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Abstract 
 

Modeling the Impact of Maternal Immunization Programs in Low Income Settings 
By Lauren Beryl Guterman 

 
 

The WHO recommends that countries implementing seasonal influenza vaccination 
give the highest priority to pregnant women because they are at a higher risk for adverse 
outcomes attributable to influenza infection. Additionally, maternal immunization has shown 
to have an impact on the protection of their new born infants. We developed a preliminary 
deterministic ordinary differential equation model to simulate seasonal influenza 
transmission. Our model utilizes previously published demographic, seasonality and social 
mixing data for Kenya to assess the impact of a maternal immunization program in a low-
income setting. Approximately six months following the introduction of vaccination, a 
smaller secondary peak in incidence and prevalence took place in both the maternal and 
infant populations. In addition, these secondary peaks appear to increase in amplitude as 
vaccination coverage increases.  The model shows a linear increase in cases averted in both 
the pregnant and infant populations as maternal immunization coverage increases and 
vaccination modeled continuously throughout the year. Several elements of this model need 
further development, specifically in its parameterization. Due to limited available data, 
elements of the model structure and several parameters do not accurately simulate the 
interplay of population dynamics and influenza transmission in low income settings.  
Therefore, further development and data collection is needed for this model.  
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Introduction 

In 2012, the WHO recommended countries implementing seasonal influenza 

vaccination give the highest priority to pregnant women(1). Pregnant women are at a higher 

risk, in comparison to non-pregnant women, for adverse outcomes attributable to influenza 

infection, such as cardiopulmonary events, hospitalization and death due to respiratory 

disease complications (2, 3).  Maternal immunization also showed to have an impact on the 

protection to their new born infants in several studies conducted in low income settings, 

such as South Africa, Nepal and Mali(4-6).  

Several interacting factors must be considered when deciding to invest in a global 

maternal immunization program for seasonal influenza, such as seasonality, social behavior 

and population dynamics and their effect on transmission, vaccine efficacy in low income 

settings and the nature of immunization program.  Dynamic transmission models can aid in 

the decision making by integrating both disease and population dynamics into the simulation 

of seasonal influenza transmission to assess the potential impact of such interventions. 

A dynamic model that assesses the impact of maternal seasonal influenza 

immunization programs in low income settings has yet to be characterized. Many of the 

current dynamic influenza transmission models have been developed to assess the effect of 

interventions on pandemic influenza transmission (7-10).  Current models that simulate 

seasonal influenza transmission focus on the  effect of age-targeted vaccination programs 

(11-13) or transmission within specific social settings of developed countries, such as college 

campuses, day care centers or nursing homes (14, 15).  Recent attempts to assess the impact 

of maternal immunization programs in developing countries use statistical models that do 

not consider the dynamic nature of influenza transmission, such as seasonality and social 

mixing patterns (16).  
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As a result, current models do not provide sufficient evidence to support whether an 

investment in maternal immunization programs would have a substantial impact on the 

incidence of influenza among maternal and infant populations in low income countries.  

This will be the first dynamic transmission model that considers country specific 

demographic, seasonality and social mixing data to investigate the impact of maternal 

immunization programs on seasonal influenza transmission in a low income setting.  
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Materials and Methods 

Parameters 

Demographic parameters 

Demographic data including age and sex specific population sizes and mortality rates 

were collected from the US census bureau International database for 2015 (17). Initial 

conditions for the three populations of interest were obtained using the US census bureau 

International database for 2015 and the Demographic and Health Surveys Stat Compiler 

accessed at http://www.statcompiler.com/en/. Sedgh et al estimated region-specific induced 

abortion ratios using national reporting systems data and UN estimates, where abortion is 

defined as the sum of safe and unsafe induced abortions (18). Using these published data, we 

calculated the pregnancy rate per day,  (Equation 1). Where number of births per year in 

Kenya (birth, Equation 2a) was obtained from the US census bureau International database, 

fetal loss per day for East Africa, FL, were calculated from Sedgh et al. data and their 

assumptions for estimating the number of spontaneous abortions (Equation 2b).  

 

𝜽 = (𝒃𝒊𝒓𝒕𝒉 ∗ 𝑵𝒎) + (𝑭𝑳 ∗ 𝑵𝒎)      Equation 1 

Such that 

𝒃𝒊𝒓𝒕𝒉 =
𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒃𝒊𝒓𝒕𝒉𝒔

𝟏𝟎𝟎𝟎 𝒑𝒐𝒑𝒖𝒍𝒂𝒕𝒊𝒐𝒏 𝒇𝒐𝒓 𝟐𝟎𝟏𝟓
∗

𝒕𝒐𝒕𝒂𝒍 𝒑𝒐𝒑𝒖𝒍𝒂𝒕𝒊𝒐𝒏 𝒔𝒊𝒛𝒆

𝟑𝟔𝟓 𝒅𝒂𝒚𝒔
     Equation 2a 

𝑭𝑳 =  
𝒊𝒏𝒅𝒖𝒄𝒆𝒅 𝒂𝒃𝒐𝒓𝒕𝒊𝒐𝒏𝒔

𝒅𝒂𝒚
+

𝒔𝒑𝒐𝒏𝒕𝒂𝒏𝒆𝒐𝒖𝒔 𝒂𝒃𝒐𝒓𝒕𝒊𝒐𝒏𝒔

𝒅𝒂𝒚
    Equation 2b 

        =  (
𝒊𝒏𝒅𝒖𝒄𝒆𝒅 𝒂𝒃𝒐𝒓𝒕𝒊𝒐𝒏𝒔

𝟏𝟎𝟎 𝒍𝒊𝒗𝒆 𝒃𝒊𝒓𝒕𝒉𝒔
∗ 𝒃𝒊𝒓𝒕𝒉) + (𝟎. 𝟐 ∗ 𝒃𝒊𝒓𝒕𝒉 + 𝟎. 𝟏 ∗ 𝒊𝒏𝒅𝒖𝒄𝒆𝒅 𝒂𝒃𝒐𝒓𝒕𝒊𝒐𝒏𝒔) 
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Disease transmission parameters 

The force of infection ((t)) is dependent on age-specific contact rates taken from 

published social contact survey data, the probability of infection given a contact and the 

seasonal forcing equation for influenza transmission (Equation 3).  

(𝒕)𝒊 = 𝒂𝒊 ∗  ∗ ∑ (𝒔𝒆𝒂𝒔 ∗ 𝒄𝒊𝒋 ∗
𝑰𝒋

𝒕𝒐𝒕𝒂𝒍𝒋
)    Equation 3 

Where 𝑖 is the participant age group, 𝑗 is the contact age group, 𝑎 is the total average daily 

contacts, c is the proportion of daily contacts of participant group 𝑖 with contact group 𝑗,  

is the probability of transmission given contact with an infected individual and seas is the 

seasonal forcing equation (19).  Age specific contact rates were calculated from published 

literature on social mixing. An exhaustive literature search was performed to obtain country 

specific social mixing data using search terms: social contact patterns, social mixing patterns 

respiratory and ("social contact survey" OR "social mixing") AND "infectious" on the search 

engine GoogleScholar. Studies conducted in developed countries such as Western Europe 

and North America, were excluded since their social mixing patterns do not reflect low 

income settings. For example, institutions such as daycare centers and nursing homes are not 

present in low income countries. Current knowledge regarding social mixing patterns in low 

income settings are limited (Table 3). Good quality data were obtained for 5 

countries/locations: Vietnam, Zimbabwe, South Africa, Southern China and Kenya (Table 

4) (20-23).   

For studies with raw data available (20, 22, 23), we employed methods reported by 

Kiti et al. to calculate the total daily contacts per age participant group i with contact age 

group j, 𝑇𝑖𝑗 (Equation 4) (23).  
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𝑻𝒊𝒋 =  ∑ 𝒚𝒊𝒋,𝒌           Equation 4 

 

Where 𝑦𝑖𝑗,𝑘  is the number of contacts that participant k in age group i has with respondents 

in age group j.  Then we calculated the average daily contacts for age group i with age group 

j, 𝜇𝑖𝑗, by dividing the total daily contacts per age participant group i with contact age group j 

by the total population size of age group i, 𝑁𝑖 (Equation 5).  

 

𝝁𝒊𝒋 =
𝟏

𝑵𝒊
∗ 𝑻𝒊𝒋         Equation 5 

 

For studies without raw data available, contact matrices were collapsed across age groups 

and weighted by size of participant age groups to create the age strata of interest: young 

infants, childbearing age, and general population. Since contacts made between age groups i 

and j in social contact surveys are unlikely to be symmetric due to the use of open cohorts 

(only participants record their contacts, not those who they come into contact with), the 

contact matrices were corrected for differential reporting of participants and contact groups 

via methods employed by Steele et al (19). The corrected contact rates, 𝐵𝑖𝑗,  were calculated 

using Equation 6.  

 

𝑩𝒊𝒋 =
𝑵𝒊∗𝑹𝒊𝒋+ 𝑵𝒋∗𝑹𝒋𝒊

𝟐𝑵𝒊
        Equation 6 

 

Where N  is the total number of individuals in each age group and R is the average daily 

contact rate between the specified groups. By dividing the weighted sum by 2Nj we assume 

that contacts of individuals within the sample (Ni) made contacts with individuals outside of 
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the sampled population. To create the final contact matrix, the proportion of daily contacts, 

𝑐𝑖𝑗, were then calculated across participant age groups i using the following equation 

(Equation 7, Figure 3). 

 

𝒄𝒊𝒋 = 𝑩𝒊𝒋/𝒂𝒊         Equation 7 

 

Where ai represents the total average daily contacts across contact age groups j (19).   

To incorporate seasonality we used the seasonal forcing equation reported by Steele 

et al (19) where the seasonal amplitude, 𝛽1,  increases or decreases the force of infection and 

the seasonal offset parameter, 𝜔, shifts the curve towards peak influenza seasons (Equation 

8).  

 

𝒔𝒆𝒂𝒔 = 𝟏 + 𝜷𝟏 ∗ 𝐜𝐨𝐬 (𝟐𝝅 ∗ 𝒕 + 𝝎)      Equation 8 

 

Due to the lack of good quality surveillance data (in terms of magnitude of reporting) 𝛽1 was 

assumed to be between 0.1 and 0.2, indicating that peak influenza transmission months 

resulted in 10-20% increase influenza incidence in comparison to non-peak influenza 

transmission months (24). The value of the offset parameter, 𝜔, was fit to published 

monthly incidence of respiratory disease and data extracted from the FluNet database, which 

is contributed by 143 National Influenza Centers in 113 countries and accessed at 

http://www.who.int/influenza/gisrs_laboratory/flunet/en/ (25-28). Fitting was performed 

using maximum likelihood estimation methods and nonlinear optimization, using the nloptr 

package in R using the Subplex Algorithm which is freely available at (http://ab-

initio.mit.edu/wiki/index.php/NLopt).  The model was fit two at least two sources of 

http://www.who.int/influenza/gisrs_laboratory/flunet/en/
http://ab-initio.mit.edu/wiki/index.php/NLopt)
http://ab-initio.mit.edu/wiki/index.php/NLopt)
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average monthly incidence and the reported month of peak influenza transmission by Hirve 

et al. (24-26). Data reported for 2009 were excluded from the fitting process to avoid the 

effects of pandemic H1N1 influenza surveillance on our estimates. 

Loss of immunity was estimated conservatively to be 365 days to simulate 

susceptibility to new incoming influenza strains each year. The aging rate was incorporated 

to simulate infants losing their maternal antibody protection from their vaccinated mothers 

after six months of age (5). For infected infants, the aging rate was not applied because 

duration of infection is a short duration of time and its effects would be negligible. Recovery 

rate is calculated as the inverse of duration of infection(14, 29). 

The model 

Seasonal influenza transmission was modeled via a deterministic Susceptible-

Infected-Recovered (SIR) ordinary differential equation (ODE) compartment model (Fig 1, 

Fig 2). Through the deterministic ODE model, we can simulate the dynamic transmission of 

seasonal influenza throughout the year in high risk populations, such as pregnant mothers 

and young infants, using country-specific demographic and seasonality data. We chose to 

model the impact of maternal immunization programs in a Gavi eligible country because 

these countries represent low income settings with the greatest capability of implementing 

vaccine programs due to Gavi’s current or past contributions there (30). Of the 70 Gavi 

eligible countries, we chose to model Kenya because it has good quality published literature 

on social mixing and disease incidence(23, 25, 26).  

The model simulates influenza transmission dynamics throughout the year via 

country specific demographic and seasonality data (Table 1-2). For each country’s model, we 

ran a “burn in” period of 5 years with an introduction of one infectious individual at time 

zero to obtain stable conditions before the introduction of the intervention. A longer burn in 
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period was not required because the model is not strain specific and we assume the loss of 

immunity is one year. All analyses were performed in R Studio 1.0.136 using the EpiModel 

package (31). 

 

Vaccination  

 Vaccination was modeled by incorporating a “Protected” class for both the pregnant 

and the young infant populations and a “Vaccinated” class for the pregnant population 

(Figure 1, Figure 2). The rate at which the pregnant population becomes protected was 

modeled using two parameters: proportion of the target population that receives the vaccine, 

, which was modeled from zero to 100% at 5% intervals and vaccine efficacy, e, where 

mothers were vaccinated at time of becoming pregnant (4).  Pregnant mothers that do not 

become protected enter the vaccinated class for the duration of the influenza cycle. The rate 

at which young infants become protected is dependent on two parameters: birth rate among 

the protected and vaccinated mother populations, birth, and vaccine efficacy among infants 

of conferred maternal antibody protection, Ab, which is measured as vaccine efficacy among 

infants whose mothers received the influenza vaccine during gestation (5).   

 

Uncertainty analysis 

 To quantify the sensitivity of our model to the uncertainty of our parameters we 

performed Latin hypercube sampling for six parameters of interest: probability of 

transmission given a contact with an infectious individual, , seasonal amplitude, 1, 

recovery rate, , vaccine efficacy in pregnant mothers, e, and vaccine efficacy among infants 

whose mothers were vaccinated during pregnancy, Ab. Ranges for each parameter were 
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taken from published.  All parameters were assumed to be uniformly distributed across the 

specified ranges. The model was run using the 100 different combinations of parameters. 
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Results 

Model fitting  
 

The best fit for the seasonal offset parameter, ω, was 2.638 for both surveillance 

data from Lwak and Kiberia and National Sentinel Surveillance for influenza (Figure 4). 

Using the fit seasonal offset parameter, the epidemic curve for the general population was 

forced to peak in the months of June to July and January.   

 

Vaccination Impact  

By implementing maternal immunization in Kenya there was an overall decrease in 

daily influenza incidence in both pregnant and infant populations (Figures 5-6). 

Approximately six months following the introduction of vaccination, a smaller secondary 

peak in incidence and prevalence took place in both the maternal and infant populations. In 

addition, these secondary peaks appear to increase in amplitude as vaccination coverage 

increases.  The model shows a linear increase in cases averted in both the pregnant and 

infant populations as maternal immunization coverage increases and vaccination modeled 

continuously throughout the year (Figure 7-9). The model shows that there is a high impact 

of maternal immunizations in a low income setting for both pregnant mothers and their 

infants. However, the reported number of cases averted are too high should be interpreted 

as preliminary output. Therefore, the model requires further calibration to better quality data 

(Figure 7-9). When incorporating the uncertainty analysis, the mean number of cases averted 

among the pregnant population is higher than that of the median cases averted. This 

indicates the mean number of cases averted among the pregnant population are being 

skewed by certain combinations parameters for the model. 
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Discussion 

Discussion of results  

The epidemic curve for the general population was forced to peak in the months of 

June to July and January. These results are consistent with CDC and NIVEL influenza 

surveillance, which consists of several data sources such as FluNet, PAHO and national 

surveillance data (24-26).  However, these results are not consistent the conclusions of Hirve 

et al who report Kenya to have year round influenza activity(24). Considering the published 

data on the seasonality of influenza and Kenya’s proximity to the equator, the seasonal 

trends of influenza transmission is most likely year-round with minor peaks (less than 10% 

increase in cases) in July and January (24-26). A major limitation to our fitting process was 

that we were unable to fit the seasonal amplitude parameter to surveillance data due to 

limited information on underreporting of influenza in Kenya and other low-income settings. 

Due to its mild symptoms within low risk populations and the lack of access to health care in 

low income settings, specifically in rural areas, seasonal influenza infection is underreported 

(32). In addition, by not fitting the seasonal amplitude parameter our model assumes that 

underreporting takes place at the same rate throughout the year which is not consistent with 

the findings of Bigogo et al (32). Therefore, further collaboration and data collection on 

seasonal influenza surveillance and its underreporting is needed to better parameterize our 

model.  

 Following the introduction of maternal immunization, a secondary peak in incidence 

and prevalence took place and is more pronounced as vaccination coverage increased.  

These peaks could be due to the buildup in susceptible populations following changes in to 

the system’s population distribution. For example, recovered and susceptible infants age out 

and enter the susceptible general population to represent the loss of potential maternal 
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antibody protection and recovered individuals reenter the susceptible class after one year of 

immunity to represent susceptibility of individuals to new dominant circulating strains of 

influenza. 

The model shows a linear increase in cases averted in both the pregnant and infant 

populations as maternal immunization coverage increases and vaccination is modeled 

continuously throughout the year. Year round vaccination may be less feasible in most low-

income settings due to factors such as vaccine production and distribution rates and access to 

healthcare among high risk populations (32).  This linear relationship represents the average 

impact of vaccination on pregnant and infant populations because the model does not 

consider stochasticity of the system over time. The estimated number of cases averted are 

preliminary results and are most likely an overestimation. This reiterates that further 

collaboration and data collection on seasonal influenza surveillance and its underreporting is 

needed to better parameterize our model. 

 

Limitations  

This is a preliminary model characterized to estimate the impact of maternal 

immunization programs in low income settings.  Several elements of this model need further 

development, specifically in its parameterization. Due to limited available data, several 

parameters do not accurately simulate the interplay of population dynamics and influenza 

transmission in low income settings. For this model, induced abortions were assumed to be 

homogenous across United Nations defined regions and spontaneous abortions were 

assumed to be a function of the number of births and induced abortions per time step. 

These assumptions are not accurate representations of country specific population dynamics 
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and more sophisticated methods will need to be developed to better estimate pregnancy 

rates.  

The social mixing data also limits the model’s prediction potential. The age 

structured contact matrices used in this model assume average daily contacts rates are 

constant throughout the country. However, frequency of contacts is different between urban 

and rural areas. Furthermore, the definition of a contact for which a transmission can occur 

is not well established. As a result, there is uncertainty associated with the estimate of 

effective contact rate.  Social contact surveys are also subject to recall bias because they 

require subjects to recount all contacts they encounter the 24 hours preceding their 

interview. There was only one good quality social contact study available for Kenya and as a 

result we are limited in methods to validate these data.  These data also did not collect 

information on the sex of the contact. Therefore, contact rates representing the pregnant 

mother population do not reflect differences in social behavior by sex.  The social contact 

survey reported age as integers, therefore contact rates for young infants (less than six 

months of age) were represented by the social mixing behavior of infant less than or equal to 

one year of age.  Finally, the duration of contacts was not considered in this model which 

does not accurately simulate the probability of infection given social contacts because the 

model assumes that each contact has the same probability of disease transmission. 

 

Future directions 

 

The data presented are preliminary and the model developed for Kenya is a first step 

to creating a global dynamic transmission model to assess the impact of investing in maternal 

immunization programs in all Gavi eligible countries. This model has the potential to assess 
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the impact of not only seasonal influenza maternal immunization programs but also other 

vaccines and potential vaccine targets, such as RSV. We also wish to incorporate a “mother 

of young infants” class to the model to account for the higher contact rates between 

mothers and their young infants which we believe to be a major source of disease 

transmission among young infants. Additionally, we intend to introduce stochasticity into 

our model to account for random events that may occur in the system and explore the range 

of possible outcomes. We will also explore different vaccination strategies such as 

vaccination at different points in gestation and different points throughout the year. We are 

also interested in incorporating other disease transmission parameters such as waning 

immunity among young infants and the effect of HIV infection among pregnant mothers 

and their young infants. 
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Figures 

 

Figure 1 Compartment model diagram 
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Figure 2 Ordinary differential equations associated with the compartment model diagram 

 
Figure 3 Age structured social contact matrix for Kenya where the internal cells represent the 
proportion of average daily contacts the participant makes with each contact age group. The 
external cells show the average total contacts per day made by each participant age group in the 
study. 
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Figure 4 Modeling fitting results. The points represent the average monthly cases of influenza in 
Lwak and Kiberia with 95% CI The black solid line represents the modeled monthly incidence of 
influenza among the general population before model fitting. The dashed red line is the modeled 
monthly incidence after model fitting with nonlinear optimization (Left panel). The points 
represent the average monthly cases of influenza in Kenya with 95% CI from National Sentinel 
Surveillance data (Right panel). 
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Figure 5 Daily prevalence and incidence of seasonal influenza among pregnant populations of Kenya given different 
vaccination coverage. 

 
Figure 6 Daily prevalence and incidence of seasonal influenza among young infant populations of Kenya given 
different vaccination coverage 
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Figure 7 Cases averted among pregnant mothers (left panel) and young infants (right panel) given different vaccine 
coverage for a single combination of parameters reported in Table 1. 
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Figure 8 Mean and (95%CI, left panel) and median (IQR, right panel) cases averted among pregnant mothers given 
different samples of parameters using Latin hypercube sampling 
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Figure 9 Mean and (95%CI, left panel) and median (IQR, right panel) cases averted among young infants given samples 
of parameters using Latin hypercube sampling. 
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Tables 
 

Table 1: Parameter list for ODE compartment model 

Parameter Definition Function/Constant Citation 

(t) Force of infection Calculated See methods 

 Pregnancy rate Calculated (17, 18) 

 Recovery rate 1/5 days (29) 

birth Birth rate 0.004991057 (birth 
per pregnant woman 
per day) 

(17) 

FL Fetal loss rate Calculated (17, 18) 

vAb Vaccine efficacy for 
young infants of 
vaccinated mothers  

0.488 (33) 

ve Vaccine efficacy 
among pregnant 
mothers 

0.5 (33) 

v Vaccination rate 0-100%  Experimental 

1 Seasonal amplitude 
parameter 

0.2 Estimated 

 Seasonal offset 
parameter 

2.3678 Fit 

 

Table 2: List of compartments for ODE compartment model 

Population  
Compartment  

Definition Citation 

Sg Susceptible general population (17) 

Ig Infected general population Calculated 

Rg Recovered general population Calculated 

Sm Susceptible pregnant mother 
population 

(17, 18) 
http://www.statcompiler.com/en/ 

Im Infected pregnant mother 
population 

Calculated 
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Rm Recovered pregnant 
population 

(29) 

Pm Protected pregnant population (4) 

Vm Vaccinated pregnant 
population that is no protected 

(4) 

Si Susceptible young infant 
population (<6 months of age) 

(17) 

Ii Infected young infant 
population (<6 months of age) 

Calculated 

Ri Recovered young infant 
population (<6 months of age) 

(29) 

Pi Protected young infant 
population (<6 months of age) 

(5) 

 

Table 3: Characteristics of publications from literature search on social mixing 

Author  Search 
term 

Search 
engine 

Year of 
analysi
s  

Location 
of analysis 

Infant 
age 
groups 

Hav
e 
the 
raw 
data  

Citati
on 

Horby 
et al 

Social 
contact 
patterns 

Googlescho
lar 

2011 North 
Vietnam 

Participa
nts <1  
Contacts 
0-4 

Yes  (20)  

Read et 
al 

Social 
contact 
patterns 

Googlescho
lar 

2009-
2010 

Northeast 
of 
Guangzhou
, China 

Participa
nts: 5 yr 
age bands 
Contacts 
0-5 

Yes  (22) 

Stein et 
al 

Social 
contact 
patterns 

Googlescho
lar 

2012-
2013 

Students 
from two 
Bangkok 
universities  

NA No  (34) 

Johnsto
ne-
Roberst
on et al 

Social 
contact 
patterns 

Googlescho
lar 

2010 South 
African 
township 
in 2010 

0-5 No*
* 

 (35) 

Kiti et al social 
mixing 
patterns 
respirator
y 

Googlescho
lar 

2014 Northern 
part of the 
Kilifi 
Health and 
Demograp
hic 
Surveillane 

< 1 Yes  (23) 
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System 
(KHDSS) 

Fu et al social 
mixing 
patterns 
respirator
y 

Googlescho
lar 

2010  Taiwan 0-18 No  (36) 

Grijalva 
et al 

social 
mixing 
patterns 
respirator
y 

Googlescho
lar 

2009-
2011 

Peru 0-2 No*  (37) 

Ibuka et 
al 

social 
mixing 
patterns 
respirator
y 

Googlescho
lar 

2011 Japan 0-2 No  (38) 

 
Eisenber
g et al 

social 
mixing 
patterns 
respirator
y 

Googlescho
lar 

2003-
2005  

Northernm
ost 
province 
on the 
Ecuadorian 
coast 

Unknow
n 

No*
* 

 (39) 

Kumar 
et al 

social 
mixing 
patterns 
respirator
y 

Googlescho
lar 

Unkno
wn 

Ballabgarh, 
Haryana 

Unknow
n 

No*
* 

 (40) 

Ajelli et 
al 

social 
mixing 
patterns 
respirator
y 

Googlescho
lar 

2016 Tomsk, 
Russia 

0-4 No*
* 

 (41) 

*Not permitted to provide individual level data  

**Data requested but not provided before analysis was performed 
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Table 4: Characteristics of publications with good quality social mixing data 

Authors 
(citation) Year 

Country 
of 
analysis  

Study 
population 
size 

Weighted 
urban vs 
rural 

Age range 
for 
childbearing 
aged 
women 

Age range 
for young 
infants  Definition of a contact 

Horby et 
al 2011 Vietnam 860 No 15-49 

Participants 
<1  
Contacts 0-
4 

A physical contact: kin to skin contact  
Nonphysical contact: two-way conversation with 
three or more works in the physical presence of 
another person but not skin to skin contact 

Kiti et al 2014 Kenya 568 Yes* 15-49 < 1 

Someone with whom the participant had a direct 
physical encounter (a "contact"), and involved 
direct skin-to-skin touch such as embracing, 
kissing, or shaking hands. 

Melegaro 
et al** 2013 Zimbabwe 11,569 No 15-44 <1 

Interaction between two individuals, either 
physical (when involving skin-to-skin contact), or 
non-physical (when involving a two-way 
conversation with three or more words in the 
physical presence of another person, but no skin-
to-skin contact) 

Read et al 2009-2010 
Southern 
China 568 No 20-64 <5 

An event where contacts are reported, either as an 
encounter with an individual or a group, and count 
each individual contacted in such an event as a 
‘contact’; hence, a participant’s total number of 
contacts is the number of individuals reported 
across all contact events. 
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Johnstone-
Roberston 
et al** 2010 

South 
African 
township 
in 2010 571 No 15-44 <5 

Close contacts were defined as those involving 
physical touch (type I) or those involving a 2-way 
conversation with 3 or more words in the physical 
presence of another person without physical touch 
(type II). Casual contacts (type III) were defined as 
those occurring in an indoor location but not 
satisfying the criteria for a close contact. 
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