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Abstract 

 
No two neurons are alike: degeneracy in neurons and neural circuits 

 
By Kun Tian 

 

Neurons and neural circuits need to balance flexibility with stability to constantly adapt 
to the changing environment while maintaining stable outputs. One of the candidate 
mechanisms is degeneracy, which refers to the phenomenon that different combinations 
of a neuron or neural circuit’s parameters (i.e. degenerate solutions) can give rise to 
similar neural activity. Degeneracy has been widely observed in invertebrate and 
vertebrate neural systems, yet still little is known about relationships among the 
degenerate solutions and how they relate to the function of neurons and neural circuits. 
Combining experimental data with computational modeling, we explored the questions 
above in two neural systems: the pyloric circuit in the crab Cancer borealis and the 
sympathetic postganglionic neurons (SPNs) in mice.  

 The pyloric circuit generates a stereotypical rhythm, and multiple combinations 
of its cellular and synaptic parameters can produce similar pyloric rhythm. To explore 
the questions above, we measured the linear structures of the degenerate solutions, and 
found that reducing the variability of pyloric rhythm features, but not the number of 
parameters, led to increased strength of linear structures of the degenerate solutions.  

 SPNs, the last common motor output of the sympathetic nervous system, pass 
converged motor commands from the spinal cord to downstream muscles and visceral 
organs. SPNs located in the thoracic region (tSPNs) innervate vasculature, and a RNA-
Seq study identified two types of vasculature-innervating tSPNs, NA2 and NA3, which 
differ in their cell size, but little is known about whether they differ in excitability and 
ability to integrate synaptic inputs. We built the first physiologically-realistic model of 
tSPNs in mice based on experimental data, and then built a database of tSPN model 
versions that match the cell size of NA2- and NA3-type tSPNs. We found that, 
compared to NA2-type tSPNs, NA3-type have lower densities of hyperpolarizing 
currents and higher input resistance, making them more excitable with greater ability to 
integrate synaptic inputs.  

 Together, these insights from examining a collection of degenerate solutions 
instead of a single one will help us better understand how neurons and neural circuits 
employ degenerate solutions to maintain stable outputs against perturbations and 
injuries.  
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Chapter 1 General Introduction 

To maintain stable outputs, neural circuits need to constantly adapt to developmental 

changes and environmental perturbations. This ability to adapt implies that neurons 

and neural circuits possess multiple ways to produce the same (or similar) output given 

constant changes of their morphological and molecular construction, neuromodulatory 

inputs, and environment, a property called degeneracy. It refers to the phenomenon 

that different combinations of the underlying parameters can give rise to similar neural 

activity or behavior (Edelman and Gally, 2001; Marder and Taylor, 2011; Mason et al., 

2015). Degeneracy is prevalent in biological systems. In genetics, the genetic code is 

degenerate with different codons coding for the same amino acid. In immunology, 

different antibodies can bind to the same antigen. In this chapter, we focus on 

degeneracy at the single neuron and the neural circuit level, which has been widely 

observed in both invertebrate and vertebrate neural systems. For example, the pyloric 

circuit of the crab Cancer borealis generates a stereotyped rhythm to aid in digestion, and 

multiple combinations of its underlying ion channel densities can produce similar 

pyloric rhythm (Prinz et al., 2004; Marder and Goaillard, 2006; Ransdell et al., 2013a). In 

Caenorhabditis elegans, degenerate thermoregulation and feeding pathways make these 

behaviors more robust (Cropper et al., 2016). The pathways to pathological neural states 

can also be degenerate. For example, hyperexcitability in rat somatosensory afferents 

can arise from different combinations of the underlying sodium and potassium 

membrane currents (Rho and Prescott, 2012; Ratté et al., 2014). 

Degeneracy is not only important to maintain stable neural activity against 

developmental changes and perturbations, but also can widen the range of achievable 
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firing rates and aid switching between different behaviors (Drion et al., 2015; Cropper et 

al., 2016). Although the phenomenon of degeneracy has been widely observed, little is 

known about structures of the degenerate solutions and how they contribute to 

maintaining neural activity. What are the structures of the degenerate solutions? Do 

neurons and neural circuits employ those structures to maintain stable neural activity 

against developmental changes and perturbations, and if so, how do they do it? In this 

chapter, we first review experimental and computational studies related to these 

questions (Section 1.1 and 1.2), and then discuss the computational approach employed 

in the following chapters to explore these questions (Section 1.3).  

1.1 Structures of degenerate parameter sets 

Degeneracy can be visualized as a many-to-one mapping from the solution space in the 

parameter space to the viable region in the output space (Fig 1.1A) (O'Leary and Wyllie, 

2011). The parameter space is a high-dimensional space, with each dimension 

representing one parameter. For this dissertation, parameters of a neural circuit are ion 

channel densities and synaptic strengths, which together determine neural activities. 

Each salient feature of neural activities, such as average firing rate, adaptation ratio, 

etc., is a dimension in the output space. All points in the parameter space that map to 

the same point or region in the output space are degenerate to each other, and are 

referred to as degenerate parameter sets or degenerate solutions, where each point in 

the parameter space is a parameter set of specific values for each ion channel density 

and/or synaptic strength (Fig 1.1B). All degenerate solutions comprise the solution 

space.  
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Figure 1.1 Visualizing degeneracy in high-dimensional space. (A) Degeneracy is defined as the 
mapping from the solution space, which is a subset of the parameter space, to the viable region in 
the output space. Example used here is the mapping from cellular and synaptic conductances of a 
mouse thoracic sympathetic postganglionic neuron model to its space of firing output features. (B) 
Neuron models with similar behavior but different parameters. Top: Voltage traces from two 
physiologically-realistic tSPN models with almost identical firing rates and spike rate adaptation 
ratios. Bottom: Parameters for the two tSPN models, which are quite different. Gi parameters is 
maximal conductance of current i. The model is described in Chapter 3.  
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1.1.1 Ion channel correlations and sloppiness  

Experimental studies have shown the existence of degeneracy in both invertebrates 

(Grashow et al., 2010; Beverly et al., 2011; Zhao and Golowasch, 2012; Lamb and 

Calabrese, 2013) and vertebrates (Leonardo, 2005; Swensen and Bean, 2005; Cao and 

Oertel, 2011; Amendola et al., 2012), but we lack a comprehensive understanding of the 

structures of those degenerate solutions and how they relate to the function of neurons 

and neural circuits.  

The pyloric circuit in the crab Cancer borealis is a good model to study structures 

of degenerate solutions because the underlying cellular and synaptic components and 

the anatomical connections between neurons have been identified and well 

characterized in experiments. Specifically, the pyloric circuit is a central pattern 

generator consisting of three types of neurons called pyloric dilator (PD), lateral pyloric 

(LP) and pyloric constrictor (PY), which burst in turn to generate a stereotyped tri-

phasic pyloric rhythm. All neurons contain a rich repertoire of ion channels and are 

connected by two types of inhibitory synapses, which are glutamatergic and 

cholinergic.  

One type of the structure found in pyloric circuit’s solution space is the linear 

correlation between the density of two ion channels, a phenomenon called ion channel 

correlation. Both experimental and computational studies have shown that different 

combinations of the ion channel densities and synaptic strengths can produce similar 

pyloric rhythms (Prinz et al., 2004; Grashow et al., 2010; Ransdell et al., 2013a), and have 

further identified ion channel correlations needed to maintain the pyloric rhythm. For 

example, a positive correlation between a hyperpolarization-activated cation current (Ih)  
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and a fast-inactivating potassium current (IA) has been shown to maintain spiking 

frequency in the PD neuron (Zhao and Golowasch, 2012) (Fig 1.2A). Another study in a 

motor neuron of the crab pyloric circuit found that IA is also coupled with a calcium-

dependent potassium current (IKCa) and that blocking one leads to a rapid increase in the 

other (Ransdell et al., 2012). There are a few up-to-date reviews on ion channel 

correlations in single neurons (Golowasch, 2014; Schulz and Lane, 2017), but little is 

known about correlations at the neural circuit level, especially correlations between 

cellular and synaptic currents (Taylor et al., 2009).   

Knowing that certain ion channel correlations maintain the pyloric rhythm, we 

wondered how many and which pairs are linearly correlated. These questions are 

challenging to study in experiments, but can be investigated using conductance-based 

models of a single neuron or of the pyloric circuit. Such studies have further identified 

ion channel correlations that were difficult to identify in experiments. For example, in a 

PD neuron model, spike phase patterns are maintained by covarying a fast sodium 

current (INa) and a transient calcium current (ICaT) (Soofi et al., 2012). Another study 

showed that covariation of ICaT and a delayed-rectifier potassium current (IKd) preserved 

the output of motor neurons (Ball et al., 2010). A synthesis of ion channel correlations 

across cell types indicates that they are distinct in different cell types and therefore can 

be a defining characteristic of cell identity (Hudson and Prinz, 2010; Temporal et al., 

2014; Schulz and Lane, 2017).  

However, most of the ion channel pairs in these models show weak to no 

correlation. A study constructed approximately 1,000 degenerate model instances of the 

LP neuron, and found that over 90% of the ion channel pairs examined had weak  
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correlation coefficients between -0.2 and 0.2 (Taylor et al., 2009). Another model of the 

PD neuron showed that combinations of two ion channel densities leading to different 

types of neural activities usually form a continuous region, but each region shows weak 

to no linear correlations internally (Bialek, 2012; LeMasson et al., 1993) (Fig 1.2B). 

Similar results were also seen in other invertebrate and vertebrate neural circuits 

(Achard and De Schutter, 2006; Doloc-Mihu and Calabrese, 2014; Anirudhan and 

Narayanan, 2015), indicating that this is a universal phenomenon.  

Combining these findings, we see that ion channel correlations are generally 

absent or weak, with a few strong ones regulating and maintaining functional outputs. 

This observation indicates sloppiness in the parameter spaces of these models. Models 

are sloppy if the simulated neural activities they produce are sensitive to changes of a 

small number of parameters or parameter combinations (i.e. stiff parameters) and 

insensitive to changes of the others (i.e. sloppy parameters) (Daniels et al., 2008; 

Transtrum et al., 2015) (Fig 1.2C). Sloppiness is a general feature of models with 

multiple parameters, as even a neuron model containing just five membrane currents 

can exhibit sloppiness (Goldman et al., 2001). This can be understood intuitively: ionic 

currents are either inward or outward, and one type of inward current (e.g. INa) can be 

reduced by some amount while the neural activity remains invariant as long as the 

reduction is balanced by changes in other inward or outward currents. Sloppiness 

analysis can be combined with experiments to understand how populations of neurons 

maintain stable outputs. A recent experiment simultaneously recorded spiking activities 

from hundreds of hippocampal neurons cultured on high-density multi-electrode 

arrays, and found that firing rate was maintained at the population level even though 

single neurons exhibited considerable spontaneous firing rate fluctuations (Slomowitz 
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et al., 2015). A follow-up study applied the analysis of sloppiness to recordings from 

cultured hippocampal neurons and found that the spontaneous fluctuations exhibited 

by single neurons tended to occur along sloppy dimensions in parameter space (Panas 

et al., 2015).  

1.1.2 From linear to nonlinear structures 

Ion channel correlations only characterize linear relationships between ion channels, so 

although most correlations were weak in computational studies, this does not mean that 

there are no other structures contained in degenerate parameter sets. For example, an 

experimental study found that coregulation of a triplet of ionic channel densities was 

needed to maintain output features such as burst period and duration (Zhao and 

Golowasch, 2012). Modeling studies also found that for neuron models that produce 

similar outputs, the pairwise distributions of ion channel densities could be nonlinear. 

For example, the distribution of INa and IKd was L-shaped for all instances of a neuron 

model that generated one-spike burster activity, but the average INa and IKd over all 

those instances failed to produce the same neural activity because it fell outside the L-

shaped solution space for one-spike bursting (Golowasch et al., 2002) (Fig 1.2D). Similar 

results were also observed in a more complex cerebellar Purkinje neuron model 

(Achard and De Schutter, 2006). In theory, nonlinear distributions of ion channel 

densities could take many forms, such as donut-shaped or banana-shaped, to name a 

few (Prinz, 2010a; Marder and Taylor, 2011).  All these studies call for an open-minded 

interpretation of data when it comes to extracting structures out of degenerate 

solutions.  

Nonlinear pairwise distributions of ion channel densities, such as donut-shaped  
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or banana-shaped, are theoretical scenarios. Quite often, the distributions from 

experimental data or computational models are irregular and noisy, making it 

challenging to discern any patterns or structures. In this scenario, we can start by 

investigating whether the degenerate parameter sets are connected to each other in 

parameter space, which would allow for smooth transitions from one degenerate 

solution to another when the system is perturbed. One analysis of a canonical pyloric 

neuron model showed that although all bursting model instances scattered into 30 

disconnected region in parameters space, 99.99% of them were in the largest region, and 

the seemingly disconnected 0.01% of bursting solutions were explained by the coarse 

sampling of parameter space by the simulated parameter combinations (Taylor et al., 

2006). Further study showed that bursting neuron models that matched the specific 

features of the LP neuron in the pyloric circuit fell into a single “island” (Taylor et al., 

2009). The observation that degenerate parameter sets generally fall into one connected 

region in parameter space implies that low-dimensional structures are embedded in the 

high-dimensional parameter space, and could potentially be extracted using 

dimensionality reduction and visualization methods. One of the most prevalent 

dimensionality reduction methods is principal component analysis (PCA), which 

projects high dimensional data to low-dimensional structures while preserving variance 

in the data. Dimensionality reduction is one type of visualization technique. Other 

visualization techniques suitable to analyze data from electrophysiology recordings and 

conductance-based models include hyperplane fitting, dimensional stacking, and 

parameterscape (Goldman et al., 2001; Taylor et al., 2006; Gutierrez et al., 2013).  

In a nutshell, structures of degenerate parameter sets are sloppy, and are 

characterized by largely weak ion channel correlations coupled with a few strong ones. 
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Weak to absent correlations are usually treated as negative results in experiments, but 

here we argue that from a system perspective, the prevalence of weak ion channel 

correlations is a feature of degenerate systems and is important for robustness against 

perturbations. A system with a majority of strong ion channel correlations implies that 

it is tightly regulated, which may ensure proper function more efficiently under normal 

conditions but is less robust to perturbations and injuries. Unlike many engineered 

systems operating under predictable conditions, living systems face unpredictable and 

constant changes in the environment and it is therefore important that they maintain 

robustness in many scenarios.  

 

Figure 1.2 Structures of degenerate solutions. (A) A linear correlation between a fast inactivating 
potassium current (IA) and a hyperpolarization-activated cation current (Ih) maintains spiking 
frequency in a crab PD neuron model. Percent change is relative to a canonical spiking model 
version. Black dashed line indicates degenerate parameter combinations that produce the same 
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spike frequency as the canonical model. Figure is adapted from Zhao & Golowasch, 2012. (B) 
Combinations of a calcium-dependent potassium current (IKCa) and a calcium current (ICa) in a model 
of the crab LP neuron that produce different types of neural activities (i.e. single spikes, two-spike 
bursts) are separated by nonlinear boundaries. Figure is adapted from Bialek, 2012. (C) Stiff and 
sloppy dimensions in the parameter space. The contours represent constant output value, and color 
change maps to the rate of change of output values. Figure is adapted from Gutenkunst et al., 2007. 
(D) Number of spikes per burst (black: 0; blue: 1; green: 2; olive: 3; orange: 4; burgundy: 5) for 
bursting neurons with the indicated maximal conductance of a sodium current (INa) and a delayed-
rectifier potassium current (IKd). One-spike bursters (blue) lie in an L-shaped region. Combination of 
average parameter values of one-spike bursters (red square) falls outside L-shaped region and does 
not produce one-spike bursts, Ellipse indicates range of one standard deviation around the average 
and also largely falls outside L-shaped region. Figure is adapted from Golowasch et al., 2002.  

 

1.2 Degenerate solutions and homeostatic plasticity mechanisms 

Neurons and neural circuits may encounter a wide range of genetic and environmental 

perturbations during their lifetime, and therefore need to be both flexible to deal with 

diverse perturbations and reliable to produce stable outputs consistently. Studies across 

species have shown that, through a rich repertoire of tunable cellular and synaptic 

parameters, degenerate parameter sets provide the flexibility needed to restore neural 

activities against a wide range of genetic, anatomical, environmental, or 

pharmacological perturbations. But exactly how neurons and neural circuits use their 

repertoire of degenerate parameter sets to restore neural activities is still unclear. One of 

the possibilities is that degenerate parameter sets contain structures, and neurons and 

neural circuits employ these structures to move through parameter space to restore 

neural activities after perturbations and injuries. In the previous section, we discussed 

linear and nonlinear structures of degenerate parameter sets, such as ion channel 

correlations and L-shaped distributions of parameters. In this section, we review 

experimental and computational studies that link these structures to a stability 

mechanism in the nervous system called homeostatic plasticity.  
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In the nervous system, neurons and neural circuits possess the ability to restore 

neural activity against various types of perturbations, a stability mechanism called 

homeostatic plasticity. Homeostatic plasticity maintains stable outputs of single 

neurons or neural circuits against developmental changes and perturbations by 

adjusting the intrinsic excitability of individual neurons and/or the synaptic strengths 

between neurons. At a single neuron level, perturbed neural activities such as reduced 

neural firing rate can be compensated by increasing the number of depolarizing 

channels or reducing the number of hyperpolarizing channels in the membrane 

(Marder and Goaillard, 2006; Turrigiano, 2011). The neural circuit can also compensate 

for the reduced firing rate by increasing the excitatory synaptic strengths and/or 

reducing the inhibitory synaptic strengths in the circuit (Davis, 2006; Turrigiano, 2011). 

When we take snapshots of the underlying cellular and synaptic parameters at two time 

points, one before the perturbation, the other after neural activities were restored, we 

have two parameter sets that match the definition of degeneracy, i.e. different 

combinations of parameters that produce similar neural activities (Fig 1.3A). By 

examining the changes of structures in these degenerate parameter sets, we may gain 

insight into how neurons and neural circuits may employ structures of degenerate 

parameter sets to restore neural activities. In this section, we will examine the ways in 

which degeneracy might help maintain stable neural activities by reviewing 

experimental and computational studies of homeostatic plasticity at both the single 

neuron level and the neural circuit level.  

1.2.1 Single Neuron Level 

A few strong ion channel correlations have been shown to play an important role in  



 

 

12 

maintaining neural activities, as discussed in the previous section, raising the question 

what happens to these strong correlations when neural activities are perturbed and then 

restored.  

The pyloric circuit in the crab Cancer borealis generates a stereotyped pyloric 

rhythm that is maintained by homeostatic plasticity. The pyloric rhythm ceases when 

descending neuromodulatory inputs are acutely removed, a process called 

deafferentation. In the absence of neuromodulatory inputs, the pyloric rhythm can 

recover spontaneously in one to four days (Thoby-Brisson and Simmers, 1998; 

Golowasch et al., 1999; Luther et al., 2003). A study identified three pairwise ion channel 

correlations in the PD neurons of the pyloric circuit before deafferentation, which are 

between a high-threshold potassium current (IHTK) and a fast inactivating potassium 

current (IA), between IHTK and a hyperpolarization-activated cation current (Ih), and 

between IA and Ih. Four days after deafferentation, when the pyloric rhythm had 

recovered in the absence of neuromodulation, the correlations between IHTK and IA and 

between IHTK and Ih in the PD neuron were disrupted, but the IA and Ih correlation was 

preserved (Khorkova and Golowasch, 2007) (Fig 1.3B). A later study showed that this 

response is specific to cell type, as the same three pairs of ion channel correlations were 

all preserved after deafferentation in the LP neurons of the pyloric circuit (Temporal et 

al., 2012). However, these studies only indicate that certain ion channel correlations 

were not perturbed by deafferentation, but whether and how they contribute to the 

recovery of the pyloric rhythm are still unclear. We therefore wonder how are ion 

channel correlations formed and maintained.  

Further studies found that monoamines such as serotonin and dopamine enable  
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slow, activity-dependent processes that can maintain the correlation between IA and Ih 

(Krenz et al., 2013; 2014; 2015) , but how this correlation is maintained after 

deafferentation is still unknown. Certain substances in the extracellular matrix may be 

involved in maintaining the correlations after deafferentation, because removal of the 

extracellular matrix component chondroitin sulfate proteoglycans (CSPG) delays 

rhythm recovery after deafferentation (Hudson et al., 2015). Another possibility is that 

ion channel correlations are maintained at the mRNA level, as several experimental 

studies have found correlations between the mRNA expression levels encoding ion 

channel densities (MacLean et al., 2003; Temporal et al., 2012; 2014). A third possibility 

is that ion channel correlations are maintained by homeostatic tuning rules, as shown in 

a computational study (O’Leary et al., 2013). Overall, whether ion channel correlations 

regulate or are regulated by homeostatic tuning rules is still unclear.   

Ion channel correlations have also been observed in vertebrate systems, such as 

mouse hippocampal neurons and cholinergic basal forebrain neurons (Amendola et al., 

2012; Tran et al., 2019), but how they contribute to robustness of neural outputs in those 

systems is less clear, partially because their outputs are less defined than the 

stereotypical rhythm in the crab Cancer borealis, and their robustness is therefore more 

difficult to define and quantify. 

1.2.2 Neural Circuit Level 

At the neural circuit level, it is challenging to monitor changes of multiple cellular and 

synaptic parameters simultaneously in experiments. Therefore, less is known about 

their degenerate structures in parameter space, but many studies did observe 

homeostatic regulation at both the cellular and synaptic level, termed homeostatic  
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Figure 1.3 Degenerate solutions and homeostatic regulation. (A) A schematic diagram illustrating 
the change of degenerate solutions after perturbations. Green and blue boxes in the output space 
correspond to feature values of a neural output before and after a perturbation. The corresponding 
degenerate solutions for each scenario are shown in the parameter space. Other components of 
schematic as in Fig 1.1A. (B) Ion channel correlations in crab PD neurons before and 4 days after 
decentralization (see text for details). Each point corresponds to current densities of the two 
indicated currents measured in a PD neuron. Regression lines are plotted for statistically significant 
linear correlations (p < 0.05). Top: Currents measured before deafferentation. Bottom: Currents 
measured 4 days after deafferentation. Figure is adapted from Khorkova & Golowasch, 2007.  

 

intrinsic plasticity (HIP) and homeostatic synaptic plasticity (HSP). Examining the 

temporal order of HIP and HSP occurrence in a neural circuit’s response to perturbation 
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may shed light on how neural circuits explore the space of degenerate solutions during 

homeostatic regulation.   

Several studies in both invertebrate and vertebrate neural circuits showed that 

HIP and HSP mechanisms were recruited sequentially, yet the recruitment order seems 

to be species- and perturbation-dependent. In certain neural circuits, HIP was recruited 

before HSP. The developing spinal cord in the chicken embryo, for example, exhibits 

spontaneous network activity (SNA), where many neurons are coordinated to fire 

episodic bursts. GABAergic transmission is excitatory in this neural circuit at this 

developmental stage, and blocking either GABAA transmission or sodium channels in 

ovo for two days triggers an upscaling of both AMPAergic and GABAergic miniature 

postsynaptic current (mPSC) amplitude to compensate for the perturbations (Gonzalez-

Islas and Wenner, 2006; Wilhelm and Wenner, 2008). Further study showed that 

blocking GABAA receptors for 12 hours triggered an increase of intrinsic excitability in 

the motoneurons of the developing spinal cord first, which occurred in parallel to the 

SNA recovery, followed by upscaling of synaptic currents after the SNA recovery 

(Wilhelm et al., 2009). Another study incubated rodent hippocampal slices with 

CNQX/APV to reduce global network activity for 2 days or 4 days prior to 

electrophysiology recordings. The slices incubated for 2 days only showed homeostatic 

changes in cellular excitability, while the slices incubated for 4 days showed both 

changes in cellular excitability and inhibitory synaptic strength, indicating that in the 

hippocampal network also, HIP is recruited before HSP of inhibitory synapses 

(Karmarkar and Buonomano, 2006). These observations suggest that HIP restores 

neural activity in a coarse-grained manner first, followed by HSP to fine-tune it. A 

computational study supports the fine-tuning idea by showing that ion channel 
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degeneracy both expands the range of a neuron’s firing rate and enables a fine-grained 

tuning of its firing rate (Drion et al., 2015).  

HSP may also be recruited before HIP. For example, in the primary visual cortex 

of rodents, sensory deprivation by lid suture triggered homeostatic synaptic plasticity 

first, followed by increased intrinsic excitability (Lambo and Turrigiano, 2013). 

Interestingly, other types of perturbations to visual inputs like TTX injection and retinal 

lesions only triggered synaptic scaling to compensate for the perturbation (Maffei and 

Turrigiano, 2008; Keck et al., 2013). It thus has been proposed that homeostatic intrinsic 

plasticity is induced when the synaptic form is not sufficient to compensate for drops in 

sensory drive.  

Recruitment of HIP and HSP can also be competitive. At the Drosophila 

neuromuscular junction (NMJ), inhibition of postsynaptic glutamate receptors triggers a 

homeostatic increase in presynaptic neurotransmitter release to restore muscle 

depolarization (Davis et al., 1998). Two A-type potassium channel genes, shal and 

shaker, are reciprocally coupled to maintain A-channel expression at the NMJ. shal 

mutation is compensated by increased shaker expression. However, this increased 

shaker expression blocks the expression of trans-synaptic homeostatic signaling at the 

NMJ, indicating a hierarchical recruitment of HIP and HSP (Bergquist et al., 2010).  

HIP and HSP can not only be recruited in order, but also in parallel to 

cooperatively adjust neural activities. The crab pyloric circuit responds to 

deafferentation by a decrease of the inhibitory synaptic strength and certain 

hyperpolarizing ionic currents (i.e. IKd and IKCa) while enhancing others (i.e. Ih and IA) 

(Mizrahi et al., 2001; Thoby-Brisson and Simmers, 2002). In hippocampal networks, both 

over-excitation and inactivation of GABAB receptors perturbed firing rate, and tuning at 
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both the intrinsic and synaptic levels was observed to restore firing rate (Slomowitz et 

al., 2015; Vertkin et al., 2015). Another study that incubated rat hippocampal slices with 

TTX for 2 days also found homeostatic increases in both miniature excitatory 

postsynaptic current (mEPSC) frequency and intrinsic excitability (Echegoyen et al., 

2007). These studies pose the question whether HIP and HSP are redundant or play 

different roles to adjust neural activities. An experiment blocking the IHTK in the motor 

neurons in the crab Cancer borealis showed that neural activity was restored by 

simultaneous changes in the conductance of IA and strength of electric coupling, with 

the former accounting for restoring neuronal excitability and the latter for restoring 

synchrony between neurons (Lane et al., 2016). Another recent computational study 

suggests HIP and HSP work cooperatively to tune the mean and variance of a single 

neuron’s firing rate, respectively (Cannon and Miller, 2016). These findings suggest that 

HIP and HSP play different roles to restore perturbed neural activities.  

Together, these studies show a rich repertoire of mechanisms recruiting HIP and 

HSP, depending on the perturbation paradigms (Maffei and Turrigiano, 2008) and cell 

types (Greenhill et al., 2015). These results indicate that the cellular and synaptic 

components of degenerate solutions may contain different structures and should be 

examined separately, which is addressed in Chapter 2.  

1.3 Ensemble modeling 

The conventional approach in physiologically realistic modeling fits a single 

computational model to either a typical or an average experimental dataset, and 

conducts analysis by perturbing this single model. We have gained enormous insights 

from this conventional approach, but it has limits. Predictions generated from single  
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models are limited because they ignore the intrinsic variability of neurons and circuits, 

which corresponds to a large pool of neural dynamics and have been observed at the 

mRNA, conductance and physiology levels in diverse animal models (Schulz et al., 

2006, 2007; Wilhelm et al., 2009; Grashow et al., 2010). Also, the distributions of pairs of 

parameters might be nonlinear, for example banana-shaped, in which case the average 

of all parameters may fail to produce the same neural activity because the average fell 

outside the banana-shaped solution space (Golowasch et al., 1992; Golowasch et al., 

2002; Marder and Taylor, 2011). These limits become problematic when we aim to 

understand a phenomenon or mechanism observed at the population level. For 

example, chronic multi-electrode array recordings in hippocampal slices found that the 

distribution of spontaneous firing rates and synchrony were maintained at the 

population but not the individual level (Panas et al., 2015; Slomowitz et al., 2015), a 

phenomenon that cannot be explained by fitting a model to typical or average data. 

Another example is degeneracy observed in neurons and neural circuits. To understand 

these phenomena, we need a different modeling approach called ensemble modeling.  

 Ensemble modeling refers to the category of parameter fitting and simulation 

methods that incorporate variability of parameters or neural activities observed in 

experiments to generate and analyze a group of physiologically-realistic models instead 

of a single model (Van Geit et al., 2008; Prinz, 2010a). In the context of this dissertation, 

given predefined measures of neural activities (mean, standard deviation, etc.) and a 

conductance-based model of the recorded neuron or neural circuit, ensemble modeling  

methods enable us to find a group of model instances that can produce neural activities 

falling in the predefined range of outputs. One type of ensemble modeling approach is  
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constructing a database of model instances by systematically varying the parameters in 

the model, and then filtering the database of resulting parameter combinations by the 

targeted range of neural activity or neural activities to collect a group of model 

instances that are different in parameter values but can all produce targeted neural 

activity. This approach was employed to examine degeneracy in the pyloric circuit and 

in the Globus pallidus neuron (Prinz et al., 2003, 2004; Günay et al., 2008), and was 

employed in Chapter 3.  

The database approach, also called brute force search, is suitable for a model 

with a relatively small number of parameters. As the number of parameters grows, the 

number of data needed to cover the search space evenly and thoroughly grows 

exponentially, a phenomenon called the curse of dimensionality. In this scenario, a 

different type of ensemble modeling approach called stochastic optimization is more 

suitable (Luke, 2013; Van Geit et al., 2008). Stochastic optimization algorithms employ a 

certain degree of randomness to search for the optimal or a group of optimal parameter 

sets given the targeted neural activities. One type of stochastic optimization algorithm is 

called evolutionary algorithms, which is based on the “survival of the fittest” principle 

of natural selection (Eiben and Smith, 2003). Each parameter set has a fitness value that 

is based on how closely the modeled neural activity resembles the biological activity, 

and parameter sets with higher fitness values have a better chance to survive and to 

breed children. There are many variations of evolutionary algorithms, such as genetic 

algorithms (GA), evolution strategies (ES), and differential evolution (DE), etc., which 

have all been employed to fit parameters of neuron or neural circuit models (Achard 

and De Schutter, 2006; Bahuguna et al., 2017). Another type of stochastic optimization 

algorithm commonly seen is the particle swarm optimization (PSO) algorithm, which is 
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inspired by the swarming and flocking behaviors in birds. This method was employed 

to improve ion channel kinetics in a Globus pallidus neuron model (Hendrickson et al., 

2011).  

Choosing an appropriate ensemble modeling approach for a given experimental 

dataset requires a deep understanding of both the nitty-gritty and nuances of various 

algorithms as well as specific features or structures of the given experimental dataset, 

and is not the focus in this dissertation. For the pyloric circuit model in Chapter 2 that 

consists of 34 parameters, we employed a variation of the evolutionary algorithms 

called multi-objective evolutionary algorithms (Fortin et al., 2013; Druckmann et al., 

2007; Deb et al., 2002), which is explained in detail in Chapter 2. 
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Chapter 2 Degenerate solutions in the pyloric circuit of the crab 

Cancer borealis 

2.1 Introduction 

2.1.1 Background 

Degeneracy, the phenomenon that different combinations of a system’s parameters can 

give rise to similar activity or behavior, is prevalent in biological systems (Edelman and 

Gally, 2001; Marder and Taylor, 2011; Mason, 2015).  For example, in genetics, different 

codons can encode the same amino acid. In the pyloric circuit of the crab Cancer borealis, 

a neural circuit that generates a stereotyped rhythm to aid in digestion, similar pyloric 

rhythms can be produced by different combinations of the neural circuit’s ion channel 

densities and synaptic strengths (Prinz et al., 2004; Marder and Goaillard, 2006; 

Ransdell et al., 2013b). The phenomenon of degeneracy has been widely observed in 

invertebrate and vertebrate neural systems (Leonardo, 2005; Swensen and Bean, 2005; 

Grashow et al., 2010; Beverly et al., 2011; Cao and Oertel, 2011; Amendola et al., 2012; 

Zhao and Golowasch, 2012; Lamb and Calabrese, 2013; Tran et al., 2019), yet it is still 

unclear what the structures of degenerate parameter sets are (i.e. combinations of 

parameters that can produce similar neural activity or behavior), and how these 

structures relate to the function of neurons and neural circuits.  

 One candidate structure is a linear correlation between the densities of two ion 

channels, a phenomenon called ion channel correlation. In the pyloric circuit of the crab 

Cancer borealis, several ion channel correlations have been identified and found to 

maintain the rhythm. For example, a hyperpolarization-activated cation current (Ih) and 

a fast-inactivating potassium current (IA) are coupled to maintain spiking frequency in 
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the pyloric dilator (PD) neuron (Zhao and Golowasch, 2012) (Fig 1.2A). Covarying a fast 

sodium current (INa) and a transient calcium current (ICaT) maintains spike phase 

patterns in a PD neuron model (Soofi et al., 2012). Ion channel correlations have also 

been observed in mouse hippocampal and cholinergic basal forebrain neurons as well 

as in the neuromuscular junction in Drosophila, yet it is unclear whether and how they 

help to maintain neural activities (Bergquist et al., 2010; Tran et al., 2019).  

On the other hand, when we examine correlations of all pairs of ion channel 

densities in a neuron or neural circuit, most pairs show weak to no correlation (Achard 

and De Schutter, 2006; Taylor et al., 2009; Anirudhan and Narayanan, 2015). In a PD 

neuron model, different combinations of a calcium-dependent potassium current (IKCa) 

and a calcium current (ICa) lead to different types of neural activities, such as silence, 

tonic spiking, and repetitive bursting, etc. Combinations of parameter values that lead 

to similar neural activities usually form a continuous region in parameter space, but 

degenerate solutions in each region show weak to no linear correlations (Bialek, 2012; 

LeMasson et al., 1993) (Fig 1.2B).  

Linear correlations between ion channel densities have been observed in both 

invertebrates and vertebrates (Khorkova and Golowasch, 2007; Ransdell et al., 2012; 

Temporal et al., 2012; Tran et al., 2019), and are found to  maintain neural activities 

(MacLean et al., 2005; Grashow et al., 2010; Zhao and Golowasch, 2012). We therefore 

wonder what are the factors that influence the strength of linear structures in 

degenerate parameter sets and how do the linear structures relate to the functions of 

neurons and neural circuits.  

 We investigated this question by combining a physiologically-realistic model of  
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the pyloric circuit in the crab Cancer borealis with a multi-objective evolutionary 

algorithm that enabled us to find a collection of degenerate parameter sets that can 

produce pyloric rhythms mimicking those observed in vitro (Prinz, 2010a; Fortin and 

Parizeau, 2013). We then imposed two types of constraints on this approach to see how 

each constraint shapes and changes the structures of degenerate parameter sets, as 

follows. Our results show that constraining the degenerate parameter sets by reducing 

the variability of pyloric rhythm features from +/- 2 std to +/- 1 std (i.e. standard 

deviation) increases the overall strength of linear correlations in the degenerate 

parameter sets, while constraining the parameter sets by reducing the number of 

parameters does not. Together, this suggests that output variability is one of the factors 

that influences the strength of linear structures in degenerate parameter sets. The more 

constrained the output variability is, the stronger the overall linear structures of 

degenerate solutions are.  

2.1.2 Overview of the pyloric circuit in the crab Cancer borealis 

The stomatogastric nervous system (STNS) of the crab Cancer borealis is a part of the 

crustacean nervous system and contains four ganglia and their connecting nerves. One 

of the ganglia is the stomatogastric ganglion (STG), which contains two distinct but 

interconnected central pattern generators (CPGs) that generate rhythms regulating 

gastric mill (chewing) and pylorus (filtering of chewed food) movements (Fig 2.1A). A 

set of neurons in the STG comprises the pyloric circuit, which generates the pyloric 

rhythm that controls the movement of the pylorus. This set of neurons includes one 

anterior burster (AB), two pyloric dilator (PD), one lateral pyloric (LP), four to six 

pyloric constrictor (PY), one inferior cardiac (IC),  and one ventricular dilator (VD)  
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neurons (Harris-Warrick, 1992). The IC neuron often fires together with the LP neuron, 

and the VD neuron fires synchronously with the PY neurons. AB is an interneuron and 

is electrically coupled to the PD neurons, while the rest are motor neurons that 

innervate muscles to control food filtering. To simplify the simulation, functionally 

equivalent neurons are combined together in our circuit model. Therefore, the 

electrically coupled AB and PD neurons are merged into one pacemaker neuron, and 

the IC and VD neurons are not included in the model (Fig 2.1B).  

Neurons in the pyloric circuit are connected to each other through glutamatergic 

and cholinergic synapses, which are both inhibitory. The glutamatergic synapses are 

chloride-mediated and rapid (Hartline and Gassie, 1979; Eisen and Marder, 1982), while 

the cholinergic synapses are potassium-mediated and slow (Eisen and Marder, 1982; 

Marder and Eisen, 1984).  

The AB neuron is usually the fastest oscillator neuron in the network, which 

drives the electrically coupled PD neurons to fire with it. The pacemaker formed by AB 

and PD neurons is bursting endogenously, while LP and PY neurons are intrinsically 

tonic spiking or silent. When the AB/PD pacemaker kernel fires a burst of action 

potentials and inhibits the LP and PY neurons, LP neuron bursts with a delay due to 

plateau potentials triggered by post-inhibitory rebound, followed by the PY neurons, 

whose cellular properties delay their post-inhibitory rebound bursting. Together, the 

pyloric rhythm generates a tri-phasic pattern in the order of AB/PD-LP-PY with a 

period of ~1-2s, as shown in Fig 2.1C.  

The pyloric rhythm in the crab Cancer borealis is maintained by homeostatic 

plasticity mechanisms. The rhythm ceases when descending neuromodulatory inputs 

are acutely removed, a process called deafferentation, but can recover 3-4 days later in 
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the absence of neuromodulatory inputs (Thoby-Brisson and Simmers, 1998; Golowasch 

et al., 1999; Luther et al., 2003) (Fig 2.1D). Most of the descending neuropeptides 

activate the same modulator-activated inward current (IMI) found in all pyloric circuit 

neurons, and different types of pyloric circuit neurons receive a different subset of 

neuropeptides (Swensen and Marder, 2000; Daur et al., 2016) (Fig 2.1E). Each 

neuropeptide has a different effect on the cellular dynamics. For example, the 

neuropeptide proctolin elicits an inward current and has a reversal potential around 0 

mV (Golowasch and Marder, 1992). It strongly excites the LP and IC neurons, causing 

them to fire extended high-frequency bursts of action potentials (Hooper and Marder, 

1987). 

The STG is an ideal system to study the structures of degenerate parameter sets 

for several reasons. First, its relatively large and well-identified neurons and synaptic 

connections allow electrophysiology recordings and conductance-based modeling. 

Second, the rhythmic output is stereotypical so any changes of this behavior due to 

pharmacological manipulation or other perturbations are easy to quantify. Moreover, 

the pyloric rhythm is maintained by homeostatic plasticity mechanisms, enabling us to 

examine how degenerate parameter sets contribute to the rhythm recovery after 

perturbation.  
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Figure 2.1 Overview of the pyloric circuit in the crab Cancer borealis. (A) Dorsal view of the crab 
Cancer borealis with parts of its dorsal carapace removed. The stomatogastric ganglion (STG) resides 
in the stomatogastric nervous system (STNS). Figure is adapted with permission from Stein, 2009. 
(B) Schematic diagram of the pyloric circuit without the AB, VC, and IC neurons. PD neuron (blue) 
represents the AB/PD pacemaker kernel and is intrinsically bursting, and sends both glutamatergic 
(solid line) and cholinergic (dashed line) inputs to LP neuron (green) and PY neuron (purple). (C) 
The pyloric rhythm in vitro. Bottom: Extracellular recording from lvn shows the triphasic rhythm of 
the pyloric circuit in the order of PD-LP-PY. Top: Intracellular recording from each type of neuron 
shows their bursting patterns. Pyloric period is defined as the interval between the onset of two PD 
bursts, and delay is the interval between the onset of a PD burst and the onset or offset of the 
following bursts in the pyloric period. Figure is adapted from Kispersky et al., 2011. (D) Schematics 
showing the pyloric rhythm recovery after deafferentation. Left: With intact neuromodulatory input 
from the CoG projection neurons, the pyloric CPG generates a rapid triphasic pattern (bottom). 
Middle: When the stomatogastric nerve (stn) is transected, a process called deafferentation, the 
pyloric rhythm stops and most pyloric neurons generate tonic activity (bottom). Right: The pyloric 
rhythm recovers 4 days after deafferentation in the absence of neuromodulation. Figure is adapted 
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with permission from Stein, 2009. (E) Different neuropeptides all converge on IMI, but different cell 
types respond to a different subset of neuropeptides. RPCH: red pigment concentrating hormone; 
CabTRP: Cancer borealis tachykinin-related peptide; CCAP: crustacean cardioactive peptide; proc: 
proctolin. Responsive neurons shown in color, non-responsive neurons in grey. Figure is adapted 
with permission from Daur et al., 2016.  
 
 

2.2 Methods 

2.2.1 Pyloric circuit model 

A conductance-based model of the pyloric circuit was built upon a previous model 

(Prinz et al., 2004), which consists of eight types of membrane currents for each neuron 

shown in Fig 2.2A (a fast sodium current, INa; a fast and slow transient calcium current, 

ICaT and ICaS; a delayed rectifier potassium current, IKd; a calcium-dependent potassium 

current, IKCa; a fast transient potassium current, IA; a hyperpolarization-activated inward 

current, Ih; a voltage-independent leak current, Ileak), and two types of inhibitory 

synaptic currents (a fast glutamate-dependent current, IGlu, and a slow cholinergic-

dependent current, IACh). A modulator-activated inward current, IMI, was also added to 

each neuron (Zhang and Golowasch, 2011). Deafferentation of the pyloric circuit was 

simulated by setting the maximum conductance of IMI in each neuron to zero.  The 

kinetic parameters of the membrane currents are based on recordings from lobster STG 

neurons and are identical for all model neurons (Turrigiano et al., 1995).   

The membrane voltage, V, is updated according to the equation:  

𝐶#
&'
&(
	= 	−	∑ 𝐼. 	− 	𝐼./01(                                               (2.1) 

Each current, Ii, is described by the equation: 

𝐼. 	= 	𝐺.𝑚0ℎ5(𝑉	 −	𝐸.)             (2.2) 

where Gi is the maximal conductance, Ei  is the reversal potential, m and h are  
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gating variables for activation and inactivation, and p and q are integer exponents. The 

reversal potentials for the various membrane currents are: 50mV for INa;  -80 mV for IKd, 

IKCa, and IA;  -20 mV for Ih; -50 mV for Ileak; and -10 mV for IMI. The reversal potential for 

ICaT and ICaS is calculated by:  

𝐸:; 	= 	
$∙=
>?@∙A

log [:;
FG]IJK

[:;FG]
                                                                                                (2.3) 

where R = 8.31 J/(𝑚𝑜𝑙 ∙ 𝐾), T = 283 K, ZCa = 2, F = 96485 C/mol, and [𝐶𝑎PQ]R1( 	=

	3	𝑚𝑀.	 

The activation and inactivation variables m and h are updated by the equation: 
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                (2.4) 

The intracellular calcium concentration is updated by: 

𝜏:;
&[:;FG\

&(
	= 	−𝛼(𝐼:;^ + 𝐼:;=) 	−	 [𝐶𝑎PQ] 	+	 [𝐶𝑎PQ]`                                               (2.5) 

where 𝜏 = 200 ms is the Ca2+ buffering time constant,  𝛼 = 14.96 𝜇𝑀/𝑛𝐴	is the 

conversion factor from current to concentration, and [𝐶𝑎PQ]` = 0.05 𝜇𝑀 is the steady-

state intracellular Ca2+ concentration if no Ca2+ flows across the membrane (Prinz et al., 

2003).   

The synaptic current is calculated as:  

𝐼ef/ = 𝑔ef/h𝑉0Re( − 𝐸ef/i              (2.6) 

where gsyn is the maximal synaptic conductance, Vpost is the membrane potential 

of the postsynaptic neuron, and Esyn is the reversal potential of the synapse, which is -70 

mV for glutamatergic synapses and -80 mV for cholinergic synapses (Prinz et al., 2004).  

Detailed implementation of each membrane and synaptic current is included in  

Appendix 5.1.  
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2.2.2 Multi-objective evolutionary algorithm (MOEA) 

To automate the construction of a set of heterogeneous pyloric circuit models of various 

ion channel densities and synaptic strengths that could all produce physiologically-

realistic pyloric rhythms, we employed an ensemble modeling approach called multi-

objective evolutionary algorithms (MOEA) (Prinz, 2010a; Fortin and Parizeau, 2013; Deb 

et al., 2002). MOEAs are automated parameter fitting algorithms that are suitable to 

models with many parameters and more than one objective to fit. Objectives can be 

features of neural activities such as firing rate, burst duration, etc. (Van Geit et al., 2008). 

The algorithm consists of two parts: multiple objective functions that measure whether 

the simulated output matches experimental data or other criteria defined by the user, 

and a search algorithm that finds combinations of parameters producing the targeted 

output. The 34 parameters in our model are the maximal conductances of ion channels 

and synaptic strengths, and the range of each parameter is indicated in Table 2.1.  

We defined six objectives, which are the pyloric period and the on- and off-phase 

of each neuron in the pyloric circuit (Fig 2.1C). Phase relationships are measured by 

dividing the delay relative to the preceding PD burst start with which a neuron starts or 

ends bursting by the pyloric period, i.e. phase = delay / period. The targeted range for 

each objective was extracted from experimental data and the literature (Table 2.2) 

(Goaillard et al., 2009; Hudson et al., 2015). Instead of assigning a weight to each 

objective, all objectives were employed in parallel to compare pyloric rhythms from the 

simulation to those from experiments.  

The specific MOEA used in this project is an improved version of nondominated 

sorting genetic algorithm II (NSGA II) from the Distributed Evolutionary Algorithms in 

Python (DEAP) Toolbox (Deb et al., 2002; Fortin and Parizeau, 2013) (version 1.0.2),  
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which is inspired by the “survival of the fittest” principle of natural selection. NSGA II 

was chosen both because it can handle models with a large number of parameters and 

because it can generate a group of models that together represent both the mean and the 

variance of the experimental dataset (Druckmann et al., 2007).  

Each run of NSGA II starts with a population of randomly initialized parameter 

sets, checks the fitness of each parameter set, and breeds the next generation of 

parameter sets by random mutation and cross-over of the fittest parameter sets. This 

process iterates until it reaches a certain number of generations, and all parameter sets 

in the last generation that can produce targeted pyloric rhythms are deemed qualified. 

Qualified parameter sets from each run range from 0 to the size of population, 

depending on the initial conditions.  Together, all qualified parameter sets from all runs 

compose the dataset for certain predefined pyloric rhythms, where each parameter set 

produces a single instance of the pyloric rhythm observed in vitro and all parameter sets 

as a whole capture the variability of pyloric rhythms in vitro.  

Fitness is based on how similar the simulated and biological pyloric rhythms are 

regarding each feature, and the similarity, s, is calculated by:  

𝑠	 = 	 k
0, 𝑖𝑓	𝑓#./ 	≤ 	𝑓#R&qr 	≤ 	 𝑓#;V

stuIvwx	X	tuw@y
tz.v.

{
P                    (2.6) 

where fmodel is the feature value of the simulated pyloric rhythm, fmean and fs.d. are 

the mean and standard deviation of each feature indicated in Table 2.2, and fmin and fmax 

are fmean +/- 2 fs.d., respectively.  

To avoid getting stuck in local optima, the algorithm ensures that all the 

qualified parameter sets are as dissimilar as possible and randomizes the initial search 

point for each run. Individual runs of NSGA II are independent of each other, and 
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therefore can be parallelized to speed up the search. We parallelized the processing of 

NSGA II by running it on high-performance computing clusters with the following 

parameters: number of generations = 60, size of population = 252, crossover rate = 0.8, 

and mutation rate = 1 / 34. Size of population was determined by the Das and Dennis’s 

systematic approach with M = 6 and p = 5 (Deb and Jain, 2014; Das and Dennis, 1998). 

The crossover and mutation rates were based on values commonly found in the 

literature. Specifically, the mutation rate was calculated by 1 / n, where n is the number 

of parameters in the model (Fortin and Parizeau, 2013). Number of generations was 

determined by incrementing from 10, 20,…, to 120 to find the optimal value that 

balances convergence rate with execution time.  

To make sure that we had enough data for correlation analysis, a learning curve 

of a certain ion channel correlation (y-axis) and the number of parameter sets  (x-axis) 

was plotted for both a strong ion channel correlation (i.e. between IA and ICaS in PD 

neuron) and a weak one (i.e. between IA and IKCa in PD neuron) (data not shown). We 

also calculated confidence intervals by bootstrapping (section 2.2.3.2) to further confirm 

that our datasets were representative.  

2.2.3 Data analysis 

2.2.3.1 Kernel density estimation 

Kernel density estimation for visualization of parameter distributions was implemented 

based on the KernelDensity function from Python’s scikit-learn Toolbox (version 0.20.1) 

with a Gaussian kernel and a bandwidth of the maximum value of each parameter 

shown in Table 2.1 divided by 15. 

2.2.3.2 Bootstrap 

Confidence intervals of the bar plots and histograms were bootstrapped using the  
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resample function from Python’s scikit-learn Toolbox with the following parameters: 

replace=True, and number of bootstraps = 1,000. Confidence interval of the regression 

lines was automatically computed by Python’s Seaborn Toolbox (version 0.9.0).  

2.2.3.3 Pearson’s correlation coefficient and correlation matrix 

Pearson’s correlation coefficient was computed by the pearsonr function from Python’s 

SciPy Toolbox (version 1.2.1), and the correlation matrix was plotted using matshow 

function from Python’s Matplotlib Toolbox (version 2.2.4).  

2.2.3.4 Principal component analysis 

Parameter sets were standardized using the StandardScaler function from Python’s 

scikit-learn Toolbox, and their principal components and the corresponding eigenvalues 

were computed using the PCA function from Python’s scikit-learn Toolbox.  

2.2.4 Implementation and code accessibility  

Simulation and analysis scripts were written in Python 2.7.12 and executed in PyCharm 

(CE 2017.1.2) on macOS 10.12.3 with a 1.7-GHz processor. Automated parameter fitting 

was parallelized by the SCOOP module (version 0.7.1.1) and run on the Neuroscience 

Gateway Portal (Sivagnanam et al., 2013). Differential equations were numerically 

integrated using the Exponential Euler method with a time step of 0.05 ms (Dayan & 

Abbott, 2001). Python code of simulation and data analysis is available at 

https://github.com/pinewave/pyloric-circuit-model.  
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Table 2.1 Range of maximal conductances of base pyloric circuit model 

                    Type Maximal conductance Minimum (nS) Maximum (nS) 
 

 

 

PD 

GNa 1 400 
GCaT 0.01 5 
GCaS 0.01 8 
GA 1 100 
GKCa 0.1 10 
GKd 1 200 
Gh 1e-4 0.02 
Gleak 1e-3 0.02 
GMI 1e-3 0.5 

 

 

 

LP 

GNa 1 200 
GCaT 0.01 5 
GCaS 0.1 12 
GA 0.1 60 
GKCa 01. 10 
GKd 1 100 
Gh 1e-3 0.1 
Gleak 1e-4 0.04 
GMI 1e-3 0.5 

 

 

 

PY 

GNa 1 600 
GCaT 0.01 5 
GCaS 0.01 4 
GA 1 100 
GKCa 0.1 10 
GKd 1 224 
Gh 1e-4 0.08 
Gleak 1e-4 0.04 
GMI 1e-3 0.5 

 

 

Synaptic 

PD to LP, GGlu 1e-6 2e-4 
PD to LP, GACh 1e-6 2e-4 
LP to PD, GGlu 1e-6 2e-4 
LP to PY, GGlu 1e-6 2e-4 
PD to PY, GGlu 1e-6 2e-4 
PD to PY, GACh 1e-6 2e-4 
PY to LP, GGlu 1e-6 2e-4 
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Table 2.2 Experimental ranges of pyloric rhythm features 

FEATURE     CONTROL 

Mean                S.D. 

       RECOVERY 

Mean                     S.D. 

PD off 0.2 0.02 0.175 0.02 

LP on 0.38 0.05 0.4 0.05 

LP off 0.7 0.05 0.6 0.05 

PY on 0.68 0.05 0.62 0.05 

PY off 0.99 0.015 0.95 0.015 

Period (s) 0.9 0.17 1.89 0.59 

 

2.3 Results 

2.3.1 Computational approach 

The pyloric circuit model contains 34 parameters, which are the maximal conductance 

of nine types of membrane currents observed in each neuron (Fig 2.2A) and the strength 

of the seven inhibitory synapses between neurons. Together all parameters compose the 

parameter space (Fig 2.2B). Each parameter can vary independently, and a set of values 

for each parameter composes a parameter set. The neural output generated by the 

circuit model with a given parameter set can be unrealistic (e.g. silent or tonic spiking) 

or realistic (e.g. physiologically-realistic pyloric rhythm).  

To filter out the parameter sets that produce unrealistic neural outputs, we first 

need to define features of a physiologically-realistic pyloric rhythm. Pyloric rhythms in 

vitro can be characterized by various features, such as the pyloric period, burst duration, 

spikes per burst, etc. Studies show that phase relationships, defined as the onset or 

offset of a burst divided by the pyloric period, were maintained after various 

perturbations (Thoby-Brisson and Simmers, 1998; Luther et al., 2003), implying that 
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they are important for the function of the pyloric rhythm in food filtering through 

appropriately timed activation of crab stomach muscles. We therefore characterized 

physiologically-realistic pyloric rhythms by the on- or off-phase of each neuron and the 

pyloric period. Although the pyloric rhythm is highly stereotypical, it still exhibits 

natural variability in vitro. We deemed a parameter set realistic if the phase 

relationships and the pyloric period of its simulated rhythm fell within the natural 

range of variability observed in experiments (Goaillard et al., 2009). The five phase 

relationships (i.e. off-phase of PD, on- and off-phase of LP, and on- and off-phase of PY) 

and the pyloric period comprise the output space, and natural variability of all features 

defines a targeted region in the output space (Fig 2.2B). Other features of the pyloric 

rhythms such as spike peak amplitude, burst duration, etc. were not considered both 

because their function in food filtering is unclear and because fewer objectives lead to 

better performance of the algorithm.  

All parameter sets that can produce pyloric rhythms that fall within the targeted 

region are called degenerate parameter sets. To collect a group of degenerate parameter 

sets for different targeted regions, we employed a parameter fitting method called 

NSGA II. Given a pre-defined range for each parameter in the pyloric circuit model 

(Table 2.1) and a set of pyloric rhythm features (Table 2.2), NSGA II can find sets of 

parameter values producing pyloric rhythms that fall within the targeted region (Fig 

2.3B). Fig 2.2C and 2.2D show two degenerate parameter sets that produce pyloric 

rhythms mimicking those seen before and after IMI removal via deafferentation in vitro, 

respectively.  
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Figure 2.2 Overview of the computational approach. (A) A schematic diagram showing the 
conductance-based pyloric neuron model. Each type of pyloric neuron contains nine types of ionic 
currents as shown in the figure (see Methods).  (B) A schematic diagram showing how the NSGA II 
algorithm works. The parameter space consists of 34 dimensions, with each dimension represented 
by one type of cellular or synaptic conductance in the pyloric circuit model. Salient features of the 
pyloric rhythm such as the pyloric period and phase relationships (i.e. PD-off, LP-on, LP-off, PY-on, 
PY-off phases) comprise the 6-dimensional output space. Each dot in the parameter space represents 
one parameter set that can produce a physiologically-realistic pyloric rhythm, which is defined by 
the box in the output space. Blue: before IMI removal. Green: after IMI removal. (C) Voltage traces of 
two parameter sets producing realistic pyloric rhythms as seen under control conditions, i.e., before 
IMI removal. (D) Voltage traces of two parameter sets producing realistic pyloric rhythms as seen 4 
days after deafferentation, i.e. after IMI removal. Scale bar in C and D: 1s, 15mV.  
 
 

2.3.2 Cellular and synaptic parameters before and after IMI removal 

Employing the computational approach depicted above, we collected a group of 

parameter sets that can produce pyloric rhythms seen before and after IMI removal, 

respectively. Compared to pyloric rhythms before IMI removal, those after IMI removal 

differ in both the absence of IMI and the ranges of features characterizing the rhythms 

(Table 2.2). Specifically, pyloric rhythms after IMI removal have similar phase  
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relationships but approximately double the length of pyloric period. Therefore, to tease 

apart whether differences between cellular and synaptic conductances before and after 

deafferentation are due to IMI removal or due to different ranges of features, we 

collected a third group of degenerate parameter sets that does not have IMI but produces 

pyloric rhythms matching those seen at control conditions. This group of parameter sets 

also serves as an ideal scenario where pyloric rhythms recover to exactly what they 

were before IMI removal. Fig 2.3A illustrates the difference among the three groups of 

parameter sets, which are referred to as Control (n = 4,785), Recovery (ideal) (n = 4,352), 

and Recovery (real) (n = 3,554) datasets.  

 To determine whether and how each cellular and synaptic parameter changes in 

response to IMI removal, we plotted the distribution of each parameter from each of the 

three groups of parameter sets. We observed that the overall strength of each 

parameter, measured by the median of its distribution, either increased, decreased or 

stayed relatively unchanged after IMI removal, and examples of each scenario are shown 

in Fig 2.3B.  

 To elucidate trends of parameter changes in response to IMI removal, for each 

parameter, we calculated the difference of the median from the Recovery (ideal) and 

Recovery (real) parameter sets minus the median from the Control parameter sets, 

respectively (Fig 2.3C and 2.3D), and divided each difference by the maximum range of 

each parameter shown in Table 2.1 to normalize it. We then organized the values by 

neuron types (i.e. PD, LP, PY) and synapses to ease the interpretation.  

We observed that parameter changes are quite similar from Control to Recovery 

(ideal) and from Control to Recovery (real), indicating that most of the parameter 

changes are caused by IMI removal instead of different ranges of pyloric rhythm  
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features. Specifically, in all neurons, total calcium currents (i.e. GCaS and GCaT) and the 

calcium-dependent potassium current (i.e. GKCa) were well preserved after IMI removal, 

indicating that they are insensitive to IMI removal. The A-type potassium current (GA) 

and the leak current (Gleak) in general decreased after IMI removal, which makes the 

neurons more excitable. On the other hand, the sodium current (GNa), the delayed-

rectifier potassium current (GKd), and the hyperpolarization-activated inward current 

(Gh) in general increased in all neurons after IMI removal. The changes of synaptic 

strengths are also quite consistent between Recovery (ideal) and Recovery (real) 

datasets. In general, after IMI removal, the strengths of all the fast, glutamatergic 

synapses decreased, while the strengths of all the slow, cholinergic synapses stayed 

relatively unchanged. Together, except for the change of GKd, all the other cellular and 

synaptic parameter changes compensated for the reduced excitation in the pyloric 

circuit caused by IMI removal.   

We do realize that the median of the distribution does not reflect all the changes 

that occurred after IMI removal. For example, some of the parameters exhibit bi-modal or 

multi-modal distribution, as shown in Fig 2.3B and in Appendix 5.3. How the modality 

changes of the parameter distributions relate to IMI removal is unclear.  
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Figure 2.3 Cellular and synaptic parameters before and after IMI removal. (A) A schematic diagram 
illustrating the three different parameter sets. Left: “Control” parameter sets receive 
neuromodulatory inputs and produce rhythms as seen under control conditions. Middle: “Recovery 
(ideal)” parameter sets receive no neuromodulatory inputs and produce rhythms as seen under 
control conditions. Right: “Recovery (real)” parameter sets receive no neuromodulatory inputs and 
produce rhythms as seen 4 days after deafferentation. (B) Distribution of three cellular or synaptic 
parameters from each group of parameter sets. Distributions are smoothed by kernel density 
estimation. Top row: Compared to control, strength of the glutamatergic synapse from LP to PY was 
reduced after IMI removal. Middle row: Compared to control, density of ICaS in PD neuron stayed 
relatively unchanged after IMI removal. Bottom row: Compared to control, density of Ih in PY neuron 
increased after IMI removal. Blue: Control. Yellow: Recovery (ideal). Green: Recovery (real). Dotted 
vertical line: median of the distribution. (C) Difference of the median from the “Recovery (ideal)” 
parameter sets minus the median from the “Control” parameter sets for each parameter in Table 2.1 
(except IMI). Red line: bootstrapped 90% confidence interval. (D) Difference of the median from the 
“Recovery (real)” parameter sets minus the median from the “Control” parameter sets for each 
parameter in Table 2.1 (except IMI). Red line: bootstrapped 90% confidence interval.  
 

2.3.3 Ion channel correlations before and after IMI removal 

Removal of IMI from the pyloric circuit model resembles deafferentation in vitro, and 

reduces the number of parameters from 34 to 31. To see how the linear structures of  
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degenerate parameter sets change after IMI removal, we measured ion channel 

correlations by Pearson’s correlation coefficient and visualized them by plotting the 

correlation matrix (Fig 2.4A). In the Control datasets, the strongest ion channel 

correlation is between GKCa and GKd in the PD neuron, while in both the Recovery (ideal) 

and the Recovery (real) datasets, the strongest ion channel correlation is between GCaS 

and GA in the PD neuron. Scatter plots for GKCa vs. GK and for GCaS vs. GA are shown in 

Fig 2.4B.   

To compare the overall changes of ion channel correlations before and after IMI 

removal, we plotted the histogram of all ion channel correlation coefficient from each 

correlation matrix shown in Fig 2.4A. By comparing the histograms from the Control 

dataset vs. the Recovery (ideal) dataset, we saw that their histograms overlapped with 

each other, indicating similar overall strength of linear correlations (Fig 2.4C). 

Histograms from the Control dataset vs. the Recovery (real) dataset also overlapped 

with each other, indicating that targeting different ranges of features in addition to IMI 

removal did not affect the overall strength of linear correlations (Fig 2.4D). Histograms 

in Fig 2.4C and Fig 2.4D also reveal that most of the ion channel correlations are weak 

or absent (-0.6 < r < 0.6), and that there are approximately equal amounts of positive 

and negative ion channel correlations.  

 To understand how the ion channel correlation between GCaS and GA forms after 

IMI removal, we referred to the distributions of GCaS and GA in the PD neuron from each 

group of parameter sets in Fig 2.3, and found that the distribution of GCaS in the PD 

neuron stayed relatively unchanged after IMI removal (Fig 2.3B), while the overall 

strength of GA in the PD neuron decreased (Appendix 5.3). This indicates that the strong 

ion channel correlation between GCaS and GA was accounted by change in the GA  

distribution independent of the GCaS distribution.  
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Figure 2.4 Ion channel correlations before and after IMI removal. (A) Correlation matrix of all pairs 
of parameters from the “Control” parameter sets (left), the “Recovery (ideal)” parameter sets 
(middle), and the “Recovery (real)” parameter sets (right). Each correlation matrix contains 31 
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parameters, numbered from 0 to 30, which corresponds to the order of parameters in Table 2.1 (e.g. 0 
is GNa in PD, 1 is GCaT in PD, etc.). All GMI are not included. Correlations are measured by Pearson’s 
correlation coefficient, and fall within the range of [-1, 1].  (B)  Scatter plots of ion channel pairs from 
the “Control” parameter sets (blue), the “Recovery (ideal)” parameter sets (yellow), and the 
“Recovery (real)” parameter sets (green). Correlation value is included in the title, and the 
regression line is plotted with bootstrapped 95% confidence interval. Top row: The strongest ion 
channel correlation before IMI removal and its corresponding distribution after IMI removal. Bottom 
row: The strongest ion channel correlation observed after IMI removal and its corresponding 
distribution before IMI removal. (C) Histogram of all ion channel correlations from the “Control” 
(blue) versus the “Recovery (ideal)” parameter sets (yellow). Black bar: bootstrapped 95% 
confidence interval. (D) Histogram of all ion channel correlations from the “Control” (blue) versus 
the “Recovery (real)” parameter sets (green). Black bar: bootstrapped 95% confidence interval.  
 

2.3.4 Ion channel correlations before and after reducing the variability of features 

To relate ion channel correlations to functions of neurons and neural circuits, we 

wondered whether more tightly regulated neural activities are caused by stronger 

linear correlations of the underlying parameters. To investigate this, we reduced the 

variability of each rhythm feature for the Control dataset from +/- 2 std to +/- 1 std (Fig 

2.5A, Top), and collected a group of degenerate parameter sets that produce pyloric 

rhythms satisfying the reduced variability of feature (n = 5,275). We then examined the 

correlation matrix for each dataset (Fig 2.5A, Bottom), and saw that the strongest 

positive and negative ion channel correlations after reducing the variability of the 

features were GCaS vs GA in the PD neuron and Gleak in the PY neuron vs. the 

glutamatergic synapses from PY to LP, respectively. Scatter plots of each pair before 

and after reducing the variability of the features are shown in Fig 2.5B. 

 To compare the overall changes of ion channel correlations before and after 

reducing the variability of features, we plotted the histogram of all ion channel 

correlations from each correlation matrix shown in Fig 2.5A, and found that reducing 

the variability of the features enhanced both positive and negative ion channel 

correlations in the degenerate parameter sets (Fig 2.5C).  
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Figure 2.5 Ion channel correlations before and after reducing the variability of features. (A) 
Correlation matrix of all pairs of parameters from the “Control” (left) and the “Control (+/- 1 std)” 
parameter sets (right). Each correlation matrix contains 34 parameters, numbered from 0 to 33, 
which corresponds to the order of parameters in Table 2.1 (e.g. 0 is GNa in PD, 1 is GCaT in PD, etc.). 
Correlations are measured by Pearson’s correlation coefficient, and fall within the range of [-1, 1]. 
Top row: A schematic diagram depicting the reduced variability of each feature from +/- 2 std to + / 
- 1 std, using the feature “period” as an example. Top row figure is adapted from Goaillard et al., 
2009. Bottom row: correlation matrix. (B) Scatter plots of ion channel correlations from the “Control” 
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(blue) and the “Control (+/- 1 std)” parameter sets (red). Correlation value is included in the title, 
and the regression line is plotted with bootstrapped 95% confidence interval. Top row: the strongest 
positive ion channel correlation found after reducing the variability of features (right) and its 
corresponding distribution before (left). Bottom row: the strongest negative ion channel correlation 
found after reducing the variability of features (right) and its corresponding distribution before 
variability reduction (left). (C) Histogram of all ion channel correlations from the “Control” (blue) 
versus the “Control (+/- 1 std)” parameter sets (red). Black bar: bootstrapped 95% confidence 
interval. 
 

2.3.5 Principal component analysis 

Pearson’s correlation coefficient is one way to measure linear structures of degenerate 

parameter sets. It assumes that the distribution of each parameter is Gaussian, which is 

not always the case, as evident for example in Fig 2.3B and Appendix 5.3. Therefore, we 

implemented another measure of linear structures of degenerate parameter sets called 

principal component analysis (PCA). For PCA, the fewer number of eigenvectors 

needed to explain the same amount of the total variance in a dataset, the stronger the 

linear structures are. We applied PCA to compare the Control and the Recovery (real) 

datasets, and found that they both needed 17 eigenvectors to explain 90% of the 

variance (Fig 2.6A). On the other hand, the Control dataset with reduced variability of 

features needed 13 eigenvectors to explain 90% of the variance (Fig 2.6B). To inspect 

whether our datasets contain spurious correlations, null model for each dataset was 

constructed by random shuffling of all values in each variable. We then performed PCA 

on each null model (Fig 2.6, dotted lines), and found no spurious correlations.  

Together, these results are consistent with linear structures measured by 

Pearson’s correlation coefficient, and further confirms that reducing the variability of 

features, but not the number of parameters, leads to enhanced linear structures of 

degenerate parameter sets.  
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Figure 2.6 Characterizing linear structures by PCA (A) The number of eigenvectors needed to 
account for 90% of variance (indicated by the dotted black horizontal line) in the data is 17 for both 
“Control” (blue) and “Recovery (real)” (green) parameter sets. (B) The number of eigenvectors need 
to account for 90% of variance (indicated by the dotted black horizontal line) in the data is 17 for 
“Control” (blue) and 13 for “Control (+/- 1 std)” parameter sets (red). Dotted lines in color represent 
null model corresponding to each dataset.  
 

2.4 Discussion 

2.4.1 Summary of results  

Experimental and computational studies across invertebrate and vertebrate neural 

systems and across scales have all revealed the presence of degenerate solutions, yet 

little is known about the structures of the degenerate solutions and how these structures 

relate to the function of neurons and neural circuits. By combining a pyloric circuit 

model with an ensemble modeling method, we collected a group of degenerate 

parameter sets that all produce similar pyloric rhythms. Employing this approach, we 

found that reducing the variability of objectives, but not the number of parameters, led 

to increased strength of linear structures of degenerate parameter sets. We also found 

that most possible pairs of ion channel correlations have weak or no linear correlations, 

which we think is a feature of degenerate systems. Last but not least, this approach 
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enables us to examine and predict the concurrent changes of cellular and synaptic 

parameters after IMI removal, which can be tested in experiments later.  

2.4.2 How constraints shape structures of degenerate solutions 

2.4.2.1 Constraint: Reducing the number of parameters 

Removal of IMI from the pyloric circuit model resembles deafferentation in vitro, and 

reduces the number of parameters from 34 to 31. IMI has a reversal potential around 0 

mV, and can elicit oscillatory activities in neurons. It is therefore anticipated that, to 

compensate for the reduced excitation that comes with the removal of IMI, in general 

inward currents would increase and outward currents would decrease, which matches 

our results. We also found a significant reduction of Ileak in PD and LP neurons, which 

makes sense since reduced Ileak leads to increased time constant and therefore more 

excitable neurons. These changes overall matched the observations from the only 

deafferentation experiments conducted in the crab Cancer borealis that measured 

cellular properties , where the amplitude of Ih was significantly increased 4 days after 

deafferentation, while that of ICa and IKCa was increased first but returned to control level 

4 days after deafferentation (Khorkova and Golowasch, 2007). At the synaptic level, we 

found that the overall strength of all fast, glutamatergic synapses was reduced after IMI 

removal, while that of all slow, cholinergic synapses was relatively unchanged. Given 

that removing IMI decreased the overall excitation of the pyloric circuit, decreased 

strengths of these inhibitory synapses can be another mechanism to compensate for the 

reduced excitation.  

 We then measured the linear correlations of degenerate parameter sets before 

and after IMI removal, and found that the overall strength of linear correlations were 

similar despite changes in individual pairs of correlations. One of the future directions  
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is to remove other types of ion channels and see how this affects the linear correlations 

of degenerate parameter sets. For example, we saw a strong linear correlation between 

ICaS and IA in the PD neuron after IMI removal, so we can remove either all ICaS or all IA 

from the pyloric circuit model and see how the overall strength of linear correlations 

changes.  

2.4.2.2 Constraint: Reducing the variability of features 

Neurons and neural circuits show variability across all scales, ranging from the genetic 

level to neural activities (Schulz et al., 2006; 2007; Goaillard et al., 2009; Wilhelm et al., 

2009; Ayroles et al., 2015). Features of the pyloric rhythm in the crab Cancer borealis, 

such as pyloric period and phase relationships, also exhibit variability, and are referred 

to as objectives in our computational approach. By reducing the variability of objectives 

from +/- 2 std to +/- 1 std in the ranges of output features targeted by our parameter 

fitting algorithm, we observed increased strengths of linear correlations within 

degenerate parameter sets. Based on this result, we propose that one of the links 

between the two views of structures of degenerate parameter sets shown in Fig 1.2A 

and Fig 1.2B is the realization that the level of constraints imposed on the output 

variability affects the existence and tightness of linear correlations within degenerate 

parameter sets. At one extreme, for a tightly constrained output variability, maybe only 

one parameter set can produce the targeted neural activity. As we relax the constraints 

on variability, structures of parameter sets that can produce targeted neural activity 

may shift from strong linear correlations, to weak linear correlations, to regions divided 

by linear or nonlinear boundaries (Fig 2.7).  

2.4.2.3 Another explanation for reproducibility issues in research 

We are aware of the reproducibility issues in research, where researchers are unable to  
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reproduce statistically significant findings in previously published works (Errington et 

al., 2014; Science2015, n.d.). Many factors contribute to the reproducibility issue. One of 

them was predicted by John Ioannidis, a physician from Stanford, who discussed the 

caveats of hypothesis testing that lead to high levels of false results in the context of 

modern science (Ioannidis, 2005). Based on our results, we think that another factor that 

might explain the issue is how constrained the output variability is. Neural activities 

measured from the same animal models in different labs may differ in their variability 

depending on many factors, such as animal source and husbandry, procedural details 

using the experiments, variations in chemical agents used, and experimenter skill, to 

name a few. Our result indicates that different output variability resulting from these 

factors may lead to different observations of linear correlations between the underlying 

parameters.  

 

 

Figure 2.7 Structures of degenerate solutions and output variability. Each graph represents the 
parameter space of a neural system. Each dot represents one parameter set that can produce a 
targeted neural activity, with different colors representing different activities. Structures of 
degenerate parameter sets may widen from a dot (left, if output features are highly constrained) to 
regions divided by nonlinear boundaries (right, if constraints on output features are loose) as the 
output variability becomes less constrained.  
 

2.4.3 Formation of ion channel correlations 
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2.4.3.1 Weak ion channel correlations and robustness 

Conventionally, weak or absent ion channel correlations are interpreted as negative 

results and often not reported in publications. On the other hand, simulation studies of 

various invertebrate and vertebrate neurons and neural circuits have found that, when 

examining correlations between all possible pairs of ion channels, most of them are 

weak to absent (Achard and De Schutter, 2006; Taylor et al., 2006; Doloc-Mihu and 

Calabrese, 2014; Anirudhan and Narayanan, 2015). Here we propose that, from a 

system perspective, the prevalence of weak or absent ion channel correlations is a 

feature of degenerate systems and is important for robustness against perturbations. 

Unlike engineered systems operating under predictable conditions, living systems face 

uncertainties and constant changes in the environment and need to evolve a strategy to 

prepare for and recover from predictable and unpredictable perturbations. For example, 

one predictable perturbation is the change of temperature for creatures living in 

temperate zones (Caplan et al., 2014; Soofi et al., 2014; Haddad and Marder, 2018). A 

tightly regulated living system with a majority of strong linear correlations between its 

underlying parameters can function efficiently in a constant environment, but would be 

less robust to injuries and environmental perturbations. Degeneracy therefore could be 

a mechanism to cope with the tradeoff between efficiency and stability, enabling 

neurons and neural circuits to balance flexibility with stability to constantly adapt to the 

changing environment. The generally weak to absent linear correlations of degenerate 

solutions ensure flexibility, while a few strong ones ensure that neurons and neural 

circuits can encode information in a stable and efficient manner. We plotted the strength 

of each correlation before and after applying each type of constraint, and found no clear 

patterns of changes in correlation strength (Appendix, Fig 5.2), further confirms that  

weak ion channel correlations are loosely regulated in degenerate systems.  
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2.4.3.2 Weak ion channel correlations and sloppiness 

The finding that ion channel correlations are generally weak or absent, with a few 

strong ones regulating neural activities, indicates a sloppy structure of the degenerate 

parameter sets. Sloppiness refers to the phenomenon that neural activities are sensitive 

to changes of parameters along a few “stiff” directions (i.e. strong ion channel 

correlations) and insensitive to changes of parameters along a large number of “sloppy” 

directions (i.e. weak ion channel correlations) (Daniels et al., 2008; Transtrum et al., 

2015).  

 We observed that most ion channel correlations are weak or absent, and they 

appear or disappear when the degenerate parameter sets are constrained. It is 

challenging to relate the appearance and disappearance of each weak ion channel 

correlation to the constraints we imposed. In fact, we argue that the appearances and 

disappearances are more or less chaotic because those parameters reside on the sloppy 

dimensions, implying that they are loosely regulated and their changes do not affect 

neural activities of interest. As discussed above, this could be a strategy living systems 

evolved to balance flexibility with stability to adapt to constantly changing 

environments.   

 Analysis of sloppiness can be generalized and combined with experimental data 

to understand how populations of neurons maintain stable neural activity. For example, 

sloppiness analysis was applied to high-density multi-electrode recordings from 

cultured hippocampal neurons and revealed that firing rate was maintained at the 

population level while single neurons exhibited spontaneous firing rate fluctuations, 

which tend to occur along sloppy dimensions (Panas et al., 2015; Slomowitz et al., 2015).  

2.4.3.3  Formation of strong ion channel correlations 
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The linear correlation between ICaS and IA became significantly stronger both after 

removing the neuromodulation-activated inward current and after reducing the 

variability of output features. This same correlation has also been observed in several 

variations of PD neuron models (Liu et al., 1998; Hudson and Prinz, 2010; O'Leary et al., 

2013). In the Hudson et al., 2010 model, the linear correlation between ICaS and IA was 

explained by independent variation of each ion channel density, which matches our 

result. The correlation between ICaS and IA in the Liu et al. 1998 model was regulated by 

an activity-dependent mechanism, where the rate of change of ion channel density is 

controlled by the instantaneous calcium concentration. These results indicate that the 

correlation between ICaS and IA can form either in an activity-dependent manner or by 

independent variation of ion channel densities.  

2.4.3.4 Explanations for mismatches between experimental and computational findings 

 Certain strong ion channel correlations observed in experiments are absent in 

the model. For example, the correlation between IA and Ih in PD neurons maintains post-

inhibitory spiking latency (MacLean et al., 2003; 2005) and is preserved 4 days after 

deafferentation (Khorkova and Golowasch, 2007). Monoamines such as serotonin and 

dopamine enable slow, activity-dependent processes that regulate the correlation 

between IA and Ih (Krenz et al., 2013; 2014; 2015), but how this correlation is maintained 

after deafferentation is still unknown. In our model, to make as few assumptions as 

possible, we did not implement any activity-dependent or neuromodulation-dependent 

mechanisms that directly regulate ion channel correlations, so the correlation between 

IA and Ih was weak both before and 4 days after deafferentation. In future analysis, we 

can implement activity-dependent or neuromodulation-dependent mechanisms in the 

model and see how they constrain and shape the structures of degenerate parameter  

sets.  
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Another mismatch between experimental and computational findings is that 

negative ion channel correlations, except a few cases, are rarely observed in vitro 

(Ransdell et al., 2012; Zhao and Golowasch, 2012), but are often reported from 

computational studies (Taylor et al., 2009; Hudson and Prinz, 2010). The reason behind 

this mismatch is still unclear. One hypothesis is that constraining the model by an 

activity-dependent or neuromodulation-dependent mechanism might reduce the 

number of negative ion channel correlations, which can be tested in future studies.  

2.4.4 Biological insights : Ion channel correlations at the neural circuit level 

Despite a few computational and experimental studies (Grashow et al., 2010; Lane et al., 

2016), it is still unclear what correlations exist between cellular and synaptic currents 

and how they contribute to maintaining neural activity at the neural circuit level.   

Homeostatic plasticity maintains the stability of neural circuit function against 

developmental changes and pathological perturbations by adjusting the intrinsic 

excitability of individual neurons and/or the synaptic strengths between neurons. At a 

single neuron level, perturbed neural activities such as reduced neural firing rate can be 

compensated by increasing the number of depolarizing channels or reducing the 

number of hyperpolarizing channels in the membrane (Marder and Goaillard, 2006; 

Turrigiano, 2011). The neural circuit can also compensate for the reduced firing rate by 

increasing the excitatory synaptic strength and/or reducing the inhibitory synaptic 

strength of synaptic inputs it receives (Davis, 2006; Turrigiano, 2011; 2012; Vitureira et 

al., 2012), a mechanism called synaptic scaling. The recovery of the pyloric rhythm 3-4 

days after deafferentation is regulated by homeostatic plasticity, and possibly involves 

tuning of both cellular and synaptic parameters. It is very challenging to conduct  

experiments that can track changes of both cellular and synaptic currents at the same  
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time, and only two dynamic clamp studies have been done to examine how cellular and 

synaptic conductances compensate for each other to maintain similar pyloric rhythms 

(Grashow et al., 2010; Lane et al., 2016). Our approach offers a unique opportunity to 

examine changes of synaptic conductances and the correlations between cellular and 

synaptic conductances after deafferentation. We found that the overall strength of all 

fast, glutamatergic inhibitory synapses was reduced after deafferentation, while that of 

all slow, cholinergic inhibitory synapses stayed relatively unchanged. Reduction in the 

strength of inhibitory synapses compensates for the reduced excitation caused by IMI 

removal. We also measured linear correlations between cellular and synaptic 

conductances, and did not find any strong linear correlations (i.e. above 0.6 or below -

0.6) either before or after deafferentation.  

2.4.5 Strength of our computational approach 

The conventional approach in physiologically realistic modeling fits a single 

computational model to the average of experimental data, and conducts analysis by 

perturbing this single model. We have gained enormous insights from this conventional 

approach, but it has its own limits. Predictions generated from such single models are 

limited because such models ignore the intrinsic variability of neurons and circuits, 

which corresponds to a rich repertoire of neural dynamics and has been observed at the 

mRNA, conductance and physiology levels in diverse animal models (Schulz et al., 

2006; 2007; Amendola et al., 2012; Temporal et al., 2012; 2014; Kim et al., 2017). 

Furthermore, the distribution of parameters might be nonlinear, in which case the 

average of the parameter sets may fail to produce neural activities generated by each 

parameter set (Golowasch et al., 1992; Marder and Taylor, 2011). These limits become 

problematic when we aim to understand a phenomenon or mechanism observed at the 
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population level, like degeneracy in neurons and neural circuits, and therefore calls for 

a different modeling approach: ensemble modeling.  

 Employing an ensemble modeling approach called NSGA II, we were able to 

collect three groups of pyloric circuit model versions that can all produce one of three 

targeted pyloric rhythm versions, which enables us to examine structures of degenerate 

parameter sets and how they relate to the function of the pyloric circuit. Instead of a 

single model that produces a physiologically-realistic pyloric rhythm, examining a 

group of models that produce similar pyloric rhythms expanded our conceptual 

understanding of degeneracy in neurons and neural circuits.  

2.4.6 Limitations in our computational approach 

Ideally, to analyze structures of degenerate parameter sets, parameter sets should be 

sampled thoroughly and evenly, which requires a global parameter exploration 

method, such as constructing a database (Prinz et al., 2004). However, all global 

parameter exploration methods suffer from the curse of dimensionality, where the 

number of data points grows exponentially with the number of parameters in the model 

(Druckmann et al., 2007, 2014). Our model contains 34 parameters, so global parameter 

exploration would not be feasible, with the currently available computational power. 

We instead employed a parameter fitting method called NSGA II, which implements 

several strategies to sample the parameter space as thoroughly and evenly as possible 

(see Methods).  

Many findings from our approach were also found independently in other 

simulation studies, which further implies that our results are insensitive to specific 

choice or setup of the chosen parameter fitting method. For example, the phenomenon  
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that ion channel correlations are generally absent or weak, with a few strong ones 

regulating and maintaining the neural activity or behavior, has been observed in 

simulations of other invertebrate or vertebrate neurons using various parameter fitting 

algorithms (Achard and De Schutter, 2006; Taylor et al., 2009; Anirudhan and 

Narayanan, 2015). A parameter fitting algorithm, called Evolution Strategy was used to 

find combinations of parameters for a conductance-based model of cerebellar Purkinje 

cells with 24 parameters, with all identified parameter combinations able to produce 

similar responses to current injections (Achard and De Schutter, 2006). In that study, 

only 5 out of 276 possible pairs of parameters showed a linear correlation that was 

statistically significant. Back to the stomatogastric system, the strong linear correlation 

between IA and ICaS in PD that we found here was also identified in other studies (Liu et 

al., 1998; Hudson and Prinz, 2010; O'Leary et al., 2013). In summary, we are aware of the 

limits of our approach, primarily due to the curse of dimensionality, but do not think 

that our results are influenced by specific choices regarding the parameter fitting 

method.  

2.4.7 Future Direction: A theoretical framework of degeneracy 

In this study, we examined the linear structures of degenerate parameter sets by 

measuring Pearson’s linear correlation between parameters and by principal 

component analysis. However, dynamics in living systems are highly nonlinear and 

therefore structures of degenerate parameter sets are possibly a combination of linear 

and nonlinear ones (Buzsaki, 2006; Craver, 2014). For example, the distribution of INa 

and IKd was L-shaped for all parameter sets of a neuron model that generated one-spike 

burster activity, and the average of all parameter sets that produced such neural activity 

failed to produce the same activity itself (Golowasch et al., 2002). Similar results were  
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also observed in a more complex cerebellar Purkinje neuron model (Achard and De 

Schutter, 2006). Future work needs to apply appropriate measures to quantify nonlinear 

structures of degenerate parameter sets. A few candidate measures are mutual 

information and dimensionality reduction methods (Van der Maaten and Hinton, 2008; 

Berman et al., 2016).  

 To compare degenerate solutions at different time points during homeostatic 

regulation and from different neurons and neural circuits, we need to define measures 

of degeneracy. Degeneracy in qualitatively defined as combinations of parameters that 

give rise to similar outputs. But how similar is sufficient to be deemed functionally 

equivalent? What do we mean when we say one parameter set is more degenerate than 

the other? To answer these questions, we need to better understand how multiple 

cellular and synaptic parameters change in response to various perturbations and 

further develop methods to distill linear and nonlinear structures of degenerate 

parameter sets.  
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Chapter 3 Degenerate solutions in tSPNs in mice 

3.1 Introduction 

3.1.1 Background 

Sympathetic postganglionic neurons (SPNs), the last common motor output of the 

sympathetic nervous system, pass converged motor commands from the spinal cord to 

downstream muscles and visceral organs. SPNs located in the thoracic region (tSPNs) of 

the sympathetic chain ganglia control vasomotor function to regulate vasculature in 

upper and middle extremities (Guyenet, 2006; Jänig, 2008), and dysfunction of tSPNs is 

implicated in various autonomic disorders such as autonomic dysreflexia (AD) 

(McLachlan, 2007; Macefield and Wallin, 2018). AD is characterized by spontaneous 

episode of hypertension that can be life-threatening, and occurs in patients with spinal 

cord injury at cervical and high thoracic regions (T6 and above) (Karlsson, 1999; Hou 

and Rabchevsky, 2014). tSPNs directly project to smooth muscles and organs that 

control blood pressure and vasculature, yet little is known about how they react to 

spinal cord injury, and the role they play in inducing spontaneous episodes of 

hypertension seen in AD.  

To examine how tSPNs react to spinal cord injury, we first need to know the 

basic firing properties of tSPNs in healthy conditions. tSPNs are difficult to access in 

vivo due to the adherent fat surrounding them, so often their firing properties were 

inferred from SPNs located in the cervical and lumbar regions (Bratton et al., 2010; 

Rimmer and Horn, 2010). Up to date, there are only 3 in vitro studies of the firing 

properties of tSPNs in the vertebrate system (Blackman and Purves, 1969; Lichtman et 

al., 1980; Jobling and Gibbins, 1999), all employing a sharp microelectrode recording 

approach. However, recent studies indicate that, compared to whole-cell patch clamp 
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recordings, sharp microelectrode recordings introduce electrode impalement-induced 

leak conductance to the neuron, leading to less accurate recordings (Staley et al., 1992; 

Springer et al., 2015). Our collaborators were able to perform whole-cell patch clamp 

recordings ex vivo and observed a rich repertoire of firing properties of tSPNs in mice 

(McKinnon et al., 2019). However, the biophysical mechanisms that produce this rich 

repertoire of firing properties of tSPNs are still unclear.  

In addition, a recent RNA-Seq study identified two types of tSPNs expressing 

neuropeptide Y (NPY), NA2 and NA3, which differ in their cell diameter (Furlan et al., 

2016). Roughly 7% of tSPNs are NA2 and 40% are NA3, and therefore ~50% of tSPNs 

are NPY+. NPY+ tSPNs preferentially innervate vasculature, yet little is known about 

whether and how they differ in intrinsic excitability and ability to integrate synaptic 

inputs (Springer et al., 2015). One the one hand, they may follow the size principle 

observed in motoneurons, where smaller neurons have higher resistance and therefore 

are recruited first (Cope and Pinter, 1995; Mendell, 2005). On the other hand, neurons 

need to maintain stable input-output relationships during development while cell size 

increases, and studies in various systems found that neurons of various sizes have 

similar excitability (Gorur-Shandilya et al., 2019).  

Based on the whole-cell patch clamp recordings of tSPNs in mice, we were able 

to elucidate the biophysical mechanisms that underlie the basic firing properties of 

tSPNs by building a conductance-based single neuron model of tSPNs. We then built a 

database of tSPN model versions that vary in cell size and ion channel densities but can 

all produce realistic neural activities observed in experiments, and filtered out NA2-like 

and NA3-like tSPNs from the database based on cell size. By comparing the distribution 

of ion channel densities and f-I curves for NA2- and NA3-type tSPN models, we found 
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that, compared to NA2-type tSPNs, NA3-type are more excitable and possess greater 

capability to integrate synaptic inputs.   

3.1.2 Overview of sympathetic postganglionic neurons in mice 

The autonomic nervous system (ANS) controls involuntary functions that are regulated 

by the activity of smooth muscle fibers, cardiac muscle fibers, glands, etc. Two major 

ANS divisions are the sympathetic and parasympathetic nervous system. Activity in the 

sympathetic nervous system (SNS) is generally associated with an increase in the level 

of excitation of an organism, which is sometimes referred to as the “fight or flight” 

response. The parasympathetic nervous system, on the other hand, regulates organ and 

gland functions at rest state, such as digestion and salivation (Kandel et al., 2000).  

 Sympathetic preganglionic neurons in the spinal cord integrate inputs from 

various subcortical and brainstem nuclei and project cholinergic inputs to sympathetic 

postganglionic neurons (SPNs) located in the sympathetic chain ganglia, which then 

project adrenergic inputs to downstream muscles and visceral organs (Fig 3.1A, right). 

The sympathetic chain ganglia, composed of interconnected paravertebral ganglia, are 

located ventral to the spinal column and are divided into four sections: superior / 

stellate cervical, thoracic, lumbar, and pelvic (Jänig, 2008) (Fig 3.1A, left). SPNs in the 

thoracic region (tSPNs) project to downstream targets such as vasculature, smooth 

muscles, brown adipose tissue, and sweat glands, and control various sympathetic 

activities (Jänig, 2008). Roughly 50% of tSPNs innervate vasculature and control blood 

pressure (Furlan et al., 2016; Macefield and Wallin, 2018). The majority of our 

collaborator’s electrophysiological recordings focused on tSPNs located in the T5 

region. The mean diameter of T5 cells is 23.8	 ± 	5.4	𝜇𝑚 (Fig 3.1B).   
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Figure 3.1 Anatomical organization of tSPNs. (A) Anatomical location of tSPNs. Left, The 
sympathetic ganglia chain runs in parallel with the spinal cord and contains four sections: superior / 
stellate cervical, thoracic, lumbar, and pelvic. Right, Projection from preganglionic neurons in the 
spinal cord (green) to postganglionic neurons in the thoracic ganglia (blue). (B) Histogram showing 
distribution of tSPN cell diameters in T5 ganglia of six animals. Figure was adapted from McKinnon 
et al., 2019.  
 

3.2 Methods 

3.2.1 Single neuron model of tSPNs 

We built a conductance-based neuron model to help determine the underlying cellular 

mechanisms of the observed firing properties of tSPNs. Dendritic arborizations of most 

tSPNs are relatively simple, indicating that cells are electrotonically compact (Jobling 

and Gibbins, 1999). We therefore assume that a single-compartment model can replicate 

all essential firing properties observed in experiments. All currents included in the 

model have been observed in rodent sympathetic ganglia (Galvan and Sedlmeir, 1984; 

Sacchi et al., 1995; Jobling and Gibbins, 1999; Rittenhouse and Zigmond, 1999) and 

transcript expression in mouse thoracic ganglia has recently been confirmed by a single-

cell RNA sequencing study (Furlan et al., 2016).  
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The model is based on a model of bullfrog paravertebral sympathetic ganglia 

(Wheeler et al., 2004), from which the following ionic currents were taken: a fast sodium 

current, INa; a delayed-rectifier potassium current, IKd; a slow and non-inactivating 

potassium current, IM; and a voltage-independent leak current, Ileak. Additional 

conductances were added from models derived in other species, which are: a fast 

transient potassium current, IA (Rush and Rinzel, 1995); a hyperpolarization-activated 

cation current, Ih (Kullmann et al., 2016); and a calcium-dependent potassium current, 

IKCa (Ermentrout and Terman, 2010). IKCa depends on intracellular calcium concentration, 

[Ca2+], so a model of persistent calcium current, ICaL (Bhalla and Bower, 1993) and 

somatic calcium dynamics (Kurian et al., 2011) were added as well. Model parameters 

were then tuned to fit recorded data from the present study.  

The membrane voltage, V, is updated according to the equation:  

𝐶#
&'
&(
	= 	−	∑ 𝐼. 	− 	𝐼./01(                                           (3.1) 

Membrane capacitance, Cm, was set at 100 pF to approximate the mean in 

recorded neurons. Each current, Ii, is described by the equation:  

𝐼. 	= 	𝐺.𝑚0ℎ5(𝑉	 −	𝐸.)                                              (3.2) 

where Gi is the maximal conductance, Ei is the reversal potential, and m and h are 

gating variables for activation and inactivation. A standard model neuron was used to 

replicate the majority of observed phenomena. Maximal conductances of this standard 

neuron are indicated in Table 3.1. The standard model was modified as necessary to fit 

individual recordings, which comprise a heterogeneous population. The reversal 

potentials for the various membrane currents are;  60 mV for INa; 120 mV for ICaL; -90 mV 

for IKd, IA, and IKCa;  -31.6 mV for Ih; and -55 mV for Ileak.  

The activation and inactivation variables m and h are updated by the equation: 
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The intracellular calcium concentration is updated by:  

&[:;FG\
&(

	= 	𝜆(−𝛼𝐼:;� 	−	𝑘:;^[𝐶𝑎PQ])                            (3.4) 

where 𝜆 = 0.01 is the ratio of free to bound [Ca2+], 𝛼 = 0.002 𝜇𝑀 ∙ 𝑚𝑠X� ∙ 𝑝𝐴X� is 

the conversion factor from current to concentration, and kCaS = 0.024 ms-1 is the somatic 

[Ca2+] removal rate. Detailed implementation of each current is included in Appendix 

5.2. 

 

Table 3.1 Maximal conductances of base model neuron 

Gi GNa GCaL GKd GM GKCa GA Gh Gleak 

Value (nS) 400 1 300 15 30 5 1 1 

 

3.2.2 Synaptic inputs 

Synaptic input was implemented with the equation:  

𝐼ef/(𝑡) = 𝑔ef/(𝑡) ∙ h𝑉	 −	𝐸ef/i                                                    (3.5) 

where Isyn is synaptic current, and Esyn is the synaptic reversal potential set to 0 

mV (Springer et al., 2015). Synaptic conductance, gsyn, was calculated from the equation: 

𝑔ef/(𝑡) = 𝑠 ∙ s𝑒X( Yv� 	−	𝑒X( Y�� {                                                        (3.6) 

where 𝜏& and 𝜏� are the decay and rise time constants, respectively, s is a scaling 

factor to normalize the amplitude to 1nS, and t is the time since the onset of the synaptic 

input. Rise and decay time constants were 1 and 15ms, respectively, as estimated from 

voltage clamp recordings of spontaneous synaptic activity.  

3.2.3 Brute force search 
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To automate the construction of a set of heterogeneous tSPN models of different sizes 

and excitability that could all reproduce the basic firing properties of tSPNs observed in 

experiments, we employ an ensemble modeling approach called brute force search  

(Prinz et al., 2004; Prinz, 2010b). We start with the base tSPN model described in Table 

3.1, which contains eight free parameters: the maximum conductance of INa, IKd, ICaL, IKCa, 

IM, IA, Ih, and Ileak, and the cell capacitance. The cell capacitance is related to to cell size, 

and the maximum conductances together determine neuronal excitability. The explored 

range of each free parameter consists of five discrete values. For INa, IKd, ICaL, IKCa, IM, and 

IA, we constructed a range of values by multiplying its maximal conductance from the 

base tSPN model with 0.2, 0.6, 1, 1.4, and 1.8. To match the range observed in 

experiments, maximal conductance of Ileak from the base model was multiplied by 0.4, 

0.8, 1.2, 1.6 and 2, and cell capacitance was multiplied by 0.5, 0.75, 1, 1.25, and 1.5. 

Together, this resulted in a database of size 59 =1,953,125 versions of the tSPN model 

with different parameter combinations that cover parameter space with a regular grid 

of parameter sets. 

 

Table 3.2 Experimental ranges of tSPN firing features 

Features Min Max 

Resting membrane potential (mV) -80 -46 

Sag ratio  1.08 n/a 

Firing rate at 50pA (Hz) 4.8 10 

Firing rate at 75pA (Hz) 6 14.5 

Firing rate at 100pA (Hz) 7 16 

Adaptation ratio 1.25 2 
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We then parallelized the processing of the database to run it on high-

performance computing clusters. Simulation results for each parameter sets were 

serially filtered from the database based on the following criteria, in order: i) firing rate 

falls in the range of [4.8, 10] Hz at 50pA current injection; ii) firing rate falls in the range 

of [6, 14.5] Hz at 75pA current injection; iii) firing rate falls in the range of [7, 16] Hz at 

100pA current injection; iv) quasi-linear f-I curve based on values from i-iii; v) the 

presence of spike rate adaptation. These criteria were extracted from the measured 

electrophysiological properties of tSPNs and are summarized in Table 3.2. tSPN models 

that satisfy all five criteria above were deemed as qualified model versions.   

3.2.4 Data analysis 

3.2.4.1 Cell size conversion for vasculature-innervating tSPNs 

Capacitance derived from cell diameter is usually smaller than that measured from 

electrophysiological recordings partly because the former assumes an electrotonically 

compact neuron and therefore often underestimates the capacitance. Capacitance in our 

model is based on the measurements from electrophysiological recordings. For NA2- 

and NA3-type neurons, we only know the average cell diameter from a previous RNA-

Seq study (Furlan et al., 2016), so we estimated their capacitance based on the equation 

below:  

𝐶� 	= 	𝛼𝐶�                   (3.7) 

where CE is the estimated capacitance from electrophysiological recordings, and CA is 

the capacitance calculated from their average cell diameters and a standard capacitance 

per unit area of membrane of 1 𝜇𝐹/𝑐𝑚P. 𝛼 is determined by the ratio of the average 

capacitance measured from electrophysiological recordings divided by the capacitance 

calculated from the average cell diameters of all types of tSPNs (McKinnon et al., 2019). 
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Values of each parameter are indicated in Table 3.3.  The estimated capacitances of 

NA2- and NA3-type neurons are 74.15 pF and 49.7 pF, respectively, which were 

rounded to 75 and 50 pF in our model.  

 

Table 3.3 Estimating capacitance of NA2- and NA3-type tSPNs 

 Diameter (𝝁𝒎) CE (pF) CA (pF) 𝜶 

All tSPNs 23.8 89.2 17.79 5.01 

NA2 21.72 74.15 14.8  

NA3 17.78 49.70 9.92  

 

3.2.4.2 Pearson’s correlation coefficient and correlation matrix 

Pearson’s correlation coefficient was computed by the pearsonr function from Python’s 

SciPy Toolbox (version 1.2.1), and the correlation matrix was plotted using the matshow 

function from Python’s Matplotlib Toolbox (version 2.2.4). Significance tests were 

conducted using two-tailed t-test.   

3.2.4.3 Standard score 

Standard score measures deviations from the mean by subtracting the mean of the 

distribution from each value in the distribution, divided by the standard deviation of 

the distribution. If all values in the distribution are identical, standard score is set to 0.  

3.2.5 Implementation and code accessibility  

Simulation and analysis scripts were written in Python 2.7.12 and executed in PyCharm 

(CE 2017.1.2) on macOS 10.12.3 with a 1.7-GHz processor. Automated parameter fitting 

was parallelized by the SCOOP module and run on the Neuroscience Gateway Portal 

(Sivagnanam et al., 2013). Differential equations were numerically integrated using the  
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Exponential Euler method with a time step of 0.05 ms (Dayan & Abbott, 2001). Python 

code of simulation and data analysis is available at 

https://github.com/pinewave/Conductance-based-model-of-rodent-thoracic-

sympathetic-postganglionic-neuron.  

 

3.3 Results 

3.3.1 Cellular mechanisms underlying firing properties of tSPNs when 

hyperpolarized 

To build a conductance-based neuron model of tSPNs, we first set the cell capacitance 

and input conductance, two essential passive membrane properties of tSPNs, to 

approximately the average values observed in experiments, which are 100 pF and 1000 

𝑀Ω, respectively.  

 Starting with three ionic currents extracted from a bullfrog paravertebral 

sympathetic ganglia model (Wheeler et al., 2004), which are INa, IKd, and Ileak, we then 

analyzed and added the ionic currents underlying three firing properties of tSPNs 

observed at hyperpolarization. tSPNs exhibited delay to the first action potential in a 

spike train when depolarized from a holding potential of -90 mV ex vivo (Fig 3.2Ai). No 

delay was observed when the same neuron was depolarized from -70 mV (Fig. 3.2Ai). 

Previous modeling studies indicate that the delay can be attributed to de-inactivation of 

the transient, voltage-gated A-type potassium current (IA) (Rush and Rinzel, 1995), so IA 

was added to the model and its maximal conductance was adjusted to match the 

experimental results (Fig. 3.2Aii).  

 Another firing property observed at various hyperpolarizing current injections 

was a “sag” conductance, which became more prominent when the hyperpolarizing 
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current amplitude increased (Fig 3.2Bi). This phenomenon has been observed in mouse 

tSPNs (Jobling and Gibbins, 1999) and was explained by the hyperpolarization-

activated inward current (Ih), whose kinetics in mouse SPNs have been characterized in 

a previous study (Kullmann et al., 2016). We implemented Ih in the model and adjusted 

its maximal conductance to replicate the voltage traces observed ex vivo (Fig 3.2Bii).  

  Post-inhibitory rebound from releasing hyperpolarizing current injection was 

also observed in tSPNs (Fig 3.2Ci). One common mechanism to induce post-inhibitory 

rebound is the de-inactivation of a fast inward current, such as the T-type calcium 

current (ICaT) (Ermentrout and Terman, 2010). However, preliminary voltage clamp 

results ruled out the existence of ICaT in tSPNs (McKinnon personal observations). 

Another candidate is Ih, where an enhanced version with larger amplitude and slower 

activation and inactivation kinetics could induce post-inhibitory rebound (Chen et al., 

2001). However, the kinetics of the enhanced Ih did not match those characterized in 

mouse SPNs (Kullmann et al., 2016). We noticed that rebound firing was only observed 

when the resting membrane potential was near firing threshold (between -60 and -50 

mV), a condition where changes in INa and IKd dynamics were able to induce post-

inhibitory rebound. Specifically, at hyperpolarized voltages, the activation and 

inactivation of INa become faster while the activation of IKd becomes slower. Upon 

sudden release from the hyperpolarizing step, INa has the ability to induce a spike before 

the activation of IKd. By adjusting the maximal conductances of INa and IKd, we were able 

to replicate the post-inhibitory rebound seen in experiments (Fig 3.2Cii).  

3.3.2 Cellular mechanisms underlying firing properties of tSPNs when depolarized 

Two prominent firing properties of tSPNs observed at depolarizing current injection are 

spike rate adaptation and repetitive firing. The frequency of repetitive firing is  
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influenced by the combination of all underlying ionic currents, so we first identified 

ionic currents accountable for spike rate adaptation. The low-threshold, non-

inactivating potassium current (IM) was observed in bullfrog sympathetic ganglia, 

where it was responsible for spike rate adaptation, so we incorporated it into our model 

(Wheeler et al., 2004). However, it was only able to reproduce the fast phase of spike 

rate adaptation (Fig 3.3B, D). IKCa and ICaL have been observed in rat superior cervical 

ganglia (Galvan and Sedlmeir, 1984; Sacchi et al., 1995; Rittenhouse and Zigmond, 1999) 

and were therefore incorporated into the model (Bhalla and Bower, 1993; Ermentrout 

and Terman, 2010). The added IKCa was able to account for the slow phase of spike rate 

adaptation (Fig 3.3B, D), and together IM and IKCa were able to reproduce the spike rate 

adaptation from a recorded neuron receiving 50 pA current injection (Fig 3.3A) and to 

match both the maximal and sustained firing rate at various current injections (Fig 

3.3C).   
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Figure 3.2 Cellular mechanisms underlying firing properties of tSPNs when hyperpolarized. (A) i, 
A cell depolarized from -90 mV exhibits a characteristic notch (arrow) accompanied by a delay in 
spiking (black trace). The same cell depolarized from -70 mV does not have a notch (gray trace). ii, 
Model neuron showing comparable results with pre-spike inflection seen only for hyperpolarized 
trace. Standard model with GM 10 nS, GKCa 10 nS, GA 90 nS, Gleak 0 nS. (B) i, Voltage sag, indicated by 
arrow, upon hyperpolarization beyond -90 mV in a cell held at -70 mV. Note that the effect becomes 
more pronounced with greater hyperpolarization. ii, Model neuron showing similar sag. Standard 
model with GA 5 nS and Gleak 0.1 nS. (C) i, Hyperpolarizing trace from a different cell held at -50 mV 
showing rebound spiking associated with voltage sag. ii, Model neuron showing rebound spiking at 
the same holding voltage and current injection. Maximal conductances are: GNa 200 nS, GKd 2000 nS, 
GCaL 1.2 nS, GM 20 nS, GKCa 20 nS, GA 20 nS, Gh 1 nS, Gleak 2 nS. Scale bar: 1s. Figure was adapted from 
McKinnon et al., 2019.  
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Figure 3.3 Both IM and IKCa are necessary for spike rate adaption in tSPNs. (A) i, Representative 
trace showing tSPN response to a 50 pA current injection. Note that the interspike interval increases 
over time, corresponding to a decrease in instantaneous frequency. ii, Trace from a model cell 
chosen to fit the recording shows similar SRA for a 50 pA current injection. Maximal conductances 
are: GNa 400 nS, GKd 3000nS, GCaL 1.2nS, GM 40nS, GKCa 60nS, GA 80nS, Gh 1nS, Gleak 2nS. Scale bar in 
both panels is 1s. (B) Instantaneous frequency versus time for the same recorded cell at 50, 70, 90, 
110, and 130 pA current injection (from bottom to top). The 50 pA curve (red) corresponds to the 
trace in Ai. Fast and slow components of adaptation are indicated. (C) Maximal and sustained ƒ-I 
curves match well between recorded and modeled cell over a range of injected currents. Red, 
maximal (top, solid) and sustained (bottom, dashed) ƒ-I curves for the cell in Ai, B. Blue lines are the 
corresponding ƒ-I curves from the model cell in Aii. D: Instantaneous frequency versus time curves 
for the model cell in Aii. The recorded 50 pA curve from B is reproduced for comparison to the 
analogous curve generated in the model cell in Aii (blue). Black curves numbered 1–3 represent 
effect of removal of two conductances from the model. Removal of gKCa (curve 1) predominantly 
influences the slow SRA. Removal of gM (curve 2) predominantly influences the fast SRA. Removal 
of both (curve 3) eliminates SRA. The ordinate axis is shared among B–D. Figure was published in 
McKinnon et al., 2019.  

 

After identifying all the ionic current components in the model neuron that are 

necessary to replicate basic firing properties of tSPNs (Fig 3.4C), we adjusted the 

maximal conductances of each ion current to match the increased frequency of 
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repetitive firing in response to increased amplitude of current injections, ranging from 

30 pA, 50 pA, …, to 130 pA (Fig 3.4A). f-I curves of both maximal and sustained firing 

rate from our model neuron fall within the range observed in experiments (Fig 3.4B). 

Maximal firing rate was defined as the inverse of the first interspike interval in response 

to current injection, while sustained firing rate was defined as the average of the inverse 

of the last three interspike intervals during a current injection.  

 

Figure 3.4 Reproducing the repetitive firing properties of tSPNs. (A) Top, representative trace 
from a tSPN showing increased repetitive firing frequency in response to increasing current steps. 
Bottom, model neurons also showing repetitive firing. Injected current from left to right in both 
recorded and model neurons is 30, 50, 70, 90, 110, 130 pA. Scale bar is 1 s. (B) f-I curve for recorded 
and model neurons. i, Maximal firing rate is plotted versus injected current for all cells. ii, Same as Bi 
with sustained firing rate. Red line in i and ii is maximal and sustained f-I curve from model neuron. 
(C) Diagram showing the composition of ionic currents in the single neuron model. Figure 3.4A and 
3.4B were published in McKinnon et al., 2019.  
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3.3.3 Model neuron is capable of integrating synaptic inputs 

tSPNs exhibit spontaneous excitatory postsynaptic currents (sEPSCs), which can 

sometimes summate to generate spikes (Fig 3.5A). A recent study in the rat sympathetic 

neurons found 2.4-fold synaptic gain without the electrode impalement-induced leak 

conductance (Kullmann et al., 2016), which challenges the conventional view of tSPNs 

as 1:1 relays that simply pass down the motor commands from the spinal cord to 

downstream targets. To explore the impact of impalement-induced leak conductance on 

synaptic integration in mice tSPNs, we implemented a Poisson-distributed synaptic 

input template whose amplitude and mean frequency match values from whole-cell 

clamp recordings (Fig 3.5B, bottom trace). Our model neuron was able to integrate sub-

threshold synaptic inputs to generate spikes (Fig 3.5B, top trace). To simulate 

impalement introduced by sharp microelectrode recordings, a leak conductance of 7 nS 

was added to the model. Setting the value to 7 nS results in an input resistance of ~ 100 

𝑀Ω, which matches the mean value of input resistance observed in a previous sharp 

electrode experiment (Jobling and Gibbins, 1999). The model failed to integrate sub-

threshold inputs after adding a 7 nS impalement-induced leak conductance (Fig 3.5B, 

middle trace).  

3.3.4 Two types of vasculature-innervating tSPNs 

Vasomotor postganglionic neurons release NPY, which activates vasoconstriction. The 

two types of NPY+ tSPNs, NA2 and NA3, differ in their intrinsic excitability. We 

constructed a database of heterogeneous tSPN models of different sizes and ion channel 

densities that could all reproduce the basic firing properties observed in experiments. 

Out of all the model versions tested (n=1,953,125), 31, 421 model versions can generate 

realistic firing properties of tSPNs and are deemed as physiologically-realistic, out of 
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which 192 match the size of NA3-type tSPNs and 5,467 match the size of NA2-type 

tSPNs.  

 

 

Figure 3.5 tSPN model neuron is capable of integrating synaptic inputs. (A) Example of synaptic 
summation leading to AP firing in a particularly active recording. Shown are five epochs of 
spontaneous synaptic activity. Cell resting membrane potential was -60 mV. In this neuron, a 
membrane time constant of 109 ms led to comparably long EPSP membrane voltage decays. Vertical 
scale bar is 20 mV; horizontal scale bar is 500 ms. (B) Top, Model neuron subjected to simulated 
synaptic input fires in response to synaptic summation. Middle, If an impalement conductance is 
added, synaptic summation is no longer effective. Bottom, Simulated synaptic conductances used to 
generate voltage traces. Horizontal scale bar is 500 ms; vertical scale bars are 20 mV and 5 nS, 
respectively. Figure was published in McKinnon et al., 2019.  
 
 

 We then plotted the distribution of each ion channel density for NA2- and NA3-

type tSPN models (Fig 3.6A), and found that compared to NA2-type tSPNs, NA3-type 

tSPNs have lower densities of Ileak, making them more capable of integrating synaptic 

inputs. NA3-type tSPNs also exhibit lower densities of hyperpolarizing currents such as 

IKd, IKCa, and IA, making the neurons more excitable.  They also show a higher density of 

IM, a current that reduces the excitability of neurons by enhancing spike rate adaptation.  
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To see whether NA2- and NA3-type tSPNs differ in their excitability due to the 

different distributions of ion channel densities, we plotted the f-I curves of model 

versions of both types, and found that within the range of firing rates observed ex vivo, 

NA3-type tSPNs fire at relatively high frequency while NA2-type tSPNs are capable of 

a wider range of firing (Fig 3.6B). Despite the difference in f-I curve distributions, the 

slope of f-I curves does not correlate with cell size (Fig 3.6C), which matches our 

experimental findings (McKinnon et al., 2019).  

Given the different distributions of ion channel densities for NA2- and NA3-type 

tSPNs, we wondered how each type of ion channel influences the firing properties of 

tSPNs. To investigate this, we varied the density of IM and IA in the model neuron, one 

at a time, and found that increasing the density of either current switched the neuron 

from repetitive firing to phasic firing (Fig 3.7A).  To examine how the firing mode of 

tSPNs switches in response to concurrent changes of IM and IA, we systematically varied 

IM and IA together, and found that the switch of firing mode is more sensitive to changes 

in IA when IM is high (Fig 3.7B).  

To identify linear structures of all physiologically-realistic parameter sets, we 

employed similar strategies use9 in Chapter 2 to measure ion channel correlations by 

Pearson’s correlation coefficient and visualized them by plotting the correlation matrix  

(Appendix, Fig 5.3A). We observed that Gh had the weakest correlations to other 

parameters, and plotted the distribution of Gh vs. Gleak as an example (r = 0) (Appendix, 

Fig 5.3B). We also plotted the distribution of the strongest correlation, which is between 

GM and Gleak (r = -0.51) (Appendix, Fig 5.3B). Overall, all the ion channel correlations are 

weak or absent (-0.6 < r < 0.6). By further examining the distributions of pairwise 

parameters (Appendix, Fig 5.3B), we think this is due to both the narrow pre-defined 
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search range of parameter values and the coarse grid of parameter search, and therefore 

cannot rule out the existence of strong correlations.  

 

 

Figure 3.6 NA2- and NA3-type tSPNs differ in excitability.  (A) Box plots showing the distribution 
of each parameter in NA2- (orange, n = 5,467) and NA3-type (blue, n =192) tSPNs. Black line in the 
box indicates the median of the distribution. Upper and lower edges of each box represents the 75% 
and 25% quartile, and the lines parallel to the boxes are minimum and/or maximum values of the 
distribution. Outliers are plotted as individual dots. (B) f-I curves for NA2- (orange) and NA3-type 
(blue) tSPNs. Black lines indicate the minimum and maximum firing rates observed at 50, 75, and 
100 pA current injections ex vivo. (C) Violin plots showing the distribution of f-I slopes for NA2- 
(orange) and NA3-type (blue) tSPNs. Distribution of the f-I slopes is visualized by the “violin” 
shape, where the width reflects the frequency. White dot: median of the distribution. Black bar: 
interquartile range. Black vertical line: minimum and maximum of the distribution.  
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Figure 3.7 Increasing either IM or IA switches tSPNs from repetitive to phasic firing. Maximal 
conductances of the model neuron (green) are: GNa 720nS, GKd 90nS, GCaL 1nS, GM 15nS, GKCa 42nS, 
GA 5nS, Gh 1nS, Gleak 0.8nS, and Cm 75 pF. (A) IM or IA of the model neuron (green trace) was varied. 
Left: Maximal conductance of IM increased from 5, 10, …, to 25 nS from top to bottom. Right: 
Maximal conductance of IA increased from 0, 5, …, to 20 nS from top to bottom. (B) IM and IA of the 
model neuron were varied together. Maximal conductance of IM and IA increased from 5, 10, …, to 25 
nS. Color bar indicates the firing rate of simulated tSPN spiking activities from each combination of 
IM and IA. Firing rate of zero (yellow) corresponds to phasic firing mode.  
 

3.3.5 tSPNs with identical f-I curve differ in their ability to integrate synaptic inputs 

Preliminary experimental data show that, six weeks after SCI, the slope and range of 

tSPNs’ f-I curves were similar to those before SCI (Li, McKinnon and Hochman, 

personal communications). To identify vasculature-innervating tSPNs with similar f-I 

curves, we grouped NA2- and NA3-type tSPN models by how similar their f-I curves 

are. For each type, tSPNs were grouped together as one degenerate set if the difference 

of their f-I curves across all current injections is within 0.1 Hz. Under this definition, we 

found 39 non-overlapping degenerate groups in NA3-type tSPNs and 813 in NA2-type 

tSPNs, while the size of each degenerate group ranged from 2 to 25. To quantify the 

similarity of parameter sets within each degenerate group, for each parameter set, we 

computed the standard score of each parameter by comparing it to the mean and 

standard deviation of the degenerate group it belonged to, and plotted the distribution 

of standard scores for all parameter sets from all degenerate groups (Fig 3.8). By 

comparing the standard score distribution between NA2- and NA3-type tSPNs, we 

found that IM is less variable for both NA2- and NA3-type tSPNs, indicating that a tight 

regulation of IM is necessary to maintain the same (or similar) f-I curve (Fig 3.8A, B). IKd 

and Ileak are also tightly regulated in NA3-type tSPNs (Fig 3.8A). Combining with Fig 

3.6A, we see that maximal conductances of both IKd and Ileak are aggregated near the  

minimum possible value, suggesting that tight regulations of IKd and Ileak are due to the  
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narrow range of possible parameter values.  

To investigate whether vasculature-innervating tSPNs with similar f-I curves 

differ in their capability to integrate synaptic inputs in vivo, we simulated a synaptic 

input template that matches the frequency and amplitude distributions of spontaneous 

excitatory synaptic inputs to tSPNs observed ex vivo (Fig 3.9A, Bottom), and fed it to 

two NA2-type tSPNs with identical f-I curves (Fig 3.9A, Top) but different underlying 

ion channel densities (Fig 3.9B, Bottom). The two tSPNs shown in Fig 3.9B came from a 

randomly selected NA2-type degenerate group. Despite having identical f-I curve and 

receiving identical synaptic inputs, the two NA2-type tSPNs differ in their capability to 

integrate synaptic inputs (Fig 3.9B, Top). This indicates that, although tSPNs show 

similar f-I curves before and six weeks after SCI, they may still differ in their capability 

to integrate synaptic inputs in vivo, and the f-I curve as a measure of excitability does 

not reveal this difference. A closer examination of the two parameter sets shows that the 

two tSPNs have the same leak conductance and capacitance, indicating that they have 

the same passive membrane time constant. Therefore, the different capability to 

integrate in vivo synaptic inputs results from combined changes of depolarizing and 

hyperpolarizing membrane currents.  
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Figure 3.8 Degenerate solutions in vasculature-innervating tSPN models. (A) Violin plot showing 
the distribution of standard scores of each parameter for NA3-type tSPN models. (B) Violin plot 
showing the distribution of standard scores of each parameter for NA2-type tSPN models. 
Distribution is visualized by the “violin” shape, where the width of the distribution reflects the 
frequency. White dot: median of the distribution. Black bar: interquartile range. Black vertical line: 
minimum and maximum of the distribution.  
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Figure 3.9 tSPNs with identical f-I curve differ in their capability to integrate synaptic inputs. (A) 
Two NA2-type model neurons show identical f-I curve (Top) and receive identical synaptic inputs 
(Bottom). (B) Two NA2-type model neurons, despite having identical f-I curve and synaptic inputs, 
differ in underlying ion channel densities (Bottom) and show different capability to integrate 
synaptic inputs (Top). Maximal conductances for model (left) is: GNa 560 nS, GK, 50 nS, GCaL 1 nS, GM 
18 nS, GKCa 6 nS, GA 3 nS, Gh 0.2 nS, Gleak 0.4 nS, and C 75 pF. Maximal conductances for model (right) 
is: GNa 720 nS, GK, 50 nS, GCaL 1 nS, GM 18 nS, GKCa 18 nS, GA 7 nS, Gh 0.6 nS, Gleak 0.4 nS, and C 75 pF.  
 

3.4 Discussion 

3.4.1 Summary of results 

Based on high-fidelity whole-cell patch clamp recordings of tSPNs, we built the first 

physiologically-realistic single neuron model of tSPNs in mice and elucidated the 

cellular mechanisms underlying the basic firing properties of tSPNs. We found that 

both IM and IKCa are necessary and sufficient to reproduce spike rate adaptation seen in 

tSPNs, and confirmed that an impalement leak conductance introduced by sharp 

microelectrode penetration reduces tSPNs’ ability to integrate sub-threshold synaptic 

inputs. We further built a collection of models for both types of vasculature-innervating 

tSPNs, NA2 and NA3, and found that they differ in their distributions of underlying ion 
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channel densities and f-I curves, which may affect their ability to integrate synaptic 

inputs. These insights into the cellular mechanisms of excitability in tSPNs will help us 

understand abnormal neural activities of tSPNs, such as the induction of 

hyperexcitability in tSPNs after SCI and how it might contribute to the spontaneous 

episodes of hypertension in AD patients.   

3.4.2 The influence of cell size on neuronal excitability 

Cell size of tSPNs varies, raising the possibility that recruitment of tSPNs could follow 

the size principle observed in motoneurons, where smaller neurons are recruited first 

because larger neurons with more membrane and thus more resistances in parallel 

would have lower total resistance (Cope and Pinter, 1995; Mendell, 2005). Recruitment 

of tSPNs by size principle has been observed in a few clinical studies (Steinback et al., 

2010; Klassen et al., 2018). However, cell size is just one parameter that can affect the 

excitability of neurons, and its effect can be compensated by changes in the densities of 

various ion channels in the neuron. For example, in the lobster Homarus americanus, the 

bursting activity of pyloric neurons is similar between juveniles and adults, despite a 

many-fold increase in cell size (Bucher et al., 2005). To investigate whether two types of 

vasculature-innervating tSPNs, NA2 and NA3, differ in their intrinsic excitability 

because of their cell size difference, we combined our single neuron model of tSPNs 

with an ensemble modeling approach to generate a collection of models for each NPY+ 

type, where the cell size in each model matches that of NA2 or NA3 but the underlying 

ion channel densities vary. Based on the distribution of ion channel densities and of f-I 

curves for NA2- and NA3-type tSPNs, we found that NA3-type tSPNs are more 

excitable than NA2-type tSPNs, which may lead to greater ability to integrate synaptic 

inputs in vivo (Furlan et al., 2016).  
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3.4.3 Firing mode: integrator vs. coincidence detector 

The conventional view of tSPNs treats them as 1:1 relays that pass down the motor 

commands from the strongest preganglionic synaptic inputs to regulate vasculature 

(Macefield and Wallin, 2018; McLachlan, 2007; Guyenet, 2006). However, a recent study 

shows that, without the electrode impalement-induced leak conductance, the synaptic 

gain, defined as the average postsynaptic firing rate divided by the average presynaptic 

firing rate, of rat sympathetic neurons is 2.4-fold (Kullmann et al., 2016). This finding 

challenges the assumed 1:1 relay function of tSPNs and suggests that tSPNs amplify 

instead of relaying motor commands from the spinal cord. 

Neurons can operate as integrators or coincidence detectors based on how they 

integrate synaptic inputs (König et al., 1996; Ratté et al., 2013). Integrators can summate 

temporally dispersed (i.e. asynchronous) inputs, whereas coincidence detectors only 

summate temporally coincident (i.e. synchronous) inputs. A previous study in mouse 

hippocampal neurons found that increased shunting, a likely consequence of strong 

excitatory synaptic input, in neurons with high IM can switch the firing mode from 

integration to coincidence detection (Prescott et al., 2006). Synaptic inputs to 

vasculature-innervating tSPNs are entrained to the cardiac cycle, and recordings of 

action potentials generated by postganglionic sympathetic axons innervating muscles 

show tight cardiac rhythmicity (Springer et al., 2015; Macefield and Wallin, 2018), 

indicating that tSPNs transfer the temporal patterns of synaptic inputs to downstream 

targets, which may play an important role in regulating blood pressure. Future studies 

will examine the integrator and coincidence detector traits of NA2- and NA3-type 

tSPNs to see whether and how they differ in their ability to transfer temporal patterns 

of synaptic inputs. 
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3.4.4 Degenerate solutions and homeostatic regulation after SCI 

Similar neural activities can be produced by multiple combinations of the underlying 

ion channel densities (Prinz et al., 2004), so instead of fitting one combination of ion 

channel densities each to NA2- and NA3-type tSPNs, we built a database to aggregate a 

collection of NA2- and NA3-type tSPN models, which enables a more rigorous and 

comprehensive examination of differences in their intrinsic excitability and capability to 

integrate synaptic inputs. This approach enables us to find that two NA2-type tSPNs 

receiving identical synaptic inputs and producing identical f-I curves differ in their 

underlying ion channel densities and in their ability to integrate in vivo synaptic inputs. 

Preliminary experimental data show that f-I curves of tSPNs six weeks after SCI were 

similar to those before SCI, suggesting that intrinsic excitability of tSPNs was either 

recovered or unchanged after SCI (Li, McKinnon and Hochman, personal 

communications). Our result indicates that the f-I curve as a measure of excitability has 

its limits, and tSPNs with similar f-I curves may still differ in their ability to integrate 

synaptic inputs. This insight would not be possible if we only fitted one parameter set 

each to NA2- and NA3-type tSPNs.  

 Degenerate solutions in each type of vasculature-innervating tSPNs were 

grouped by similarity of f-I curves. By quantifying the similarity of parameter sets 

within each degenerate group, we found that a tight regulation of IM is needed to 

maintain f-I curve for both NA2- and NA3-type tSPNs, while most of the other ion 

channel densities are less constrained, indicating that tSPNs have a rich repertoire of 

tunable parameters to restore f-I curves after SCI. Preliminary data found increased IKd  

and IKCa after SCI (Li, McKinnon and Hochman, personal communications), which  

matches our result. Our result also predicts that vasculature-innervating tSPNs  

exhibiting changes in either IKd or Ileak would be NA2-type tSPNs.  
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3.4.5 Future Direction: Elucidating intrinsic homeostatic plasticity mechanisms in 

tSPNs after SCI 

tSPNs exhibit a rich repertoire of firing dynamics ex vivo. Our single neuron model can 

produce all the basic firing properties of tSPNs observed at hyperpolarized and 

depolarized current injections, such as “sag” conductance, rebound firing, and spike 

rate adaptation, etc. Some of the firing properties observed in experiments were not 

incorporated in this model. For example, repetitive firing led to a steadily increasing of 

an ultra-slow after-hyperpolarization (usAHP), which can hyperpolarize a cell 

membrane and reduce the reversal potential of K+ (McKinnon et al., 2019). The time 

course of this usAHP is too long to be caused by IM or IKCa, and previous works indicate 

that it may be due to the activation of Na+/K+ -ATPase (Lees and Wallis, 1974; Picton et 

al., 2017). We did not integrate this phenomenon into our model because it was only 

observed in 2 out of 14 neurons tested and its functional relevance to SCI-induced 

changes was elusive. However, recent experiments observed increased usAHP in tSPNs 

after SCI, and found that usAHP can tune down tSPN excitability by increasing 

rheobase and reducing firing frequency (Li, McKinnon and Hochman, personal 

communications), which may help to prevent pain afferent induced hyperexcitabilty 

observed after SCI. Future work will implement and identify usAHP mechanisms in 

tSPNs.  

 Preliminary data also observed increased IKd, IKCa, and a persistent inward 

current after SCI (Li, McKinnon and Hochman, personal communications), and 

therefore future work will first implement the persistent inward current in the tSPN 

model, and then conduct a thorough examination of all the tSPNs features IKd, IKCa, and 

a persistent inward current influence. We will also re-run the brute force search with a 
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wider search range of parameter values and finer search grid to examine the 

correlations between parameters.  

3.4.6 Future direction: Determining factors that influence synaptic integration in 

tSPNs 

Many factors influence tSPNs’ ability to integrate synaptic inputs. One is the firing 

mode of the neuron, as discussed above. Another is the connectivity pattern between 

sympathetic preganglionic neurons in the spinal cord and tSPNs, which is assumed to 

follow the n + 1 rule.  

The n+1 rule states that each postganglionic neuron receives one strong and 

suprathreshold input from the nearest preganglionic neuron, and several weak and sub-

threshold inputs from preganglionic neurons originating in nearby segments. This rule 

was observed in the superior cervical and lumber SPNs (Karila and Horn, 2000; Rimmer 

and Horn, 2010), and therefore was assumed to dominate the synaptic recruitment at 

tSPNs. Future work will simulate synaptic inputs following the n + 1 rule with different 

number of sub-threshold inputs, and examine how the number of sub-threshold inputs 

influences synaptic gain in tSPNs.  

The frequency and amplitude of synaptic inputs can also influence synaptic 

recruitment at tSPNs. Our collaborators have acquired preliminary data showing that 

the frequency and amplitude of the spontaneous synaptic events received by tSPNs 

increased six weeks after SCI. To examine whether these changes induce 

hyperexcitability in tSPNs after SCI, future work will simulate SCI-induced changes to 

synaptic inputs and see whether either type of the vasculature-innervating tSPNs 

becomes hyperexcitable.  

Last but not least, changing ion channel densities or the correlations between ion  
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channels can also affect synaptic integration. For example, in rat sympathetic neurons, 

increasing Ih using dynamic clamp led to enhanced synaptic integration (Kullmann et 

al., 2016). Another computational study found that balanced increase in IA and Ih led to 

progressive decrease in the slope of the f-I curve (Burdakov, 2005). For both NA2- and 

NA3-type tSPNs, we will first characterize correlations between ion channels in each 

type, and then systematically vary each ion channel and correlation to see how they 

affect synaptic integration.  
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Chapter 4 General Discussion 

Both the pyloric circuit in the crab Cancer borealis and the tSPNs in mice possess the 

ability to restore their neural activities after deafferentation, indicating that they are 

regulated by homeostatic plasticity mechanisms. In the pyloric circuit, the pyloric 

rhythm is disrupted after acute removal of all neuromodulatory inputs, but can recover 

3-4 days later in the absence of neuromodulation. In the mouse tSPNs, preliminary data 

shows that the tSPNs’ f-I curves are similar before and six weeks after SCI, indicating 

that neuronal excitability is maintained by homeostatic regulation. In Chapter 1, we 

reviewed homeostatic plasticity mechanisms in the context of degeneracy. Here, we 

discuss a few aspects of homeostatic plasticity mechanisms that are less relevant to 

degeneracy but fundamental to understand how homeostatic regulation works, which 

may eventually help us to understand how neurons and neural circuits employ their 

rich repertoire of degenerate solutions to restore neural activities after perturbations, 

both in the pyloric circuit and in tSPNs (Section 4.1 – 4.3). We then discuss a few future 

directions that may deepen our understanding of degeneracy in neurons and neural 

circuits (Section 4.4), followed by a zoom-out view on where this dissertation stands in 

the big picture (Section 4.5).  

4.1 Homeostatic plasticity: tuners vs. targets 

Homeostatic plasticity (HP) mechanisms have not only been observed in various animal 

models but also across multiple scales, ranging from the genetic to the neural network 

level. A parameter at the neuron level can be tuned to maintain activity at the neural 

network level, or become the target of maintenance by tuning its underlying mRNA 

expression levels. This can be confusing when examining HP mechanisms across 
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different scales so we propose two concepts to resolve this ambiguity: tuners and 

targets. Roughly speaking, tuners are features of a single neuron or a neural circuit that 

are tuned/shifted during homeostatic regulation, and targets are features of a single 

neuron or a neural circuit that are maintained or restored by homeostatic regulation. 

For example, in cultured hippocampal networks, the balance between excitatory and 

inhibitory inputs, i.e. E/I ratio, was transiently decreased but returned to the baseline 

level two days after perturbation, in which case the E/I ratio appears to be a target of 

homeostatic regulation (Slomowitz et al., 2015). In rat visual cortex, however, E/I ratio 

increased to compensate for reduced firing rate caused by intraocular TTX injection, in 

which case the E/I ratio behaves like a tuner (Maffei and Turrigiano, 2008). Tuners can 

be distinguished from targets based on monotonic vs. non-monotonic change after 

perturbations. For example, if a feature shows monotonic change after perturbations, 

like the increase of E/I ratio to compensate for visual deprivation in rat visual cortex, it 

is defined as a tuner. On the other hand, if a feature shows non-monotonic change, 

either increasing first then decreasing, or decreasing first then increasing, it is a target 

that is maintained by homeostatic regulation.  

At a single neuron level, changes in neuronal excitability can be characterized by 

various passive and active membrane properties, each can function as a tuner of 

homeostatic regulation. Common passive membrane properties are input resistance and 

the resting membrane potential (Grashow et al., 2010), and conductances and reversal 

potentials of individual ionic currents are the common active membrane properties 

(Golowasch, 2014; Marder, 2015). Changes in the current kinetics caused by 

perturbations, like gating variables and time constants, have also been observed, but 

occur less commonly (Thoby-Brisson and Simmers, 2002). A type of tuner that has been 
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examined extensively in the stomatogastric nervous system in the crab Cancer borealis 

are the linear ratios between ion channel densities, i.e. ion channel correlations. These 

correlations have been observed at both mRNA and maximum conductance levels 

(MacLean et al., 2003; 2005; Khorkova and Golowasch, 2007; Ransdell et al., 2012; Zhao 

and Golowasch, 2012; Temporal et al., 2014), and they are often cell type-specific 

(Schulz et al., 2006; 2007; Hudson and Prinz, 2010). A theoretical study indicates that ion 

channel correlations can emerge from activity-dependent homeostatic tuning rules 

(O'Leary et al., 2013), and a recent experimental study proposes that ion channel 

correlations can stabilize neuronal activity while allowing conductances to change over 

wide ranges to compensate for perturbations (Zhao and Golowasch, 2012), all 

suggesting that neuronal excitability can be maintained by tuning ion channel 

correlations . 

At the synaptic level, two widely identified tuners of HSP mechanisms are 

amplitude and frequency of miniature excitatory or inhibitory post-synaptic currents 

(mEPSC or mIPSC). HSP can occur both locally at a single synapse or globally across 

multiple synapses. The latter is called synaptic scaling, because the strengths of all 

synaptic inputs are scaled up or down to restore postsynaptic neural activity 

(Turrigiano et al., 1998; Soto-Treviño et al., 2001). Although most often changes of 

amplitude or frequency are monotonic, biphasic change of mean mEPSC amplitude was 

observed in the visual cortex of rats (Hengen et al., 2013; Lambo and Turrigiano, 2013). 

In general, increased mEPSC amplitude indicates a higher density/conductance of 

postsynaptic receptors, whereas higher frequency is often associated with increased 

presynaptic release probability or increased number of functional synaptic connections 

(Malenka and Nicoll, 1997; O’Brien et al., 1998; Kirov and Harris, 1999; Murthy et al., 
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2001; Queenan et al., 2012). An exception is that increased number of functional 

synapses by activating silent synapses could be caused either by an increase in the 

number of release sites (i.e. presynaptic unsilencing) or by an increase in the number of 

functional postsynaptic units (i.e. postsynaptic unsilencing) (Malenka and Nicoll, 1997; 

Kerchner and Nicoll, 2008; Queenan et al., 2012). Therefore, both pre- and postsynaptic 

events could induce higher mEPSC frequency. E/I ratio can either be a tuner or a target 

of homeostatic regulation, depending on the examined animal model and perturbation 

paradigms, as discussed above. 

Targets of homeostatic plasticity mechanisms are quite similar at a single neuron 

and circuit level. For a spiking neuron or network consisting of spiking neurons, 

common targets are average firing rate, inter-spike interval distribution, etc. (Grashow 

et al., 2010; Hengen et al., 2013). For a bursting neuron or a central pattern generator 

consisting of bursting neurons, targets could be period, duty cycle, spikes per burst, and 

phase relationships, etc. (Golowasch, 2014). What the targets of homeostatic regulation 

are is a question rooted in the debate of whether information in the nervous system is 

coded by the firing rate or by spike timing (Gautrais and Thorpe, 1998). From the rate 

coding perspective, information is coded in the average firing rate of individual 

neurons or populations of neurons. Sometimes it is the firing rate distribution, defined 

by both the average firing rate and the variance, that encodes information (Triesch, 

2007). Accordingly, when pathological perturbation occurs, firing rate or firing rate 

distribution should be maintained by homeostatic regulation. On the other hand, from 

the temporal coding perspective, the precise time of each spike encodes information 

(VanRullen et al., 2005; Butts et al., 2007), and therefore the firing pattern of the neural 

circuit should be maintained (Cudmore et al., 2010). Firing pattern refers to neural firing 
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properties like inter-spike interval for spiking neurons, duty cycle for bursting neurons, 

and/or phase relationships for neural network synchrony. Firing rate and firing pattern 

codes are not mutually exclusive; they could both encode information in the same 

neural circuit and therefore could be both tightly regulated in face of perturbations. 

Clarifying what is being restored during a homeostatic tuning process is important for 

placing that process in the broader context of homeostatic plasticity mechanisms. 

Overall, researchers need to be open to the possibility that not only the firing rate, but 

also other firing properties like ISI distribution of a spiking neuron, duty cycle of a 

bursting neuron, and firing rate distribution, could be the targets of homeostatic 

regulation. 

4.2 Homeostatic plasticity mechanisms: activity-dependent vs. activity-independent 

A common basis that may support both intrinsic and synaptic homeostatic plasticity is 

an activity-dependent mechanism. Both experimental and theoretical studies have 

shown that an activity-dependent mechanism, with intracellular calcium concentration 

as the activity sensor, is sufficient to restore neural activities after perturbations 

(LeMasson et al., 1993; Turrigiano et al., 1994; Liu et al., 1998; Turrigiano et al., 1998). In 

the crab Cancer borealis, removal of all neuromodulators disrupts the pyloric rhythm, 

but the rhythm can recover in the absence of neuromodulators a few days later, and 

simulations showed that activity-dependent regulation of ionic currents of pyloric 

circuit neurons underlie this rhythm recovery (LeMasson et al., 1993; Golowasch et al., 

1999; Thoby-Brisson and Simmers, 2002). A study conducted in cortical neuronal 

cultures explicitly showed that synaptic scaling was rapidly induced by blocking 

postsynaptic firing, but not by local synaptic blockade, suggesting that synaptic scaling 

depended on neural activity, but not neuromodulation (Ibata et al., 2008). 
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 On the other hand, experimental studies in both invertebrate and vertebrate 

neural systems also suggest the existence of activity-independent mechanisms of 

homeostatic regulation. In the stomatogastric nervous system of the lobster Panulirus 

interruptus, overexpression of a shal gene that encodes a transient potassium current (IA) 

was compensated by up-regulation of a hyperpolarization-activated inward current (Ih). 

This compensation also occurred in response to overexpression of a nonfunctional 

mutant version of shal that did not lead to increased amplitude of IA, implying the 

existence of an activity-independent mechanism (MacLean et al., 2003; 2005). A recent 

study in cortical neuronal cultures blocked AMPAergic transmission while using 

optogenetic feedback to restore neural spiking, and found that AMPAergic activity 

blockade alone could induce synaptic scaling, suggesting that activity-independent 

mechanisms also exist in the mammalian nervous system (Fong et al., 2015). Activity-

independent homeostatic regulation was also observed at the synaptic level, which 

appears to be triggered and expressed locally at the dendritic sites of the synapse being 

perturbed (Gonzalez-Islas et al., 2018). A Hodgkin-Huxley computational model of the 

PD neuron in the pyloric circuit of the crab Cancer borealis showed that activity-

dependent and neuromodulator-dependent mechanisms together could reproduce key 

features of the pyloric rhythm recovery observed in vitro that were missing in a solely 

activity-dependent model (Zhang and Golowasch, 2011). Besides neuromodulation, 

extracellular matrix was also found to modulate homeostatic plasticity mechanisms. A 

recent study in the pyloric circuit of the crab Cancer borealis showed that degradation of 

an extracellular matrix component called chondroitin sulfate proteoglycans (CSPGs) 

before decentralization would delay the onset of rhythm recovery (Hudson et al., 2015). 

A biologically plausible model demonstrated that extracellular matrix could maintain  
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firing rate homeostasis through adjusting both synaptic inputs and neuronal spike 

generation (Kazantsev et al., 2012). Together, these studies show that homeostatic 

plasticity mechanisms are regulated by both neural activity and neuromodulation, and 

modulated by other factors like extracellular matrix. 

4.3 Homeostatic plasticity and mathematical theory 

Control theory is a mathematical theory that employs feedback loops to precisely 

control a behavior or process by constantly calculating and minimizing the error 

between observed output and target output. Several excellent reviews have discussed 

the link between homeostatic regulation and control theory (Davis, 2006; O'Leary and 

Wyllie, 2011; Queenan et al., 2012), and most of the biophysical models that implement 

the activity-dependent homeostatic regulation of ion channel densities naturally fit in 

the control theory framework (Günay and Prinz, 2010; Olypher and Prinz, 2010). One 

way to integrate both intrinsic and synaptic homeostatic plasticity mechanisms in the 

control theory framework is that two feedback signals could independently regulate the 

synaptic input and neuronal spiking (Kazantsev et al., 2012). Feedback signals are 

implemented based on feedback controllers, and a recent review provides a broad 

collection of feedback controllers that can be applied to neuroscience  (Grosenick et al., 

2015). One problem with control theory is that it assumes that the neural circuit 

implicitly “knows” the target neural activity level, which is usually represented by a set 

point of intracellular calcium concentration, yet the physiological foundation of this set 

point is still vague (O'Leary and Wyllie, 2011). A recent computational study proposed 

that the “set point" of intracellular calcium concentration can be derived from central 

dogma. Specifically, the target intracellular calcium concentration level could be the 
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ratio of the degradation rate and synthesis rate of some Ca2+-sensitive enzyme complex 

(O'Leary et al., 2014).  

Another mathematical theory that can be applied to analyze HP mechanisms is 

information theory. Information theory puts HP in the context of optimizing 

information transmission and/or representation, which is more about the “why” rather 

than the “how” of HP mechanisms. Optimizing information transmission is equivalent 

to maximizing mutual information, a measure of the amount of information one 

variable contains about another variable. For example, in a computational study, 

coordinated HIP and HSP mechanisms were shown to regulate the mean and variance 

of a firing rate distribution, respectively, through maximizing mutual information 

between neuronal input and output (Cannon and Miller, 2016). Examining HP in the 

context of f-I curves, a common method to quantify input-output relationships, can also 

help elucidate the relationships between HIP and HSP. For example, Turrigiano 

proposed that by scaling the strength of all the neuron's incoming synapses up or down 

(i.e. synaptic scaling), a neuron's firing response can be shifted up or down its f-I curve. 

In contrast, regulation of intrinsic plasticity changes the sensitivity of a neuron's 

response to synaptic inputs, and therefore shifts the f-I curve leftward (i.e. the neuron 

will fire less for a given level of synaptic drive) or rightward (i.e. it will fire more for a 

given level of synaptic drive) along the input axis (Turrigiano and Nelson, 2000).  

4.4 Future directions on degeneracy in neurons and neural circuits 

Much progress has been made toward identifying and characterizing structures of 

degenerate parameter sets and to relate them to functions of neurons and neural 

circuits. But like with all interesting questions, this progress also begets more questions 
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yet to be explored. Below, we briefly discuss two questions that may further expand our 

understanding of degeneracy in neurons and neural circuits.   

4.4.1 Defining measures of degeneracy 

To compare degenerate parameter sets at different time points during homeostatic 

regulation and across preparations, we first need to define measures that can quantify 

degeneracy. Degeneracy is qualitatively defined as combinations of parameters that 

give rise to similar neural activity or behavior. But how similar is sufficient to be 

deemed as functionally equivalent? Is a system more degenerate because it has more 

parameters or because it has more degenerate parameter sets? Some attempts at 

quantifying degeneracy have been made using information theoretical concepts (i.e. 

mutual information and entropy) (Tononi et al., 1999; Man et al., 2016), but measures 

that can be implemented to analyze experimental data are yet to be developed.  

Defining measures of degeneracy is challenging partially because degenerate 

systems usually contain a large amount of parameters that overlap in their 

functionality, making it difficult to quantify the effect of individual parameter on the 

function of neurons and neural circuits.  The mathematician John von Neumann once 

said: “With four parameters I can fit an elephant, and with five I can make him wiggle 

his trunk.” Mathematicians and physicists have a taste for simple, elegant solutions, but 

if we not only want to model the mechanistic wiggle of the elephant’s trunk, but also 

how it lives, how it ages, how it thinks, and how it feels, the number of parameters 

needed quickly explodes. The computational model developed in Chapter 3, for 

example, needs eight types of ion channels to explain the basic firing properties of 

tSPNs, and therefore has at least eight parameters to tune. Fortunately, real data usually 
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contain correlations and dependencies, which forms lower-dimensional structures in 

the high-dimensional parameter space. Our findings in Chapter 2 show that we can 

quantify the change of the lower-dimensional structures in response to perturbations or 

constraints, which may provide insight on how to quantify degeneracy later.  

Therefore, to develop measures of degeneracy, we first need to better understand 

how multiple cellular and synaptic parameters change in response to perturbations on 

various timescales, ranging from seconds to days. This is challenging to do in 

experiments, but can be tackled by combining experiments and computational methods. 

It is feasible to monitor neural activities of hundreds of neurons cultured on a high-

density multi-electrode array (Panas et al., 2015; Slomowitz et al., 2015) or activities of a 

neural circuit in vitro for days (Goaillard et al., 2009). Analyzing the space of all possible 

models instead of a single model that matches an experimental dataset would provide 

us a more comprehensive and deeper understanding of degenerate systems (Gao and 

Ganguli, 2015).  

4.4.2 Degeneracy and robustness against injuries 

Degenerate systems possess the flexibility to restore neural activities against a wide 

range of perturbations and injuries. A computational study in the pyloric circuit found 

that degenerate solutions made the system more robust to temperature perturbations 

(Caplan et al., 2014). Preliminary data show that tSPNs exhibit similar f-I curves before 

and six weeks after SCI, but the amplitude of IKd, IKCa, and a persistent inward current 

increased (Li, McKinnon and Hochman, personal communications). Our simulation also 

confirmed that similar f-I curves can be generated from different parameter sets, and 

further found that degenerate parameter sets can differ in their ability to integrate 
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synaptic inputs. This result indicates that switching between degenerate solutions can 

tune up or down tSPNs’ ability to integrate synaptic inputs while maintaining neuronal 

excitability (measured by f-I curves), and therefore may make tSPNs more robust to 

SCI-induced changes. However, it is still unclear how neurons and neural circuits 

explore and exploit the degenerate solutions, especially the linear and nonlinear 

structures of them, to restore neural activities after injuries and perturbations. Several 

computational studies have shown that degenerate solutions do not respond to the 

same perturbation in an identical manner (Marder and Taylor, 2011; O'Leary et al., 

2014), but why some are more susceptible to perturbations than others is still unknown. 

One possibility is that degenerate parameter sets that are more susceptible to 

perturbations lie near boundaries between regions of parameter space where the 

neuron or neural circuit switches from excitable to hyperexcitable state (Ratté et al., 

2014; Ratté and Prescott, 2016). A deeper understanding of both linear and nonlinear 

structures of degenerate solutions would help us answer those questions.  

 In the meantime, we are aware that our models in Chapter 2 and 3 do not contain 

any homeostatic tuning rules discussed in section 4.2, and implementing homeostatic 

regulation of ion channel densities in these models may further constrain the pool of 

degenerate solutions.   

4.5 Final thoughts 

The human brain contains about 100 billion neurons, varying by its genetic, anatomical, 

and biophysical constructions. Can we expect to find two identical neurons in a human 

brain? It seems very unlikely. Variability in parameters has been observed across all 

scales in the brain. At the genetic level, recent studies suggest that neurons can contain  
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different copies of the genome, which mutated and diverged during development 

(McConnell et al., 2017). At the biophysical level, two neurons in the same brain region 

may contain different types of ionic currents, and each type of ionic currents may be 

composed of different sub-types. Even if two neurons have the identical composition of 

ion channels, each ion channel density can vary in a 3-4 fold range (Schulz et al., 2006; 

2007; Wilhelm et al., 2009). Cell morphologies can also vary by cell size, by shape, and 

by branching patterns of dendrites. Moreover, cell size and molecular composition 

constantly change during development.  

Although it is unlikely that two neurons are identical, neurons in the same brain 

region tend to be functionally equivalent. So to what extent does the individuality or 

uniqueness of a single neuron matter? Or does the functional unit of the brain lie in the 

overlapping structures of neurons sharing similar functionality? At one end of the 

spectrum, we have the “grandma neuron” that fires only when the subject sees a very 

particular image of his or her grandmother. If each neuron in the brain fires only when 

specific faces or objects present, then according to the psychologist Fred Attneave, the 

volume of our brain needs to be measured in the unit of cubic light years (Attneave, 

1954). Besides the explosion of volume, encoding information in a highly specific 

manner is not only inefficient, but also very fragile to both predictable perturbations 

like aging and unpredictable perturbations like injuries and extreme environmental 

conditions. At the other end of the spectrum, we have seen degeneracy in neurons and 

neural circuits, where neurons or neural circuits with different combination of ionic 

current densities and synaptic strengths show similar functionality. Studies have also 

found that neurons with different morphologies behave similarly (Otopalik et al., 2017; 

2019). Degeneracy has been observed across all scales of neuroscience, from different 
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codons encoding the same amino acid at the genetic level, to multiplicity of neural 

pathways and muscle configurations that can reach the same target at the motor control 

level. All of the above indicate that degeneracy is an essential coding strategy of the 

brain, and enables us to code vast amounts of information in a brain that weighs just 

about a pound. But a fully overlapping coding strategy is also inefficient, which poses 

questions like what is the optimal level of overlap, what are the optimal structures of 

overlapping, and how does the brain employ the overlapping structures to cope with 

perturbations. Examination of structures of degenerate parameter sets is a baby step 

towards solving these puzzles, while many great challenges and opportunities are 

awaiting us ahead.  
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5. Appendix 

5.1 Equations for pyloric circuit model 

Fast sodium current:  
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Delayed rectifier potassium current: 
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S-type calcium current: 
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T-type calcium current:  
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Calcium-dependent potassium current:  
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A-type potassium current:  
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Hyperpolarization-activated mixed ion current: 
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5.2 Equations for single neuron model of tSPNs 

Fast sodium current:  
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Delayed rectifier potassium current:  
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L-type calcium current: 
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M-type potassium current: 
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Calcium-dependent potassium current:  
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A-type potassium current: 
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Hyperpolarization-activated current:  
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Leak current: 

𝐼rq;¯ = 𝐺rq;¯ ∙ (𝑉 − 𝐸rq;¯)  

 

Synaptic current: 
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Intracellular calcium dynamics:  
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5.3 Supplemental data: Distribution of each parameter before and after IMI removal 
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Figure 5.1 Distribution of each cellular or synaptic parameter in the pyloric circuit model before 
and after IMI removal. Distributions are smoothed by kernel density estimation. Blue: Control. 
Yellow: Recovery (ideal). Green: Recovery (real). Dotted vertical line: median of the distribution.  
 
 

 
Figure 5.2 Scatter plot of ion channel correlations before and after applying constraints. (A) Ion 
channel correlations from the “Control” vs. the “Recovery (real)” datasets. (B) Ion channel 
correlations from the “Control” vs. the “Control (+/- std)” datasets. Dotted line: identical line.  
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5.4 Supplemental data: Ion channel correlations in tSPNs 

 
Figure 5.3 Ion channel correlations in all physiologically-realistic tSPN models. (A) Correlation 
matrix of all pairs of parameters, where each parameter is indicated on the axis label. Correlations 
are measured by Pearson’s correlation coefficients, and fall within the range of [-1, 1]. (B) Violin 
plots showing the distribution of ion channel correlations. Correlation values are indicated in the 
title. Left: GM vs. Gleak. Right: Gh vs. Gleak. 
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