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Abstract 

Machine learning Application in Longitudinal Polycystic Kidney Disease (PKD) Function 

Prediction  

By Xinhang Wang 

 
Background: Autosomal dominant polycystic kidney disease (ADPKD) is one of the most 

common genetic chronic kidney diseases. The evaluation is based on kidney function represented 

by estimated glomerular filtration rate (eGFR). The pathological progression of ADPKD is 

related with genetic factors, demographic and clinical information. Typical pattern of kidney 

function for ADPKD patients remains in normal range for a long term and followed by a sharp 

deterioration, making it hard to predict in early stages. The CRISP study monitored the eGFR 

value and other factors for 242 early stages ADPKD patients longitudinally. 

Methods: We evaluated multiple machine learning methods in predicting eGFR values and 

yearly change of the CRISP cohort. Predictors include variables of demographics, biomarkers, 

and imaging dataset. Different years of records were used to evaluate the power of historical 

information. The cohort was divided into subgroups to test the model performance on patients 

with different kidney function levels. Several expensive predictors were included or excluded in 

the models, and important predictors were identified in their contribution to the prediction of 

eGFR and its decline. 

Results: The R2 of machine learning models predicting Year 2 eGFR value were above 0.64 

using Year 1 data, while for models predicting eGFR change the R2 were around 0. When 

subgrouping patients, the R2 was largest (0.64) for predicting eGFR value of patients with 

abnormal kidney function. The R2 were below 0.47 when predicting Year 6 eGFR value using 

Year 2 information. In predicting Year 3 eGFR value, adding more years of historical data or 

health information slightly improved R2 by 1-3%. Excluding PKD genotype or total kidney 

volume did not decrease the R2. 

Discussion: Predicting eGFR value using previous year’s information is more powerful than 

prediction eGFR yearly change. The predictive models performed better for patients with 

abnormal kidney function in subgroup analysis. The prediction power for eGFR values decreased 

when projecting into the distant future. Including predictors of health information, and previous 

year eGFR change helped to a small improvement. The expensive predictors of PKD genotype 

and total kidney volume can be replaced by biomarker variables without affecting the prediction 

power. 

 

Key Words: ADPKD, Machine Learning, CRISP Cohort 

  



 
 

 

Machine learning Application in Longitudinal Polycystic Kidney Disease 

(PKD) Function Prediction 

 

By 

 

Xinhang Wang 

 

B.A., Shanghai University of Finance & Economics, 2018 

 

 

 

Thesis Committee Chair: Xiangqin Cui, PhD 

 
 
 
 
 
 
 
 

A thesis submitted to the Faculty of the  

Rollins School of Public Health of Emory University 

in partial fulfillment of the requirements for the degree of  

Master of Science in Public Health 

in Department of Biostatistics and Bioinformatics 

2020 

 

 

 

 

  



 
 

I. Introduction ..................................................................................................................... 1 

II. Methods ........................................................................................................................... 4 

2.1 Data and Preprocessing ............................................................................................. 4 

2.2 Machine Learning Methods ...................................................................................... 5 

2.2.1 Simple Linear Regression ............................................................................. 5 

2.2.2 Lasso Regression .......................................................................................... 5 

2.2.3 Random Forest .............................................................................................. 6 

2.2.4 Support Vector Machine ............................................................................... 6 

2.3 Model Construction and Study Design ..................................................................... 6 

2.3.1 Predictors ...................................................................................................... 7 

2.3.2 Model Construction ...................................................................................... 7 

2.3.3 Study Design ................................................................................................ 7 

2.3.3.1 Prediction of eGFR value & eGFR change using one year of data ....... 8 

2.3.3.2 Patients subgrouping according to kidney function level ...................... 8 

2.3.3.3 Prediction of eGFR value using multiple years of information ............. 9 

2.3.3.4 Important variables identification ......................................................... 10 

III. Results ........................................................................................................................... 11 

3.1 Patients eGFR can be predicted well with previous year's information ................. 12 

3.2 Prediction accuracy decreases for more distant future time-points ........................ 12 

3.3 Previous year eGFR change contributes to improve the prediction power ............ 13 

3.4 Subgrouping of patients lead to separated prediction performance ....................... 14 

3.5 Effect of adding additional year’s historical information ...................................... 15 

3.6 Expensive genotypes and image predictors can be replaced ................................. 17 

3.7 Including Health information improves the prediction power slightly ................. 18 

3.8 Important predictors for eGFR value and eGFR change ...................................... 19 

IV. Discussion ................................................................................................................... 20 

 

 

 



1 

 

Introduction 

Autosomal dominant polycystic kidney disease is one of the most common genetic renal disorders, 

primary characteristic is the enlargement of cysts clusters in kidney and irreversible deterioration of renal 

function (Higashihara, 2012). ADPKD affects over 600,000 people in the United States and 12 million 

globally (Helal, 2013), with approximately 60% of patients reporting symptoms of acute and chronic pain 

distributed throughout the body (Bajwa, 2004). The majority of ADPKD patients progress to end-stage 

renal disease (ESRD), which makes it the fourth leading cause of kidney failure in the United States and 

worldwide (Collins, 2012). 

ADPKD is typically diagnosed by large kidneys with multiple bilateral cysts through imaging techniques, 

like renal ultrasonography, magnetic resonance imaging and computed tomography (Chebib, 2016). Its 

progression to ESRD is assessed through changes in serum creatinine levels and the kidney function, 

which is represented by estimated glomerular filtration rate (Steven, 2006). The cause of ADPKD 

progression includes genetic and non-genetic factors. It is genetically determined by the mutation of two 

genes: PKD1, which encodes polycystin 1 (PC-1), and PKD2, which encodes polycystin 2 (PC-2). PKD1 

and PKD2 are inherited according to Mendel's law and the mutation of them represents 85% and 15% 

cases respectively (Moyer, 1994). The genotype of patients can be identified by Sanger sequencing and 

followed by multiplex-dependent probe amplification (MLPA) with a considerable cost (Eisenberger, 

2015). Total kidney volume (TKV) is another important feature for ADPKD progression. Its increasing 

rate reflects the pathologic processes. A sequential measurement of TKV can serve as a potential indicator 

of disease progression and treatment efficacy for ADPKD (Grantham, 2016). Some other factors used in 

the evaluation of ADPKD severity include demographic factors (age, gender, race, hypertension history, 

etc.), clinical factors (glomerular hyperfiltration, gross hematuria, cyst rupture, etc.), and some of 

laboratory factors (proteinuria and microalbuminuria, serum copeptin levels, serum biomarkers, etc.) 

(Schrier, 2014).  
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One of the key features of ADPKD is that the indexes of the kidney function remain in the normal range 

for several decades before a sharp decline (Grantham, 2006). This delayed index of kidney damage makes 

it difficult to diagnose and monitor disease progression at early stage, which is important for proper 

therapeutic intervention targeting early stages (Takiar, 2011). This feature of ADPKD emphasizes the 

significance of identifying markers for predicting early kidney damage and developing prediction 

methods based on available clinical and health information of patients. 

A number of previous risk factor studies for ADPKD progression have mostly used linear models to test 

the correlation between different factors and disease progression represented by the slope of eGFR 

decrease (Cirillo, 2005). Recent studies have relied on mixed effect linear models in investigating the 

predictive roles of metabolic reprogramming, caffeine intake, serum galectin-3 level and other factors 

(Kim, 2019; McKenzie, 2018; Ozkurt, 2019). In most cases, age, race, and sex were treated as covariates. 

From a prediction point view, the overall predictive power of these models was low due to the non-linear 

nature of kidney function decline. Traditional paradigm of GFR progression was assumed to be steady 

over time, while many patients with chronic kidney disease have a nonlinear GFR trajectory or a 

prolonged period of non-progression (Li, 2012). Other methods were used to predict the progression of 

ADPKD towards ESRD with better results, including Bayesian smoothing techniques under posterior 

probability, and stochastic simulation models under assumption of fixed-time increment designed based 

on disease progression equations (Dulhare, 2016; Waezizadeh, 2018). 

With the evolution in artificial intelligence and digital technology and the collection of massive amounts 

of health record data, machine learning has attracted the attention of healthcare researchers in solving core 

information processing and decision-making problems across a health system (Panch, 2018). For 

example, many machine learning classification and regression approaches, supervised and unsupervised, 

have been utilized in the field of diabetes studies from pathology research, laboratory diagnosis, to 

disease prediction, validation and feature selection (Alloghani, 2019; Rashidi, 2019; Maniruzzaman, 

2018). Machine learning algorithms were originally designed as classifiers (Michie, 1994). Representative 



3 

 

methods include linear discriminant analysis, quadratic discriminant analysis, naïve Bayes, Gaussian 

process classification, support vector machine, artificial neural network, Adaboost, decision tree, and 

random forest. Several of these methods have better classification accuracy in biomedical studies than 

logistic regression, especially when data is sufficiently large and clean (Churpek, 2016). The machine 

learning methods are more flexible and sensitive to non-linearity and perform better than ordinary least 

squares (OLS). They have been developed for binary outcome and continuous outcome. Statistical test 

can be applied to determine significant differences between two machine learning algorithms (Segal, 

2004; Trawiński, 2012; Cui, 2018). 

This study was designed to apply machine learning approaches to predict the kidney function using both 

baseline and longitudinal data of patients in an ADPKD study cohort, US Consortium for Radiologic 

Imaging Studies of Polycystic Kidney Disease (CRISP). CRISP is a longitudinal study with average 

follow up over 7 years (Chapman, 2003). Our goal is to predict the eGFR value and its decrease in the 

next clinic visit based on all the prior existing data for the patient. Data used for prediction include 

demographics, biomarkers, and imaging information. Comparisons of prediction power were made among 

different machine learning methods in comparison with linear regression. We also examined the 

prediction performance in patient subgroups with different kidney function levels. Finally, important 

factors were identified that contributing to the prediction of eGFR and its decline.  
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Method 

2.1 Data and Preprocessing 

This study used CRISP data which is a unique longitudinal observational cohort of 242 ADPKD patients 

that began in 2000. The broad objectives of CRISP are to define the natural history of the disease and to 

discover prognostic biomarkers in early disease that can accurately predict long-term renal outcomes. The 

goals of CRISP are to continually follow-up the CRISP cohort so as to refine models of chronic kidney 

disease progression and strengthen the association between total kidney volume and renal outcomes, to 

validate disease models using existing and additional follow-up data from the HALT PKD study, and to 

incorporate powerful emerging imaging, genetic and biochemical biomarkers to improve the accuracy of 

prognostication for individual patients. 

The CRISP data used for this study contained missing records which required filtering and imputation for 

next step model building. We removed some variables from the predictors that missed more than 25% of 

the data (3 variables: "Serum LDL cholesterol", " Urine Protein Concentration", " Urine Protein 

Excretion"). Any subject with more than 10 missing observations were deleted (11 subjects). The missing 

data in the rest of cohort were filled using imputation techniques.  

MICE (Multivariate Imputation via Chained Equations) is one of the most principle methods for data 

imputation in R (Azur, 2011). It assumes that missing data are missed at random, which fits the pattern of 

the remaining missing data of CRISP. The probability of missing depends only on observed value and can 

be predicted using available observation. It imputes data on a variable-by-variable basis by specifying an 

imputation model per variable that contains missing records. Missing values are replaced by simulated 

draws from the posterior predictive distribution known as proper imputation. By default, linear regression 

is used to predict continuous missing values, and logistic regression is used for categorical missing 

values. The process is repeated over all variables with missing values in turn. Multiple imputation 

generated multiple complete datasets by filling in the missing value multiple times. MICE is very flexible 

to a broad range of missing types and more accurate in estimation with small standard error. 
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2.2 Machine Learning Methods  

We used some machine learning methods implemented in the R package SuperLearner (SL) (Polley, 

2019). This package has a large number of standard machine learning methods with the capacity of 

creating optimal weighted average of multiple models.  It uses cross-validation to estimate the 

performance of multiple machine learning models, or the same model with different settings. The optimal 

weighted average approach has been proven to be asymptotically as accurate as the best possible 

prediction algorithm that is tested. This study is focused on four methods implemented in SuperLearner, 

Lasso regression, Random Forest, Support Vector Machine, and linear regression.  

 

2.2.1 Simple linear regression  

Simple linear regression is a supervised machine learning algorithm that can be performed by the 

SuperLearner library SL.lm. Linear regression performs the task to predict a dependent variable value 

based on given independent variables by achieving the best-fit regression line. The model aims to predict 

dependent value such that the error difference between predicted value and true value is minimum. The 

cost function of linear regression is the squared error between predicted value and the true value. It is 

reduced by starting with random values of coefficient and iteratively updating the values to reach the 

minimum cost. 

 

2.2.2 Lasso Regression 

Lasso (least absolute shrinkage and selection operator) regression is a penalized regression using elastic 

net performed by the SuperLearner library SL.glmnet. Lasso regression performs L1 regularization, 

which adds a penalty equal to the absolute value of the magnitude of coefficients (Tibshirani, 1996). This 

type of regularization can result in sparse models with few coefficients: some coefficients can become 

zero and eliminated from the model. Larger penalties result in coefficient values closer to zero, which is 

the ideal for producing simpler models. λ is a tuning parameter that controls the strength of L1 penalty. 
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For λ = 0 it reduced to simple linear regression. Default setting of SuperLearner package is 10-fold cross 

validation and 100 checking for λ values. 

 

2.2.3 Random Forest 

Random Forest is a classification or regression algorithm consisting of many decisions trees which can be 

performed by the SuperLearner library SL.randomForest. It uses bagging and feature randomness when 

building each individual tree to try to create an uncorrelated forest of trees. Its prediction by the ensemble 

of the trees is more accurate than that of any individual tree (Liaw, 2002). It draws bootstrap samples 

from the training data and chooses the best split among all the predictors for each node. It finally grows 

an unpruned classification or regression tree from the ensemble of the bootstrapped trees. The default size 

of terminal node is 5 for regression in SuperLearner package.   

 

2.2.4 Support Vector Machine 

Support Vector Machine (SVM) constructs a hyperplane or set of hyperplanes in a high dimensional 

space, which can be used for classification and regression performed by the SuperLearner library SL.svm. 

It is achieved by the best separation of hyperplane that has the largest distance to the nearest training data 

point of any class. For a finite-dimensional space the sets to discriminate are not linearly separable, so it 

was proposed that the original finite-dimensional space be mapped into a much higher-dimensional space 

to make the separation easier. The mappings used by SVM schemes are designed to ensure that dot 

products of pairs of input data vectors can be computed easily for the variables in original space, by 

defining them in terms of a kernel function. The sum of kernels can be used to measure the relative 

nearness of each test point to the data points originating in one or the other of the sets to be discriminated 

(Cortes, 1995). 

 

2.3 Model Construction and Study Design 
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2.3.1 Predictors 

We used age, education, gender, race from demographic dataset, 60 variables from biomarker dataset, 

total kidney volume (TKV) from imaging dataset and eGFR value of previous visit(s) to construct models 

for predicting eGFR value at visit or the eGFR drop (ΔeGFR) between two consequent visits.  

 

2.3.2 Model construction 

The prediction is achieved by the method of leave-one-out cross validation: for each observation in the 

data, take the other observations as training dataset to build up a machine learning model for predicting 

the outcome value of the test data which is the omitted observation. 

For model assessment and comparison, MSE and R2 are calculated for each model (𝑦 represent observed 

value, �̂� predicted value): 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)

𝑛

𝑖=1

,    𝑅2 = 𝑐𝑜𝑟𝑟(𝑦𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 , �̂�𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑}})2 

 The model construction for prediction can be expressed in the flowchart in Figure 1.  

 

Figure 1. Model Construction Flow Chart 

 

2.3.3  Study Design 

This study is consisted of four major parts of analysis: single-year prediction, patients subgrouping, 

multiple-year prediction and important variables identification. 
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2.3.3.1 Prediction of eGFR value & eGFR change using one year of data 

Predict based on the previous year data. The outcomes to be predicted are eGFR value or eGFR drop of 

Year 2. The predictors are Year 1 clinical records of demographic, biomarker variables, total kidney 

volume (TKV) from imaging, and eGFR value. The models structure can be simplified as following 

expressions: 

𝑒𝐺𝐹𝑅2 ∼ 𝐷𝑒𝑚𝑜 + 𝐵𝑖𝑜𝑚𝑎𝑟𝑘𝑒𝑟1 + 𝑇𝐾𝑉1 + 𝑒𝐺𝐹𝑅1                                                                                   (1) 

Δ𝑒𝐺𝐹𝑅2 ∼ 𝐷𝑒𝑚𝑜 + 𝐵𝑖𝑜𝑚𝑎𝑟𝑘𝑒𝑟1 + 𝑇𝐾𝑉1 + 𝑒𝐺𝐹𝑅1                                                                                (2) 

Here Δ𝑒𝐺𝐹𝑅2 = 𝑒𝐺𝐹𝑅2 − 𝑒𝐺𝐹𝑅1.  

 

Predict into the future. Here we chose to use Year 2 information to predict Year 6 eGFR value because 

the eGFR records after Year 6 have a higher missing rate, and the span of four years is considered as a 

long period for prediction. The models structure can be simplified as following expressions: 

𝑒𝐺𝐹𝑅6 ∼ 𝐷𝑒𝑚𝑜 + 𝐵𝑖𝑜𝑚𝑎𝑟𝑘𝑒𝑟2 + 𝑇𝐾𝑉2 + 𝑒𝐺𝐹𝑅2                                                                                           (3) 

 

Evaluate the contribution of the previous eGFR drop. The eGFR drop of Year 0 to Year 1 was added as 

predictive variable in the one-year prediction of Year 2 eGFR value using Year 1 information and 

compared with model 1. The model structure can be simplified as following expression: 

𝑒𝐺𝐹𝑅2 ∼ 𝐷𝑒𝑚𝑜 + 𝐵𝑖𝑜𝑚𝑎𝑟𝑘𝑒𝑟1 + 𝑇𝐾𝑉1 + 𝑒𝐺𝐹𝑅1 + Δ𝑒𝐺𝐹𝑅1                                                                       (4) 

Here Δ𝑒𝐺𝐹𝑅1 = 𝑒𝐺𝐹𝑅1 − 𝑒𝐺𝐹𝑅0. 

 

2.3.3.2 Patients subgrouping according to kidney function level 

Generally, the normal eGFR value is more than 90 mL/min/1.73m2 in adults. eGFR declines with age, 

even in people without kidney disease. Other testing should be used to affirm the result of eGFR 

examination. Blood or protein in the urine can be an early sign of kidney disease. People with a high 
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amount of albumin in their urine (albuminuria) are at an increased risk of having chronic kidney disease 

progress to kidney failure (Figure 1). 

Subjects in the CRISP cohort started initial clinical visit at different kidney function stages. Some were at 

early detection of kidney deterioration and some were near kidney failure. Therefore in this study, they 

were divided into two subgroups according to their kidney function stage: non-normal group with 

eGFR<90 and normal group with eGFR>90. The two groups were applied to Lasso regression models of 

predicting Year 2 eGFR value or eGFR change to compare the performance of subgrouping, model 

structure is the same as model (1) and (2).  

 

* Colors represent the risk of progression, morbidity and mortality from best to worst. Green: low risk. Yellow: moderately 

increased risk. Orange: high risk. Red: very high risk. Deep red: highest risk.13 

Figure 2. Kidney Function Stages by GFR and Albuminuria 

 

2.3.3.3 Prediction of eGFR value using multiple years of information 

More years of clinical information was used for the prediction of eGFR value and compared with using 

only one year of information. This section was focused on predicting Year 3 kidney function by using 

only Year 2 information, using Year 1 and Year 2 information, and using Year 0 to Year 2 information. 
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Predictors include demographic information, 1-3 years of biomarker information, 1-3 years of total 

kidney volume record(s) and 1-3 years of eGFR record(s). The model structure can be expressed as: 

𝑒𝐺𝐹𝑅3 ∼ 𝐷𝑒𝑚𝑜 + 𝐵𝑖𝑜𝑚𝑎𝑟𝑘𝑒𝑟2 + 𝑇𝐾𝑉2 + 𝑒𝐺𝐹𝑅2                                                                                          (5) 

𝑒𝐺𝐹𝑅3 ∼ 𝐷𝑒𝑚𝑜 + 𝐵𝑖𝑜𝑚𝑎𝑟𝑘𝑒𝑟1,2 + 𝑇𝐾𝑉1,2 + 𝑒𝐺𝐹𝑅1,2                                                                                   (6) 

𝑒𝐺𝐹𝑅3 ~ 𝐷𝑒𝑚𝑜 + 𝐵𝑖𝑜𝑚𝑎𝑟𝑘𝑒𝑟0,1,2 + 𝑇𝐾𝑉0,1,2 + 𝑒𝐺𝐹𝑅0,1,2                                                                            (7) 

 

2.3.3.4 Important variables identification 

In order to test the necessity of including two expensive factors in prediction model: PKD genotype and 

total kidney volume which are expensive to obtain in clinics, prediction models of Year 2 eGFR value 

were computed using Year 1 information without these factors. It was compared between models using all 

variables and models excluding genotype only, excluding total kidney volume only and excluding both 

two factors.  

Health information including mass index (BMI), mean article pressure (map), pain in the left or right 

kidney (pain), mean of seated and standing systolic blood pressure (systol) and urinary tract infection (uti) 

from the health dataset were considered as predictors in the model predicting Year 3 eGFR. Multiple-year 

prediction was performed by using only Year 2 information, using Year 1 and Year 2 information, and 

using Year 0 to Year 2 information. The model structure can be expressed as: 

𝑒𝐺𝐹𝑅3 ∼ 𝐷𝑒𝑚𝑜 + 𝐵𝑖𝑜𝑚𝑎𝑟𝑘𝑒𝑟2 + 𝐻𝑒𝑎𝑙𝑡ℎ2 + 𝑒𝐺𝐹𝑅2                                                                                    (8) 

𝑒𝐺𝐹𝑅3 ∼ 𝐷𝑒𝑚𝑜 + 𝐵𝑖𝑜𝑚𝑎𝑟𝑘𝑒𝑟1,2 + 𝐻𝑒𝑎𝑙𝑡ℎ1,2 + 𝑒𝐺𝐹𝑅1,2                                                                             (9) 

𝑒𝐺𝐹𝑅3 ~ 𝐷𝑒𝑚𝑜 + 𝐵𝑖𝑜𝑚𝑎𝑟𝑘𝑒𝑟0,1,2 + 𝐻𝑒𝑎𝑙𝑡ℎ0,1,2 + 𝑒𝐺𝐹𝑅0,1,2                                                                    (10) 

 

Important variables that affect the prediction were identified by non-zero coefficients from Lasso 

regression model for Year 2 eGFR value and eGFR change using Year 1 information. Data of Year 1 
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predictors was standardized (subtracted the mean and divided by the standard diviation) using R Scale 

function to make the Lasso coefficients values comparable. 10-fold cross validation was performed for 

the cohort of 242 subjects. The SuperLearner package generated 100 models by default for each fold. The 

median of beta coefficients from 100 models was selected to compare the significance of variables. 

 

Result 

The CRIPS dataset contains 242 subjects with 8 to 11 years of longitudinal observations for each subject. 

The cohort is consisted of 97 males and 145 females, and majority of them are Caucasian (209). Their 

average age at baseline is 32.4, average years of education is 14.7 (Table 1).  

Categorical Variable Mean (SD) 

Age 32.37 (8.89) 

Year of Education 14.63 (3.26) 

Continuous Variable Number (Percentage) 

Gender = Male 97 (39.8) 

Gender = Female 145 (60.2) 

Race = Caucasian 209 (86.7) 

Race = African 28 (11.6) 

Race = Hispanic 2 (0.8) 

Race = Asian 2 (0.8) 

Table 1. Basic Statistical Summary of Demographic Information 

In this cohort, there is substantial missing follow up. Demographic data contains sporadic missing records 

(<1%) for education and race, and complete for other variables. The eGFR records are complete for Year 

0 to Year 6. Follow up of eGFR was not conducted on most patients for Year 7 and Year 8 but continued 

in later years (Year 9 to Year 11). The missing rate for biomarker variables is low (6.5%) in the first few 

years (Year 0 to Year 3) while high (above 90%) for the following up years. This study is mostly focused 

on the prediction of kidney function in the early years of follow up (Year 2, Year 3 and Year 6). After 
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removing 11 subjects with extensive missing of biomarker records, 231 subjects and 58 predictor 

variables were used to predict eGFR value. 

 

3.1 Patient eGFR can be predicted well with previous year's information 

To assess the prediction power of previous year’s data on the current year eGFR, we used four different 

machine learning methods (Lasso regression, Random Forest, Support Vector Machine and Linear 

Regression models) to predict the eGFR values of Year 2 using Year 1 information.  Leave-one-out cross 

validation was used to compare the machine learning methods and predict the outcome eGFR value or 

eGFR drop for all subjects. The prediction power comparison was based on mean square error (MSE) and 

R squared (R2) calculated from the predicted and observed Year 2 eGFR value. The results showed that 

high prediction power for eGFR, more than 64% in R2 for all methods (Table 2). Among the four machine 

learning methods, Lasso is most accurate (R2=0.78) and random forest performs slightly lower. Both 

these methods are better than the linear regression. The MSE values are consistent with the R2 results.  

We also examined the prediction of ΔeGFR2 (yearly drop of eGFR value of Year 2) similarly. However, 

the prediction power is lower than Year 2 eGFR, with R2 value near zero for all methods.  

  Machine Learning Models 

  Lasso Random Forest SVM Linear Regression 

Outcome      

Year 2 

eGFR 

MSE 130.043 139.705 216.827 173.259 

R2 0.782 0.777 0.647  0.718 

eGFR  

Delta 

MSE 184.095 181.832 194.946 277.159 

R2 0.024 0.039 0.002 0.003 

Table 2. Year1 to Year2 Prediction of eGFR value and eGFR Drop 

 

3.2 Prediction accuracy decreases for more distant future time-points 

To assess the extent of prediction power projecting into the future, we compared the prediction of eGFR 

value for one year later and four years later. The one-year prediction is the same as Table 2 predicting 
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Year 2 eGFR value using Year 1 information. The four-year prediction is conducted to predict Year 6 

eGFR value using Year 2 information with the four machine learning methods and leave-one-out cross 

validation.  

For all machine learning methods, the MSE of four-year prediction (Year 2 to Year 6) is about 2.3 to 6.5 

times larger than that of one-year (Year 1 to Year 2) prediction, correspondingly the R2 of four-year 

prediction is much smaller than that of one-year prediction (Table 3). The predicted value for Year 6 

eGFR using Year 2 data is less accurate than that for Year 2 eGFR using Year 1 data (Figure 3). The 

comparison of MSE and R2 between two prediction of different extent showed that the prediction 

accuracy drops dramatically when predicting into the further future as expected. For Lasso regression, 

random forest and support vector machine methods, the R2 dropped about 40% for four-year prediction 

compared to one-year prediction, and for linear regression the R2 dropped about 70%. This indicates the 

linear regression method is less stable for prediction of eGFR projecting into the far future.  

  Machine Learning Models 

 
 

Lasso Random Forest SVM 
Linear 

Regression 

 Model     

MSE 
Yr1 -> Yr2 130.043 139.705 216.827 173.259 

Yr2 -> Yr6 481.012   446.897  509.055 1140.701 

R2 
Yr1 -> Yr2 0.782 0.777 0.647  0.718 

Yr2 -> Yr6 0.425  0.470 0.391 0.218 

Table 3. One-Year and Four-Year Machine Learning Prediction of eGFR Value 

 

3.3 Previous year eGFR change contributes to improve the prediction power  

To find potential improvement for the prediction power of one-year prediction, the change of previous 

year's eGFR was examined in its contribution to predicting eGFR values. ΔeGFR1 (yearly drop of eGFR 

value of Year 1) was added as a predictor variable into the machine learning models for predicting Year 2 

eGFR using Year1 information, and compared with the models not using ΔeGFR1.  
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The resulted R2 values improved for all methods, where the improvement is relatively large for Lasso 

regression (3.6%), support vector machine (2.2%) and, but much smaller for random forest (1.3%) and 

linear regression (1.7%). The MSE results consistently increased when including Year 0 to Year 1 eGFR 

drop as a predictor (Table 4). The comparison suggests previous year’s eGFR change contributed to 

improving the prediction power of eGFR value.  

  Machine Learning Models 

 
 

Lasso Random Forest SVM 
Linear 

Regression 

Model      

Without Δ𝑒𝐺𝐹𝑅1 
MSE 130.043 139.705 216.827 173.259 

R2  0.782 0.777 0.647  0.718 

With Δ𝑒𝐺𝐹𝑅1 
MSE 113.104 135.339 209.698 168.422 

R2  0.810 0.787 0.661 0.730 

Table 4. Comparison between With and Without ΔeGFR in Year1->Year2 eGFR Prediction Model 

 

3.4 Subgrouping of patients lead to separated prediction performance  

In order to look at the prediction performance for eGFR value and eGFR change on patients with different 

kidney function stage, the cohort was divided into two subgroups according to their Year 1 eGFR value 

(non-normal group with eGFR<90 and normal group with eGFR>90). The lower eGFR subgroup contains 

109 subjects and the higher eGFR subgroup contains 122 subjects. The two subgroups were separately 

applied into the Lasso regression model of predicting Year 2 eGFR or ΔeGFR2 using Year 1 information.  

For both subgroups of patients, the eGFR values can be better predicted than the eGFR change as 

expected. The difference between model R2 is bigger for non-normal subgroup compared to normal 

subgroup (Table 5). The prediction for eGFR value is more accurate for non-normal subgroup (R2=0.64) 

than normal subgroup (R2=0.23). In contrast, the prediction for eGFR change is more accurate for normal 

subgroup (R2=0.21) than non-normal subgroup (R2=0.05). The prediction for eGFR change is highly 

biased and less accurate for the normal subgroup of patients (Figure 4). These results indicate that eGFR 

value performs best as the outcome and it can be better predicted for the non-normal patients. 
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 Subgroup of Patients 

Outcome  Non-normal Subgroup Normal Subgroup 

eGFR R2 0.640 0.233 

ΔeGFR R2 0.046 0.210 

Table 5. Comparison between Non-normal and Normal Subgroups for Year1 to Year2 Prediction of eGFR/ΔeGFR 

 

3.5 Effect of adding additional year’s historical information  

To evaluate the contribution of additional historical data on prediction power, we conducted comparison 

between multiple-year prediction of Year 3 eGFR value using only Year 2 information, using Year 1 and 

Year 2 information, and using Year 0 to Year 2 information. For Lasso regression, random forest and 

support vector machine methods in predicting Year 3 eGFR, adding one year’s historical information 

(Year 1) improved the prediction power. It increased R2 (3%) and decreased MSE (10%) compared with 

using only Year 2 information (Table 6). However, this trend is different for linear regression method as 

the prediction power decreased when including Year 1 data. Adding another year of historical information 

(Year 0) continuously improved the prediction power for random forest with a smaller increasing rate of 

R2 (1.7%). While for Lasso regression and support vector machine, adding more historical information 

actually reduced the prediction power represented by decreased R2 and increased MSE.  

  Machine Learning Models 

  Lasso Random Forest SVM 
Linear 

Regression 

Predictors      

Yr2 
MSE 124.790 138.527 204.557 234.173 

R2  0.782 0.768 0.657 0.643 

Yr1 + Yr2 
MSE 113.157 120.937 202.798 358.728 

R2  0.802 0.795 0.670 0.538 

Yr0 + Yr1 + Yr2 
MSE 114.686 112.710 208.026 - 

R2  0.799 0.809 0.662 - 

* The linear regression on using Year 0 to Year 2 was not performed due to collinearity.  

Table 6. Prediction of Year3 eGFR Value Using 1-3 Years of Historical Information 
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Predicted Year 2 eGFR Predicted Year 6 eGFR

Observed Year 2 eGFR Observed Year 6 eGFR
 

Figure 3. Observed vs Predicted eGFR Value for Single-Year Prediction. Plots on the left panel are one-year prediction of Year1 

to Year2. Plots on the right panel are four-year prediction of Year2 to Year6. X-axis is observed eGFR value and y-axis is 

predicted eGFR value.  
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Figure 4. Observed vs. Predicted Year2 eGFR/ΔeGFR for Non-normal Subset with Lower Year1 eGFR and Normal Subset with 

Higher Year1 eGFR using Lasso Regression 

 

3.6 Expensive genotypes and image predictors can be replaced  

Genotypes of PKD genes and the total kidney volume estimated from imaging are expensive to generate 

in clinical settings. Their contribution to eGFR prediction might be replaced with other biomarkers 

routinely tested in clinics. We compared the performance between predicting Year 1 to Year 2 eGFR 

using all predictors available with models without PKD genotype, or total kidney volume, or both.  

For Lasso regression, random forest and linear regression, the prediction power slightly increased by 

about 1.7% to 3.1% after dropping the expensive variables (Table 7). For support vector machine, the R2 
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did not change dramatically regardless of the inclusion or exclusion of PKD genotype or total kidney 

volume or both. These results suggest that these two expensive variables can be replaced by biomarker 

variables routinely collected in clinics.   

  
Expensive Factors Usage 

Machine Learning Model 
 

Include Both 
Exclude 

Genotype 
Exclude TKV Exclude Both 

Lasso R2 0.782 0.796 0.796 0.796 

Random Forest R2 0.777 0.796 0.795 0.796 

SVM R2 0.647 0.654 0.643 0.657 

Linear Regression R2 0.718 0.748 0.740 0.750 

Table 7. Comparison among Prediction Excluding PKD Genetype, Excluding TKV and Excluding Both and Including Both 

 

3.7 Including Health information improves the prediction power slightly 

The CRISP cohort collected health information on BMI, mean arterial pressure, pain, systolic blood 

pressure and urinary tract infection. We added these variables to the prediction models for single-year or 

multiple-year prediction to examine their contribution to the prediction power.  

The results are shown in Table 8. Comparing to Table 6 resulted from the same models without these 

predictors, Table 8 shows slight increase in prediction power in general. For the Year 2 to Year 3 eGFR 

prediction, the R2 increased 0.001 for Lasso regression and 0.008 for support vector machine when 

including health records, while it decreased for random forest and linear regression. For prediction models 

using both Year 1 and Year 2 data, adding health records actually slightly reduced the prediction power 

for Lasso regression and random forest models, while merely improved the power for support vector 

machine (0.008 increase in R2) and linear regression (0.043 increase in R2). For prediction using all three 

previous years of data, including health records performed similarly to models without health records. 

 



19 

 

  Machine Learning Models 

  Lasso Random Forest SVM 
Linear 

Regression 

Predictors      

Yr2 
MSE 124.681 139.696 199.052 418.434 

R2  0.783 0.765 0.665 0.486 

Yr1 + Yr2 
MSE 115.841 123.295 197.093 308.366 

R2  0.799 0.790 0.678 0.581 

Yr0 + Yr1 + Yr2 
MSE 112.246 115.818 202.222 - 

R2  0.805 0.803 0.671 - 

Table 8. Prediction of Year3 eGFR Value Using 1-3 Years of Historical Information with Health Records 

 

4 Important predictors for eGFR value and eGFR change 

To identify variables that contribute to the prediction of eGFR values, we plotted the non-zero median 

coefficients of the predictors in Lasso regression for prediction of Year 2 eGFR using standardized Year 1 

data (Figure 5). The largest contribution comes from the Year 1 eGFR value, which is consistent with the 

fact that eGFR changes slowly. Other smaller but consistent contributors are gender, previous year eGFR 

change, copeptin, PKD genotype, serum creatinine concentration, and urine potassium concentration. 

There are 24 other predictors that contribute to the prediction but to a much less degree. About half of the 

non-zero contributors have positive coefficients and half of them have negative coefficients.  

Similarly, we plotted the non-zero coefficients of predictors for predicting ΔeGFR2 using standardized 

Year 1 data. Given the low prediction power for eGFR drop, the coefficients are much smaller.  The top 

ranked contributors include gender, serum creatinine concentration, Year 1 eGFR value, previous year 

eGFR change, gene type, urine potassium concentration, urine magnesium concentration, and urine 

sodium excretion. There are 23 other predictors that contribute to the prediction but to a much less degree. 

About 2/3 of the non-zero contributors have positive coefficients and 1/3 of them have negative 

coefficients. 
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Discussion 

This study performed prediction of eGFR value and eGFR change for the CRISP cohort using different 

historical information and different types of clinical variables. Four machine learning methods were 

evaluated, Lasso regression, random forest, support vector machine and linear regression. We found that 

predicting eGFR values using previous year’s information is much more powerful than prediction on the 

eGFR yearly change. The prediction performed better for patients with abnormal kidney function than 

patients with normal kidney functions in subgroup analysis. The prediction power for eGFR values 

decreased when projecting into the distant future. Including additional predictors, such as health variables, 

and previous year eGFR change helped to a small improvement. The expensive predictors of PKD 

genotype and total kidney volume can be replaced by other biomarker variables routinely collected in 

clinics without affecting the prediction power of machine learning models.  

One result that caught our attention is the decreased R2 when subgroupping the patients according to their 

kidney function stages. Building models separately for patients in normal and non-normal groups did not 

lead to improved prediction power for both groups compared with the complete cohort, while the machine 

learning models had distinguished performance on different groups. Another result is outstanding point in 

Figure 3 Year 1 to Year 2 prediction, that Lasso regression, random forset and linear regression pointed 

out a suspect outlier. While SVM predicted well on that point, suggesting stable performance of SVM on 

extreme observations. A limitation of this study is the small sample size of CRISP cohort, which made the 

prediction hard to be applied with several machine learning approaches, such as Neurol Network that 

requires a large sample size to build up the models.  

In future studies, more tests should be conducted on using predictive variables from imaging results and 

medication records and evaluating their contribution in improving the machine learning model 

performance. Further works can be focused on the extent of historical information usage in predicting 

eGFR values. This would provide support for the threshold of clinical follow up years and data collection 

period, balancing between cost effectiveness maximization of prediction power.  
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Figure 5. Important variables contributing variables to the prediction of eGFR values and eGFR changes in Biomarkers, 

Demographic and Imaging. (Appendix) 
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Appendix. Variable Explanation 

Dataset Variable* Obs Unique Mean Min Max Label** 

Demographic visc 2375 1374 5.8333 0 13.2046 
Number of years since CRISP 
I baseline visit date 

Demographic age 2375 2160 38.40 14.78 58.07 Age at visit 

Demographic educ 2507 21 15.09 7.00 28.00 
Total number years of 
education 

Demographic gender 2511 2 1.60 1.00 2.00 Gender 

Demographic race4 2511 4 1.14 1.00 4.00 
Race 1=Caucasian 2=African 
American 3 = Hispanic 
4=Asian 

Imaging tkv 1383 1337 1366.93 276.16 8711 Total Kidney Volume (ml) 

Imaging ckd_epi  . .  .  .  .  
eGFR calculated based on 
CKD_epi 

Biomarker albe_ca 820 671 45.95 0.76 736.00 
Urine: Albumin Excretion 
(mg/24hr)  

Biomarker anp 1785 224 47.78 14.88 153.74 proANP at baseline (pmol/l) 

Biomarker chlo 1480 21 104.10 93.00 113.00 Chloride 

Biomarker co2 1480 23 25.58 8.00 36.00 CO2 

Biomarker copeptin 1826 196 4.74 0.52 143.00 Copeptin at baseline (pmol/l) 

Biomarker ecalcc_ca 823 585 7.87 0.08 158.00 
Urine: Calcium 
Concentration (mg/dL) 

Biomarker ecalce_ca 818 590 164.58 3.00 2291.00 
Urine: Calcium Excretion 
(mg/24h)  

Biomarker echlorc_cc 863 409 57.31 1.57 213.00 
Urine: Chloride 
Concentration (mEq/dL)  

Biomarker echlore_ca 859 648 179.05 3.35 5520.64 
Urine: Chloride Excretion 
(mEq/24h)  

Biomarker ecitrc_ca 870 740 66.10 0.32 756.00 
Urine: Citrate Concentration 
(mg/dL) (c) in CRISP I 

Biomarker ecitre_ca 866 740 460.09 0.83 2984.00 
Urine: Citrate Excretion 
(mg/24h)  

Biomarker emgc_ca 814 550 5.29 0.19 136.31 
Urine: Magnesium 
Concentration (mg/dL) 

Biomarker emge_ca 810 532 300.06 4.79 4866.18 
Urine: Magnesium Excretion 
(mg/24h) 

Biomarker eoxalc_ca 865 443 4.95 0.05 66.00 
Urine: Oxalate 
Concentration (mg/dL) 

Biomarker eoxale_ca 861 445 31.22 2.00 237.00 
Urine: Oxalate Excretion 
(mg/24h)  

Biomarker ephosc_ca 902 601 42.92 1.60 713.00 
Urine: Phosphorus 
Concentration (mg/dL) 

Biomarker ephose_ca 898 768 961.00 39.70 19429.00 
Urine: Phosphorus Excretion 
(mg/24h) 

Biomarker epotcon 897 344 25.38 1.88 115.00 
Urine Potassium 
concentration  
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Biomarker epote_ca 892 537 57.47 1.12 176.00 
Urine: Potassium Excretion 
(mEq/24h) 

Biomarker esodc_ca 899 501 174.51 14.06 515.87 
Urine: Sodium Concentration 
(mg/dL) 

Biomarker esode_ca 900 703 4339.78 0.00 13692.84 
Urine: Sodium Excretion 
(mg/24h)  

Biomarker esode_cc 894 698 189.71 1.00 595.60 
Urine: Sodium Excretion 
(mEq/24h)  

Biomarker eureac_ca 897 774 403.35 0.14 1402.27 Urea Concentration (mg/dL) 

Biomarker eureae_ca 868 589 9508.39 
2033.3
6 

40857.20 
Urine: Urea Nitrogen 
Excretion (mg/24h) 

Biomarker euricc_ca 897 524 27.23 0.86 191.01 
Urine: Uric acid Conc 
(mg/dL) 

Biomarker eurice_ca 892 747 611.46 22.30 4294.00 
Urine: Uric acid Excretion 
(mg/24h) 

Biomarker genetype 1873 3 . . . PKD Gene Mutation 

Biomarker hemoglob 911 72 13.34 8.20 17.00 Hemoglobin  

Biomarker hemotocrit 911 169 38.84 28.60 48.50 Hematocrit  

Biomarker il18 456 20 1.00 0.00 9.60 Interleukin-18 at baseline 

Biomarker lptrie_ca 879 249 124.35 23.00 814.00 Serum: Triglyceride (mg/dL) 

Biomarker ngal 468 40 34.31 0.04 476.21 
Neutrophil gelatinase-
associated lipocalin at 
baseline 

Biomarker platelet_c 910 321 221.96 0.14 540.00 Platelet (K/uL) 

Biomarker salke_ca 915 157 71.75 24.00 530.00 Serum: Alk Phos (U/L) 

Biomarker sbilire_ca 909 23 0.66 0.05 2.30 Serum: Bilirubin (mg/dL) 

Biomarker sbune_ca 913 32 14.72 4.00 40.00 Serum: BUN (mg/dL) 

Biomarker scalc 916 24 9.14 8.00 10.30 Serum calcium 

Biomarker schole 1440 173 173.07 68.00 346.00 Serum total cholesterol 

Biomarker serumcreat 1755 214 1.17 0.00 8.60 
Serum creatinine 
concentration 

Biomarker sglue_ca 915 79 88.16 30.00 166.00 Serum: Glucose (mg/dL) 

Biomarker shdl 1439 82 46.37 14.00 152.00 Serum HDL cholesterol 

Biomarker sldl 1280 177 102.00 16.00 306.80 Serum LDL cholesterol 

Biomarker smge_ca 895 25 1.93 1.22 2.68 Serum: Magnesium (mg/dL)  

Biomarker sod 1483 21 137.84 125.00 145.00 Sodium 

Biomarker spoe_ca 908 38 3.64 1.40 5.60 Serum:PO4 (mg/dL)  

Biomarker spot 916 36 3.95 2.50 34.00 Serum potassium 

Biomarker ssgote_ca 914 51 23.35 5.00 328.00 Serum: SGOT(AST) (U/L) 

Biomarker ssgpte_ca 906 67 22.03 6.00 360.00 Serum: SGPT(ALT) (U/L)  

Biomarker surice_ca 911 84 5.19 0.90 14.00 Serum: Uric Acid (mg/dL)  

Biomarker trunc_grp 1738 2 . . . 
Truncated or non-truncated 
gene mutation 

Biomarker uccon 901 434 72.14 7.66 422.00 
Urine Creatinine 
concentration  
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Biomarker uce_ca 896 776 1578.54 90.00 9528.80 
Urine: Creatinine Excretion 
(mg/24)  

Biomarker uprotc_ca 601 104 10.79 0.15 274.00 
Urine: Protein concentration 
(mg/dL)  

Biomarker uprote_ca 596 463 228.60 6.00 5181.30 
Urine: Protein Excretion 
(mg/24hr)  

Biomarker urabu_c 1351 627 
740195.
30 

0.00 
10000000
00.00 

Unit corrected of urabu 

Biomarker urine24_c 903 786 2634.30 449.00 7150.00 24-hour Urine Volume 

Biomarker urine_mcp 1793 225 603.61 19.80 4517.80 Urine mcp at baseline 

Biomarker wbc_c 911 204 5.77 0.00 15.00 White Blood Cell (K/uL)  
* Variable is variable names used in R modelling 

** Label is true meaning of the variables 

 


