisting of 63 fine-mesh cells per coarse cell, and MS Fixed 123 and MS
Adaptive 123 correspond to the multiscale inversions using coarse cells of size 123 fine-
mesh cells per coarse cell. The experiment is run on a standard Macbook air 2015 running
macOS Sierra, with Intel core-i7 2.2 GHz CPU with 2 cores and 8 GB of RAM. The
adaptive multiscale reconstruction is done in parallel using 2 processors. The fine-mesh
forward problem is solved using MUMPS and block CG. The reconstruction using MUMPS
is considered as the baseline and is therefore assigned an error of 0.

by using a diffusion regularizer with regularization parameter α = 10−8. Here, we

choose a low regularization parameter as we use iterative regularization by stopping

at iteration 10.

In Table 3.1, we show results for the small block model test problem. The fine-

mesh reconstruction requires solving a 17, 797× 17, 797 linear system for the forward

problem, whereas in the coarse meshes consisting of 63 and 123 cells, we project the

PDEs onto 572× 572 and 150× 150-dimensional subspaces, respectively. We see that

the adaptive inversions have a slower runtime than the fine-mesh inversion when using

MUMPS. Indeed, when the problem size is small enough to be solved using a direct

solver, there is no need to use MOR. However, in the typical setting where MOR is

used, iterative solvers are more commonly used to solve large linear systems [137],

and as shown in Table 3.1, both adaptive and fixed inversions are faster than the

fine-mesh inversion using the block CG algorithm as a linear solver.

The adaptive inversion is in general slower than the fixed inversion since the

projection bases must be rebuilt in every Gauss-Newton iteration and the sensitivity

computations are more involved. However, as can be seen in the relative errors
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(a) true model (b) fine mesh reconstruction

(c) MS Adapt 63 (d) MS Fixed 63

(e) MS Adapt 63 Difference (f) MS Fixed 63 Difference

(g) MS Adapt 123 (h) MS Fixed 123

(i) MS Adapt 123 Difference (j) MS Fixed 123 Difference

Figure 3.3: Model reconstructions for the block model test problem using the fine mesh,
and the adaptive and fixed multiscale inversions for two different coarsenings: 63 and 123

fine-mesh cells per coarse cell, as well as their respective differences with the fine-mesh
reconstruction. The figures were reproduced using the data visualization software Paraview
[7].
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and in Figure 3.3, we obtain superior reconstructions using the adaptive inversions.

The relative error of the adaptive reconstructions are about two times lower than

the relative errors of the fixed reconstructions. This coincides with the images in

Figure 3.3, where for the aggressive 123 coarsening, the adaptive inversion manages

to reconstruct the shape much better than the fixed reconstruction. For the more

moderate 63 coarsening, we project to a much larger subspace, leading to a fair

reconstruction of the shape in both fixed and adaptive inversions. However, the

intensity values are more accurate in the adaptive reconstruction than in the fixed

reconstruction.

k time (hours) relative error
fine mesh (MUMPS) 139,425 0.46 0
fine mesh (block CG) 139,425 5.98 3.2e-2

MS Fixed 83 4415 0.25 7.0e-2
MS Adaptive 83 4415 3.08 4.0e-2
MS Fixed 163 1009 0.22 1.6e-1

MS Adaptive 163 1009 1.97 1.1e-1

Table 3.2: Relative errors and runtimes for the SEG test problem in Section 3.5.2. Here,
k corresponds to the total number of basis functions (and size of the reduced discretized
PDE), MS Fixed 83 and MS Adaptive 83 correspond to the multiscale inversions using coarse
cells consisting of 83 fine-mesh cells per coarse cell, and MS Fixed 163 and MS Adaptive 163

correspond to the multiscale inversions using coarse-mesh cells of size 163 fine-mesh cells per
coarse cell. The experiment is run on a shared memory computer operating Ubuntu 14.04
with 2 Intel Xeon E5-2670 v3 2.3 GHz CPUs using 12 cores each, and a total of 128 GB of
RAM. Here, Julia is installed and compiled using Intel Math Kernel Library (MKL). The
adaptive multiscale reconstruction is done in parallel using 16 processors. The fine-mesh
forward problem is solved using MUMPS and block CG. The reconstruction using MUMPS
is considered as the baseline and is therefore assigned an error of 0.

3.5.2 SEG/EAGE Test Problem

As a more realistic test problem, we consider the 3D SEG/EAGE model problem. The

domain is of size 13.5 km×13.5 km×4.2 km, and is divided into 64×64×32 equally-

sized fine-mesh cells of size 211 m× 211 m× 131 m each. The DCR data is measured

by 3698 receivers and generated by 72 dipole sources located on the top surface of the



47

(a) true model (b) fine-mesh reconstruction

(c) MS Adapt 83 (d) MS Fixed 83

(e) MS Adapt 83 Difference (f) MS Fixed 83 Difference

(g) MS Adapt 163 (h) MS Fixed 163

(i) MS Adapt 163 Difference (j) MS Fixed 163 Difference

Figure 3.4: Model reconstructions for the SEG/EAGE test problem using the fine mesh,
and the adaptive and fixed multiscale inversions for two different coarsenings: 63 and 123

fine-mesh cells per coarse cell, as well as their respective differences with the fine-mesh
reconstruction. The figures were reproduced using the data visualization software Paraview
[7].
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domain. We compare the fine-mesh inversion with the fixed and adaptive inversions

using two different coarse meshes: one containing 32 coarse cells with 163 fine cells per

coarse cell and the other containing 256 coarse cells with 83 fine cells per coarse cell. As

in the block model test problem, the model is discretized on the cell-centers whereas

the sources and receivers are discretized on the nodes. The test data is generated in

jInv using the fine mesh. We use Lagrange polynomials to construct the multiscale

basis and augment the basis by adding 72 basis functions of the global skeleton. We

also use 862 and 3938 local basis boundary conditions described in Section 3.3 for the

coarse meshes, respectively. We do not use source bases since our sources are located

on the boundary (top surface) of the domain as in the block model test problem. The

construction of these boundary conditions required 72 fine-mesh PDE solves in an

offline phase which took about 2.21 seconds. For this test problem, we have k = 1009

and 4415 basis functions for the 163 and 83 coarsenings, respectively. Similar to the

block model test problem, we use MUMPS and the block CG method with at most

100 iterations and stopping tolerance of 10−6. As in the previous experiment, we use

SSOR as a preconditioner and use the implementation from KrylovMethods [134] and

multithreaded matrix-vector products. We choose the stopping tolerance so that a

good trade-off between efficiency and accuracy of the gradient is observed; see Table

3.2. For the inversions, we use 10 projected Gauss-Newton iterations with at most 15

CG iterations for each step. We add 1% noise to the data, and enforce smoothness

by using a diffusion regularizer with regularization parameter α = 10−15 in both

fine-mesh and multiscale inversions. Our inversion settings are the same as described

in [136] to allow for comparison. The low optimization stopping tolerance is chosen

to ensure that all methods have the same number of iterations, and the regularization

parameter is also chosen to be low since we use iterative regularization by stopping

at iteration 10.

In Table 3.2, we show results for the SEG model test problem. The fine-mesh
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reconstruction requires solving a 139, 425 × 139, 425 linear system for the forward

problem, whereas in the coarse meshes consisting of 83 and 163 cells per coarse block,

we project the PDEs onto 4415 × 4415 and 1009 × 1009-dimensional subspaces, re-

spectively. As in the previous experiment, the runtimes of the adaptive inversions

are larger than the one for MUMPS but considerably smaller than the one obtained

using the iterative block CG algorithm as a linear solver.

The relative errors and Figure 3.4 show that more accurate reconstructions are

obtained using the adaptive inversion - this is particularly clear in the 163 coarsen-

ings. In the 83 coarsenings, the coarse cells are fine enough so that the models are

very similar; however, the adaptive reconstruction captures the peak of the fine-mesh

model, whereas in the fixed reconstruction, there are discontinuities near the peak of

the model. This is reflected in the relative errors in Table 3.2 and in the difference

plots in Figure 3.4.

3.5.3 Parallel Efficiency

The computations of S(x),Y(v,x),X (w,x) require local PDE solves which can be

performed independently on each coarse cell and provides an opportunity for parallel

processing; see also Section 3.5.2. To demonstrate this, we test the behavior of a

simple prototype implementation of these methods using Julia built-in methods [13].

We use a fixed problem size as we increase the number of workers from 1 to 8 as

shown in Table 3.3. We use the same setup as in the example from Section 3.5.2, i.e.,

a mesh of size 64 × 64 × 32 with a coarsening of 163 fine-mesh cells per coarse cell.

Increasing the number of workers from 1 to 8 decreases the runtimes of S(x), Y(v,x),

and X (w,x) from around 3.86, 2.74, and 2.99 seconds to 1.41, 1.06, and 1.38 seconds,

respectively. We therefore get speedup factors of 2.73 for S(x), 2.57 for Y(v,x), and

2.16 for X (w,x) on the given machine, on which some resources such as caches are

shared among workers. A summary of the runtimes can be found in Table 3.3.
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time (seconds) speedup
number of workers S(x) Y(v,x) X (w,x) S Y(v,x) X (w,x)

1 3.8595 2.7380 2.9933 1 1 1
2 2.7331 1.6775 1.8633 1.41 1.63 1.61
4 1.8164 1.0514 1.3548 2.12 2.60 2.21
8 1.4150 1.0658 1.3818 2.73 2.57 2.16

Table 3.3: Strong scaling tests for constructing S,Y(v,x),X (w,x) using a coarsening of
163 fine cells per coarse cell, and with 72 sources and 3698 receivers. Computations are run
on a Microway system that has four Intel Xeon E5-4627 CPUs with 40 cores and 1 TB of
memory.

3.6 Discussion

We embed a multiscale finite volume (MSFV) methods into a PDE-constrained op-

timization framework and demonstrate its potential for solving high-dimensional pa-

rameter estimation problems. As usual in model order reduction (MOR) techniques,

we reduce the computational costs associated with the PDE constraint by projecting

the discrete PDEs onto a lower-dimensional subspace. Following the MSFV approach,

we obtain a reduced version of the original fine-mesh PDE problem by projecting it

onto a nested coarse mesh using an operator-dependent Galerkin projection. The key

novelty of our method is the combination of MSFV and the numerical optimization

scheme used for parameter estimation. Here, we exploit the fact that the multi-

scale basis is sensitive to the current PDE parameter and propose a reduced inverse

problem featuring an adaptive projection that can be solved using derivative-based

optimization. We outline the potential of our method using two inverse conductivity

problems in 3D that are inspired by Direct Current Resistivity.

What sets our approach apart from existing works on MOR for PDE-constrained

optimization is the choice of multiscale methods for obtaining the reduced problem.

This choice is mainly motivated by two reasons. First, using multiscale methods

as MOR techniques avoids the necessity of sampling the parameter space, which is

problematic in high-dimensional spaces. Apart from optional boundary conditions,

the method is fully online and does not require solving the fine-mesh problem. Sec-
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ond, multiscale methods simplify the formulation and solution of adaptive inversion

problems as the multiscale basis vary smoothly with respect to the PDE parameters.

Similar to the recent work of [30], we show that computing derivatives is tractable by

using local sensitivity computations; see Section 3.4.

Following a discretize-optimize strategy, we explicitly differentiate the solution of

the discretized problem obtained with the MSFV solver with respect to the parameter

to be estimated. Earlier works on differentiating multiscale solutions obtained approx-

imate derivatives through interpolation [99], used adjoint-based approaches [48, 49],

or required automatic differentiation [30]. Similar to other discretize-optimize ap-

proaches, our method produces an accurate gradient of the discrete objective problem

irrespective of the mesh size and quality of the reduced order model. We also demon-

strate that the involved local sensitivity computations can be performed in parallel

providing additional opportunity for speedup.

Our numerical experiments show that the adaptive multiscale provides parameter

estimates that feature details below the coarse-mesh resolution. As expected (see

discussion in Section 3.4.2), our numerical experiments confirm that ignoring the

dependence of S on the model parameter m also degrades reconstruction quality,

especially when using aggressive coarsening. The computational complexity of the

multiscale inversion grows linearly with respect to the number of coarse-mesh blocks

and (if direct methods are used) cubic with respect to the number of fine-mesh cells in

each coarse-mesh blocks. Therefore, additional computational benefits are expected

for problems in which accurately solving the forward problem leads to linear systems

that are too large to be handled by a direct solver. For finer mesh sizes, direct

methods are currently infeasible and iterative methods such as the block CG method

are being used. In our experiments, multiscale methods outperformed this iterative

method (see Table 3.1 and 3.2).

We applied our method to a DCR survey, where the forward problem involves
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solving the diffusion equation. We intend to further explore this method for other pa-

rameter estimation problems arising from electromagnetic, and gravity-based surveys

which involve solving different PDEs [21, 155]. Multiscale Finite Volume methods

provide more flexibility in building the reduced basis than used in this work. For

example, additional basis functions representing sources and receivers can be added;

see Section 3.3. Another approach to reduce the impact of boundary conditions on

the multiscale basis is using oversampling [20,39].
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Chapter 4

Uncertainty-Weighted

Asynchronous Optimization

The work in this chapter was done in collaboration with L. Ruthotto and is based

on [50]. An additional numerical example on multinomial logistic regression is in-

cluded in this chapter (see Section 4.3.2). In this chapter, we present our uncertainty-

weighted asynchronous consensus ADMM method that aims to reduce the time-to-

solution for large-scale parameter estimation. Our contribution is the introduction

of uncertainty-based weights to the global variable consensus ADMM scheme. This

chapter is organized as follows. We begin with background describing the typical

communication and latency difficulties that common methods such as Gauss-Newton

face in large-scale parameter estimation problems. We then present the uncertainty-

weighted consensus ADMM scheme and show how to compute the uncertainty-based

weights efficiently. We demonstrate the effectiveness of our scheme with a series of

numerical experiments and conclude with a brief discussion.
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4.1 Background

For problems in geophysics and machine learning, it is often the case that we have a

sum of misfits, corresponding to, e.g., different training examples, or different sources.

The MAP estimate computation can thus be formulated as

xMAP = argmin
x

N∑
j=1

Φj(x) +R(x). (4.1)

Standard Gauss-Newton algorithms can mainly be used to solve (4.1) for moder-

ately sized parameter estimation problems [63,66,136], especially in cloud computing

platforms, since they require a lot of memory and introduce severe communication

overhead when parallelized. For instance, in the static-scheduling approach described

in [136] for geophysical parameter estimation, the model and a number of meshes,

sources, receivers, and forward problems are assigned to all the workers in the offline

phase. Then, to evaluate the misfit, the gradient, and perform a Hessian matrix-

vector product, each worker computes its corresponding batch of gradients and Hes-

sian matrix-vector products, and communicates it to the main process. Consequently,

every inner PCG iteration used to solve (2.16) requires sending the current iterate

for the search direction to the workers and receiving the results from local matrix

vector products. For large-scale problems this can result in a nontrivial amount of

communication, especially when many PCG iterations are needed. Moreover, if the

data is divided unevenly among the workers, the algorithm may lead to large latencies

in each PCG iteration [136]. This motivates us to consider more scalable distributed

algorithms, especially when the size and dimension of the problem is very large.

We consider the consensus alternating direction method of multipliers (ADMM)

[16, 55, 83] as well as its asynchronous variant (async-ADMM) [162], which aims at

reducing latencies and thereby reduce the time-to-solution. Consensus ADMM has

previously been applied to high-dimensional inverse problems in data sciences [114,
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119], statistical learning [16, 55, 148, 159], and imaging [54, 75, 88]. The algorithm

tackles large-scale problems by partitioning the data into, say, N smaller batches that

can be solved in parallel, and in some cases explicitly. This often leads to an improved

ratio of local computation and communication. More specifically, each iteration of

the algorithm breaks down into: 1) N subproblems using parts of the data that are

solved locally and independently, 2) an averaging step that is performed once their

corresponding processors have solved all N subproblems, and 3) an explicit update of

the dual variable. The main change in the async-ADMM variant is that the averaging

step is performed once Na < N subproblems have been solved, reducing the overall

latency.

As we demonstrate in our numerical experiments, a straightforward implementa-

tion of consensus ADMM converges slowly in particular when the information con-

tained in the split data sets is complementary and the number of batches, N , is large.

One problem in these cases is that the averaging step in consensus ADMM gives equal

weight to all the solutions corresponding to each batch, leading to an uninformed av-

eraged reconstruction. In large-scale problems parameter estimation problems, this

renders consensus ADMM prohibitive since often only a few iterations are affordable.

To increase the performance of consensus ADMM, particularly in early iterations,

we introduce a novel weighting scheme that improves the convergence of consensus

ADMM. The weights are obtained in a systematic and efficient way using the frame-

work of uncertainty quantification (UQ) proposed in [46]. We demonstrate the effect

of the weights on a collection of linear inverse problems. We also outline the po-

tential of our method by comparing it to the Gauss-Newton method [60] and the

nonlinear conjugate gradient (NLCG) method [67] on a single-physics PDE parame-

ter estimation problem involving a travel time tomography survey, and a multiphysics

parameter estimation problem involving Direct Current Resistivity (DCR) and travel

time tomography [150] surveys.
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4.2 Uncertainty-Weighted Consensus ADMM

In this section, we introduce our uncertainty-weighted ADMM method. First, we

present the general formulation of the weighted ADMM, which involves rephrasing

(4.1) as a global variable consensus problem [16], and review the asynchronous imple-

mentation presented in [162]. We propose a novel scheme for selecting the weights,

which is based on approximate uncertainty information of the local subproblems that

we obtain similarly to the framework in [46]. Finally, we use a numerical example to

illustrate the intuition behind the weights.

4.2.1 Weighted Consensus ADMM

Motivated by the discussion in the previous section, we reformulate the optimization

problem (2.7) as an equivalent weighted global variable consensus problem

xMAP = argmin
x1,...,xN ,z

N∑
j=1

(Φj(xj) +R(xj)) ,

s.t. Wj(xj − z) = 0, j = 1, . . . , N,

(4.2)

where in contrast to (4.1), the objective function is now separable and the coupling

is enforced in the constraints. Here, xj ∈ Rn are the local variables that are brought

into consensus via the global variable z ∈ Rn, and Wj ∈ Rn×n are nonsingular weight

matrices. For ease of presentation and to obtain an efficient optimization scheme, this

work uses diagonal weight matrices. In the standard global consensus formulation [16],

the weight matrices are assigned as identity matrices. This reformulation allows each

of the objective terms in (4.2) to be handled by its corresponding worker via the

consensus ADMM algorithm.
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Consider the augmented Lagrangian defined by

Lρ(x1, . . . ,xN ,u1, . . . ,uN , z) =

N∑
j=1

(
Φj(xj) +R(xj) + u>j (Wj(xj − z)) +

ρ

2
‖Wj(xj − z)‖2

2

)
.

(4.3)

Consensus ADMM aims at solving problem (4.2) by finding a saddle point of Lρ via

the following iterations:

x
(k+1)
j = argmin

xj

Lρ(x(k)
1 , . . . ,x

(k)
j−1,xj,x

(k)
j+1, . . . ,x

(k)
N ,u

(k)
1 , . . . ,u

(k)
N , z(k))

= argmin
xj

(
Φj(xj) +R(xj) + (u

(k)
j )>Wjxj +

ρ

2
‖Wj(xj − z(k))‖2

2

)
, (4.4)

j = 1, . . . , N,

z(k+1) = argmin
z
Lρ(x(k+1)

1 , . . . ,x
(k+1)
N ,u

(k)
1 , . . . ,u

(k)
N , z)

=

( N∑
j=1

W>
j Wj

)−1 N∑
j=1

(
W>

j Wjx
(k+1)
j + (1/ρ)Wju

(k)
j

)
, (4.5)

u
(k+1)
j = u

(k)
j + ρWj(x

(k+1)
j − z(k+1)), j = 1, . . . , N, (4.6)

where k denotes the current iteration, uj ∈ Rn are the dual variables, and ρ > 0 is

the penalty parameter associated with the augmented Lagrangian term. In the first

two steps, we have simplified the augmented Lagrangian by dropping all terms that

enter the subproblems are constants. We note that the last step is a dual ascent step.

Letting nj be the number of forward models assigned to the jth subproblem,

the minimization steps in (4.4) require nj PDE solves per function, gradient, and

Hessian evaluations. Thus, they are the most computationally challenging part of

the algorithm. However, they correspond to the local subproblems that are solved

independently by each worker. Another advantage is that the local subproblem can

be solved using any optimization algorithm, which provides an easy way to tailor
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Algorithm 4.1: Consensus ADMM

• initialize x
(0)
j , z(0), and u

(0)
j for j = 1, . . . , N

• for k = 0, 1, 2, . . . until (2.28) holds

1. obtain x
(k+1)
j by solving local problems in (4.4) for j = 1, . . . , N

2. obtain z(k+1) using the averaging step (4.5)

3. obtain u
(k+1)
j through dual update (4.6) for j = 1, . . . , N

the method to different subproblems, e.g., subproblems containing different PDEs

for which highly-optimized algorithms already exist. Consequently, ADMM sits at

a higher-level of abstraction from classical optimization algorithms such as those

mentioned in Chapter 2. The global variable z attempts to bring the local variables

xj into consensus by averaging them in (4.5), and finally, the dual variables are

updated via a gradient ascent step in (4.6). As for the stopping criteria, we follow

the procedured outlined in Section 2.2.2.

Parallelization of consensus ADMM is much more straightforward than that of

the Gauss-Newton-PCG described in Section 2.2.1. The amount of communication

per outer iteration is reduced as we only communicate one set of models, x1, . . . ,xN

per outer ADMM iteration. In the synchronous parallel implementation, the master

processor must wait for all the workers to finish solving their corresponding subprob-

lems in (4.4) before performing the averaging step (4.5) per iteration, which may lead

to high latencies when some of the workers are much slower than others. The async-

ADMM method in [162] aims at reducing these latencies in star network topologies.

Here, the global averaging step (4.5) is performed when Na < N workers report their

results. A bounded delay condition is also enforced, where every worker has to report

at least once every ka iterations to ensure sufficient ”freshness” of all updates. We

note that here we have better control of the overall amount of communication and

latency since we can administer how many forward problems to assign to any given
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Algorithm 4.2: Consensus async-ADMM

• initialize x
(0)
j , z(0), and u

(0)
j for j = 1, . . . , N

• initialize Na and ka

• while (2.28) not satisfied

1. solve (4.4) locally

2. perform averaging step (4.5) when Na workers report their solutions

3. update the corresponding Na dual variables (4.6)

worker, and how accurately to solve each subproblem.

Convergence results have been established for the synchronous ADMM algorithm

in the case where the local subproblems are convex. In this case, the algorithm con-

verges regardless of the initial choice ρ(0) [38, 77]. Even when solving (4.4) inexactly,

ADMM convergence can be shown [77, Section 4]. For the asynchronous case, con-

vergence is ensured via the bounded delay condition. For non-convex subproblems, it

has been shown that ADMM converges to a local minimum under some modest as-

sumptions, most importantly requiring ρ to be sufficiently large, [78,115,157]. These

assumptions ensure that the Hessian of the Lagrangian of (4.2) remains positive def-

inite throughout the ADMM iterations.

4.2.2 Computing the Weights

We choose the weights to be approximately equal to the inverse of the diagonals of

the posterior covariance Γj,post ∈ Rn×n corresponding to the jth objective term in

(4.2). This is one way to assign higher weights to elements of xj for which the jth

subproblem contains more information. It also reduces the impact of elements for

which the data of the subproblem is uninformative. Clearly, there are other options

to transform uncertainties into weights. Since we are mostly interested in encoding

large differences in the uncertainties between subproblems, we do not compute the
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uncertainties with high accuracy.

As seen in (2.8), construction of the posterior covariance may not be tractable,

especially for large-scale PDE parameter estimation problems and when the forward

model is nonlinear. As a result, we follow the works of [46] for approximating the

posterior covariance of each objective term in a tractable way. This is done via a

low-rank approximation of the approximate Hessian of the misfit Φj in the following

manner:

1. We linearize the residual in Φj and obtain the Gauss-Newton approximation

Hj,mis ≈ J>j (Γ−1
j,noise)Jj, (4.7)

where Jj ∈ Rmj×n is the Jacobian matrix of Fj evaluated at some reference

model parameter, e.g., xref . We note that explicit construction of Hj,mis is not

necessary as we only need the action of Jj and J>j on a vector.

2. Denoting the prior-conditioned approximate Hessian by

H̃j,mis = Γ
1/2
priorHj,misΓ

1/2
prior,

we rewrite the jth posterior covariance in (2.8) as

Γj,post = Γ
1/2
prior

(
H̃j,mis + I

)−1

Γ
1/2
prior. (4.8)

3. We then construct a low-rank approximation of the prior-conditioned Hessian

using, e.g., randomized SVD [138] or Lanczos bidiagonalization [57] to obtain

H̃j,mis = VΛV> ≈ VrΛrV
>
r , (4.9)

where Λ = diag(λ1, . . . , λn) ∈ Rn×n and V = [v1, . . . ,vn] ∈ Rn×n denote
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the matrix of eigenvalues and eigenvectors of H̃j,mis, respectively, and Λr =

diag(λ1, . . . , λr) ∈ Rr×r and Vr = [v1, . . . ,vr] ∈ Rn×r are their corresponding

truncations retaining only the r largest eigenvalues and eigenvectors.

4. We plug this approximation into (4.8) and use the Sherman-Morrison-

Woodbury formula [141] to obtain an expression for the inverse term:

(
H̃j,mis + I

)−1

≈ I−VrDrV
>
r +O

(
n∑

i=r+1

λi
λi + 1

)
, (4.10)

where D ∈ Rr×r = diag(λ1/(λ1 + 1), . . . , λr/(λr + 1)).

5. Finally, we obtain a manageable approximation of the posterior covariance that

does not involve the inverse of the Hessian, but that instead involves the square

root of the prior:

Γj,post ≈ Γ
1/2
prior(I−VrDrV

>
r )Γ

1/2
prior. (4.11)

We choose the weights to be the inverse of the diagonals of Γj,post,

Wj = diag(Γj,post)
−1,

≈ diag
(
Γprior − Γ

1/2
prior

(
VrDrV

>
r

)
Γ

1/2
prior

)−1

,

=
[
diag (Γprior)− diag

(
Γ

1/2
prior

(
VrDrV

>
r

)
Γ

1/2
prior

)]−1

, j = 1, . . . , N,

(4.12)

so that we get higher weights in parts of the model where we are more certain and

vice-versa. We note that to compute the diagonals of Γj,post, we need to be able to

multiply by Γ
1/2
prior and compute the diagonals of Γprior = (L>L)−1 efficiently. In our

experiments, we are mainly concerned with the case when L>L is either a diagonal, or

a biharmonic operator. In the diagonal case, multiplying by Γ
1/2
prior and computing the

diagonals of Γprior is trivial. In the case we use the biharmonic operator, we have access

to the spectral decomposition of L>L using Fourier transforms [73], which allows us
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Figure 4.1: Averaging step of the weighted and unweighted consensus ADMM for Exam-
ple 1. In this case, W1 assigns higher weights to the pixels in the upper-left quadrant of x1,
W2 assigns higher weights to the upper-right quadrant of x2, etc. As a result, the weights
educate the averaging step, leading to a better reconstruction of the image.

to efficiently multiply by Γ
1/2
prior. We can also quickly estimate the diagonals of Γprior

using probing methods [146], extrapolation methods [45], stochastic methods [10],

and domain decomposition methods [106,109,145]. We may also update the weights

throughout the ADMM scheme so that we instead employ local approximations of

our posterior PDF [17]; however, convergence in this case is not guaranteed.

When the non-zero diagonal elements of Wj are equal to one, the weighted ADMM

method corresponds to the standard unweighted ADMM scheme, which is known

to converge slowly [16]. One reason is that the averaging step in (4.5) gives equal

weight to all elements of xj for all j = 1, . . . , N , leading to poor reconstructions of z,

especially in the early iterations. We illustrate this in Example 1.

Example 1. Consider solving the trivial linear system Ix = d with the weighted and

unweighted consensus ADMM with N = 4 splittings, where I ∈ Rn×n is the identity

matrix, and x,d ∈ Rn are the model and the observed data, respectively. We formulate
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the least-squares problem as

argmin
xj ,z

4∑
j=1

(
1

2
‖Ijxj − dj‖2

2+
α

2
‖xj‖2

2

)
(4.13)

s.t. Wj(xj − z) = 0, j = 1, . . . , 4, (4.14)

where α = 10−2, and Ij ∈ R(n/4)×n and dj ∈ Rn/4 are subsets of the data obtained by

partitioning the rows of I and d corresponding to the pixels in the top left, top right,

bottom left, and bottom right quadrant of the domain as seen in Figure 4.1. We show

the averaged reconstruction of both methods during the first iteration in Figure 4.1.

We note that the forward model in Example 1 is separable and the weights can

intuitively and easily be designed by hand. This example shows that we have a prin-

cipled way to construct the weighted scheme that corresponds to manually choosing

the weights in the cases that are as obvious as this example. In general, however, it

is not always possible to manually design the weights, as the forward operators are

not always separable.

4.3 Numerical Results

In this section, we outline the potential of the weighted scheme for consensus ADMM

as well as its asynchronous variant on a series of linear and nonlinear inverse prob-

lems. We experiment on three classes of problems: linear least-squares, multinomial

logistic regression, and 3D PDE parameter estimation problems. We first experiment

on a deblurring and a tomography problem from Regtools, a MATLAB package con-

taining discrete ill-posed inverse problems [72], as well as from a collection of linear

least-squares problems from the UF Sparse Matrix Collection [29]. We then test our

method on a multinomial logistic regression problem using the MNIST dataset [104].

Finally, we experiment on larger 3D PDE parameter estimation problems: a single-
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Figure 4.2: Observed data, ground truth, and reconstructions (first row) after 10 iterations
and weights (second row) for the deblurring problem from Regtools.

physics parameter estimation problem involving a travel-time tomography survey, and

a multiphysics parameter estimation problem involving DCR and travel-time tomog-

raphy. We conclude this section with a comparison in the communication among the

algorithms used for the multiphysics problem.

4.3.1 Least-Squares

We begin by comparing the weighted and unweighted consensus ADMM on a series

of linear-least squares problems from Regtools [72] and the UF Library of Sparse

Matrices [29]. For these problems, we use N = 4 splittings and solve

argmin
xj ,z

4∑
j=1

(
1

2
‖Ajxj − dj‖2

2+
α

2
‖xj‖2

2

)
s.t. Wj(xj − z) = 0, j = 1, . . . , 4,

(4.15)

where similar to Example 1, Aj ∈ R(m/4)×n and dj ∈ Rm/4, j = 1, . . . , 4, are chosen

by partitioning the rows of the original matrix and the data, A ∈ Rm×n and d ∈ Rm,

respectively. For the deblurring and tomography problems from Regtools, we use
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Figure 4.3: Observed data, ground truth, and reconstructions (first row) after 10 iterations
and weights (second row) for the tomography problem from Regtools.

the same splittings as in Figure 4.1 where we split the rows corresponding to the

different quadrants of the image. For the non-image based problems from the UF

library, A1 and d1 correspond to the first m/4 rows of A and d, respectively, A2 and

d2 correspond to the second m/4 rows of A and d, respectively, and so on. In the

case that the number of rows, m, is not divisible by 4, we round accordingly.

We add a smallness regularization term with α = 10−2 since the splittings Aj in

our experiments are underdetermined (m/4 < n), leading to rank-deficient coefficient

matrices A>j Aj arising from the normal equations. We set the initial penalty pa-

rameter to be ρ(0) = 5 and use the adaptive scheme described in (2.30). We run the

unweighted and weighted consensus ADMM for ten iterations and show comparisons

of the relative residuals and relative errors. To compute the weights, we follow the

procedure in Section 4.2.2 and compute a rank-10 approximation of the Hessian of

the misfits using MATLAB’s eigs function.

We observe larger performance gains through the weighted ADMM in the deblur-

ring problem as compared to the tomography problem. In the further, the weights are

concentrated in different non-overlapping parts of the domain (see Figure 4.2), lead-

ing to more efficient averaging. For the tomography problem, however, the weights
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UF Sparse Matrix Collection Results
unweighted ADMM weighted ADMM

matrix condition # residual rel. error residual rel. error
bcspwr03 5.01e+02 4.47e-02 2.58e-01 1.97e-02 1.63e-01
bcsstk03 6.79e+06 6.67e-01 9.99e-01 5.82e-01 9.91e-01
bcsstk19 1.34e+11 2.81e-01 9.01e-01 6.30e-02 8.62e-01
bfwb782 1.81e+01 4.94e-02 1.04e-01 2.83e-01 1.38e-01
can 229 4.01e+17 5.13e-02 2.10e-01 1.81e-02 1.46e-01
cavity02 8.12e+04 6.07e-01 9.33e-01 2.46e-01 7.83e-01
cavity03 5.85e+05 5.69e-01 9.01e-01 1.90e-01 7.34e-01
ch5-5-b4 1.00e+00 1.21e-01 9.85e-01 5.01e-03 9.84e-01
dwt 307 2.35e+18 8.92e-02 1.82e-01 2.23e-02 9.20e-02
football 3.74e+02 5.90e-02 4.88e-01 2.44e-02 3.58e-01
fs 183 3 3.27e+13 7.33e-02 1.00e+00 2.32e-02 1.00e+00

G23 1.00e+04 2.27e-02 2.63e-01 1.88e-02 2.55e-01
GD98 c 9.87e+16 7.78e-02 3.70e-01 5.13e-02 2.62e-01
gre 115 4.97e+01 2.77e-01 4.70e-01 7.64e-02 2.67e-01
gre 343 1.12e+02 1.18e-01 1.77e-01 4.48e-02 6.90e-02

grid1 dual 3.35e+16 3.74e-02 3.67e-01 2.56e-02 3.20e-01
impcol d 2.06e+03 3.50e-01 7.07e-01 9.74e-02 3.94e-01
jpwh 991 1.42e+02 1.89e-01 8.81e-01 1.61e-01 8.66e-01

lowThrust 1 Inf 4.40e-01 9.96e-01 2.84e-01 9.82e-01
lund a 2.80e+06 1.06e-01 5.99e-01 4.05e-02 5.65e-01
nos3 3.77e+04 5.27e-01 9.88e-01 2.22e-01 9.67e-01

odepa400 2.26e+05 4.91e-01 9.99e-01 1.86e-01 9.97e-01
pde900 1.53e+02 5.98e-01 9.82e-01 2.90e-01 9.39e-01

poisson2D 1.33e+02 3.33e-01 7.44e-01 8.03e-02 6.64e-01
polbooks 7.20e+02 3.72e-02 2.97e-01 2.30e-02 2.51e-01
problem1 3.11e+16 4.08e-01 9.11e-01 1.43e-01 8.24e-01
rdb200l 1.33e+02 8.68e-02 1.44e-01 1.91e-02 1.05e-01

str˙0 2.74e+02 8.46e-01 9.37e-01 4.04e-01 7.02e-01
TF10 7.34e+02 2.63e-01 4.82e-01 5.21e-02 2.85e-01

young1c 4.15e+02 6.39e-01 9.40e-01 3.59e-01 6.97e-01

Table 4.1: Comparison of the accuracy obtained using the unweighted and weighted ADMM

applied to least-squares problems from the UF sparse matrix collection [29].

look similar and contain a substantial amount of overlap, leading to averaged recon-

structions that are similar to those of the unweighted ADMM (see Figure 4.3).

Finally, for the UF matrices, we randomly take 30 matrices with dimensions 100 ≤

m,n ≤ 1000 from the library and compare both methods in Table 4.1 after ten

iterations. We report their condition number, relative residuals, and relative errors.

We obtain better results with the weighted ADMM after ten iterations. We refrain

from solving these problems in parallel since they are small 2D problems and are

mainly used as a proof-of-concept.
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4.3.2 Multinomial Logistic Regression

Next, we experiment on a small multinomial logistic regression problem using the

MNIST data set. We use 5000 images as training data and 1000 images as valida-

tion data. We split our data by class labels so that the first splitting consists of all

images corresponding to the number zero, the second splittings consists of all im-

ages corresponding to the number one, and so on. This splitting allows us to avoid

similar-looking weights in our splittings as seen in Figure 4.3. This results in 10 total

splittings. In particular, we solve

argmin
Xj ,Z

10∑
j=1

−trace(C>j log(hXj
(Dj))) + ‖Xj‖2

F ,

s.t. Wj(vec(Xj − Z)) = 0, j = 1, . . . , 10,

(4.16)

where h is the softmax hypothesis function given in (2.11), and vec(X) vectorizes a

given matrix X. Recall from Section 2.1.1 that Xj is a matrix with dimension nf×nc

where nf are the number of features and nc are the number of classes. As a result,

the weights Wj, j = 1, . . . , 10 are diagonal matrices with dimension nfnc × nfnc.

We compute the weights using a rank-20 approximation of the Hessian following

Section 4.2.2.

For the MNIST data set, nf = 282 and nc = 10, where each image is of size

28 × 28. Thus, each Wj can be interpreted as containing nc = 10 images along its

diagonals, and we visualize them by plotting ten 28 × 28 images from each weight

below.
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Figure 4.5: Training misfits and validation misfits for the weighted (wADMM) and un-
weighted ADMM (ADMM) for 20 iterations.
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Figure 4.4: UQ-based weights for the MNIST dataset. The weights are plotted on a
log-scale.

Each of the weights place more importance in the pixels that correspond to an

averaged version of the images in each corresponding splitting. Since we split the

data by classes, as we may intuitively expect, we obtain that W1 looks like averaged

zeros, W2 looks like averaged ones, and so on. In Figure 4.5, we report the training

and validation misfit histories after 20 iterations, and see the improved convergence

due to the weights.



69

10 20 30

runtime (mins)

10
0

10
2

(a) Eikonal Objective Function

10 20 30

runtime (mins)

0.19

0.2

0.21

0.22

0.23

(b) Eikonal Relative Errors

10 20 30 40 50

runtime (mins)

10
1

10
2

10
3

(c) Joint Objective Function

10 20 30 40 50

runtime (mins)

0.14

0.16

0.18

(d) Joint Relative Errors

GN

NLCG

wADMM

uADMM

async-wADMM

async-uADMM

Figure 4.6: Objective function and relative errors for the Eikonal and joint inversions
using 6 different algorithms: Gauss-Newton, NLCG, uADMM, wADMM, async-uADMM,
and async-wADMM. Here, the x-axis represents runtime in minutes. The experiments were
run on a shared memory computer operating Ubuntu 14.04 with 2 Intel Xeon E5-2670 v3
2.3 GHz CPUs using 12 cores each, and a total of 128 GB of RAM. Here, Julia is installed
and compiled using Intel Math Kernel Library.

4.3.3 Single-physics Parameter Estimation

As more a more realistic test problem, we again consider the 3D SEG/EAGE model [3]

also described in Section 3.5.2 as the ground truth (see Figure 4.7b) and test our

method for a single-physics inversion involving the travel time tomography survey.

The model contains a salt dome in which the velocity is significantly higher than in

the background. The domain is of size 13.5 km × 13.5 km × 4.2 km and is divided

into 64× 64× 32 equally sized mesh cells of approximate size of 211m× 211m× 11m

each. We implement our experiments in extension of jInv [136], an open-source

package for PDE parameter estimation written in Julia [13]. For brevity, since the
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travel time tomography problem is modeled by the Eikonal equation, we refer to it

as the Eikonal problem for the remainder of the paper. We solve these problems in

parallel and experiment on the effect of the asynchronous variant (async-ADMM) on

the weighted and unweighted consensus ADMM.

The PDE involved in the forward problem is the Eikonal equation (2.32), and it

is solved using the Factored Eikonal Fast Marching Algorithm [150]. We solve the

inversion using 36 sources and 3600 receivers located on the top surface of the domain.

We compare the weighted and unweighted ADMM (wADMM and uADMM), their

asynchronous variants (async-wADMM and async-uADMM), Gauss-Newton (GN),

and NLCG. For all 6 algorithms, we use a biharmonic regularization with regulariza-

tion parameter α = 10−1 to enforce smoothness. We solve all inversions in parallel

using 10 workers. Here, 6 workers solve forward problems containing 4 sources each,

and the remaining 4 workers solve forward problems containing 3 sources each.

We run the Gauss-Newton inversion for a maximum of 30 outer iterations and use

at most 10 PCG iterations with PCG stopping tolerance of 10−1 to solve the Gauss-

Newton system. For the NLCG inversion, we set a maximum of 100 outer iterations

since it is expected to take more iterations than Gauss-Newton to reach the same

accuracy. In the ADMM inversions, we run a total of 10 outer iterations with 3 GN

iterations used to solve the subproblems. This particular choice of inner GN and

outer ADMM iterations aims to balance the runtime and computations performed

with those of the Gauss-Newton inversion while avoiding solving the subproblems too

inexactly, as this may lead to lack of convergence. In the ADMM subproblems, each

GN iteration also uses at most 10 PCG iterations with PCG stopping tolerance of

10−1 as in the Gauss-Newton inversion.

For the penalty parameter, we use the scheme described in (2.30) to vary ρ and use

a lower bound of 10−12. As expected, the performance of ADMM depends crucially on

the initial choice of ρ; therefore, we report the best results obtained from initial values
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of ρ(0) ∈ [10−8, 102]. In our experiment, the optimal initial values are ρ(0) = 10−7 for

uADMM and ρ(0) = 10−4 for wADMM. In the asynchronous case, we perform a global

update whenever Na = 5 workers report their solutions and enforce the bounded

delay condition by requiring all workers to report results at least once every ka = 4

iterations. To compute the weights, we follow the procedure described in Section 4.2.2,

where we use the Lanczos bidiagonalization algorithm from KrylovMethods [134] to

compute a rank-5 approximation of the approximate Hessians of the data misfits.

To estimate the diagonal of the prior covariance, we perform 1000 iterations of the

stochastic estimator proposed in [10] based on Hutchinson’s technique for estimating

the trace of a matrix. These iterations can be performed very efficiently as we have

the spectral decomposition of the biharmonic operator. Again, we note that highly

accurate uncertainties are not necessary in our case and a good guess is sufficient for

our experiments. The computation of the weights took about 31 seconds.

In Figure 4.6(a-b), we show the relative errors and misfits for the Eikonal problem.

Although the relative error does not improve during the iterations for any of the

methods, we point out that the reconstructions visually become more similar to the

ground truth; see Figure 4.7(c-h). The impact of communication and latency in the

difference of runtimes between asynchronous ADMM variants, which ran for about

15 minutes, and the Gauss-Newton-PCG, which ran for about 38 minutes, is evident.

For the NLCG, a total of 68 iterations were performed before a linesearch fail was

reached. As expected, an iteration from the NLCG method is much quicker than

an iteration from the remaining 5 methods since each NLCG iteration only requires

explicit steps to update the model.

4.3.4 Multi-physics Parameter Estimation

We now add a second modality to Section 4.3.3, the DCR survey, which is modeled by

the steady-state heterogeneous diffusion equation 2.31, and consider a multiphysics
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Figure 4.7: Reconstructions of SEG model with a single-physics and multiphysics experi-
ment.

inversion. Here, we keep the same settings for the Eikonal problem and use 32 sources

and 1682 receivers located on the top surface of the domain for the DCR survey. To

solve the DCR forward problem, we use the finite volume method described in [60]

to discretize the problem and solve the linear system using Julia’s direct solver. For

simplicity, we assume known petrophysics [140], which gives us an explicit relation

between the ground conductivity σ and the wave velocity v given by

σ(v) =
(

2− v

c

)(b− a
2

(tanh(10(c− v + 1)) + a

)
. (4.17)



73

Here, a and b are the conductivity values set to 0.1 and 1.0 respectively, and c = 3.0

is the velocity in which the contrast is centered. This setup was also used in [136].

As in Section 4.3.3, we compare six algorithms: wADMM, uADMM, async-

wADMM, async-uADMM, Gauss-Newton-PCG, and NLCG. We solve all the inver-

sions in parallel using ten workers. The PDE operator in the DCR experiment is

small enough to be factorized in a single worker with a direct solver. In this case, it is

not worth parallelizing the problem since communication takes longer than solving for

all sources in one worker. For larger problems where the DCR problem must instead

be solved iteratively, however, distributing the DCR sources among different workers

will lead to faster time-to-solution. In contrast, the Eikonal problems are solved with

a sequential fast marching scheme [150] and thus, we distribute the problems among

the remaining nine workers. The nine workers in charge of the Eikonal problem solve

forward problems containing 4 sources each. The inversion settings are also the same

as in Section 4.3.3 except for the choice of initial penalty parameter, where we find

the optimal initial values to be ρ(0) = 10−3 for uADMM and ρ(0) = 1.0 for wADMM.

We also follow the same procedure as in Section 4.3.3 to compute the weights for this

setup, which took about 54 seconds.

We show the results for the relative errors and objective function values vs. run-

time for the joint inversions in Figure 4.6 and the reconstructions in Figure 4.7. We

see the weighted schemes improve the convergence and reconstruction quality of its

unweighted counterparts. In fact, we obtain similar reconstruction accuracy between

the Gauss-Newton scheme and the synchronous weighted ADMM (see Figure 4.6(d));

we highlight the considerable progress made by the ADMM method in the first few it-

erations as this is not very common for small problems that can be held in the memory

of a few machines. We also obtain faster convergence using the asynchronous ADMM

variants, with the weighted asynchronous ADMM leading to similar quality of re-

construction as can be seen in Figure 4.7. As expected, the joint inversions enhance



74

the quality of the reconstruction since the different physics involved capture different

properties of the model [136].

4.3.5 Communication Costs

We use the multiphysics example to exemplify the differences in terms of commu-

nication costs for the Gauss-Newton, NLCG, and ADMM method. As discussed in

Section 4.3.4, we assign worker 1 the DCR problem containing all of its 32 forward

models, and assign the remaining nine workers (2− 10) four Eikonal forward models

each. In the comparison below, the vectors communicated between the workers and

the master process are of size 131, 072× 1.

Gauss-Newton. We use 30 GN iterations each of which involves up to 10 PCG

iterations per GN iteration. In each GN iteration, the master process sends the cur-

rent model to all ten workers. Worker 1 then returns the accumulated gradient vector

corresponding to the 32 DCR forward problems, and workers 2-10 each return the ac-

cumulated gradient vector for the four local sources. This allows for the computation

of the full gradient shown in (2.11).

Moreover, in each PCG iteration, the master process sends one vector to all work-

ers. The workers then return the accumulated matrix-vector product of this vector

with the approximated Hessians associated with the local subproblems (DCR for

worker 1 and Eikonal for workers 2–10). This leads to a total of 20 vectors com-

municated between the master and the workers per PCG iteration. Overall, the

Gauss-Newton method consists of

10 workers× (2 gradient vectors + 20 PCG vectors)× 30 GN iterations = 6, 600

vectors communicated between the workers and the master process.

NLCG. We run NLCG for a maximum of 100 iterations. The communication pat-
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tern is the same as in the Gauss-Newton method except that no inner PCG iterations

are performed. Thus, the NLCG inversion consists of

10 workers× 2 gradient vectors× 100 NLCG iterations = 2, 000

vectors communicated between the workers and the master process.

sync-ADMM. We run a total of 10 outer ADMM iterations. In each ADMM

iteration, the master process sends the current global variable z(k) to all workers. Each

worker then returns its corresponding local variable x
(k+1)
j to the main process. This

leads to a total of two vectors communicated between each worker and the master

process per ADMM iteration. The sync-ADMM inversion thus consists of

10 workers× 2 vectors× 10 ADMM iterations = 200

total vectors communicated between the workers and the master process.

async-ADMM. As in sync-ADMM, we run a total of 10 ADMM iterations.

However, we update the global variable whenever 4 workers report their solution. As

a result, the async-ADMM inversion consists of

4 workers× 2 vectors× 10 ADMM iterations = 80

total vectors communicated between the workers and the master process.

The communication comparison described above confirms that ADMM dramati-

cally reduces the amount of communication in the inversion. This is also seen in the

reduced runtimes in Figure 4.6. A similar comparison can be made for the single-

physics parameter estimation problem in Section 4.3.3.
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4.4 Discussion

We propose a weighted asynchronous consensus ADMM (async-wADMM) method for

solving large-scale PDE parameter estimation problems in parallel. To this end, the

data involved in the problem is divided among the available workers. Our scheme is

geared toward applications such as PDE parameter estimation where only a few iter-

ations can be afforded. Our proposed weighting scheme improves the convergence of

the standard ADMM. Since our weights are informed by an approximate uncertainty

quantification for the subproblems in (4.4), we formulate the parameter estimation

problem in a Bayesian setting. It is important to note that our scheme can also

be applied in the frequentist setting as long as weights are available. To obtain an

overall efficient scheme, we follow the works of [46] to quantify the uncertainties in a

tractable manner.

As test problems, we solve a collection of linear least-squares problems and a

multinomial logistic regression problem for proof-of-concept as well as a more real-

istic single-physics involving the travel time tomography survey, and a multiphysics

parameter estimation problem involving the DCR and travel time tomography survey.

Our numerical results show that our method accelerates the convergence of consensus

ADMM, particularly in the early iterations. The quality of the parameter reconstruc-

tions obtained by the weighted async-ADMM scheme are comparable to those of the

Gauss-Newton-PCG method, however, the weighted async-ADMM method requires

substantially less communication among workers and has smaller latencies, resulting

in reduced inversion runtimes and less communication. Moreover, since we can choose

any optimization scheme to solve the subproblems in async-ADMM, the method sits

at a higher level of abstraction and provides additional flexibility. Each subproblem

can, therefore, be solved with a tailored solver, making the weighted async-ADMM

especially attractive for large-scale multiphysics PDE parameter estimation problems.

For brevity, we do not show the case where the weights are computed in every itera-
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tion; however, in this case, we obtain indiscernible reconstructions from those shown

in Figure 4.7. We intend to further explore our method for the case where the weights

are correlated (non-diagonal), and for large-scale problems where the Gauss-Newton-

PCG method cannot be used as well as on computational environments with small

communication bandwidth such as cloud computing platforms.
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Chapter 5

Classification with Multinomial

Logistic Regression

The work in this chapter is based on [52], and was done in collaboration with L.

Ruthotto, S. Tyrväinen, and E. Haber. In this chapter, we present an efficient learning

algorithm for solving large-scale classification problems. We consider a reformulation

of the MLR problem into a constrained optimization problem whose objective function

is separable along the examples and whose coupling is enforced by the constraints -

we note that this is not the consensus formulation previously discussed in Chapter 4.

We then apply ADMM to decompose the constrained problem into three subproblems

that can be solved efficiently. We name this scheme ADMM-Softmax. In particular,

each iteration of our scheme consists of 1) a weight update that involves solving

a least-squares problem, 2) a global variable update that involves a cross-entropy

problem that is separable along the examples, and 3) a trivial dual update variable.

The least-squares problem arising from the weights can be efficiently solved using

direct or iterative solvers [56, 137]. The convex and smooth softmax problem arising

from the global variable update can also be solved efficiently since the separability

along examples renders it highly parallelizable. Finally, the dual variable update is
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a trivial step requiring only a matrix-vector product. As we will see in Section 5.3,

the reformulation of the MLR problem in this case is different from that of the global

variable consensus formulation previously described in Chapter 4.

5.1 Related Work

Multinomial regression is a central problem in many tasks, and has led to many

numerical methods tailored to specific data structures. One class of methods is based

on deriving separable upper bounds on the objective function. For example, in [15,58],

an upper bound based on the first-order concavity property of the log-function is

used. This approach gives a new optimization problem that is not convex, but where

the objective is separable across the weights associated with the different classes.

There are other possible upper-bounds for a softmax function, such as a quadratic

upper bound and a product of sigmoids. Detailed comparison of these and analytical

solutions in a Bayesian setting can be found in [15]. In [58], Gopal and Yang use the

concavity bound to solve multinomial logistic regression in parallel, and prove that

their iterative optimization of the bounded objective converges to the same optimal

solution as the unbounded original model. Related to the concavity bound in [43]

and [132] where the convex conjugate of negative log to reformulate the problem as

a double-sum that can be solved iteratively with SGD.

Another group of methods are based on a splitting idea. An ADMM approach on

the MLR problem can also be found in [58], where the problem is reformulated as a

constrained optimization problem where linear and nonlinear terms of the objective

function are solved separately. That is, the new global auxiliary parameter of ADMM

is implanted only on the challenging log-sum term. The new optimization problem

can be solved in parallel, but the authors state that this approach does not compare

in computational efficiency to the principal method presented in their paper. The
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approach is inspired by Boyd in [16] who solves the sparse logistic regression problem

in parallel by splitting it across features with ADMM.

An approach for solving the non-convex problem of training neural networks using

ADMM and Bregman iteration can be found in [147], where examples concentrate

on binomial regression which allows them to use quadratic loss function and closed

form solutions for each iteration steps. Another related approach to train neural

networks is the method of auxiliary coordinates (MAC) [19]. In MAC new variables

are introduced to decouple the problem. Unlike ADMM, however, MAC breaks the

deep nesting, i.e. function compositions, in the objective function with the new

parameters.

Sparse logistic regression has been proposed as a method for feature selection in

large-scale classification problems as sparsity can help identify the most important

features, which avoids over-fitting and can reduce the computing time. The sparsity

is generally forced with `1-regularization, but the norm is non-differentiable, leading

to difficulties in training. There are different approaches to solve this, e.g., interior

point-methods [95], iterative shrinkage methods [71] and hybrid algorithms [142]. See,

for example, [96] or the survey [161].

5.2 Mathematical Formulation

We now revisit the mathematical formulation for multinomial logistic regression

(MLR) described in Section 2.1.1 in more detail. Recall that in this setting, we

are given the feature matrix D = [d1 d2 . . .dne ]
> ∈ Rne×nf , the label (or class) ma-

trix C = [c1 c2 . . . cne ]
> ∈ Rne×nc , and the softmax classifier, hX (D), which can be

found in (2.11). Here, ne, nf , and nc are the number of examples, features, and class

labels, respectively. The softmax function normalizes all values between zero and one

so that all rows sum to one - this guarantees that each row of the predicted matrix
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Cpred resembles a probability distribution, and the weight matrix X ∈ Rnf×nc is the

parameter of interest.

To learn the weights X, we use the cross-entropy loss function given in (2.10).

In order to make the coupling of the weights along examples evident, we revisit and

rewrite the cross-entropy function in (2.10) more explicitly as

ΦCE(X) = −trace
(
C> log (hX(D))

)
= −trace

(
C> log

(
diag

(
1

exp(DX)enc

)
exp(DX)

))
=

ne∑
j=1

[
− (cj � (X>dj))

>enc + log(exp(X>dj)
>enc)

] (5.1)

where enc ∈ Rnc , is a vector of all ones. The cross-entropy loss function quantifies

the between the true probabilities C and the predicted probabilities hX (D). Here �

denotes the Hadamard product, i.e., element-wise product. Learning the weights is

thus equivalent to solving

xMAP = argmin
X

(
ΦCE(X) +R(X)

)
, (5.2)

where R:Rnf×nc 7→ R is a regularization operator that helps avoid overfitting. From

the term in (5.1), we can see that the weights are coupled for each example. This

lack of separability leads to difficulties in the parallelization of classical optimization

algorithms used to minimize the entropy loss function. The problem can thus be very

challenging computationally for large amounts of high-dimensional data.

5.3 ADMM-Softmax

To circumvent the lack of separability described above, we derive a novel ADMM al-

gorithm to solve (5.2). Our main idea, is to split the multinomial regression problem
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into a regularized least-squares problem and a separable smooth convex optimization

problem, noting that efficient solvers exist for both subproblems. For ease of presen-

tation, we use `2-regularization since it allows us to have a closed-form least-squares

solution when updating the weights, however, our method can easily be extended

to other regularizers. In particular, we relax (5.2) by introducing a global auxiliary

variable Z ∈ Rne×nc and reformulate it as

argmin
X,Z

Φ (C,Z) +
α

2
‖L (X−Xref)‖2

F

s.t. Z−DX = 0.

(5.3)

The second term is a Tikhonov regularizer [121,123,149] where L is the regularization

operator.

To solve (5.3) using the ADMM algorithm we first consider the Lagrangian

Lρ (X,Z,Y) =Φ (C,Z) + e>ne
(Y � (Z−DX)) enc

+
ρ

2
‖Z−DX‖2

F +
α

2
‖L (X−Xref)‖2

F ,
(5.4)

where Y ∈ Rne×nc is the estimate of the Lagrange multiplier, ρ > 0 is the penalty

parameter, and ene ∈ Rne , enc ∈ Rnc are vectors of all ones. The ADMM algorithm

aims to find the saddle point of the Lagrangian via the following iterations:

X(k+1) = argmin
X

Lρ
(
X,Z(k)

)
,

Z(k+1) = argmin
Z

Lρ
(
X(k+1),Z

)
,

Y(k+1) = Y(k) + ρ
(
Z(k+1) −DX(k+1)

)
.

(5.5)

These iterations can be written more explicitly using the scaled ADMM algorithm
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(see [16]) as

X(k+1) = argmin
X

ρ

2

∥∥Z(k) −DX + U(k)
∥∥2

F
+
α

2
‖L (X−Xref)‖2

F (5.6)

Z(k+1) = argmin
Z

Φ (C,Z) +
ρ

2

∥∥Z−DX(k+1) + U(k)
∥∥2

F
(5.7)

U(k+1) = U(k) +
(
Z(k+1) −DX(k+1)

)
, (5.8)

where U = (1/ρ)Y is the scaled Lagrange multiplier. The subproblem (5.6) involves

a regularized least-squares, and a global variable step (5.7), which is convex and

separable along the examples, leading to trivial parallelization (see Section 5.3.2).

We note that using a different regularization in the original optimization prob-

lem (5.2) would only impact the least-squares subproblem (5.6) and the global vari-

able minimization step (5.7) would stay the same. There are many efficient ways to

solve least-square problem with different types regularizations terms. A good exam-

ple would be using `1-regularization, which renders (5.6) a lasso problem. In this

case, there are many established solvers that efficiently solve the lasso problem (see

Section 5.1) that can be used in our framework. As for the stopping criteria, we follow

the procedured outlined in Section 2.2.2.

5.3.1 Solving the Least-Squares

Updating the weight matrix X requires solving (5.6). This is equivalent to solving

normal equations

(
ρD>D + αL>L

)
X = ρD> (Z + U) + αL>LXref . (5.9)

Note that the coefficient matrix is not iteration-dependent. Thus, depending on the

number of features, the matrix can be factorized once and quickly applied.

In the case that coefficient matrix cannot be explicitly constructed, we can use iter-
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ative methods, e.g., CGLS on the normal equations [56] with the incomplete Cholesky

factorization [56] as a preconditioner. Another option is to use sample average ap-

proximation [93] to reduce the dimension of the problem and pre-compute a factor-

ization in the offline phase, e.g. thin QR or Cholesky [56], leading to trivial solves

throughout the optimization scheme. We note that these are only some approaches

for solving (5.9), and that a myriad of additional options exist [56,137].

5.3.2 Global Variable Update

The global variable minimization step (5.7) can be written as

Ψ (Z) = −e>ne
(C� Z) enc + e>ne

log (exp (Z) enc) +
ρ

2
‖Z− Zref‖2

F ,

=
ne∑
i=1

(
−c>i zi + log(exp(zi)enc) +

ρ

2
‖zi − zref,i‖2

2

)
,

(5.10)

where Zref = DX−U, and the vectors {z1, z2, . . . , zne} correspond to the rows of the

matrix Z. For brevity, we maintain the matrix notation.

We can then write the gradient as

∇ZΨ (Z) =−C + exp (Z)�
((

1

exp (Z) enc

)
e>nc

)
+ ρ (Z− Zref) ,

(5.11)

and the product of the Hessian times a matrix S ∈ Rne×nc as

∇2
ZΨ (Z) S =

(
exp (Z)

exp (Z) ence
>
nc

)
� S

−

(
exp (Z)

(exp (Z) enc)
2 e>nc

)
�
(
(exp (Z)� S) ence

>
nc

)
+ ρS,

(5.12)

where the squaring in the denominator of the second term is applied component-

wise. Unlike in (5.1), the objective function in (5.10) is separable along the examples,
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allowing for easy parallelization. In particular, the gradients and Hessians can be

computed locally and independently for different examples, leading to reduced run-

times. Finally, ADMM-Softmax provides us with additional flexibility since we can

solve (5.7) using any classical gradient-based optimization algorithm.

5.3.3 Computational Costs and Convergence

For the ADMM-Softmax formulation, the global variable update (5.7) can be solved

using the Newton-CG method [157] (as we do in our experiments), and the Hessian

matrix-matrix product used in (5.12) only requires performing a Hadamard product

with exp (Z), which is in the order of O (nenc). Assuming np workers are available,

the cost for each Hessian matrix-matrix product seen in (5.12) is in the order of about

O
(
ne

np
nc

)
per worker, leading to very fast computations of the global variable update.

The main computational bottleneck in ADMM-Softmax thus lies in solving the least-

squares problem (5.6), for which there are ample options for solving efficiently [56].

When a factorization of the coefficient matrix can be performed in the off-line phase,

e.g., Cholesky or thin QR, we can trivially solve the least-squares throughout the

optimization.

Finally, it has been shown that the ADMM algorithm converges linearly for convex

problems with existing solution regardless of the initial choice ρ(0) [38]. If (5.6) is

solved inexactly, ADMM still converges under additional assumptions [77]. In our

case, the cross-entropy loss function with the softmax classifier is convex, and thus

we are guaranteed convergence with ADMM-Softmax.

5.4 Numerical Experiments

In this section, we demonstrate the potential of our proposed ADMM-Softmax on the

MNIST and CIFAR-10 datasets. For both datasets, we compare the performance of
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the proposed ADMM-Softmax, SGD, and Newton-PCG. Our experiments are coded

in MATLAB using the Meganet deep learning package [158], and our ADMM-Softmax

framework is coded as an extension of the package. We perform the experiments in

this chapter using the same machine previously described in Chapters 3 and 4: a

shared memory computer operating Ubuntu 14.04 with 2 Intel Xeon E5-2670 v3 2.3

GHz CPUs using 12 cores each, and a total of 128 GB of RAM.

5.4.1 Setup

MNIST

The MNIST database consists of 60,000 grey-scale hand-written images of digits

ranging from 0 to 9. [103, 104] Here, we set 50,000 examples for training our digit-

recognition system and the remaining 10,000 as validation data. Each digit is nor-

malized with size 28× 28, or with 784 pixel in total as the features.

Since the data is not linearly separable, we seek a hyperplane in an enlarged sub-

space obtained by a non-linear transformation to the original variables. Specifically,

we propagate the data through a single fixed hidden layer where we apply a 3 × 3

random convolution filter with 9 channels:

Dprop = tanh(DK), (5.13)

where K ∈ Rnf×m is a block-circulant matrix with circulant block (BCCB) convolu-

tion matrix [73] and m denotes the size of the new feature space. The transformed

feature matrix has dimensions 50, 000×7057, where each row now consists of 9 images.

An illustration of the feature transformation is shown in Figure 5.1.

We compare three algorithms, our proposed ADMM-Softmax, SGD, and Newton-

PCG. In SGD, we use Nesterov momentum with minibatch size 30, and learning rate

lr = lr0/
√
ce, where ce is the current epoch, lr0 = 10−2 is the initial learning rate.



87

original image propagated images

Figure 5.1: Feature transformation of a single image in the original feature matrix.

Here, we choose the initial learning rate and minibatch sizes by performing a grid-

search on [10−8, 103] and [1, 100], respectively. The initial learning rate grid-search is

done logarithmically whereas the minibatch size grid-search is performed uniformly.

In Newton-PCG, we set a maximum number of 20 inner CG iterations per Newton

iteration, with CG tolerance of 10−2. In the ADMM-Softmax, we use initial ρ = 10−2,

with absolute and relative tolerance described in (2.29) to be 10−3. To solve the LS

system, we compute a Cholesky factorization in the off-line phase, which for this ex-

periment took about 0.3 seconds. To solve (5.7), we use the Newton-CG method from

the Meganet package using a maximum 30 iterations and a gradient norm stopping

tolerance of 10−1. The inner Newton system is solved using the conjugate gradients

(CG) with a maximum of 10 inner iterations and stopping tolerance of 10−1.

For all three methods, we use the Laplace operator as the regularization operator

L to enforce smoothness of the images, and set reference weights to Xref = 0. We

set regularization parameters to α = 10−1 for SGD, α = 10−3 and α = 1 for ADMM-

Softmax, which were chosen based on the best results from performing a logarithmic

grid-search on [10−8, 103].

CIFAR-10

The CIFAR-10 dataset [97] consists of 60,000 32×32 RGB-valued images in 10 classes.

Here, we have 50,000 examples of data for training and 10,000 for validation. The

images belong to one of the following 10 classes: airplane, automobile, bird, cat, deer,

dog, frog, horse, ship, and truck.
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For this dataset, we increase the feature space by propagating our feature matrix

through a pre-trained AlexNet [98] on the ImageNet dataset [33] from MATLAB’s

deep neural networks toolbox. In particular, we remove the last fully-connected layer

and treat the rest AlexNet as a fixed feature extractor for the new dataset. In this

case, the propagated feature matrix has dimensions 50, 000× 4096.

As for the optimization, we maintain the same setup as the MNIST dataset. We

perform the same grid-search on the learning rate and minibatch sizes as in MNIST

and report the parameters that led to the best results. In SGD, we obtain the best

results with learning rate as lr0 = 10 and minibatch size 40. In ADMM-Softmax, we

choose the penalty parameter as ρ = 10−1. Since the propagated features no longer

correspond to images in this case, we use the identity as the regularization operator

with α = 10−1 for SGD, α = 10−5 for Newton-PCG, and α = 1. As before, we

chose the α and ρ that led to the best results for each algorithm after performing a

grid-search on [10−8, 103] for each algorithm, respectively.

5.4.2 Results

In Figure 5.2, we show the performance of both algorithms applied to MNIST and

CIFAR-10. To make a fair comparison among all the algorithms, we compare the

performance based on the runtime of each algorithm - this is because an iteration of

ADMM-Softmax, SGD, and Newton-PCG require different amounts of computation.

We let both algorithms run for a maximum of 500 seconds, and as can be seen, we

obtain faster convergence with ADMM-Softmax. We note that we did not use any

parallelization in any of these experiments, however, further speed ups are to be

expected when the global variable step (5.7) is performed in parallel.
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Figure 5.2: Training and validation accuracies for the MNIST and CIFAR-10 datasets.

5.5 Discussion

We propose a simple and efficient algorithm for solving large-scale image classification

problems. To this end, we reformulate the traditional softmax regression problem

consisting of an unconstrained coupled optimization into a constrained one where

the objective function is decoupled and the coupling is enforced by the constraints.

The new formulation is solved by the alternating direction method of multipliers

(ADMM) which breaks down the problem into three simpler steps consisting of a

least-squares (LS), a separable softmax problem, and a trivial dual variable update

per outer iteration. ADMM-Softmax allows for plenty of flexibility since the resulting

separable softmax problem can be solved using any classical optimization algorithm

efficiently and in parallel (see Section 5.3).

Our numerical results show improved convergence when compared to SGD and
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Newton-PCG for the MNIST and CIFAR-10 datasets. We refrain from solving these

problems in parallel since the datasets were relatively small; however, since our pro-

posed ADMM-Softmax contains a highly parallelizable step, further benefits are to

be expected for large datasets where parallelization is necessary.

We note that better accuracies, especially for the CIFAR-10 dataset, could be

achieved if we fine-tune the parameters of pre-trained AlexNet [160]. To this end, our

method can accelerate block-coordinate algorithms that alternate between updating

the network weights and the classifier. This is a direction of our future work.
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Chapter 6

Summary and Outlook

The task of estimating parameters in the modern technological era, where large

amounts of data is easily attainable, has become one of great computational chal-

lenge. One area of active research that attempts to tackle this challenge arises on

the hardware side, e.g., supercomputing, quantum computing, etc. Access to these

resources is unfortunately very limited, and quantum computing in particular is in

its very early stages. The development of efficient optimization algorithms such as

those presented in this thesis have therefore played an integral role in the transfor-

mational progress made in large-scale parameter estimation problems over the past

few decades.

In this thesis, we presented three methods to reduce the computational burdens

of estimating parameters in geophysics and machine learning applications. These

methods fall under one of two general approaches: model order reduction, which

aims to reduce the computational complexity of the model, and parallel/distributed

optimization, which aims to lower the time-to-solution in parameter estimation. In

Chapter 2, we presented the mathematical background relevant for this dissertation.

The general formulation of MAP estimation and uncertainty quantification of pa-

rameter estimation problems as well as some numerical optimization techniques for
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their computation was reviewed. We concluded this chapter with an overview of the

applications used throughout our experiments.

In Chapter 3, we motivated the use of model reduction techniques with an overview

of the discretized DCR forward and inverse problem. We then presented an adaptive

multiscale model reduction technique based on MSFV, along with a tractable way

for computing the projection bases and their derivatives. We compared our model

reduction scheme using adaptive and fixed bases for the DCR survey.

Beginning in Chapter 4, we shifted the focus to parallel and distributed meth-

ods. We presented a weighted, asynchronous ADMM method to reduce the time-to-

solution for these large-scale inverse problems. The weights are computed efficiently

using iterative schemes, and are based on the uncertainty of the models. We tested

this scheme on several linear least-squares problems, a multinomial logistic problem,

and a single-physics parameter estimation problem and multi-physics problem con-

sisting of travel-time tomography and DCR. We observed accelerated convergence for

consensus ADMM when the uncertainty-based weights were included.

In Chapter 5, we presented another ADMM-based scheme (ADMM-Softmax) tai-

lored to large-scale classification problems. This scheme is specific to the multinomial

logistic regression problem, where we decoupled the objective function, and enforced

the coupling as constraints. Applying ADMM to this reformulation allowed for easier

parallelization of the problem. We tested our method on the MNIST and CIFAR-10

data set, and compared its performance to that of SGD and Newton-PCG.

The work in this thesis paves way for future work in parameter estimation, espe-

cially in the rapidly evolving and expanding field of machine learning. For instance,

the adaptive MOR scheme could be used for different parameter estimation problems

arising from electromagnetic, and gravity-based surveys which involve solving differ-

ent PDEs [21,155], as well as for PDE-based neural networks [135], where evaluating

the forward model (or forward-propagation) is equivalent to solving a time-dependent
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PDE. Multiscale finite volume methods provide more flexibility in building the re-

duced basis than used in this work. For example, additional basis functions repre-

senting sources and receivers can be added; see Section 3.3. Another extension to this

work is to reduce the impact of boundary conditions on the multiscale basis is using

oversampling [20,39].

For the UQ-weighted ADMM, future work includes exploring our method for the

case where the weights are correlated (non-diagonal). We also intend to explore the

effectiveness of our method for large-scale problems where the Gauss-Newton-PCG

method cannot be used as well as on computational environments with small com-

munication bandwidth such as cloud computing platforms. Finally, to improve the

accuracies for ADMM-Softmax, a natural extension involves fine-tuning the param-

eters of the pre-trained AlexNet [160]. To this end, ADMM-Softmax can accelerate

block-coordinate algorithms that alternate between updating the network weights and

the classifier.
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Loève expansion. Numerical Linear Algebra with Applications, 23(2):314–339,

2016.

[139] R. Sargent. Optimal control. Journal of Computational and Applied Mathe-

matics, 124(1):361–371, 2000.

[140] J. H. Schön. Physical Properties of Rocks: Fundamentals and Principles of

Petrophysics, volume 65. Elsevier, Amsterdam, 2015.

[141] J. Sherman and W. J. Morrison. Adjustment of an inverse matrix corresponding

to a change in one element of a given matrix. The Annals of Mathematical

Statistics, 21(1):124–127, 1950.

[142] J. Shi, W. Yin, S. Osher, and P. Sajda. A fast hybrid algorithm for large-scale

l1-regularized logistic regression. J. Mach. Learn. Res., 11:713–741, Mar 2010.

[143] A. M. Stuart. Inverse problems: a Bayesian perspective. Acta Numerica,

19:451–559, 2010.

[144] M. Taddy. Distributed multinomial regression. The Annals of Applied Statistics,

9(3):1394–1414, Sep 2015.



111

[145] J. M. Tang and Y. Saad. Domain-decomposition-type methods for comput-

ing the diagonal of a matrix inverse. SIAM Journal on Scientific Computing,

33(5):2823–2847, 2011.

[146] J. M. Tang and Y. Saad. A probing method for computing the diagonal of

a matrix inverse. Numerical Linear Algebra with Applications, 19(3):485–501,

2012.

[147] G. Taylor, R. Burmeister, Z. Xu, B. Singh, A. Patel, and T. Goldstein. Training

neural networks without gradients: A scalable admm approach. In International

Conference on Machine Learning, pages 2722–2731, 2016.

[148] G. Taylor, Z. Xu, and T. Goldstein. Scalable classifiers with ADMM

and transpose reduction. In Association for the Advancement of Artificial

Intelligence Workshops, 2017. https://www.aaai.org/ocs/index.php/WS/

AAAIW17/paper/view/15174.

[149] A. N. Tikhonov. On the solution of ill-posed problems and the method of

regularization. In Doklady Akademii Nauk, volume 151, pages 501–504. Russian

Academy of Sciences, 1963.

[150] E. Treister and E. Haber. A fast marching algorithm for the factored eikonal

equation. Journal of Computational Physics, 324:210–225, 2016.

[151] Y. Tsuruoka, J. McNaught, J. Tsujii, and S. Ananiadou. Learning string similar-

ity measures for gene/protein name dictionary look-up using logistic regression.

Bioinformatics, 23(20):2768–2774, 2007.

[152] T. van Leeuwen and F. J. Herrmann. A penalty method for pde-constrained

optimization in inverse problems. Inverse Problems, 32(1):015007, 2015.

https://www.aaai.org/ocs/index.php/WS/AAAIW17/paper/view/15174
https://www.aaai.org/ocs/index.php/WS/AAAIW17/paper/view/15174


112

[153] S. Wang and L. Liao. Decomposition method with a variable parameter for

a class of monotone variational inequality problems. Journal of optimization

theory and applications, 109(2):415–429, 2001.

[154] S. Ward and G. Hohmann. Electromagnetic theory for geophysical applications.

Electromagnetic Methods in Applied Geophysics, 1:131–311, 1988. Soc. Expl.

Geophys.

[155] W. Wilhelms, C. Schwarzbach, R.-U. Börner, and K. Spitzer. A fast 3d mt

inversion–the forward operator behind. Journal of Future Generation Computer

Systems, 20(3):475–487.

[156] K. Willcox and J. Peraire. Balanced Model Reduction via the Proper Orthog-

onal Decomposition. AIAA Journal, 40(11):2323–2330, 2002.

[157] S. Wright and J. Nocedal. Numerical optimization. Springer Science, 35:67–68,

1999.

[158] XtractOpen. Meganet. 2018. https://github.com/XtractOpen.

[159] Z. Xu, G. Taylor, H. Li, M. A. Figueiredo, X. Yuan, and T. Goldstein. Adaptive

consensus ADMM for distributed optimization. In International Conference on

Machine Learning, pages 3841–3850, 2017.

[160] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are features in

deep neural networks? In Proceedings of the 27th International Conference on

Neural Information Processing Systems - Volume 2, NIPS’14, pages 3320–3328,

Cambridge, MA, USA, 2014. MIT Press.

[161] G.-X. Yuan, K.-W. Chang, C.-J. Hsieh, and C.-J. Lin. A comparison of opti-

mization methods and software for large-scale l1-regularized linear classification.

J. Mach. Learn. Res., 11:3183–3234, Dec 2010.



113

[162] R. Zhang and J. Kwok. Asynchronous distributed ADMM for consensus opti-

mization. In International Conference on Machine Learning, pages 1701–1709,

2014.

[163] T. Zhang. Solving large scale linear prediction problems using stochastic gra-

dient descent algorithms. In Proceedings of the Twenty-first International Con-

ference on Machine Learning, ICML ’04, pages 116–124, New York, NY, USA,

2004. ACM.


	Introduction
	Contribution and Related Works
	Model Order Reduction
	Parallel and Distributed Optimization

	Thesis Overview

	Preliminaries
	MAP Estimation and UQ
	MAP Estimation in Classification

	Numerical Optimization
	Gauss-Newton-PCG
	Alternating Direction Method of Multipliers

	Applications in Geophysics and Machine Learning

	Adaptive Multiscale Model Reduction
	DCR Forward and Inverse Problem
	Sensitivity Computation

	Model Order Reduction
	Multiscale Finite Elements/Volumes
	Optimization with MSFV Methods
	Reduced Optimization
	Optimization with Fixed Reduced Space
	Optimization with Adaptive Reduced Space
	Illustrating the Error
	Local Sensitivity Computation

	Numerical Results
	Block Model Test Problem
	SEG/EAGE Test Problem
	Parallel Efficiency

	Discussion

	Uncertainty-Weighted Asynchronous Optimization
	Background
	Uncertainty-Weighted Consensus ADMM
	Weighted Consensus ADMM
	Computing the Weights

	Numerical Results
	Least-Squares
	Multinomial Logistic Regression
	Single-physics Parameter Estimation
	Multi-physics Parameter Estimation
	Communication Costs

	Discussion

	Classification with Multinomial Logistic Regression
	Related Work
	Mathematical Formulation
	ADMM-Softmax
	Solving the Least-Squares
	Global Variable Update
	Computational Costs and Convergence

	Numerical Experiments
	Setup
	Results

	Discussion

	Summary and Outlook
	Bibliography

