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Abstract

Local-global principles for hermitian spaces over semi-global fields

By Jayanth Guhan

This dissertation studies the Hasse principle for projective homogenous spaces

under unitary groups over semi-global fields. Let K be a complete discrete valued

field with residue field k and F the function field of a curve over K. Let A ∈ 2Br(F )

be a central simple algebra with an involution σ of any kind and F0 = F σ. Let

h be an hermitian space over (A, σ) and G = SU(A, σ, h) if σ is of first kind and

G = U(A, σ, h) if σ is of second kind. Suppose that char(k) ̸= 2 and one of the

following holds;

a) ind(A) ≤ 4;

b) For every finite extension ℓ/k, every element in 2Br(ℓ) has index at most 2.

Then we prove that projective homogeneous spaces under G over F0 satisfy a local-

global principle for rational points with respect to discrete valuations of F . The proof

implements patching techniques of Harbater, Hartmann and Krashen. Furthermore,

we shall prove a Springer-type theorem for isotropy of hermitian spaces over odd

degree extensions of function fields of p-adic curves.
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Chapter 1

Preliminaries

1.1 Central Simple Algebras

We refer to readers to [10] for further information on central simple algebras.

Let K be a field. Let A be a finite dimensional associative algebra over K with

center Z(A). We say that A is central if K = Z(A). Furthermore, A is simple if it

has no non-trivial two-sided ideals. By a theorem of Wedderburn, it is known that

every central simple algebra A is isomorphic to Mn(D), where D is a central division

algebra over K and D and n are uniquely determined upto isomorphism. We say that

a central simple algebra is split (over K) if A ∼= Mn(K).

The tensor product A⊗K B of K-central simple algebras A and B is a K-central

simple algebra. We define an equivalence relation on the set of all central sim-

ple algebras over K by; A ∼ B if there exist positive integers m1,m2 such that

A ⊗K Mm1(K) ∼= B ⊗K Mm2(K). Then the tensor product gives a a well defined

operation on the set of equivalence classes of K-central simple algebras and it is a

group under this operation. This group is called the Brauer group of K, denoted by

Br(K). The Brauer group is an abelian group. The identity element of this group is
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the class of all matrix rings over K. The inverse of [A] is given by [Aop], the opposite

ring of A. We denote the n-torsion subgroup of Br(K) by nBr(K).

Let A = Mm(D) be aK-central simple algebra with an underlying division algebra

D. The dimension of a K-central simple algebra A over K is always a square, say n2.

The degree of A over K is given by n; deg(A) =
√

dimK(A). The index of A is given

by the degree of the underlying division algebra D over K; ind(A) = deg(D). The

period or exponent of A is given by the order of [A] in Br(K); per(A) = ord([A]). An

interesting fact is that per(A)|ind(A) and they always share the same prime factors

([10], Proposition 4.5.13).

Example. Let K be a field of characteristic not 2. A central simple of algebra of

degree 2 over K is called a quaternion algebra. For a, b ∈ K∗, let (a, b)K denote the

quaternion algebra over K generated by {1, i, j, ij} with the relations i2 = a, j2 =

b, ij = −ji. Furthermore, every central simple algebra of index 2 is Brauer equivalent

to a quaternion algebra over the underlying field.

Let R be a commutative ring. Let A be an R-algebra and Aop the opposite ring of

A. Then A is a left A⊗Aop-module via the action (a⊗ bo)x = axb for all a, b, x ∈ A.

We say that A is an Azumaya algebra over R if A is central over R, finitely generated

R-module and projective as left module over A⊗Aop. Two Azumaya algebras A and

B are Brauer equivalent if there exist finitely generated faithful projective modules

P and Q over R such that A⊗R EndR(P ) ∼= B ⊗R EndR(Q). We may construct the

Brauer group Br(R), an abelian group whose underlying set is the set of all equivalence

classes of Azumaya algebras over R under Brauer equivalence. As above, the group

operation is given by tensoring two algebras over R, and the identity element is given

by the class of EndR(P ), where P is finitely generated projective R-module.

Theorem 1.1.1. ([3], 6.5) Let R be a complete local ring with residue field k. Then



3

the canonical map Br(R) ∼= Br(k) is an isomorphism.

Let R be a regular local ring and K its field of fractions. We say that a central

simple algebra B over K is unramified on R is there is an Azumaya algebra A over

R with B ≃ A⊗R K. If B is not unramified then we say that A is ramified.

Let X be a regular integral scheme with the field of fractions K and B a central

simple algebra over K. Let x ∈ X be a point. We say that B is unramified (resp.

ramified) at x if it is unramified (resp. ramified) on the local ring at x.

If ν is a discrete valuation on a field K and B is a central simple algebra over K

we say that B is unramified (resp. ramified) at ν if it is unramified (resp. ramified)

on the valuation ring at ν.

1.2 Involutions and Hermitian Forms

Let A be a ring with identity. An involution σ on A is given by a map σ : A −→ A

such that σ(xy) = σ(y)σ(x), σ(x+ y) = σ(x)+σ(y) and σ(σ(x)) = x for all x, y ∈ A.

Suppose that A is a central simple algebra over a field K with an involution σ. One

may consider Kσ = {α ∈ K|σ(α) = α}. Since σ has order 2, [K : Kσ] ≤ 2. If

[K : Kσ] = 1, σ is called an involution of the first kind. If [K : Kσ] = 2, σ is called

an involution of the second kind.

Let (A, σ) be a central simple algebra over a field K of degree d with an involution

σ. Let Aσ = {x ∈ A|σ(x) = x}. An involution σ of first kind on A is called orthogonal

if dimK(A
σ) =

d(d+ 1)

2
and symplectic if dimK(A

σ) =
d(d− 1)

2
. An involution σ on

A of second kind is called unitary involution.

Example. LetK be a field and A = (a, b) a quaternion algebra overK with a, b ∈ K∗.

Let i, j ∈ A be the standard generators of A with i2 = a, j2 = b and ij = −ji. Then
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there is a unique involution σ on A with σ(i) = −i and σ(j) = −j. Then σ is a

symplectic involution and it is called the canonical involution on A.

Remark. Notice that if σ is an involution of the first kind, then A has period 2, since

an involution defines an isomorphsim A ∼= Aop.

Let K be a field of characteristic not 2. Let A be a central simple over K. Let V

be a finitely generated module over A. Then A = Mm(D) for some division algebraD.

Therefore V = (Dm)s for some positive integer s. The reduced dimension rdimA(V )

of V over A is defined to be
dimK(V )

deg(A)
= s · ind(A).

Let (A, σ) be a central simple algebra over a field K with an involution σ. Let

V be a finitely generated right A-module and ε = ±1. A map h : V × V −→

A is called an ε-hermitian form over (A, σ) if h(x + x′, y) = h(x, y) + h(x′, y),

h(x, y+ y′) = h(x, y)+h(x, y′) and h(xa, yb) = σ(a)h(x, y)b, h(x, y) = εσ(h(y, x)) for

all x, y, x′, y′ ∈ V , a, b ∈ A. If ε = −1, then h is called a skew hermitian form, else it

is simply a hermitian form.

Consider the dual space of V , V ∗ = HomA(V,A). The dual space can be viewed

as a right A-module given by (f ∗ a)(x) = σ(a)f(x) for all f ∈ V ∗, x ∈ V, a ∈ A.

Then a hermitian form h induces a right A-module homomorphism h̃ : V −→ V ∗

given by h̃(x)(y) = h(x, y). If such a map is an isomorphsim, then h is referred to as

a hermitian space. The rank of h is given by Rank(h) =
dimK(V )

ind(A)deg(A)
= s.

Suppose now that (D, σ) is a central division algebra over K (char(K) ̸= 2) with

an involution σ and V is a finite dimensional right vector space over D. Then V ∼= Dn

for some positive integer n. Let ε = ±1. Suppose that if ϵ = −1, then ind(D) ≥ 2.

If h is an ε-hermitian form on D, then there exist ai ∈ D∗ such that σ(ai) = εai

and h(x, y) =
∑n

i=1 σ(xi)aiyi for all (xi), (yi) ∈ Dn. We write h = ⟨a1, · · · an⟩, with
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Rank(h) = dimD(V ) = n.

Example. If A = K, σ is the identity map, and ε = 1, then a hermitian form

h is a symmetric bilinear form and qh(x) = h(x, x) for all x ∈ V is a quadratic

form. Conversely, let q : V −→ K be any quadratic form. Consider the associated

symmetric bilinear form bq(x, y) =
1

2
(q(x+ y)− q(x)− q(y)). Then bq is a hermitian

form over K.

Let A be a central simple algebra over a field K. Let V be a finitely gener-

ated A-module. Let E = EndA(V ). Let ε = ±1 and (V, h) be a ε-hermitian form

on (A, σ). Define the adjoint involution of h given by adh, which satisfies the re-

lation h(x, f(y)) = h(adh(f)(x), y) for all x, y ∈ V and f ∈ E. Suppose that

rdim(V ) = 2r and adh is orthogonal. Then define the determinant of h given by

det(h) = NrdEndA(V )/K(f) ∈ K∗/K∗2 for f ∈ EndA(V ) such that adh(f) = −f .

This definition is independent of the choice of f . Define the discriminant of h by

disc(h) = (−1)r det(h). For example, if (A, σ, h) is a division algebra with adh

an orthogonal form and h = ⟨a1, a2 · · · a2t⟩ then det(h) = NrdA/K(a1a2 · · · a2t) and

disc(h) = (−1)t deg(A)NrdA/K(a1a2 · · · a2t), both in K∗/K∗2.

An ε-hermitian form (V, h) on (A, σ) is called isotropic if there exists a non-zero

vector x ∈ V such that h(x, x) = 0. It is called anisotropic if

h(x, x) = 0

iff x = 0. A subspace W ⊂ V is called totally isotropic if h(W,W ) = 0.

Suppose that B is a central simple algebra over a field K with an involution τ .

Then τ is said to be isotropic if there exists b ∈ B such that τ(b)b = 0. A right

ideal I of B is totally isotropic if τ(b′)b = 0 for all b′ ∈ I and b ∈ B. Suppose that
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B = EndDV and τ = adh, the adjoint involution of h. Then h is isotropic if and only

if τ is. If A = D is a division algebra, then a subspace W ⊂ V is isotropic if and only

if the ideal I = HomD(V,W ) is an isotropic ideal of B.

Example. Let A be a central simple algebra over a field K with an involution σ. Let

V be a finitely generated right A-module. Consider the ε-hermitian space (V ⊕V ∗,H)

over (A, σ), where

H((x, f), (y, g)) = f(x) + εσ(g(y))

for all f, g ∈ V ∗ and x, y ∈ V . Then the subspaces of H given by V ⊕ 0 and 0 ⊕ V ∗

are totally isotropic. The space (V ⊕ V ∗,H) is called the hyperbolic space on V .

Suppose that (V1, h1) and (V2, h2) are two ε-hermitian spaces over a K-central

simple algebra (A, σ). Define the orthogonal sum of V1 and V2 to be the ε-hermitian

space (V1 ⊕ V2, h1 ⊥ h2), where

(h1 ⊥ h2)((u1, v1), (u2, v2)) = h1(u1, u2) + h2(v1, v2)

for all u1, u2, v1, v2 ∈ V1, V2. Orthogonal sum of hyperbolic spaces is a hyperbolic

spaces. Under the operation orthogonal sum, the set of isomorphism classes of ε-

hermitian forms form an abelian monoid. We can construct the Grothendieck group

KU ε(A, σ) from this abelian monoid, making it an abelian group. The Witt group

W ε(A, σ) is the quotient of the Grothendieck group KU ε(A, σ) by the subgroup of

hyperbolic spaces inKU ε(A, σ). If A = D is a division algebra, then every ε-hermitian

form h can be written uniquely as an orthogonal sum h = han ⊥ hhyp, where han is

anisotropic and hhyp is hyperbolic. Two hermitian spaces h1 and h2 over (D, σ) are

said to be Witt equivalent if their anisotropic parts are isomorphic. Two hermitian

spaces are Witt equivalent if and only if they represent the same element in W ε(D, σ).

The group operation is given by orthogonal sum; [h1] ⊥ [h2] = [h1 ⊥ h2]. The
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identity element is given by the class pf hyperbolic plane H and the inverse is given

by −[h] = [−h].

Let A = K, σ = id and ϵ = −1. Then every ϵ-hermitian space over (A, σ)

is hyperbolic and two ϵ-hermitian spaces are isometric if and only they have same

dimensions. For the rest of the thesis we assume that if ϵ = −1, then ind(A) ≥ 2.

Let (K, ν) be a discrete valued field with valuation ring Rν , maximal ideal mν

and residue field k(ν) = Rν/mν , char(k(ν)) ̸= 2. Let (R̂ν , m̂ν) be the completion

of (Rν/mν) and Kν = Frac(R̂ν). Let ν̂ be the extension of ν to Kν . We have

k(ν̂) = R̂ν/m̂ν = k(ν). Let D be a finite-dimensional division algebra over K with

an involution σ such that Z(D)σ = K. Suppose that D ⊗K Kν is a division algebra

over Kν . Then the valuation ν̂ on Kν extends to a unique valuation ν ′ on Z(D⊗Kν)

such that;

ν ′(x) =
1

[Z(D ⊗Kν) : Kν ]
ν(NZ(D⊗Kν)/Kν (x))

for all x ∈ Z(D⊗KKν)
∗. Furthermore, ν ′ extends to a valuation w on D⊗KKν given

by;

w(x) =
1

ind(D ⊗Kν)
ν ′(NrdD⊗Kν/Z(D⊗Kν )(x))

for all x ∈ (D ⊗K Kν)
∗. The restriction of w to D is a valuation given by w(x) =

1

ind(D)
ν(NrdD/Z(D)(x)). Let tD be a parameter of (D,w) ([27], 13.2). Then we can

choose πD ∈ D such that σ(πD) = ±πD and w(πD) ≡ w(tD)mod 2w(D∗) ([19], 2.7).

Let Λw = {x ∈ D∗ | w(x) ≥ 0} ∪ {0} be the valuation ring of w and mw = {x ∈ D∗ |

w(x) > 0}∪{0} be the maximal ideal of Λ. Let Dw = Λw/mw be the division algebra

over the residue field k(v) . Let qw : Λw → Dw be the quotient map. Then we an

involution σw on Dw given by σw(qw(x))) = qw(σ(x)) for all x ∈ Λw ([27], 13.2).

Suppose that (V, h) is a ε-hermitian space over a division algebra (D, σ) for ε ∈

{−1, 1}. There is an orthogonal basis of V such that h has a diagonal form h =

⟨a1, · · · am⟩, where ai ∈ D and σ(ai) = εai for all i. If w(ai) = 0 for all i, then
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qw(h) = ⟨qw(a1), · · · qw(am)⟩ is a ε-hermitian space over (Dw, σ(w)). Up to isometry,

we may assume that any hermitian space h over (D, σ) has diagonal entries with

w-value either 0 or w(tD) ([19], 2.20).

Proposition 1.2.1. ([19], 3.27, 3.29) Let (V, h) be a ε-hermitian space over a divi-

sion algebra (D, σ) for ε ∈ {−1, 1}. Let πD ∈ D be as above. Suppose that σ(πD) =

ε′πD for ε′ ∈ {−1, 1}. Then there is a unique decomposition hKν = h1 ⊥ h2πD, where

h1 is a ε-hermitian form over (D ⊗ Kν , σ ⊗ IdKν ) and h2 is a εε′-hermitian form

over (D ⊗Kν , Int(πD) · σ ⊗ IdKν ). Each diagonal entry of h1 and h2 has w-value 0.

Furthermore, the following are equivalent;

a) h is isotropic.

b) h1 or h2 is isotropic.

c) qw(h1) or qw(h2) is isotropic.

1.3 Linear Algebraic Groups

Let F be a field. An algebraic group G is an affine variety over F along with a group

structure that is compatible with the variety structure such that the multiplication

map m(x, y) = xy and the inverse map i(x) = x−1 are morphisms of varieties.

Remark. Let Groups be the category of groups and group homomorphisms. Let

AlgebrasF be the category of unital associative commutative algebras over F and

F -algebra homomorphisms. A variety G over F is an algebraic group over F if its

functor of points is from AlgebrasopF to Groups. A morphism between two algebraic

groups is a natural transformation of their functor points.

Example.
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1. The general linear group over a field F is given by a functorGLn : AlgebrasopF −→

Groups such that GLn(L) is the set of invertible n × n matrices with entries

in L.

2. The multiplicative group over a field F is given by a functorGm : AlgebrasopF −→

Groups such that Gm(L) = L∗.

For the rest of this dissertation, a variety over F will be a geometrically reduced

separated scheme of finite type over F . Let L|F be a field extension and X be a

variety over F . Then define XL = X ×Spec(F ) Spec(L) as the scalar extension of X to

L. Denote XKsep by Xsep. Define X(L) = HomSpec(F )(Spec(L), X) as the L-points of

X.

A connected linear algebraic group G over F is rational if its function field F(G)

is a purely transcendental extension of F.

Example.

1. The general linear group GLn over F is a rational linear conncected group over

F since it is open in An2

F . We can say the same about the algebraic group

PGLn, the projective linear group over F . For any central simple algebra A

over F of degree n, the algebraic groups GLn(A) and PGLn(A) are also rational

connected linear groups over F .

2. Let F be a field of characteristic not 2. Let L be a quadratic field extension of

F . Let A be a central division algebra over L and σ be an involution on A of the

second kind such that Lσ = F . Let V be a finitely generated right A-module.

Let h : V × V −→ A be an ε-hermitian form for ε = ±1. The unitary group

of A is defined to be U(A, σ, h) = {f ∈ EndA(V )∗|h(f(x), f(y)) = h(x, y)}. Let

adh be the adjoint involution of h in EndA(V ). Let UEndA(V ), adh) = {f ∈

EndA(V )∗|f ◦ adh(f) = IdV }. Then U(A, σ, h) ∼= U(EndA(V ), adh). By ([17],
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23A), U(A, σ, h) is a connected linear algebraic group. By Cayley parametriza-

tion ([8], Lemma 5), it is a rational group as well.

3. Let F be a field of characteristic not 2. Let A be a central simple algebra over F .

Let σ be an involution on A of the first kind. Let V be a finitely generated right

A-module. Let h : V ×V −→ A be an ε-hermitian form for ε = ±1. The special

unitary group of is defined to be SU(A, σ, h) = {f ∈ EndA(V )∗|h(f(x), f(y)) =

h(x, y), det(f) = 1}. By ([17], 23A), SU(A, σ, h) is a connected linear algebraic

group. By Cayley parametrization ([8], Lemma 5), it is a rational group as well.

1.4 Projective Homogeneous Spaces

Definition. Let G be an algebraic group over K and X an algebraic variety over K.

We say that X is a homogeneous space under G if G acts on X on the left and G(L)

acts on X(L) transitively for all associative K-algebras L.

Remark. The above definition is equivalent to the surjectivity of the map ϕ : G(L)×

X(L) −→ X(L) × X(L), where ϕ(g, x) = (x, gx) for all g ∈ G(L) and x ∈ X(L).

A homogeneous space X is said to be a principal homogeneous space under G if the

map ϕ is a bijection for all associative K-algebras L.

Definition. Let G be an algebraic group over K and X an algebraic variety over

K. We say that X is a projective homogeneous space under G if X is a homogeneous

space under G and a projective variety over K.

Let F be an arbitrary field, char(F ) ̸= 2. Let A be a central simple algebra whose

center L is a field extension of F . Let σ be an involution on A such that Lσ = F .

Suppose that V is a finitely generated A-module and h : V ×V −→ A is a ε-hermitian

form over (A, σ) with ε ∈ {−1, 1}. Let G(A, σ, h) = SU(A, σ, h) if σ is an involution

of the first kind, else let G(A, σ, h) = U(A, σ, h). Then G(A, σ, h) is a connected
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rational linear group with rank n such that the reduced dimension of V is n+ 1 if σ

is unitary, 2n+ 1 if A = F and dim(V ) is odd, 2n otherwise.

Let 0 < n1 < · · ·nr = n be an increasing sequence of positive integers. For every

field extension L of F , define X(n1, n2, · · ·nr)(L) as the set;

{(W1, · · ·Wr)|0 ⊊ W1 ⊂ · · · ⊂ Wr,Wi is a totally isotropic subspace of V⊗L, rdimAL
Wi =

ni,∀1 ≤ i ≤ r}

Alternatively, we may define X(n1, n2, · · ·nr)(L) as;

{(I1, · · · Ir)|0 ⊊ I1 ⊂ · · · ⊂ Ir, Ii is a totally isotropic ideal of EndAL
V ⊗ L, rdimAL

Ii =

ni,∀1 ≤ i ≤ r}.

If r = 1, we write X(n1) := Xn1 .

Lemma 1.4.1. ([20],[21], sec.5 and sec 9) Let L|F be a field extension and n1, · · ·nr

be an increasing sequence of positive integers as above. Then;

a) X(n1, n2, · · ·nr)(L) ̸= ∅ iff Xnr(L) ̸= ∅ and ind(AL)| gcd(n1, · · ·nr).

b) Xε(n1, n2, · · ·nr)(L) ̸= ∅ iff Xε
nr
(L) ̸= ∅ and ind(AL)| gcd(n1, · · ·nr).

Example.

1. A generalized Severi-Brauer variety over SBr(A) of A over F is described as

follows;

SBr(A)(L) = {I|I is a right ideal of AL, rdimAL
(I) = r}

for all field extensions L|F . SBr(A) is a projective homogeneous space un-

der PGLn(A), where PGLn(A) acts on SBr(A) by left multiplication. The set

of projective homogeneous space under PGLn(A) is given by {(X(n1, · · ·nr)|0 <

n1 · · · < nr < n}, where for all field extensions L|F , Y (n1, · · ·nr)(L) = {(I1, · · · Ir) ∈∏r
i=1 SBni

(A)(L)|0 ⊂ I1 · · · Ir}.
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2. Consider the group U(A, σ, h). The set of projective homogeneous spaces under

this group is given by {(X(n1, · · ·nr)|0 ≤ n1 · · · ≤ nr ≤ ⌊n/2⌋} ([21], 9.1).

3. Consider the group SO2n+1(q). Let Xq be the projective homogeneous space

given by Proj

(
Sym(V )∗

(q)

)
. Let L|F be a field extension. Then qL is isotropic

over L iff Xq(L) ̸= ∅. The set of projective homogeneous spaces under this

group is given by {(X(n1, · · ·nr)|0 ≤ n1 · · · ≤ nr ≤ n} ([20], 5.II).

4. Consider the group SU(A, σ, h). Let adh be orthogonal: either σ is orthogonal

and h is hermitian, or σ is symplectic and h is skew-hermitian. Let disc(h) ̸= 1.

Then the set of projective homogeneous spaces under this group is given by

{(X(n1, · · ·nr)|0 ≤ n1 · · · ≤ nr < n} ([20] 5.III).

5. Continuing from the last example, let disc(h) = 1, r = 1, n1 = n. Then X has

two connected components, say X+ and X−. We may define;

X+(n1, n2 · · ·nr) = {(I1, · · · Ir) ∈ (X(n1, · · ·nr)(L)|Ir ∈ X+
n (L)}

X−(n1, n2 · · ·nr) = {(I1, · · · Ir) ∈ (X(n1, · · ·nr)(L)|Ir ∈ X−
n (L)}

Therefore the set of projective homogeneous spaces under the group SU(A, σ, h) =

{(X(n1, · · ·nr)|0 ≤ n1 · · · ≤ nr < n} ∪X+
n ∪X−

n ∪ {(Xε(n1, · · ·nr)|0 ≤ n1 · · · ≤

nr−1 < n− 1, nr = n, r > 1, ε = ±1} ([20] 5.IV).

1.5 Morita Equivalence

Let F be a field and A = Mm(D) a central simple algebra over F for a central

division algebra D over F . Suppose that A has an involution σ. Then, by ([17], Th.

3.1, Rem. 3.11, Rem. 3.20), D has an involution τ of the same kind as σ. Further

there exists a ε′- hermitian space (Dm, g) over (D, τ), ε′ = ±1, such that σ = adg.
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Let V be a right A-module and h : V × V −→ A be ε-hermitian space, ε = ±1. Let

V0 = V ⊗A Dm. Then V0 is a right D-module and there an εε′-hermitian space on

V0 with h0(x ⊗ a, y ⊗ b) = g(a, h(x, y)b) for a x, y ∈ V and a, b ∈ Dn. By Morita

equivalence, this correspondence is an equivalence of categories between the category

of hermitian forms over (A, σ) and the category of hermitian forms over (D, τ).

Remark.

a) rdimA(V ) = rdimD(V0). We see this via the following calculation;

rdimD(V0) =
dimK(V0)

deg(D)
=

dimK(V ⊗A Dm)

deg(D)
=

m · dimK(V )dimK(D)

dimK(A) deg(D)

=
dimK(V )

m · deg(D)
=

dimK(V )

deg(A)
= rdimA(V )

b) Rank(h) = Rank(h0). By definition of the rank of an ε-hermitian space, one

sees that;

Rank(h) =
rdim(V )

ind(A)
=

rdim(V0)

ind(D)
= Rank(h0)

Lemma 1.5.1. ([16], Chapter 1, 9.3.5)

a) h is isotropic iff h0 is isotropic.

b) h is hyperbolic iff h0 is hyperbolic

Let X be the projective homogeneous space under G(A, σ, h) and X0 be the space

under G(D, τ, h0).

Lemma 1.5.2. ([14], 16.10) X(n1, · · ·nr) ∼= X0(n1, · · ·nr).

It is sufficient to show that X(n1, · · ·nr) ̸= ∅ ⇐⇒ X0(n1, · · ·nr) ̸= ∅ since Morita

equivalence preserves reduced dimension and isotropy ([16], Chapter 1, 9.3.5).

Lemma 1.5.3. Let rdim(V ) = 2n and adh be orthogonal with disc(h) = 1, nr−1 <

n− 1 (if r > 1) and nr = n. If ind(AL)| gcd(n1, · · ·nr), then Xε(n1, · · ·nr)(L) ̸= ∅ iff

Xε
0(n1, · · ·nr)(L) ̸= ∅, for ε = ±1.
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Proof. By (1.4.1), it is sufficient to show that Xε
n(L) ̸= ∅ ⇐⇒ (X0)

ε
n(L) ̸= ∅. This

is true by the definition of Xε
n ([20], p.577).

Lemma 1.5.4. Let rdim(V ) = 2n and adh be orthogonal with disc(h) = 1, nr−1 <

n− 1 (if r > 1) and nr = n. Let Xε = Xε(n1, · · · , nr) for ε = ±1. Then Xε(L) ̸= ∅

iff AL is split and hL is hyperbolic.

Proof. Let AL be split and hL be hyperbolic. Let hL be Morita equivalent to a

quadratic form q. Let Xε
0 be the corresponding projective homogeneous spaces under

SO2n(q). We can conclude that Xε(L) ̸= ∅, since q has Witt-index n. Furthermore,

ind(AL)| gcd(n1, · · ·nr) trivially. By (1.4.1), Xε
0(L) ̸= ∅ and so Xε(L) ̸= ∅ (1.5.3).

Conversely, suppose that Xε ̸= ∅. Let W ε ∈ Xε(L). Since there is a totally isotropic

subspace of reduced dimension n, which coincides with the Witt index of h, hL must

be hyperbolic. By Witt’s extension theorem ([6], Ch.4, no.3, th.1), there exists f ∈

U(A, σ, h) such that f(W+) = W−. This must mean that f /∈ SU(A, σ, h), since

any element g ∈ SU(A, σ, h) preserves the sign of W ε. By ([15], 2.6, lem.1.a), AL is

split.
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Chapter 2

Hasse Principle

2.1 Introduction

Let K be a complete discrete valuation field with a residue field k of good character-

istic. Let F be the function field of a smooth, projective, geometrically integral curve

X0 over K. Such fields have been referred to as semi-global fields. Let Ω be the set

of all places of F . For all ν ∈ Ω, let Fν be the completion of F at ν. Let G be a

connected linear algebraic group over F . Let X be a projective homogeneous space

over G under F . The Hasse Principle is said to hold for X if

∏
X(Fν) ̸= ∅ =⇒ X(F ) ̸= ∅.

A fair amount of progress has been made due to the patching techniques of Har-

bater, Hartmann and Krashen. In ([26]), Reddy and Suresh have shown if A is a

central simple F -algebra of degree coprime to char(k), then the Hasse principle holds

for every projective homogeneous space under PGL1(A). Furthermore, Harbater and

Hartmann have shown that if k is algebraically closed and of characteristic zero, then

the Hasse principle holds projective homogeneous spaces under connected rational

groups.
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Let G be any connected linear algebraic group over F . We say that G is of classical

type if every factor of the simply connected cover G̃ of the semi-simplification of

G/Rad(G) is of classical type. Suppose p ̸= 2. It was proved in ([22]) that a quadratic

form q over F of rank at least 3 is isotropic over F if and only if q is isotropic over

Fν for all ν ∈ Ω. Let A be a central simple algebra over F with an involution σ

of either kind. If σ is of the second kind, then assume that ind(A) ≤ 2. Let h be

an hermitian form over (A, σ). Then Wu ([32]) proved the Hasse principle holds for

projective homogeneous spaced under the unitary groups of (A, σ).

Thus, the Hasse principle holds for classical groups of type Bn, Cn, and Dn. A

paper of Parimala and Suresh ([24]) show that it holds for groups of type 1An and

2An, with some restrictions on the characteristic of k.

We now focus on unitary groups of (A, σ), for a central simple algebra A over F

satisfying certain conditions.

Let K be a complete discrete valued ring with residue field k and F the function

field of a curve over K. Let Ω be set of discrete valuations of F . Let Fν be the

completion of F at the place ν. Let X be a projective homogeneous variety under a

connected linear algebraic group G. Then, the Hasse principle is said to hold for X

with respect to Ω if
∏

X(Fν) ̸= ∅ implies that X(F ) ̸= ∅.

Let A ∈ 2Br(F ) be a central simple algebra with an involution σ. Let F σ = F0.

Let h be a hermitian form over (A, σ) and G = SU(A, σ, h) if σ is an involution of

the first kind or G = U(A, σ, h) otherwise. By Cayley parametrization, G is a con-

nected linear algebraic group. Suppose that char(k) ̸= 2 and ind(A) ≤ 4. The aim of

this section is to show that the Hasse principle holds for any projective homogeneous

space X under G over F0.



17

2.2 Division Algebras with an involution of the

first kind over two dimensional local fields

Let (R,m) be a 2-dimensional complete regular ring with maximal ideal (π, δ), field

of fractions F and residue field k. Suppose that char(k) ̸= 2. Let D ∈ 2Br(F ) be a

division algebra over F which is unramified on R except possibly at ⟨π⟩ or ⟨δ⟩. In this

section we show that if ind(D) = 4, then D is a tensor product of two quaternion al-

gebras with some properties. Suppose that for any central simple algebra A ∈ 2Br(k),

ind(A) ≤ 2. Then we show that ind(D) ≤ 8. Further we show that if ind(D) = 8, then

D is isomorphic to a tensor product of three quaternion algebras with some properties.

Lemma 2.2.1. Let A ∈ 2Br(k) be a central division algebra over k. If A ⊗k k(
√
a)

has index at most 2 for some a ∈ k∗, then A = (a, c) ⊗ (b, d) ∈ Br(k) for some

b, c, d,∈ k∗.

Proof. If deg(A) = 1 or 2, then it is immediate. Suppose that deg(A) ≥ 4. Suppose

A⊗kk(
√
a) has index at most 2 for some a ∈ k∗. Then deg(A) = ind(A) = 4. We may

identify K = k(
√
a) as a subfield of A. Let A1 be the commutant of K in A. Then

A1 is a quaternion algebra over K ([30, Theorem 5.4]). Since A ∈ 2Br(k), A admits

an involution ([30, Chapter 8, Theorem 8.4]) and the non-trivial automorphism of

K/k can be extended to an involution σ on A ([30, Chapter 8, Theorem 10.1]). Since

σ(K) = K, the restriction of σ to A1 is an involution of second kind. Thus, by a

theorem of Albert ([2, Chapter 10, Theorem 21]), A1 = K ⊗Q1 for some quaternion

algebra. Let Q2 be the commutant of Q1 in A. Then K ⊂ Q2 and by a similar

argument as above, A = Q2 ⊗Q1. Since K ⊂ Q2, Q2 = (a, c) for some c ∈ k∗. Since

Q1 is a quaternion algebra, Q1 = (b, d) for some b, d ∈ k∗. Hence A = (a, c)⊗(b, d).

Lemma 2.2.2. Let A ∈ 2Br(k) be a central division algebra over k. If A⊗kk(
√
a,
√
b)
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is a matrix algebra for some a, b ∈ k∗, then A = (a, c) ⊗ (b, d) ∈ Br(k) for some

c, d,∈ k∗.

Proof. If deg(A) = 1 or 2, then it is immediate. Suppose that deg(A) ≥ 4. Suppose

A⊗kk(
√
a,
√
b) is a matrix algebra for some a, b ∈ k∗. Then deg(A) = ind(A) = 4 and

K = k(
√
a,
√
b) is a maximal subfield of A. Again, we may show that the commutant

A1 of K in A is a quaternion algebra and A1 = K ⊗Q1 for some quaternion algebra

Q1. Then as above we have A = Q2⊗Q1 with K = k(
√
a) ⊂ Q2. Since k(

√
a,
√
b) is a

maximal subfield of A, it follows that k(
√
b) ⊂ Q1. Hence Q2 = (a, c) and Q1 = (b, d)

for some c, d ∈ k∗. Thus A = (a, c)⊗ (b, d).

Lemma 2.2.3. Let R be a complete regular local ring with residue field k and field

of fractions F . Suppose that char(k) ̸= 2. Let Γ0 be an Azumaya algebra over R and

D0 = Γ0 ⊗R F ∈ 2Br(F ). Let u ∈ R be a unit. If ind(D0 ⊗F (F (
√
u))) ≤ 2. Then

there exists v, w, t ∈ R∗ such that D0 = (u, v)⊗ (w, t) ∈ Br(F ).

Proof. Suppose that ind(D0 ⊗F (F (
√
u))) ≤ 2. Let D0 = Γ0 ⊗R k. Since ind(D0 ⊗

F (
√
u) ≤ 2, D0⊗ k(

√
u) ≤ 2 ([26, Lemma 1.1]), where u is the image of u in k. Thus

there exist b, c, d ∈ k∗ such that D0 = (u, c) ⊗ (b, d) (cf. 2.2.1). Let v, w, t ∈ R∗ be

the lifts of b, c, d ∈ k∗. Since R is a complete regular local ring, Br(R) ∼= Br(k) ([3],

6.5). Hence D0 = (u, v)⊗ (w, t) ∈ Br(F ).

Lemma 2.2.4. Let R be a complete regular local ring with residue field k and field

of fractions F . Suppose that char(k) ̸= 2. Let Γ0 be an Azumaya algebra over R with

D0 = Γ0 ⊗R F ∈ 2Br(F ). Let u, v ∈ R be units. If D0 ⊗F (F (
√
u,
√
v)) is a matrix

algebra, then there exists w, t ∈ R units such that D0 = (u,w)⊗ (v, t) ∈ Br(F ).

Proof. Let D0 = Γ0 ⊗R k. Since D0 ⊗F (F (
√
u,
√
v)) is a matrix algebra, D0 ⊗

k(
√
u,
√
v) is a matrix algebra. Hence D0 = (u, c) ⊗ (v, d) ∈ Br(k) (cf. 2.2.2).

Let w, t ∈ R∗ be lifts of c, d ∈ k∗. Since R is a complete regular local ring, D0 =

(u,w)⊗ (v, t) ∈ Br(F ).
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Lemma 2.2.5. Let R be a two dimensional complete regular local ring with residue

field k, maximal ideal (π, δ) and field of fractions F . Suppose that char(k) ̸= 2. Let

Γ0 be an Azumaya algebra on R and D0 = Γ0 ⊗ F . Let u, v ∈ R units.

i) If D = D0 ⊗ (u, π)⊗ (v, δ), then ind(D) = ind(D0 ⊗ F (
√
u,
√
v))[F (

√
u,
√
v) : F ].

ii) If D = D0 ⊗ (uπ, vδ), then ind(D) = 2 ind(D0).

Proof. Let κ(π) be the residue field at π. Then κ(π) is the field of fractions of the

complete discrete valuation ring R/(π) and the the image δ of δ in κ(π) is a parameter.

Suppose D = D0 ⊗ (u, π) ⊗ (v, δ). Since D0 ⊗ (v, δ) is unramified at π, by ([26,

Lemma 2.1]), we have ind(D ⊗ Fπ) = ind((D0 ⊗ (v, δ) ⊗ Fπ(
√
u))[Fπ(

√
u] : Fπ].

Since Γ0 ⊗ κ(π) is unramified on R/(δ), by ([26, Lemma 2.1]), we have ind(Γ0 ⊗

(v, δ)⊗ κ(π)(
√
u)) = ind(Γ0 ⊗ κ(π)(

√
u,
√
v))[κ(π)(

√
u,
√
v) : κ(π)(

√
u)]. Since Fπ is

complete, we have

ind((D0 ⊗ (v, δ)⊗ Fπ(
√
u)) = ind(D0 ⊗ Fπ(

√
u,
√
v))[Fπ(

√
u,
√
v) : Fπ(

√
u)].

Hence ind(D⊗Fπ) = ind((D0⊗Fπ(
√
u,
√
v))[Fπ(

√
u,
√
v] : Fπ]. By ([26, Lemma 2.4]),

we have ind(D) = ind(D⊗Fπ), ind(D0⊗Fπ(
√
u,
√
v)) = ind((D0⊗Fπ(

√
u,
√
v))) and

[Fπ(
√
u,
√
v) : Fπ] = [F (

√
u,
√
v) : F ]. Thus ind(D) = ind(D0⊗F (

√
u,
√
v))[F (

√
u,
√
v) :

F ].

Suppose D = D0 ⊗ (uπ, vδ). Then as above, we have ind(D) = ind(D0 ⊗

F (
√
δ))[F (

√
δ) : F ]. Since D0 is unramified at δ, we have ind(D0 ⊗ Fδ(

√
δ)) =

ind(D0 ⊗ Fδ). Once again, by ([26, Lemma 2.4]), we have ind(D0 ⊗ F (
√
δ)) =

ind(D0 ⊗ Fδ(
√
δ)) = ind(D0 ⊗ Fδ) = ind(D0). Since [F (

√
δ) : F ] = 2, we have

ind(D) = 2 ind(D0).

We recall the following.

Lemma 2.2.6. ([32, Lemma 3.6]) Let R be a two dimensional complete regular local

ring with residue field k, maximal ideal (π, δ) and field of fractions F . Suppose that
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char(k) ̸= 2. Let D be quaternion division algebra over F which is unramified on R

except possibly at (π) and (δ). Then D is isomorphic to one of the following:

i) (u,w)

ii) (u, vπ) or (u, vδ)

iii) (u, vπδ)

iv) (uπ, vδ)

for some units u, v, w,∈ R.

Proposition 2.2.7. Let R be a two dimensional complete regular local ring with

residue field k, maximal ideal (π, δ) and field of fractions F . Suppose that char(k) ̸= 2.

Let D ∈ 2Br(F ) be a division algebra over F which is unramified on R except possibly

at (π) and (δ). Suppose that ind(D) = 4. Then D is isomorphic to one of the

following:

i) (u,w)⊗ (v, t)

ii) (u,w)⊗ (v, tπ) or (u,w)⊗ (v, tδ)

iii) (u, v)⊗ (w, tπδ)

iv) (u,wπ)⊗ (v, tδ)

v) (u, v)⊗ (wπ, tδ)

for some units u, v, w, t ∈ R.

Proof. Suppose that D is unramified on R. Let Γ be an Azumaya algebra on R

with Γ ⊗ F ≃ D ([3, Theorem 7.4]). Since ind(D) = 4, we have ind(Γ ⊗ k) = 4.

Hence Γ ⊗ k = (a, b) ⊗ (c, d) for some a, b, c, d ∈ k∗. Let u,w, v, t ∈ R be lifts

of a, b, c, d. Since R is complete, we have Γ = (u,w) ⊗ (v, t) ∈ Br(R) and hence

D = (u,w)⊗ (v, t) ∈ Br(F ). Since deg(D) = 4, D ≃ (u,w)⊗ (v, t).

Suppose that D is ramified only at ⟨π⟩. Then, by Saltman’s classification ([32],

Proposition 3.5), we have D = D0 ⊗ (u, π), where D0 is unramified on R and u ∈ R

a unit which is not a square. Since D = D0 ⊗ (u, π) ⊗ (1, δ), by (2.2.5(i)), we have

ind(D) = 2 ind(D0 ⊗ F (
√
u)). Since ind(D) = 4, we have ind(D0 ⊗ F (

√
u)) = 2.
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Hence, by (2.2.3), we have D0 = (u,w) ⊗ (v, t) for some u, v, w, t ∈ R units. We

have D = D0 ⊗ (u, π) = (u,w)⊗ (v, t)⊗ (u, π) = (u,wπ)⊗ (v, t). Since ind(D) = 4,

D ≃ (u,wπ)⊗ (v, t). Similarly if D is ramified only at ⟨δ⟩, then D ≃ (u,wδ)⊗ (v, t).

Suppose that D is ramified both at ⟨π⟩ and ⟨δ⟩. Then by ([29, Theorem 2.1] &

[28, Theorem 1.2]), we have D = D0 ⊗ (u, π)⊗ (v, δ) or D = D0 ⊗ (wπ, tδ) for some

u, v ∈ R−R2 units, w, t ∈ R units and D0 unramified on R.

Suppose D = D0 ⊗ (u, π) ⊗ (v, δ). Suppose that uv ∈ R is a square. Then

D = D0 ⊗ (u, πδ). By (2.2.5(i)), we have ind(D) = 2 ind(D0 ⊗ F (
√
u)) and hence

ind(D0 ⊗ F (
√
u)) = 2. Thus, by (2.2.3), we have D0 = (u,w) ⊗ (v, t) for some

u, v, w, t ∈ R units. In particular D ≃ (v, t)⊗ (u,wπδ).

Suppose that uv not a square in R. By (2.2.5(i)), we have ind(D) = 4 ind(D0 ⊗

F (
√
u)) and hence ind(D0⊗F (

√
u)) = 1. Hence D0⊗F (

√
u,
√
v) is a matrix algebra.

Thus, by (2.2.4), we have D0 = (u,w)⊗ (v, t) for some units w, t ∈ R. In particular

D ≃ (u,wπ)⊗ (v, tδ).

Suppose D = D0+(wπ, tδ). By (2.2.5(ii)), we have ind(D) = 2 ind(D0) and hence

ind(D0) = 2. Thus D0 = (u, v) and D ≃ (u, v)⊗ (wπ, tδ).

Proposition 2.2.8. Let R be a two dimensional complete regular local ring with

residue field k, maximal ideal (π, δ) and field of fractions F . Suppose that char(k) ̸= 2

and every central simple algebra in 2Br(k) has index at most 2. Let D ∈ 2Br(F ) be

a division algebra over F which is unramified on R except possibly at (π) and (δ).

Then ind(D) ≤ 8. Further if ind(D) = 8, then D ≃ (w, t) ⊗ (u, π) ⊗ (v, δ) for some

units u, v, w, t ∈ R.

Proof. Suppose that D is unramified on R. Let Γ be an Azumaya algebra on R with

Γ⊗ F ≃ D ([3, Theorem 7.4]). By the assumption on k, ind(Γ⊗ k) ≤ 2. Since R is

complete, we have ind(D) ≤ 2 ([3, Theorem 6.5]).

Suppose that D is ramified only at ⟨π⟩. Then, by Saltman’s classification ([32],

Proposition 3.5), we have D = D0 ⊗ (u, π), where D0 is unramified on R and u ∈ R



22

a unit which is not a square. Since D0 is unramified on R, by the assumption on

k, ind(D0) ≤ 2 and hence ind(D) ≤ 4. Similarly if D is ramified only at ⟨δ⟩, then

ind(D) ≤ 4.

Suppose that D is ramified both at ⟨π⟩ and ⟨δ⟩. Then by ([29, Theorem 2.1] &

[28, Theorem 1.2]), we have D = D0 ⊗ (u, π)⊗ (v, δ) or D = D0 ⊗ (wπ, tδ) for some

u, v ∈ R − R2 units, w, t ∈ R units and D0 unramified on R. Since D0 is unramified

on R, by the assumption on k, ind(D0) ≤ 2. In particular ind(D) ≤ 8.

Suppose ind(D) = 8. Then D = D0 ⊗ (u, π)⊗ (v, δ) for some units u, v ∈ R units

and D0 unramified on R. Once again by the assumption on k, we have D0 = (w, t)

for some units w, t ∈ R. Hence D ≃ (w, t)⊗ (u, π)⊗ (v, δ).

2.3 2-torsion division algebras with an involution

of the second kind over two dimensional local

fields

LetR0 be a 2-dimensional complete regular local ring with maximal idealm0 = (π0, δ0)

and residue field k0. Suppose that char(k0) ̸= 2. Let F0 be the field of fractions of

R0 and let F = F0(
√
λ) be an extension of degree 2, with λ a unit in R0 or λ = wπ0

for some unit w ∈ R0. Let D ∈ 2Br(F ) be a division algebra with F/F0-involution

σ. In this section we show that if ind(D) = 4, then D is a tensor product of two

quaternion algebras with some properties. Suppose that for any central simple algebra

A ∈ 2Br(k), ind(A) ≤ 2. Then we show that ind(D) ≤ 8. Further we show that if

ind(D) = 8, then D is isomorphic to a tensor product of three quaternion algebras

with some properties.

Let R be the integral closure of R0 in F . By the assumption on λ, R is a 2-

dimensional regular local ring with maximal ideal m = (π, δ) ([23, Theorem 3.1, 3.2]),
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where; if λ is a unit in R0, then π = π0 and δ = δ0 and if λ = wπ0, then π =
√
λ and

δ = δ0.

Proposition 2.3.1. Let R and F be as above. Let D ∈ 2Br(F ) with an F/F0 invo-

lution. Suppose that D is unramified on R except possibly at (π) and (δ). If λ = wπ0

for some unit w ∈ R0, then D = (D0 ⊗ (v0, δ0))⊗F0 F for some D0 ∈ 2Br(F0) which

is unramified on R0 and v0 ∈ R0 a unit.

Proof. Since F/F0 is ramified at π0, by ([24, Lemma 6.3]), D is unramified at π.

Hence, by([32, Proposition 3.5]), D = D′ ⊗ (v, δ) for some unit v ∈ R and D′ unram-

ified on R. Let Γ′ be an Azumaya R-algebra with Γ′ ⊗ F ≃ D′. Since R/m ≃ R0/m0

and R is complete, there exists an Azumaya R0-algebra Γ0 with Γ′ ≃ Γ0 ⊗ R. Let

D0 = Γ0 ⊗F0. Since R/m ≃ R0/m0, we have v = v0v
2
1 for some v1 ∈ R0 a unit. Since

δ = δ0, we have D = (D0 ⊗ (v0, δ0))⊗ F as required.

For the rest of the section, we assume that λ ∈ R0 is a unit. In particular π = π0

and δ = δ0 and F/F0 is unramified on R0. Let τ denote the non trivial automorphism

of F/F0.

Proposition 2.3.2. Let Γ′ be an Azumaya R-algebra and D′ = Γ0 ⊗ F . Let D =

D′ ⊗ (u, π)⊗ (v, δ) or D0 ⊗ (uπ, vδ). If D has a F/F0-involution, then D′, (u, π) and

(v, δ) or (uπ, vδ) have F/F0-involution.

Proof. SupposeD = D′⊗(u, π)⊗(v, δ) has a F/F0-involution. Since coresF/F0(D) = 0,

by ([24, Lemma 6.4]), coresFδ/F0δ0
(D′ ⊗ (u, π)) = 0 and coresFδ/F0δ0

(v, δ) = 0. Since

D′ is unramified on R, coresF/F0(D
′) is unramified on R0. Since π = π0 ∈ R0 and δ =

δ0 ∈ R0, coresF/F0(u, π) = (NF/F0(u), π)⊗F0 and coresF/F0(v, δ) = (NF/F0(v), δ0)⊗F0.

In particular coresF/F0(D
′ ⊗ (u, π)) and coresF/F0(v, δ) are unramified on R0 except

possibly at (π0) and (δ0). Hence, by ([26, Proposition 2.4]), coresF/F0(D
′⊗ (u, π)) = 0

and coresF/F0(v, δ) = 0. The same argument implies that coresF/F0(D
′) = 0 and

coresF/F0(u, π) = 0. Hence D0, (u, π) and (v, δ) have F/F0-involutions.
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The case D = D0 ⊗ (uπ, vδ) is similar.

Lemma 2.3.3. Let D1 = (u, π) (resp. (uπ, vδ), (u, v)) for some units u, v ∈ R. If

D1 has a F/F0 involution, then D1 = (u0, π) (resp. (u0π, v0δ), (u0, v0)) for some

u0, v0 ∈ R0 units.

Proof. Suppose D1 = (u, π) for some u ∈ R unit. Since π = π0 ∈ R0, we have

coresF/F0(u, π) = (NF/F0(u), π). SinceD1 has a F/F0-involution, we have (NF/F0(u), π) =

0 ∈ Br(F0). Since the residue of (NF/F0(u), π) at π0 is the image of NF/F0(u) in

κ(π0)
∗/κ(π0)

∗, the image of NF/F0(u) is a square in κ(π0). Since R0 is a complete

local ring with π0 a regular prime, NF/F0(u) is a square in R0. Hence, replacing u be

a square times u, we assume that NF/F0(u) = 1. Thus u = θτ(θ)−1 for some θ ∈ R.

We have uτ(θ)2 = θτ(θ) = u0 ∈ R0 and (u, π) = (u0, π).

Suppose D1 = (uπ, vδ). As above, by taking the residues at π and δ, we see that

NF/F0(u) and NF/F0(v) are squares. Hence as above, we can replace u and v by u0

and v0 for some u0, v0 ∈ R0 units.

Suppose that D1 = (u, v) for some u, v ∈ R. Since D1 has an F/F0-involution and

D1 is unramified on R, D1 = D0 ⊗ F for some quaternion algebra D0 over F0 which

is unramified on R0 ([3, Theorem 7.4]). In particular D0 = (u0, v0) for some units

u0, v0 ∈ R0

Corollary 2.3.4. Let D ∈ 2Br(F ) with an F/F0-involution. Suppose that D is

unramified on R except possibly at (π) and (δ) and ind(D) = 2. Then one of the

following holds

i) D is unramified on R

ii) D ≃ (u0, u1π0) or D ≃ (v0, v1δ0)

iii) D ≃ (u0, u1π0δ0)

iv) D ≃ (u0π0, v0δ0)

for some units wi, ui, vi ∈ R0
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Proof. Follows from (2.2.6), (2.3.2) and (2.3.3).

Corollary 2.3.5. Let D ∈ 2Br(F ) with an F/F0-involution. Suppose that D is

unramified on R except possibly at (π) and (δ) and ind(D) = 4. Then one of the

following holds

i) D is unramified on R

ii) D ≃ (w0, w1)⊗ (u0, u1π0) or D ≃ (w0, w1)⊗ (v0, v1δ0)

iii) D ≃ (w0, w1)⊗ (u0, u1π0δ0)

iv) D ≃ (u0, u1π0)⊗ (v0, v1δ0)

v) D ≃ (w0, w1)⊗ (u0π0, v0δ0)

for some units wi, ui, vi ∈ R0

Proof. Follows from (2.2.7), (2.3.2) and (2.3.3).

Corollary 2.3.6. Let D ∈ 2Br(F ) with an F/F0-involution. Suppose that D is

unramified on R except possibly at (π) and (δ) and every element of 2Br(k) has index

at most 2. If ind(D) = 8, then Then D ≃ (w0, w1)⊗ (u0, π0)⊗ (v0, δ0) for some units

w0, w1, u0, v0 ∈ R0.

Proof. By the assumptions on k and D, by (2.2.8), D ≃ (w0, w1) ⊗ (u0, π) ⊗ (v0, δ)

for some units w0, w1, u0, v0 ∈ R. Since D has a F/F0-involution, by (2.3.2), (w0, w1),

(u0, π) and (v0, δ) have F/F0-involutions. As in the proof of (2.3.5), we can assume

w0, w1, u0, v0 ∈ R0.

2.4 Maximal Orders

Definition. Let R be a Noetherian integral domain with field of fractions K. Let

A be a finite dimensional associative algebra over K. A subring Γ of A is called an

R-order in A if Γ is finitely generated as an R-submodule and KΓ = A.
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Let (K, ν) be a discrete valued field with valuation ring Rν and residue field k(ν).

Let Kν be the completion of K at ν. Let D be a finite-dimensional central division

algebra overK with an involution σ. IfD⊗Kν is a division algebra, then the valuation

ν extends to a unique valuation w on D such that w(σ(x)) = w(x) for all X ∈ D.

Lemma 2.4.1. Suppose that R and (K, ν) are as above. Suppose that D ⊗ Kν is

division. Then there exists a unique maximal Rν-order Γ in D. Furthermore, Γ is

identical to the following sets;

1. the valuation ring Rw = {x ∈ D|w(x) ≥ 0},

2. N = {x ∈ D|NrdD/K(x) ∈ Rν},

3. the integral closure S of Rν in D.

Proof. [32]

Let R be a complete regular local ring with residue field k, (π, δ) maximal ideal and

field of fractions F . Suppose that char(k) ̸= 2. Let D ∈ 2Br(F ) be a division algebra

which is unramified on R except possibly at (π) and (δ). By (([32], Proposition 3.5)),

we know that D = D0 ⊗D1 for some D0 ∈ 2Br(F ) which is unramified on R and D1

is (u, vπ) or (u, vδ) or (u,wπ)⊗ (v, tδ) or (u, vπδ) or (uπ, vδ) for some units u, v ∈ R.

If D ≃ D0 ⊗D1, then in this section we show that there is a maximal R-order with

some properties.

For an integral domain R and a, b ∈ R non zero elements, let R(a, b) be the R-

algebra generated by i, j with i2 = a, j2 = b and ij = −ji. Suppose that 2 ∈ R is a

unit. Then R(a, b) is a R-order in the quaternion algebra (a, b) over F . Further note

that if a, b ∈ R are units, then R(a, b) is an Azumaya R-algebra.

We would like to find suitable maximal orders for division algebras of the form

D0 ⊗D1 where D0 is unramified over R and D1 is given by;
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• D1 = (u, π)

• D1 = (v, δ)

• D1 = (u, πδ)

• D1 = (π, δ)

The following propositions construct a suitable maximal Rν-order for the case

D1 = (u, π), but the same proof may be used for all the cases listed above.

Proposition 2.4.2. Let R be a complete discrete valuation ring with residue field k

and field of fractions F . Suppose that char(k) ̸= 2. Let Γ0 be an Azumaya algebra over

R and D0 = Γ0⊗RK. Let u ∈ R be a unit and π ∈ R a parameter. If D = D0⊗(u, π)

is a division algebra, then Γ = Γ0 ⊗R R(u, π) is the maximal R-order of D.

Proof. Suppose that D is division. Let d = deg(D) and d0 = deg(D0). Then d = 2d0.

There is a discrete valuation on D given by νD(z) = ν(NrdD(z)) ([27, 139]).

Furthermore Γ′ = {z ∈ D∗ | νD(z) ≥ 0} ∪ {0} = {z ∈ D | z is integral over R} is

the unique maximal R-order of D ([27, Theorem 12.8]).

Since Γ0 and R(u, π) are finitely generated R-modules, Γ is a finitely generated

R-module and hence every element of Γ is integral over R. Hence Γ ⊆ Γ′. We now

show that Γ′ ⊆ Γ.

Let i, j ∈ (u, π) be the standard generators with i2 = u, j2 = π and ij = −ji. Let

D1 = D0⊗F (i) ⊂ D and Γ1 = Γ0⊗R[i]. Then D = D1+D1j and Γ = Γ1⊕Γ1j. Since

D0 is unramified, D1 is unramified. Since D is a division algebra, D1 is a division

algebra. Hence Γ1 is the maximal R[i]-order in D1. Since F (i)/F is an unramified

extension and D0 is unramified on R, π is a parameter in D1. Therefore, νD(z) is a

multiple of 2d0 for all z ∈ D1 ([27, 139]). Since j2 = π and NrdD(j) = πd0 , we have

νD(j) = d0.
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Let z ∈ Γ′. Then z = z1+z2j for some z1, z2 ∈ D1. Suppose that νD(z1) = νD(z2j).

Then νD(z1)− νD(z2) = νD(j) = d0. This is a contradiction, since νD(z1) and νD(z2)

are multiple of 2d0. Hence νD(z1) ̸= νD(z2j). Then νD(z) = min{νD(z1), νD(z2j)} ≥

0. In particular νD(z1) ≥ 0 and hence z1 ∈ Γ1. Since νD(z2j) = νD(z2) + νD(j) =

νD(z2) + d0, we have νD(z2) ≥ −d0. Since νD(z2) is a multiple of 2d0, it follows that

νD(z2) ≥ 0 and hence z2 ∈ Γ1. Thus z ∈ Γ.

Proposition 2.4.3. Let R be a discrete valuation ring with residue field k, field of

fractions F and F̂ the completion of F . Suppose that char(k) ̸= 2. Let Γ0 be an

Azumaya algebra over R and D0 = Γ0 ⊗R F . Let u ∈ R be a unit and π ∈ R a

parameter. If (D0 ⊗F (u, π)) ⊗F F̂ is a divison algebra, then Γ0 ⊗R R(u, π) is the

maximal R-order of D0 ⊗F (u, π).

Proof. Let R̂ be the completion ofR. Let Γ̂0 = Γ0⊗R̂. Then Γ̂0 is an Azumaya algebra

over R̂. Since (D0 ⊗F (u, π))⊗F F̂ is a divison algebra, by (2.4.2), Γ̂0 ⊗ R̂(u, π) is a

maximal R̂-order of (D0⊗F (u, π))⊗F F̂ . Thus, by ([27], Theorem 11.5), Γ0⊗RR(u, π)

is the maximal R-order of D0 ⊗F (u, π).

Corollary 2.4.4. Let R be a two dimensional complete regular local ring with residue

field k, field of fractions F and maximal ideal m = (π, δ). For units u, v ∈ R, let D1

and Γ1 be one of the following:

i) D1 = (u, v), Γ1 = R(u, v)

ii) D1 = (u, π), Γ1 = R(u, π)

iii) D1 = (π, δ), Γ1 = R(π, δ)

iv) D1 = (u, πδ), Γ1 = R(u, πδ)

v) D1 = (u, π)⊗ (v, δ), Γ1 = R(u, π)⊗R(v, δ).

Let Γ0 be an Azumaya algebra over R and D0 = Γ0 ⊗R F . If D0 ⊗F D1 is a division

algebra, then Γ = Γ0 ⊗R Γ1 is a maximal R-order of D0 ⊗F D1.

Proof. An order of a Noetherian integrally closed domain is maximal if and only if
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it is reflexive and its localization at all height one prime ideals are maximal orders

([27], Theorem 11.4). Since Γ is a finitely generated free module, it is reflexive.

Furthermore, R is a regular local ring, hence it is Noetherian and integrally closed.

We only need to show that ΓP is a maximal RP -order for all height one prime ideals

P .

Suppose that D = D0 ⊗F D1 is a division algebra. Let P be a height one prime

ideal of R. Suppose P ̸= ⟨π⟩, ⟨δ⟩. Since u, v ∈ R are units, u, v, π, δ are units in RP

and hence Γ1 ⊗RP is an Azumaya RP -algebra. In particular Γ⊗RP is an Azumaya

RP -algebra. Hence ΓP is a maximal RP -order of D. Suppose that P = ⟨π⟩, ⟨δ⟩.

i) Since u, v ∈ R are units, (Γ1)P is an Azumaya algebra over RP . Hence ΓP is a

maximal RP -order on D.

ii) If P ̸= ⟨π⟩), then Γ1 is an Azumaya RP -algebra and hence ΓP is a maximal

RP -order on D. If P = ⟨π⟩, then ΓP is a maximal RP -order on D by (2.4.3).

iii), iv) If P = ⟨π⟩ or P = ⟨δ⟩, then ΓP is a maximal RP -order on D by (2.4.3).

v) Suppose P = ⟨π⟩. Let Γ′
0 = Γ0 ⊗ RP (v, δ). Since v, δ are units in RP , RP (v, δ)

is an Azumaya RP -algebra. Since D = (D0 ⊗ (v, δ)) ⊗ (u, π) and Γ = (Γ0 ⊗

RP (v, δ))⊗RP (u, π), by (2.4.3), ΓP is a maximal RP -order on D. If P = ⟨δ⟩, a

similar argument holds.

2.5 A local global principle for hermitian forms

over two dimensional local fields

LetR0 be a 2-dimensional complete regular local ring with maximal idealm0 = (π0, δ0)

and residue field k0. Suppose that char(k0) ̸= 2. Let F0 be the field of fractions of
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R0 and let F = F0(
√
λ) be an extension of degree at most 2, with λ a unit in R0 or

a unit times π0. Let D ∈ 2Br(F ) be a division algebra with F/F0-involution σ and

h an hermitian form over (D, σ). In this section, under some assumptions on D, F0

and h, we prove that if h⊗ Fπ or h⊗ Fδ is isotropic, then h is isotropic.

Let R be the integral closure of R0 in F . By the assumption on λ, R is a 2-

dimensional regular local ring with maximal ideal (π, δ) ([23, 3.1, 3.2]), where; if λ is

a unit in R0, then π = π0 and δ = δ0 and if λ is a unit times π0, then π =
√
λ and

δ = δ0.

LetG(D, σ, h) = SU(D, σ, h) if F = F0 andG(D, σ, h) = U(A, σ, h) if [F : F0] = 2.

We begin with the following, which is proved by Wu ([32, Corollary 3.12]) for D

a quaternion algebra.

Proposition 2.5.1. Let F0 and F be as above. Let D ∈ 2Br(F ) and σ an F/F0-

involution. Suppose that D is a division algebra which unramified on R expect possibly

at (π) and (δ). Let d =deg(D), e0 the ramification index of D at π and e1 the

ramification index of D at δ. Suppose that there exists a maximal R-order Γ of

D and πD, δD ∈ Γ such that σ(πD) = ±πD, σ(δD) = ±πD and πDδD = ±δDπD and

Nrd(πD) = θ0π
d
e0 and Nrd(δD) = θ1δ

d
e1 for some units θ0, θ1 ∈ R. Let h = ⟨a1, · · · , an⟩

be an hermitian form over (D, σ). Suppose that for 1 ≤ i ≤ n, ai ∈ Γ and Nrd(ai)

is a product of a unit in R, a power of π and a power of δ. If h ⊗ Fπ or h ⊗ Fδ is

isotropic, then h is isotropic.

Proof. Follows from ([32, Corollary 3.3]).

As a consequence we have the following (cf. [32, Corollary 3.12])
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Proposition 2.5.2. Let F0 and F be as above. Let D ∈ 2Br(F ) and σ an F/F0-

involution. Suppose that D is a division algebra which is unramified on R expect

possibly at (π) and (δ). Let d =deg(D), e0 the ramification index of D at π and e1 the

ramification index of D at δ. Suppose that there exists a maximal R-order Γ of D and

πD, δD ∈ Γ such that σ(πD) = ±πD, σ(δD) = ±πD, πDδD = ±δDπD, Nrd(πD) = θ0π
d
e0

and Nrd(δD) = θ1δ
d
e1 for some units θ0, θ1 ∈ R. Let h = ⟨a1, · · · , an⟩ be an hermitian

form over (D, σ). Suppose that for 1 ≤ i ≤ n, ai ∈ Γ and Nrd(ai) is a product of a

unit in R, a power of π and a power of δ. Let X be a projective homogeneous space

under G(D, σ, h). If X(F0π) ̸= ∅ or X(F0δ) ̸= ∅, then X(F0) ̸= ∅.

Proof. First note that ind(D) = ind(D ⊗ Fπ) is proved in ([26, 2.4]) only under the

assumption that F conatins a primitive dth root of unity. However that proof uses

only the assumption that F contains a primitive rrh root of unity for r = per(D) in

Br(F ). Since the period of D divides 2 by our assumption on D, we have ind(D) =

ind(D⊗Fπ). Suppose that X(F0π) ̸= ∅ or X(F0δ) ̸= ∅. Using, (2.5.1), the rest of the

proof of ([32, Corollary 3.12]) can be applied here to show that X(F0) ̸= ∅.

We fix the following.

Notation 2.5.3. Let R0 be a 2-dimensional complete regular local ring with maximal

ideal m0 = (π0, δ0) and residue field k0. Suppose that char(k0) ̸= 2. Let F0 be the

field of fractions of R0 and let F = F0(
√
λ) be an extension of degree at most 2, with

λ a unit in R0 or a unit times π0. Let R be the integral closure of R0 in F . By the

assumption on λ, R is a 2-dimensional regular local ring with maximal ideal (π, δ)

([23, 3.1, 3.2]), where; if λ is a unit in R0, then π = π0 and δ = δ0 and if λ is a unit

times π0, then π =
√
λ and δ = δ0. Let ui, vi ∈ R0 be units and D1, Γ1 and σ1 denote

one of the following:

i) D1 = F0, Γ1 = R, σ1 = id

ii) D1 = (u0, u1π0), Γ1 = R(u0, u1π0), σ1 the canonical involution
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iii) D1 = (u0π0, v0δ0), Γ1 = R(u0π0, v0δ0), σ1 the canonical involution

iv) D1 = (u0, u1π0)⊗ (v0, v1δ0), Γ1 = R(u0, u1π0)⊗R(v0, v1δ0), σ1 the tensor product

of the canonical involutions

Let Γ0 be an Azumaya algebra over R with an R/R0- involution σ̃1. Let D0 ≃ Γ0⊗F

and σ0 = σ̃0 ⊗ 1. Let D ≃ D0 ⊗ D1, Γ = Γ0 ⊗ Γ1 and σ = σ0 ⊗ σ1. Then σ is a

F/F0-involution on D and σ(Γ) = Γ. Let di denote the degree of Di. The following

table gives a choice of πD, δD ∈ Γ and some of their properties.

D πD δD Nrd(πD) Nrd(δD) σ(πD) σ(δD) σ(πDδD)

D0 π0 δ0 πd0
0 δd00 πD δD πDδD

D0 ⊗

(u0, u1π0)

1⊗ j 1⊗ δ (u1π0)
d0 δ2d00 −πD δD −πDδD

D0 ⊗

(u0π0, v0δ0)

1⊗ i 1⊗ j (u0π0)
d0 (v0δ0)

d0 −πD −δD −πDδD

D0 ⊗

(u0, u1π0)⊗

(v0, v1δ0)

1⊗ j1 ⊗ 1 1⊗ 1⊗ j2 (u1π0)
2d0 (v1δ0)

2d0 −πD −δD πDδD

Corollary 2.5.4. Let F , D, σ and Γ be as in (2.5.3). Suppose that D is a division

algebra. Let h = ⟨a1, · · · , an⟩ be a hermitian form over (D, σ) with ai ∈ Γ. Sup-

pose Nrd(ai) is a unit times a power of π and a power of δ. Let X be a projective

homogeneous space under G(D, σ, h) over F0. If X(F0π0) ̸= ∅ or X(F0δ) ̸= ∅, then

X(F0) ̸= ∅.

Proof. By (2.4.4), Γ is a maximal R-order of D. Let e0 be the ramification index

of D at π and e1 be the ramification index of D at δ. If D1 as in (2.5.3(i)), then

e0 = e1 = 1. If D1 is as in (2.5.3(ii)), then e0 = 2 and e1 = 1. If D1 as in (2.5.3(iii)

or (iv)), then e0 = e1 = 2. Let πD and δD be as in (2.5.3). Then πD and δD satisfy

the assumptions of (2.5.2). Hence, by (2.5.2), X(F0) ̸= ∅.
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2.6 Behavior under blowups

Let R0, R, F0, F , m0 = (π0, δ0), m = (π, δ), A, σ, h and G(A, σ, h) be as in (§2.5).

Let X be a projective homogeneous variety under G(A, σ, h) over F . Suppose that

X(Fν) ̸= ∅ for all divisorial discrete valuations ν of F . Under some assumptions on

D, in this section we prove that there exists a sequence of blowups Y of Spec(R)

such that X(FP ) ̸= ∅ for all closed points P of Y .

Let X0 = Proj(R0[x, y]/(π0x− δ0y)). Let Q1 and Q2 be the closed points of X0

given by the homogeneous ideals (π0, δ0, y) and (π0, δ0, x). Let τ be the nontrivial

automorphism of F/F0 if F ̸= F0 and let τ be the identity if F = F0.

We begin with the following.

Lemma 2.6.1. Let a, b ∈ R0 be nonzero and square free. Suppose that the support of

a and b is at most π0 and δ0 and have no common factors. Then for any closed point

P ∈ X0, there exist a′, b′, π′, δ′ ∈ OP such that the maximal ideal at P is generated by

π′ and δ′, a′ and b′ are square free, have no common factors, the support is at most

(π′) or (δ′) and (a, b)⊗ F0P = (a′, b′) and R0(a, b) ⊂ ÔP (a
′, b′).

Proof. Suppose a is a unit R0. Then b = v0 or v0π0 or v0δ0 or v0π0δ0 for some unit

v0 ∈ R0. If b = v0 or v0π0 or v0δ0, then it is easy to see that a′ = a and b′ = b

have the required properties. Suppose b = v0π0δ0. Suppose P ̸= Q1, Q2. Then the

maximal ideal at P is given by (π0, δ
′) with π0 = w′δ0 for some unit w′ in OP . We

have (a, b) = (a, v0π0δ0) = (a, v0w
′). In this case it is easy to see that a′ = a and

b′ = v0w
′ have the required property. Suppose P = Q1. Then the maximal ideal at

P is given by (t, δ0) with π0 = tδ0. We have (a, b) = (a, v0tδ0) and a′ = a, b′ = v0tδ0

have the required properties. The case P = Q2 is similar.

Suppose neither a nor b is a unit in R0. Then by the assumption on a, b, we

have {a, b} = {u0π0, v0δ0} for some units u0, v0 ∈ R0. Suppose P = Q1. Since

the maximal ideal of ÔQ1 is given by (t, δ0) with π0 = tδ0, we have (a, b) ⊗ F0Q1 =
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(u0π0, v0δ0) ⊗ F0Q1 = (u0tδ, v0δ) ⊗ F0Q1 ≃ (−u0v0t, v0δ0). It is easy to see that

a′ = −u0v0t and b′ = v0δ0 have the required properties. The case P = Q2 is similar.

Suppose P ̸= Q1, Q2. Since the maximal ideal at P is given by (π0, δ
′) with π0 = w′δ0

for some unit w′ in OP and (a, b) = (u0π0, v0δ0) = (u0π0, v0w
′π0) = (u0π0, v0w

′u0),

a′ = u0π0 and b′ = v0w
′u0 have the required properties.

Lemma 2.6.2. Suppose D = (u0, u1π0) ⊗ (v0, v1δ0) is a division algebra for some

units ui, vi ∈ R0. Let σ be the tensor product of canonical involutions on (u0, u1π0),

(v0, v1δ0). Then for P = Q1 or Q2, there exist an isomorphism ϕP : D ⊗ F0P →

(u′
0, u

′
1π

′) ⊗ (v′0, v
′
1δ

′) for some u′
i, v

′
i units in the local ring OP at P and the maxi-

mal ideal of OP is given by (π′, δ′) and θP ∈ OP (u
′
0, u

′
1π

′) ⊗ OP (v
′
0, v

′
1δ

′) such that

ϕ(R0(u0, u1π) ⊗ R0(v0, v1δ)) ⊂ OP (u
′
0, u

′
1π

′) ⊗ OP (v
′
0, v

′
1δ

′) and int(θP )σ
′ = ϕPσϕ

−1
P

and the support of Nrd(θP ) at most (π′) and (δ′).

Proof. Since Q1 is the closed point given by the homogeneous ideal (π0, δ0, y), the

maximal ideal of OQ1 is given by (t, δ0) with π0 = tδ0. Thus we have D = (u0, u1π0)⊗

(v0, v1δ0) = (u0, u1tδ0)⊗ (v0, v1δ0) ≃ (u0, u1v
−1
1 t)⊗ (u0v0, v1δ0).

Let i1, j1 ∈ (u0, u1π0), i2, j2 ∈ (v0, v1δ0), i3, j3 ∈ (u0, u1v
−1
1 t) and i4, j4 ∈ (u0v0, v1δ0)

be the standard generators. Then we have an isomorphism ϕP : (u0, u1π0)⊗(v0, v1δ0) →

(u0, u1v
−1
1 t)⊗ (u0v0, v1δ0) given by ϕ(i1 ⊗ 1) = i3 ⊗ 1, ϕ(j1 ⊗ 1) = j3 ⊗ j4, ϕ(1⊗ i2) =

u−1
0 (i3 ⊗ i4) and ϕ(1 ⊗ j2) = 1 ⊗ j4. Since u0 is a unit in R0, ϕ(R0(u0, u1π0) ⊗

R0(v0, v1δ0)) ⊂ OQi
(u0, u1v

−1
1 t) ⊗OQi

(u0v0, v1δ0). Let θQ1 = i3 ⊗ j4. Then it is easy

to see that θQ1 has the required properties. A similar computation gives the required

θQ2 .

Lemma 2.6.3. Suppose D = (u0, u1π0) ⊗ (v0, v1δ0) is a division algebra for some

units ui, vi ∈ R0. Let σ be the tensor product of canonical involutions on (u0, u1π0),

(v0, v1δ0). Let P ∈ X0 be a closed point not equal to Q1 or Q2. Then there exists

an isomorphism ϕP : D ⊗ F0P ≃ (u′
0, u

′
1) ⊗ (v′0, v

′
1π

′) for some u′
0, v

′
0, u

′
1, v

′
1 units in
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OP and mP = (π′, δ′) such that ϕP (R0(u, π)⊗ R0(v, δ)) ⊂ OP (u
′
0, u

′
1)⊗OP (v

′
0, v

′
1π).

Further if σ′ is the tensor product of canonical involutions on (u′
0, u

′
1) and (v′0, v

′
1π

′),

then there exists θP ∈ OP (u
′
0, u

′
1)⊗OP (v

′
0, v

′
1π) such that int(θP )σ

′ = ϕPσϕ
−1
P and the

support of Nrd(θP ) at most (π′) and (δ′).

Proof. Since P is a closed point not equal to Q1 or Q2, the maximal ideal at P

is given by (π0, δ
′) and δ0 = w′π0 for some unit w′ in OP . Thus we have D =

(u0, u1π0)⊗ (v0, v1δ0) = (u0, u1π0)⊗ (v0, v1w
′π0) ≃ (v0, v1w

′u−1
1 )⊗ (u0v0, u1π0).

Let i1, j1 ∈ (u0, u1π), i2, j2 ∈ (v0, v1δ0), i3, j3 ∈ (v0, v1w
′u−1

1 ) and i4, j4 ∈ (u0v0, u1π0)

be the standard generators. Then we have an isomorphism ϕP : (u0, u1π))⊗(v0, v1δ0) →

(v0, v1w
′u−1

1 ) ⊗ (u0v0, u1π0) given by ϕ(i1 ⊗ 1) = v−1
0 (i3 ⊗ i4), ϕ(j1 ⊗ 1) = 1 ⊗ j4,

ϕ(1 ⊗ i2) = (i3 ⊗ 1) and ϕ(1 ⊗ j2) = j3 ⊗ j4. Since v0 ∈ R0 is a unit, we have

ϕP (R0(u0, u1π) ⊗ R0(v0, v1δ)) ⊂ OP (v0, v1w
′u−1

1 ) ⊗ OP (u0v0, u1π). Let θP = i3 ⊗ j4.

Then θP has the required properties.

We record the following theorem from ([13, Proposition 5.8]).

Theorem 2.6.4. Let T be a complete discrete valuation ring with residue field k and

field of fractions K. Let F be the function field of a smooth projective geometrically

integral curve over K and X a model of F with X0 its closed fibre. Let Y be a variety

over F . Suppose that Y (Fν) ̸= ∅ for all divisorial discrete valuations ν of F . For

every irreducible component C of X0, there exists a nonempty proper open subset U

of C such that Y (FU) ̸= ∅. In particular there exists a finite subset P of closed points

of X0 such that Y (FP ) ̸= ∅ for all P ∈ X0 \ P.

The following two result are extracted from ([32, §4]).

Lemma 2.6.5. Let F0 and F be as above. Let D ∈ Br(F ) be a quaternion division

algebra over F with a F/F0-involution σ. Then there exists a sequence of blowups

X0 → SpecR0 such that, the integral closure X of X0 in F is regular and ramX (D)

is a union of regular curves with normal crossings. Further for every closed point P
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of X0 with D ⊗ F0P division, D ⊗ F0P is as in (2.2.6 or 2.3.4) and not of the type

(2.2.6(iii) or 2.3.4(iii)).

Proof. There exists a sequence of blowups Y0 → Spec(R0) such that the integral

closure Y of Y0 is regular and ramY (D) is a union of regular curves with normal

crossings (cf. [24, Corollary 11.3]). Let P be a closed point of Y0. Since the integral

closure of Y0 in F is regular, the maximal ideal at P is generated by (πP , δP ) and

F = F0(
√
λP ) for some λP = u or uπP for some unit u at P .

Suppose that D⊗ F0P is division. In particular F ⊗ F0P is a field. Let RP be the

integral closure of OP in F . Then RP is a regular two dimensional local ring with

maximal ideal (π′
P , δ

′
P ) with δ′P = δP , π

′
P = πP if λP is a unit in OP and π′

P =
√
λP

if λP is not a unit in OP . Further D is unramified on OP except possibly at (π′
P ) or

(δ′P ). In particular D ⊗ F0P is as in (2.2.6 or 2.3.4).

Suppose D ⊗ F0P as in (2.2.6(iii) or 2.3.4(iii)). Note that there are only finitely

many such closed points.

Suppose F ⊗ F0P/F0P is ramified. Then, by (2.3.1), we can assume that D⊗ F0P

is not of type (2.3.5(iii)).

Suppose that F ⊗ F0P/F0P is unramified. Let XP → Spec(OP ) be the simple

blow up. Then, it is easy to see that for every closed point Q of XP , D ⊗ F0Q is not

of type (2.3.5(iii) or 2.3.4(iii)) (cf. [32, Lemma 4.1]).

Proposition 2.6.6. Let F0 and F be as above. Let D be a central simple algebra

over F with a F/F0-involution σ and h an hermitian form over (D, σ). Let X be a

projective homogeneous variety under G(D, σ, h) over F0. Suppose that ind(D) ≤ 2.

If that X(F0ν) ̸= ∅ for all divisorial discrete valuations ν of F0, then there exists

a sequence of blowups Y → Spec(R0) such that for every closed point P of Y ,

X(F0P ) ̸= ∅.

Proof. By Morita equivalence ([17, Theorem 3.1,3.11,3.20] & [16, Chapter 1, 9.3.5]),
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we assume that D is division. If D = F , then X(F ) ̸= ∅ ([32, Corollary 3.12]) and

hence any blowup of Spec(R) has the required property.

Suppose ind(D) = 2. Without loss of generality we assume that σ is the canonical

involution. Then using (2.6.5), we get a sequence of blowups Y0 of Spec(R0) such

that for every closed point P of Y with D ⊗ F0P division, D ⊗ F0P is as in (2.2.6 or

2.3.4) and not of the type (2.2.6(iii) or 2.3.4(iii)).

Suppose that D ⊗ F0P is not division. Then X(F0P ) ̸= ∅ ([9, Theorem 3.1]).

Suppose that D ⊗ F0P is division. Then D ⊗ FP = (ap, bP ) for some aP , bP as in

(2.6.1). In particular OP (aP , bP ) ⊗ R is a maximal OP -order of D ⊗ F0P . We have

h⊗ F0P = ⟨a1P , · · · , anP ⟩ for some aiP ∈ ÔP (a, b)⊗R.

Let Y0 be the special fibre of Y0. By (2.6.4), there exists a finite subset P of

Y0 such that X(FP ) ̸= ∅ for all P ̸∈ P0. Thus replacing R by ÔP , we assume that

D = (a, b) for some a, b as in (2.6.1) and h = ⟨a1, · · · , an⟩ for some ai ∈ R(a, b).

By ([32, Lemma 4.2]), there exists a sequence of blowups Y1 → Spec(R0) such

that the support of Nrd(ai) is a union of regular curves with normal crossings and

for every closed point Q of Y1 with D⊗ F0Q is division, D⊗ F0Q is not of the form (

[32, Lemma 3.6(5)]).

Let Q be a closed point of Y1. If D ⊗ F0Q is a matrix algebra, then by ([12,

Corollary 4.7]) and Morita equivalence, X(F0Q) ̸= ∅. Suppose D ⊗ F0Q is a division

algebra. Then, by (2.6.1), R(a, b) is contained in the corresponding maximal order

ÔQ(aQ, bQ). Since h = ⟨a1, · · · , an⟩ with ai ∈ R(a, b) with support of Nrd(ai) is a

union of regular curves with normal crossings, by (2.5.4), X(F0Q) ̸= ∅.

Lemma 2.6.7. Let F0 and F be as above. Let D ∈ 2Br(F ) be a central simple algebra

over F with a F/F0-involution σ and h an hermitian form over (D, σ). Suppose that

ind(D) = 4. Then there exists a sequence of blowups X0 → SpecR0 such that, the

integral closure X of X0 in F is regular and ramX (D) is a union of regular curves

with normal crossings. Further for every closed point P of X0 with ind(D⊗F0P ) = 4,
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D ⊗ F0P is as in (2.2.7 or 2.3.5) and not of the type (2.2.7(iii) or 2.3.5(iii)).

Proof. There exists a sequence of blowups Y0 → Spec(R0) such that the integral

closure Y of Y0 is regular and ramY (D) is a union of regular curves with normal

crossings (cf. [24, Corollary 11.3]).

Let P be a closed point of Y0. In particular if ind(D⊗F0P ) = 4, then D⊗F0P is

as in (2.2.7 or 2.3.5). Suppose D⊗F0P = (uP , vP )⊗ (wP , w
′
PπP δP ) as in (2.2.7(iii) or

2.3.5(iii)) for some units uP , vP , wP , w
′
P ∈ OP . Note that there are only finitely many

such closed points.

Suppose F ⊗ F0P/F0P is ramified. Then, by (2.3.1), we can assume that D⊗ F0P

is not of type (2.3.5(iii)).

Suppose that F ⊗ F0P/F0P is unramified. Let XP → Spec(OP ) be the simple

blow up. Then, it is easy to see that for every closed point Q of XP , D ⊗ F0Q is not

of type (2.2.7(iii) or 2.3.5(iii)).

Proposition 2.6.8. Let F0 and F be as above. Let D ∈ 2Br(F ) be a central simple

algebra over F with a F/F0-involution σ and h an hermitian form over (D, σ). Let X

be a projective homogeneous variety under G(D, σ, h) over F0. Suppose that ind(D) ≤

4. If X(F0ν) ̸= ∅ for all divisorial discrete valuations ν of F0, then there exists

a sequence of blowups Y → Spec(R0) such that for every closed point P of Y ,

X(F0P ) ̸= ∅.

Proof. By (2.6.6), we assume that ind(D) = 4. As in the proof of (2.6.6), we assume

that D is division as in (2.2.7 or 2.3.5 ) and not of the type (2.2.7(iii) or 2.3.5(iii)).

Let Γ be the maximal R-order of D as in (2.4.4) and write h = ⟨a1, · · · , an⟩ with

ai ∈ Γ.

Let Y1 → Spec(R0) be a sequence of blowups such that the support of Nrd(ai) is

a union of regular curves with normal crossings. Further replacing Y by a sequence

of blow ups (2.6.7), we assume that for every closed point P of Y , D⊗ F0P is not of
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the form (2.2.7(iii) or 2.3.5(iii)). Once again we have a finite set of closed points P1

of Y1 such that X(F0P ) ̸= ∅ for all P ̸∈ P.

Let P ∈ P1 be a closed point. If ind(D ⊗ F0P ) ≤ 2, then by (2.6.6), there exists

a sequence of blowups XP of Spec(OP ) such that for every closed point Q of XP ,

X(F0Q) ̸= ∅.

Suppose ind(D ⊗ FP ) = 4.

Suppose that D is not of type (2.2.7(iv) or 2.3.5(iv)). Then D ≃ (u0, w0)⊗ (a, b)

for some units u, v,∈ R0 and a, b ∈ R0 as in (2.6.1). Then, by the choice, we have

Γ = R(u0, v0)⊗R(a, b). By (2.6.1), (a, b)⊗F0P ≃ (aP , bP ) for some aP , bP ∈ OP as in

(2.6.1) and R0(a, b) ⊂ ÔP (aP , bP ). In particular Γ ⊂ ÔP (u0, v0)⊗ ÔP (aP , bP ). Since

ai ∈ Γ and D ⊗ F0P is not of type (2.2.7(iii)), by (2.5.4), X(F0P ) ̸= ∅.

Suppose that D is of type (2.2.7(iv) or 2.3.5(iv)). Then D ≃ (u0, u1π0)⊗ (v0, v1δ0)

for some units ui, vi ∈ R0.

Suppose P is a nodal point of Y1. Then, by (2.6.2), there exists an isomorphism

ϕP : D ⊗ F0P → (u′
0, w

′
1πP ) ⊗ (v′0, v

′
1δP ) and θP ∈ ÔP (u

′
0, w

′
1πP ) ⊗ ÔP (v

′
0, v

′
1δP ) such

that ϕP (R0(u0, u1π0)⊗R0(v0, v1π0)) ⊂ ÔP (u
′
0, w

′
1πP )⊗ ÔP (v

′
0, v

′
1δP ) and int(θP )σ =

ϕ−1
P σ′ϕP , where σ

′ is the product of the canonical involutions on the right hand side.

Let h′ be the hermitian form on ((u′
0, w

′
1πP ) ⊗ (v′0, v

′
1δP )), ϕPσϕ

−1
P ) which is the im-

age of h under ϕP . Since h = ⟨a1, · · · , an⟩, we have h1 = ⟨ϕP (a1), · · · , ϕP (an)⟩.

Let h′ = θPh1. Then h′ is an hermitian form with respect σ′. Let X ′ be the pro-

jective homogeneous variety under G((u′
0, w

′
1πP )⊗ (v′0, v

′
1δP ), σ

′, h′) associated to X.

Then X(F0P ) ̸= ∅ if and only if X ′(F0P ) ̸= ∅. Since ϕP (ai), θP ∈ ÔP (u
′
0, w

′
1πP ) ⊗

ÔP (v
′
0, v

′
1δP ), by (2.5.4), X ′(F0P ) ̸= ∅ and hence X(F0P ) ̸= ∅.

If P is a non-nodal point, then using (2.6.3), we get X(F0P ) ̸= ∅ as above.

Proposition 2.6.9. Let k, F0 and F be as above. Suppose that for finite extension

ℓ/k, every element in 2Br(ℓ) has index at most 2. Let D ∈ 2Br(F ) be a central simple

algebra over F with a F/F0-involution σ and h an hermitian form over (D, σ). Let
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X be a projective homogeneous variety under G(D, σ, h) over F0. If X(F0ν) ̸= ∅

for all divisorial discrete valuations ν of F0, then there exists a sequence of blowups

Y → Spec(R0) such that for every closed point P of Y , X(F0P ) ̸= ∅.

Proof. By (2.6.8), we assume that ind(D) > 4. As in the proof of (2.6.6), we assume

that D is unramified on R0 except possibly at (π0) and (δ0). Then, by (2.2.8, 2.3.6),

ind(D) = 8 and D ≃ (u0, u1) ⊗ (v0, v1π0) ⊗ (w0, w1δ0) ⊗ F for some units u,vi, wi ∈

R0. Without loss of generality we assume that σ is the tensor product of canonical

involutions on (u0, u1), (v0, v1π) and (w0, w1δ) and τ . Let Γ = R(u0, u1)⊗R(v0, v1π)⊗

R(w0, w1δ). Then Γ is a maximal R-order of D. We have h = ⟨a1, · · · , an⟩ for some

ai ∈ Γ.

Let X0 → Spec(R0) be a sequence of blowups such that the integral closure of

Y0 in F is regular and the support of Nrd(ai) and ramY (D) is a union of regular

curves with normal crossings. By (2.6.4), there exists a finite subset P of Y0 such

that X(F0P ) ̸= ∅ for all P ̸∈ P0.

Let P ∈ P0. If ind(D ⊗ F0P ) ≤ 4, then by (2.6.8), there exists a sequence of

blowups XP of Spec(OP ) such that for every closed point Q of XP , X(F0Q) ̸= ∅.

Suppose ind(D ⊗ F0P ) > 4. Then as above we have ind(D ⊗ F0P ) = 8. Arguing

as in the proof of (2.6.8), we get that X(F0P ) ̸= ∅.

2.7 Main theorem

In this section we prove the main theorems.

Theorem 2.7.1. Let K be a complete discretely valued field with valuation ring T

and residue field k. Suppose that char(k) ̸= 2. Let F be the function field of a smooth

projective geometrically integral curve over K. Let A ∈ 2Br(F ) be a central simple

algebra over F with an involution σ of any kind, F0 = F σ and h a hermitian form

over (A, σ). Suppose that ind(A) ≤ 4. Let G = SU(A, σ, h) if σ is first kind or
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U(A, σ, h) if σ is of second kind. Let X be a projective homogeneous variety under G

over F0. If X(F0ν) ̸= ∅ for all divisorial discrete valuations ν of F , then X(F0) ̸= ∅.

Proof. Since F is the function field of a curve over K, F0 is also the function field

of a curve over K. Let X0 → Spec(R0) be a regular proper model of F0 with the

closed fibre X0 a union of regular curves with normal crossings ([1]). Let η ∈ X0 be a

generic point. Then η gives a divisorial discrete valuation ν of F . Since X(F0η) ̸= ∅,

by ([13, 5.8]), there exists a nonempty open set Uη of the closure of η in X0 such that

X(F0Uη) ̸= ∅. By shrinking Uη, we assume that Uη does not contain any singular

points of X0.

Let P = X0 \ ∪ηUη. Then P is a finite set of closed points of X0 containing all

the singular points of X0. Let P be a closed point of X0. Suppose P ̸∈ P. Then

P ∈ Uη for some η. Since F0Uη ⊂ F0P , X(F0P ) ̸= ∅.

Let P ∈ P. Since ind(A) ≤ 4 and A ∈ 2Br(F ), by (2.6.8), there exists a sequence

of blowups XP of Spec(OP ) such that X(F0Q) ̸= ∅ for all closed points of XP . Thus

replacing X by these finitely many sequences of blowups at all P ∈ P, we assume

that X(F0Q) ̸= ∅ for all closed points Q of X0. Since for any generic point η of X0,

X(F0η) ̸= ∅, we have X(F0x) ̸= ∅ for all points x ∈ X0. Since G is a connected

rational group ([8, Lemma 5]), by ([11, Theorem 3.7]), we have X(F ) ̸= ∅.

Theorem 2.7.2. Let K be a complete discretely valued field with valuation ring T

and residue field k. Suppose that char(k) ̸= 2. Let F be the function field of a smooth

projective geometrically integral curve over K. Let A be a central simple algebra over

F with an σ of any kind, F0 = F σ and h a hermitian form over (A, σ). Suppose

that for every finite extension ℓ/k, every element in 2Br(ℓ) has index at most 2. Let

G = SU(A, σ, h) if σ is first kind or U(A, σ, h) if σ is of second kind. Let X be a

projective homogeneous variety under G over F0. If X(F0ν) ̸= ∅ for all divisorial

discrete valuations ν of F0, then X(F0) ̸= ∅.

Proof. Using (2.6.9), the proof is similar to the proof of (2.7.1).



42

Corollary 2.7.3. Let K be a complete discretely valued field with valuation ring T

and residue field k. Suppose that k is a global field, local field or a C2-field with

char(k) ̸= 2. Let F be the function field of a smooth projective geometrically integral

curve over K. Let A ∈ 2Br(F ) be a central simple algebra over F with an involution σ

of any kind and h a hermitian form over (A, σ). Let F0 = F σ, G = SU(A, σ, h) if σ is

first kind and G = U(A, σ, h) if σ is of second kind. Let X be a projective homogeneous

variety under G over F0. If X(F0ν) ̸= ∅ for all divisorial discrete valuations ν of F0,

then X(F0) ̸= ∅.

Proof. Suppose k is a global field or a local field or a C2-field. Then any finite

extension ℓ of k is also same type and hence every element in 2Br(k) is of index at

most 2 ([30, Chapter 10, 2.3(vi)], [30, Chapter 10, 2.2(i)], [18, Theorem 4.8]). Hence

the corollary follows from (2.7.2).
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Chapter 3

Springer’s problem for odd degree

extensions

Let F be a field of characteristic not 2. Let q be a quadratic form over F . Let M

be an odd degree extension of F . By a theorem of Springer ([31]), if qM is isotropic,

then q is isotropic.

Let A be a central simple algebra over F with an involution σ. Let h : V × V −→ A

be an ε-hermitian form over (A, σ) for ε = ±1. Let M be an odd degree extension of

F σ. One can ask if the isotropy of hM implies the isotropy of h?

The following are some results to this question.

Bayer-Fluckiger and Lenstra ([4]) have proved that if hM is hyperbolic, then h is hy-

perbolic. Parimala, Sridharan and Suresh ([25]) have proved that if A is a quaternion

algebra and σ is of the first kind, if hM is isotropic, then h is isotropic. However, they

also show that this is not true in general if ind(A) is odd and σ of the second kind.

Let B = EndA(V ) and let τ be the adjoint involution of h. Black and Queguiner

Mathieu ([5]) proved that when deg(B) = 12 and τ is orthogonal, if τM is isotropic,

then τ is isotropic. Furthermore, the same holds when B has period 2, deg(B) = 6,

and τ is unitary.
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3.1 Complete discretely valued fields

In this section we prove an analogue of Springer’s theorem for hermitian forms over

complete discretely valued fields with residue fields local fields or function fields of

curves over local fields. We begin by recalling the following

Lemma 3.1.1. ([32], Lemma 5.1) Let (F, ν) be a complete discrete valued field with

residue field κ, with char(κ) ̸= 2. Let L/F be an extension of degree at most 2 with

residue field κL. Let M be an odd degree extension of F with residue field κM . Suppose

that for for every period 2 central division algebra B over κL with a κL/κ involution

τ and ε-hermitian form g over (B, τ) if gκM
is isotropic, then g is isotropic. Let D

be a central division algebra over L with period 2. Let σ be an involution on D. Let

h be an ε′-hermitian form over D, ε′ = ±1. If hM is isotropic, then h is isotropic.

Corollary 3.1.2. Let (F, ν) be a complete discrete valued field with residue field κ,

with char(κ) ̸= 2. Suppose that κ is a non-dyadic local field or a function field of

a curve over a non-dyadic local field. Let L/F be an extension of degree at most 2

and A a central simple algebra over L of period 2 with a L/F involution. Let h be

an ε-hermitian form over (A, σ), ε = ±1. Let X be a projective homogeneous space

under G(A, σ, h). If X(M) ̸= ∅ for some odd degree extension M/F , then X(F ) ̸= ∅.

Proof. By Morita equivalence, we may assume that A is division. By the description

of X and by induction on the Witt index of h, it is enough to show that if hM is

isotropic for some odd degree extension M/F , then h is isotropic.

Let M/F be an odd degree extension. Suppose that hM isotropic. Let κM be

the residue field of M . Then κM/κ is an odd degree extension. Let B be a central

division algebra over κL of period 2 with a κL/κ-involution τ . Let g be ε′-hermitian

form over (B, τ). Suppose that gκM
is isotropic.

If κ is a non-dyadic local field, then by ([32], Lemma 5.6), g is isotropic. If κ is

a function field of a curve a non-dyadic local field, then by ([32], Theorem 5.8), g is
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isotropic. Hence, by (3.1.1), h is isotropic.

3.2 Applications

In this section we prove an analogue of Springer’s theorem for hermitian forms over

semiglobal fields with residue field a local field.

Let L be a field (char(L) ̸= 2) and M be an odd degree extension of L. For any

discrete valuation ν on L, let Rν be the valuation ring and pν be the maximal ideal of

this ring. Let R̂ν be the completion of Rν and Lν its field of fractions. Let S be the

integral closure of R in M and βi be the prime ideals of S over the ideals pν in Rν ,

where 1 ≤ i ≤ n. Let Ŝi be the completion of S at βi and Mi be its field of fractions.

Then, by ([7], p.15), M ⊗L Lν
∼=

∏n
i=1Mi. Furthermore, since [M : L] is odd, then

[M : L] = [M ⊗L Lν : Lν ] =
∑n

i=1[Mi : Lν ] implies that at least one of the terms in

the sum
∑n

i=1[Mi : Lν ] must be odd.

Theorem 3.2.1. Let K be a complete discretely valued field with residue field k.

Suppose that k is a nondyadic local field. Let F be the function field of a smooth

projective geometrically integral curve over K. Let A ∈ 2Br(F ) be a central simple

algebra over F with an involution σ and h a hermitian form over (A, σ). Let X be

a projective homogenous space under G(A, σ, h) over F σ. If X(M) ̸= ∅ for some odd

degree extension M/F σ, then X(F σ) ̸= ∅ .

Proof. Let M/F σ be an extension of odd degree. Suppose X(M) ̸= ∅.

Let ν be a divisorial discrete valuation of F σ. Then the residue field κ(ν) is either

a finite extension of K or a function field of a curve over a finite extension of k ([22,

Theorem 8.1]).

Since M ⊗ F σ
ν

∼=
∏n

i=1Mi and X(M) ̸= ∅, X(Mi) ̸= ∅ for all i. Since M/F σ

is an odd degree extension, Mi/F
σ
ν is an odd degree extension. Hence, by (3.1.2),

X(F σ
ν ) ̸= ∅. Hence, by ([11], 3.7), X(F σ) ̸= ∅.



46

Corollary 3.2.2. Let K be a complete discretely valued field with residue field k.

Suppose that k is a nondyadic local field. Let F be the function field of a smooth

projective geometrically integral curve over K. Let D ∈ 2Br(F ) be a central division

algebra over F with an involution σ and h a hermitian form over (A, σ). If hM is

isotropic for some odd degree extension M/F σ, then h is isotropic.

Proof. Let M/F σ be an extension of odd degree. Suppose hM is isotropic.

Let d =deg(D) andX = Xd be the projective homogeneous space underG(D, σ, h)

given by the totally isotropic subspaces of reduced dimension d.

Since per(D) is at most 2 and M/F σ is an odd degree extension, D ⊗ M is a

division algebra. Since hM is a isotropic, X(M) ̸= ∅. Hence, by (3.2.1), X(F σ) ̸= ∅.

In particular h is isotropic over F σ.
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[7] J. W. S. Cassels and A. Fröhlich, editors. Algebraic number theory, 1967. Aca-

demic Press, London; Thompson Book Co., Inc., Washington, D.C.

[8] Vladimir I. Chernousov and Vladimir P. Platonov. The rationality problem for

semisimple group varieties. J. Reine Angew. Math., 504:1–28, 1998. ISSN 0075-

4102. doi: 10.1515/crll.1998.108. URL https://doi.org/10.1515/crll.1998.

108.

[9] Jean-Louis Colliot-Thélène, Raman Parimala, and Venapally Suresh. Patching

and local-global principles for homogeneous spaces over function fields of p-adic

curves. Comment. Math. Helv., 87(4):1011–1033, 2012. ISSN 0010-2571. doi:

10.4171/CMH/276. URL https://doi.org/10.4171/CMH/276.

[10] Philippe Gille and Tamás Szamuely. Central simple algebras and Galois coho-

mology, volume 165 of Cambridge Studies in Advanced Mathematics. Cambridge

University Press, Cambridge, 2017. ISBN 978-1-316-60988-0; 978-1-107-15637-1.

Second edition of [ MR2266528].

[11] David Harbater, Julia Hartmann, and Daniel Krashen. Applications of patching

to quadratic forms and central simple algebras. Invent. Math., 178(2):231–263,

2009. ISSN 0020-9910. doi: 10.1007/s00222-009-0195-5. URL https://doi.

org/10.1007/s00222-009-0195-5.

[12] David Harbater, Julia Hartmann, and Daniel Krashen. Refinements to patching

and applications to field invariants. Int. Math. Res. Not. IMRN, (20):10399–

10450, 2015. ISSN 1073-7928. doi: 10.1093/imrn/rnu278. URL https://doi.

org/10.1093/imrn/rnu278.

[13] David Harbater, Julia Hartmann, and Daniel Krashen. Local-global principles

for torsors over arithmetic curves. Amer. J. Math., 137(6):1559–1612, 2015. ISSN

https://doi.org/10.1515/crll.1998.108
https://doi.org/10.1515/crll.1998.108
https://doi.org/10.4171/CMH/276
https://doi.org/10.1007/s00222-009-0195-5
https://doi.org/10.1007/s00222-009-0195-5
https://doi.org/10.1093/imrn/rnu278
https://doi.org/10.1093/imrn/rnu278


49

0002-9327. doi: 10.1353/ajm.2015.0039. URL https://doi.org/10.1353/ajm.

2015.0039.

[14] N. A. Karpenko. Cohomology of relative cellular spaces and of isotropic flag

varieties. Algebra i Analiz, 12(1):3–69, 2000. ISSN 0234-0852.

[15] M. Kneser. Lectures on Galois cohomology of classical groups. Tata Institute

of Fundamental Research Lectures on Mathematics, No. 47. Tata Institute of

Fundamental Research, Bombay, 1969. With an appendix by T. A. Springer,

Notes by P. Jothilingam.

[16] Max-Albert Knus. Quadratic and Hermitian forms over rings, volume 294

of Grundlehren der mathematischen Wissenschaften [Fundamental Principles

of Mathematical Sciences]. Springer-Verlag, Berlin, 1991. ISBN 3-540-

52117-8. doi: 10.1007/978-3-642-75401-2. URL https://doi.org/10.1007/

978-3-642-75401-2. With a foreword by I. Bertuccioni.

[17] Max-Albert Knus, Alexander Merkurjev, Markus Rost, and Jean-Pierre Tignol.

The book of involutions, volume 44 of American Mathematical Society Colloquium

Publications. American Mathematical Society, Providence, RI, 1998. ISBN 0-

8218-0904-0. doi: 10.1090/coll/044. URL https://doi.org/10.1090/coll/

044. With a preface in French by J. Tits.

[18] T. Y. Lam. Introduction to quadratic forms over fields, volume 67 of Graduate

Studies in Mathematics. American Mathematical Society, Providence, RI, 2005.

ISBN 0-8218-1095-2. doi: 10.1090/gsm/067. URL https://doi.org/10.1090/

gsm/067.

[19] Douglas W. Larmour. A Springer theorem for Hermitian forms. Math. Z., 252(3):

459–472, 2006. ISSN 0025-5874. doi: 10.1007/s00209-005-0775-z. URL https:

//doi.org/10.1007/s00209-005-0775-z.

https://doi.org/10.1353/ajm.2015.0039
https://doi.org/10.1353/ajm.2015.0039
https://doi.org/10.1007/978-3-642-75401-2
https://doi.org/10.1007/978-3-642-75401-2
https://doi.org/10.1090/coll/044
https://doi.org/10.1090/coll/044
https://doi.org/10.1090/gsm/067
https://doi.org/10.1090/gsm/067
https://doi.org/10.1007/s00209-005-0775-z
https://doi.org/10.1007/s00209-005-0775-z


50

[20] A. S. Merkurjev, I. A. Panin, and A. R. Wadsworth. Index reduction formulas

for twisted flag varieties. I. K-Theory, 10(6):517–596, 1996. ISSN 0920-3036.

doi: 10.1007/BF00537543. URL https://doi.org/10.1007/BF00537543.

[21] A. S. Merkurjev, I. A. Panin, and A. R. Wadsworth. Index reduction formu-

las for twisted flag varieties. II. K-Theory, 14(2):101–196, 1998. ISSN 0920-

3036. doi: 10.1023/A:1007793218556. URL https://doi.org/10.1023/A:

1007793218556.

[22] R. Parimala. A Hasse principle for quadratic forms over function fields. Bull.

Amer. Math. Soc. (N.S.), 51(3):447–461, 2014. ISSN 0273-0979. URL https:

//doi.org/10.1090/S0273-0979-2014-01443-0.

[23] R. Parimala and V. Suresh. Period-index and u-invariant questions for function

fields over complete discretely valued fields. Invent. Math., 197(1):215–235, 2014.

ISSN 0020-9910. doi: 10.1007/s00222-013-0483-y. URL https://doi.org/10.

1007/s00222-013-0483-y.

[24] R. Parimala and V. Suresh. Local-global principle for unitary groups over func-

tion fields of p-adic curves, 2020.

[25] R. Parimala, R. Sridharan, and V. Suresh. Hermitian analogue of a theorem of

Springer. J. Algebra, 243(2):780–789, 2001. ISSN 0021-8693. doi: 10.1006/jabr.

2001.8830. URL https://doi.org/10.1006/jabr.2001.8830.

[26] B. Surendranath Reddy and V. Suresh. Admissibility of groups over function

fields of p-adic curves. Adv. Math., 237:316–330, 2013. ISSN 0001-8708. doi: 10.

1016/j.aim.2012.12.017. URL https://doi.org/10.1016/j.aim.2012.12.017.

[27] I. Reiner. Maximal orders, volume 28 of London Mathematical Society Mono-

graphs. New Series. The Clarendon Press, Oxford University Press, Oxford, 2003.

https://doi.org/10.1007/BF00537543
https://doi.org/10.1023/A:1007793218556
https://doi.org/10.1023/A:1007793218556
https://doi.org/10.1090/S0273-0979-2014-01443-0
https://doi.org/10.1090/S0273-0979-2014-01443-0
https://doi.org/10.1007/s00222-013-0483-y
https://doi.org/10.1007/s00222-013-0483-y
https://doi.org/10.1006/jabr.2001.8830
https://doi.org/10.1016/j.aim.2012.12.017


51

ISBN 0-19-852673-3. Corrected reprint of the 1975 original, With a foreword by

M. J. Taylor.

[28] David J. Saltman. Division algebras over p-adic curves. J. Ramanujan Math.

Soc., 12(1):25–47, 1997. ISSN 0970-1249.

[29] David J. Saltman. Cyclic algebras over p-adic curves. J. Algebra, 314(2):817–

843, 2007. ISSN 0021-8693. doi: 10.1016/j.jalgebra.2007.03.003. URL https:

//doi.org/10.1016/j.jalgebra.2007.03.003.

[30] Winfried Scharlau. Quadratic and Hermitian forms, volume 270 of Grundlehren

der mathematischen Wissenschaften [Fundamental Principles of Mathematical

Sciences]. Springer-Verlag, Berlin, 1985. ISBN 3-540-13724-6. doi: 10.1007/

978-3-642-69971-9. URL https://doi.org/10.1007/978-3-642-69971-9.

[31] Tonny Albert Springer. Sur les formes quadratiques d’indice zéro. C. R. Acad.

Sci. Paris, 234:1517–1519, 1952. ISSN 0001-4036.

[32] Zhengyao Wu. Hasse principle for hermitian spaces over semi-global fields. J.

Algebra, 458:171–196, 2016. ISSN 0021-8693. doi: 10.1016/j.jalgebra.2016.02.

027. URL https://doi.org/10.1016/j.jalgebra.2016.02.027.

https://doi.org/10.1016/j.jalgebra.2007.03.003
https://doi.org/10.1016/j.jalgebra.2007.03.003
https://doi.org/10.1007/978-3-642-69971-9
https://doi.org/10.1016/j.jalgebra.2016.02.027

	Preliminaries
	Central Simple Algebras
	Involutions and Hermitian Forms
	Linear Algebraic Groups
	Projective Homogeneous Spaces
	Morita Equivalence

	Hasse Principle
	Introduction
	Division Algebras with an involution of the first kind over two dimensional local fields
	2-torsion division algebras with an involution of the second kind over two dimensional local fields
	Maximal Orders
	A local global principle for hermitian forms over two dimensional local fields
	Behavior under blowups 
	Main theorem

	Springer's problem for odd degree extensions
	Complete discretely valued fields
	Applications

	Bibliography

