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Abstract

Statsitical Learning Methods for Big Biomedical Data

By

Ziyi Li

The rapid advancement of biological and clinical technologies has generated sev-
eral distinct types of big biomedical data, including -omics data and electronic health
record data. Such data and their distinct features have created challenges in obtaining
meaningful and applicable research findings. In this dissertation, we develop three
statistical learning methods for the analysis of big biomedical data.

Principal component analysis (PCA) is a popular tool for dimensionality reduc-
tion, data mining, and visualization of high dimensional data. It has been recognized
that complex biological mechanisms occur through concerted relationships of multi-
ple genes working in networks that are often represented by graphs. Recent work
has shown that incorporating such biological information improves feature selection
and prediction performance in regression analysis, but there has been limited work
on extending this approach to PCA. In the first project, we propose two new sparse
PCA methods called Fused and Grouped sparse PCA that enable incorporation of
prior biological information in variable selection, leading to improved feature selec-
tion and more interpretable principal component loadings and potentially providing
insight on molecular underpinnings of complex diseases. Our simulation studies sug-
gest that, compared to existing sparse PCA methods, the proposed methods achieve
higher sensitivity and specificity when the graph structure is correctly specified, and
are fairly robust to misspecified graph structures. Application to a glioblastoma gene
expression dataset identified pathways that are suggested in the literature to be re-
lated with glioblastoma.

Electronic health record (EHR) data provide promising opportunity to explore
personalized treatment regime and to make clinical predictions. Compared with ge-
nomics data, EHR data are known for their irregularity and complexity. In addition,
analyzing EHR data involves privacy issues and sharing such data among multiple
research sites may not be feasible due to privacy concerns and regulatory hurdles. Re-
cent work uses contextual embedding models and successfully builds one predictive
model for analysis of EHR data from multiple sites for more than seventy common
diagnoses. Although the existing model can achieve a relatively high predictive accu-
racy, it cannot build global models without sharing data among sites. In the second
project, we propose three novel contextual embedding methods to build predictive
models called Naive updates, Dropout updates, and Distributed Noise Contrastive
Estimation (Distributed NCE). In addition, we also propose Distributed NCE with
DP, which is an updated version of Distributed NCE, to obtain reliable privacy pro-
tections. Our simulation study with a real dataset demonstrates that the proposed



methods not only can build predictive model with privacy protection distributedly,
but also well preserve the model structure and achieve comparable prediction accu-
racy compared with hidden-truth model built with all the data.

Biclustering technique can identify local patterns of a data matrix by clustering
rows and columns at the same time. Various biclustering methods have been proposed
and successfully applied to analyze gene expression data. While existing biclustering
methods have many desirable features, most of them are developed for continuous
data and none of them can handle genomic data of various types, for example, bi-
nomial data as in Single Nucleotide Polymorphism(SNP) data or negative binomial
data as in RNA-seq data. In addition, none of existing methods can utilize biologi-
cal information such as those from functional genomics or proteomics. Recent work
has shown that incorporating biological information can improve variable selection
and prediction performance in analyses such as linear regression and multivariate
analysis. In the third project, we propose a novel Bayesian biclustering method
that can handle multiple data types including Gaussian, Binomial, Negative bino-
mial, and Poisson data. In addition, our method uses a Bayesian adaptive structured
shrinkage prior that enables feature selection guided by biological information such
as those from functional genomics. Our simulation studies and application to muti-
ple genomics datasets demonstrate robust and superior performance of the proposed
method, compared to other existing biclustering methods.

For future work, we can continue the direction of the first topic and explore the
potential extension of sparse PCA combining neural network, or continue the direc-
tion of the second topic and replace Word2Vec with recently proposed embedding
approaches, or continue the direction of the third topic to incorporate subject level
phenotype information into the biclustering process.
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Introduction
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1.1 Overview of Big Biomedical Data

Big data is not an exclusive treasure for Biomedical field – it is the product of this

era. High-tech companies collect hundreds of millions of data everyday for customer

records or transaction information. For instance, Amazon maintains records of more

than 59 million customers and their personal information from general backgrounds,

transaction history, to any websites records related to potential purchase interests.

These collections add up to more than 42 terabytes data according to an online

source in 2010 (CBP, 2010). In another instance, AT&T holds a database of huge

size. According an online article published in 2006, AT&T contains electronic records

of 1.92 trillion telephone calls at that time (Markoff, 2006). Although big datasets

exist in all walks of life, the fact that big datasets in biomedical field attracts a large

amount of attention may rarely happens for datasets in other fields. These attentions

come from researchers, doctors, entrepreneurs, government agency officers, even from

the president.

There are many types of big biomedical data. Both ”-omics” data and electronic

health records data unarguably belong to big biomedical data. The new emerging

mobile health data can also be big if data is collected frequently and the dimension

of variables is high. Other big biomedical data includes imaging data and some en-

vironmental health data. This list of data types is limited to the author’s knowledge

and is very likely to be incomplete, since more and more big biomedical data is under

development with the rapid growth of technology. For the above mentioned data

types, we provide detailed descriptions in the following paragraphs.

According to Wikipedia, the term ”-omics” unofficially refers to the study fields

of Biology such as genomics, proteomics, metabolomics, and etc. (Wikipedia, 2016b).

The research of omics data dates back to the efforts of investigating DNA structure
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by Watson and Crick in 1953 (Watson and Crick, 1953). With the development of

different DNA sequencing technologies, such as Shortgun sequencing (Sanger, 1981),

Illumina sequencing (Kawashima et al., 2005), and next-generation sequencing (Hall,

2007), genomics research field grows rapidly and genomics data becomes one of the

most popular and most common data used in analysis when genome is related in

research. Proteomics focus on the large-scale study of proteins. The data of this field

include the information of protein structure and functions. This notion appears in

1997 (James, 1997) and mass spectrometry is the main technology used to collect data

in the field of proteomics (Sparkman, 2000). Metabolomics target on the systematic

research of metabolites left behind by the chemical process in human body. The

idea of building metabolic profile is first proposed by Gates and Sweeley (1978).

The data in metabolomics are collected by multiple techniques, for example, RNA

can be examined using sequencing technology and protein can be tested using mass

spectrometry.

Omics data has a few features. First of all, the data is usually ”big”. A binary

alignment/map file from whole genome sequencing of a single person is about 80−90

gigabytes according to Koboldt (2014). Thus the data for a 1000 sample size whole

genome sequencing can consume 80 terabytes of storage (Koboldt, 2014). The second

feature of omics data is that data is ”structured”, i.e., the data usually has a hidden

structure. This is determined by the underlying biological process of human body.

For instance, genes are connected and form different pathways. This feature may

be utilized when analyzing omics data and benefit the research results. The third

feature is that data is sparse and sample size n is much smaller than the variable size

p. Because for omics data, dimension of variables is usually very much. According to

the data sheet of Illumina Infinium OmniExpress-24 v1.2 BeadChip (Illumina, 2016),

one such chip includes 713,599 markers. Thus the one axis of the tested results has

dimension more than 710,000 and another axis of the results, which is usually the
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sample size, can be as small as a few hundreds. Omics data can have other features

such as having special noise, including protected health information, and etc. .

In this dissertation work, we focus on genomics data in the first topic. To be

specific, we develop our methods under the framework that variables can be genes

and are structured. We analyze a gene expression data for Glioblastoma patients in

Section 2.4.

The term electronic health record (EHR) data and electronic medical record

(EMR) data are usually used interchangeably. Both of them can refer to the digital-

formatted and electronically stored collection of patient health information (Gunter

and Terry, 2005). In some cases, EHR may have a broader meaning than EMR in

that EMR refers to the standard care information collected in health provider’s of-

fice while EHR is a system designed to maintain and share information across all

the providers (HealthIT, 2014). The US congress encourages the use of EHR system

to replace traditional paper-based records through incentives (for using EHR) and

penalties (for using paper-based records) announced through the Health Information

Technology for Economic and Clinical Health (HITECH) Act (USDHHS, 2006). By

the end of 2009, more than 48.3 percent of the health institutions in US have adopted

EMR system according to CDC estimates (NCHS, 2009).

EHR data contains a variety of health information such as demographics, pre-

scriptions, diagnoses, lab results, and etc.. Usually these items for single patients are

stored in separate modules and can be linked by unique patient IDs. Because EHR

data include a quite detailed record of patients’ health information, it is usually very

large, especially when the number of subjects is large. According to an online talk

given by Dr. Hartzband from MIT, typical EHR data ranges from 1MB for a healthy

young person, to 40MB for a middle-aged person with health issue to 3 − 5 GB for

patients who have imaging documents (Hartzband, 2011). And the healthcare group



5

Kaiser Permanente is estimated to maintain about 26.5 to 44 petabytes (1 PT =

1,000 TB) EHR data (Hartzband, 2011).

Besides the large size, EHR data has some other features. First of all, ”inaccu-

racy”. Data mistakes can happen frequently, since there are so many factors that may

impact the record of EHR data. These impacting factors include random typos from

a tired medical staff or systematic biased recording influenced by billing requirements

or natural tendency to avoid liability. Another feature is complexity. EHR data is

highly complex because the variables in EHR data are a mix of continuous variables

and categorical variables (Hripcsak and Albers, 2013). Word sequences are usually

used to record symptoms and miscellaneous. In addition, there is no uniform cod-

ing system for almost all the categories except diagnoses, i.e. different hospitals can

have completely different term to represent all medical events except diagnoses. This

poses great challenges in analyzing several EHR datasets at the same time. Some

other features of EHR data are high-dimensionality, sparsity, irregularity and etc..

All these features make analyzing EHR data using traditional methods not feasible

or very difficult.

Even if analyzing EHR data is not an easy task, EHR data has attracted increasing

attentions from medical researchers recent years. One reason is that EHR data con-

tains a comprehensive profile of each patient and their treatment histories. Analyzing

EHR data may be able to reveal the general treatment pattern and thus further help

the decision making by doctors and patients. Another reason is the great promotion

of precision medicine initiative (Collins and Varmus, 2015) from government agencies

and the president. Both EHR data and the mobile health data which we will discuss

later are all useful resources to investigate personalized optimal treatment regime.

Besides the data types mentioned above, there are other big biomedical data which

are also very important and provide insights into biomedical research. For example,
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imaging data can be generated by a variety of modalities including Functional mag-

netic resonance imaging (fMRI), magnetic resonance imaging (MRI), and Diffusion

tensor imaging (DTI). Imaging data help us understand the brain structure and brain

activity during rest state or non-rest state (Bowman, 2014). In this dissertation work,

we mainly focus on genomic data in the first and third topics and EHR data in the

second topic.

1.2 Principal Component Analysis (PCA) : A multivariate

analysis method

One difficulty of analyzing genomic data is that they usually have high dimensions

which makes traditional statistical methods inappropriate. To solve this, one way

is to reduce data dimension using statistical tools and principal component analysis

(PCA) is a most popular tool for data dimension reduction. Although PCA is invented

by Pearson more than one hundred years ago (Peason, 1901) and is more formally

developed by Hotelling more than seventy years ago (Hotelling, 1933), PCA is still

widely used now for descriptive analysis and dimension reduction.

Suppose we have a random data matrix X = (x1, . . . , xp) with dimension n×p and

xi, i = 1, . . . , p are n×1 vectors. PCA is defined as an orthogonal linear transformation

so that the greatest variance is achieved by the first transformation or first principal

component, the second greatest variance is achieved by the second transformation,

and so on. Each principal component is orthogonal to the other components. Define

a linear combination of xi, i = 1, . . . , p is Xα. The first principal component loading

α1 satisfies

max
||α1||=1

αT

1X
TXα1 (1.1)
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And the r−th principal component loading αr satisfies

max
||αr||=1

αT
rX

TXαr (1.2)

subject to αT
sαr = 0

∀s < r, r = 2, . . . , q � min(p, n− 1).

We can use Lagrangian multipliers to solve optimization problem 1.2 as follows:

L(X,αr, λ) = αT

rX
TXαr − λαT

rαr (1.3)

By taking derivatives of L we obtain the following solution to 1.2:

XTXαr = λαr (1.4)

Thus the r−th principal component loadings for data matrix X is the r−th eigen-

vector corresponding to the r− th eigenvalues, assuming eigenvalues are ranked from

largest to smallest. In this dissertation work, we call the αr the r−th PC loading and

Xαr the r−th PC. One can further show that eigenvalues of a PC loading is equal

to the variance explained by this PC. We use this property to calculate proportions

of variation explained by the first two PCs in the first topic.

Even if PCA can effectively reduce data dimension and is widely applied in many

fields such as signal processing and image compression, PCA has one drawback: PCA

finds linear combinations of all variables. This is especially problematic when the

number of variables is large because a linear combination of many variables is very

hard to interpret. To overcome this drawback, many sparse PCA methods have been

proposed and we demonstrate some of the most popular sparse PCA methods in the
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following section.

1.2.1 Sparse PCA

The most intuitive and straight-forward approach of obtaining sparse PC solutions

is to treat PC loadings elements smaller than some threshold value as zero. How-

ever, this approach has been demonstrated as misleading because the importance

of variables is not determined by the magnitude of variables (Cadima and Jolliffe,

1995a).

Another straight-forward approach is to impose sparsity constraints on PC load-

ings. Following this direction, Jolliffe et al. (2003a) proposed a LASSO (least abso-

lute shrinkage and selection operator) (Tibshirani, 1996) based PCA method, which is

named SCoTLASS (Simplified Component Technique-LASSO). This method imposes

LASSO constraints on PC loadings, which sacrifices explained variance to achieve

sparsity and improve interpretability. We follow the notation used in 1.2 and SCoT-

LASS finds αr so that

max
||αr||=1

αT
rX

TXαr (1.5)

subject to αT
sαr = 0, ∀s < r, r = 2, . . . , q � min(p, n− 1),

and
∑p

k=1 |αrk| ≤ γ

where αrk is the k−th element of the rth PC loading and γ is some tuning pa-

rameter.

Although SCoTLASS is easy to understand and has been approved in Jolliffe

et al. (2003a) to be effective, there is no efficient algorithm to solve 1.5. According

to Zou et al. (2006), the algorithm proposed in Jolliffe et al. (2003a) is expensive and
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sometimes make cross-validation for selecting optimal tuning parameter infeasible.

Thus Zou et al. (2006) proposes SPCA (Sparse Principal Component Analysis). In

SPCA, they formulate PCA into a regression-type optimization problem and impose

lasso or elastic net (Zou and Hastie, 2005a) constraint on the regression coefficients.

Zou et al. (2006) proves that PCA can be transformed into the following regression-

type formulation:

(Â, B̂) = arg minA,B
∑n

i=1 ||xi − ABTxi||2 + λ
∑r

j=1 ||βj||2 (1.6)

subject to ATA = Ir×r

Where Ap×r = [α1, . . . , αr] and Bp×k = [β1, . . . , βr]. λ is a tuning parameter. βi is

proportional to the i−th principal component loadings. Using formalation1.6, SPCA

consider the following optimization problem:

(Â, B̂) = arg minA,B
∑n

i=1 ||xi − ABTxi||2 + λ
∑r

j=1 ||βj||2 +
∑r

j=1 λ1,j||βj||1 (1.7)

subject to ATA = Ir×r

Here λ is the tuning parameter for all r components and λ1,j allows for different

penalization on different components. Besides theoretical proof of the methods, Zou

et al. (2006) also proposes efficient algorithms to solve 1.7 which is included in R

package elasticnet.

Besides SPCA, another popular sparse principal component method, called SPC,

is published by Witten et al. (2009a). Their method is based on a penalized matrix

decomposition which is a framework for obtaining a rank−K matrix approximation.

More specifically, they use
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X̂ =
K∑
k=1

dkukv
T

k (1.8)

to approximate matrix X. Rank K is usually much smaller than the dimension

of X. To apply formula 1.8 in sparse PCA, they consider to impose penalty P2(v) =

||v||1 on v and no constraint on u, and SPC can be written as:

maximizeu,vuTXv subject to ||v||1 ≤ c2, ||u||22 ≤ 1, ||v||22 ≤ 1. (1.9)

In each updating step, SPC uses the simple update Xv
||Xv||2 for u. It has been

demonstrated in Witten et al. (2009a) that SPC can achieve a higher proportion of

variance explained for given number of sparse components used compared with SPCA.

In addition, an efficient algorithm to solve SPC is implemented in an R package PMA.

1.2.2 Sparse PCA with structural information

Besides the preference for sparse PC solutions, another data feature has brought to

the attention of researchers: data is structured in many situations. How to obtain PC

solutions with data structure taken into consideration? To the best of our knowledge,

two sparse PCA methods for structured data have been proposed recently and we

briefly review it here.

Structured Sparse Principal Component Analysis (SSPCA) is proposed by Jenat-

ton et al. (2010). SSPCA not only imposes sparsity constraint on PC loadings but

also consider to include a priori structural constraints during PC computation. Their

method is inspired by the situation in computer vision where variability of images is

closely related with grid regularity. Following the notation used in Jenatton et al.

(2010), SSPCA can be formulated as:
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min
U,V,Ωu(Uk)≤1

(ηG)G∈G∈R

r×|G|+

1

2np
||X−UV T||2F +

λ

2

r∑
k=1

[
(V k)TDiag(ζk)−1V k+||(ηGk )G∈G||β

]
(1.10)

In this formulation, X ∈ Rn×p is the centered data with n rows corresponding

to n observations with p dimensions. They call V ∈ Rp×r the dictionary, so that

a linear combination of the r columns of V (dictionary elements) can approximate

each observation. U ∈ Rn×r is the matrix of the linear combination coefficients or

decomposition coefficients. In our understanding, U is the PC loadings and V is the

components referred before. || · ||F is the Frobenius norm. ζ ∈ Rp×r is defined by

ζjk =
∑

G∈G,j∈G(dGj )2(ηGk )−1−1
, and (dG)G∈G ∈ Rp×|G| is a |G|-tuple of p−dimensional

vectors such that dGj > 0 if j ∈ G and dGj = 0 otherwise.

Besides an efficient algorithm to solve formula1.10, Jenatton et al. (2010) also

implement it in a Matlab toolbox. Their notation system and formulation might be

a little over-complicated for the problem. Also it is worth-noting that they only use

the group membership information of variables but do not consider the connections

between variables.

Another promising methods that deal with structured data is proposed by Allen

et al. (2014). Their method is called generalized least-square matrix decomposition

(GMD) and targets on a completely different type of data structure : structure of

noise. Their method is inspired by the analysis of fMRI data. It has been noticed that

PCA is rarely used to analyze fMRI data because the first several PCs usually capture

spatial and temporal dependencies in noise rather than brain activation patterns. This

is decided by the feature of fMRI data which contains noise with strong correlation

between neighboring voxels in three-dimensional image.

Following the notation used in Allen et al. (2014), they propose to broaden the
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low-rank mean model (Anderson, 1962) to incorporate two-way dependencies in the

noise using the following GMD mean model:

X =
K∑
k=1

dkukv
T

k + E; E ∼ (0,∆⊗Σ), (1.11)

such that UTΣU = I and VT∆V = I.

The n by p matrix X is the centered data matrix. uk ∈ Rn and vk ∈ Rp are fixed

signals of interest. GMD model assume that the additive noise E comes from a matrix-

variate model with row covariance Σ ∈ Rn×n and column covariance ∆ ∈ Rp×p.

Based on model (1.11), a GMP optimization problem is defined as

minimizeU,D,V||X−UDVT||2Q,R, (1.12)

subject to UTQU = I(K),V
TRV = I(K) and diag(D) ≥ 0,

where the Q,R−norm is defined as ||X||Q,R =
√
tr(QXRXT).

To solve a PCA problem using GMD model (1.11) and GMP optimization formu-

lation (1.12), they maximize the sample variance in the space that accounts for the

noise structure of the data. And a GPCA problem can be defined as:

maximizevk vT
kRXTQXRvk (1.13)

subject to vT
kRvk = 1 and vT

kRvk′ = 0 ∀ k
′
< k (1.14)

By solving the problem (1.13), ther−th generalized principal component can be ob-

tained by XRvr and the proportion of variance explained by the r−th generalized

principal component is calculated by d2
k/||X||2Q,R.

Allen et al. (2014) has demonstrated that GPCA can effectively eliminate the
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impact of noise with known structure or dependencies on PC solutions through a

simulation study and an application to fMRI data.

1.3 Predictive Model Construction using EHR data

Although multivariate analysis methods such as PCA have been developed into dif-

ferent versions and have good performance in processing genomic data, they cannot

effectively analyze EHR data. The reason is very simple: EHR data is too complex

to be analyzed with multivariate analysis methods. As mentioned in section(1.1),

EHR combines the information from multiple aspects and the data from each aspect

can have a different structure, thus it is far more irregular than genomics data. In

addition, EHR data frequently contain text-format records, such as symptom descrip-

tion or doctors’ notes, which cannot be analyzed by most of the traditional statistical

methods.

To effectively and efficiently analysis EHR data, a few methods have been pro-

posed. These methods can be categorized into two classes: deep-learning (DL) based

methods (Cheng et al., 2016+; Farhan et al., 2016+) and non-deep-learning (NDL)

methods(Batal et al., 2012; Hripcsak and Albers, 2013; Jensen et al., 2012; Wu et al.,

2010; Liu et al., 2015). In the current literatures, phenotyping extraction from EHR

data is usually the first step and prediction models are built based on the extracted

medical features (Cheng et al., 2016+; Jensen et al., 2012; Wu et al., 2010; Liu et al.,

2015; Farhan et al., 2016+). Phenotyping extraction can also be used for other anal-

ysis such as cost-effective study and general treatment pattern learning (Batal et al.,

2012). In the following sections, we first discuss some non-deep-learning methods of

analyzing EHR data; then we present some basic background about deep learning

methods and a specific deep learning tool for natural language processing (NLP);

lastly we present a deep learning based model for predictive model using EHR data.
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1.3.1 Analyzing EHR Data with NDL Methods

When new problems first appear, the most natural reaction from researchers is to try

existing methods and examine if they work on new problems. EHR data is not a new

problem, but in the most recent several years, it gradually attracts much more atten-

tion from researchers than before. One reason is that the development of technology

enables researchers to analyze the whole EHR data from one or multiple data sites.

Another reason is that the rich information contained in EHR may provide great

support to detect existing treatment patterns and to develop personalized treatment

regime. In order to analyze EHR data, a few NDL methods have been proposed. We

briefly explain what techniques those study utilize and how the proposed methods

perform.

The work by Wu et al. (2010) reviews the challenges and strategies of analyzing

EHR data. They examine three common machine learning techniques: logistic regres-

sion with BIC as selection criterion, support vector machine (SVM), and boosting.

The EHR records for a total of 536 subjects with heart failure are extracted and used

as the experiment dataset.

SVM is a classification technique, which transform the original data space into a

higher dimensional space. To reason to do such transformation is that some classifi-

cation decision making can be easier in higher-dimensional space. Assume the data

is consisted of (xi, yi), i = 1, . . . , N for N patients and each xi is assumed to have

p inputs. By defining the M feature function as h(xi) = (h1(xi), h2(xi), . . . , hm(xi)),

the decision boundary can be found by

min
β0,β

N∑
i=1

[1− yif(xi)]+ + λ||β||2, (1.15)

where + represents the positive part of the function [1 − yif(xi)]. The f(·) in
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function(1.15) is defined as

f(x) = h(x)Tβ + β0 =
N∑
i=1

aiyi < h(x), h(xi) > +β0, i = 1, . . . , N. (1.16)

The SVM classification results is decided by ŷi = sign(h(xi)
Tβ̂+ β̂0). Review current

temporal phenotyping extraction models

Boosting is a popular machine learning methods which ensembles several clas-

sifiers and produce a stronger classifier. Let Gm,m = 1, . . . ,M denote a sequence

of weak classifiers. The additive model formulation of AdaBoost is to minimize the

exponential loss function:

(βm, Gm) = argmin
β0,β

N∑
i=1

[wmi e
(−βyiG(xi))], (1.17)

And the final classifier is defined as

ŷi = sign
( M∑
m=1

βmGm(X)
)
. (1.18)

Wu et al. (2010) demonstrated that logistic regression Boosting acheives the best

AUC of about 0.76 for predicting heart failure. SVM has the poorest performance.

Besides traditional machine learning methods, graph based framework has also

been used to analyze EHR data. Liu et al. (2015) uses a graph based method to extract

temporal phenotyping from longitudinal EHR data. They represent patient EHRs as

temporal graphs and the interested phenotypes are detected in the form of subgraphs

instead of subsequences, thus it is more flexible to use graph representation than

traditional sequence representation. The technique detail is not presented here but

the basic idea is to construct a directed and weighted graph to represent the medical

events in the data. They impose similarity based and model based regularization on

the existing graph to further improve the performance. They examine the proposed
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graph model on a dataset including CHF patients and the proposed method can

achieve an AUC of about 0.72.

1.3.2 Deep Learning Methods

Deep learning is a broad branch of machine learning. The basic structure used in

deep learning is deep graph with multiple processing layers, including deep neural

networks, convolutional deep neural networks, deep belief networks and recurrent

neural networks. Deep learning works especially well when there is a huge amount of

training data, for example, the deep learning based program AlphaGo uses 30 million

moves from games played by human experts to train the model and it becomes the first

Computer Go program that can beat professional human player in March, 2016 (Silver

et al., 2016; Silver and Hassabis, 2016). Deep learning is such a broad field that books

have been published and comprehensive tutorials are also available online (MacKay,

2003; Weigel, 2002; LISA−lab, 2016; Gulcehre, 2016). It is also a cutting-edge field

under rapid development. Because of the space limit, we only briefly describe the

basic structure of neural network and how to solve it using back-propagation here.

Neural networks or artificial neural networks are the basic element of deep learning

methods. As discussed in MacKay (2003), a neural network can be determined by

three factors:

• Architecture, which specifies the topology structure of neurons, for example,

how neurons are connected.

• Activation function, which decides how each neuron reacts to input signals. A

few functions are usually selected as activation function:

1. Linear function: y(x) = x;

2. Sigmoid function (or logistic function): y(x) = 1
1+ex

;

3. Tanh function: y(x) = tanh(x);



17

4. Thredshold function:

y(x) =


1, a > 0.

0, a ≤ 0.

• Learning rule, which specifies how the weights of neural network change with

time. Usually learning rule is decided by activation function and loss function

together.

After a neural network is specified, backpropagation is the most commonly used

method to solve a neural network. Backpropagation, which is abbreviated for ”back-

ward propagation of errors”, calculates the gradients of loss function with regards

to all the weights and optimize the selection of weight to decrease total loss. When

neural networks include multiple layers, gradients of loss function is calculated follow-

ing chain rule layer by layer backwardly and the gradients for weights in front layers

are the multiplication of several gradients for elements in back layers (Hecht-Nielsen,

1989).

Deep learning has applications in a wide range of fields including system identifi-

cation and control (Zissis et al., 2015), visual identification and classification (Simard

et al., 2003), quantum chemistry (Balabin and Lomakina, 2009), game-playing and

decision making (Stanley et al., 2005), and etc.. It is worth mentioning that neural

network not only can take numerical measurements as input and output, but also can

accept text sequence as data. For example, Word2Vec is a three-layers neural net-

work based structure and learns contextual vector representations for words (Mikolov,

Chen, Corrado and Dean, 2013). The accommodation of both words and numerical

inputs makes neural network a promising tool for analyzing EHR data.

1.3.3 Analyzing EHR data using DL Methods

To the best of our knowledge, although deep learning methods have been widely

applied in many fields, it is in recent years that researchers start to analyze EHR
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data using DL methods. We review two related works here.

The work by Cheng et al. (2016+) directly adopt the regular convolutional neural

network model. To accommodate the temporal features of EHR data, their model

consists of four layers - a input layer with the temporal matrix of EHR data, a convo-

lutional layer with different window sizes, a pooling layer with additional normaliza-

tion function, and a fully connected layer using softmax function. In addition, they

proposed different fusing structure to fully utilize the temporal pattern in EHR data.

Figure 1.1 demonstrates the four-layered neural network proposed in this paper. They

examine the methods using a Congestive Heart Failure (CHD) cohort (1127 cases and

3850 controls) and a Chronic Obstructive Pulmonary Disease (COPD) cohort (477

cases and 2385 controls). And the proposed models can achieve a best AUC of around

0.77 for CHF and 0.74 for COPD.

Figure 1.1: The basic model architecture of the model proposed by Cheng et al.
(2016+)

Different from the technique utilized by Cheng et al. (2016+), the work by Farhan

et al. (2016+) first obtain the contextual vector representations of all medical events

by training a Word2Vec model (Mikolov, Chen, Corrado and Dean, 2013). Then

they build a prediction model called Patient-Diagnosis Projection Similarity (PDPS),
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which projects patients’ medical event sequence into vector space and find the most

similar diagnoses as prediction for this patients. Assume one patient has a sequence

of medical events S, the PDPS prediction for this patient is decided by

d∗ = arg max
d∈D

CS(Vd,

∑
e∈S Veexp(−λte)∑
e∈S exp(−λte)

) (1.19)

Here CS is cosine similarity. Ve is the vector representation for event e. Vd is the

vector representation for diagnosis d. λ is the decay factor and usually takes a value

between 0 and 1. Figure 1.2 demonstrates how to make prediction for a patient

with sequence (e1, e2, . . . , eN). PDPS finds the concatenated vector E computed with

event sequence and temporal decay factor. Then it is obvious that Heart Failure is

the most similar vector for diagnoses to E. Farhan et al. (2016+) test their method

Figure 1.2: The PDPS model proposed by Farhan et al. (2016+)

on a real EHR dataset and achieve an average AUC of 0.76 for over 79 most common

diagnosis. PDPS performs especially well for a few common diseases, for example, it

acheives an AUC of 0.84 for heart failure and 0.88 for hypertensive chronic kidney

disease.
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1.4 Biclustering

Biclustering, also called block clustering, co-clustering, or two-model clusting, is a

data mining technique which can cluster rows and columns of a data matrix simulta-

neously. The first proposal of biclustering goes back to 1970s under the term ”direct

clustering” Hartigan (1972). It was first applied to gene expression data by Cheng

and Church in 2000 Cheng and Church (2000). Since then, more than 10 bicluster-

ing approaches and several review papers are published Cheng and Church (2000);

Hochreiter et al. (2010); Lazzeroni and Owen (2002); Sheng et al. (2003); Ben-Dor

et al. (2003); Gu and Liu (2008); Caldas and Kaski (2008); Bergmann et al. (2003);

Murali and Kasif (2002); Yu et al. (2017); Liu et al. (2014); Prelić et al. (2006); Pontes

et al. (2015); Eren et al. (2012); Padilha and Campello (2017).

According to the recent review paper Padilha and Campello (2017), these algo-

rithms can be categorized into four groups based on their type of heuristic they use:

greedy, divide-and-conquer, exhaustive enumeration and distribution parameter iden-

tification. As described, a greedy algorithm finds the local optimal sub-patterns at

each iterations with the hope of locating the global maximal after a few iterations.

Greedy algorithm is a big category of biclsutering methods, including Cheng and

Church’s Algorithm (CC), Conserved Gene Expression Motifs (xMotifs), Iterative

Signature Algorithm (ISA), and many other methods Cheng and Church (2000); Mu-

rali and Kasif (2002); Bergmann et al. (2003). Divide-and-conquer algorithm divides

the input data matrix into smaller sub-matrices, identifies patterns in each smaller in-

stance, and then combines the partial soluation to a global one. Divide-and conquer

algorithms include the Binary Inclusion-Maximal Biclsutering Algorithm (Bimax).

Prelić et al. (2006). Exhaustive enumeration algorithms conduct exhaustive search

by generating all possible row and column combinations. An example of exhaus-

tive enumeration algorithm is Statistical-Algorithmic Method for Biclsuter Analysis
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(SAMBA) Tanay et al. (2002). Distribution parameter identification algorithms as-

sume an underlying structure of bicluster and find associated parameters through

optimizing some objective functions. Plaid and Factor Analysis for Bicluster Acquisi-

tion (FABIA) are representations for this type of algorithms Caldas and Kaski (2008);

Hochreiter et al. (2010).

To better understand the motives and structures of the existing biclustering meth-

ods, we use three methods from greedy algorithm group and two methods from ex-

haustive enumeration algorithm group as examples, and present these methods with

more details. These methods are also used as comparatives in Chapter Four.

1.4.1 Greedy algorithms: CC, xMotifs, and ISA

Cheng and Church’s Biclustering Algorithm (CC) is the first work that use the term

”bicluster” and apply it to gene expression datasets Cheng and Church (2000). In

this work, given a data matrix (aij), they define the notion ”mean squared residue”

of element aij in the bicluster indicated by the subsets I and J as

aij − ai· − a·j + a··

where ai· is the mean of the i-th row in the bicluster, a·j is the mean of the j-th column

in the bicluster, and a·· is the mean of all elements in the bicluster. CC finds large

and maximal biclusters with mean squared residue scores below a certain threshold.

With this goal in mind, Cheng and Church define the mean squared residue score of

a submatrix AIJ by

H(I, J) =
1

|I||J |
∑

i∈I,j∈J

(aij − aiJ − aIj + aIJ)2
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where

aiJ =
1

|J |
∑
j∈J

aij, aIj =
1

|I|
∑
i∈I

aij,

and

aIJ =
1

|I||J |
∑

i∈I,j∈J

aij.

A submatrix AIJ is called a δ−bicluster if H(I, J) ≤ δ for some δ ≥ 0. And their

paper proved that the problem of finding the largest square δ−bicluster is NP−hard.

A number of algorithms were proposed in the paper to efficiently conduct brute-force

deletion and addition, single node deletion, multiple nodes deletion and node addition.

Applications on the yeast data and the human B-cells expression data have shown

the proposed methods can identify meaningful biclusters of genes and conditions.

Conserved gene expression motifs or xMotifs is a representation method for gene

expression data which identify simultaneous subsets of genes and samples. Given

the gene expression measurements for a set of genes over a group of samples and two

user-defined parameter 0 < α, β < 1, a conserved gene expression motif is defined as a

pair (C,G) where C is a subset of samples and G is a subset of genes. The (C,G) pair

satisfies three conditions: first, the number of samples in C is at least an α-fraction

of all the samples; second, every gene in G is conserved across all the samples in C,

i.e., the gene is in the same state in all the samples in C; third, for every gene not in

G, the gene is conserved in at most a β-fraction of the samples in C. They proposed

an algorithm that iterates across the random subsets of appropriate sizes and checks

whether the selected subset meet the requirements. Although the algorithm does not

utilize any fancy technique, the implementation in C + + makes their program more

efficient. They applied xMotifs to an acute lymphoblastic leukaemia (ALL)/acute

myeloid leukaemia (AML) dataset, a colon cancer dataset and a B-cell lymphoma

dataset, and found meaningful biclusters which corresponds to patients with different

diseases.
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The Iterative Signature Algorithm (ISA) finds transcription modules from genome-

wide expression data and their definition of transcription modules (TM) corresponds

to the previous definition of biclusters. A TM contains both a set of genes and a set

of experimental conditions. Given a gene expression matrix E represented by row

vectors or column vectors

E =



gT1

gT2
...

gTNc


or E = (c1, c2, · · · , cNg),

ISA first finds the two normalized expression matrices

EG =



ĝT1

ĝT2
...

ĝTNc


or EC = (ĉ1, ĉ2, · · · , ĉNg).

Here the rows of EG and the columns of EC are defined as normalized gene and

condition vectors:

ĝc =
gc − 〈gc〉g∈G
|gc − 〈gc〉g∈G|

, ĉg =
cg − 〈cg〉c∈C
|cg − 〈cg〉c∈C |

.

A TM is a combined set of co-regulated genes Gm and relevant experimental condi-
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tions Cm, Mm = Gm, Cm satifying the following conditions:

∃(Tc, Tg) :


Cm(Gm) = c ∈ C : 〈Ecg

G 〉g∈Gm > Tc,

Gm(Cm) = g ∈ G : 〈Ecg
C 〉c∈Cm > Tg,

where Tc and Tg are two threshold parameters. Bergmann et al. (2003) proved that

ISA is a generalization of Singular Value Decomposition, which corresponds to the

case of no threshold parameters. They have applied ISA to a yeast expression data

and identified biologically meaningful co-regulated unites.

1.4.2 Distribution parameter identification algorithms: Plaid and

FABIA

Plaid is one of the earliest proposed biclustering models. Plaid was based on a

straight-forward model which tries to describe the input data through multiple layers.

Each layer capture a pattern that genes and conditions are clustered together. Assume

the data matrix is (Yij), plaid uses the following model to fit data

Yij
.
= µ0 +

K∑
k=1

(µk + αik)ρikκjk,

Yij
.
= µ0 +

K∑
k=1

(µk + βjk)ρikκjk,

Yij
.
= µ0 +

K∑
k=1

(µk + αik + βjk)ρikκjk.

Here µ0 models the background signals for all layers, µk models the background signals

in layer k, αik and βjk models the signals for gene i and sample j in layer k. The

name ”plaid” is used to describe the color of plotting µk, αik and βjk. If one uses

notation θijk to represent µk, µk + αik, µk + βjk, µk + αik + βjk, the whole model can
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be writted as the following form:

Yij
.
=

K∑
k=0

θijkρikκjk.

To solve plaid model, one seek to find parameter fits so that the following Q reaches

a small value:

Q =
1

2

n∑
i=1

p∑
j=1

(Yij − θij0 −
K∑
k=1

θijkρijκjk)
2.

The authors of plaid model used a simple rule to determine the best number of layers.

They proposed to add layers to existing model until the importance of layer k denoted

by the sum of squares σ2
k =

∑n
i=1

∑p
j=1 ρikκjkθ

2
ijk is not significant any more. The

significance of the sum of squares is assessed by a permutation test. Although plaid

uses a very straight-forward formulation, applications on the real datasets have shown

good performance of the method.

FABIA represents “factor analysis for biclsuter acquisition” and was proposed

by Hochreiter et al. in 2010. FABIA is also the method that motivates the third

topic of this dissertation. Their paper Hochreiter et al. (2010) has given a formal

definition of a bicluster in a transcriptomic dataset, which is “a pair of a gene set and

a sample set for which the genes are similar to each other on the samples and vice

versa”. The overall model is an outer product λzT of two prototype vectors λ and z

plus a background noise matrix Γ:

X =

p∑
i=1

λzT + Γ

where p is the number of biclusters. The vector λ represents a column vector which

element vlaues are zero if the genes are not contained in the bicluster, and similary

z is a vector denoting the participation of samples with elements equal zero if the

samples are not contained in the bicluster. To obtain sparse solutions of λ and z, the
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authors impose a Laplace prior on the factor z:

p(z) = (
1√
2

)p
p∏
i=1

e−
√

2|zi|

and again a Laplace prior on the factor λ

p(λ) = (
1√
2

)n
n∏
k=1

e−
√

2|λk|

Hochereiter et al. used variational EM algorithm to optimize the likelihood and

a thresholding approach to extract bicluster members from underlying parameters.

They applied the proposed FABIA method and other existing methods on three gene

expression datasets. FABIA has been shown to have the satisfactory performance

compared to existing methods and have found biologically meaningful biclusters.

1.5 Motivation Examples

The first topic of this dissertation work is motivated by the gene expression dataset

of Glioblastoma patients from TCGA project. We hope to extract biologically-

meaningful principal components which can help to identify the subtypes of patients.

As variables in the data correspond to genes and it is well acknowledged that genes

form biological pathways, we would love to take advantage of the pathway informa-

tion as the prior knowledge of how genes are structured. In addition, we hope to

obtain principal components with sparse loadings.

The second topic deals with the hypothesized question during analyzing the MIMIC

III database. MIMIC III database collects the EHR data of patients from ICU depart-

ment of Beth Israel Health Center. The hypothesized questions is that how to build

a global predictive with all the data if only part of the data is publicly available while

the rest of the data have to be analyzed on-site. This hypothesized scenario appears
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frequently in real life and can be generalized to the case when multiple databases

are involved. Usually researchers from different hospitals would like to cooperate

and build global model with all the data, but they are not willing to share the data

for privacy or research reasons. How to build predictive model with all the data

distributedly is also equivalent to the hypothesized question we raise above.

The third topic is partly motivated by the NCI 60 cell line datasets (https://discover.

nci.nih.gov/cellminer/loadDownload.do) and partly motivated by the work of polya-

gamma distribution. The NCI 60 series of datasets contais genomic datasets of mul-

tiple types for 60 tumor cell lines, for example, gene expression data which is of

continuous observations and RNA-seq data which is of count data. Existing biclus-

tering methods usually can only utilize only datasets of one data type. By joining

the work of polya-gamma distribution and biclustering technique, we realize that it is

possible to conduct analysis using data with multiple data types. In addition, we hope

to explore the possibility of incorporating biological information into the analysis.

1.6 Outlines

In this dissertation, we present some statistical methods for analyzing big biomedical

data. In chapter 2, we propose two novel sparse principal component analysis methods

which can incorporate biological information - Fused sPCA and Grouped sPCA. We

further apply the proposed methods on a Glioblastoma gene expression dataset. In

chapter 3, we present three solutions of constructing predictive model by analyzing

multiple EHR data distributedly. We also examine our methods on a real world

EHR dataset of ICU patients. In chapter 4, we propose a biclustering framework

which can utilize genomic datasets of multiple types and incorporate prior structural

information in the analysis at the same time. We conduct simulation analysis and a

series of real data applications to evaluate the performance. We discuss future work

in chapter 5.



28

Chapter 2

Incorporating Biological Information in

Sparse Principal Component Analysis with

Application to Genomic Data
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2.1 Introduction

A central problem in high-dimensional genomic research is to identify a subset of

genes and pathways that can help explain the total variation in high-dimensional

genomic data with as little loss of information as possible. Principal component

analysis (PCA) (Hotelling, 1936) is a popular multivariate analysis method which

seeks to concentrate the total information in data with a few linear combinations of

the available data, making it an appropriate tool for dimensionality reduction, data

analysis, and visualization in genomic research. Despite its popularity, the traditional

PCA is often difficult to interpret as the principal component loadings are linear

combinations of all available variables, the number of which can be very large for

genomic data. It is therefore desirable to obtain interpretable principal components

that use a subset of the available data. To deal with the problem of interpretability

of principal component loadings,

Several alternatives to PCA have been proposed in the literature, most of which

constrain the size of non-zero principal component loadings. An ad hoc approach

sets the absolute value of loadings that are smaller than a threshold to zero. Though

simple to understand, this approach has been shown to be misleading in the sense

that magnitude of loadings is not the only factor to determine the importance of

variables in a linear combination (Cadima and Jolliffe, 1995b). Truncating PCs by

loadings may result in quite different PCs explaining much smaller variation compared

with the original PCs. Other approaches regularize the loadings to ensure that some

are exactly zero, which implies that the corresponding variables are unimportant in

explaining the total variation in the data. For instance, Jolliffe et al. (2003b) proposed

the SCotLass method that constrains the loadings with a lasso penalty, but their

optimization problem is nonconvex, which is difficult to solve and does not guarantee

convergence to a global solution. Zou et al. (2006) proposed a convex sparse PCA



30

method (SPCA) that reformulates the PCA problem as a regression problem and

imposes elastic net penalty on the PC loadings. Witten and Tibshirani (2009) also

proposed the penalized matrix decomposition (PMD) that approximates the data

with its spectral decomposition and imposes a lasso penalty on the right singular

vectors, i.e., the principal component loadings.

Although the aforementioned methods can effectively produce sparse principal

component coefficients, their main limitation is that they are purely data driven and

do not exploit available biological information such as gene networks. It has been rec-

ognized that complex biological mechanisms occur through concerted relationships of

multiple genes working together in pathways. Recent work(Li and Li, 2008a; Pan

et al., 2010b) has demonstrated in the regression setting that utilizing prior biologi-

cal information among variables can improve variable selection and predication and

help gain a better understanding of analysis results. It is therefore desirable to con-

duct PCA with incorporation of known structural information. Allen et al. (2014)

proposed a generalized least-square matrix decomposition framework for PCA that

incorporates known structure of noise and generate sparse solutions. Although this

method can flexibly account for noise structure in data, they do not utilize prior

biological information, and do not consider the relationships among the signal vari-

ables in PCA. Jenatton et al. (2010) proposed a structured sparse PCA method that

considers correlations among groups of variables and imposes a penalty similar to

group lasso on the principal component loadings, but their method does not take into

account the complex interactions among variables within a group. In this article, we

proposed two new sparse PCA methods called Fused and Grouped sparse PCA that

enable incorporation of prior biological information in PCA. The methods will allow

for identification of genes an pathways. We utilize the Lγ norm(Pan et al., 2010b) and

generalize fussed lasso (Tibshirani et al., 2005) to achieve automatic variable selection

and simultaneously account for complex relationships within pathways.
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Our work makes several contributions. To the best of our knowledge, this is the

first attempt to impose both sparsity and smoothing penalties on principal component

loadings to encourage the selection of variables that are connected in a network.

Although Jenatton et al. (2010) incorporated group information of variables when

generating sparse PC solutions, they did not consider how variables are connected

in each group. Our method considers not only the group information, but also any

interaction structure of variables within a group. By utilizing the existing biological

structure in the data, we are able to obtain sparse principal components that are more

interpretable and may shed light on the underlying complex mechanisms in the data.

We also develop an efficient algorithm that can handle high dimensional problems.

Simulation studies suggest that the methods have higher sensitivity and specificity,

and are quite effective in improving the performance of sparse PCA methods when the

graph structure is correctly specified. In addition, the proposed methods are robust

to misspecified graph structure.

The remainder of the paper is organized as follows. In section 2.2, we present

methods and algorithms for the proposed sparse PCA. In Section 2.3, we conduct

simulation studies to assess the performance of our methods in comparison with

several existing sparse PCA methods. In Section 2.4, we apply the proposed methods

to data from a glioblastoma brain multiform study. We conclude with some discussion

remarks in Section 2.5.

2.2 Methods

Suppose that we have a random n × p matrix X = (x1, . . . ,xp),x ∈ <n. We also

assume that the predictors are centered to have column means zero. The network

informaiton for the p variables in X is represented by a weighted undirected graph

G = (C,E,W ), where C is the set of nodes corresponding to the p features, E = {i ∼

j} is the set of edges indicating that features i and j are associated in a biologically



32

meaningful way, and W includes the weight of each node. For node i, denote by di

its degree, i.e., the number of nodes that are directly connected to node i and by

wi = f(di) its weight which can depend on di. Our goal is to obtain sparse PCA

loadings while utilizing available structural information G in PCA. Our approach

to the sparse PCA problem relies on the eigenvalue formulation of PCA, and for

completeness sake, we briefly review the classical and sparse PCA problems.

2.2.1 Standard and Sparse Principal Component Analysis

Classical PCA finds projections α ∈ <p such that the variance of the standardized

linear combination Xα is maximized. Mathematically, the first principal component

loading α solves the optimization problem

max
α6=0

αTXTXα subject to αTα = 1. (2.1)

For subsequent principal components, additional constraints are added to ensure

that they are uncorrelated with previous principal components, so that each principal

component axis captures different information in the data. Generally, for the rth PC,

we have the optimization problem

max
αr 6=0

αT
rX

TXαr (2.2)

subject to αT
rαr = 1,αT

sαr = 0

∀s < r, r = 2, . . . , q � min(p, n− 1).

Using Lagrangian multipliers, one can show that problem (2.2) results in the eigen-

value problem

XTXα = λα. (2.3)



33

Then the rth principal component loadings of X is the rth eigenvector that corre-

sponds to the rth eigenvalue λ̃1 ≥ · · · ≥ λ̃r ≥ · · · ≥ 0 of the sample covariance

matrix XTX. Of note, the magnitude, αrk of each principal component loading

α̃r = [αr1, . . . , αrk, . . . , αrp] represents the importance of the kth variable to the rth

principal component, and these are typically nonzero. When p� n, interpreting the

principal components is a difficult task because the principal components are linear

combinations of all variables. Thus for high dimensional data, a certain type of reg-

ularization that ensures that some variables have negligible or no effect on the rth

principal component is warranted to yield interpretable principal components.

To achieve sparsity of the principal component loadings while incorporating struc-

tural information G, we utilize ideas in Safo and Ahn (Safo and Ahn, 2014) which

is motivated by the Dantzig Selector for sparse estimation in regression problems.

Specifically, we bound a modified version of the eigenvalue difference in (2.3) with

a l∞ norm while minimizing a structured-sparsity inducing penalty of the principal

component loadings:

min
α6=0
P(α, τ) subject to ‖XTXα̃r − λ̃rα‖∞ ≤ τ and AT

r−1α = 0.

Here, for a random vector z ∈ <p, ‖z‖∞ is the l∞ norm defined as max1≤i≤p |zi|,

τ > 0 is a tuning parameter that controls how many of the coefficients in the principal

component loadings will be exactly zero. In addition, A = [α̂1, . . . , α̂s] ∀s < r is a

concatenation of the previous sparse PCA solutions α̂s, and α̃r is the nonsparse rth

PCA loading, which is the eigenvector corresponding to the rth largest eigenvalue

of XTX. In the next sections, we introduce sparse PCA methods that utilize the

network information G in X.
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2.2.2 Grouped sparse PCA

The first approach we propose is the grouped sparse PCA, similar in spirit with Pan

et al. (2010b). Utilizing the graph structure G, we propose the following structured

sparse PCA criterion for the rth principal component loading:

min
α 6=0

{
(1− η)

∑
i∼j

(
|αi|γ
wi

+
|αj |γ
wj

)1/γ
+ η

∑
di=0 |αi|

}
(2.4)

subject to ‖XTXα̃r − λ̃rα‖∞ ≤ τ and AT
r−1α = 0,

where ‖ · ‖∞ is the l∞ norm , τ > 0 is a tuning parameter, γ > 1 and 0 < η < 1 are

fixed, Ar−1 = (α̂1, α̂2, . . . , α̂r−1) is the matrix constituted of r − 1 structured sparse

PC loadings, and α̃r is the rth nonsparse PC loading vector, which is the eigenvector

corresponding to the rth largest eigenvalue of XTX.

The first term in the objective function (2.4) is the weighted grouped penalty of

Pan et al. (2010b), which induces grouped variable selection. The penalty encourages

both αi and αj to be equal to zero simultaneously, suggesting that two neighboring

genes in a network are more likely to participate in the same biological process si-

multaneously. The second term in the objective function induces sparsity in selection

of singletons that are not connected to any other variables in the network. The tun-

ing parameter τ enforces some coefficients of the principal components to be exactly

zero with larger values encouraging more sparsity. The selection of τ is usually data-

driven, and is discussed in section 2.4. The optimization problem is convex in α and

can be solved with any off the shelf convex optimization package such as the CVX

package CVX Research (2012) in Matlab.
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2.2.3 Fused sparse PCA

The second structured sparse PCA is the Fused sparse PCA, which generalizes fused

lasso (Tibshirani et al., 2005) to account for complex interactions within a pathway.

Utilizing the graph structure G, we propose the following structured sparse PCA for

the rth principal component loading:

min
α 6=0

{
(1− η)

∑
i∼j

∣∣∣αiwi − αj
wj

∣∣∣+ η
∑

di=0 |αj |
}

(2.5)

subject to ‖XTXα̃r − λ̃rα‖∞ ≤ τ and AT
r−1α = 0

where τx > 0 and τy > 0 are tuning parameters, 0 ≤ η ≤ 1 is fixed, Ar−1 =

(α̂1, α̂2, . . . , α̂r−1) is the matrix constituted of r − 1 structured sparse PC loadings,

and α̃r is the rth nonsparse PC loading vector. This penalty is a combination of

weighted l1 penalty on variables that are connected in the network and l1 penalty on

singletons that are not connected to any genes in the network. The first term in the

objective function (2.5) is the fused structured penalty that encourages the difference

between variable pairs that are connected in the network to be small and hence the

variables to be selected together.

This penalty is similar to some existing penalties, but different in a number of

ways. First, it is similar to the fused lasso—both attempt to smooth the coefficients

that are connected in G. However, the fused lasso does not utilize prior biological

information. Instead, it uses a data-driven clustering approach to order the variables

that are correlated and imposes l1 penalty on the difference between coefficients of

adjacent variables. It also does not weight neighboring features, which may allow

one to enforce various prior relationships among features. Second, the Fused sparse

penalty is also similar to the network constrained penalty of Li and Li (2008). Their

penalty η1

∑
j |αj|+ η2

∑
i∼j

(
αi
wi
− αj

wj

)2

uses the l2 norm and it has been shown that
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this does not produce sparse solutions, where sparsity refers to variables that are

connected in a network. In other words, it does not encourage grouped selection of

variables in the network (Pan et. al, 2010). Also, the additional tuning parameter

η2 increases computational costs for very large p since it requires solving a graph-

constrained regression problem with dimension (n+ p)× p.

The two proposed methods differ in how the structural information is incorporated

in the PCA problem. Grouped sPCA is dependent on γ in the Lγ norm and have

different sparsity solution in the PC loadings for different γ. Unlike the fused sPCA,

the weights in the grouped sPCA allow for two neighboring nodes to have opposite

effects, which may be relevant in some biological process. However, in the fused

sPCA, it is easy to understand that the l1 norm difference of connected pairs allows

variables that are connected or behave similarly to be close together, which is not so

intuitive in the grouped sPCA.

2.2.4 Algorithms

We present two algorithms for the proposed structured sparse PCA methods. Al-

gorithm 1 obtains the rth principal component loading vector for a fixed tuning

parameter τ . Algorithm 2 provides a data driven approach for selecting the optimal

tuning parameter value τ from a range of values. The normalization in step (3) of

Algorithm 1 eases interpretation, and usually facilitates a visual comparison of the

coefficients. Once the principal component loading vector is obtained, the coefficients

(in absolute value) can be ranked to assess the contribution of the variables to a

given PC. If the variables are measured on different scales or on a common scale with

widely differing ranges, then it is recommended to standardize the variables to have

unit variance before implementing the proposed methods.

Algorithm 1 is developed to obtain r PC loading vectors. For the best r, we can

introduce tuning parameter selection in step (2) using, for example cross validation
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Algorithm 1 Optimization for r structured sparse PC

1: Initialize with nonsparse estimates, α̃r. These are the eigen-decomposition of

XTX, and let α̃r be the rth eigen-vector corresponding to the rth largest eigen-

value λ̃r of XTX. Here, one can use ideas in (Hastie and Tibshirani, 2004) for

the eigen analysis of XTX when p is very large.

2: For a fixed positive tuning parameter τ selected from a set of finite grid values,

solve problem (2.4) or (2.5) for the rth grouped sPC or fused sPC vector, α̂r.

3: Normalize α̂r: α̂r = α̂r

‖α̂r‖2
.

Algorithm 2 Optimization for r structured sparse PC

1: for each τ in a set of fine grid from (0, τmax), and for a desired number of principal

components r, do

(i) Apply Algorithm 1 on X to derive the rth principal component loadings

Âr(τ). Then project X onto Âr(τ) to obtain the best principal components

as Yr(τ) = XTÂr(τ).

(ii) Calculate the BIC value defined as

BIC(τ) = log
[ 1

np
‖X−Yr(τ)ÂT

r (τ)‖F
]

+
γτ log(np)

np
(2.6)

where ‖ · ‖F is the Frobenius norm and γτ is the number of non-zero com-

ponents of Âr(τ).

2: end for

3: Select the optimal tuning parameter as τopt = minτ{BIC(τ)}.



38

to maximize the total variance explained by the rth principal component, with the

smallest r explaining some proportion of variance explained selected as the optimal

rth principal component. This would add extra layer of complexity to the tuning

parameter selection, however.

The tuning parameters τ = (τ1, . . . τr) control the model complexity and their

optimal values need to be selected. We use Bayesian information criterion (BIC)

(Allen et al., 2014) and implement Algorithm 2 to select τ that yields a better rank r

approximation to the test data. Compared with using cross-validation to select best

tuning parameters, BIC can be computationally more efficient, especially for large

datasets.

2.3 Simulation

We conduct simulations to assess the performance of the proposed methods in compar-

ison with several existing sparse PCA methods. We consider two simulation settings

that differ by the proportions of variation explained by the first two PCs. In the first

setting, the first two PCs explain 6% of the total variation which indicates that true

signals in the data are weak. In the second setting, the first two PC’s explain 30% of

the total variation in the data, representing a case where signals are strong. Within

each setting, we consider the dimensions p = 500 and p = 10, 000, and also consider

two scenarios that differ by the graph structure G for the proposed methods.

2.3.1 Simulation Settings

Let X be a n × p matrix and let G0 be the true covariance matrix used to generate

X. Let G0 be the corresponding graph structure. The true covariance matrix G0 is
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Figure 2.1: Network structure of simulated data : Correctly specified graph. Variables
in circle represent signals, and square represent noise. (G = G0)
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partitioned as

G0 =

 G00 0

0 ν × Ip−36

 ,

where G00 is block diagonal with ten blocks each of size 18 for p = 500 and size 250 for

p = 10, 000, and between block correlation 0. We set the variance of variables in the

first two blocks to be 1, and 0.3 for the remaining eight blocks. In addition, we set the

correlation of a main and connecting variable to be 0.9 for the first two blocks and 0.2

for the other blocks. Meanwhile, we let the correlation ρik ∼ Uniform(0.7, 0.8), i 6=

k and i, k ≥ 2 for the first two blocks, and ρik ∼ Uniform(0, 0.2), i 6= k and i, k ≥ 2

for the other blocks. This type of covariance matrix G0 suggests that data structure

is determined by ten underlying subnetworks, where the first two PCs of the first two

subnetworks are mostly important in detecting signals in the data. In other words,

in both settings, the true PCs has 36 important variables and p− 36 noise variables

when p = 500, and p = 500 important variables and p − 500 noise variables for

p = 10, 000. We note that by changing the value of ν, we control the proportions of

variation explained by the first two PCs. For each setting, we specify n = 100, and

simulate X from MVN(0, G0). We use 0.5 for all η in the simulation study.

For each setting and dimension, we consider two scenarios that differ by the graph

structure G specified in the proposed sPCA methods. In the first scenario, the graph

structure is correctly specified, that is G = G0. This corresponds to the situation

where all true structural information are available in G so that G is informative. The

resulting network includes 500 variables and 170 edges between each main variable

and connecting variable when p equals 500 (or 10, 000 variables and 2, 490 edges when

p equals 10, 000), i.e.,E = {i ∼ j|i, j = 1, · · · , 180} in G. Figure 2.1 is a graph of the

network G used in Fused and Grouped sPCA when network information is correctly

specified.
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In the second scenario, the graph structure is randomly generated and does not

capture the true information in the data. The resulting network includes a total of

170 random edges when p equals 500 (or 2, 490 edges when p equals 10, 000). This

setting assesses the performance of the proposed methods in cases where the structural

information is uninformative and sheds light on robustness of the proposed methods.

Figure A.1 in the Supplementary shows the graph structure for randomly specified

edges.

Performance Metrics We compare the proposed methods Grouped PCA and Fused

PCA to the traditional PCA (Hotelling, 1936), SPCA (Zou et al., 2006) and SPC

(Witten et al., 2009b). We implement SPCA and SPC using the R-packages elastic-

net and PMA respectively. We evaluate the performance of the methods using the

following criteria.

• Reconstruction error : ||XtestAAT −XtestÂÂT||2F , where A = (α1 α2) are the

true PC loadings and Â = (α̂1 α̂2) are the estimated PC loadings. This criterion

tests the methods ability to approximate the testing data reconstructed using

only the first two PC loadings, since if X = UDVT is the spectral decomposition

of the centered data X, then V are the eigenvectors of XTX and XV = UD.

If span(A)= span(V), then X = UDAT = XAAT, and if span(A) ⊂ span(V),

then XAAT is an approximation to the data X.

• Estimation error : ||AAT − ÂÂT||2F . This criterion tests the methods ability to

estimate the linear subspace spanned by the true PC loadings (Cai et al., 2013),

with a smaller estimate preferred.

• Selectivity : We also test the methods ability to select the right variables while

ignoring noise variables using sensitivity and specificity which are defined as

Sensitivity = # of True Positive
# of True Positive+# of False Negative

, Specificity = # of True Negative
# of True Negative+# of False Positive

.

Sensitivity and specificity capture the accuracy of estimated PC loadings with
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high values indicating better performance.

• Proportion of variance explained : The fourth comparison criterion is the pro-

portion of variation explained in the testing and training data sets by the first

two PC loadings, which is defined as α̂
T

XXTα̂
trace(XXT)

, where X is either the centered

training or testing data set, and α̂ is the estimated first or second PC.

2.3.2 Simulation Results

Table 2.1 shows the performance of the methods for the first setting where the first

two PCs explain only 6% of the total variation in the data. We observe that the

proposed methods are competitive for p = 500 and even more so when p = 10, 000.

In particular, Grouped sPCA has smaller reconstruction and estimation errors when

the graph structure is correctly specified and even when the graph structure is un-

informative. On the other hand, Fused sPCA shows a suboptimal performance in

comparison to Grouped sPCA, yet better or competitive performance when com-

pared to the traditional PCA and SPCA for correctly specified graph structure and

mis-specified graph structure. In terms of sensitivity and specificity, we observe that

both Grouped sPCA and more especially Fused sPCA are better in detecting signals

even when the graph structure is mis-specified, while Grouped sPCA is more compet-

itive at not selecting noise variables. We also notice that both Grouped sPCA and

Fused sPCA have good performance in proportions of cumulative variation explained

compared with existing sparse PCA methods, especially compared with SPCA. In

Table 2.2 where the first two PC’s explain 30% of the total variation in the data, we

observe a similar performance of the proposed methods.

A comparison between p = 500 and p = 10, 000 scenarios for both settings indi-

cates that the gain in reconstruction error, estimation error, sensitivity, and propor-

tions of variation explained can be substantial for Grouped sPCA and Fused sPCA

compared with the existing sparse PCA methods, as the number of variables increases.
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Table 2.1: Simulation results of Setting 1. Cumulative proportions of variance explained by true PCs are
0.03 for PC 1 and 0.06 for PC 1 and 2. P , number of variables. RE, reconstruction error, defined as
||XtestAAT −XtestÂÂT||2F , where A = (α1 α2). EE, estimation error, defined as ||AAT − ÂÂT||2F . cPVE,
proportions of cumulative variation explained. ·(·), mean(std).

Method RE EE
Sensitivity Specificity cPVE

1stPC 2ndPC 1stPC 2ndPC 1stPC 2ndPC
P = 500

PCA 31 (9e-1) 1.1 (3e-2) 1.0 1.0 0.0 0.0 4.3e-2 (2e-3) 8.2e-2 (2e-3)
SPCA 34 (3) 1.2 (1e-1) 0.54 0.50 0.95 0.90 2.0e-2 (2e-3) 4.0e-2 (4e-3)
SPC 16 (8) 0.57 (3e-1) 0.57 0.60 0.98 1.0 2.8e-2 (3e-3) 5.5e-2 (6e-3)

biological information correctly specified
Fused sPCA 25 (6) 0.90 (2e-1) 1.0 1.0 0.73 0.70 2.9e-2 (4e-3) 5.1e-2 (7e-3)
Grouped sPCA 8.0 (6) 0.29 (2e-1) 0.81 0.80 0.97 1.0 3.2e-2 (2e-3) 6.0e-2 (3e-3)

biological information randomly specified
Fused sPCA 32 (4) 1.1 (2e-1) 0.95 1.0 0.51 0.51 3.0e-2 (4e-3) 5.2e-2 (7e-3)
Grouped sPCA 9.1 (6) 0.33 (2e-1) 0.81 0.80 0.97 1.0 3.2e-2 (2e-3) 5.9e-2 (3e-3)

P = 10,000
PCA 112 (3) 1.3 (2e-2) 1.0 1.0 0.0 0.0 2.6e-2 (1e-3) 5.0e-2 (1e-3)
SPCA 160 (4) 1.9 (3e-2) 0.15 0.15 0.99 0.99 2.3e-3 (5e-4) 4.5e-3 (7e-4)
SPC 172 (4) 2.0 (8e-3) 0.01 0.01 1.0 1.0 1.7e-4 (1e-4) 3.4e-4 (3e-4)

biological information correctly specified
Fused sPCA 81 (50) 0.94 ( 0.5 ) 0.62 0.55 0.99 0.99 1.2e-2 (6e-3) 2.2e-2 (1e-2)
Grouped sPCA 54 (40) 0.62 ( 0.4 ) 0.62 0.58 0.99 1.0 1.4e-2 (3e-3) 2.6e-2 (6e-3)

biological information randomly specified
Fused sPCA 140 (30) 1.6 (0.4) 0.60 0.60 0.68 0.68 8.9e-3 (5e-3) 1.6e-2 (1e-2)
Grouped sPCA 58 (40) 0.67 (0.5) 0.59 0.55 0.99 1.0 1.4e-2 (3e-3) 2.6e-2 (7e-2)

This suggests that Grouped sPCA or Fused sPCA can achieve sparse PC loading es-

timations with higher accuracy, better variable selection, and larger proportion of

variation explained, especially when the number of variables is relatively large.

2.4 Application to the Glioblastoma Data

We apply the proposed methods to analyze data from a Glioblastoma cancer study.

Glioblastoma brain multiform (GBM) is the most common malignant brain tumor

and is defined as grade IV astrocytoma by the Whold Health Organization because of

its aggressive and malignant nature (Furnari et al., 2007a). The Cancer Genome Atlas

Project (TCGA) (McLendon et al., 2008) integratively analyzed genome information

of patients with glioblastoma and expanded the knowledge about the pathways and

genes that may relate with glioblastoma. In our data analysis, we obtain part of the

genomic data from TCGA project for glioblastoma, which is explained in detail by
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Table 2.2: Simulation results of Setting 2. Cumulative proportions of variance explained by true PCs are
0.15 for PC 1 and 0.30 for PC 1 and 2. P , number of variables. RE, reconstruction error, defined as
||XtestAAT −XtestÂÂT||2F , where A = (α1 α2). EE, estimation error, defined as ||AAT − ÂÂT||2F . cPVE,
proportions of cumulative variation explained. ·(·), mean(std).

Method RE EE
Sensitivity Specificity cPVE

1stPC 2ndPC 1stPC 2ndPC 1stPC 2ndPC
P = 500

PCA 31 (0.9) 1.1 (3e-2) 1.0 1.0 0.0 0.0 4.3e-2 (2e-3) 8.2e-2 (2e-3)
SPCA 35 (2) 1.3 (9e-2) 0.49 0.50 0.95 1.0 1.9e-2 (3e-3) 3.9e-2 (4e-3)
SPC 15 (7) 0.54 (3e-1) 0.57 0.60 0.98 1.0 2.8e-2 (3e-3) 5.6e-2 (5e-3)

biological information correctly specified
Fused sPCA 27 (4) 0.93 (2e-1) 1.0 1.0 0.70 0.70 3.0e-2 (3e-3) 5.3e-2 (5e-3)
Grouped sPCA 7.9 (5) 0.29 (2e-1) 0.80 0.80 0.97 1.0 3.2e-2(2e-3 ) 6.0e-2 (3e-3)

biological information randomly specified
Fused sPCA 32 (5) 1.1 (2e-1) 0.96 1.0 0.52 0.50 2.9e-2 (5e-3) 5.1e-2 (8e-3)
Grouped sPCA 9.2 (6) 0.33 (0.2) 0.79 0.8 0.97 1.0 3.2e-2 (2e-3) 5.9e-2 (4e-3)

P = 10,000
PCA 112 (3) 1.3 (2e-2) 1.0 1.0 0.0 0.0 2.7e-2 (1e-3) 5.0e-2 (1e-3)
SPCA 162 (4) 1.9 (3e-2) 0.16 0.16 1.0 1.0 2.0e-3 (5e-4) 4.0e-3 (8e-4)
SPC 173 (4) 2.0 (5e-3) 5.0e-3 5.0e-3 1.0 1.0 1.6e-4 (1e-4) 3.2e-4 (2e-4)

biological information correctly specified
Fused sPCA 77 ( 40 ) 0.89 ( 0.5 ) 0.65 0.57 0.99 1.0 1.3e-2 (5e-3) 2.3e-2 (9e-3)
Grouped sPCA 46 ( 30 ) 0.53 ( 0.4 ) 0.65 0.62 0.99 1.0 1.5e-2 (2e-3) 2.8e-2 (5e-3)

biological information randomly specified
Fused sPCA 140 ( 30 ) 1.6 ( 0.4 ) 0.59 0.60 0.68 0.70 9.0e-3 (5e-3) 1.7e-2 (1e-2)
Grouped sPCA 53 ( 40 ) 0.61 ( 0.4 ) 0.63 0.60 0.99 1.0 1.5e-2 (3e-3) 2.7e-2 (6e-3)

McLendon et al. (2008),Verhaak et al. (2010), and Cooper et al. (2010). This data

set contains microarray data of 558 subjects with glioblastoma. The GBM subtype

of each subject is also given.

The goal of the analysis is to identify a subset of relevant genes that contribute

to the variation in the different GBM subtypes, and also determine how the first two

estimated PCs separate these subtypes. For both datasets, we first select 2, 000 vari-

ables with the largest variation following the data preprocessing procedure in Witten

et al. (2009b). In the next step, we select patients with subtype Classical, Mesenchy-

mal, Neural, and Proneural following the previous work by Verhaak et al. (2010)

resulting in 481 patients with subtype data. We obtain the gene network information

for Fused and Grouped sparse PCA methods from the Kyoto Encyclopedia of Genes

and Genomes (KEGG) database (Kanehisa and Goto, 2000). The resulting network

has 2, 000 genes and 1, 297 edges in the network. We center each variable to have
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mean 0 and standardize each variable to have variance one. Again, we use 0.5 for η

in real data experiment.

To justify the structural information we use for the proposed methods, we conduct

exploratory analysis using correlation coefficients of gene pairs. We group the gene

pairs consisting of the selected 2000 genes into three categories: unconnected gene

pairs (two genes that are not in any pathway), direct-connected gene pairs (two genes

that have a direct edge connecting them), indirect-connected gene pairs (two genes

that belong to the same pathway but do not have a direct edge connecting them)

according to the KEGG Pathway information and we use boxplots to demonstrate

the correlation coefficients of these three types of gene pairs. Figure A.4 shows the

plot of correlation coefficients of gene pairs by their categories. There is a small but

clear decreasing trend in correlation coefficients as one moves from direct-connected

gene pairs to unconnected gene pairs. This shows that the gene pairs that are directly

connected tend to have stronger correlations than those that are indirectly connected

or unconnected, thus justifying the validity of pathway information we use in the

analysis.

In the analysis, we equally split each data set into training and testing sets, where

the training set is used to estimate the optimal tuning parameters via 5-fold cross

validation. The trace plots of tuning parameters for Grouped sPCA and Fused sPCA

are shown in Figure A.2. We then apply the optimal parameters on the whole training

set to estimate the first two PC loadings α̂i, i = 1, 2, and use the testing set to evaluate

the estimated loadings using the following two criteria:

Number of non-zero loadings of α̂i = Σ2000
j=1 I{α̂ij 6= 0}, i = 1, 2;

Proportion of variation explained by α̂i =
α̂T

i Xα̂i
trace(XXT )

, i = 1, 2,

where X is the centered training or testing data matrix. We also obtain the first two
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Table 2.3: Analysis of the GBM Data using Kegg Pathway information. cPVE repre-
sents proportions of cumulative variation explained. Classification results are based on
500 repeats.

Method
Non-zero Loadings cPVE Subjects correctly classified
1stPC 2ndPC 1stPC 2ndPC SVM

PCA 2000 2000 0.1955 0.3175 97
SPCA 240 238 0.0333 0.0591 97
SPC 45 59 0.0215 0.0383 67
Fused sPCA 1644 1410 0.1792 0.2787 123
Grouped sPCA 1330 970 0.1731 0.2652 119

PCs β̂i by β̂i = Xα̂i, i = 1, 2 and determine how well they separate patients with

different GBM subtypes using support vector machine (SVM).

Table 2.3 shows the number of non-zero loadings, the cumulative proportions of

variation explained by the first two PC loadings, and the classification results using

SVM. We find that SPC and SPCA are more sparse than the Fused sparse PCA

and the Grouped sparse PCA. This is consistent with the simulation settings where

SPC and SPCA tend to be more sparse and have higher false negatives that result

in lower sensitivity. Regarding cumulative proportions of variation explained, we find

that the proposed methods explain higher variation in the data, but this may be

due to the large number of variables selected. The last column of table 2.3 gives the

classification results from applying SVM on the testing set using the estimated first

two PC loadings. The Fused and Grouped sparse PCA have the highest number of

correctly specified subjects. Of the existing methods, PCA and SPCA achieve good

performance of separating patients with different subtypes, while SPC has the lowest

number of subjects correctly classified.

We also conduct pathway enrichment analysis using bioinformatics software Topp-

Gene Suite (Chen et al., 2009). Specifically, we identify the genes that have non-zero

loadings in the first PC from the proposed sparse PCA methods and existing methods,

and obtain significantly enriched pathways that are associated with glioblastoma for

each method. We seek to identify methods that have more glioblastoma-associated
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Pathway ID Pathway name P-value
Gene

from input in annotation
Fused sPCA

739007 Spinal cord injury 7.43E-18 45 112
782000 Proteoglycans in cancer 5.77E-11 55 225
523016 Transcriptional misregulation in cancer 3.312E-7 40 179
83105 Pathways in cancer 3.36E-7 61 327
83115 Bladder cancer 6.10E-6 14 38

Grouped sPCA
739007 Spinal Cord Injury 1.97E-14 36 112
523016 Transcriptional misregulation in cancer 4.06E-7 34 179
198901 SIDS Susceptibility Pathways 2.57E-6 30 160
83105 Pathways in cancer 2.58E-5 46 327
P00005 Angiogenesis 4.90E-5 26 150

SPC
739007 Spinal Cord Injury 1.43E-5 5 112

SPCA
739007 Spinal Cord Injury 6.46E-5 8 112

Table 2.4: Enriched Glioblastoma-related pathways for the genes in first PC by dif-
ferent sPCA methods

pathways, and whether these overlap. Table 2.4 shows the Glioblastoma-related path-

ways found by the proposed methods and existing sparse PCA methods. Among the

existing sparse PCA methods, both SPC and SPCA find Spinal Cord Injury path-

way. Compared with the existing methods, Fused and Grouped sPCA find a few new

Glioblastoma-related pathways: Proteoglycans in cancer, Transcriptional misregula-

tion in cancer, Pathways in cancer, Bladder cancer, SIDS Susceptibility Pathways,

and Angiogenesis. We also plot the first two PC loadings by Fused and Grouped sPCA

in Figure A.3 and the loadings of genes enriched in Glioblastoma-related pathways are

highlighted in color. These results indicate that the proposed methods may be more

sensitive in detecting disease related signals and thus can identify more biologically

important genes.

2.5 Discussion

In this paper, we propose two novel structured sparse PCA methods. Through ex-

tensive simulation studies and an application to Glioblastoma gene expression data,
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we demonstrate that incorporating known biological information improves the per-

formance of sparse PCA methods. Specifically, our simulation study indicates that

the proposed methods can decrease reconstruction and estimation errors, and increase

sensitivity and proportions of variation explained, especially when number of variables

is large. Compared with Fused sPCA and existing PCA methods, Grouped sPCA

achieves the lowest reconstruction error and estimation error for correctly specified

and mis-specified graph structure. On the other hand, Fused sPCA has higher sensi-

tivity values. Because we utilize prior biological information, the proposed methods

usually have less sparse PC loadings compared with the existing sPCA methods and

thus lower specificity. However, there is a trade-off between sparsity and the benefit

from extra information. Consistent with the simulations results, the real data analysis

demonstrates that the proposed methods generate less sparse PC loadings. However,

the classification results show the advantages of incorporating biological information

into sparse PCA.

The proposed methods require the structure of variables to be known in advance

and specified during analysis. In real data analysis, this task is not trivial and it may

take some efforts in searching for a proper variable structure to use. Regarding this,

we make the following comments. First of all, many sources of structural information

may be available to use including KEGG pathway (Kanehisa and Goto, 2000), Panther

pathway (Mi et al., 2016), Human protein reference database (Prasad et al., 2009).

It may be helpful to conduct some exploratory analysis such as Figure A.4 to confirm

the need for using biological information. Figure A.4 demonstrates that gene pairs

connected in the same pathway generally have higher correlation than gene pairs

unconnected in the same pathway, and further than gene pairs in different pathways.

Second, our simulation study indicates that even if the structural information is

irrelevant as in the biological information randomly specified section, the proposed

methods still performs well, especially Grouped sPCA method.
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Our proposed methods have some limitations. First, when structural information

includes a large number of edges, the proposed methods, particularly, Fused sPCA,

may generate PC loadings that include more false positive selections. To solve this

problem, one potential approach is to obtain a smaller but more relevant biological

structure. Second, the proposed methods, especially Grouped sPCA may be compu-

tationally slow in the presence of a large number of edges. Based on our experience

with the motivating data set, Fused sPCA is computationally more efficient than

Grouped sPCA.

Some extensions are of potential interest. One may use alternative convex opti-

mization solvers other than the CVX solver in matlab used in our work, potentially to

speed up the computations. In addition, Fused and Grouped sPCA only incorporate

the edge information in a graph. As variables are often grouped into pathways, sPCA

using hierarchical penalties (Zhao et al., 2016) can be developed to incorporate group

membership informaiton in addition to edge information.
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Chapter 3

Distributed learning from multiple EHR

databases : Contextual embedding mod-

els for medical events
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3.1 Introduction

As promoted by the 2009 Health Information Technology for Economic and Clinical

Health (HITECH) Act, more than half of the office-based physician practices adopted

Electronic Health Records (EHR) systems to store patient clinical documents at the

end of 2011 Hsiao et al. (2011). As a substitution of paper-based records, EHR

systems usually include information from multiple clinical aspects, such as syndromes,

laboratory test results, prescriptions, diagnoses, and doctor notes. This information

not only contains health history and disease progression of each patient, but also

reflects how diseases are treated in general. Thus EHR data is a rich depository for

understanding disease features and treatment regimes.

Although EHR data are informative, analyzing EHR data can be a challenging

task. As described in Hripcsak Hripcsak and Albers (2013) and Cheng Cheng et al.

(2016+), EHR data are usually complex, sparse and of high-dimensionality. The

huge volume of EHR data can make storage non-trivial, and analyzing such data is

even more difficult. Besides its complexity, obtaining access or sharing EHR data can

also be complicated, since the use of EHR data involves high-level privacy-preserving

requirements Hodge Jr et al. (1999).

There has been a growing body of research studies on analysis of EHR data. Ex-

isting works mainly utilize information from EHR data for two goals: medical event

phenotyping and predictive model construction. For the task of extracting features

from EHR data (i.e. medical event phenotying), Batal Batal et al. (2012) uses tem-

poral pattern mining to obtain abstraction sequences, which can be further applied

in predictive models. Liu Liu et al. (2015) uses temporal graphs to construct graph-

based frameworks from EHR data and to understand phenotype relationships. At

the same time, the direction of obtaining low dimensional vector representation for

medical events using deep-learning methods has advanced quickly. Several works have



52

published applications on this topic Choi, Bahadori, Searles, Coffey and Sun (2016);

Choi (n.d.); De Vine et al. (2014); Lasko et al. (2013); Che et al. (2015). These works

demonstrate that the obtained medical events provide clinically meaningful interpre-

tation. In addition, they can be applied in downstream analyses, such as identifying

disease susceptible populations or disease subtypes as well as making predictions for

diagnoses or clinical outcomes.

After medical event phenotyping, prediction model construction is one of the most

important downstream tasks. Many attempts have been made recently and been

shown promising. Wu Wu et al. (2010) applies several machine learning approaches

including logistic regression, Support Vector Machine (SVM), and Boosting on EHR

data and they find that logistic regression with Bayesian Information Criterion (BIC)

achieves the best accuracy for Heart Failure. Cheng Cheng et al. (2016+) uses a four-

layer convolutional neural network model to predict the occurrence of Congestive

Heart Failure and Chronic Obstructive Pulmonary Disease. Other deep learning-

based predictive models include the work for Heart Failure prediction Choi, Schuetz,

Stewart and Sun (2016a,b) and Parkinson’s Disease Hammerla et al. (2015).

Although many predictive methods have been proposed, limitations and gaps still

exist in real world applications. For one thing, most of the models proposed target

only one or two diseases. In real life, at least a number of common diseases should

be considered when a doctor sees a new patient. And for another, almost all the

current methods assume that training data come from one dataset or training data

come from multiple datasets but are available from one single place. It could happen

that more than one databases are available at different sites but cannot be transferred

or shared between data warehouses. Thus it would be preferable if a model can learn

from multiple EHR datasets and at the same time predict the occurrence of multiple

diseases.

In this article, we propose the Distributed Noise Contrastive Estimation (Dis-
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tributed NCE), a neural-network-based technique for building predictive models of

patient diagnoses. This method can learn from multiple EHR databases without shar-

ing data among sites and make predictions for more than seventy common diseases.

Our work is an extension of the Word2Vec model by Mikolov Mikolov, Chen, Corrado

and Dean (2013) and the Patient-Diagnosis Projection Similarity Model by Farhan

Farhan et al. (2016+). The main contribution of our work is the proposal of potential

solutions to incorporate information from multiple data sources in one global model.

As more methods have been developed based on Word2Vec, the proposed approach

can be generalized to any Word2Vec-based models or other neural network based

models to expand data sources and protect patient privacy.

The remainder of this article is structured as follows. The prelimary works are

presented in section 2, problem setting and the proposed method Distributed NCE in

section 3, two alternative methods including Naive Updates and Dropout Updates in

section 4, the numerical study using real data in section 5, and some comments and

discussions in section 6.

3.2 Preliminaries

This section reviews two existing models, which form the foundation of the proposed

methods. We first briefly discuss the skip-gram (SG) model, a model formulation

used in the Word2Vec. This model has a three-layer neural network and uses each

single word to predict the context words surrounding it. Then we review the Patient-

Diagnosis Projection Similarity (PDPS) model on the basis of SG model.

3.2.1 Skip-gram Model

Following the notation in Mikolov Mikolov, Sutskever, Chen, Corrado and Dean

(2013), suppose there is a training sequence consisted of words ω1, ω2, . . . , ωT . A

three-layer neural network is constructed as demonstrated in Figure 3.1. The input
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layer is a vector representing a single word in the training sequence and the output

layer is vectors representing the context words around the input word. The hidden

layer has the same number of nodes as the dimension of vector representation. The

weight matrix from input layer to hidden layer is denoted by W and the weight matrix

from hidden layer to output layer by W
′
. The goal is to maximize the log-likelihood

of context words given an input word:

1

T

T∑
t=1

logP(ωt−c, . . . , ωt−1, ωt+1, . . . , ωt+c|ωt)

=
1

T

T∑
t=1

∑
−c≤j≤c
j 6=0

logP(ωt+j|ωt) (3.1)

ωt is the input word and ωt−c, . . . , ωt−1, ωt+1, . . . , ωt+c are the context words around

ωt.

Define the conditional probability of observing an output word (or an aforemen-

tioned context word) ωO ∈ {ωt−c, . . . , ωt−1, ωt+1, . . . , ωt+c} given the input word ωI

as:

P(ωO|ωI) =
exp(ν

′
ωO

T
νωI )∑nw

ω=1 exp(ν
′
ω
TνωI )

(3.2)

Here nw is the number of words in the vocabulary, νωI is the corresponding weight

vector for word ωI in matrix W , and ν
′
ωO

is the corresponding weight vector for word

ωO in matrix W
′
. Note that if ωI is the i−th word in vocabulary and ωO is the

j−th word, νωI
T and ν

′
ωO

are actually the i−th row of W and the j−th column of

W
′

representing the input and output vector of ωI and ωO. Thus the SG model

adjusts two weight matrices in neural network W and W
′

by maximizing the sum of

log-likelihood for pairs consisted of all input words and their context words.
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3.2.2 Patient-Diagnosis Projection Similarity Model

Farhan Farhan et al. (2016+) proposed a Word2Vec-based model, known as the

patient-diagnosis projection similarity (PDPS), to predict patient diagnoses based on

EHR data. Assume one has obtained vector for all events by building an SG model on

training datasets. Given a new patient sequence S which consists of his/her medical

event codes ordered by time, the goal is to predict the true diagnosis d∗ using S and

the vector of all medical events. For an event e, denote the vector representation of e

by Ve. Specifically, represent diagnosis by d and denote the vector representation for

d by Vd. In order to incorporate the time effect of each medical event in sequence S,

we calculate the time elapsed between the event e and the last event denoted by te.

To find the optimal prediction of diagnosis for patient with EHR sequence S, PDPS

finds

d∗ = arg max
d∈Diag

CS(Vd,

∑
e∈s Veexp(−λte)∑
e∈S exp(−λte)

) (3.3)

where CS(x, y) is the cosine similarity between x and y, λ is the decay factor and

usually takes a value between 0 and 1, Diag is the list of all diagnoses in vocabulary.

Besides the prediction for true diagnosis, PDPS can also predict one’s probability

for a specified diagnosis d̃ with CS(Vd̃,
∑
e∈s Veexp(−λte)∑
e∈S exp(−λte)

) as long as d̃ can be learned in

training datasets. Using the dataset in our simulation study as an example, PDPS

can make patient-diagnosis prediction for more than seventy common diagnoses based

on this dataset, which is an advantage of PDPS over other existing prediction models.

But the current PDPS cannot learn from multiple EHR databases without requiring

data sharing, which can be a serious limitation when hospitals are reluctant to share

data and merging data from multiple data warehouse is infeasible due to regulatory

and other hurdles.
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Figure 3.1: Demonstration of SG model structures. One square is a vector repre-
sentation of one word. Circles represent elements in each vector. W is the weight
between input layer and hidden layer, W

′
is the weight between hidden layer and

output layer.

3.2.3 Distributed Noise Contrastive Estimation

Our idea of the Distributed NCE is inspired by the main hurdle of learning from

multiple databases - discrepancies between vocabularies. Our proposed solution is to

obtain vocabularies from multiple sites first and initialize an empty neural network

model. Then this model can be trained using separate dataset locally in a sequential

order. After all the datasites have trained the model, a global model is built and

the weights between input and hidden layers are the final vector for medical events.

This method is effective because it exactly mimics the process of training a Word2Vec

model. The original training process feeds batches of word corpus into the gradient-

descent algorithms, which is what Distributed NCE would do except that Distributed

NCE feeds corpus in two separate locations. The Distributed NCE method is demon-

strated in Figure 3.2. NCE is an optimization technique which is use to build neural

network and improve efficiency Mnih and Kavukcuoglu (2013).

Suppose one have access to two databases D1 and D2, the vocabulary of database
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Figure 3.2: Distributed NCE. Squares represent medical events. Crosses represent
counts of medical events. After obtain the vocabularies from datasets D1 and D2,
the event lists and event counts are merged. Neural network is trained sequentially
using D1 and D2.

D1 has size nw and the vocabulary of database D2 has n∗w new words. In the SG

model, objective function(3.1) is unchanged. The only difference is that function(3.2)

is revised to

P(ωO|ωI) =
exp(ν

′
ωO

T
νωI )∑nw+n∗w

ω=1 exp(ν ′ω
TνωI )

(3.4)

In implementation, we notice that Distributed NCE may have privacy concerns

in the step of obtaining vocabulary counts if only two datasets are involved. The fact

that one site can infer the medical event word counts of the other site from the gobal

model may leak private information of patients, especially those with rare diseases. To

address such concerns, the following section discusses how to add privacy protection

in combined vocabulary and word counts.

3.2.4 Distributed Noise Contrastive Estimation with Privacy Protec-

tion

To protect data privacy when two datasets are analyzed by the Distributed NCE,

a differential privacy (DP) component Xiao et al. (2012) is added into Distributed

NCE. We call this method Distributed NCE with DP.
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The DP method is proposed by Xiao Xiao et al. (2012) and its full name is

differentially private histogram release through multidimensional partitioning. Given

a vocabulary and the count table of all the words in vocabulary, to implement DP,

the first step is to partition the count table into a few clusters. We use common

methods such as k-means clustering or hierarchical clustering to partition data. In

the next step, every value in one cluster is replaced by the mean value plus a part of

a random Laplace noise. The general workflow of adding DP to a one-dimensional

data is illustrated in Figure 3.3.

Suppose the whole count table x1, . . . , xN is divided into s clusters using some

clustering technique. N is the number of words in vocabulary. The i−th cluster

contains elements xi,1, . . . , xi,Ni , i = 1, . . . , s. Ni is the number of elements in the

i−th cluster. To use the DP on the i−cluster, each element is replaced by

x̂i,j =
xi,1 + · · ·+ xi,Ni

Ni

+
εi
Ni

, i = 1, . . . , s; j = 1, . . . , Ni. (3.5)

Laplace noise εi is generated from Lap(
SQ
α

). Here we follow the notations used in Xiao

Xiao et al. (2012). SQ is the sensitivity of a query and α is a parameter controlling

the strength of privacy protection. α usually takes a value smaller than 1 and the

smaller α leads to stronger protection.

In the following applications, we adopt k-means clustering as the clustering method

and use different k values ranging from 10 to 150. The sensitivity of this problem is

2 so SQ equals 2. And we choose 0.001 as the value for α. Adding DP with more

clusters results in closer group mean values to the original Distributed NCE without

DP. But at the same time, more clusters introduce more noise into the model, since

creating s clusters means adding noise s times. Thus choosing the number of clusters

is a trade-off between value accuracy and noise.
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Figure 3.3: A symbolic illustration of implementing differential privacy on one-
dimensional data. To apply DP on one-dimensional vectors, cluster counts to sub-
groups in the first step. For each subgroup, calculate summations and add noise to
group summations. Last, average summations to individual cells.

3.3 Two alternative solutions

This section describes two additional methods as alternatives to Distributed NCE.

They are applied in the following simulation experiments for comparison. The first

one, called ”naive updates”, directly expands vocabulary when updating an existing

Word2Vec model with a new dataset. The second method, called ”dropout updates”,

is inspired by the dropout technique commonly used in neural network to avoid over-

fitting.

3.3.1 Naive updates

Suppose a Word2Vec model M1 trained by the first dataset D1 (see Section 3.2.1)

has already been obtained, it can be updated by expanding the vocabulary of M1

and adding input nodes and output nodes to the existing neural network. In the

expanded model, denoted by M2, the weights inherited from M1 are initialized by

the existing values in M1 and new weights are randomly initialized. Then we train

M2 with new data D2. This method has similar idea to an existing package called
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”Online Word2Vec” Mulkar-Mehta (2015a).

Assume the input layer, hidden layer, and output layer ofM1 have nodes {x1, x2, . . . , xN1},

{h1, h2, . . . , hL}, and {y1, y2, . . . , yN1} respectively. N1 is the number of words in vo-

cabulary of D1 and L is the number of nodes in hidden layer. Note that only one

input node among x1, x2, . . . , xN1 is non-zero for SG model in each training itera-

tion. By applying naive updates, it expands the existing input layer and output layer

to {x1, x2, . . . , xN1 , xN1+1, . . . , xN1+K} and {y1, y2, . . . , yN1 , yN1+1, . . . , yN1+K} respec-

tively. K is the length of new words in D2 compared with D1. This step is demon-

strated in Figure 3.4. Then the expanded model M2 is trained with D2.

Figure 3.4: Naive updates. Left figure represents M1 and right figure represents M2.
Empty squares represent the words exclusive to D1. Gray squares are the words
shared by both D1 and D2. Yellow squares are the words exclusive to D2.

Figure 3.5: Dropout updates. This figure only demonstrate the second step in dropout
updates, which is to update existing model using new dataset D2. Empty squares
represent the words exclusive to D1. Gray squares are the words shared by both D1

and D2. Yellow squares are the words exclusive to D2. When a node is not connected
to hidden layer, it means this node is ’dropped’ for the current training cycle.
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3.3.2 Dropout updates

Following the same notation in section 3.3.1, dropout updates expand the input

layer and output layer by a subset of new nodes. If we specify the proportion

of random sample selected from new nodes as Q, each time [Q × K] new nodes

{x(N1+1), . . . , x(N1+[Q×K])} and {y(N1+1), . . . , y(N1+[Q×K])} are selected from {xN1+1, . . . , xN1+K}

and {yN1+1, . . . , yN1+K} respectively. [·] is the floor operation. (·) means it is a ran-

dom sample. After adding these nodes to existing model M1, the new model M
(i)
2 is

trained by new data D2. We repeat this step N times and obtain N input weights

W
(i)
new, i = 1, . . . , N . From another perspective, this process is the same as randomly

dropping a proportion of nodes in the updated model M2 in section 3.3.1. Since it has

the similar flavor to the dropout technique usually used in neural network training to

reduce overfitting, we call this model ”dropout updates”.

We use Figure 3.5 to demonstrate how existing models are updated through

dropout method in N iterations. W
(1)
new,W

(2)
new, . . . ,W

(N)
new are the weights of updated

models M
(1)
2 ,M

(2)
2 , . . . ,M

(N)
2 . We calculate the final vector representation Vi for word

ωi by

Vi =

∑
ωi∈V ocab(j) W

(j)
new,i∑N

j=1 1(ωi ∈ V ocab(j))
. (3.6)

V ocab(j) is the vocabulary selected in j-th iteration, j = 1, . . . , N . W
(j)
new,i is the

i−th row of weight matrix W
(j)
new, i = 1, . . . , N1 +K.

3.4 Numerical study with real data

We conduct a series of simulation experiments using a real dataset. We only consider

the situation when exactly two datasets are involved to build a global model. The

results can be extended to multiple datasets scenarios by iteratively applying such one
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versus one combination method. We consider the scenarios when the first database

is smaller than, equal to, or larger than the second database. For each setting, we

separate the whole data to equal or unequal subsets to mimic real life when two

datasets are available locally. We use the model trained with the whole data as the

gold standard to compare with the proposed methods.

3.4.1 Data and Data preprocess

MIMIC-III (Medical Information Mart for Intensive Care III) is a freely available

database consisted of de-identified clinical data including more than 40000 patients

Johnson et al. (2016). All the patients have received treatments from the intensive

care units (ICU) of Beth Israel Deaconess Medical Center between 2001 and 2012.

The MIMIC-III dataset contains a variety of measurements such as laboratory test

results, prescriptions, symptoms, and other clinical measurements.

After MIMIC-III data are obtained, they are pre-processed into temporal se-

quences so that they can be accepted by the proposed models. Data pre-processing

step has been described in detail by Farhan Farhan et al. (2016+) and we briefly

summarize it here. For each subject in the database, we concatenate the medical

events from multiple hospital admissions and sort the sequence by time. Using such

procedures, temporal information of medical events can be preserved. In addition,

different prefixes are added to events so that the code from different categories do

not duplicate. For instance, ‘p ’, ‘l ’, ‘s ’, ‘c ’, and ‘d ’ are added at the beginning of

corresponding terms to represent prescriptions, lab test keys, symptoms, conditions,

and diagnoses. We save the latest diagnosis for all patients as the ground truth of pre-

diction and exclude them from training data set. To ensure all patients have enough

record for prediction, only those with multiple hospital admissions are kept in the

final dataset. After the above preprocessing steps, a dataset including the temporal

sequences of 5, 642 patients is obtained.



63

3.4.2 Settings

In the numerical study, the MIMIC III data are manually divided into different pro-

portions to mimic two locally-available datasets. First, the whole dataset is randomly

divided into subsets containing ninety percent versus ten percent of data, and the for-

mer part is used as the training set and the latter part as the testing set. Second,

the training set (ninety percent of total data) is further divided into 10% plus 80%,

20% plus 70%, 30% plus 60%, 45% plus 45%, 60% plus 30%, 70% plus 20%, 80% plus

10%. Data ordering is kept during the process of dividing thus 20% plus 70% is not

equivalent to 70% plus 20%.

In another setting, age is used to divide population into subgroups, in order to

evaluate the performance of the proposed methods on different populations. In the

first case, the whole patient body is divided into two groups using a probabilistic

age-based cutoff, which is generated by Logit(Pr(S = 1)) = 1+b1×Age. Here S = 1

means subject is assigned to Group2. This case is designed to mimic real situations

with heterogeneous populations from multiple sites. In addition, we consider an

extreme case where the data are divided to two groups using a strict age cutoff (53,

66, or 77 years old). This case, while unrealistic, is designed to assess robustness of

our methods. As in the previous setting, 10% of data is randomly chosen as testing

data and selection of testing data is not correlated with age.

We define the global model as the model trained with all the training data (90% of

data) and the global model is used as the gold standard which the proposed methods

are compared with. It is worth mentioning that the algorithm for solving neural

networks has different levels of randomness with different settings of parameters. We

discuss more about parameter selection in later sections.

We use two criteria to evaluate the performance of the proposed models. The first

criterion is called Area Under Curve (AUC). For each disease, the true positive rate

is plotted versus the false positive rate and calculate the area under this classification
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curve. A good classifier should have true positive rate increase quickly and its AUC

should be close to 1. Since there are more than seventy diagnoses, we calculate the

average of all the AUCs as the final evaluation, Avg-AUC. Avg-AUC reflects the

prediction accuracy of proposed models.

The second criterion is called Precision Top K (PTK). Given two sets of vector

representations with the same vocabulary, for each word, we calculate the proportion

of overlaps between the K most-similar words using the first set and the second

set of vector representations. The similarity between vectors is measured by cosine

similarity Steinbach et al. (2000). We repeat this procedure over all the words in

vocabulary and take average of the calculated proportions as PTK. PTK reflects the

similarity between two sets of vector representations. For example, if the top 3 most

similar words of one diagnosis “d 24435” are lab test “l 104”, prescription “p 28390”,

and symptom “s 335” using one model, and the top 3 most similar words using

another model for the same diagnosis are “p 28390′′, “l 104′′ and condition “c 9002”,

we notice the overlaps between these two sets of results are “p 28390” and “l 104”.

Thus the PTK (K=3) in this example is 0.667 if the first set of vector representations

is obtained from the gold standard model. We only take K=3 as an example, in

the analysis, K=10 is used as the default value and K ranges from 1 to 500. In the

calculation of PTK, the gold standard model is defined as the global model trained

using one worker with all the training data (90% of data).

In this numerical study, Distributed NCE and its two alternatives are firstly eval-

uated in all scenarios and report PTK and AUC. Better methods should have higher

values on both criteria. In the second step, the results of Distributed NCE and

Distributed NCE with DP using different parameter values are compared.
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3.4.3 Tuning parameters

Like other deep learning models (or statistical models), the proposed methods and

the algorithm used to solve neural networks involve a number of parameters that are

specified beforehand. This section briefly discusses the functions of these parameters

and their impact on the randomness and efficiency of constructed models.

Learning rate is a hidden parameter inside the learning process of neural network.

The magnitude of learning rate decides how large the ”step size” is for each update

step. The default learning rate automatically decreases proportionally from a max

value (0.025) to a mim value (0.001) during the training process of one dataset. This

is problematic when one want to train the model sequentially and obtain a global

model. In Distributed NCE, we are able to adjust this parameter since both data sizes

can be obtained when collecting vocabularies from different sites. The learning rate

decreases proportional to data size as the way used in global model. On the contrary,

the learning rates in naive updates and dropout updates cannot be adjusted since the

size of the second data set is usually unknown when applying these two methods.

Iteration is a parameter controls the number of times the model is trained itera-

tively over the entire data. Default value for iteration used in Word2Vec is 5. More

iterations result in more stable results but too many iterations would also dramat-

ically increase computing time. Figure S3 demonstrates the PTK performance of

Distributed NCE using different data partitions and various iterations. When num-

ber of iterations increases, the performance of unequal partitions stabilizes but the

performance of equal partitions decreases. This happens because when applying Dis-

tributed NCE, model is trained with the first dataset repeatedly for Niter times and

then trained with the second dataset repeatedly for Niter times. But when applying

global model, model is trained with the whole dataset repeatedly for Niter times. Un-

equal patitions tend to have one large dataset which dominates the training process

and thus have stabler performance than equal partitions.
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Figure 3.6: Sum of Squared Errors (with noise-added centroids) by Number of Clus-
ters.

Maximum number of words controls the amount of words fed to the Word2Vec

model in each iteration. Large maximum number means large training batches but

also large learning rate jumps, which may result in poor estimation. Small maximum

number makes learning process slow and training batches more susceptible to data

partition. The default value is 10 000.

Number of workers : Our algorithm can use parallel computation to speed up the

training process and the default number of workers is 20. Figure ?? shows the PTK

change of two repetitive global models versus number of workers. Generally, more

workers increase computing speed but also add randomness to final results. When

number of workers equals one, two repetitive global models have the same set of

results thus PTK equals one. PTK value decreases when number of workers increases

and the reduction becomes minimum after more than ten workers are used. To reduce

randomness in results, one worker is used in the numerical study.

As discussed, multiple workers, change of sentence ordering, and a small num-
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ber of iterations all contribute to model randomness. Multiple workers, change of

feeding batches resulted from data partition, and more iterations contribute to the

performance gap between Distributed NCE and the gold standard model. Parame-

ter selection is a trade-off between computing time, stability, and convergence. We

believe the parameter set used here (iteration = 5, max number of words = 10 000,

workers = 1 for stable results or 20 for faster speed) have achieved a good balance.

3.4.4 Results

Table 3.1 presents PTK and AUC of three proposed methods. To emphasize the

main findings, only three settings are demonstrated: 45% and 45% of all data as

training data plus 10% as testing data, 10% and 80% as training data plus 10% as

testing data, 80% and 10% as training data plus 10% as testing data. These three

scenarios represent three extreme conditions: two training sets are of equal sizes; the

first set is much smaller than the second set; the first set is much larger than the

second set. In this experiment, 1 worker and 5 iterations are used to reduce result

randomness. The default parameter selection of the original Word2Vec program is 20

workers and 5 iterations, which can greatly improve computing speed but introduce

some result randomness. A complete table of results can be found in Table S2, where

the separation of training set ranges across 10:80, 20:70, 30:60, 45:45, 60:30, 70:20,

and 80:10.

Table 3.1 shows that Distributed NCE has the best performance among the pro-

posed methods, especially comparing the measurement PTK. Dropout updates per-

form worst. Partition of data heavily influences on the performance of Dropout

updates.

Figure S1 re-confirms the findings from Table 3.1. In this figure, PTK of three

methods is ploted against a wide range of K selection under three scenarios. Although

the performance of all methods fluctuates across three settings, it is consistent that
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Distributed NCE always has the highest PTK values. Again, the same parameter

selection is used as mentioned above (workers = 1, iterations = 5) during this exper-

iment.

Both Table 3.1 and Figure S1 indicate that Distributed NCE outperforms other

proposed methods with regard to the evaluation criterion PTK. As mentioned in

Section 3.2.4, privacy issue is a potential concern for the current Distributed NCE,

thus Distributed NCE with DP is proposed to provide better privacy protection.

Table S1 demonstrates Precision-Top-K of Distributed NCE with DP using different

numbers of clusters comparing with Distributed NCE without DP. As mentioned

above, selection of K is a trade-off between cluster mean accuracy and added noise.

Table S1 indicates that PTK of Distributed NCE with DP is closest to Distributed

NCE when number of clusters is around 30 to 50. And generally speaking, adding

privacy protection does not decrease PTK greatly.

45 : 45 : 10 10 : 80 : 10 80 : 10 : 10

PTK Avg − AUC PTK Avg − AUC PTK Avg − AUC

Naive updates 0.52 (2e-3) 0.77 (8e-3) 0.50 (2e-3) 0.77 (8e-3) 0.49 (3e-3) 0.78 (8e-3)

Dropout updates 0.22 (3e-3) 0.72 (7e-3) 0.13 (9e-4) 0.72 (5e-3) 0.37 (4e-3) 0.73 (7e-3)

Distributed NCE 0.58 (2e-3) 0.77 (8e-3) 0.64 (2e-3) 0.77 (8e-3) 0.65 (3e-3) 0.77 (7e-3)

Table 3.1: Results of all methods using Skip−Gram model. Results are summarized
over 10-folds cross validation. Distributed NCE is Distributed Noise Contrastive
Estimation. PTK is Precision-Top-K. K equal 10 in all experiments. Avg-AUC is
averaged Area-Under-Curve. 45 : 45 : 10 means that the two training datasets are
45% and 45% of total data. Testing dataset is 10% of total data. Global model uses
all 90% data as training data.

To decide the most appropriate selection for cluster number, we also plot the sum

of squared errors using noise-added centroids by number of clusters. This type of

plot is usually used to identify the optimal number of clusters in k-means clustering.

Consistently, the elbow place of Figure S2 is around 30 to 50. Thirty clusters may be

an optimal number of clusters according to both Table S1 and Figure S2.

Table S3 and Table S4 show the simulation results with age-correlated subsets.

In Table S3, b1 = −0.04 has uneven population separation than b1 = −0.02 and
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b1 = −0.002. Both Naive updates and Dropout updates have worse results when

subset differences are larger. But Distributed NCE and Distributed NCE with DP

not only have best PTK and AUC, but also perform stably for all three separations. In

Table S4, Distributed NCE and Distributed NCE with DP have the best performance

for all three age cutoffs. Although Table S4 shows an extreme case of population

separation, it demonstrates the robustness of our method.

3.5 Conclusion and Discussion

In this work, we propose and investigate several methods to extend current neural

network based predictive models for medical events. The proposed methods allow

researchers to build predictive models using multiple EHR datasets sequentially and

distributedly, avoiding the potential inconvenience of sharing EHR data.

To validate an established model, a few downstream analysis can be performed, in-

cluding grouping medical concepts from different institutions, finding similar patients

by constructing patient profiles from observations, and making predictions based on

records, etc.. For example, biomedical ontologies is increasing in the context of health

system interoperability, which are the keys to understanding the semantics of informa-

tion exchange Schulz and Mart́ınez-Costa (2013). The diversity of biomedical ontolo-

gies call for advanced tools to harmonize them and the ability to find similar concept

without exchanging raw data is highly appreciated. Our model can be evaluated

when two similar concepts (in a global sense) are presented in a distributed setting

(e.g., appearing in different sources). We can test their similarity using our proposed

method against the baseline approach (concepts trained in a centralized manner) to

see how well the semantics are preserved. Such evaluation can be extended to search

similar patients (based on profiles synthesized by distributed embedding of their cor-

responding concepts). In this sense, we would expect similar patients (in a global

setting) remain similar after the distributed training approach is adopted.
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It should be clarified that this work is constructed on the ’old’ EHR system and on

standardized clinical data. The ’old’ EHR systems use ICD-10 for medical event pro-

totyping in contrast to the modern systems which support medical event prototyping

through both ICD-10 and e-prescription. In addition, the latest systems use differ-

ent standardization, which is a challenge to be tackled. And difficulties also exist in

data harmonization, especially when different data sources are highly heterogeneous

in terms of format. From raw EHR data to standardized EHR data, we envision

Common Data Models (CDM) such as Observational Medical Outcomes Partnership

(OMOP) Stang et al. (2010) will bridge the gap. In addition, since data harmoniza-

tion is not a unique issue in the distributed analysis and is needed whenever people

try to use multiple data sources, ongoing efforts exist to overcome such hurdles.

Our work has some limitations. First, the proposed methods are evaluated based

on one data source instead of multiple sources. In practice, the data from different

hospitals have heterogeneity in terms of coding system, clinical standards, patient pro-

files, and etc., which are not addressed in this work. Technically, the proposed models

can handle datasets with different levels of differences. Based on our experience, uti-

lizing information from two hospitals has disadvantages when large discrepancy exists

in two coding systems or patient profiles. But merging information can be especially

beneficial if two hospitals have similar patient populations but not enough size on

their own or the information from both hospitals are complementary. Such data usu-

ally exist in distributed medical data sets of clinical data research network (CDRN).

Compared with two different hospitals, CDRNs use the same or similar coding sys-

tems and clinical standards. And the patient profiles are more homogeneous. Our

proposed method will be a good fit to datasets in such distributed data networks. Of

note, one of our numerical experiments is designed to mimic hetergeous data sources.

Another limitation is that, although the proposed methods can learn predictive

model sequentially and distributedly, the learning process is not completely indepen-
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dent among datasites. Using the proposed methods, the second datasite need to wait

until the first datasite finishes learning, which may not be efficient enough in real life.

To learn a global model parallelly, one could obtain vector from separate datasites

and conduct downstream combining, which may be a more complicated problem than

the current situation. Also, one can consider combining Bayesian ideas with neural

network and imposing different prior probability on nodes when updating neural net-

works.

For future research, the proposed models should be further evaluated using data

from different sources, including data from different hospitals and data from dis-

tributed medical systems. Also, it is desirable to develop model construction tech-

nique which can learn model structure completely parallel.
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Chapter 4

Bayesian Generalized Biclustering Anal-

ysis via Adaptive Structured Shrinkage
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4.1 Introduction

Advances in high-throughput technologies have enabled researchers to uncover secrets

of human genome on various levels. From microarray to next-generation sequencing,

these tools can reveal understandings of genomic activity including DNA composition,

abundance of transcriptome, epigenetic modification, etc.. In recent years, there have

been growing interests on integrative analysis of data from multiple genomic modal-

ities for identifying disease subtypes Verhaak et al. (2010), inferring omics network

Ideker et al. (2001); Tanay et al. (2004), and uncovering disease culprit genes Network

et al. (2011). One significant challenge in integrating multiple genomic data sources

is that these data have different characteristics and are usually difficult to be unified

and explored by one single method. Although multiple attempts have been made,

more analytical techniques are needed to fully realize the potential of existing vast

omics data.

Biclustering is a popular unsupervised learning and data mining technique which

can identify local patterns of a data matrix by clustering feature space and sample

space at the same time. The idea of biclustering was first discussed by Hartigan

(1972) using the term ”direct clustering”. Biclustering of gene expression microarray

data was first formally introduced by Cheng and Church (2000). Since then, various

biclustering methods have been proposed and successfully applied to the analysis of

gene expression data Hochreiter et al. (2010); Lazzeroni and Owen (2002); Sheng

et al. (2003); Ben-Dor et al. (2003); Gu and Liu (2008); Caldas and Kaski (2008);

Bergmann et al. (2003); Murali and Kasif (2002); Yu et al. (2017); Liu et al. (2014);

Huda and Noureen (2016). Biclustering methods have been systematically compared

in several review papers Prelić et al. (2006); Pontes et al. (2015); Eren et al. (2012);

Padilha and Campello (2017).

Following the review paper by Padilha and Campello (2017), the existing bi-
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Figure 4.1: Interactions of 48 genes that overlap with the three critical signaling
pathways - RTK/PI3K, p53, and Rb, which closely relate with migration, survival
and apoptosis progression of cell cycles. This gene network information is extracted
from the KEGG pathway and is utilized in the integrative analysis by the proposed
method (section 4.4).

clustering methods can be categorized as greedy algorithms, divide-and-conquer al-

gorithms, exhaustive enumeration algorithms and distribution parameter identifica-

tion algorithms. To be specific, greedy algorithms including CC Cheng and Church

(2000), xMotifs Murali and Kasif (2002), ISA Bergmann et al. (2003), etc.; divide-

and-conquer algorithms include Bimax Prelić et al. (2006)) and MTBGD Huda and

Noureen (2016); exhaustive enumeration algorithms include SAMBA Tanay et al.

(2002), BiBit Rodriguez-Baena et al. (2011), and DeBi Serin and Vingron (2011)); dis-

tribution parameter identification algorithms include Plaid Caldas and Kaski (2008),

FABIA Hochreiter et al. (2010), etc.. Among all, FABIA is of particular interest to

us, as it closely relates to our model formulation. FABIA uses a multiplicative model

and imposes Laplace priors on latent variables. Both Hochreiter et al. (2010) and

Padilha and Campello (2017) show that FABIA achieves robust performance in their

simulation studies and real data applications.

Although many biclustering approaches have been developed, few of them can uti-
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lize existing biological information for identifying biclustering patterns such as those

from functional genomics or proteomics. An example of such biological information is

demonstrated in Figure (4.1). Such gene network can be obtained from publicly avail-

able databases including KEGG pathway Kanehisa and Goto (2000); Mi et al. (2015);

Keshava Prasad et al. (2008). In addition, recent work has shown that incorporating

biological information can improve variable selection and prediction performance in

methods such as linear regression and multivariate analysis Chang et al. (2016); Li

et al. (2017); Safo et al. (2017); Zhao et al. (2016); Li and Li (2008a). Furthermore,

most, if not all, existing biclustering methods focus on analyzing gene expression mi-

croarray data which are of continuous data type. Our simulation results have shown

that the current methods cannot identify biclusters with good accuracy on inputs

of mixed data types, for example, data generated from Gaussian distribution and

Binomial distribution. To address this challenge, we develop a more generalized ap-

proach to identify the biclustering patterns using one or multiple genomic datasets.

Our work takes advantage of recent work by Polson et al. (2013), which developed

a unified Bayesian inference framework for analysis of data from exponential family

distributions through the use of Pólya-Gamma latent variables. Polson tranforms

common discrete data distributions into a Gaussian distribution framework by in-

troducing auxilary variables. By combining Pólya-Gamma latent variables with a

multiplicative modeling framework, we formulate a Bayesian biclustering model simi-

lar in spirit with Hochreiter et al. (2010) but can accept different data types as inputs.

In addition, our approach allows the incorporation of prior biological knowledge in

the process of biclustering, if such biological information exists. We call this approach

Generalized Biclustering (GBC).

Our contributions are summarized as follows: (1) We propose a noval Bayesian

biclustering method GBC to simultaneously cluster feature space and sample space

of -omics data while incorporating prior biological information during the pro-
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cess; (2) We present the likelihood functions of different data types in a unified

framework and employ a novel Bayesian adaptive shrinkage priors to yield sparse

solutions; (3) We design an efficient EM algorithm to solve the biclustering prob-

lem and make our program available on GitHub1; (4) We assess the proposed methods

in comparison with several existing biclustering techniques in a series of simulation

studies and analyses of multiple real datasets. The proposed methods achieve

the best or close to the best performance in our numerical experiments.

The structure of this paper is as follows. Section 4.2 introduces our model for-

mulation including the adaptive structured prior and the computation of GBC for

different data types. Section 4.3 presents the simulations comparing the proposed

method with other popular biclustering methods. Section 4.4 presents the applica-

tions on real datasets.

4.2 Methodology

To fix ideas, suppose we have a random sample of n subjects for which data are ob-

tained fromH genomic platforms, such as microarray and next-generation sequencing,

denoted by X1, . . . ,XH . Each of them is a ph×n matrix, 1 ≤ h ≤ H, where ph is the

number of features and n is the number of samples. Let X be their vertical concate-

nation with size p × n, X =



X1

...

XH


, where p =

∑H
h=1 ph. It follows that the rows

represent the feature space and the columns represent the sample space. Let µ denote

the mean of X and µ is related with latent components through µ = m + WZ where

m is a location vector, W is a p×L factor loading matrix and Z is a L×n latent factor

matrix. To understand this model formulation, one may make an analogy between

1https://github.com/ziyili20/GBC
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this framework and the generalized linear model µ = g−1(Zβ) with observations X

and covariates Z. µ in both models are the means of observations. Assuming the

observations xij’s are independent one from each other, the likelihood of observations

X is the multiplication of the likelihood of each individual observation and µ is the

parameter of the likelihood function, π(X|µ) =
∏

j

∏
i πj(xji|µji). In the remaining of

Section 2, we only consider πj to be an exponential family likelihood for the random

variable xj.

Using the above notations, a number of distributions can be considered to model

observed variables. For instance, if the observation X is continous and of bell shaped

curve, one can assume xji follows the Gaussian distribution of mean µji and precision

ρj with density function as

πj(xji|µji, ρj) =
ρ

1/2
j√
2π
e−ρj(xji−µji)

2/2. (4.1)

If the observation X is discrete and one can assume that xji follows a Binomial

distribution with parameter nj and pji. Using the logit link function, the likelihood

function is

πj(xji|µji, nj) =

(
nj
xji

)
p
xji
ji (1− pji)n−xji

=

(
nj
xji

)
eµjixji

(1 + eµji)nj
, xji = 0, 1, . . . , nj. (4.2)

If assuming xji follows Negative Binomial with rj and pji and again using the logit

link function for pji, the likelihood is given by

πj(xji|µji, rj) =

(
rj + xji − 1

xji

)
p
xji
ji (1− pji)rj

=

(
rj + xji − 1

xji

)
eµjixji

(1 + eµji)rj+xji
, xji = 0, 1, 2, . . . . (4.3)
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Lastly, if assuming xji follows Poisson distribution with parameter eµji , the likelihood

can be approximated with large N and small pji = N−1eµji/(1 +N−1eµji) in the form

of Binomial distribution. It follows that the likelihood is given by

πj(xji|µji) = e−e
µji eµjixji

xji!

≈
(
N

xji

)
N−xjieµjixji(
1 + 1

N
eµji
)N , xji = 0, 1, . . . , N. (4.4)

In the following derivations, we take the above four distributions - Gaussian, Binomial,

Negative-Binomial, and Poisson - as examples to illustrate the proposed method.

Other exponential family distribution such as Bernoulli, Log-normal can be handled

similarly.

4.2.1 Prior Specification

We employ a Bayesian adaptive structured shrinkage prior formulation similar to

Chang et al. (2016) and the goal is to achieve sparse estimations for W and Z while

incorporating existing biological information simultaneously. There are multiple com-

ponents in this prior. First, a Bayesian Laplacian shrinkage prior is imposed on W:

log π(W|λ) = C +
∑
j,l

log λjl −
∑
j,l

λjl|wjl|

where λjl is a parameter controlling the shrinkage level of wjl. Unlike standard Lapla-

cian prior that uses the same shrinkage parameter λ for all wjl’s, our approach adapts

the shrinkage parameter to individual wjl, hence the term of adaptive shrinkage. We

further impose a Bayesian shrinkage prior on λ to incorporate biological information,

also known as structural information, hence the term of structured shrinkage prior.

Suppose the biological information is given through graphs. H graphs Gh =

〈Ph, Eh〉 are given where Ph is the set of variables 1, . . . , ph in the h-th dataset and
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Eh is the set of edges between pairs of variables. The presence of edges represents the

correlations of corresponding variable pairs are nonzero. We combine these H graphs

into a single graph G = 〈P,E〉 by setting P = 1, . . . , p and E = {(ι(h, j), ι(h, k)) :

(j, k) ∈ Eh, 1 ≤ h ≤ H} where ι(h, j) is the index in the matrix X of the j-th

variable in the h-th dataset. Intuitively, when two variables are connected by edges,

we encourage these two variables to share similar factors. One way to achieve such

effects is to encourage one variable to load on a factor if the other variable has non-

zero loading on the same factor. Translating this to notations shows that, if xj and

xk are connected in G and wjl is non-zero for some l, wkl should also be encouraged

to have non-zero values. To this end, we employ a graph-Laplacian prior for λ given

the precision matrix Ω as:

log π(α|Ω) = Cν2 +
L

2
log |Ω| − 1

2ν2

∑
l

(αl − ν11
¯
)Ω(αl − ν11

¯
), (4.5)

where αjl = log λjl and αl = (α1l, . . . , αpl)
′ for 1 ≤ l ≤ L. ν1 and ν2 are hyper-

parameters needed to be specified a priori. The precision matrix Ω is defined as

Ω =



1 +
∑

j 6=1 ω1j −ω12 · · · −ω1p

−ω21 1 +
∑

j 6=2 ω2j
. . . −ω2p

...
. . . . . .

...

−ωp1 −ωp2 · · · 1 +
∑

j 6=p ωpj


.

Note that Ω is a symmetric matrix, i.e., ωjk = ωkj. The following prior is assigned

on set ω = {ωjk : j < k}

π(ω) ∝ |Ω |−L/2
∏

(j,k)∈E

ωaω−1
jk exp(−bωωjk)1(ωjk > 0)

∏
(j,k)6=E

δ0(ωjk). (4.6)
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δ0(·) is the Dirac delta function concentrated at 0 and 1(·) is the indicator function.

It can be shown that (4.6) is a propor prior Chang et al. (2016). Thus if xj and

xk are connected in graph G, the prior formula (4.6) encourages precision matrix

components ωjk to be non-zero and the shrinkage terms λjl and λkl are encouraged to

be correlated through prior (4.5). Since wjl and wkl receive a similar level of shrinkage

under this prior specification, they tend to be zero or nonzero at the same time. In

other words, if genes j and k are connected in a pathway, they are encouraged to be

selected together (or not selected together) in bicluster l. As such, a salient feature

of our approach is that the selected feature set in each bi-cluster tends to include

gene pathways rather than individual genes, leading to biologically more meaningful

results.

In order to obtain sparse estimates for Z, we also employ a Bayesian Laplacian

shrinkage prior on Z as follows:

log π(Z|ξ) = C +
∑
l,i

log ξli −
∑
l,i

ξli|zli|,

where ξli > 0 are the shrinkage parameters. Since no prior biological information is

available for subjects, we impose a conjugate prior, i.e. a Gamma prior on ξ as

log π(ξ) = Cν3,ν4 + (ν3 − 1)
∑
l,i

log ξil −
1

ν4

∑
l,i

ξli, (4.7)

where ν3 and ν4 need to be specified a priori.

4.2.2 Computation

As the likelihoods given in functions (4.1) to (4.4) are dissimilar with inputs of dif-

ferent data types, usually the computation procedures to optimize such likelihoods

are also not the same. However, by introducting the Pólya-Gamma latent variables

Polson et al. (2013), we are able to build a unified likelihood for inputs of different
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data types. Such unified likelihood facilitates the following computations and allows

the proposed method to have the flexibility in analyzing data from various sources.

We use the identity formula provided in Polson et al. (2013):

eµjixji

(1 + eµji)bji
= 2−bjieκjiµji

∫ ∞
0

e−ρjiµ
2
ji/2πji(ρji)dρji,

where κji = xji−bji/2 and πji(ρji) is the density of the Pólya-Gamma class PG(bji, 0).

This approach transforms exponential family distribution to a Gaussian-distribution-

like formula. Thus the likelihood functions (4.1) to (4.4) can be written in the fol-

lowing universal form:

πj(xj|µj) ∝ e−
1
2

∑
i ρji(µji−ψji)2+

∑
i κjiµjiπ∗j (ρj), (4.8)

where the unknown components are summarized in Table 4.1. Besides offering a

unified likelihood function, the augmentation of ρ enables the use of efficient lasso

algorithms for solving for W and Z in the M-steps of EM algorithms, which otherwise

is not possible. In addition, the approach of Polson et al. (2013) also enables the use of

Gibbs sampling in MCMC instead of Metropolis-Hasting, if MCMC was implemented.

Data type ψji κji bji π∗j (ρj)

Gaussian Xji 0 NA ρji ≡ ρj ∼ G
(
ζj+n

2
,
ζj
2

)
Binomial 0 Xji − nj/2 nj ρji ∼ PG(bji, 0)

Neg Binomial 0 (Xji − rj)/2 Xji + rj ρji ∼ PG(bji, 0)

Poisson logN Xji −N/2 N ρji ∼ PG(bji, 0)

Table 4.1: Formula components of Pólya-Gamma classes

Similar to Hochreiter et al. (2010), we use expectation-maximization (EM) algo-

rithm to compute maximum a posteriori (MAP) estimation of the likelihood function
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(4.8). The MAP estimator (Ŵ , Ẑ, α̂, ξ̂) is defined as,

(Ŵ , Ẑ, α̂, ξ̂) = arg max
W,Z,α,ξ

∫ ∫
π(W ,Z,α, ξ,ρ,Ω|X)dρdΩ,

with ρ,Ω marginalized out. Of note, our EM algorithm yields sparse soluations for W

and Z. Although Markov chain Monte Carlo (MCMC) could also provide solutions,

EM algorithm is more scalable to high dimension settings of our interest while a

full MCMC can be very expensive. Moreover, it requires additional steps to define

bicluster membership from MCMC solutions, which is further complicated by the fact

that MCMC solutions do not have exact zeroes and hence may not be sparse. We

adopt a recent computational technique called dynamic weighted lasso (DWL) Chang

and Tsay (2010) in each EM iteration which further speeds up the algorithm.

EM Algorithm

The inputs of this algorithm include a p by n observed data matrix X, a p ele-

ment vector for data types, and a p element vector for specific parameter values of

each data type. If prior biological information is available, edges between connected

variables should also be provided. For Gaussian, Binomial, Negative Binomial and

Poisson data, prior parameter for variance specification ζj (Gaussian), number of

trials nj(Binomial), number of failures rj (Negative Binomial) and large number N

(Poisson) should be specified. Definitions of these parameters are demonstrated in

the likelihood functions (4.1) to (4.4).

We develop an EM algorithm for obtaining MAP. The optimization problem in

the M step at the t-th iteration is defined as follows,

(W (t),Z(t),α(t), ξ(t)) = arg max
W,Z,α,ξ

Ẽt log π(W ,Z,α, ξ,ρ,Ω,X),

where the expectation Ẽt is taken with respect to
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π̃t(ρ,Ω) = π(ρ,Ω|W (t−1),Z(t−1),α(t−1), ξ(t−1),X). The objective function to be op-

timized at the t-th EM iteration step is given by

Qt(Z,W,m,α, ξ) = −1

2

∑
i,j

ρ
(t)
ji (µji − ψji)2 +

∑
i,j

κjiµji +
∑
j,l

αjl

−
∑
j,l

λjl|wjl|+ ν3

∑
l,i

log ξi,l −
∑
i,l

ξl,i(|zli|+
1

ν4

)

− 1

2ν2

∑
l

(αl − ν11)TΩ(t)(αl − ν11)

where µ = m+ WZ, ρ
(t)
ij = E(ρij|X,W(t−1),Z(t−1),m(t−1),α(t−1), ξ(t−1)), and Ω(t) =

E(ωij|X,W(t−1),Z(t−1),m(t−1),α(t−1), ξ(t−1)). The detailed steps of the EM algorithm

are explained as follows.

E-step for ρ: If the data type is Gaussian,

Ẽ(ρj) =
ζj + n

ζj +
∑

i(xji − µji)2
.

Otherwise,

Ẽ(ρji) =
bji(e

µji − eψji)
2(µji − ψji)(eµji + eψji)

.

E-step for ωjk.

Ẽ(ωjk) =
2ν2αω

2ν2bω + Σl(αjl − αkl)2
, j < k.

M-step for Z: Solve the lasso problem

z·i = argmin
z

(
1

2
z′W′Ẽ(Di)Wz− z′W′Ẽ(ci) +

∑
l

ξli|zl|

)
,

where i = 1, . . . , n, Di = diag(ρ1i, . . . , ρpi) and ci is the i-th column of the p×n
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matrix κ+ ρ ◦ (ψ −m1
¯
′
n). Here, ◦ denotes the Hadamard product.

M-step for W : Solve the lasso problem

w′j· = argmin
w

(
1

2
w′ZẼ(Gj)Z

′w −w′ZẼ(fj) +
∑
l

λjl|wl|

)
,

where j = 1, . . . , p, Gj = diag(ρj1, . . . , ρjn), and f ′j is the j-th row of κ + ρ ◦

(ψ −m1
¯
′
n).

M-step for m:

mj =
−w

′
jZρj +ψ

′
jρj + κ

′
j1

ρ
′
j1

, j = 1, . . . , p.

M-step for αl:

α
(new)
l = α

(old)
l −H−1

l gl.

Here Hl = −diag(eαl|wl|) − Ω
ν2

and gl = 1p×1 − eαl|wl| − Ω(αl−v11)
ν2

, where l =

1, . . . , L,

M-step for ξ.

ξli =
ν3

|zli|+ 1
ν4

.

Tuning

The parameters needed to be specified a priori include ν1 and ν2 from equation (4.5),

aω and bω from equation (4.6), and ν3 and ν4 from equation (4.7). Based on our

experience in numerical experiments, we fix aω as 4 and bω as 1 so that the prior of

Ω has large prior correlation and at the same time is relatively uninformative. We

also fix ν2 as ln 2 and ν3 as 1 so that the corresponding priors for α and ξ have a unit
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coefficient of variation. ν1 and ν4 control the sparseness of the solutions to W and

Z, i.e., the size of each bicluster. We choose ν1 and ν4 by the Bayesian information

criterion (BIC). The BIC is given by

BIC = −2 ln(L(X, µ̂)) + (||Ŵ||0 + ||Ẑ||0) ln(np)

where L(X, µ̂) is the observed likelihood of µ, ||Ŵ||0 and ||Ẑ||0 are the cardinali-

ties of Ŵ and Ẑ. We conduct grid search and the combinations of ν1 and ν4 with

the smallest BIC value are chosen as the optimal tuning parameter values for each

simulation dataset and real data application. Again based on our experience, the

search area in simulation is {2, 3, 4, 5, 6, 7} by {10, 20, 30, 40, 50, 60} for ν1 and ν4. In

real data analysis, we choose higher values in the search {7, 9, 11, 13, 15, 20, 25} by

{20, 40, 50, 60, 70, 90, 110}, as the previous experience shows real datasets need larger

tuning parameter to achieve the smallest BIC.

4.3 Simulation

4.3.1 Settings

In each simulation setting, we generate 100 simulation datasets. Each dataset has

p = 1000 genes and n = 300 samples. We assume L = 5 underlying true biclusters.

The parameter µ is computed by a mulplicative model µ = WZ where W is a p×L

matrix and Z is a L × n matrix. The number of non-zero elements in each column

of W is set as 50 and the number of non-zero elements in each row of Z is randomly

drawn from Poisson distribution with parameter 30. The row numbers with non-zero

elements in W are consecutive while the column numbers with non-zero elements in

Z are randomly drawn from 1 to n. And the elements of different columns of W

are allowed to have overlaps. The non-zero elements of both W and Z are generated

from normal distribution with mean 1.5 and standard deviation 0.1, and are randomly
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Figure 4.2: Work flow of the simualtion study.

assigned to be positive or negative. We use O to represent the number of overlapping

rows/columns between adjacent biclusters. O is set to 0 or 15.

Four simualtion settings are generated: Gaussian, Binomial, Negative Binomial,

and mixed data types. For the Gaussian case, the observed p × n data matrix X is

generated by X = µ + ε. The noise elements εij are randomly chosen from N (0, 4).

For the Binomial case, each element of X is generated from Binomial(nj,
1

1+e−µij
) and

nj is randomly sampled from 5 to 20. Similarly, for the Negative Binomial case, each

element of X is generated from NB(rj,
1

1+e−µij
) and the parameter rj is randomly

sampled from 5 to 20. For the mixed data type, we randomly sample each row

from these three distributions with the same parameter values as the previous three

settings.
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4.3.2 Methods

We apply the proposed methods and existing methods on the simulated datasets.

GBC represents the proposed method without utilizing any biological information

and sGBC is the version incorporating biological information. As discussed in section

2, GBC incorporates structural information by employing a graph-Laplacian prior on

the shrinkage parameter λ. For each simulation dataset, an working edge matrix is

generated by assuming that each bicluster is a fully connected graph and randomly

sampling five percent of true edges from all the underlying true biclusters. These

edge matrices are used as structural information in sGBC.

The existing methods used as comparators are plaid Caldas and Kaski (2008),

CC Cheng and Church (2000), FABIA Hochreiter et al. (2010), xMotifs Murali and

Kasif (2002), and ISA Bergmann et al. (2003). All the methods have implementa-

tions in R. Specifically, FABIA is implemented in R/Bioconductor package FABIA,

ISA is implemented in R/CRAN package isa2, and plaid, CC, and xMotifs are im-

plemented in R/CRAN package biclust. To choose appropriate tuning parameters for

each method, we have evaluated the tuning parameter options provided in Padilha

and Campello (2017) and Eren et al. (2012). For FABIA, we use the default tuning

parameter set when fitting the model and a threshold of 0.5 on Z when extracting

biclusters. For CC, we choose the δ value as 0.25 and α as 1.2. For Plaid, we find the

best combination of row.release and col.release in the interval [0.1, 0.5] with steps of

0.1. For xMotifs, we relax the α to 0.05 as suggested in Padilha and Campello (2017)

and used sd = 5 in synthetic datasets and sd = 1 in real data applications, because

otherwise no biclusters can be identified.

4.3.3 Evaluation Criteria

Two evaluation criteria are used in both the simulation study and real data applica-

tions: clustering error (CE) Patrikainen and Meila (2006) and consensus score (CS)
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Hochreiter et al. (2010). Clustering error finds the maximum overlapping proportions

of two biclusters after an optimal matching of clusters. Similarly, CS finds the optimal

mapping between clusters that maximizes the sum of similarities between matched

pairs. The only difference between CE and CS is that CS uses the size of bicluster

union at the denominator. This means CS does not take the size of each bicluster

into consideration and gives the same weights on all biclusters. Thus, big biclusters

may have greater impact on CE than CS. It is worth noting that our CE is one minus

the CE defined in Patrikainen and Meila (2006), which in our opinion might be easier

for comparison. Both CE and CS lie between 0 and 1. Higher CE, CS values mean

greater overlapping between estimated biclusters and true biclusters.

Besides CE and CS, we also compute sensitivity (SEN), specificity (SPE) and

Matthews correlation coefficient (MCC) in the simulation studies. All these metrics

also have values between 0 and 1, and higher values indicate better performance.

Gaussian

overlap Method CE CS SEN SPE MCC

0

Plaid 0.24(3e-02) 0.24(3e-02) 0.29(2e-02) 1(5e-06) 0.43(5e-02)

CC 0(0e+00) 0(0e+00) 0(0e+00) 1(5e-05) -0.0025(1e-04)

FABIA 0.54(3e-02) 0.54(3e-02) 0.57(3e-02) 1(1e-04) 0.72(3e-02)

XMotifs 0(0e+00) 0(0e+00) 0(0e+00) 1(0e+00) 0(0e+00)

ISA 0(0e+00) 0(0e+00) 0(0e+00) 0(0e+00) 0(0e+00)

GBC 0.64(9e-02) 0.63(9e-02) 0.88(1e-01) 0.99(4e-03) 0.78(6e-02)

sGBC 0.76(7e-02) 0.76(8e-02) 0.95(8e-02) 0.99(2e-03) 0.86(5e-02)

15

Plaid 0.24(2e-02) 0.23(3e-02) 0.28(2e-02) 1(1e-04) 0.42(4e-02)

CC 0(0e+00) 0(0e+00) 0(0e+00) 1(5e-05) -0.0027(1e-04)

FABIA 0.51(8e-02) 0.52(7e-02) 0.56(3e-02) 1(1e-03) 0.68(9e-02)

XMotifs 0(0e+00) 0(0e+00) 0(0e+00) 1(0e+00) 0(0e+00)

ISA 0(0e+00) 0(0e+00) 0(0e+00) 0(0e+00) 0(0e+00)

GBC 0.57(1e-01) 0.57(1e-01) 0.91(1e-01) 0.98(7e-03) 0.76(7e-02)

sGBC 0.66(9e-02) 0.66(9e-02) 0.95(9e-02) 0.99(4e-03) 0.81(5e-02)

Table 4.2: Simulation results for Gaussian settings. Results are generated based on
100 simulated datasets: mean(sd).
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Binomial

overlap Method CE CS SEN SPE MCC

0

Plaid 0.01(9e-04) 0.18(2e-02) 0.4(2e-02) 0.9(1e-01) 0.036(3e-03)

CC 0.0048(8e-04) 0.0022(4e-04) 0.015(2e-03) 0.99(2e-04) 0.003(2e-03)

FABIA 0.072(1e-02) 0.37(2e-02) 0.41(2e-02) 0.98(2e-03) 0.17(2e-02)

XMotifs 0.0013(9e-04) 0.0013(9e-04) 0.0014(1e-03) 1(4e-05) 0.003(3e-03)

ISA 0(0e+00) 0(0e+00) 0(0e+00) 0(0e+00) 0(0e+00)

GBC 0.57(1e-01) 0.6(1e-01) 0.99(1e-02) 0.98(9e-03) 0.77(7e-02)

sGBC 0.61(1e-01) 0.63(9e-02) 1(8e-04) 0.98(6e-03) 0.79(6e-02)

15

Plaid 0.012(1e-03) 0.17(2e-02) 0.4(2e-02) 0.82(5e-02) 0.039(4e-03)

CC 0.0064(1e-03) 0.0027(4e-04) 0.017(3e-03) 0.99(2e-04) 0.005(2e-03)

FABIA 0.1(3e-02) 0.34(4e-02) 0.39(3e-02) 0.98(4e-03) 0.21(4e-02)

XMotifs 0.0014(9e-04) 0.0014(9e-04) 0.0015(1e-03) 1(5e-05) 0.0036(3e-03)

ISA 0.012(4e-03) 0.0033(1e-03) 0.017(7e-03) 1(2e-04) 0.025(8e-03)

GBC 0.43(2e-01) 0.48(1e-01) 1(9e-03) 0.97(1e-02) 0.7(8e-02)

sGBC 0.6(1e-01) 0.61(9e-02) 1(3e-03) 0.98(6e-03) 0.79(5e-02)

Table 4.3: Simulation results for Binomial settings. Results are generated based on
100 simulated datasets: mean(sd).

4.3.4 Results

Table 4.2-4.5 present simulation results for Gaussian, Binomial, Negative Binomial,

and mixed data type settings respectively. All the results are generated based on 100

Monte Carlo datasets. Table 4.2 shows that in the Gaussian case, FABIA, GBC and

sGBC outperforms all the other methods. GBC and FABIA have similar CE and

CS values, around 0.5 for both non-overlapping scenario and overlap= 15 scenario.

sGBC has higher CE and CS, around 0.7 for non-overlapping scenario and around

0.6 for overlap= 15 scenario. CC, xMotifs and ISA have the worst results with CE

and CS around 0, suggesting that they fail to identify any biclusters. Plaid has a

performance better than CC, xMotifs, and ISA but worse than GBC and FABIA,

with CE and CS values around 0.2.

Table 4.3 shows that in the Binomial case, GBC and sGBC still performs best
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Negative Binomial

overlap Method CE CS SEN SPE MCC

0

Plaid 0.012(1e-03) 0.15(2e-02) 0.35(3e-02) 1(0e+00) 0.04(6e-03)

CC 0.00043(3e-04) 0.00039(3e-04) 0.00047(4e-04) 1(3e-05) -7.7e-05(1e-03)

FABIA 0.21(3e-02) 0.21(3e-02) 0.21(3e-02) 1(1e-04) 0.42(6e-02)

XMotifs 0.0028(1e-03) 0.0028(1e-03) 0.0031(1e-03) 1(4e-05) 0.0075(4e-03)

ISA 0(0e+00) 0(0e+00) 0(0e+00) 0(0e+00) 0(0e+00)

GBC 0.49(2e-01) 0.53(1e-01) 1(9e-04) 0.98(1e-02) 0.72(8e-02)

sGBC 0.48(2e-01) 0.52(1e-01) 1(0e+00) 0.97(1e-02) 0.71(8e-02)

15

Plaid 0.036(3e-02) 0.089(3e-02) 0.26(5e-02) 1(1e-02) 0.09(6e-02)

CC 0.00023(2e-04) 0.00022(2e-04) 0.00025(3e-04) 1(3e-05) -0.00083(9e-04)

FABIA 0.17(3e-02) 0.17(3e-02) 0.17(3e-02) 1(1e-04) 0.38(5e-02)

XMotifs 0.0024(1e-03) 0.0024(1e-03) 0.0027(1e-03) 1(3e-05) 0.007(5e-03)

ISA 0.0039(3e-03) 0.0035(3e-03) 0.004(3e-03) 1(6e-05) 0.024(2e-02)

GBC 0.42(2e-01) 0.47(1e-01) 1(8e-04) 0.97(2e-02) 0.69(9e-02)

sGBC 0.49(1e-01) 0.53(1e-01) 1(4e-04) 0.97(1e-02) 0.73(6e-02)

Table 4.4: Simulation results for Negative Binomial settings. Results are generated
based on 100 simulated datasets: mean(sd).
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Mixed

overlap Method CE CS SEN SPE MCC

0

Plaid 0.011(1e-03) 0.073(1e-02) 0.23(3e-02) 1(1e-02) 0.027(6e-03)

CC 6.3e-05(9e-05) 6e-05(9e-05) 6.8e-05(1e-04) 1(2e-05) -0.0011(4e-04)

FABIA 0.1(2e-02) 0.1(2e-02) 0.11(2e-02) 1(5e-04) 0.3(5e-02)

XMotifs 1.2e-06(1e-05) 1.1e-06(1e-05) 1.2e-06(1e-05) 1(4e-05) -0.00012(3e-04)

ISA 0(0e+00) 0(0e+00) 0(0e+00) 0(0e+00) 0(0e+00)

GBC 0.48(2e-01) 0.51(1e-01) 0.85(7e-02) 0.98(1e-02) 0.69(9e-02)

sGBC 0.7(1e-01) 0.71(1e-01) 0.99(1e-02) 0.99(6e-03) 0.84(6e-02)

15

Plaid 0.019(1e-02) 0.043(1e-02) 0.16(3e-02) 1(1e-02) 0.042(3e-02)

CC 4.1e-05(7e-05) 4e-05(7e-05) 4.4e-05(7e-05) 1(3e-05) -0.0013(3e-04)

FABIA 0.1(2e-02) 0.1(2e-02) 0.1(2e-02) 1(7e-04) 0.29(6e-02)

XMotifs 5.1e-06(3e-05) 4.7e-06(3e-05) 5.2e-06(3e-05) 1(5e-05) -0.00014(4e-04)

ISA 0(0e+00) 0(0e+00) 0(0e+00) 0(0e+00) 0(0e+00)

GBC 0.51(1e-01) 0.53(1e-01) 0.89(6e-02) 0.98(1e-02) 0.72(7e-02)

sGBC 0.64(1e-01) 0.66(8e-02) 0.97(3e-02) 0.99(6e-03) 0.81(5e-02)

Table 4.5: Simulation results for mixed data types. Results are generated based on
100 simulated datasets: mean(sd).



93

with CE and CS more than 0.5, but FABIA performs worse than the Gaussian case.

In addition, all the other methods, Plaid, CC, xMotifs and ISA all perform poorly in

this setting. It is worth noting that incorporating structural information in GBC is

shown to effectively improve performance in both settings. For example, in Gaussing

setting with zero overlap, sGBC improves CE from 0.557 to 0.724, which is about a

30 percent increase.

Table 4.4 and 4.5 show that in the Negative Binomial and mixed data types, GBC

and sGBC still perform best among all the methods. They reach CE and CS around

0.6 in Negative Binomial, around 0.5 in mixed data types. FABIA also outperforms

the rest of the methods, reaching CE and CS values ranging from 0.1 to 0.2. Plaid,

CC, xMotifs and ISA still have the worst results, with CE and CS around 0.

In addition to CE and CS, the proposed methods also have better performance

in sensitivity, specificity and MCC. We find all the methods generally have high

specificity and low sensitivity, suggesting that they fail to identify biclusters instead

of mis-identifying biclusters. And sGBC usually has higher sensitivity than GBC,

indicating that considering structural information helps improve the sensitivity of

identifying true biclusters.

4.4 Real data applications

To evaluate our methods in comparison with the existing methods in real data appli-

cations, we obtain one gene expression dataset, one proteomics dataset, one RNAseq

dataset and one integrative dataset. The first three datasets have validated or known

subgroup/cluster information on subject level, which are used as gold standard to

compute all evaluation metrics. In the integrative data set, there are no known or

validated subgroups. To assess performance, we use patient survival time to define

subgroups, which provides evidence that clusters detected by a method are clinically

meaningful.
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Table 4.6: Results of real data applications.

Method
Breast cancer: microarray ASD: proteomics ASD: RNAseq GBM: mixed

CE CS CE CS CE CS CE CS

PLAID 0.186 0.169 0 0 0 0 0.263 0.175

CC 0.274 0.257 0.238 0.200 0.147 0.125 0.004 0.004

FABIA 0.315 0.262 0.254 0.140 0.147 0.103 0.260 0.186

xMotif 0 0 0.106 0.081 0 0 0 0

ISA 0.014 0.003 0.045 0.010 0.113 0.096 0.045 0.015

GBC 0.331 0.259 0.313 0.167 0.239 0.211 0.265 0.263

sGBC 0.609 0.430 0.313 0.160 0.239 0.211 0.281 0.221

4.4.1 Gene expression datasets

We re-analyze a gene expression dataset provided in the R/Bioconductor package

fabiaData (Hochreiter et al., 2010). This dataset is originally provided by the Broad

Institute and has been analyzed in Hoshida et al. (2007) and Hochreiter et al. (2010).

The cluster information has been validated by gene enrichment analysis (Hoshida

et al., 2007) and is used as the ground truth in our analysis. This “breast cancer”

dataset includes 97 samples and 1213 genes (Van’t Veer et al., 2002). It aims at

identifying predictive biomarkers for a theraputic treatment of breast cancer patients.

Three validated subclasses have been reported on the subject level and are used as

ground truth in the biclustering analysis.

We apply the proposed methods and existing methods to analyze the dataset and

report the results in the second and third columns of Table 4.6. We set the maximum

number of clusters to 5 in all the methods. Using the validated subclass information,

we obtain CE and CS for all the methods. The biological information is extracted from

KEGG Pathways Kanehisa and Goto (2000) using Bioconductor package KEGGgraph

and KEGGREST (Tenenbaum, 2013; Zhang and Wiemann, 2009). 1616 edges are
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obtained and used as biological information in sGBC. The proposed method sGBC

has the highest CE and CS values, and GBC has the second best CE and CS among

all the other methods. This indicates that the prior biological information is helpful

in identifying biclusters and almost doubles the CE performance of GBC. Note that

some existing methods also have good performance. For example, FABIA has similar

CE and CS values to GBC, and CC also have good CE and CS performance, which

is consistent with the findings in Hochreiter et al. (2010).

4.4.2 Proteomics dataset

A proteomics dataset is obtained from the AMP-AD knowledge portal of the Synapse

website (www.synapse.org) with ID syn3607470. Synapse is an organization dedi-

cated to the research of brain diseases and service patients who have brain injuries.

This proteomics dataset includes the measurements for 6533 protein levels from 20

Alzheimer’s Disease (AD) patients, 13 Asymptomatic Alzheimer’s Disease (AsymAD)

patients, and 14 controls. All the measurements are conducted on post-mortem brain

tissues from both the dorsolateral prefrontal cortex and precuneus. Both regions have

been previously reported to be affected in AD (Cox et al., 2011) . The disease status

of all subjects was confirmed through post-mortem neuropathological evaluation, and

is used as ground truth in our analyses. According to the data description, the dataset

has been normalized based on isotopically labeled retention time peptide standards

and the central limit tendency theorem 3 (Callister et al., 2006). To remove noise,

we use the top 300 variables with the largest variance.

We apply all the methods on this dataset and report CE and CS in the fourth

and fifth columns of Table 4.6. We set the maximum number of clusters to 5 in all

the methods. Pathway information is extracted from KEGG Pathway and used in

the sGBC. GBC and sGBC achieves the highest CE and CS among all the methods.

CC, xMotifs and FABIA have relatively good performance with CE more than 0.20.
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On this dataset Plaid does not find any biclusters.

4.4.3 RNAseq dataset

An RNA-seq dataset is obtained from the AMP-AD knowledge portal of the Synapse

website with ID syn5223705. This dataset include next-generation RNA sequencing

(RNAseq) from 82 AD patients, 84 progressive supranuclear palsy(PSP) patients,

28 pathologic aging(PA) subjects, and 77 elder controls. These measurements are

from cerebellum RNA samples collected by the Mayo Clinic Brain Bank and Banner

Sun Health Research Institute. Reads are aligned by the SNAPR software 2 with

the GRCh38 reference and Ensembl v77 gene models and data are normalized by

the R/Bioconductor package edgeR (Robinson et al., 2010). The original dataset

has 64253 features and we use the top 300 features with largest variability for the

biclustering analysis. Pathway information is extracted from KEGG Pathway and

used in the sGBC as prior biological information.

We apply all the methods on this dataset and CE and CS are reported in the sixth

and seventh columns of Table 4.6. We set the maximum number of clusters to 4 in

all the methods. In Table 6, GBC and sGBC have similar CE and CS performance

and are the best performing methods among all the methods. CC and FABIA are

the second best methods and have CE 0.147 and CS around 0.1. PLAID and xMotif

do not find any biclusters in this dataset.

4.4.4 Integrative dataset

The data of this integrative analysis are obtained from a TCGA study in glioblastoma

multiforme (GBM), which is the most common and aggressive type of malignant brain

tumor Holland (2000). From the TCGA data portal 3, microarray gene expression

data, DNA methylation data, and DNA copy number data are downloaded for a co-

2https://price.systemsbiology.org/research/snapr/
3http://tcga-data.nci.nih.gov/tcga/
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hort of 233 GBM patients. All the data are pre-processed, normalized and annotated

to the gene level (see Wang et al. (2012) for details). Our analysis focus on 48 genes

that overlap with the three critical signaling pathways - RTK/PI3K, p53, and Rb,

which have been found to relate with migration, survival and apoptosis progression of

cell cycles Furnari et al. (2007b). Thus the data matrix consists of 48 genes mapped

to these core pathways from 3 platforms resulting in p = 48 × 3 = 144 for n = 233

subjects. Note that both microarray gene expression data and DNA methylation data

are continuous, while copy number is converted to binary data via thresholding, hav-

ing 0 corresponding to normal probes and 1 corresponding to abnormal (gain or loss)

probes. The survival information of all subjects is obtained. We use Kaplan-Meier

imputed survival time in the case that the subjects are censored, and we categorize

the subjects into four groups according to their survival time (or imputed survival

time) using 25th, 50th, 75th percentile as cutoffs. These four groups are used as

ground truth for clustering patients.

We conduct biclustering analysis using the existing methods and the proposed

methods. Five are given to all methods as maximum number of biclusters. In GBC

and sGBC, we use normal distribution for both microarray gene expression data

and DNA methylation data, and binomial distribution for copy number data. A

total of 488 edges are extracted from the KEGG Pathway, and are used as biological

information in sGBC. We have visualized the gene interaction graph of these 488 edges

in Figure (4.1). We present the CE and CS in the last two columns of Table 4.6. GBC

and sGBC have highest CE and CS values among all the methods. Plaid and FABIA

also have similar CE values as GBC, which is around 0.26. GBC has higher CS

value while sGBC has higher CE value, which may indicate that GBC identify more

biclusters regardless of their sizes while GBC with biological information incorporated

can identify biclusters with larger size.
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4.5 Conclusion

In this paper, we propose a Bayesian biclustering algorithm which not only adapts

to inputs of different types but also can incorporate biological information. Although

a large number of different biclustering approaches have been developed, we are not

aware of any existing biclustering methods that can incorporate prior biological in-

formation. In addition, our simulation study demonstrates that none of the existing

methods considered can efficiently identify biclusters using input data of various dis-

tribution types. The proposed methods fill these gaps and become a useful tool in

integrative analysis of multiple genomic datasets or analysis of single genomic dataset

including gene expression, proteomics data, RNA-seq data, etc.. In the integrative

data set, there are no known or validated subgroups. To assess performance, we

use patient survival time to define subgroups, which provides evidence that clusters

detected by a method are clinically meaningful.

Future directions of research may address three key challenges. The first challenge

is to include more input datatypes in addition to Gaussian, Binomial, and Negative

Binomial, for example, beta−Binomial distribution as in bisulfite sequencing data.

To achieve this goal, one may need to seek other solutions instead of using the pólya-

gamma framework. The second challenge is that the current methods may not be able

to retrieve useful biclustering information when the input data matrix is very sprase,

such as data matrices containing the information of somatic mutations. Thus the

direction of developing biclustering methods for sparse data matrix is worth further

investigation. Last but not least, the current biclustering performance is far from

satisfactory. Even in simulation studies, the best CE achieved is only around 0.7.

One may consider to combine the existing biclustering approaches and develop a

ensemble approach for biclustering, similar to the approach of combining multiple

machine learning algorithms in the popular AdaBoost algorithm.
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Chapter 5

Future work
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Although all three topics of this dissertation target on the analysis of big biomed-

ical data, they actually utilize quite different strategies. Topic 1 is an extension

of classical principal component analysis while topic 2 obtains its inspiration from

machine learning field. Topic 3 combines the classical Bayesian framework with a

technique in machine learning field. All three methods have been demonstrated to be

useful in real world applications. As future works, we have identified two potential

directions.

The first is to combine deep neural network technique into sparse principal com-

ponent analysis. Neural network has the capability of analyzing large amounts of

data and has flexible model structure. As introduced in section 1.3.2, deep neural

network has achieved amazing performance in tasks such as picture recognition or

playing GO. Genomic data are known for the large number of variables and com-

plication of analysis. Thus it is very possible that appopriate application of deep

learning on analyzing genomic data can result in good performance and exciting dis-

coveries. We consider to combine deep learning teniques with multivariate analysis

methods, espectially principal component analysis. There has been some recent work

on using deep learning in multivariate analysis, such as deep CCA and deep PCA

(Andrew et al., 2013; Tian et al., 2015). But none of these methods are suitable

for high-dimensional data because they do not encourage variable selection, which

is important and yields interpretable results when the number of variables is huge

compared to the number of samples. Thus in the first potential direction, one can

develop PCA methods using deep learning techniques which encourages sparse load-

ing selection. This may be achieved by replacing the last layer of neural network

by a layer of linear combinations of variables. And intead of using the conventional

loss function such as cross entropy and hinge loss, one can use an objective function

involves variance of the linear combinations on the last layer and tune the deep neural

network so that it maximize the component variances.
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The second potential direction is to improve the methods proposed in the second

topic using the most current context embedding techniques. Recently some new node

embedding models have been proposed and shown to outperform Word2vec in tasks

like document classification and social network analysis (Tang et al., 2015; Ribeiro

et al., 2017). To this end, one may be able to learn embedding vectors of medical

events by utilizing these newly proposed approaches and achieve better prediction

performance.

Last but not least, one can further extend the third topic by incorporating the

phenotype information of subjects. One may achieve this by imposing priors which

considers the characteristics of subjects, such as age and gender. Subjects with similar

age and same gender may be more correlated than patients with big age difference

and opposite genders.



102

Appendix A

Appendix for Chapter 2

Figure A.1: Network structure of simulated data : Randomly specified graph (G)
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(a) Fused BIC value by tuning parameter. (b) Grouped BIC value by tuning parameter.

Figure A.2: BIC value by tuning parameter with GBM microarray data. X-axis is
tuning parameter, y-axis is BIC value.

Figure A.3: Loading plots of the first two PCs by Fused and Grouped sPCA. Colored
points are genes enriched in Glioblastoma related pathways found by the proposed
methods but not found by existing methods.
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Figure A.4: Correlation of gene pairs by relationship types
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Appendix B

Appendix for Chapter 3

Figure B.1: Precision-Top-K versus K by Distributed NCE using different training
sets partitions for different number of iterations.
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Naive updates Dropout udpates Distributed Global

PTK Avg AUC PTK Avg AUC PTK Avg AUC PTK Avg AUC

10:80:10 0.476 (4e-3) 0.772 (8e-3) 0.133 (2e-3) 0.720 (5e-3) 0.610 (4e-3) 0.773 (8e-3)
0.686 (3e-3) 0.774 (8e-3)

20:70:10 0.526 (4e-3) 0.773 (8e-3) 0.168 (3e-3) 0.721 (6e-3) 0.608 (3e-3) 0.774 (8e-3)

30:60:10 0.526 (4e-3) 0.773 (8e-3) 0.188 (2e-3) 0.722 (7e-3) 0.608 (4e-3) 0.774 (8e03)

45:45:10 0.510 (3e-3) 0.773 (8e-3) 0.225 (3e-3) 0.723 (7e-3) 0.572 (2e-3) 0.774 (8e-3)

60:30:10 0.491 (3e-3) 0.774 (8e-3) 0.266 (4e-3) 0.724 (5e-3) 0.572 (3e-3) 0.773 (8e-3)

70:20:10 0.484 (3e-3) 0.776 (7e-3) 0.310 (4e-3) 0.727 (6e-3) 0.581 (2e-3) 0.774 (7e-3)

80:10:10 0.480 (4e-3) 0.776 (7e-3) 0.383 (8e-3) 0.736 (7e-3) 0.609 (6e-3) 0.774 (7e-3)

Table B.1: Simulation results of all methods using Skip−Gram model. Results are summarized over 10-folds cross validation.
Distributed NCE is Distributed Noise Contrastive Estimation. PTK is Precision-Top-K. Avg-AUC is averaged Area-Under-
Curve. nt1 : nt2 : ntest means that the two training datasets are nt1% and nt2% of total data. Testing dataset is ntest% of total
data. Global model uses all nt1 + nt2% data as training data.
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