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Abstract 
 
An exploration of time series models and their application to functional magnetic 

resonance imaging  
 

By Mingrui Liang 
 
 

        The general linear model is a popular tool in functional magnetic resonance 
imaging (fMRI) data analysis. One of the major problems in fMRI data analysis is 
that the fMRI blood-dependent oxygen level dependent (BOLD) time course is 
serially correlated. Some of the mainstream neuroimaging software packages use 
overly simplified models of time series errors, such as AR(1), which can lead to 
invalid inference due to the in- ability to account for serial correlation. There has 
been renewed interested in this issue with recent developments in acquisition 
protocols leading to much shorter time to repetition (TR), or the time between 
acquisition of brain images. We compared different modeling methods in this article 
in order to explore the factors that contribute to inflated type I error rates in fMRI 
time series data analysis. We introduce the application of autoregressive moving 
average models (ARMA) to the analysis of single-subject fMRI data, where the 
order of the AR and MA components are chosen using Akaike’s information 
criterion corrected for small sample size (AICc). Simulations were used to examine 
type I error rates. When the true model has an AR(1) structure, more flexible 
ARMA(p, q) models generally lowered the type one error rates relative to ordinary 
least squares (OLS) and the AR(6) model, but were often still higher than nominal 
levels. We also estimated spatially specific time series models for thirty subjects in 
a motor task from the Human Connectome Project, where control variables 
orthogonal to the conventional covariate matrix were introduced to gain insight into 
type one errors. The value of the autocorrelation function is downwardly biased 
when using OLS residuals, which would select the incorrect time series model. We 
also suggest that the length of the time series data and model complexity may 
affect the accuracy of inference.  
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1 Introduction

One of the tasks of neuroscience is to map the functions of brain regions. Functional magnetic

resonance imaging (fMRI) is one of the important techniques related to this task, where the

variation of the BOLD signal in the brain is captured in a rapid and sequential pattern[1]. The

goal of fMRI data analysis is to see whether the BOLD signal changes in response to some

outside manipulation in each brain voxel.

A popular tool to detect this variation is the general linear model (GLM), where the BOLD

signal variation plays the role of the outcome variable. The body functions that we are interested

in, such as the movement of a subject’s left leg, are reflected by the independent variables in

the model. However, because of the autocorrelation of the BOLD signal response, the inference

using Ordinary Least Squares (OLS) estimate would be biased, considered that the assumption

of the GLM is violated, where the data should be uncorrelated with equal variance. The source

of the biased inference are the errors. Since the errors are not independent in time, although the

estimate of the coefficients themselves are still unbiased, using OLS to estimate the parameters

without considering the correlation structure, or failing to use a correct one, can cause bias when

calculating the covariance of the coefficients, and hence inferences would be invalid.

One simple solution is to consider the first order autoregressive model, also known as the

AR(1) structure, for the error term, where we assume the intervals of each scan in the scanning

session are the same and the value from the previous scan impacts the current scan. The AR(1)

model is able to capture the correlation between observations. The correlation between obser-

vations k time points apart is ρ = φk, where φ is the correlation coefficient in the AR(1) model.

Given the lag 1 observation, an observation is conditionally independent of other observations

higher than lag 2 , which means that

cor(Xt, Xt−k|Xt−1) = 0, k = 2, 3, ..., t− 1

This strategy can improve the validity of inferences for fMRI time series with repetition times

(TR) above 2 seconds[2].

Similarly, a significant decrease of false positives is observed in the SPM software package,

which uses a global AR(1) model in which the same autocorrelation is assumed for all locations[3].

However, Eklund et al. (2012) found the global AR(1) structure in SPM failed to adequately

model the serial correlation in the residuals and hence caused a high error rate when analyzing

a large fMRI dataset, particularly in datasets with short TRs[4].

There are several other software packages that offer alternatives to SPM, although little is

known about their suitability for shorts TRs. In the FMRISTAT software package, Worsley et al.
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(2002) propose a method where a spatially varying AR(p) structure is considered, which extends

the AR(1) model to p previous time points [3]. There is also the autoregressive moving-average

(ARMA) model structure. Specifically, the ARMA(1,1), which has one autoregressive parameter

like in AR(1) with one additional moving average parameter, is applied in the software package

AFNI[5]. Woolrich et al., in the FSL software package, choose to estimate a flexible AR model

in each voxel, and then use a Tukey-Taper to smooth the model in the frequency domain[6].

Recent advances in simultaneous multislice (SMS) echo-planar imaging (EPI) have led to large

decreases in the TR, where the TR for whole-brain fMRI can be less than one second[7]. These

shorts TRs have led to concerns that the current methods, which were developed for traditional

fMRI data with TRs of 2-3 seconds, may not adequately account for the serial correlation in the

new sensorimotor rhythm (SMR) fMRI series.

In this paper, we used four different modeling methods on simulated and actual time series

data, in order to find out factors that affect the validity of the inference of time series data.

For the simulated time series data, we compared the type I error rates using different modeling

methods and different covariate structures. For the actual time series data, we examined the

autocorrelation function (ACF), partial autocorrelation function (PACF) and the model selection

results in order to discover the actual time series structure. We also compared the type I error

rates for actual data. Finally, activation plots were made to highlight the functional region on

the cortical surface, also to check the bias of the inference.

2 ARMA Overview

The fundamental modeling technique that we applied in this article is the autoregressive

moving-average (ARMA) model. As the name suggests, the model is a combination of an

autoregressive (AR) part and a moving average (MA) part. The AR part predicts an outcome

based on its previous values, whereas the MA part claims that the outcome depends on its

current or past values of the noise term. An ARMA model with a set of covariates is written as:

Yt −XT
t β = εt +

p∑
i=1

φi(Yt−i −XT
t−iβ) +

q∑
i=1

θiεt−i,

where Yt−i is the outcome response for time t− i, Xt are the covariates, β are their coefficients,

εt−i is the white noise error term at time t − i, φ1, ..., φp are the AR coefficients, and θ1, ..., θq

are the MA coefficients.

If we use the backshift notation B, where BlYt = Yt−l, then our model becomes:
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(1−
p∑

i=1

φiB
i)(Yt −XT

t β) = (1 +

q∑
i=1

θiB
i)εt.

An ARMA(p, q) model refers to an ARMA model with p autoregressive terms plus q moving-

average terms. A simplified version of the ARMA(p, q) model is the AR(p) model. It can be

written as

Yt −XT
t β =

p∑
i=1

φiB
i(Yt −XT

t β) + εt.

The AR model assumes the partial autocorrelation function to be 0 after lag p, which captures

long dependence in the autocorrelation function. On the other hand, the MA model has 0

dependence in the autocorrelation function after lag q, and captures long dependence in the

partial autocorrelation function. Therefore a combination of these two helps to capture more

complex serial correlations.

3 Simulation

3.1 Simulation Setting

We conducted a simulation study in order to explore 3 factors that may lead to invalid

inference of the time series data using existing methods. The 3 factors are time series structure

of our response variables, level of complexity of the covariate matrix that we regress against and

the model structure that we choose to fit our data.

In order to explore the impact of different time series structure, we simulated 4 different sets

of time series as outcome variables in our study, namely AR(1) with φ = 0, φ = 0.4, φ = 0.9,

and ARMA(2,2) with φ1 = 0.9, φ2 = −0.4, θ1 = 0.9, θ2 = 0.4. We generated 5000 sets of time

series as our outcome variable for each setting, each with a length of 284 time points. For each

setting of time series, we used 4 sets of different covariate matrix, namely 1) a 284 × 1 random

Gaussian vector, 2) a structured control variable, 3) a 284 × 22 random Gaussian matrix, and 4)

a covariate matrix from a block-design motor task of subject 105014 in the Human Connectome

Project (HCP) plus the attached control variable. More detail about the variables in the covariate

matrix is discussed in section 4.1.

The true coefficients were set equal to zero in all settings. In the first setting, we examine the

validity of inference when the covariate has no structure or dependence. In the second setting,

the purpose of creating this structured control variable is to demonstrate how the structure of

the covariate impacts the type I error rate. The structured control variable is a fixed 284 × 1

vector which is orthogonal with the covariate matrix. It is used in the real data analysis where
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it has no relationship with other covariates and it is expected to have no relationship with the

response, hence the value of its coefficient should equal to 0. In the third and fourth setting,

the purpose is to set up a way to measure the level of validity of inference when modeling with

numerous covariates. For valid inference, the distribution of the p-values of the covariate we

examine should be approximately uniform.

Finally, we used 4 different models to fit our simulated data, which are the OLS, AR(1),

AR(6) and the auto.arima() function in R. We applied the auto.arima() function here to return

the best ARIMA model according to AICc after searching over possible ARMA(p, q) models[8].

3.2 Simulation Results

We summarize the simulation results using histograms to illustrate the distribution of the

p-values for the coefficient of the regressors of interest as we described above. Results are

categorized according to the setting of the covariate matrix. In the figures below, each column

represents different setting of time series structure of the data, and each row represents different

models that we use to fit the data.

3.2.1 Random Gaussian vector

As we can see from the result (Figure 1) using a random Gaussian vector as a regressor,

the only severe issue appeared when the time series data has an ARMA(2,2) structure. The

AR(1) model is able to capture the lag 1 partial correlation but fails to capture the lag 2 partial

correlation. Since the AR(2) coefficient is negative, overall the model overestimates the variance

of the coefficient, which lead to an overly conservative type I error rate.

When using a random Gaussian covariate, the general type I error rate is similar to our

nominal error rate 0.05. The overall p-value distribution is close to uniform distribution.

3.2.2 Structured control variable

In the second result (Figure 2), an obvious issue of inflated type I error rate was observed

when using OLS to fit our time series data. For the ARMA(2,2) outcome structure, the AR(1)

model showed less severe conservative type I error rate, which appears to be due to the particular

form of the structured covariate matrix. Overall, our type I error rates are around the nominal

error rate for AR(1), AR(6) and auto.arima() models, but severely inflated in OLS. Note that

the AR(1) structure was closest to 0.05 for φ = 0, φ = 0.4, and φ = 0.9, auto.arima() was the

second closest, and AR(6) tended to have more inflated type I error rate.



5

OLS, Phi = 0,
 type 1 error rate 

 = 0.05

plist

F
re

qu
en

cy

0.0 0.4 0.8

0
30

0

AR1, Phi = 0,
 type 1 error rate 

 = 0.0538

plist.ar1

F
re

qu
en

cy

0.0 0.4 0.8

0
30

0

AR6, Phi = 0,
 type 1 error rate 

 = 0.0554

plist.ar6

F
re

qu
en

cy

0.0 0.4 0.8

0
30

0

auto.arima, Phi = 0,
 type 1 error rate 

 = 0.056

plist.auto

F
re

qu
en

cy

0.0 0.4 0.8

0
30

0

OLS, Phi = 0.4,
 type 1 error rate 

 = 0.0506

plist

F
re

qu
en

cy

0.0 0.4 0.8

0
30

0

AR1, Phi = 0.4,
 type 1 error rate 

 = 0.055

plist.ar1

F
re

qu
en

cy

0.0 0.4 0.8

0
30

0

AR6, Phi = 0.4,
 type 1 error rate 

 = 0.0612

plist.ar6

F
re

qu
en

cy

0.0 0.4 0.8

0
30

0

auto.arima, Phi = 0.4,
 type 1 error rate 

 = 0.057

plist.auto

F
re

qu
en

cy

0.0 0.4 0.8

0
30

0
OLS, Phi = 0.9,

 type 1 error rate 
 = 0.0484

plist
F

re
qu

en
cy

0.0 0.4 0.8

0
30

0
AR1, Phi = 0.9,

 type 1 error rate 
 = 0.0558

plist.ar1

F
re

qu
en

cy

0.0 0.4 0.8

0
30

0

AR6, Phi = 0.9,
 type 1 error rate 

 = 0.0614

plist.ar6

F
re

qu
en

cy

0.0 0.4 0.8

0
30

0

auto.arima, Phi = 0.9,
 type 1 error rate 

 = 0.057

plist.auto

F
re

qu
en

cy

0.0 0.4 0.8

0
30

0

OLS, ARMA(2,2),
 type 1 error rate 

 = 0.0538

plist

F
re

qu
en

cy

0.0 0.4 0.8

0
30

0

AR1, ARMA(2,2),
 type 1 error rate 

 = 0.0034

plist.ar1
F

re
qu

en
cy

0.0 0.4 0.8

0
40

0
AR6, ARMA(2,2),
 type 1 error rate 

 = 0.048

plist.ar6

F
re

qu
en

cy

0.0 0.4 0.8

0
30

0

auto.arima, ARMA(2,2),
 type 1 error rate 

 = 0.057

plist.auto

F
re

qu
en

cy

0.0 0.4 0.8

0
30

0

Figure 1: Simulation results using univariate regression with a random Gaussian vector as the
covariate.
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Figure 2: Simulation results using univariate regression with a structured control variable as the
covariate.
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Figure 3: Simulation results using multiple regression with a random Gaussian matrix with
twenty-two covariates.

3.2.3 Random Gaussian matrix

In our third scenario (Figure 3), the type I error rate increase for AR(1) data was observed

when using the AR(1), AR(6) and auto.arima() models. The maximum likelihood estimation

(MLE) method was used here to estimate the test statistics. The standard error used in Wald

statistics are underestimated when including many covariates and a relatively short time series.

Surprisingly, when the covariates are independent and identically Gaussian distributed, OLS

works the best although the outcome variable has a time series structure because the standard

error is approximately unbiased (see Risk et al. 2016, formula S.3). Moreover, inference is based

on a T-distribution which accounts for a finite sample size and the number of covariates.

For ARMA(2,2) data, we can also see the overly conservative type I error rate for AR(1)

model. OLS is close to the nominal level, following by AR(6). auto.arima() has the highest type

I error rate.
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Figure 4: Simulation results using multiple regression with twenty-two covariates based on a
block-design motor task; p-values for the structured control covariate shown.

3.2.4 Motor-task covariate matrix with control variable

In this covariate matrix setting (Figure 4), a severe inflated type I error rate was observed

when using the OLS to fit our simulated AR(1) data. This inflation happened because the

variance of our parameter of interest is underestimated. Also, as φ increased, the number of

independent observations decreased, which caused the expansion of the effect of model over-

specification and small sample size when using AR(1) to fit our data. When using the AR(6)

model, more parameters were estimated, which led to more serious overspecification problems

and severely inflated type 1 error rates. The type I error rate when using auto.arima() was bet-

ter than using AR(6) model but worse than using AR(1) model because auto.arima() selected

flexible models every time, but generally the model it selected would be more complex than the

AR(1) model.

For ARMA(2,2) data, we can also see the overly conservative type I error rate in AR(1)

model. auto.arima() works the best. AR(6) and OLS have higher type I error rates.
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To sum up the result of our simulation study, OLS has an inflated type I error rate when

the covariate is structured, and AR(1) has a incorrect type I error rate modeling ARMA(2,2)

data. auto.arima(), on the other hand, is the most robust modeling approach when there is a

single structured covariate, however the type I error rate can be inflated when there are a large

number of covariates.
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4 Methods

4.1 The Human Connectome Project

The data we used in our analysis is from a motor task involving thirty subjects in the Human

Connectome Project (HCP). The HCP is a project to map human brain structure and function

within single individuals or across subjects. They provide a resource for large amounts of publicly

available unprocessed and preprocessed data using multiple imaging methods combined together

with a large amount of behavioral and genetic data [9].

In the HCP motor task, experimental subjects were required to move their tongue to specific

areas, squeeze their toes, or tap their fingers according to the visual cues presented to them [10].

Two sessions of scans with 284 time points, 2 × 2 × 2 mm voxels, and 0.72 s repetition time

were performed. Locations corresponding to the right cortex were extracted as in the paper by

Risk et al. (2016) [11], resulting in 29,716 time series for one session. The vertex indices of the

cortical surface mesh correspond to locations matched across subjects [12]. In this experiment,

we used thirty subjects from the HCP. Among the 2 sessions, we chose the first (right-left)

session of the motor task for analysis. Linear and quadratic time terms were used to capture

scanner drift, and they were used as regressors in our analysis together with an intercept, the six

task parameters described above (cue, left and right fingers, left and right toes, tongue), their

temporal derivatives, and the six parameters from the rigid body motion correction, resulting

in twenty-one covariates. Also, we set up a structured control variable that is orthogonal to the

design matrix as suggested in Eklund’s paper [4]. This control variable is independent to the

rest of the regressors in the design matrix, hence we can use it as an method to measure the

type I error rate – its theoretical coefficient should equal to 0.

4.2 Experiment Setting

We performed an analysis where we used four modeling methods (OLS, AR(1), AR(6),

auto.arima() function in R) to fit our HCP data for thirty subjects.

For each fitting process, we measured the value of the ACF and PACF for each modeling

methods. ACFs and PACFs are essential for examining the structure of time series models. We

captured the ACFs and PACFs from lag 1 to lag 5 for the OLS residuals, AR1 model, AR6

model and the flexible model chosen by the auto.arima() function. The ACFs and PACFs were

measured for all 30 subjects, and we also analyzed the average of the ACFs and PACFs among

these subjects.

We were also interested in the corresponding ARMA model that the auto.arima() function

chose at every location. The results for 30 subjects were recorded. We also recorded the model
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selection result when we used auto.arima() to fit the averaged response time series across the 30

subjects, while the averaged motion measurement and their derivatives were used as regressors.

Moreover, we recorded the type I error rate using these four modeling methods on all 30 sub-

jects. The type I error rate using these four modeling methods were also saved on the averaged

responses and covariates. The type I error rate was calculated as the percentage of the p-values

of the control variables that were less than 0.05 .

Finally, we obtained the test statistics for the contrast variable, namely the measurement of

left finger tapping versus the average of five other motion parameters, as well as for the control

variable. Using the test statistics, we can highlight the area of the brain that is responsible for

the motion of the left fingers by making an activation plot, also called a statistical parametric

map. We can also visualize the map of our test statistics for the control variable mapped on the

brain.

For the purpose of display, we only included the ACF-PACF result of the subject that has

the median type I error rate (subject 100307), and the result for the averaged ACF and PACF.

For the activation plot, we chose the subject that has the median and the worst type I error rate

(subject 149741).

5 Results

5.1 ACFs And PACFs

The ACFs and PACFs provide insight into the time series structure. For a single subject

(Figure 5), we plotted the PACF and ACF resulting from the fitted ARMA(p, q) model selected

using auto.arima() (Figure 5(a)) and the sample PACF and ACF based on the OLS residuals

(Figure 5(b)). In the upper plot, the grey area shows how the auto.arima() function selected no

time series structure in some of the locations. Both auto.arima() and OLS show lag 1 correlations

in similar areas. However, auto.arima() was still able to capture more lag 1 correlation than OLS

if we look at the mean of the ACF (0.0328 vs 0.03), the variance of the ACF (0.0971 vs 0.0874),

and the maximum value of the ACF (0.846 vs 0.62). In general, OLS estimates of the ACF

and PACF are downwardly biased[3]. This suggests that pre-whitening using estimates of the

PACF from the OLS residuals, which has been suggested elsewhere[13] may underestimate the

temporal dependence, which could inflate type 1 error rates and also select the incorrect time

series model. Also, the level of correlation decreased for lag greater than 2.

For average values of the ACFs and PACFs (Figure 6), the spatial patterns are more apparent,

and the differences between the OLS and auto.arima() estimates are more prominent. In general,

correlations estimated using the auto.arima() function (Figure 6(a)) were higher than using OLS
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(Figure 6(b)). The negative bias caused by using the residuals from OLS to estimate the ACF

and PACF is particularly prominent in lags three and four, which show extensive negative values

in the OLS figures but not the auto.arima() figures. Plus, we observed particularly prominent

correlation in the inferior parietal lobule, the juncture of medial orbito-frontal and the superior

frontal lobule, and the lateral occipital lobule. We also saw obvious correlation in the middle

and inferior temporal lobule.
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Figure 5: ACFs (2 plots on the left) and PACFs (2 plots on the right) of 100307, lag 1 to lag 5
(from top to bottom). (a) The upper plot: used the auto.arima() function in R, (b) the lower
plot: PACF and ACF from OLS residuals.
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Figure 6: Averaged ACFs (2 plots on the left) and PACFs (2 plots on the right), lag 1 to lag 5
(from top to bottom). (a) The upper plot: used the auto.arima() function in R, (b) the lower
plot: PACF and ACF from OLS residuals.
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5.2 Model Selection

The function auto.arima() selected a variety of models. For single subjects, ARMA(0,0) was

selected most often, followed by ARMA(1,0), ARMA(0,1) and ARMA(1,1). It is worthwhile to

mention that some of the more complicated models, such as ARMA(2,2), were also observed in

the result of model selection over 1000 times.

For averaged response and covariate matrix, the most common structure was ARMA(1,0)

(selected 9340 times), followed by ARMA(0,0) (selected 7958 times), ARMA(2,0) (selected 2806

times) and ARMA(1,1) (selected 2253 times).

Table 1: Result of model selection by the auto.arima() function
Subjects ARMA(0,0) ARMA(0,1) ARMA(0,2) ARMA(0,3) ARMA(1,0)
Averaged 7958 2079 308 71 9340

100307 15127 2945 586 193 4575
100408 12903 3017 556 141 4632
101107 16452 2820 1031 275 3326
103818 15511 3291 835 273 4499
105014 15855 2757 775 253 3745
105115 13684 2315 908 177 4588
111716 13615 2285 832 275 5083
113619 14560 2736 734 219 4087
118528 16303 3038 1536 250 3053
118730 15514 2836 749 255 5012
123925 15675 3096 996 240 3670
124422 14831 2898 886 243 4528
128632 15844 2840 901 300 4392
129028 15795 2479 1219 350 3760
133928 11352 2705 727 138 5655
135225 15736 2825 856 241 4948
144832 14015 3215 645 162 4723
146432 15168 2655 960 242 3320
149741 12033 2628 565 125 7546
151223 14181 2775 867 240 5215
159340 16343 2827 1865 615 3505
160123 14710 2552 921 176 4314
188347 15695 3060 975 226 3496
189450 16440 3066 906 251 4459
201111 14584 3135 929 253 4073
208226 9082 2531 368 68 4224
239944 14118 3099 795 181 4670
245333 12093 2829 824 247 3704
499566 14052 2643 870 164 3792
654754 12246 2789 585 117 5425
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ARMA(1,1) ARMA(1,2) ARMA(2,0) ARMA(2,1) ARMA(2,2) ARMA(2,3)
2253 566 2806 964 1462 166
1854 358 1267 516 1144 119
2309 448 1817 817 1341 138
1665 314 1176 468 1074 118
976 235 1224 393 1333 99

1730 378 1376 441 1235 133
2079 435 2032 742 1210 159
1716 404 2045 633 1077 118
2010 454 1555 501 1322 141
1053 283 1179 455 1236 146
1103 187 1480 348 1071 95
1505 380 1282 407 1208 152
1486 342 1430 473 1312 123
1003 342 1526 352 1178 103
1370 312 1531 437 977 135
2150 747 2276 522 1542 218
1022 279 1407 395 988 80
1821 474 1647 552 1196 131
1938 397 1301 562 1471 178
1390 351 2224 537 1125 126
1235 319 1666 410 1276 127
838 235 1356 348 742 89

2030 378 1520 615 1245 141
1882 377 1263 488 1199 117
849 283 1312 336 1028 65

1894 530 1213 640 1150 142
5490 981 1884 1561 1413 159
1562 367 1904 524 1211 128
3013 747 1731 670 1739 236
1853 749 1694 665 1696 211
2699 566 1890 692 1374 142
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ARMA(3,0) ARMA(3,1) ARMA(3,2) ARMA(3,3) ARMA(4,0) others
642 235 260 104 196 306
309 157 183 72 79 232
419 249 265 67 154 443
350 123 212 46 74 192
319 81 190 57 145 255
361 99 216 69 79 214
484 146 251 60 150 296
548 194 229 46 228 388
398 170 265 75 114 375
367 99 288 43 122 265
414 95 160 29 151 217
335 123 262 66 76 243
338 110 287 71 99 259
269 100 184 61 89 232
487 147 273 43 105 296
437 248 413 118 103 365
335 85 147 47 110 215
370 159 197 62 113 234
362 187 421 78 94 382
379 121 199 59 110 198
545 120 288 64 150 238
332 90 147 21 128 235
319 138 270 57 89 241
259 123 233 52 47 224
225 66 132 35 106 157
255 178 249 68 88 335
477 390 323 121 164 480
400 137 198 70 142 210
499 243 438 140 129 434
306 208 319 96 67 331
400 187 231 79 72 222
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Figure 7: Type I error rate for 30 subjects (line) and the averaged time series (dot)

5.3 Type I Error Rates

As shown in the result (Figure 7), the type I error rates were pretty close when using OLS,

AR(1) and auto.arima(). OLS performed slightly better than other methods for about 20 sub-

jects. The type I error rates when using AR(1) and the auto.arima() function were similar

with each other, and the type I error rates when using AR(6) were the biggest. This result

can be explained because the auto.arima() selected no time series structure in around half of

the locations, and OLS has the lowest type I error rate when there is no time series structure,

particularly when there are many covariates. On the other hand, the model selection showed

that there are more time series structure for the averaged outcome and covariates, due to the

lower measurement errors. Here we observed that the type I error rate was the smallest when

using the auto.arima() function, following by AR(1), OLS and AR(6). However, overall the type

I error rates were substantially higher than the nominal 0.05 rate.

5.4 Activation Plots

The activation plots (Figure 8) for contrast variables included areas associated with the

primary motor cortex. We chose to show the results using OLS and the auto.arima() function.

This highlight was obvious when we looked at the subject that has a median OLS type I error

rate (subject 100307). The area of the highlight was more vague for the subject that has the

worst OLS type I error rate (subject 149741).

For the control variables, the ideal statistics on the plot should be asymptotically normally

distributed around 0 with no spatial structure. However, our results, especially for subject
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149741, showed that the statistics drifted from 0, which indicated bias. Although we also used

the auto.arima() method, the bias was not fixed. We didn’t see much improvement in type I

error rate probably because we were modeling with too many covariates (22 covariates in total)

and each time series is relatively short (284 time points).

6 Discussion

In this study, we explored the effect of different modeling methods on time series data using

both simulations and an actual data analysis. We observed that failing to use the correct model

leads to inflated type I error rate and biased inference. This might be a problem for some current

mainstream neuroimaging software. A global AR(1) structure is used in SPM, and AFNI uses

an ARMA(1,1) structure. They are overly simplified models, hence their inference might be

inaccurate. FSL uses an alternative modeling approach for inference, which is beyond the scope

of this study.

In the simulation study, although it wasn’t very obvious when using one random Gaussian

vector as regressor, difference was noticed between different modeling methods when using the

structured control variable as a regressor. The AR(1) model performed the best when the time

series itself is simulated with an AR(1) structure. The auto.arima() function, followed by the

AR(6) model, had the second and third lowest type I error rate. OLS provided a severely biased

result, especially when the correlation was increasing. This trend was also observed when using

the motor-task covariate matrix. Surprisingly, type 1 error rates using the MLE estimates were

inflated when using twenty-two covariates, even when the AR(1) model was estimated and the

true generating process followed the AR(1) model. This may be because we have a large number

of covariates and a relatively short time series.

In the actual data analysis, we first examined the ACFs and PACFs when using different

models. We saw that ACFs and PACFs for individual subjects tend to be noisier than the

averaged ACFs and PACFs. Besides, PACF plots were observed to drop to zero faster than the

ACF plots. The reason is that our model selection result suggested that the AR structure is

common, and theoretically, for an AR structure, it is more likely to see zero values in PACF

plots than in ACF plots. For example in an AR(1) structure, started from φ, the correlation

would drop to φ2, φ3, ... as the lag increases. The PACF, on the other hand, would drop to zero

for lag greater than 1. At the same time, it can also be observed that for some locations of the

cortical surface the partial correlation still exists after lag 1, which indicates a more complicated

time series structure than AR(1) in the actual data set. This result also matched with the

outcome of the model selection process, where in general more than one third of the locations
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Figure 8: Activation plot for contrast variable for subject that has a median OLS type I error
rate (subject 100307) and worst type I error rate (subject 149741) (2 upper plots) and control
variable for subject 100307 and 149741 (2 lower plots) using OLS and the auto.arima() function.
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have a structure that is more complex than an AR(1) structure. Additionally, the value of the

autocorrelation function is downwardly biased when using OLS residuals, which would select the

incorrect time series model.

There are a number of shortcoming of this study that should be noted. Even though

auto.arima() has the ability to choose the most suitable time series model for each location,

and it might be considered a very good method to solve the problems in inference created by

serial correlation, it has its own limitations. A obvious drawback of auto.arima() is that the

method it uses for estimation relies on the asymptotic theory, which might bring inaccuracy

when the sample size is not large enough, or the response time series is not long enough. Also,

auto.arima() is not going to bring a large amount of improvement in accuracy when there are too

many variables in the covariate matrix. The performance of auto.arima() under such a situation

is only slightly better than OLS, but the cost for such little improvement is that the auto.arima()

process is over 30 times slower than the OLS model fitting. The auto.arima() method took al-

most 12 hours to finish our analysis process for all 30 subjects on a 40-core computing cluster,

where the OLS only took 10 minutes on a 72-core computing cluster. Additionally, there is no

guarantee that our structured variable has no relationships with the response variable.
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