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Abstract	

Examination	of	the	Double	Descent	Phenomenon	in	Medical	Imaging	AI	

By	Fahd	Hatoum	

One	of	the	reasons	behind	the	success	of	neural	networks	in	radiology	and	other	fields	(e.g.:	
natural	language	processing)	is	that	the	models	learn	complex	features	from	the	training	
data	and	generalize	well	to	new	data.	The	flexibility	and	success	of	the	models	is	due	to	
over-parameterization.	Generally,	in	order	to	produce	an	over-parameterized	model,	
researchers	use	a	simple	heuristic:	the	number	of	parameters	in	the	model	should	be	much	
greater	than	the	number	of	training	samples.	Given	the	differences	between	natural	and	
medical	images,	this	heuristic	when	applied	by	researchers	in	the	medical	imaging	
community,	might	lead	them	to	develop	critically	parameterized	or	under-parameterized	
models	that	lead	to	worse	performance.	As	such,	in	this	thesis,	we	aim	to	investigate	
whether	a	commonly	used	model	(Densenet	121	model)	in	medical	imaging	research	is	
under-parameterized	or	over-parameterized	for	a	certain	combination	of	factors.	These	
factors	include	transfer	learning,	data	set	size,	data	complexity	and	model	width.	We	
restricted	the	task	of	the	model	to	a	simple	binary	classification	of	disease	from	a	patient	
chest	radiograph.		We	find	that	for	certain	training	sizes,	the	model	is	in	the	critically	
parameterized	regime	and	a	tenfold	increase	in	the	sample	size	does	not	yield	better	
performance.	We	also	find	that	diseases	that	are	more	challenging	to	diagnose	(such	as	
COVID-19)	typically	shift	the	interpolation	threshold	to	the	right	and	cause	the	model	to	
become	over-parameterized.	Given	these	results,	we	find	that	it	is	important	for	
researchers	in	the	medical	imaging	field	to	not	use	heuristics	as	the	ones	researchers	in	
computer	vision	use	to	develop	deep	learning	models	for	natural	images.	
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1. Introduction	

1.1. AI	and	its	Impact	on	the	Radiological	Field.	

Artificial	 intelligence	 (AI)	 is	 increasingly	 being	 integrated	 into	 various	 aspects	 of	

healthcare,	decision	support	and	medical	imaging.	The	most	recent	estimate	from	the	FDA	

states	 that	 there	 are	 950	AI-enabled	 systems	 approved	 for	 use	 in	 the	medical	 field	with	

most	(i.e.:	76%)	being	developed	for	the	radiology	field	(medical	imaging)	[1-4].	The	major	

uptake	of	AI	 in	medical	 imaging	 is	due	 to	 the	 increased	workload	of	 radiologists	and	 the	

advances	of	machine	learning	in	computer	vision.		

The	use	cases	of	such	systems	 in	radiology	range	 from	detecting	disease	regions	 in	chest	

radiographs	to	assisting	radiologists	in	the	diagnosis	and	prognosis	of	diseases	[5-9].	These	

systems	can	often	outperform	radiologists	especially	when	identifying	more	pathologically	

challenging	diseases	[9-10].		

	

1.2. The	Schism	

As	stated	earlier,	many	of	the	advances	of	the	ML	algorithms	developed	for	medical	images	

originate	from	advances	in	computer	vision	(transfer	learning,	adversarial	networks,	base	

models	 used…).	 However,	 there	 still	 exists	 a	 gap	 between	 the	 theoretical	 and	 empirical	

knowledge	produced	by	the	machine	learning	community	and	the	subsequent	applications	

in	 the	 medical	 imaging	 field.	 One	 such	 instance	 is	 the	 case	 of	 the	 double	 descent	

phenomenon	in	ML	and	deep	learning	(DL)	algorithms	(only	one	publication	claims	to	have	

observed	double	descent	for	medical	images)	[11].			
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1.3. What	is	Double	Descent?	

In	neural	networks,	 the	double	descent	phenomenon	describes	 the	 fluctuation	of	 the	 test	

error	with	 respect	 to	model	 complexity.	Model	 complexity	 is	 affected	 by	 the	model	 size	

(number	 of	 trainable	 parameters),	 optimization	 procedure	 (training	 time,	 presence	 or	

absence	 of	 regularization…),	 and	 data	 complexity	 (number	 of	 samples,	 intrinsic	

dimensions,	 class	 overlap…)	 [12-14].	 Thus,	 a	 change	 in	 any	 of	 these	 factors	 leads	 to	 a	

change	 in	 model	 complexity.	 The	 double	 descent	 phenomenon	 posits	 that	 over-

parameterized	models	(models	that	have	a	high	complexity	and	that	interpolate	all	points	

from	 the	 training	 data)	 perform	 better	 (lower	 test	 error)	 than	 under-parameterized	

models	 (models	with	 lower	complexity).	 	 In	addition,	with	double	descent,	models	 in	 the	

under-parameterized	 regime	 present	 the	 bias-variance	 tradeoff	 as	 observed	 in	 classical	

statistics.	 In	 this	 regime,	 a	model	with	an	 increased	 complexity	begins	 to	perform	worse	

(larger	test	error)	than	models	with	lower	complexity	(a	U-shaped	curve	is	observed	in	the	

graph	plotting	test	error	against	model	complexity)	[12-14].	The	intersection	of	these	two	

regimes	is	called	the	interpolation	threshold	and	a	peak	is	observed	in	the	graph	plotting	

test	 error	 against	 model	 complexity.	 The	 region	 around	 this	 threshold	 is	 the	 critically	

parameterized	regime	because	any	increase	or	decrease	in	the	model	complexity	can	cause	

either	an	increase	or	decrease	in	the	test	error	[13].		

	

1.4. Double	Descent	in	Practice	

In	 practice	 and	 in	 most	 of	 the	 current	 literature	 describing	 the	 double	 descent,	 the	

factor/hyper	parameter	that	governs	model	complexity	is	the	size	of	the	model	(number	of	

model	 parameters).	 This	 choice	was	made	 to	 give	 a	 description	 that	 is	 aligned	with	 the	
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current	 literature	 and	because,	 in	 practice,	 the	 size	 of	 the	model	 is	 the	 hyper	 parameter	

that	one	has	the	flexibility	to	adjust.	

	

Here,	it	becomes	important	to	note	that	regularization	techniques	such	as	lasso	and	ridge	

regularization,	 early	 stopping,	 and	 data	 augmentation	 have	 been	 found	 to	 mitigate	 the	

presence	of	double	descent	[15].	With	these	techniques,	the	test	error	generally	continues	

to	decrease	with	an	increase	in	model	complexity.	However,	even	in	the	presence	of	these	

mitigation	 techniques,	double	descent	might	also	occur	 [12].	As	such,	 it	 is	 important	 that	

developed	 ML	 models	 are	 over-parameterized	 with	 respect	 to	 the	 training	 data	

distribution.		

	

This	is	not	currently	an	issue	with	radiology	datasets	as	most	are	small	(less	than	10,000	

images)	 and	 the	models	used	are	 currently	 complex	enough	 (in	 terms	of	 size).	However,	

with	 the	 increase	 of	 publicly	 available	 radiology	 datasets,	 it	 becomes	 important	 for	

researchers	to	scale	 the	complexity	of	 their	models	accordingly	to	observe	an	 increase	 in	

performance	(to	escape	the	under-parameterized	or	critically	parameterized	regimes)	[16-

17].	However,	the	limits	of	scaling	the	number	of	parameters	and	the	data	size	in	tandem	

are	 not	 well	 documented	 for	 medical	 images.	 Furthermore,	 as	 mentioned	 earlier,	 since	

model	complexity	is	affected	by	the	data	complexity,	it	is	not	assured	that	models	built	for	

natural	 images	 are	 also	 over-parameterized	with	 respect	 to	 the	distribution	of	 radiology	

images.		
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1.5. Radiology	vs.	Natural	Image	Classification	

Radiology	 datasets	 typically	 have	 intrinsic	 features	 that	 are	more	 complex	 to	 learn	 than	

those	of	natural	 images	due	 to	 the	 similarity	between	 images	 (e.g.,	 presence	of	 the	 same	

background	features	 in	the	 images),	which	could	make	 it	harder	 for	the	DL	algorithms	to	

distinguish	 between	 classes	 [18-19].	 Thus,	 for	 a	 family	 of	 DL	 models,	 the	 interpolation	

threshold	 for	natural	 images	might	be	 lower	 than	 for	 radiology	 images	because	 a	higher	

number	 of	 parameters	 (a	 more	 complex	 model)	 are	 needed	 to	 learn	 the	 feature	

representations	of	the	images.	The	occurrence	of	this	shift	for	more	complex	datasets	has	

already	been	observed	in	settings	for	natural	image	distributions	that	contain	an	increased	

percentage	of	label	noise	[12].	Here,	label	noise	is	the	percentage	of	the	data	set	labels	that	

have	 been	 attributed	 to	 the	 wrong	 class,	 which	 just	 as	 in	 the	 case	 of	 radiology	 images	

increases	 the	 difficulty	 of	DL	models	 to	 attribute	 the	 features	 of	 an	 image	 to	 the	 correct	

class.	In	both	these	settings,	label	noise	and	data	complexity	might	be	considered	cases	of	

model	misspecification	as	detailed	in	[12].	Model	misspecification	occurs	when	the	model	

is	unable	to	learn	the	feature	space	of	the	model.	The	reason	this	shift	occurs	in	the	double	

descent	 curves	 is	 due	 to	 classifiers	 with	 low	 complexity	 learning	 the	 feature	 space	

representation	(i.e.,	the	lower	dimensional	representation	of	images)	of	a	certain	class	(that	

includes	 data	 with	 the	 noisy	 labels	 and	 correct	 labels),	 but	 not	 being	 able	 to	 correctly	

isolate	 the	data	with	 the	noisy	 label	 from	those	with	correct	 label	within	 that	same	class	

[12&20].	 However,	 over-parameterized	 models	 learn	 to	 differentiate	 between	 the	 noise	

and	the	correctly	labeled	data	[12&20].	As	such,	it	also	might	be	the	case	that	for	radiology	

images,	 the	 less	 complex	models	 will	 learn	 the	 salient	 features	 of	 a	 certain	 class	 which	

might	 show	 up	 in	 other	 classes	 as	well	 (spots	 due	 to	 pneumonia	 vs.	 pleural	 effusion	 vs.	
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smoking	 damage).	 As	 such,	 a	 higher	 complexity	 model	 might	 be	 needed	 to	 isolate	 the	

correct	 labels	 and	 perform	 well	 on	 the	 test	 data	 (i.e.	 to	 differentiate	 the	 detailed	

differences).	

	

1.6. Aims	of	Thesis	

Consequently,	 the	 over-parameterization	 of	 models	 built	 for	 natural	 images	 might	 not	

guarantee	 that	 these	 models	 are	 also	 over-parameterized	 with	 respect	 to	 radiological	

image	distributions	 [18-19].	 In	addition,	 the	 impact	of	 transfer-learning	strategies	on	 the	

over-parameterization	 and	 interpolation	 threshold	 is	 also	 not	 yet	 well	 known.	 Transfer	

learning	is	a	training	strategy	that	is	employed	by	researchers	to	increase	the	performance	

of	their	models.	It	involves	training	a	model	on	a	different	task	than	the	one	intended	and	

then	using	the	trained	weights	of	the	base	model	to	train	a	new	model	on	a	different	task.	

This	workflow	 is	 typical	 for	 radiology	 datasets,	where	 in	 the	weights	 of	 the	 base	model	

trained	to	perform	a	task	on	natural	images	is	then	used	to	perform	another	relevant	task	

on	medical	images	[21-22].	 	Again,	this	workflow	is	typical	due	to	small	sizes	of	radiology	

datasets.		

	

Consequently,	 given	 the	 above	 considerations	 and	 gaps	 in	 the	 current	 literature,	 the	

general	aim	of	this	thesis	is	to	study	the	factors	impacting	whether	a	current	pre-built	DL	

model	 (built	 for	use	on	natural	 images)	 that	 is	 used	 in	 the	 radiology	 literature	 is	 under-

parameterized	or	over-parameterized	with	respect	to	its	training	data.	Such	factors	include	

the	 impact	of	 transfer	 learning,	data	 set	 size,	 and	disease	 type.	To	do	 so,	we	defined	our	

task	 as	 being	 the	 binary	 classification	 (diagnosis)	 of	 a	 certain	 disease	 from	 chest	
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radiographs	(i.e.	the	task	is	that	of	predicting	from	the	presented	radiographs	whether	the	

disease	 is	 present	 or	 absent).	 The	 types	 of	 diseases	 looked	 at	 were	 COVID-19	 and	

pneumonia.	 These	 two	 disease	were	 chosen	 due	 to	 the	 availability	 of	 a	 large	 number	 of	

labeled	 radiographs	 and	 due	 to	 the	 fact	 that	 they	 present	 different	 clinical	 relevancies.	

Diagnosing	COVID-19	 from	 chest	 radiographs	 is	 not	 considered	 a	 clinical	 standard	while	

the	 gold	 standard	 tool	 for	 diagnosing	 chest	 radiograph	 is	 pneumonia	 [23-25].	 In	 this	

manner,	 these	 different	 diseases	 are	 used	 as	 a	 proxy	 for	 studying	 the	 effect	 of	 the	

complexity	of	 the	 features	 learned	on	 the	 interpolation	 threshold	(akin	 to	 the	 label	noise	

discussed	 in	Section	1.5).	 	The	model	used	 in	all	experimental	settings	 is	Densenet121	(a	

convolutional	neural	network-	CNN)	due	 to	 its	wide	use	and	success	 in	 the	 literature	 for	

diagnosing	diseases	from	chest	radiographs	[26-27].		

	

1.7. Related	Works	

The	main	inspiration	of	this	thesis	was	due	to	the	work	of	Nakirran	et	al.	 in	 investigating	

the	double	descent	phenomenon	in	deep	neural	networks.	While	much	of	the	literature	has	

investigated	 this	 phenomenon	 [12],	 the	Nakirran	 et	 al.	 paper	 presented	 an	 experimental	

setup	 similar	 to	 ours	 (i.e.,	 binary	 classification	problem	using	CNNs	on	moderately	 sized	

datasets-CIFAR	10	and	CIFAR	100)	whilst	also	showing	that	the	double	descent	occurs	as	a	

function	 of	 data	 set	 size	 as	 well	 training	 time	 (i.e.,	 iteration	 or	 epochs).	 	 Furthermore,	

Nakirran	 et	 al.	 first	 showed	 that	 label	 noise	 increased	 the	 test	 error	 at	 the	 interpolation	

peak	 and	 also	 shifted	 it.	 This	 thesis	 builds	 upon	 their	 work	 to	 investigate	 the	 double	

descent	 phenomenon	 in	 terms	 of	 both	 model	 size	 and	 dataset	 size	 for	 the	 case	 of	

radiographs.	In	addition,	we	study	the	impact	of	transfer	learning	on	double	descent.	It	 is	
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also	pertinent	to	mention	that	the	work	done	in	this	thesis	is	tangential	to	the	work	done	

by	Konz	et	al.	which	showed	that	models	tend	to	have	a	harder	time	learning	the	intrinsic	

features	of	medical	images	as	opposed	to	natural	images	even	when	the	intrinsic	dimension	

of	 the	 datasets	 from	 the	 two	 domains	 were	 the	 same	 [18-19].	 Finally,	 as	 mentioned	 in	

section	1.2,	only	one	publication	in	medical	imaging	has	observed	the	double	descent	curve.	

The	 double	 descent	 was	 observed	 with	 a	 dataset	 of	 only	 20	 MRI	 images	 whilst	 using	 a	

custom	 built	 CNN	 for	 image	 segmentation	 [11].	 This	 observation	 of	 the	 double	 descent	

occurring	with	such	a	small	sample	size	further	motivates	our	research	into	identifying	at	

what	thresholds	the	over-parameterization	and	under-parameterization	regimes	occur	for	

DL	models	used	in	medical	imaging.		As	such,	applying	the	heuristic	that	the	number	of	data	

points	D	needs	to	be	much	larger	than	the	number	of	parameters	P	(i.e.,	D≫P)	is	certainly	

not	strong	enough	of	a	condition	to	be	considered	when	working	with	medical	images.		

	

1.8. Notes	on	the	History	of	Double	Descent	

This	section	can	be	skipped	without	loss	of	continuity.	In	this	section	and	for	completeness,	

I	aim	to	give	a	brief	overview	of	the	history	of	double	descent	in	the	literature.	Much	of	the	

terminology	 used	 in	 the	 double	 descent	 literature	 stems	 from	 a	 2019	 paper	 written	 by	

Belkin	et	al.	 in	which	the	terms	“double	descent”	and	“interpolation	threshold”	were	 first	

introduced	 [28].	 In	 their	 paper,	 Belkin	 et	 al.	 attempted	 to	 reconcile	 the	 classical	 bias-

variance	 tradeoff	with	 the	 fact	 that	 over-parameterized	DL	models	 (models	 that	 achieve	

close	to	zero	training	error)	still	generalize	well	to	unseen	data.	They	attempted	to	do	so	by	

presenting	a	unified	performance	curve	(the	double	descent	curve)	that	includes	both	the	

U-shaped	performance	curve	predicted	by	the	classical	bias-variance	tradeoff	(as	observed	
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in	 the	 under-parameterized	 regime	 of	 neural	 networks)	 and	 the	 decreasing	 test	 error	

curve,	 as	 observed	 for	 over-parameterized	 neural	 networks	 [28].	 	 However,	 the	 double	

descent	curve	had	already	been	posited	and	observed	by	earlier	papers	 in	the	1990s	and	

just	a	year	earlier	in	2018	[29-31].	Namely,	a	series	of	2018	papers	authored	by	Geiger	et	

al.	 were	 the	 first	 to	 investigate	 the	 cause	 of	 the	 good	 generalization	 ability	 of	 over-

parameterized	 DL	 models	 [30-31].	 In	 their	 papers,	 Geiger	 et	 al.	 posited	 that	 over-

parameterized	models	do	not	get	stuck	in	local	loss	minima	(minima	of	the	cost	function)	

but	rather	such	models	can	converge	during	training	to	a	global	minimum	of	the	loss	[30-

31].	They	 also	posited	 that	 a	decrease	 in	 the	number	of	 parameters	 leads	 to	 a	 “jamming	

transition”	where	there	are	many	 local	minima	for	the	 loss	and	a	training	procedure	that	

converges	 to	 these	 minima	might	 lead	 to	 worse	 model	 performance.	 Here,	 Geiger	 et	 al.	

presented	 the	analogy	between	 this	 jamming	 transition	and	 the	physical	phenomenon	of	

jamming	 that	 is	 observed	with	 repulsive	 ellipses	 [30-31].	 In	 the	physical	phenomenon,	 a	

jamming	transition	occurs	when	the	addition	of	repulsive	particles	in	a	container	leads	to	

these	particles	 coming	 into	contact	and	 transitioning	 to	a	 rigid	glassy	state	 [30-31].	Such	

glassy	states	have	many	 local	minima	 in	 their	energy	 landscape.	As	such,	 in	 this	analogy,	

the	loss	(cost)	function	of	DL	models	is	similar	to	that	of	the	potential	energy	of	particles	

and	 a	 jamming	 transition	 occurs	 when	 there	 are	 more	 samples	 than	 parameters	 (i.e.,	

analogy:	 there	 are	 more	 particles	 than	 there	 is	 space	 to	 accommodate	 these	 particles	

without	 touching).	 More	 recent	 studies	 have	 attempted	 to	 explain	 the	 origin	 of	 double	

descent	through	the	use	of	random	matrix	theory	[32-34].	As	mentioned	earlier,	although	

in	 this	 thesis	 we	 attempt	 to	 experimentally	 determine	 the	 conditions	 under	 which	 the	

double	 descent	 phenomenon	 occurs	 for	 DL	 models	 used	 in	 medical	 imaging,	 further	
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investigation	 into	 the	 theoretical	 considerations	 gleaned	 from	 our	 results	 might	 be	 of	

interest	to	both	the	DL	and	medical	communities.	

	

2. Introduction	

2.1. Datasets	

The	 COVID-19	 dataset	 consists	 of	 28656	 chest	 radiographs.	 The	 chest	 radiographs	 are	

stored	in	png	format	and	have	a	resolution	of	256x256.	The	prevalence	rate	of	COVID-19	in	

the	 dataset	 is	 11%.	 The	 ground	 truth	 (label)	 for	 this	 dataset	 was	 provided	 by	 the	 gold	

standard	for	COVID-19	diagnosis:	the	reverse-transcriptase	polymerase	chain	reaction	(RT-

PCR)	test.	This	data	was	collected	at	 the	University	of	Chicago	Medical	Center.	All	 images	

are	gray-scale	normalized.	

	

The	 pneumonia	 dataset	 consists	 of	 28656	 chest	 radiographs.	 The	 chest	 radiographs	 are	

stored	in	png	format	and	have	a	resolution	of	256x256.	The	prevalence	rate	of	pneumonia	

in	the	dataset	is	11%	(positive	cases	all	contained	lung	opacities).	The	ground	truth	(label)	

for	 this	 dataset	was	 provided	 by	 radiologists’	 examination	 of	 the	 radiographs.	 This	 data	

was	 sourced	 from	 the	 Radiological	 Society	 of	 North	 America	 (RSNA)	 grand	 challenge	 in	

2018	 [35].	 Please	 note	 that	 the	 original	 data	 from	 the	 2018	 challenge	 contained	 30000	

chest	 radiographs	 and	 the	 prevalence	 rate	 was	 15%.	 However,	 to	 make	 the	 prevalence	

rates	between	the	COVID-19	and	pneumonia	dataset	equal,	1343	pneumonia	images	were	

discarded.	All	images	were	gray	scale	normalized.	
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Figure	1.	Radiographs	from	COVID-19	dataset.	The	first	two	rows	shows	chest	radiographs	with	a	

negative	diagnosis,	while	the	last	row	shows	the	positive	case.	

	

As	can	be	seen	 from	Figure	1,	 it	 is	visually	difficult	 to	distinguish	between	 the	COVID-19	

positive	cases	and	negative	cases.		

	

2.2. Model	Archictecture	

All	models	used	in	this	work	are	based	on	the	Densenet-121	architecture	created	by	Huang	

et	 al.	 	 Densenets	 are	 convolutional	 neural	 networks	 (CNNs)	 that	 are	widely	 used	 in	 the	

medical	 imaging	 field	(and	more	broadly	 in	computer	vision	tasks)	due	to	 their	ability	 to	

detect	 complex	 features	 in	 images	 using	 a	 small	 number	 of	 parameters	 (as	 compared	 to	

traditional	ResNets	or	VGGs)	and	less	compute	[26	&	36].	The	Densenet	models	achieve	a	

higher	 accuracy	 on	 common	 natural	 image	 datasets	 such	 as	 Imagenet,	 CIFAR-10	 and	

CIFAR-100	 due	 to	 the	 introduction	 of	 connections	 between	 all	 the	 convolutional	 layers	

within	 a	 dense	 block	 (a	 succession	 of	 1x1	 and	 3x3	 convolutional	 layers	 with	 RELU	
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activation,	batch	normalization	and	pooling	 layers)	 [36].	Thus,	 the	 feature	map	produced	

by	any	one	convolutional	layer	of	the	dense	block	is	then	received	by	the	subsequent	layer	

in	addition	to	the	feature	maps	of	all	previous	layers.		

	

In	the	following,	I	will	use	Huang	et	al.’s	notation	to	give	a	mathematical	description	of	the	

information	 flow	 between	 layers	 [36].	 For	 each	 non-linear	 transformation	H,	 applied	 to	

layer	l,	the	inputs	are	the	feature	maps	of	all	l-1	layers.	The	growth	rate	k	is	defined	as	the	

number	of	feature	maps	outputted	by	each	transformation	H	[36].		The	growth	rate	k	is	the	

width	 of	 each	 layer	 akin	 to	 the	 number	 of	 channels	 used	 in	 CNN	 models	 with	 a	 linear	

architecture.	H	 is	composed	of	three	successive	operations:	batch	Normalization,	rectified	

linear	 unit	 and	 a	 convolutional	 layer	 [36].	 	 In	 each	 dense	 block,	 the	 convolutional	 layer	

alternates	between	a	1x1	convolution	and	a	3x3	convolution.	Each	dense	block	contains	a	

different	number	of	 transformations	H.	The	Densenet-121	model	 is	 composed	of	4	dense	

blocks	 with	 6,	 12,	 24	 and	 16	 transformations	 respectively.	 The	 growth	 rate	 of	 the	 base	

model	is	k=32	(i.e.,	the	number	of	feature	maps	in	the	global	average	pooling	layer	before	

the	classification	layer	would	be	32×𝑘).		

	

In	 the	 following	section,	we	aim	to	give	an	 intuition	on	the	differences	 in	performance	of	

DL/classifier	for	the	two	diseases.	

	

3. Classifier	Performance	for	COVID-19	and	Pneumonia	

To	further	establish	the	claim	that	COVID-19	classification	necessitates	a	DL	model	to	learn	

more	 complex	 intrinsic	 features	 than	 for	 pneumonia	 classification,	we	will	 construct	 the	
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ROC	 (operating	 charcteristic	 curve)	 for	 both	 diseases	 and	 compute	 the	 corresponding	

AUCROC	(area	under	the	operating	charcteristic	curve)	for	both	diseases.	In	the	subsequent	

sections,	 I	will	 explain	 the	 significance	of	 the	AUCROC	metric	 as	well	 as	 all	 experimental	

details	used	to	build	the	model.	

	

3.1. Experimental	Protocol	

To	 do	 so,	 both	 datasets	 were	 split	 into	 a	 train/test	 (80%/20%	 split)	 using	 stratified	

sampling	 on	 the	 disease	 status	 to	 ensure	 that	 both	 train	 and	 test	 sets	 had	 the	 same	

prevalence	 of	 disease	 (i.e.,	 11%).	 We	 first	 pre-train	 both	 models	 on	 Imagenet	 database	

before	 freezing	 the	 base	 layers	 to	 train	 the	 classifier	 layer	 on	 each	 dataset	 and	 finally	

unfreezing	all	 layers	and	fine-tuning	on	the	corresponding	dataset.	Since	the	classes	were	

imbalanced,	 each	 class	was	weighted	 so	 that	 there	weight	was	 inversely	 proportional	 to	

their	frequency.	The	loss	function	used	was	binary	cross	entropy	loss.	Adam	optimizer	was	

used	with	an	initial	 learning	rate	of	0.0001	and	a	learning	schedule	that	decreased	by	0.5	

once	each	5	epochs	when	the	loss	yielded	no	improvement.	Both	models	were	run	for	250	

epochs	and	early	stopping	was	used	as	regularization	(weight	decay	was	not	used	for	the	

Adam	optimizer).	Data	augmentation	was	also	applied	before	class	balancing.	Images	were	

horizontally	flipped	and	rotated	with	a	range	of	±	5	degrees.	The	batch	size	was	32	images.	

The	small	batch	size	is	due	to	computational	limitations.	The	last	layer	used	for	the	binary	

classification	utilizes	a	sigmoid	activation	 function.	All	models	 in	 this	 thesis	were	 trained	

using	keras	and	tensorflow.	The	base	model	training	procedure	was	adapted	from	[37].	
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3.2. AUCROC	

AUCROC	 (the	area	under	 the	operating	 charcteristic	 curve):	As	 the	name	 suggests,	 this	 a	

measure	 of	 the	 area	 under	 the	 curve	 that	 plots	 the	 true	 positive	 and	 false	 positive	 rate	

(evaluated	on	the	test	set)	of	a	classifier.			

	

The	 true	positive	 rate	TPR	 (also	know	as	 Sensitivity)	 is	 the	number	of	 true	positives	TR	

(samples	that	were	correctly	predicted	to	belong	to	the	positive	class)	divided	by	the	total	

number	of	positive	cases	P	in	the	sample	(alternatively,	if	we	one	were	to	express	the	TPR	

in	terms	of	the	number	of	the	false	negative	(FN)	cases,	 then	one	would	simply	replace	P	

with	TR	+	FN).		

	

The	 false	positive	 rate	FPR	 (also	know	as	Specificity)	 is	 the	number	of	 false	positives	FR	

(samples	 that	were	 incorrectly	 predicted	 to	 belong	 to	 the	 positive	 class)	 divided	 by	 the	

total	number	of	negative	cases	N	in	the	sample	(alternatively,	if	we	one	were	to	express	the	

FPR	in	terms	of	the	number	of	the	true	negative	(TN)	cases,	then	one	would	simply	replace	

N	with	FR	+	TN).		

	

In	our	experiment,	the	classifier	outputs	a	prediction	score	between	0	and	1	that	a	patient’s	

radiograph	belongs	to	the	positive	class	(presence	of	disease).	To	calculate	the	true	positive	

rates		(TPR)	and	false	positive	rates	(FPR),	a	threshold	needs	to	be	chosen	to	separate	the	

predictions	 into	 the	 two	 classes:	 positive	 and	 negative	 for	 a	 disease.	 The	 number	 of	

thresholds	 is	 one	 more	 than	 the	 number	 of	 unique	 prediction	 values	 (probabilities	 of	

classifier).	For	each	of	the	thresholds,	the	FPR	and	TPR	are	calculated	and	plotted	against	
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each	other	(ROC	is	a	parametric	curve).	Thus,	the	ROC	curve	starts	from	the	origin	(i.e.,	TPR	

and	FPR	of	0)	with	the	threshold	chosen	such	that	all	samples	with	a	prediction	below	the	

highest	prediction	value	(i.e.	all	samples)	would	be	assigned	to	 the	negative	class.	At	 this	

threshold	 the	classifier	predicts	 that	all	 samples	belong	 to	 the	negative	class.	Conversely,	

the	ROC	curve	ends	at	the	point	(1,1)	with	all	samples	being	assigned	to	the	positive	class.	

The	 AUCROC	 is	 the	 area	 under	 the	 ROC	 curve.	 Thus,	 a	 perfect	 classifier	 would	 have	 an	

AUCROC	 of	 1,	 since	 it	 would	 predict	 all	 positives	 with	 no	 false	 positive	 cases	 for	 all	

thresholds	chosen.		A	random	classifier	would	have	an	AUCROC	of	0.50.	

	

Figure	2.	The	ROC	curve	for	both	pneumonia	and	COVID-19.	As	expected,	the	classifier	achieves	a	

higher	AUCROC	on	the	Pneumonia	dataset	than	on	the	COVID-19	dataset.		

	

Figure	 2	 shows	 the	ROC	 curves	with	 the	 corresponding	AUCROCs	 for	 both	diseases.	 The	

95%	confidence	intervals	were	calculated	by	bootstrapping	1000	samples.	As	expected	the	



Fahd	Hatoum	 Honors	Thesis	 		

	

15	

mean	AUCROC	score	of	0.89	 for	pneumonia	 is	much	higher	 than	 the	AUCROC	of	0.72	 for	

COVID-19	(note	the	non-overlapping	confidence	intervals).	These	results	indicate	that	the	

classifier	 is	 much	 better	 at	 learning	 the	 complex	 features	 of	 the	 training	 data	 for	

pneumonia	than	for	COVID-19.	This	validates	our	intuition	that	datasets	containing	images	

with	a	high	degree	of	similarity	and	overlap	between	classes	(such	as	COVID-19)	present	a	

harder	classification	task	than	image	datasets	containing	clear	differences	between	images	

(such	 as	 the	 opacities	 in	 the	 pneumonia	 dataset).	 This	 finding	motivates	 the	 subsequent	

sections	 in	 this	 thesis	 that	 compare	 the	effect	of	 feature	 complexity	on	 the	emergence	of	

double	descent	phenomenon	and	the	subsequent	location	of	the	interpolation	threshold.		

	

As	such,	in	this	next	section	of	the	thesis,	we	aim	to	uncover	the	impact	of	pretraining	on	

Imagenet	 and	 the	 effect	 of	 feature	 complexity	 on	 the	 existence	 and	 location	 of	 double	

descent.		

	

4. Pretraining	and	Double	Descent		

4.1. Experimental	Protocol	

Datasets:	the	same	datasets	for	both	pneumonia	and	COVID-19	as	in	section	3.1	were	used.	

Datasets	 were	 split	 into	 a	 train/test	 (80%/20%	 split)	 using	 stratified	 sampling	 on	 the	

disease	status.		

	

Models:	 In	all	subsequent	parts	of	this	thesis,	we	will	use	the	number	of	parameters	 in	a	

model	as	a	proxy	for	increasing	model	complexity.	In	practice,	researchers	in	the	medical	

imaging	field	in	an	effort	to	learn	more	complex	features	of	the	dataset	would	increase	the	
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number	of	parameters	by	increasing	the	number	of	features	maps.	In	a	Densenet	121,	this	

would	amount	to	increasing	the	growth	rate	k.	

However,	due	to	the	limited	time	and	computational	resources,	we	were	not	able	to	create	

Densenet	 models	 with	 different	 feature	 maps	 and	 train	 them	 on	 Imagenet.	 As	 such,	 we	

resorted	to	treating	the	base	Densenet	121	model	as	a	feature	extractor	whose	inputs	are	

then	transmitted	to	fully	connected	layers	placed	after	the	base	model	(specifically	after	the	

global	average	pooling	layer	which	combines	all	feature	maps	produced	in	the	CNN).	To	do	

so,	 we	 introduced	 a	 new	 dense	 layer	 before	 the	 final	 classification	 layer.	 To	 change	 the	

number	 of	 parameters,	 we	 varied	 the	 number	 of	 neurons	 in	 the	 layer.	 The	 number	 of	

neurons	 added	 were:	 4×10, 10!, 2×10!, 4×10!, 10!, 4×10! and 7×10! .	 Each	 model	

corresponding	to	a	specific	number	of	neurons	had	the	Imagenet	weights	loaded	onto	the	

base	models	layers.	All	models	were	later	fine-tuned	on	each	of	the	pneumonia	and	COVID-

19	datasets	separately.	To	compare	the	effect	of	pretraining,	each	model	was	also	trained	

from	scratch	on	both	datasets.	Furthermore,	for	each	of	these	settings,	the	behavior	of	the	

model	 was	 assessed	 for	 both	 early	 stopping	 and	 no	 early	 stopping	 instances.	 The	 loss	

function	used	was	again	binary	cross	entropy	loss.	Adam	optimizer	was	used	with	an	initial	

learning	rate	of	0.0001	and	a	learning	schedule	that	decreased	by	0.50	once	each	5	epochs	

when	the	 loss	yielded	no	 improvement.	All	models	were	run	 for	230	epochs	(or	 till	early	

stopping).	 Data	 augmentation	was	 also	 applied	 before	 class	 balancing	was	 used.	 Images	

were	horizontally	 flipped	and	rotated	with	a	range	of	±	5	degrees.	The	batch	size	was	32	

images.	 Finally,	 to	 make	 sure	 that	 the	 behavior	 observed	 is	 not	 due	 to	 the	 random	

initialization	of	the	layers,	this	process	was	repeated	3	times	for	all	models	with	different	

initialization	seeds.			
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Finally,	the	test	loss	(cross	entropy	loss)	was	plotted	against	the	number	of	parameters	to	

assess	the	presence	or	absence	of	double	descent	phenomenon.	Here,	the	test	loss	was	used	

instead	 of	 another	 metric	 such	 as	 the	 error	 or	 AUCROC	 due	 to	 the	 presence	 of	 an	

imbalanced	dataset	(which	the	2	metrics	above	are	affected	by)	and	due	to	the	intention	of	

this	 work	 to	 show	 a	 general	 approach	 to	 the	 double	 descent	 phenomenon	 in	 medical	

imaging	that	is	not	dependent	on	downstream	tasks	or	metrics.	It	is	also	pertinent	to	add	

that	plotting	the	test	loss	against	the	number	of	parameters	to	investigate	double	descent	is	

not	uncommon	and	has	been	done	by	Nakirran	et	al.	as	well	as	in	other	studies.			

	

4.2. Results	and	Discussion	

	

Figure	3.	The	average	loss	(test	and	train)	as	well	as	the	standard	deviation	across	three	trials	are	

plotted	against	the	number	of	parameters	for	both	COVID-19	and	Pneumonia.	The	first	rows	show	
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the	combination	of	conditions	that	include	pre-training	and	early	stopping.	The	last	row	shows	the	

train	loss	for	pre-training	and	no	pretraining	conditions.	

	

As	seen	 from	Figure	3,	no	double	descent	phenomenon	 is	observed	 for	both	diseases.	All	

test	 loss	 curves	 except	 those	pertaining	 to	 the	no-pretraining	 case	 for	COVID-19	 achieve	

approximately	zero	 training	 loss.	This	observation	added	 to	 the	 fact	 that	 the	 test	 loss	 for	

these	models	fluctuates	around	a	constant	mean	might	suggest	that	these	models	are	in	the	

over-parameterization	 regime	 with	 respect	 to	 this	 model	 architecture	 and	 training	

procedure.	The	no-pretraining	 case	 for	COVID-19	was	not	 able	 to	 interpolate	 all	 training	

example.	This	might	have	due	to	the	fact	that	the	addition	of	hidden	neurons	only	serves	to	

increase	the	combination	of	features	and	not	the	number	of	features	maps	learned.	Other	

reasons	 include	 the	 insufficient	 training	 time	 to	 convergence	 and	 the	 lack	 of	 a	 batch	

normalization	 layer.	With	 the	 addition	 of	 pre-training	 the	 COVID-19	models	 are	 able	 to	

reach	 zero	 training	 loss,	 which	 might	 suggest	 that	 pre-training	 helps	 lower	 the	

interpolation	 threshold.	As	expected	 the	addition	of	pre-training	and	early	stopping	does	

help	to	lower	the	test	loss	for	all	models.	However,	with	no	early	stopping,	the	pre-training	

condition	 allows	 the	 models	 to	 overfit	 which	 leads	 to	 a	 higher	 test	 loss	 than	 the	 no-

pretraining	condition.		

	

These	 results	 suggest	 that	pre-training	might	 reduce	model	 complexity	 and	 the	heuristic	

applied	 that	 the	 number	 of	 parameters	 N	 needs	 to	 be	 much	 larger	 than	 the	 number	 of	

samples	D	(i.e.,	N≫D)	trained	on	does	not	apply	 in	this	case	of	pre-training.	When	taking	

the	notion	 of	 effective	model	 complexity	 as	 in	Nakirran	 et	 al.	 that	 considers	 the	 training	

procedure	in	its	definition,	this	result	is	not	surprising	[9].	However,	when	considering	the	
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notion	 of	 model	 complexity	 classically	 (classical	 statistics)	 such	 as	 is	 the	 case	 with	 the	

Rademacher	complexity,	which	does	not	 include	the	training	procedure,	 this	result	might	

seem	counter-intuitive.	Other	observations	from	Figure	3	include	the	expected	result	that	

early	stopping	leads	to	better	generalization	and	a	lower	test	loss.	One	observation	is	that	

the	early	stopping	and	no	early	stopping	loss	do	not	achieve	the	same	loss	as	 is	expected	

when	a	model	is	over-parameterized.	One	of	the	reasons	for	this	result	might	be	due	to	the	

lower	number	of	epochs	trained	in	this	setting.	As	the	double	descent	phenomenon	can	also	

happen	 as	 a	 function	 of	 the	 number	 of	 epochs,	 our	 models	 might	 be	 in	 the	 critically	

parameterized	regime	with	regard	to	training	time/number	of	epochs.	This	behaviour	was	

also	observed	in	[9].		

	

In	the	subsequent	section,	we	will	investigate	how	the	double	descent	phenomenon	scales	

with	respect	to	dataset	size	and	the	number	of	parameters.		

	

5. Impact	of	Model	Width,	Data	Size	on	Double	Descent		

5.1. Experimental	Protocol		

Datasets:		

For	each	disease,	 three	 training	sets	were	sampled	of	 sizes	303,	3026	and	22926.	For	all	

training	 set	 sizes	 considered	 in	 this	 section,	 all	 were	 tested	 on	 the	 same	 dataset	 of	 size	

5730.		

Models:	

To	 increase	 the	 number	 of	 parameters	 we	 increase	 the	 number	 of	 feature	 maps.	 As	

discussed	earlier,	increasing	the	number	of	parameters	in	this	manner	would	be	more	akin	



Fahd	Hatoum	 Honors	Thesis	 		

	

20	

to	 how	 researchers	 would	 increase	 the	 complexity	 of	 their	 models.	 Again,	 due	 to	

computational	 limitations,	we	were	not	able	to	train	these	models	on	Imagenet.	6	models	

were	built	with	the	following	growth	size:	1,	8,	12,	32,	48	and	58.		

	

For	each	of	these	settings,	the	behavior	of	the	model	was	assessed	for	both	early	stopping	

and	 no	 early	 stopping	 instances.	 The	 loss	 function	 used	was	 again	 binary	 cross	 entropy	

loss.	 Adam	 optimizer	 was	 used	 with	 an	 initial	 learning	 rate	 of	 0.0001	 and	 a	 learning	

schedule	 that	 decreased	 by	 0.50	 once	 each	 5	 epochs	 when	 the	 loss	 yielded	 no	

improvement.	 All	 models	 were	 run	 for	 200	 epochs	 (or	 till	 early	 stopping).	 Data	

augmentation	was	also	applied	before	class	balancing	was	used.	Images	were	horizontally	

flipped	and	rotated	with	a	range	of	±	5	degrees.	The	batch	size	was	32	images.	Finally,	to	

make	sure	that	the	behavior	observed	is	not	due	to	the	random	initialization	of	the	layers,	

this	process	was	repeated	3	times	for	all	models	with	different	initialization	seeds.			
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5.2. Results	and	Discussion	

	

Figure	 4.	The	average	 loss	 (and	 the	standard	deviation)	across	 three	 trials	 is	plotted	against	 the	

number	 of	 parameters	 (varying	 growth	 rate)	 for	 both	 COVID-19	 and	 Pneumonia.	 Each	 subplot	

shows	 either	 the	 test	 loss	 or	 train	 loss	 for	 different	 training	 set	 sizes:	 22926,	 3026,	 and	 303.	 In	

addition,	the	early	stopping	behavior	for	all	models	tested	is	also	reported.		

	

As	seen	in	figure	4,	the	double	descent	phenomenon	is	observed	for	the	case	of	pneumonia	

with	 22926	 samples	 with	 the	 critically	 parameterized	 regime	 beginning	 at	 1,001,964	

parameters	 (k=12).	 This	 observation	 was	 made	 given	 that	 all	 models	 after	 1,001,964	

achieve	 approximately	 zero	 training	 loss	 while	 still	 not	 converging	 to	 the	 minimum	

measured	 loss	 of	 0.45.	 	 As	 the	 training	 size	 decreased,	 the	 test	 loss	 increased	 and	 the	
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double	descent	is	no	longer	observed	(Figure	4).	Instead,	we	observe	a	monotonic	increase	

of	the	test	loss	for	both	training	sample	sizes	(i.e.,	training	set	sizes	of	303	and	3026).	Since	

for	 models	 that	 have	 more	 than	 1,001,964	 parameters	 still	 achieve	 approximately	 zero	

training	loss,	it	is	suspected	that	the	interpolation	peak	shifted	to	the	left	(towards	models	

with	 lower	complexity)	and	the	corresponding	test	 loss	 for	 that	range	of	models	was	not	

sampled.	However,	 since	 the	 test	 loss	 has	 still	 not	 converged	 to	 the	minimum	measured	

loss	 for	 both	 sample	 sizes,	 then	 we	 can	 state	 that	 models	 with	 more	 than	 7,038,529	

parameters	(k=32)	are	in	the	critically	parameterized	regime.	Consequently,	increasing	in	

the	number	of	training	size	past	22926	samples	might	produce	an	increase	in	the	test	loss	

as	opposed	to	a	decrease	as	seen	in	[9].	This	is	because	increasing	the	size	of	the	training	

set	 shifts	 the	 interpolation	 threshold	 to	 models	 that	 are	 more	 complex.	 As	 such,	 even	

though	 the	 maximum	 test	 loss	 might	 decrease	 in	 amplitude,	 the	 test	 loss	 might	 still	 be	

higher	than	the	measured	test	 loss	 for	a	smaller	sample	size.	Furthermore,	 from	figure	4,	

we	also	observe	that	for	the	smaller	sample	sizes,	the	early	stopping	behavior	matches	the	

no	 early	 stopping	 condition,	 which	 might	 suggest	 that	 for	 these	 sample	 sizes	 further	

regularization	is	required	(e.g.,	drop	out	layer,	weight	decay).		

	

For	the	COVID-19	datasets,	the	training	loss	was	approximately	zero	only	for	models	with	

more	 than	 7,038,529	 parameters	 trained	 on	 the	 smallest	 sample	 sizes	 of	 3026	 and	 303	

images.	As	in	the	pneumonia	case,	double	descent	might	not	have	been	observed	because	

the	corresponding	test	 loss	 for	 that	range	of	models	where	the	 interpolation	peak	occurs	

was	 not	 sampled.	 As	 expected,	 with	 the	 increase	 of	 the	 training	 size,	 the	 interpolation	

threshold	 is	 pushed	 to	 higher	model	 complexities	 and	 it	 takes	more	 feature	maps	 for	 a	



Fahd	Hatoum	 Honors	Thesis	 		

	

23	

model	to	approach	zero	training	loss.	As	such,	the	observation	of	an	increasing	test	loss	and	

a	 non-zero	 training	 loss	 suggests	 that	 for	 these	 bigger	 samples,	 the	 models	 tested	 are	

located	 in	 the	 increasing	 test	 loss	 portion	 of	 the	 under-parameterized	 regime.	 However,	

problems	in	the	training	procedure	(e.g.,	 low	number	of	epochs,	small	batch	size…)	might	

have	led	the	models	to	not	achieve	close	to	zero	training	loss.	In	comparison	with	the	case	

of	 pneumonia,	 this	 was	 to	 be	 expected	 since	 as	 datasets	 containing	 images	 with	 a	 high	

degree	 of	 similarity	 and	 overlap	 between	 classes	 (COVID-19)	 present	 a	 harder	

classification	 task	 than	 image	 datasets	 containing	 clear	 differences	 between	 images	

(pneumonia).	Furthermore,	from	figure	4,	as	in	the	case	for	the	pneumonia	dataset,	we	also	

observe	that	for	the	smaller	sample	sizes,	the	early	stopping	behavior	matches	the	no	early	

stopping	condition.		

	

Finally,	please	note	that	the	difference	 in	the	test	 loss	between	the	7,038,529	parameters	

models	trained	in	this	section	and	earlier	might	be	due	to	the	increased	epoch	number	and	

the	different	architecture.		
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6. Conclusion	and	Future	Work	

In	this	thesis,	we	investigated	how	various	factors	such	as	pretraining,	model	width,	data	

complexity	 and	 dataset	 size	 affect	 whether	 a	 prebuilt	 DL	 model	 (Densenet	 121)	 that	 is	

frequently	 used	 in	 medical	 imaging	 is	 under-parameterized	 or	 over-parameterized	 with	

respect	 to	 its	 training	distribution.	We	 found	that	pre-training	helped	models	 learn	more	

complex	 features	of	 their	 training	set	which	subsequently	allowed	 them	to	become	over-

parameterized	with	 respect	 to	 their	 training	data	and	procedure.	We	also	 found	 that	 the	

use	 of	 images	 that	 have	 a	 high	 degree	 of	 similarity	 (COVID-19)	 presented	 a	 more	

challenging	 task	 for	 the	 classifier.	 The	 increased	 complexity	 of	 the	 data	 shifted	 the	

interpolation	 threshold	 to	 higher	 model	 complexity	 values	 and	 as	 such	 even	 for	 small	

datasets,	 classifiers	 trained	 with	 COVID-19	 data	 were	 still	 in	 the	 under-parameterized	

regime.	 However,	 these	 same	 classifiers,	 when	 trained	 on	 the	 Pneumonia	 dataset,	 were	

either	 critically	 parameterized	 or	 over-parameterized	 with	 respect	 to	 their	 training	

procedure	 and	 data.	 This	 finding	 might	 have	 been	 surprising	 given	 that	 the	 number	 of	

parameters	 for	 some	 of	 the	 models	 was	 much	 bigger	 than	 the	 training	 set	 size.	

Consequently,	we	also	found	that	these	models	in	the	over-parameterization	regime	do	not	

improve	 their	 test	 loss	 (i.e.,	 generalizing	 ability)	 even	 when	 their	 training	 set	 size	 is	

increased	tenfold.		

	

Given	that	the	success	of	DL	models	in	radiology	is	due	to	their	over-parameterization,	and	

given	the	above	results,	it	becomes	important	for	researchers	in	the	medical	imaging	field	

to	not	use	heuristics	as	the	ones	researchers	in	computer	vision	use	to	develop	DL	models	

for	natural	images.	While	the	work	presented	in	this	thesis	has	aimed	to	support	this	claim,	
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further	research	that	covers	a	greater	scope	of	models	(both	in	terms	of	architecture	and	

number	of	model	parameters),	diseases,	and	different	training	procedures	(e.g.,	 impact	of	

fine-tuning	 on	 medical	 image	 data	 on	 interpolation	 threshold,	 impact	 of	 self-supervised	

learning…)	is	needed.	Furthermore,	a	more	grounded	theoretical	approach	that	can	explain	

the	 location	of	 the	 interpolation	 threshold	 in	 the	presence	of	 factors	 such	as	pretraining,	

model	width,	data	complexity	and	dataset	size	is	also	needed.	For	the	latter,	an	interesting	

case	for	medical	images	would	be	to	relate	the	interpolation	threshold	with	the	degree	of	

similarity	 between	 images	 in	 a	 dataset.	 An	 approach	 to	 study	 such	 a	 case	 might	 apply	

methods	from	random	matrix	theory	along	with	the	use	of	random	feature	models	and	low-

level	statistics	(e.g.,	use	of	entropy	or	cosine	similarity	to	estimate	the	similarity	of	images	

within	a	distribution)	to	derive	bounds	within	which	the	interpolation	peak	can	be	located.	
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