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ABSTRACT 

 

Membrane anchored immune stimulatory proteins enhance anti-tumor immunity in 

breast cancer models 

 

By 

 

Erica N. Bozeman 

 

Despite significant advances being made in the cancer field, breast cancer 

accounts for millions of deaths worldwide.  Multiple strategies have been employed to 

combat this deadly disease such as chemotherapy, radiation therapy and various forms of 

immunotherapies.  And while many are capable of reducing tumor burden or inducing 

tumor-specific immune responses, most are hampered by the development of therapeutic 

resistance over time.  Our studies sought to investigate the efficacy of cellular based 

vaccines that were genetically modified to express glycosyl phosphatidylinositol immune 

stimulatory molecules (GPI-ISMs).  The choice of ISMs, B7-1, GPI-IL-2 and GPI-IL-12, 

all play a critical role in the activation and cytotoxic capabilities of cellular immune 

responses, primarily mediated by T- and NK-cells.  We demonstrate using multiple breast 

cancer models that the co-expression of B7-1 and GPI-IL-12 is highly effective at 

significantly reducing overall tumor burden and tumor incidence in prophylactic as well 

as therapeutic settings.  In the non-metastatic, 4TO7 model, cellular vaccines expressing 

this combination of ISMs led to a significant reduction in myeloid derived suppressor 

cells (MDSCs) and regulatory T cells (Tregs) locally within the tumor microenvironment 

as well as in the periphery.  While in the HER-2 positive, D2F2/E2 model such tumor 

inhibition was accompanied by a reduction in HER-2 specific humoral immunity and an 

enhancement in HER-2 specific cellular immunity.  Moreover in both models, long-

lasting memory responses were induced following cellular vaccination with GPI-ISMs as 

evident by protection from secondary tumor challenges. 

 To further enhance the anti-tumor immunity that was induced following 

vaccination, combinatorial approaches with the cytotoxic agent Ukrain and an 

immunological blockade, anti-PD-L1 were investigated.  The tumor-specific cytotoxicity 

of Ukrain minimally enhanced tumor inhibition in the 4TO7 model relative to vaccination 

alone while PD-L1 blockade served as an effective adjuvant in the D2F2/E2 model.  

Taken together, cellular vaccines expressing GPI-ISMs proved to be an effective 

approach in the battle against tumor development in multiple breast cancer models 

though the manipulation of immune suppression and the promotion of antigen-specific 

cellular immunity. 
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CHAPTER I:  

Introduction 

 

 

Excerpts taken from the following publications: 

Immunotherapeutic strategies for cancer treatment: A novel protein transfer 

approach as an alternative for cancer vaccine development.  Med. Res. Rev. 

(2012) 32 (6): 1197-219.  PMID: 23059764 

 

Cancer vaccine development: Designing tumor cells for greater immunogenicity. 

Front Biosci. (2010) 15 (1):309-20. PMID: 20036822 
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Cancer is the second leading cause of mortality in the United States accounting 

for 23.7% of all deaths in 2010 [1].  While cancer attacks a variety of organs, tissues and 

cells within our bodies, breast tissue is the most prevalent site for cancer among women 

at 29% of estimated new cancer cases [2].  It was estimated that 226,870 women would 

be diagnosed with breast cancer in the United States while 39,510 women would die from 

this disease in 2012 [2].  While the mortality rates for several other diseases have 

declined substantially in the past 50 years including heart and cerebrovascular diseases 

[3] such a decline fails to be observed in the cancer field which speaks to the 

overwhelming necessity to develop more effective treatment options for cancer patients.   

At present there are five approaches for the treatment of cancer: surgery, 

chemotherapy, radiotherapy, monoclonal antibody (mAb) therapy and immunotherapy.  

Surgical procedures are implemented in order to reduce overall tumor burden within 

patients and increase the efficacy of adjuvant therapies most notably chemotherapy and 

radiation therapy.  While highly effective at eliminating tumor cells, the lack of 

specificity often leaves patients undergoing chemotherapy and/or radiation therapy 

severely immune-compromised and suffering from a wide host of side effects such as 

hair loss, fatigue and extreme nausea.  As a result, several therapies have been recently 

developed and FDA approved that target specific proteins expressed or secreted by tumor 

cells.  In addition, as many current investigations seek to unravel the dynamic 

relationship between cancer and the host immune system, the development of clinically 

effective immunotherapies and cancer vaccines is quite promising.    
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Cancer Immune Surveillance 

Normal, healthy cells are responsive to intrinsic signals that direct them to divide, 

migrate or undergo apoptosis allowing the host to maintain a homeostatic state.  

However, when this responsiveness is lost, cells begin to proliferate uncontrollably and 

sustain this proliferative signaling, a fundamental hallmark of cancer development [4].  

Other hallmarks include evading growth suppressors, activating invasion and metastasis, 

enabling replicative immortality, inducing angiogenesis and resisting cell death [4, 5].  

Our immune system is constantly under “surveillance”, seeking out and effectively 

destroying these transformed cells, an idea first proposed by Paul Ehrlich in 1909 [6].  In 

the decades following Ehrlich, there was conflicting evidence suggesting that the immune 

system was incapable of recognizing malignant cells which were thought to be 

indistinguishable from self.  In 1949 Frank Burnet published his theory of acquired 

immunological tolerance which stated that lymphocytes that are self-reactive are 

eliminated during the development of the host immune system.  However, in the 1950s 

studies showed that mice were capable of rejecting a secondary transplantable tumor 

suggesting the host’s recognition of tumor associated antigens (TAAs) and tumor specific 

transplantable antigens (TSTAs). The work of Burnet along with Lewis Thomas led to 

the development of the immune surveillance hypothesis [7, 8]. It was later demonstrated 

that immune surveillance was only one part of a larger immune editing process which 

consisted of 3 stages: elimination (immune surveillance), equilibrium and escape.  

Immune surveillance is primarily mediated by innate immune responses, most notably 

gamma-delta (γδ) T cells and natural killer (NK) and NKT cells [9, 10].  However, in the 

process of eliminating tumor cells, immune selective pressure is aiding in the 
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development of tumor variants that are progressively more resistant to immune attack.  

Within this “equilibrium” phase, over time the host immune response becomes 

increasingly incapable of controlling these tumor variants until finally the tumor cells 

“escape” the induced anti-tumor immune response completely.    

 

 Immune evasion mediated by secretory factors and modulation of surface proteins 

Tumors have crafted numerous ways to evade the host immune response.  These 

methods are quite varied and effective in inhibiting both the innate and adaptive immune 

responses that would otherwise be mounted.  Numerous studies have shown that both 

innate and acquired immunity are capable of recognizing many tumor antigens and 

eliciting an anti-tumor response against developing tumors [11].  These anti-tumor 

responses are primarily mediated by T cells with minimum contribution from an 

antibody-mediated response towards the efficacy of immune surveillance under normal 

circumstances [12].  However, poorly immunogenic tumor cells escape from immune 

surveillance making the host unable to produce an adequate immune response towards 

the metastasis of the tumor.  Taken together, stimulating the immune cells specifically to 

recognize the cancer cells is fundamental in the development of an efficacious therapeutic 

cancer vaccine.   

The environment in which a tumor develops plays a critical role in the 

progression of a tumor.  The type and frequency of infiltrating cells is a key determinant 

in whether the tumor has the appropriate microenvironment to thrive or whether it will be 

effectively eliminated by the host immune responses.  The strategies that are employed 

by tumors to inhibit immune cell effector function, namely T cells and dendritic cells 
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(DCs), while simultaneously recruiting immune suppressive and regulatory cells into the 

microenvironment allows the tumor to colonize and form a niche within the host.  As a 

result, numerous studies have sought to investigate this delicate balance between the host 

immune responses and the craftiness of a developing tumor locally at the 

microenvironment. 

  One method utilized by tumors to mediate immune escape is though the secretion 

of immune suppressive factors most notably vascular endothelial growth factor (VEGF) 

and transforming growth factor (TGF-β), interleukin-10 (IL-10) and tumor necrosis factor 

(TNF).   VEGF is a known pro-angiogenic factor and has been shown to promote the 

formation of blood vasculature in the tumor microenvironment [13, 14].    The immune 

suppressive activity of TGF- β is wide reaching promoting an invasive phenotype by 

recruiting myofibroblasts and osteoclasts [15], shielding tumor cells from immune 

surveillance [16] and inducing the differentiation of regulatory T cells (Tregs) [17].   

Tregs play a crucial role in the establishment of peripheral tolerance, thus 

minimizing the occurrence of autoimmune diseases [18]. However, within the tumor 

microenvironment, the presence of Tregs can suppress the effector functions of tumor-

specific CD4 
+
and CD8

+
 T cells, thus promoting tumor development [19]. It has been 

shown that within tumor-bearing hosts, the frequency of Tregs is increased in the 

circulation as well as within the tumor itself [19].  The mechanism of immune 

suppression that is utilized by Tregs involves the secretion of IL-10 and TGF-β, which 

can inhibit DC maturation and cytotoxic T-cell activity. It has also been shown that Tregs 

can stimulate DCs using a CTLA-4-dependent mechanism to produce intracellular 

enzyme indoleamine 2, 3-dioxygenase, which converts tryptophan into kynurenines that 
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can induce apoptosis of T cells [18].   Tregs also express high levels of glucocorticoid-

induced TNF-related protein (GITR) that when engaged with the ligand, GITR-L, 

expressed on endothelial and APCs, attenuates their suppressive activity [20]. Thus, 

agonist anti-GITR mAbs can lead to increased numbers of tumor-specific T cells and 

anti-tumor activity [20, 21].  On the other hand, tumor cells utilize the GITR-GITR-L 

interaction to inhibit NK cell-mediated anti-tumor immunity by expressing GITR-L as 

well as secreting the soluble form of GITR-L, which modulates the cytotoxic abilities of 

NK cells expressing GITR [22]. In conjunction with Tregs, the activation of myeloid 

derived suppressor cells (MDSCs), a phenotypically heterogeneous population of 

immature myeloid cells, contributes to the immunosuppressive nature of the tumor 

microenvironment [23]. 

Tumor-derived granulocyte colony stimulating factor (G-CSF) has been 

demonstrated in several mouse tumor models to promote the differentiation, 

accumulation and recruitment of MDSCs [24-26].  Upon activation, MDSCs exert their 

suppressive activity by expressing high levels of arginase I and inducible nitric oxide 

synthase which catabolize the amino acid L-Arginine (L-Arg) [27].  MDSCs are thus able 

to cause T-cell dysfunction in the tumor microenvironment by depleting extracellular L-

Arg, which is required for optimal T-cell proliferation [28-30].  MDSCs can also enhance 

tumor angiogenesis and metastasis [31] and secrete IL-10 and TGF-β which induce Treg 

production [32]. It has also been shown that, through the recruitment of MDSCs, Tregs 

and lymphoid tissue inducer cells, tumors that secrete the chemokine CCL21 can 

establish a tolerogenic tumor microenvironment and promote immune escape by altering 

their stroma into lymphoid-like structures [33].  Due to their immunosuppressive role, 
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modulation of these regulatory cells can serve as an effective adjuvant therapy to other 

immunotherapies for the treatment of cancer [34].  The schematic representation of 

immunosuppression mediated by the tumor microenvironment is illustrated in Figure 1.  

While it has been shown that the induction of an effective anti-tumor immune 

response is primarily cell-mediated, tumor cells have been shown to down-regulate the 

expression of major histocompatibility (MHC) molecules in an effort to avoid recognition 

by T cells.  This modulation occurs at varying degrees including total deficiency of 

MHC, allelic and locus down-regulation and loss of MHC haplotype [35, 36].  This 

altered MHC expression prevents proper antigen presentation and recognition to T cells 

resulting in a deficiency of CD8
+
 T cell-mediated immunity while making the tumor 

more susceptible to NK cell-mediated lysis [37, 38].    

Because tumor cells are derived from the host’s normal, healthy cells, often times 

the host immune system fails to recognize the developing tumor as “foreign” and thus 

fails to initiate an appropriate response.  In some cases, tumor cells overexpress a specific 

protein or present that protein in an altered conformation on its cell surface, thus allowing 

this protein to serve as a target for therapies. Additionally, many proteins that are 

naturally expressed by normal cells are overexpressed by many tumors such as mucin 1 

(MUC-1) [39] and human epidermal growth factor receptor 2 (HER-2) [40].  This 

aberrant protein expression provides potential targets for the development of more 

specific therapies in a clinical setting.  Studies have also shown that tumors tend to up-

regulate a number of inhibitory molecules such as programmed death ligand (PD-L1) that 

further leads to immune dysfunction by inhibiting the effector functions of T cells which 

express PD-1 and subsequently inducing T cell apoptosis (9).   
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Types of Breast Cancer 

Breast cancer can be classified based on a number of factors, including protein 

receptor status, grade and stage of tumor development and histopathological appearance 

[41].  Using the receptor status nomenclature, there are 3 main categories of breast 

cancer.  The majority (65%) of breast cancer is hormone receptor positive due to the 

expression of the estrogen (ER) and/or progesterone (PR) receptors on their cell surface.  

Patients with ER/PR positive tumors have a lower risk of mortality relative to patients 

with ER/PR negative tumors and are more likely to be responsive to available hormonal 

therapies such as tamixofen [42-44]. Approximately 20-30% of breast cancer is 

considered human epidermal growth factor receptor 2 (HER-2) positive based on an 

amplification of the HER-2/neu oncogene [45].  Due to the overexpression of this growth 

factor receptor, HER-2 positive breast cancer is highly aggressive and associated with a 

poorer clinical prognosis [46].  Still there are ~15% of breast cancers that lack the 

expression of ER and PR and fail to overexpress HER-2 and are classified as triple 

negative breast cancer (TNBC).  While TNBC patients are non-responsive to most 

available, targeted therapies, these patients are typically more responsive to neoadjuvant 

chemotherapy than non-TNBC patients [47].  

For those patients with HER-2 positive breast cancer, the mAb therapy 

trastuzumab (Herceptin) has been shown to be effective as a single agent as well as in 

adjuvant settings [48] .  Trastuzumab mediates its action by inhibiting the 

homodimerization of HER-2 and the heterodimerization of HER-2 with other epidermal 

growth factor (EGF) family receptors, such as HER-1, HER-3 and HER-4, increasing the 

endocytic destruction of the receptor, promoting antibody-dependent cellular cytotoxicity 
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(ADCC) and inhibiting angiogenesis [49, 50].  In clinical trials, the patients receiving 

trastuzumab along with chemotherapy have shown higher response rates as compared to 

patients receiving chemotherapy alone [51].  The FDA also approved pertuzumab 

(Perjeta), a HER-2 specific mAb to be used in conjunction with trastuzumab and 

docetaxel chemotherapy for late-stage breast cancer disease [52].  Pertuzumab has been 

shown to bind a distinct region of the HER-2 protein, domain II , relative to domain IV 

that is recognized by trastuzumab [53].  However, over time patients who were once 

responsive to these therapies develop resistance ultimately causing relapse.  More 

recently in February 2013, the FDA approved Kadcyla, a new antibody-drug conjugate 

that targets HER-2 in patients who have failed to respond to trastuzumab and a taxane 

[54].  Further efforts are being made by researchers to seek additional adjuvant therapies 

to combat this resistance [55, 56].   

 

Immunotherapeutic approaches for cancer treatment  

Demonstration that the immune system can be induced to respond to cancer dates 

back to the work of William Coley in the 1890s- early 1900s [57].  The development of 

“Coley’s toxin”, a mixture of killed bacterial cultures, served as one of the first examples 

of cancer immunotherapies, successfully curing >10% of patients who was afflicted with 

bone and soft-tissue sarcomas [58].  Nowadays, researchers have developed a number of 

immunotherapeutic approaches that seek to harness and augment the immune system’s 

natural ability to eliminate emerging or established tumors.  In order for this goal to be 

realized, advances must continue to be made in tumor immunology such that we gain a 

better understanding of how the immune system naturally responds to a tumor.  The 
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current strategies seek to target and to boost specific components of the host’s immune 

response to a developing or established tumor. The primary targets of immunotherapies 

include enhancing antigen targeting to APCs, enhancing T cell activation and removing 

the inhibitory signals that diminish the effectiveness of the anti-tumor immune response 

[59].  Pulsing DCs with tumor antigens, administering cytokines and using gene transfer 

technology to express various proteins on the surface of tumor cells have been found to 

be successful in eliciting effective anti-tumor immune response.  However these therapies 

have been met with numerous clinical limitations including limited specificity, partial 

responses and systemic toxicity.  Additionally, these therapies are often cumbersome and 

expensive to implement.  

The identification and characterization of several MHC-restricted TAAs such as 

HER-2/neu, melanoma antigen 1 (MAGE-1) and glycoprotein 100 (gp100) has enabled 

more targeted immunotherapies to be developed [60].  While there are several therapeutic 

options geared toward cancer vaccine development currently under investigation, few 

such options demonstrate the dual potential to not only stimulate a robust anti-tumor 

immune response but to also be translational in human clinical trials as well.   

 

Dendritic cell-based vaccines   

Researchers are pursuing numerous strategies involving the use of DCs as cancer 

vaccines.  One such strategy involves the use of “loaded” DCs.  To achieve this, a 

population of DCs would first be genetically manipulated ex vivo to express tumor 

antigens prior to injection into the cancer patient.  In theory these “activated” DCs would 

be able to present the tumor antigens, through MHC molecules, to CD4
+
 and CD8

+
 T 
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cells and thus elicit a robust immune response.  In several models, vaccinating tumor-

bearing mice with DCs loaded with autologous tumor-derived antigens in the form of 

peptides [61], heat shock proteins [62], tumor lysates [63] or mRNA [64] has proven to 

be highly effective.  Additionally, the generation of DCs fused with tumor cells in order 

to induce anti-tumor immunity has been investigated in mouse models of lung carcinoma, 

melanoma and colon [65, 66].  However, the complications arise initially from the 

difficulty of properly activating the DCs ex vivo, as well as from determining the form, 

dose or types of antigens to load [67].  Such complications limit the overall efficacy and 

consistency of this approach.  The tumor antigen, peptide-pulsed DCs would also only be 

capable of activating a peptide-specific repertoire of T cells.  Due to the high mutation 

rate of tumor cells, the antigens presented by the tumor may differ greatly from those to 

which the immune cells have been previously primed upon vaccination thus leading to 

immune evasion. This approach is also limited only to tumor antigens that have been 

identified and characterized [68].   

Despite these limitations, DC-based cancer vaccines have been used as a 

treatment option in several human clinical trials such as those for breast and prostate 

cancer [69, 70].   The most promising of these, is the FDA approved cancer vaccine 

sipuleucel-T (PROVENGE) for the treatment of asymptomatic or minimally symptomatic 

metastatic castrate resistant prostate cancer.  The vaccine consists of autologous DCs 

pulsed with a fusion protein of GM-CSF and the prostate antigen prostatic acid 

phosphatase (PAP) which is expressed solely in prostate tissue and in 95% of prostate 

cancer cells [71].   
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Whole cell vaccines  

Another cell based approach involves using irradiated whole tumor cells as 

potential cancer vaccines.  By using whole tumor cells it allows for a wide repertoire of 

tumor antigens to be presented to the immune system leading to the induction of a more 

polyclonal immune response [72, 73].  Additionally, it has been shown that irradiation of 

whole tumor cells enhances immune recognition by T cells [74] as well as macrophages 

and DCs [75].  One such therapy is the development of GVAX, a whole cell based 

vaccine genetically engineered to secrete GM-CSF [76].  GVAX has been shown to 

decrease the serum levels of prostate specific antigen (PSA) in some patients in phase I 

and phase II clinical trials [77].  However, in phase III clinical trials comparing the 

clinical efficacy of GVAX immunotherapy in combination with Taxotere (docetaxel), a 

common chemotherapeutic agent, plus prednisone it was found that there was a higher 

incidence of death among the GVAX group relative to the Taxotere control group [77] .  

Because of this lack of survival benefit, it was determined that the study would not meet 

its primary survival endpoint and the prostate GVAX clinical trials for prostate cancer 

were terminated.  The safety and efficacy of the GVAX platform is currently being 

investigated in clinical trials for pancreatic cancer [78].  While the use of irradiated whole 

tumor cells as vaccines holds great promise, several factors must be addressed before this 

promise is fully realized clinically.  Nonetheless, the main limitations with whole cell 

vaccination are the difficulty in establishing cell lines from primary tumors and that the 

established cell lines may no longer be representative of the original primary tumor due 

to intratumoral heterogeneity [79].  
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Cytokines for tumor therapy 

 In order to overcome the immunosuppression mediated by tumors, the systemic 

administration of specific cytokines such as IL-2, IL-12, and IFN- has been used to alter 

the tumor microenvironment to mediate tumor recognition by immune cells [80-82].  

Additionally, the FDA has approved IL-2 to treat metastatic melanoma and renal cell 

carcinoma (RCC).    Due to the potential synergy of specific cytokines, their use as 

combinatorial therapies is being evaluated in clinical trials.  In a recent randomized 

clinical trial comparing the overall survival benefit among RCC patients following IFN-

2a monotherapy versus a combinatory therapy of IFN-2a, IL-2 and the chemotherapy 

drug fluorouracil, there was found to be no significant difference between the two groups 

despite previous reports of higher response rates among those receiving the combination 

therapy [83].  Additionally, there was a higher incidence of toxicity among patients 

receiving the combination therapy which is a significant issue of cytokine therapies.  A 

phase II study assessed whether GM-CSF could enhance the response rate to IL-2 and the 

chemotherapeutic drug thalidomide among metastatic RCC patients.  These studies 

indicated that while the combination therapy was tolerated by the patients, the addition of 

GM-CSF did not lead to an improved response rate [84].  A high incidence of thrombotic 

occurrences was observed in phase I trials of high risk malignant melanoma patients 

when given GM-CSF and increasing doses of thalidomide following tumor resection 

[85].  The toxicities that develop in patients can range from mild cases of nausea and 

vomiting to more severe effects such as hypotension and systemic toxicity [80, 86].  

Additionally, the elevated levels of cytokines in the circulation can lead to vital organ 

damage and ultimately death in some cases [87].    These and other studies indicate that 
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further evaluation of the interplay between cytokines is needed in order to determine the 

most optimal cytokine combination while minimizing the risks of life-threatening 

toxicities. 

 

Gene therapeutic approaches  

  Gene therapy was primarily developed to correct defective genes to treat single 

gene disorders [88].  Gene therapy has also been used extensively in the cell-mediated 

treatment of head and neck, prostate and colorectal cancer [89-91], however it has failed 

in clinical trials due to the difficulty in establishing primary tumor cells.  Currently two 

types of gene delivery systems are being used, viral and non-viral vectors and both are 

associated with substantial limitations.  The use of adeno-, retro- and lenti-viral vectors 

yield relatively high gene transduction and expression efficiency compared to non-viral 

vectors and are used in the development of several cancer vaccines [92].  However, the 

major drawback of retro- and lenti-viral vectors is the probability of inducing 

mutagenesis and cancer gene activation since the viral genome can randomly incorporate 

into the host genome [93].  Adeno and fowl fox viral vectors are commonly used as an 

effective means to genetically modify tumor cells without the risk of incorporation into 

the host genome.  However, adenoviral vectors are highly immunogenic and can lead to 

rapid clearance of the vector from the host which makes them undesirable for therapeutic 

use [94].  Non-viral vectors such as liposomes and polymers have been developed to 

deliver the gene of interest for cancer treatment.  Though non-viral vectors are not 

immunogenic, their transfection efficiency is very poor making them unattractive for 
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gene delivery method [95].  Although gene therapy for cancer treatment is a feasible 

method, several limitations of gene transfer technology remains to be investigated.   

Taken together, while these approaches are hampered by a number of clinically-

significant issues, there exist ample opportunity for cancer researchers to develop more 

effective therapies and/or further optimize the current strategies.  Herein, we have 

pursued the later through the investigation into the efficacy of genetically modified 

cellular vaccines expressing glycosyl phosphatidylinositol (GPI) immune stimulatory 

molecules (ISMs) using multiple breast cancer models.         
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FIGURE LEGEND 

 

Figure 1. Schematic representation of immunosuppression mediated by the tumor 

microenvironment to evade host anti-tumor immune responses. Tumors secrete a 

variety of immunosuppressive factors, such as cytokines, growth factors, and 

chemokines. These factors promote the differentiation, expansion, and recruitment of 

several regulatory cells, namely myeloid-derived suppressor cells (MDSCs) and 

regulatory T cells (Tregs), which promote the growth of tumor cells by inhibiting the 

effector functions of cytotoxic T cells.  The cytokines secreted and specific receptors 

expressed by tumor cells also inhibit the activity of immune cells (e.g. DCs, NK, and T 

cells). Tumor cells are also known to recruit lymphoid tissue inducer (LTi) cells that 

promote tumor growth by inducing a lymphoid-like structure surrounding the tumor cell. 
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CHAPTER II 

 

 

 

Expression of membrane anchored cytokines and B7-1 alters tumor microenvironment 

and induces protective anti-tumor immunity in a murine breast cancer model 
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ABSTRACT 

 

 

Many studies have shown that the systemic administration of cytokines or 

vaccination with cytokine-secreting tumors augments an anti-tumor immune response 

that can result in eradication of tumors.  However, these approaches are hampered by the 

risk of systemic toxicity induced by soluble cytokines.  In this study, we have evaluated 

the efficacy of 4TO7, a highly tumorigenic murine mammary tumor cell line, expressing 

glycosyl phosphatidylinositol (GPI)-anchored form of cytokine molecules alone or in 

combination with the costimulatory molecule B7-1 as a model for potential cell or 

membrane-based breast cancer vaccines.  We observed that the GPI-anchored cytokines 

expressed on the surface of tumor cells greatly reduced the overall tumorigenicity of the 

4TO7 tumor cells following direct live cell challenge as evidenced by transient tumor 

growth and complete regression within 30 days post challenge.  Tumors co-expressing 

B7-1 and GPI-IL-12 grew the least and for the shortest duration, suggesting that this 

combination of immunostimulatory molecules is most potent.  Protective immune 

responses were also observed following secondary tumor challenge.  Further, the 4TO7-

B7-1/GPI-IL-2 and 4TO7-B7-1/GPI-IL-12 transfectants were capable of inducing 

regression of a wild-type tumor growing at a distant site in a concomitant tumor 

challenge model, suggesting the tumor immunity elicited by the transfectants can act 

systemically and inhibit the tumor growth at a distant site. Additionally, when used as 

irradiated whole cell vaccines, 4TO7-B7-1/GPI-IL-12 led to a significant inhibition in 

tumor growth of day 7 established tumors.  Lastly, we observed a significant decrease in 

the prevalence of myeloid-derived suppressor cells and regulatory T-cells in the tumor 
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microenvironment on day 7 post challenge with 4TO7-B7-1/GPI-IL-12 cells, which 

provides mechanistic insight into anti-tumor efficacy of the tumor-cell membrane 

expressed IL-12.   These studies have implications in designing membrane-based 

therapeutic vaccines with GPI-anchored cytokines for breast cancer. 
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INTRODUCTION 

 

Breast cancer is among the leading types of cancer among women in the United States, with 

an estimated 229,060 new cases in 2012 alone [1] and devising new strategies of breast cancer 

therapy remains a priority in medical research.  While there have been numerous preclinical 

studies that have evaluated different methods and approaches to enhance the overall 

immunogenicity of tumor cells, few have been capable of inducing clinically relevant responses.   

One such approach includes the genetic modification of tumor cells to secrete cytokines 

including IL-12 and GM-CSF [2-4], or using GM-CSF secreting tumor vaccines with or without 

concomitant chemotherapy [5, 6].  

In order for a cancer immunotherapy to be effective in a clinical therapeutic setting, the 

immune suppressive nature of the tumor microenvironment must be overcome [7, 8].  Tumor 

cells have been shown to up-regulate the expression of the inhibitory molecules PD-L1 and 

CTLA-4 [9-11].  Moreover, tumors also produce inhibitory cytokines and factors such as IL-10, 

vascular endothelial growth factor (VEGF), prostaglandins and transforming growth factor beta 

(TGF-β) that can induce immune tolerance by preventing dendritic cell (DC) maturation [12, 13] 

and promoting the differentiation and maturation of regulatory T cells (Tregs) [14, 15] and 

myeloid derived suppressor cells (MDSCs) [16].    

  To potentially address this issue, we have established glycosyl phosphatidylinositol (GPI) - 

anchored forms of the cytokines IL-2 and IL-12 for stable surface expression onto tumor cells 

along with the costimulatory molecule B7-1.  The expression of these molecules allows for 

immune activation to take place locally at the vaccination site rather than systemic activation, 

which could potentially be toxic to patients [17-19].  This localized immune activation can 
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effectively manipulate or skew the tumor microenvironment towards being less immune 

suppressive. Additionally, direct targeting of tumor antigens to antigen presenting cells is more 

likely to occur following engagement of the modified tumor cells expressing IL-2 and IL-12 with 

their cognate receptors found on DCs.      

Herein, we report for the first time the direct effects of membrane-anchored cytokines such 

as IL-2 and IL-12 on the tumorigenicity of a highly tumorigenic mouse mammary cancer model.  

Additionally, our studies provide insight into the potential mechanisms underlying the reduced 

tumorigenicity of these genetically modified cells as evidenced by a significant reduction in the 

local and peripheral immune suppressive microenvironment of tumor-bearing hosts.   
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MATERIALS AND METHODS 

 

Cell culture and animals 

4TO7 tumor cells, a kind gift of Fred Miller (Wayne State University), were cultured in 

DMEM media (Cellgro) with 10% FBS at 37°C.  cDNA encoding GPI-anchored forms of 

murine IL-2, and IL-12 were constructed in our laboratory by attaching a GPI-anchor signal 

sequence as previously described [20, 21].  cDNA encoding murine B7-1 was kindly provided by 

Gordan Freeman (Boston, MA).  The cDNAs were subcloned into the pUB6A expression vector 

(Invitrogen Corp).  Cells were transfected using FuGene6 transfection reagent (Roche Molecular 

Biochemicals) and selected with blasticidin (10µg/ml).  In order to select the population of cells 

expressing the GPI-molecules, the cells were subjected sequentially to a) magnetic activated cell 

sorting (MACS) (Dynal Biotech Dynabeads, Invitrogen), b) panning [22] and c) fluorescence 

activated cell sorting (FACS).  The wild-type 4TO7 (4TO7-WT) cell population was later 

subjected to four rounds of in vivo passage following subcutaneous (s.c.) injection into BALB/c 

mice to yield more reproducible, aggressive tumor growth with palpable tumor development 

within 6 days (4TO7RG).    

Female BALB/C mice 6-8 weeks of age were purchased from Jackson Laboratories and were 

maintained in accordance with IACUC approved institutional guidelines and protocols. 

 

Characterization of tumor cells 

Flow Cytometry. Surface expression of B7-1, IL-2 and IL-12 was determined by flow cytometry 

analysis.  Briefly, cells were incubated for 30mins at 4˚C with directly-conjugated antibodies as 

follows: IL-2-PE (clone S4B6), IL-12-PE (clone 17.8), and B7-1-FITC (clone 1G10) (BD 
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Biosciences).  The cells were then washed, formalin-fixed and analyzed using a FACSCaliber 

cytometer and analyzed with FlowJo software. 

ELISA and Western blot analysis. Cell transfectants (2x10
5
/well) were seeded in 24-well 

plates for 48h.  After which, culture supernatant was collected, cells were washed and 

lysed using 2% octyl-β-glucoside, 50mM Tris-HCl pH8, 2mM PMSF, 5mM EDTA and 

protease inhibitor cocktail (1:100, Sigma).  IL-2 and IL-12 in the cell lysate and culture 

supernatant was detected by sandwich ELISA according to the manufacturer’s 

instructions (eBioscience) and western blotting techniques as previously described [23].   

PIPLC (phosphatidylinositol phospholipase-C) treatment. Cell transfectants were treated with a 

1:1000 dilution of the PIPLC enzyme (Glyko Prozyme, San Leandro, CA) in PBS/0.1% 

Ovalbumin and incubated for 45mins in a 37˚C water bath with slight agitation every 10mins.  

At the end of the incubation, the cells were centrifuged and washed with FACS buffer 

(PBS/1%CCS/1%EDTA) and stained for FACS analysis.   

CFSE dilution. CFSE staining was used to determine the growth rate of tumor cells using 

adapted methods as previously described [24].  Cells were then washed with FACS buffer and 

either analyzed immediately to verify CFSE incorporation or cultured for FACS analysis at the 

specified time points. 

 

Tumor challenge studies 

Direct challenge Mice (n=5/group) were challenged subcutaneously (s.c.) in the rear hind flank 

with 4TO7-WT or transfected 4TO7 cells (2x10
5
).  Tumor size (mm

2
) was measured using 

Vernier calipers every 2-3 days with 2x2 perpendicular measurements.  Tumor-free mice were 

subjected to a secondary challenge with 4TO7-WT cells (2x10
5
) 30-33 days later on the opposite 
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hind flank.  Mice were monitored weekly for tumor growth.  Mice were euthanized when the 

tumor size reached >2 cm
2
.   

Concomitant Immunity. Mice (n=5/group) were challenged with 4TO7RG cells (2x10
5
) on the 

right hind flank and simultaneously challenged with each of the 4TO7 transfectants (2x10
5
) on 

the opposite hind flank (s.c.).  Mice were monitored as mentioned previously.   

Therapeutic whole cell vaccination studies. Prior to vaccination, tumor cells were exposed to 

80Gy of gamma irradiation.  Mice were challenged subcutaneously with 5x10
4
 4TO7RG cells on 

the right hind flank and vaccinated with 2x10
5
 irradiated cells on the opposite hind flank seven 

days later.  Mice were monitored as previously mentioned. 

 

Cellular phenotyping of immune infiltrates and Immunohistochemistry staining (IHC) 

Tumor cells (2x10
5
) were mixed in a 1:1 ratio with 250µL of Matrigel™ (BD Falcon) 

and injected into the hind flank of BALB/c mice (s.c.).  Seven days post inoculation, the spleens, 

tumor-draining lymph nodes (TDLNs) and Matrigel were harvested.  The Matrigel plugs were 

either digested using collagenase type III (Sigma) for 1h or formalin-fixed for IHC staining.  

Single cell suspensions were prepared from the digested Matrigel plugs and red blood cells were 

lysed.  Cells were then washed, Fc blocked (clone 2.4G2) and stained with directly conjugated 

antibodies (eBioscience) for 25mins at 4
o
C to detect T cells (CD4

+
 and CD8

+
), B cells (B220

+
), 

DCs (CD11b
+
CD11c

+
), Tregs (CD4

+
CD25

+
FoxP3

+
) and MDSCs (CD11b

+
Gr1

+
).  Samples were 

analyzed as described previously.  Formalin-fixed Matrigel plugs were embedded in paraffin 

blocks, sectioned and stained with hematoxylin and eosin (H&E).   Blood vessels were 

visualized by staining endothelial cells with a CD31 primary antibody at 1:200 dilution (Abcam).    
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Statistical analysis 

Differences between tumor growth curves and spleen sizes groups were analyzed using 

ANOVA or the Student t test, respectively. Values of p < 0.05 were considered significant. For 

survival studies, Kaplan-Meier survival curves were plotted and analyzed.   All graphs and 

statistical calculations were analyzed using Prism software (GraphPad).  
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RESULTS  

 

Establishment of 4TO7 murine breast cancer cells expressing GPI-anchored IL-2 and IL-12 

4TO7 murine mammary tumor cells were transfected to express transmembrane B7-

1, GPI-IL-2, GPI-IL-12, B7-1 and GPI-IL-2, or B7-1 and GPI-IL-12.  The GPI-linkage of 

the cytokine molecules on the surface of the cells was verified using the PIPLC enzyme, 

which specifically cleaves the glycosyl phosphatidylinositol lipid tail of the GPI-anchored 

molecule and leads to a decrease in surface molecule expression. After PIPLC treatment, the 

percentage of cells positive for B7-1 did not decrease as the B7-1 construct was not GPI-

linked (Figure 1A-B). However, expression of IL-2 and IL-12 decreased following PIPLC 

treatment, verifying that the cytokines were anchored to the cell membrane by a GPI-

linkage. The IL-12 GPI-linkage appears to be more susceptible to PIPLC cleavage, as its 

expression decreased by 94.5% while IL-2 expression decreased by 68.4% for the single 

transfectants (Figure 1A) and 96.7% and 77.5% for the double transfectants (Figure 1B), 

respectively.  The sensitivity of the GPI-anchor to cleavage has been shown to vary 

depending on the molecule that it anchors and the cell type in which it is expressed [25].   

Lastly, to determine whether GPI-IL-12 and GPI-IL-2 is found in the supernatant of 

4TO7 transfectants, we analyzed cells and supernatants after culturing tumor cells for 48h.  

No measurable IL-12 was detected in the supernatant of transfected cells by Western blot, 

suggesting that GPI-IL-12 remains cell-associated and is minimally shed (Figure 1C).  This 

is further supported by ELISA which indicates that 2.24ng/mL and 3.49ng/mL is cell-

associated whereas only 0.35ng/mL and 0.411ng/mL is found in the supernatant of 4TO7-

IL-12 and 4TO7-B7-1/IL-12, respectively.  However, despite not being able to detect IL-2 
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by Western blot, we observed substantial amounts of IL-2 in supernatants of 4TO7-IL-2 

cells by ELISA suggesting that IL-2 is expressed both as membrane-bound and secreted 

forms.     

 

Membrane expression of IL-12 along with B7-1 leads to minimal tumor growth and rapid tumor 

rejection following direct challenge  

While the expression of IL-2, IL-12 or B7-1 alone or in combination did not alter the in vitro 

growth properties of the 4TO7 tumor cells as indicated by CFSE dilution (Figure 1D), upon 

direct in vivo challenge, 4TO7-WT tumors grew progressively whereas the tumors from the 

transfected cell lines all completely regressed (Figure 2A). Thirty days post injection, none of the 

mice challenged with transfected cells had tumors while 100% of the mice challenged with wild-

type cells had developed tumors. The onset of tumor formation of the 4TO7B7-1/IL-12 tumors 

was the slowest to appear and the smallest in size.  This data indicates that the stable surface 

expression of B7-1 alone or in combination with IL-2 or IL-12 enhances the overall 

immunogenicity of 4TO7-WT tumor cells. 

 

Transfected 4TO7 tumor cells are capable of inducing protective immune responses   

All of the mice previously challenged with transfected 4TO7 cells were tumor-free 30 

days after initial direct challenge (Figure 2B) and were then re-challenged with 2x10
5
 4TO7-WT 

cells.   All of the mice remained tumor-free, whereas all of the mice in the previously 

unchallenged group developed progressively growing tumors and had to be sacrificed within 30 

days post challenge due to large tumor burden (Figure 2C).  Taken together, protective anti-

tumor immunity was induced by the transfected 4TO7 tumor cells and was sustained for up to 



41 

 

 

150 days of monitoring following re-challenge with 4TO7-WT cells (data not shown).    

 

Splenomegaly correlates with tumor burden and MDSC 

Throughout our studies, control mice challenged with 4TO7 cells displayed highly 

significant splenomegaly (p<0.0001) relative to naïve or tumor-free mice and overall tumor 

burden correlated with the spleen weight, R
2
= 0.943 (Figure 3A).  Consistent with previous 

reports that splenomegaly is associated with an increased infiltration of MDSCs [26], we also 

observed a significant increase in MDSCs from an average of 4.02% in tumor-free mice to 

32.5% in tumor-positive mice with a corresponding percent decrease in other cell types including 

T and B cells  (Figure 3B).  There was no significant difference observed in spleen weight or 

splenocyte cell populations between naïve mice and mice that were tumor-free at the end of the 

aforementioned studies (data not shown). 

 

The co-expression of B7-1 and GPI-IL-12 alters the tumor microenvironment of live 4TO7 cells   

To gain insight into the early immune factors mediating the reduced tumorigenicity of 

4TO7 B7-1/IL-12, tumor cells were mixed in a 1:1 ratio with Matrigel and transplanted 

subcutaneously into BALB/c mice.  Staining for H&E and CD31, an endothelial cell marker, was 

used to visualize the angiogenesis in the Matrigel plugs.  Reduced vasculature was observed with 

the co-expression of B7-1 and IL-12 relative to wild-type (Figure 4A).  Among the cellular 

infiltrates found within the Matrigel, we observed that the co-expression of B7-1/IL-12 led to a 

significant decrease in MDSCs relative to wild-type challenged mice at the tumor site (13.5% to 

5.2%) and in the spleen (17.0% to 5.98%) and a marked decrease in the TDLNs (9.9% to 6.5%) 

(Figure 4B).  This reduction of MDSCs is somewhat surprising given that 4TO7 cells have been 
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shown to secrete granulocyte-colony stimulating factor (G-CSF), a factor that can promote the 

recruitment and mobilization of MDSCs to the tumor site as well as distant organs to establish 

pre-metastatic niches [27].   Additionally, we observed that within the Matrigel, 15.3% of total 

cells from wild-type challenged mice were Tregs whereas in 4TO7B7-1/IL-12 challenged mice 

there was a significant decrease in Tregs to 7.28% (Figure 4B).  We also saw a notable decrease 

in Tregs in the TDLNs as well as in the spleen. The co-expression of B7-1 and IL-12 also led to 

an increased infiltration of CD8
+
 T cells and DCs (Figure 4B, lower panels), as well as CD4

+
 T 

cells and B cells (data not shown) relative to wild-type challenged mice.  These observations 

suggest that the reduced tumorigenicity observed with the co-expression of B7-1 and IL-12 is 

based on a duality of inhibiting components of active immune suppression as well as increasing 

the infiltration of effector immune cell populations.    

 

Simultaneous challenge with transfected 4TO7 tumor cells causes regression of a tumor growing 

at a distant site 

Next, we wanted to determine whether the anti-tumor immune response elicited by the 

transfected 4TO7 cells is capable of acting systemically and induce regression of a 4TO7RG 

tumor, a highly aggressive variant of 4TO7,growing at a distant site.  In this concomitant 

immunity model, we observed that the growth of the 4TO7RG tumor on the right flank was 

generally slower and less progressive in the mice challenged concomitantly with the 4TO7 

transfectants (Figure 5A).  The mice challenged with the double transfectants 4TO7-B7-1/IL-2 

and 4TO7-B7-1/IL-12 showed a delay in overall growth kinetics and had the smallest average 

4TO7RG tumor growth, with both groups remaining <10mm
2
.  Of the single 4TO7 transfectants, 

4TO7-IL-12 was the most effective at reducing overall tumor burden with an average tumor size 
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of ~30mm
2
 by day 27 post challenge.  In contrast, 4TO7-B7-1 and 4TO7-IL-2 challenged mice 

developed wild-type tumors similar in size as the control mice.  These findings indicate that the 

stable co-expression of B7-1 along with Th1 skewing cytokines IL-2 or IL-12 on the surface of 

4TO7 tumor cells can overcome the immune suppression mediated by a developing, highly 

aggressive tumor. 

 

Therapeutic vaccination with irradiated 4TO7 cells expressing cells B7-1 and GPI-IL-12 

significantly reduces overall tumor burden 

To assess the therapeutic efficacy of expressing GPI-anchored cytokines on the surface of 

breast cancer cells in a clinically relevant model, mice were vaccinated with irradiated 4TO7 

transfectants on day 7 post challenge with 4TO7RG cells.  We observed that after only one 

vaccination, mice treated with irradiated 4TO7B7-1/GPI-IL-12 cells had significantly lower 

tumor burden than unvaccinated mice with an average tumor size of 27.2mm
2
 as compared to 

165.3mm
2
 (Figure 5B).   Additionally, the tumor incidence was decreased to 40%.  These results 

indicate that the co-expression B7-1 and GPI-IL-12 is capable of inducing anti-tumor immune 

responses against a highly aggressive tumor variant in a therapeutic setting.   
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DISCUSSION 

 

The 4TO7 murine mammary tumor cell line was transfected to express GPI-anchored 

forms of cytokines IL-2 and IL-12 alone or in combination with the costimulatory molecule B7-

1.  Our challenge studies demonstrated that the transfectants had decreased tumorigenicity, 

induced long-term protective immunity and growth inhibition of a distant, concomitant tumor as 

well as significantly reduced overall tumor burden in a therapeutic setting.  Interestingly, we also 

observed that irradiated 4TO7RG cells significantly inhibited 4TO7RG growth comparable to 

4TO7 transfectants.  The 4TO7 transfectants were established from 4TO7-WT cells and not the 

more aggressive, in vivo passaged variant 4TO7RG.  For our concomitant and therapeutic 

vaccination studies we chose to challenge with 4TO7RG to test the stringency of the anti-tumor 

immune response that would be induced by the GPI-molecules. Due to the likely intratumoral 

heterogeneity [28] of the 4TO7RG cells, transfected clones may no longer be representative of 

the total antigenic population that must be presented to induce more complete tumor inhibition of 

4TO7RG tumors.  These findings have potential clinical implications such that clonally selected 

cell lines developed from a patient’s highly heterogeneous tumor tissue that are modified with 

B7-1/GPI-IL-12 could be effective against the heterogeneous tumor.   

Previous studies have evaluated the role of co-expressing B7-1 and secretory IL-12 [29-

31].  Direct challenge of mice with A20 murine B cell lymphoma expressing B7-1 alone delayed 

onset of tumor appearance, whereas challenge with A20-IL-12 or A20-B7-1/IL-12 led to 

complete rejection [30].  Our challenge studies suggest that, like soluble IL-12, GPI-anchored 

IL-12 is also capable of synergizing with B7-1 in inducing anti-tumor immunity, but without the 

potential risks of systemic toxicities associated with soluble cytokines [17-19].  Pan et al 
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reported that a single chain murine IL-12 expressed as a fusion protein with the transmembrane 

domain and cytosolic tail of murine B7-1 is capable of reducing the tumorigenicity of CT26 

murine colon cancer cells and upon intratumoral administration via an adenoviral vector is 

effective in a therapeutic setting [32].  Our approach is unique in that it modifies soluble 

cytokines with a GPI-anchor, which we have previously shown can spontaneously incorporate 

onto the lipid bilayers of cell membranes [21, 23].    

The reduced tumorigenicity of 4TO7 B7-1/IL-12 tumor cells appears to correlate with a 

significant reduction in immune suppressive cell populations, namely MDSCs and FoxP3
+
 Tregs.  

Furthermore, in human breast cancer, decreased Tregs has been associated with increased 

complete pathologic response [33] and improved overall survival [34] after neoadjuvant therapy.  

Similarly, it has been reported that among breast and colon cancer patients the presence of Lin
-

CD33
+
HLA

-
DR

-/low
 MDSCs is associated with a poor overall survival [35].  Thus, effective 

targeting of the development [36] or suppressive activities [37] of these cell populations, would 

be of great therapeutic benefit and have been investigated in several cancers [38].   

Our results indicate that cytokine molecules expressed on the surface of 4TO7 murine 

cancer cells can induce protective immunity, inhibit progression of a distant tumor and 

effectively overcome the immune suppressive tumor microenvironment.  Taken together these 

findings suggest that a cell or membrane-based vaccine containing GPI-anchored cytokines 

could be a viable immunotherapeutic approach to treat breast cancer.   
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FIGURE LEGENDS 

 

Figure 1. IL-2 and IL-12 are expressed on the surface of 4TO7 via a GPI-anchor.  The 

enzyme PIPLC was used to verify the GPI-linkage of the membrane-bound B7, IL-2 and IL-12 

molecules in the A) single and B) double transfectant cell lines. The shaded histogram represents 

staining with an isotype control antibody. The solid line represents protein expression at baseline 

and the dashed line represents protein expression following PIPLC treatment.  C) Western blot 

analysis of IL-12 and ELISA of IL-2 and IL-12 in the cell lysate (Cell) and culture supernatant 

(Sup) of 2x10
5 

4TO7 transfectants after 48 h culture. D) 4TO7 tumor cells were labeled with 

CFSE and analyzed using flow cytometry at 0, 8, 16, 24, and 48 h post culture.  The mean 

fluorescence intensity (MFI) of each cell line was normalized relative to its initial (0 h) MFI.  

100% was normalized as the 0 h time point for each sample.   

 

Figure 2.  Expression of B7-1 alone or in combination with GPI-IL-2 and GPI-IL-12 

reduces the overall tumorigenicity of 4TO7 tumor cells.  BALB/C mice (n=5/group) were 

challenged s.c. in the hind flank with 2x10
5
 cells and tumor growth was monitored. A) Mean 

tumor size was calculated as the average of the five tumor measurements per group. B) Each data 

line represents an individual mouse per group.  C) Tumor-free mice were re-challenged with 

2x10
5
 wild-type cells to determine the induction of protective immune responses.  Mean ± SEM 

is depicted. 

 

Figure 3. Significant increase in myeloid derived suppressor cell (MDSC) population 

correlates with observed splenomegaly.  Spleens from naïve, tumor-free and 4TO7 challenged 

mice were weighed prior to single cell suspensions being prepared for flow cytometry analysis of 

splenic cell populations.  A) Spleen weights of tumor positive mice were significantly higher 

than tumor-free mice and correlated with overall tumor burden.  B) A significant increase in 

splenic MDSCs in tumor-positive ( ) relative to tumor-free ( ) mice.  An unpaired Student’s t 

test and ANOVA analysis was conducted to determine statistical significance among spleen 

weights and splenic populations, respectively. (****p<0.0001) 
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Figure 4.  Significant reduction in MDSCs and regulatory T cells (Tregs) in mice 

challenged with 4TO7-B7-1/IL-12 cells.  Tumor cells were mixed in a 1:1 ratio with Matrigel 

and inoculated s.c. into the hind flank of mice.  Seven days later, the Matrigel plugs, spleens and 

tumor draining lymph nodes (TDLNs) were harvested.  A) Reduced angiogenesis is present at 

4TO7-B7-1/IL-12 tumor site relative to 4TO7-WT.  Representative Matrigel plugs from two 

separate experiments are shown with H&E (10x) and CD31 endothelial cell staining (20x 

magnification).  B) Co-expression of B7-1 and GPI-IL-12 decreased the prevalence of MDSCs 

(CD11b
+
Gr1

+
) and Tregs (CD4

+
CD25

+
FoxP3

+
) locally as well as in the periphery, while 

increasing the prevalence of CD8
+
 T cells and DCs (CD11c

+
CD11b

+
). White bar: PBS, Black 

bar: 4TO7-WT, Gray: 4TO7B7-1/IL-12. (*p<0.05, **p<0.01). Mean ± SEM is depicted.  

 

Figure 5. Co-expression of B7-1 with GPI-IL-2 or GPI-IL-12 induces concomitant immune 

responses and inhibits tumor growth in a therapeutic setting. A) Groups of mice (n=5) were 

challenged with 4TO7RG cells (2x10
5
) on the right hind flank and simultaneously challenged 

subcutaneously with each of the 4TO7 transfectants (2x10
5
) on the opposite hind flank.  Mice 

challenged with 4TO7 cells expressing B7-1/IL-2 or B7-1/IL-12 led to a significant inhibition of 

4TO7-WT tumor growth at a distant site.  B) Mice were challenged with 5x10
4
 4TO7RG cells 

and vaccinated subcutaneously with irradiated (80Gy) 4TO7 transfectants 7 days later.  

Vaccination with 4TO7B7-1/IL-12 cells induced significant tumor inhibition. Statistical 

significance was determined using ANOVA analysis. (*p<0.05, *** p<0.001). Mean ± SEM is 

depicted. 
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CHAPTER III 

 

 

 

 

Irradiated cellular vaccines expressing B7-1 and GPI-cytokines promote the 

induction of tumor-specific cytotoxic activity and protective anti-tumor responses in a 

HER-2 positive murine tumor model   

 

 

 

This data, as presented in this Chapter, is unpublished. 

 

 

 

 

 

 

 

 

 

 

All figures in Chapter III are based on data generated by the Ph.D. candidate. 
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ABSTRACT 

 

Despite the clinical success of monoclonal antibody treatments for HER-2 

positive breast cancer such as Trastuzumab, there is a growing incidence of resistance to 

these therapies.  It has been proposed that therapies which induce T cell-mediated 

immunity with or without the accompaniment of humoral immune responses are more 

likely to circumvent this resistance.  In order to investigate this possibility, we first 

characterized the role played by antibodies in a human HER-2 (hHER-2) positive murine 

breast cancer model, D2F2/E2.  We observed that within this model, tumors grew 

progressively in the presence of high tumor-specific IgG levels, with the dominant 

subclass being IgG1, typically enhanced during the generation of Th2 responses. Closer 

examination revealed that the in vivo efficacy of these antibodies may be limited in this 

model due, in part, to the constitutive expression of CD47, which could inhibit antibody-

mediated clearance, as well as the loss of the HER-2 antigen in vivo.  As a result, in order 

to mediate D2F2/E2 tumor inhibition or eradication, we administered irradiated cellular 

vaccines genetically modified to express B7-1 or glycosyl phosphatidylinositol (GPI) 

anchored cytokines, GPI-IL-2, GPI-IL-2 or GPI-GM-CSF.  We observed that co-injection 

of B7-1 and GPI-IL-12 expressing vaccines completely protected mice against 

subsequent D2F2/E2 tumor challenge potentially through the induction of robust HER-2-

specific cytotoxic activity.  More importantly, one dose of these cellular vaccines 

significantly reduced average tumor burden of day 7 established D2F2/E2 tumors.  

Because complete protection was not observed and PD-L1 is constitutively expressed by 

D2F2/E2 cells, we combined our cellular vaccines with anti-PD-L1 treatment.  We 
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observed an augmentation of the efficacy of our cellular vaccination.  Taken together, 

cellular vaccines expressing B7-1 and GPI-IL-12 are able to induce protective anti-tumor 

responses in prophylactic and therapeutic settings, potentially mediated by significant 

HER-2 specific cytotoxic activity, which can be further enhanced by adjuvant therapies 

such as PD-L1 blockade.  
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INTRODUCTION 

 

Human epidermal growth factor receptor -2 (HER-2) positive breast cancer 

accounts for 20-30% of diagnosed breast cancer [1].  Due to the overexpression of this 

receptor, this form of breast cancer is highly aggressive and associated with a poorer 

clinical prognosis.  Despite FDA approval of monoclonal antibody therapies such as 

Trastuzumab, Pertuzumab and the tyrosine kinase inhibitor lapatinib in conjunction with 

chemotherapy, many patients develop resistance to these therapies leading to relapse and 

more progressive disease [2, 3].  Thus, the use of vaccination strategies that generate T 

cell responses with or without accompanying antibody responses may serve to mitigate 

the problem of resistance [4].  The majority of pre-clinical studies have focused on 

HER2-plasmid DNA or peptide-based vaccines while less is known of the efficacy of 

cellular vaccines in inducing HER2-specific responses [5, 6].   

With that knowledge we sought to investigate the efficacy of a whole cell 

vaccination strategy to induce HER-2-specific immune responses.  Because tumor cells 

are inherently poorly immunogenic, we have modified the human HER-2 (hHER-2) 

positive mouse tumor cell line D2F2/E2 [7] with the following membrane anchored 

immune stimulatory molecules (ISMs): transmembrane B7-1 (B7-1), glycosyl 

phosphatidylinositol (GPI)-IL-2, GPI-IL-12 and GPI-granulocyte macrophage colony-

stimulating factor (GM-CSF).  Due to our choice of ISMs, which are primarily Th1 

skewing [8] , we hypothesized that the induction of cellular immunity would be more 

prevalent in this model and confer protection.  Additionally, the use of whole tumor cells 

as the vaccine material, allows for a wide repertoire of tumor antigens to be presented and 
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recognized by the host’s immune system which is more likely to minimize tumor escape 

[9, 10].   
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MATERIALS AND METHODS 

 

Tumor model and animals   

The hHER-2 overexpressing murine breast cancer cell line D2F2/E2 was a kind gift of 

Dr. Wei (Wayne State University) and was cultured in DMEM media supplemented with 10% 

cosmic calf serum, 1% penicillin streptomycin and 400µg/mL G418.  Stable transfectants 

expressing transmembrane B7-1 (B7-1) and GPI-IL-2, GPI-IL-12, GPI-GM-CSF was established 

as previously described [11] and maintained under 5µg/mL blasticidin selection (Invitrogen).  

Female BALB/c mice, 6-8 weeks of age, were purchased from Jackson Laboratories and were 

maintained in accordance with IACUC approved institutional guidelines and protocols. 

  

Direct challenge and prophylactic vaccination settings   

Mice were injected subcutaneously (s.c.) on the hind flank with 2x10
5
 live 

D2F2/E2 cellular transfectants for direct evaluation of GPI-ISM expression on the 

tumorigenicity of D2F2/E2 tumor cells.  Tumor-free mice were re-challenged on day 37 

with an additional 2x10
5
 live D2F2/E2 wild-type (WT) cells. For prophylactic 

vaccination studies, D2F2/E2 cellular transfectants were subjected to 80 Gy gamma (γ) 

irradiation using a Gammacell40 Caesium 137 irradiation unit.  Irradiated cellular 

vaccines (Irr) were injected s.c. into mice at a dose of 2x10
5 

two weeks prior to tumor 

challenge with 2x10
5 

D2F2/E2 WT tumor cells on the opposite hind flank.  Irradiated 

cellular vaccines expressing single ISMs were co-injected at a 1:1 ratio to create dual 

ISM expressing vaccines.  Mice were monitored every 2-3 days for tumor growth.  Mice 
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were euthanized when tumors became ulcerated or the tumor size reached 2 cm in 

diameter. 

 

Therapeutic vaccination and program death ligand-1(PD-L1) blockade   

Therapeutic vaccination with one dose of 2x10
5
 irradiated cellular vaccines was 

administered (s.c.) 1 week after D2F2/E2 tumor challenge. Irradiated cellular vaccines 

expressing single ISMs were co-injected at a 1:1 ratio to create dual ISM expressing 

vaccines.  Anti-PD-L1 antibody (clone 9G2, BioXcell) or rat IgG antibody (Jackson 

ImmunoResearch) were given intraperitoneally (i.p.) on days 7, 10 and 13 post challenge 

at a dose of 100µg per injection.  Mice were monitored as mentioned previously. 

 

Assessment of humoral and cellular immunity following vaccination   

Antigen-specific antibodies were measured by a cell ELISA using serum collected 

from mice 13 days post vaccination.  D2F2/E2 cells (5x10
4
/ well) were plated in a 96-

well, V-bottom plate.  Serum from naïve and vaccinated mice was diluted 1/1000 in 

FACS buffer (PBS, 1% CCS, 1% EDTA) and allowed to incubate with cells for 1 hr at 

4°C with slight agitation.  Cells were washed 3 times with FACS buffer.  HRP-

conjugated goat antibody against mouse total IgG or subclass-specific mouse IgG1 and 

IgG2a (Southern Biotech) was diluted 1/2000 in FACS buffer and added to cells for 1 hr 

incubation at 4°C with slight agitation.  Cells were washed 3-5 times with FACS buffer.  

TMB Substrate (100µL) was added to each well and sulfuric acid (50µL) was added as 

the stop solution 10-15 mins later.  Solution (100µL) was transferred to a 96-well, flat 

bottom plate for analysis of optical density (OD) at 415 nm or 450 nm.   
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Two weeks post vaccination, spleens were harvested, splenocytes isolated and red 

blood cells were lysed using RBC lysis buffer (Sigma).  Pooled splenocytes from each 

vaccinated group were co-cultured for 5 days with mitomycin C-treated (50µg/mL) 

D2F2/2 as stimulator cells at a ratio of 5:1 in 6 well plates.  Recombinant IL-2 (10U/mL) 

was added on day 2 of re-stimulation.  Cytotoxic activity was quantified using the 

CytoTox 96 Non-Radioactive Cytotoxicity Assay (Promega) according to the 

manufacturer’s instructions with D2F2/E2, D2F2 and 4TO7WT cells as target cells at 

various effector: target ratios. Total cytotoxicity was calculated as follows: 

% Cytotoxicity = Experimental – Effector Spontaneous – Target Spontaneous   × 100 

Target Maximum – Target Spontaneous 

 

Tumor infiltrating lymphocytes (TILs) isolation  

Tumors from D2F2/E2 challenged mice were harvested and collagenase digested 

for 2 h at 37°C in a shaking incubator.   Enrichment of TILs was achieved by passing the 

single cell suspension through a 67% Percoll gradient.  TILs were collected from the 

gradient interphase and subsequently stained with directly conjugated antibodies specific 

for CD4, CD8 and PD-1 (eBioscience) at a dilution of 1:100 in FACS buffer for 30 mins 

at 4°C.  Cells were washed twice with FACS buffer and fixed with 2% formalin for 

analysis using a FACSCalibur flow cytometer and FlowJo software. 

 

Characterization of tumor cells and freshly isolated tumors 

 D2F2/E2 cells (2x10
5
) were cultured for 48 h, supernatant was collected, diluted 

1:10 and subjected to cytokine ELISAs (BD Biosciences) according to the 

manufacturer’s instructions to quantify TGF-β and G-CSF secretion.  Directly-conjugated 
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anti-mouse CD47 (eBioscience) or TA-1 culture supernatant was used to determine the 

surface expression of CD47 and HER-2 respectively, on cultured D2F2/E2 cells by flow 

cytometry as described above.  D2F2/E2 tumors were harvested and collagenase treated 

for 2 h at 37°C in a shaking incubator.  After which, a single cell suspension of D2F2/E2 

tumor cells was subjected to flow cytometry for CD47 and HER-2 expression as 

previously mentioned. 

 

Statistical analysis 

Differences between tumor growth curves and spleen sizes groups were analyzed using 

ANOVA or the Student t test, respectively. Values of p < 0.05 were considered significant. For 

survival studies, Kaplan-Meier survival curves were plotted and analyzed.   All graphs and 

statistical calculations were analyzed using Prism software (GraphPad).  
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RESULTS 

 

D2F2/E2 tumors grow progressively despite high antigen-specific IgG responses   

 Previous studies have shown that the stable transfection of hHER-2 by 4T1 breast 

cancer cells and 38C13 B lymphoma significantly reduced the tumorigenicity of the 

parental tumor cell line and led to spontaneous tumor regression [12, 13].  We have 

observed a similar phenotype following hHER-2 transfection into 4TO7 cells (data not 

shown).  However, hHER-2 expressing D2F2 tumors (D2F2/E2) grow progressively in 

BALB/c mice [14].  In our hands, tumors develop despite high tumor-specific IgG levels 

in the serum (Figure 1A). Upon assessment of specific IgG subclasses, we observed that 

IgG1 responses were dominant over IgG2a (Figure 1B).  IgG1 responses are enhanced 

during Th2 responses which are typically undesirable in tumor settings [15, 16].  The 

induction of Th2 responses in the D2F2/E2 model is further supported by the high levels 

of TGF-β that are secreted by cultured cells in vitro, while minimal G-CSF was detected 

(Figure 1C).  TGF-β has been shown to promote Th2 responses in tumor-bearing mice 

[17].   Taken together these findings suggest that D2F2/E2 tumors induce Th2 responses 

which must be overcome by a HER-2 targeted vaccination strategy.    

 

Efficacy of humoral immunity is likely limited by CD47 expression or loss of HER-2 

expression in vivo 

We sought to investigate potential reasons for the lack of protection conferred by 

high antibody levels in the D2F2/E2 tumor model.  Upon characterization of freshly 

isolated D2F2/E2 tumors, we observed that the expression of CD47, a surface protein that 
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functions as a “don’t eat me” signal to phagocytes, is maintained in vivo with a mean 

fluorescence intensity of  approximately 35 (Figure 2A).  The engagement of CD47 with 

its receptor signal regulatory protein-alpha (SIRPα) on phagocytes such as macrophages 

has recently been shown to form a barrier which inhibits antibody-mediated tumor cell 

destruction [18].  Additionally, there has been a correlation reported between CD47 and 

SIRPα expression in the bone marrow and peripheral blood of breast cancer patients and 

recurrence [19].  Further examination of D2F2/E2 tumor tissue revealed that 

approximately half of the original HER-2 expression is lost in vivo, with an MFI decrease 

from 251 to 154 (Figure 2B).  This loss of HER-2 antigen is observed clinically with ~1/3 

of patients with metastatic recurrence following Trastuzumab treatment no longer having 

detectable HER-2 amplification [20].     This suggests that tumors which express 

relatively low levels of HER-2 may no longer be susceptible to antibody-mediated killing 

thus leading to D2F2/E2 tumor progression.   

 

Expression of membrane-anchored ISMs completely inhibits D2F2/E2 tumor growth  

Since we have observed that humoral immunity (Th2 responses) is not protective 

in this hHER-2 positive tumor model, we investigated whether the expression of Th1 

promoting ISMs could skew the induced responses and confer protection.  D2F2/E2 cells 

were stably transfected with cDNA encoding B7-1, GPI-IL-2, GPI-IL-12 or GPI-GM-

CSF.  Surface expression of the ISMs was verified by flow cytometry analysis (Figure 

3A).  Mice were then challenged with each transfectant to directly assess the effect of 

each ISM on the tumorigenicity of D2F2/E2 cells.  We observed that mice challenged 

with the transfectants were completely protected from tumor development while 
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D2F2/E2 WT tumors grew progressively (Figure 3B).  This indicates that the 

tumorigenicity of this hHER-2 positive cell line can be abolished by the expression of 

membrane-anchored ISMs.  Tumor-free mice were then re-challenged on day 37 with 

D2F2/E2 WT cells to determine if protective immunity was induced.  There was, on 

average, a week delay in the tumor growth kinetics in mice previously challenged with 

D2F2/E2 transfectants.  Mice previously challenged with D2F2/E2-GM-CSF cells were 

completely protected from secondary tumor challenge, whereas the tumor-free survival of 

mice challenged with D2F2/E2-B7-1 and D2F2/E2-IL-12 was 60% and 40% respectively 

(Figure 3C).  GPI-IL-2 expressing D2F2/E2 cells conferred the least protection against 

the secondary tumor challenge with only 20% of mice being tumor free 70 days post 

D2F2/E2 WT challenge.  This knowledge indicates that the expression of GPI-ISMs 

inhibits D2F2/E2 tumor growth and induces partial protective immune responses.   

 

Prophylactic vaccination with irradiated D2F2/E2-B7-1 cells co-injected with D2F2/E2-

GPI-IL-12 cells completely protects mice against subsequent tumor challenge  

Due to the protection that was observed following direct challenge with the 

D2F2/E2 transfectants, we then wanted to determine whether irradiated cellular vaccines 

could confer protection in a prophylactic setting.  Cellular vaccines were chosen based on 

observed efficacy in previous preliminary studies (data not shown).  Two weeks after 

vaccination, mice were challenged with D2F2/E2 WT cells.  We observed that mice 

vaccinated with a 1:1 mixture of irradiated D2F2/E2 B7-1 and D2F2/E2 GPI-IL-12 

expressing cellular vaccines, Irr-(B7-1+GPI-IL-12), were completely protected against 

D2F2/E2 WT tumor challenge (Figure 4A), whereas all other vaccinated groups 



72 

 

 

developed tumors.   Interestingly, cellular vaccines expressing GPI-GM-CSF (Irr-GPI-

GM-CSF) were not as protective in the prophylactic setting as we had seen in the earlier 

direct challenge studies with only 20% remaining tumor-free 60 days post challenge. A 

possible reason for this observation is the disparate responses of myeloid cells within the 

tumor microenvironment induced by GM-CSF expression locally at the tumor site 

compared to its distal administration in the form of an irradiated cellular vaccine. Others 

have reported contrasting responses of GM-CSF-secreting vaccines (GVAX) based on 

the location of vaccination relative to the tumor site [21].      

One day prior to challenge, serum was collected from vaccinated mice for 

analysis of IgG levels.  Consistent with our earlier studies suggesting that IgG antibodies 

were not protective, vaccinated groups with the highest IgG serum levels prior to tumor 

challenge, Irr-GPI-GM-CSF and Irr-(B7-1 + GPI-GM-CSF), also had the highest overall 

tumor incidence (Figure 4B-C).  Taken together, this further indicates that protection in 

this model is not mediated or correlative with the induction of antibody responses and 

suggests that the expression of GPI-ISMs could act by reducing humoral immunity and 

promoting cellular immune responses.      

 

Co-injection of irradiated D2F2/E2-B7-1 and D2F2/E2-GPI-IL-12 and IL-12 cellular 

vaccines induce robust HER-2 specific cytotoxic activity 

 Since we have observed the protective effects of Irr-(B7-1 + GPI-IL-12) in a 

prophylactic setting, we investigated the induced cellular immune responses following 

vaccination.  Two weeks post vaccination we observed no difference in the frequency of 

CD4
+
 or CD8

+ 
T cells infiltration in the tumor-draining lymph node (data not shown).  
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Cytotoxic activity of splenocytes from vaccinated mice was assessed following 5-day in 

vitro stimulation with mitomycin-C treated D2F2/E2 cells.  HER-2 specific cytotoxicity 

was determined after 4 h incubation with D2F2/E2 cells.  HER-2- negative murine breast 

cancer cells, D2F2 and 4TO7WT, were used as specificity controls.  Our data indicates 

splenocytes isolated from mice vaccinated with Irr-(B7-1 and GPI-IL-12) are able to kill 

approximately 50% of D2F2/E2 target cells at an effector to target ratio of 10:1, while 

there was minimal cytotoxic activity against the HER-2-negative target cell lines, D2F2 

and 4TO7WT (Figure 5).  Due to the antigen-specificity, the observed cytotoxicity is 

likely to be mediated by cytotoxic T lymphocytes (CTLs) rather than innate cells such as 

NK cells which would kill cells in a non-antigen specific manner.  Additionally, 

splenocytes from mice vaccinated with irradiated D2F2/E2 WT cells demonstrated 

minimal cytotoxic activity against all target cell lines indicating that co-injection of B7-1 

and IL-12 expressing cellular vaccines enhances HER-2 specific cellular immunity.  

These results clearly indicate that Irr-(B7-1 + GPI-IL-12) is able to induce significant 

levels of cytotoxicity capable of lysing D2F2/E2 tumor cells in a HER-2-specific manner.   

 

Cellular vaccines expressing B7-1 and IL-12 significantly reduced average tumor burden 

in a therapeutic setting   

To determine whether cellular vaccines expressing GPI-ISMs could induce tumor 

inhibition of established tumors, mice were vaccinated 7 days post tumor challenge.  We 

observed that the Irr-(B7-1+GPI-IL-12) led to a significant reduction in the average 

tumor burden of challenged mice from 160.8 mm
2
 to 25.63 mm

2
 (Figure 6A). 
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Because only partial protection was observed following vaccination in a 

therapeutic setting, we sought the addition of a suitable adjuvant therapy to be used in 

combination with our cellular vaccines.  Combinatorial therapies are thought to be the 

most promising strategy to induce optimal and sustainable anti-tumor immune responses.  

Recent investigations have demonstrated the adjuvant effect of blockade of 

immunological checkpoints such as CTLA-4 and PD-L1 [22, 23].  To determine the most 

appropriate therapy for our model, additional analysis of D2F2/E2 tumors was carried out 

assessing PD-L1 expression which was found to be expressed at substantial levels on 

cultured cells as well as freshly isolated D2F2/E2 tumors (Figure 6B).  Further, we 

observed a significant up-regulation of PD-1 expression on CD4
+
 and CD8

+
 tumor 

infiltrating lymphocytes (TILs) but not in the spleens of tumor positive mice (Figure 6C) 

while we only observed a modest increase in intracellular CTLA-4 on TILs (data not 

shown). As a result of these findings we proceeded with testing the therapeutic efficacy 

of PD-L1 blockade in this HER-2 breast cancer model system.   

Therapeutic vaccination was carried out as mentioned previously using Irr-(B7-1 

and GPI-IL-12).  Administration of 100 µg of αPD-L1 mAb or rat IgG was given i.p. on 

days 7, 10 and 13 post tumor challenge.  Our data indicates that Irr-(B7-1 + GPI-IL-12) 

significantly (p<0.05) reduced tumor burden from 35.4 mm
2
 to 19.6 mm

2
,
 
whereas αPD-

L1 treatment alone and combined treatment significantly (p<0.01) reduced average tumor 

burden to 4.81 mm
2
 and 4.2 mm

2
, respectively (Figure 6C-left panel). Interestingly, 

despite the reduced overall tumor burden in mice treated with αPD-L1 mAbs, all of these 

mice were tumor-positive by day 13 similar to PBS-treated and Irr-WT vaccinated mice 

(Figure 6C-right panel).   Whereas there was a slight delay in tumor development in mice 
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given the combined therapy of αPD-L1 mAb and Irr-(B7-1 +GPI-IL-12) relative to 

vaccine alone.  These findings indicate that αPD-L1 treatment minimally enhanced the 

efficacy of cellular vaccination however, optimization of the dosing and timing schedule 

of the blocking antibody treatment is likely to enhance its therapeutic efficacy.   
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DISCUSSION 

 

The identification and characterization of the tumor associated antigen HER-2, 

has allowed for the development of more targeted therapies such as monoclonal 

antibodies that recognize different regions of the HER-2 protein, Trastuzumab and 

Pertuzumab.  Even though the induction of tumor-specific immunity is considered 

essential for optimal therapeutic responses, the type of immunity that is induced is 

equally important.  The balance between Th1 and Th2 responses plays a critical role in 

the type and efficacy of anti-tumor immune responses that are induced.  While Th1 and 

Th2 responses are capable of inducing potent anti-tumor immune responses, they have 

been demonstrated to act by distinct mechanisms.  Th1 responses promote anti-tumor 

immunity through cellular immunity and the induction of immunological memory that 

further promotes CTL activity [16].  Whereas Th2 responses initiate the production of 

humoral immunity and mediate tumor eradication via necrotic mechanisms [24].  

Our data indicates that the dominant subclass of IgG antibodies found in the 

serum of tumor positive mice is IgG1, which is enhanced following Th2 responses [8].    

However, with the expression of GPI-IL-2 and GPI-IL-12 which promote Th1 responses, 

the tumorigenicity of D2F2/E2 tumor cells was significantly reduced which strongly 

suggest a deviation from the endogenous Th2 response.  However, cytokine profile 

analysis of isolated T cells from vaccinated mice and further serum isotyping will provide 

additional evidence for this in vivo skewing towards a Th1 phenotype.  

Several potential explanations have been investigated as to why antibody 

responses fail to correlate with protection and, similarly, why the passive administration 
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of mAbs ultimately leads to the development of resistance for numerous patients.  In fact 

it has been demonstrated that in some cases antibodies can promote tumor growth [25]. 

One potential means of CD8
+
 CTL activity suppression is mediated by the formation of 

IgG-TGF-β complexes that are later endocytosed and processed by macrophages which 

deliver TGF-β directly to lymphocytes [26].  Additionally, the antibodies that are 

produced could be ineffective in mediating clearance of the tumor cells either indirectly 

through the lack of antibody-dependent cellular cytotoxicity (ADCC) or by the inability 

to directly kill the tumor cells.  This can be further inhibited by the expression of CD47 

on tumor cells which blocks phagocytosis.  Moreover, antibodies must be able to bind its 

target antigen, thus down-modulation of the target antigen, as we observed, is highly 

likely to reduce the efficacy of induced humoral immune responses.  Because of these 

and other factors , the induction of HER-2 specific T cell responses have been 

investigated by several strategies including peptide-specific and DNA-based vaccines 

[27, 28].   

Our cellular vaccines expressing B7-1, GPI-IL-2, GPI-IL-12 or GPI-GM-CSF are 

well suited for the promotion of Th1 responses.  While IL-12 is well known for its ability 

to directly promote Th1 (cellular) responses [29], it has recently been proposed to 

“reprogram” tumor infiltrating MDSCs to create an acute inflammatory environment 

which further enhances the induction of local cellular immunity [30].  Additionally, it has 

been shown that in vivo Th1 responses require the presence of IL-2 [31] and that blocking 

B7-1 interactions during T cell activation induces inactivation of Th1 cells [32].    Lastly, 

to a lesser degree, GM-CSF is reported to induce cellular responses indirectly through the 

activation of macrophages and DCs [33, 34].     
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Robust cytotoxic activity is generally thought to be essential for tumor rejection in 

many models [35, 36].  We observed that mice vaccinated with Irr-(B7-1 and GPI-IL-12) 

were able to induce significant HER-2 specific cytotoxicity that were able to lyse  

approximately 50% of target D2F2/E2 cells at an effector to target ratio of 10:1 in an 

antigen-specific fashion.   

One of the proposed mechanisms of trastuzumab-mediated efficacy is the down-

regulation of HER-2 [37], which is supported by the observation that 1/3 of patients with 

metastatic recurrence no longer having HER-2 amplification.  In order to destroy the 

remaining tumor cells that now lack the HER-2 overexpression, adjuvant therapies would 

need to be administered.  The PD1/PD-L1 signaling pathway is a critical immunological 

checkpoint and blockade of this pathway has been well characterized in several viral 

models including LCMV and HIV [38, 39].  Because PD-L1 is up-regulated by most 

cancers [40], PD-L1 blockade may serve as a promising therapeutic option.  Within the 

D2F2/E2 model, we found that PD-L1 is constitutively expressed and TILs found within 

tumor-positive mice expressed significant levels of PD-1.  In keeping with those 

observations, we combined our cellular vaccines expressing B7-1 and GPI-IL-12 with 

anti-PD-L1 mAb treatment and observed an augmentation in the efficacy of our cellular 

vaccines.    

Taken together, the D2F2/E2 tumor system served as an appropriate HER-2 

positive model to assess the non-protective role of humoral immune responses.  

Moreover, it allowed for the investigation and implementation of a cellular vaccination 

strategy that was capable of inducing cellular immunity which conferred significant 

protection in prophylactic and therapeutic settings. 



79 

 

 

REFERENCES 

 

 

[1] Davoli A, Hocevar BA, Brown TL. Progression and treatment of HER2-positive 

breast cancer. Cancer chemotherapy and pharmacology 2010 Mar;65(4):611-23. 

[2] Pohlmann PR, Mayer IA, Mernaugh R. Resistance to Trastuzumab in Breast 

Cancer. Clinical cancer research : an official journal of the American Association for 

Cancer Research 2009 Dec 15;15(24):7479-91. 

[3] Tortora G. Mechanisms of resistance to HER2 target therapy. Journal of the 

National Cancer Institute Monographs 2011;2011(43):95-8. 

[4] Kiessling R, Wei WZ, Herrmann F, Lindencrona JA, Choudhury A, Kono K, et 

al. Cellular immunity to the Her-2/neu protooncogene. Advances in cancer research 

2002;85:101-44. 

[5] Baxevanis CN, Sotiriadou NN, Gritzapis AD, Sotiropoulou PA, Perez SA, 

Cacoullos NT, et al. Immunogenic HER-2/neu peptides as tumor vaccines. Cancer 

immunology, immunotherapy : CII 2006 Jan;55(1):85-95. 

[6] Jacob J, Radkevich O, Forni G, Zielinski J, Shim D, Jones RF, et al. Activity of 

DNA vaccines encoding self or heterologous Her-2/neu in Her-2 or neu transgenic mice. 

Cellular immunology 2006 Apr;240(2):96-106. 

[7] Wei WZ, Shi WP, Galy A, Lichlyter D, Hernandez S, Groner B, et al. Protection 

against mammary tumor growth by vaccination with full-length, modified human ErbB-2 

DNA. International journal of cancer Journal international du cancer 1999 May 

31;81(5):748-54. 



80 

 

 

[8] Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types 

of murine helper T cell clone. I. Definition according to profiles of lymphokine activities 

and secreted proteins. J Immunol 1986 Apr 1;136(7):2348-57. 

[9] Labarthe MC, Halanek N, Birchall L, Russell N, Desel C, Todryk S, et al. The 

biological effects of syngeneic and allogeneic cytokine-expressing prophylactic whole 

cell vaccines and the influence of irradiation in a murine melanoma model. Cancer 

immunology, immunotherapy : CII 2006 Mar;55(3):277-88. 

[10] Dalgleish AG. Cancer vaccines. British journal of cancer 2000 May;82(10):1619-

24. 

[11] Bozeman E, Cimino-Mathews, A., Machiah, DK, Patel, J., Krishnamoothy, A., 

Tien, L., Shashidharamurthy, R., Selvaraj, P. Expression of membrane anchored 

cytokines and B7-1 alters tumor microenvironment and induces protective anti-tumor 

immunity in a murine breast cancer model 

Vaccine 2013;In press. 

[12] Penichet ML, Dela Cruz JS, Challita-Eid PM, Rosenblatt JD, Morrison SL. A 

murine B cell lymphoma expressing human HER2 / neu undergoes spontaneous tumor 

regression and elicits anti-tumor immunity. Cancer immunology, immunotherapy : CII 

2001 Feb;49(12):649-62. 

[13] Rivera A, Fu, X., Tao, L., Zhang, X. Modification of a popular syngeneic murine 

mammary model for immunotherapy studies. ISRN Immunology 2011;2011:8. 

[14] Wang H, Wei H, Zhang R, Hou S, Li B, Qian W, et al. Genetically targeted T 

cells eradicate established breast cancer in syngeneic mice. Clinical cancer research : an 



81 

 

 

official journal of the American Association for Cancer Research 2009 Feb 1;15(3):943-

50. 

[15] Lee PP, Zeng D, McCaulay AE, Chen YF, Geiler C, Umetsu DT, et al. T helper 

2-dominant antilymphoma immune response is associated with fatal outcome. Blood 

1997 Aug 15;90(4):1611-7. 

[16] Nishimura T, Nakui M, Sato M, Iwakabe K, Kitamura H, Sekimoto M, et al. The 

critical role of Th1-dominant immunity in tumor immunology. Cancer chemotherapy and 

pharmacology 2000;46 Suppl:S52-61. 

[17] Maeda H, Shiraishi A. TGF-beta contributes to the shift toward Th2-type 

responses through direct and IL-10-mediated pathways in tumor-bearing mice. J 

Immunol 1996 Jan 1;156(1):73-8. 

[18] Zhao XW, van Beek EM, Schornagel K, Van der Maaden H, Van Houdt M, Otten 

MA, et al. CD47-signal regulatory protein-alpha (SIRPalpha) interactions form a barrier 

for antibody-mediated tumor cell destruction. Proceedings of the National Academy of 

Sciences of the United States of America 2011 Nov 8;108(45):18342-7. 

[19] Nagahara M, Mimori K, Kataoka A, Ishii H, Tanaka F, Nakagawa T, et al. 

Correlated expression of CD47 and SIRPA in bone marrow and in peripheral blood 

predicts recurrence in breast cancer patients. Clinical cancer research : an official journal 

of the American Association for Cancer Research 2010 Sep 15;16(18):4625-35. 

[20] Pectasides D, Gaglia A, Arapantoni-Dadioti P, Bobota A, Valavanis C, 

Kostopoulou V, et al. HER-2/neu status of primary breast cancer and corresponding 

metastatic sites in patients with advanced breast cancer treated with trastuzumab-based 

therapy. Anticancer research 2006 Jan-Feb;26(1B):647-53. 



82 

 

 

[21] Curran MA, Allison JP. Tumor vaccines expressing flt3 ligand synergize with 

ctla-4 blockade to reject preimplanted tumors. Cancer research 2009 Oct 1;69(19):7747-

55. 

[22] Curran MA, Montalvo W, Yagita H, Allison JP. PD-1 and CTLA-4 combination 

blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within 

B16 melanoma tumors. Proceedings of the National Academy of Sciences of the United 

States of America 2010 Mar 2;107(9):4275-80. 

[23] Pilon-Thomas S, Mackay A, Vohra N, Mule JJ. Blockade of programmed death 

ligand 1 enhances the therapeutic efficacy of combination immunotherapy against 

melanoma. J Immunol 2010 Apr 1;184(7):3442-9. 

[24] Nishimura T, Iwakabe K, Sekimoto M, Ohmi Y, Yahata T, Nakui M, et al. 

Distinct role of antigen-specific T helper type 1 (Th1) and Th2 cells in tumor eradication 

in vivo. The Journal of experimental medicine 1999 Sep 6;190(5):617-27. 

[25] Schreiber H, Wu TH, Nachman J, Rowley DA. Immunological enhancement of 

primary tumor development and its prevention. Seminars in cancer biology 2000 

Oct;10(5):351-7. 

[26] Stach RM, Rowley DA. A first or dominant immunization. II. Induced 

immunoglobulin carries transforming growth factor beta and suppresses cytolytic T cell 

responses to unrelated alloantigens. The Journal of experimental medicine 1993 Sep 

1;178(3):841-52. 

[27] Disis ML, Gooley TA, Rinn K, Davis D, Piepkorn M, Cheever MA, et al. 

Generation of T-cell immunity to the HER-2/neu protein after active immunization with 



83 

 

 

HER-2/neu peptide-based vaccines. Journal of clinical oncology : official journal of the 

American Society of Clinical Oncology 2002 Jun 1;20(11):2624-32. 

[28] Bernhard H, Salazar L, Schiffman K, Smorlesi A, Schmidt B, Knutson KL, et al. 

Vaccination against the HER-2/neu oncogenic protein. Endocrine-related cancer 2002 

Mar;9(1):33-44. 

[29] Trinchieri G. Interleukin-12: a cytokine produced by antigen-presenting cells with 

immunoregulatory functions in the generation of T-helper cells type 1 and cytotoxic 

lymphocytes. Blood 1994 Dec 15;84(12):4008-27. 

[30] Kerkar SP, Goldszmid RS, Muranski P, Chinnasamy D, Yu Z, Reger RN, et al. 

IL-12 triggers a programmatic change in dysfunctional myeloid-derived cells within 

mouse tumors. The Journal of clinical investigation 2011 Dec;121(12):4746-57. 

[31] Liao W, Lin JX, Wang L, Li P, Leonard WJ. Modulation of cytokine receptors by 

IL-2 broadly regulates differentiation into helper T cell lineages. Nature immunology 

2011 Jun;12(6):551-9. 

[32] Schwartz RH. Costimulation of T lymphocytes: the role of CD28, CTLA-4, and 

B7/BB1 in interleukin-2 production and immunotherapy. Cell 1992 Dec 24;71(7):1065-8. 

[33] Pan PY, Li Y, Li Q, Gu P, Martinet O, Thung S, et al. In situ recruitment of 

antigen-presenting cells by intratumoral GM-CSF gene delivery. Cancer immunology, 

immunotherapy : CII 2004 Jan;53(1):17-25. 

[34] Ozawa H, Ding W, Torii H, Hosoi J, Seiffert K, Campton K, et al. Granulocyte-

macrophage colony-stimulating factor gene transfer to dendritic cells or epidermal cells 

augments their antigen-presenting function including induction of anti-tumor immunity. 

The Journal of investigative dermatology 1999 Dec;113(6):999-1005. 



84 

 

 

[35] Nguyen-Hoai T, Kobelt D, Hohn O, Vu MD, Schlag PM, Dorken B, et al. 

HER2/neu DNA vaccination by intradermal gene delivery in a mouse tumor model: Gene 

gun is superior to jet injector in inducing CTL responses and protective immunity. 

Oncoimmunology 2012 Dec 1;1(9):1537-45. 

[36] Cavallo F, Offringa R, van der Burg SH, Forni G, Melief CJ. Vaccination for 

treatment and prevention of cancer in animal models. Advances in immunology 

2006;90:175-213. 

[37] Cuello M, Ettenberg SA, Clark AS, Keane MM, Posner RH, Nau MM, et al. 

Down-regulation of the erbB-2 receptor by trastuzumab (herceptin) enhances tumor 

necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in breast and 

ovarian cancer cell lines that overexpress erbB-2. Cancer research 2001 Jun 

15;61(12):4892-900. 

[38] Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, et al. 

Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 2006 

Feb 9;439(7077):682-7. 

[39] Palmer BE, Neff CP, Lecureux J, Ehler A, Dsouza M, Remling-Mulder L, et al. In 

vivo blockade of the PD-1 receptor suppresses HIV-1 viral loads and improves CD4+ T 

cell levels in humanized mice. J Immunol 2013 Jan 1;190(1):211-9. 

[40] Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, et al. Tumor-

associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. 

Nature medicine 2002 Aug;8(8):793-800. 

 

 



85 

 

 

 

FIGURE LEGENDS 

 

 

Figure 1. Th2 responses are induced following D2F2/E2 tumor challenge.  Serum was 

collected from tumor-positive mice and analyzed for A) total IgG or B) IgG subclass-

specific antibody production against D2F2/E2 using a cell-ELISA. C) Supernatant from 

2x10
5
 D2F2/E2 cells cultured for 48 h was collected and subjected to ELISA for 

quantification of TGF-β and G-CSF secretion.  

 

Figure 2. CD47 expression and loss of HER-2 expression in vivo may limit efficacy 

of humoral immunity.  D2F2/E2 cells maintained in culture (in vitro cultured cells) and 

tumors harvested from D2F2/E2 mice (tumor-derived) were assessed for the expression 

of mCD47 and hHER-2 by flow cytometry analysis. 

 

Figure 3. GPI-ISM expression completely abolishes the tumorigenicity of D2F2/E2 

cells and induce partial protective immune responses following secondary tumor 

challenge.   A) Surface expression of B7-1, GPI-IL-2, GPI-IL-12, GPI-GM-CSF or 

hHER-2 on D2F2/E2 cell transfectants.  B) Mice were directly challenged with 2x10
5 

live 

D2F2/E2 WT cells or transfectants expressing B7-1, GPI-IL-2, GPI-IL-12 or GPI-GM-

CSF. C) Tumor-free mice were subjected to a secondary challenge with 2x10
5 

live 

D2F2/E2 WT cells on day 37. Tumor growth and incidence was monitored. 

 

Figure 4. Prophylactic vaccination with irradiated D2F2/E2-B7-1 cells co-injected 

with D2F2/E2-GPI-IL-12 cells leads to complete protection against subsequent 
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D2F2/E2 tumor challenge. Two weeks after vaccination (s.c.) with irradiated (Irr) 

cellular vaccines expressing GPI-ISMs (2x10
5
) mice were challenged (s.c.) with 2x10

5 

live D2F2/E2 wild-type cells on the opposite hind flank.  A) Average tumor growth and 

B) tumor incidence was assessed. C) Serum was collected from vaccinated mice 1 day 

prior to challenge to assess for total IgG antibodies against D2F2/E2 cells by a cell 

ELISA.  Significance relative to naive (**) p<0.01 

 

Figure 5. HER-2 specific cytotoxic activity is induced following co-injection of B7-1 

and GPI-IL-12 expressing cellular vaccines.  Splenocytes isolated two-weeks post 

vaccination with irradiated D2F2/E2 WT (Irr-WT) or D2F2/E2 B7-1 + D2F2/E2 GPI-IL-

12, Irr-(B7-1 + GPI-IL-12) were re-stimulated in vitro for 5 days with mitomycin-treated 

(50µg/mL) D2F2/2 as stimulator cells at a ratio of 5:1.  Stimulated splenocytes were 

cultured with D2F2/E2, D2F2 or 4TO7WT cells for 4 h at indicated effector: target (E:T) 

ratios.  Percentage of specific lysis was quantified by LDH release using the CytoTox 96 

Non-Radioactive Cytotoxicity Assay (Promega).  Mean ±SEM is plotted. 

 

Figure 6. GPI-ISM expression by irradiated cellular vaccines alone or in 

combination with PD-L1 blockade reduced average tumor burden of day 7 

established D2F2/E2 tumors.  A) Mice were challenged (s.c.) with 2x10
5 
live D2F2/E2 

wild-type cells.  One week later, mice received one dose of 2x10
5 

irradiated cellular 

vaccines on the opposite flank (s.c.).  Tumor growth was monitored. B) Expression of 

PD-L1 on D2F2/E2 cells maintained in culture (in vitro cultured cells) and tumors 

harvested from D2F2/E2 mice (tumor-derived) were assessed by flow cytometry analysis. 
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Tumor infiltrating lymphocytes (TILs) were isolated from D2F2/E2 tumors and analyzed 

for the expression of PD-1 by CD4
+
 and CD8

+
 T cells by flow cytometry.  C) Mice were 

vaccinated (s.c.) with a single dose of Irr-(B7-1+GPI-IL-12) on day 7 post tumor 

challenge.  Additional mice were treated (i.p.) with α-PD-L1 or rat IgG (100µg) on days 

7, 10 and 13 post tumor challenge either alone or in combination with the cellular 

vaccine.  Mean ±SEM is plotted. Significance relative to PBS-treated (*) p<0.05, (**) 

p<0.01 
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FIGURE 4 
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FIGURE 6 
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CHAPTER IV 

 

 

 

Ukrain, a plant-derived semi-synthetic compound, exerts anti-tumor effects 

against murine and human breast cancer and induce protective anti-tumor immunity in 

mice 

 

 

  

The data (Figures 1-6), as presented in this Chapter, has been published  

in Experimental Oncology, 2012; 34 (4): 340-347.  PMID: 23302993 

 

Figure 7 is unpublished data. 

 

 

 

 

 

 

 

 

 

 

All figures in Chapter IV are based on data generated by the Ph.D. candidate. 
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ABSTRACT 

 

 

Despite the recent advances in anti-cancer therapies, breast cancer accounts for 

the highest percentage of estimated new cases among female cancer patients.  The anti-

cancer drug Ukrain, a plant-derived semi-synthetic compound, has been shown to be 

effective in a variety of tumor models including colon, brain, ovarian, melanoma and 

lymphoma.  However, the direct cytotoxic effects of Ukrain have yet to be investigated in 

breast cancer models.   Herein, we investigated the in vitro and in vivo cytotoxicity of 

Ukrain using murine (4TO7 and TUBO) and human (SKBR-3) breast cancer cell lines.  

Cells were treated with varying concentrations of Ukrain for up to 72 h and analyzed for 

viability by trypan blue exclusion, apoptosis by intracellular caspase 3 and Annexin V 

staining, and proliferative potential by a clonogenic assay.  Female BALB/c mice were 

challenged subcutaneously (s.c.) with 4TO7-RG cells and administered 5mg/kg or 

12.5mg/kg body weight Ukrain intravenously (i.v.) on the same day and 3 days later.  

Protective immune responses were determined following re-challenge of tumor-free mice 

35 days post primary challenge.  Ukrain exposure induced apoptosis in a dose and time-

dependent manner with 50 µg/mL Ukrain leading to >50% cell death after 48 h exposure 

for all three breast cancer cell lines.  Ukrain administration (12.5mg/kg) led to significant 

inhibition of 4TO7 tumor growth in vivo and sustained protective anti-tumor immunity 

following secondary challenge.   Our findings demonstrate the in vitro and in vivo 

cytotoxic effects of Ukrain on breast cancer cells and may provide insight into designing 

Ukrain-based therapies for breast cancer patients.   
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INTRODUCTION 

 

Cancer is among the leading causes of mortality in the United States, second only 

to heart diseases [1].  While the mortality rates associated with many other diseases have 

seen a significant decline in the past 50-60 years, a similar reduction has yet to be seen in 

the cancer field [2].  These statistics speak to the overwhelming necessity to develop 

more effective treatment options for cancer patients.  Closer examination of these 

statistics contribute to the high mortality reveals that breast cancer is the second leading 

cause of cancer-related deaths among women and accounts for the highest percentage of 

estimated new cancers among female cancer patients [3].  While several treatment 

options are currently available to cancer patients such as surgery, chemotherapy and 

radiation therapy either alone or in an adjuvant setting, each approach is associated with a 

wide range of clinical challenges.  The most significant drawback to chemotherapeutic 

drugs, the most widely used anti-cancer treatment option, is their toxicity towards non-

malignant cells [4].   

The anticancer drug Ukrain (NSC 631570), a semisynthetic compound derived 

from the extract of the plant Chelidonium majus L., has been shown to exert selective 

cytotoxic effects towards a variety of malignant cells including colon, brain, ovarian, 

melanoma and lymphoma without harmful side effects on healthy human cells[5, 6].  The 

cytotoxic selectivity of Ukrain is thought to be based on the differential membrane 

potentials of malignant cells and normal cells.  It has been reported that the positive 

charge of the celandine alkaloids comprising the Ukrain allows malignant cells to absorb 

more Ukrain than healthy cells [7].    



97 

 

 

To date several clinical trials have assessed the efficacy of Ukrain in patients with 

an assortment of malignancies such as colorectal, pancreatic, bladder and breast cancers 

[8].  In each of these trials, patients treated with Ukrain had a more favorable clinical 

response compared to control groups (placebo or other therapies) which included either 

longer survival [9], extended periods of non-progression[10] and/or symptomatic 

improvements [11].  Previously, two groups [12, 13] have assessed the potential effects 

of Ukrain in breast cancer models citing that Ukrain fails to enhance the radiosensitivity 

of MDA-MB-231 human breast cancer cells and Ukrain treatment can enhance the 

cytolytic activity of peritoneal exudate macrophages towards DA-3 mammary tumor 

cells. However, to the best of our knowledge, a thorough investigation of the direct 

cytotoxic effects of Ukrain on a variety of breast cancer cells has yet to be reported.   

Herein, we demonstrate the in vitro effectiveness of Ukrain to selectively kill both 

mouse and human breast cancer cells.  Additionally in vivo experiments indicate that 

Ukrain can induce tumor inhibition in a breast cancer model and for the first time that 

Ukrain can induce protective anti-tumor immunity.  Taken together, our findings provide 

evidence of the effectiveness of Ukrain in breast cancer models.      
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MATERIALS AND METHODS 

 

Cell Lines   

The 4TO7 cell line, a non-metastatic clone derived from a spontaneous 

adenocarcinoma in BALB/cfC3H mice (410.4), was a kind gift from Fred Miller (Wayne 

State University) [14].  While cells can be recovered from the lungs of mammary pad 

inoculated mice, 4TO7 fails to colonize the lungs and form metastatic nodules [15].  

TUBO cells, derived from a spontaneous carcinoma in BALB-neuT mice [16], are also 

non-metastatic and were provided by John C. Morris (National Institutes of Health).   The 

4TO7, TUBO and NIH 3T3 (mouse embryonic fibroblasts) cell lines were cultured in 

DMEM F12 media, supplemented with 10% cosmic calf serum (Hyclone, Logan, Utah) 

and 1% penicillin streptomycin (Mediatech, Manassas, VA).  The human breast cancer 

cell line, SKBR-3, was cultured in RPMI 1640 media supplemented with 10% cosmic 

calf serum and 1% penicillin streptomycin and was obtained from American Type 

Culture Collection (ATCC, Manassas, VA).  The TUBO and SKBR-3 cell lines 

constitutively express the HER-2/neu oncogene, which is overexpressed in 30% of 

human breast cancer patients.  All cells were maintained at 37
o
C in a humidified 5% C02 

incubator.   

 

Mouse Model  

Female BALB/c mice (8-12 week old) were purchased from Jackson Laboratories 

(Bar Harbor, Maine) and used for all in vivo studies.  Mice were housed and maintained 
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according to institutional guidelines and protocols approved by the Institutional Animal 

Care and Use Committee (IACUC) for Emory University in Atlanta, GA.  

 

Reagents 

Ukrain was kindly provided by Dr. Wassil J. Nowicky and Stephen Karoly from 

Nowicky Pharma (Vienna, Austria). The stock solution was supplied at a concentration of 

1mg/mL.  Apoptosis was assessed using the Annexin V-FITC Apoptosis Detection Kit 

(Sigma, St. Louis, MO), BD Cytofix/Cytoperm Fixation and Permeabilization solution 

and FITC rabbit anti-active caspase-3 antibody (BD Pharmingen, La Jolla, CA).  

Antibodies used to phenotype isolated splenocytes by flow cytometry included anti-CD4-

FITC, anti-CD8-FITC, anti-B220-PE, anti-CD11b-FITC, anti-Gr-1-PE and CD16/32 Fc-

block (eBioscience, San Diego, CA).   

 

In vitro drug treatment assay   

Murine and human breast cancer cells were seeded at a density of 5x10
4
 cells per 

well in 24-well plates (in duplicate) in appropriate culture media.  After being allowed to 

adhere, tumor cells were treated with 0, 25, 75, 100 µg/mL Ukrain for 24, 48 and 72 h. At 

the specified time point, cells were analyzed for viability, apoptosis, and clonogenic 

potential.  As specificity controls, concanavalin A (ConA)-stimulated mononuclear cells, 

isolated from the spleens of naive BALB/c mice and recovered by Ficoll-Hypaque 

density centrifugation, and NIH 3T3 cells were treated with Ukrain at the aforementioned 

concentrations for 24, 48, and 72 h and cellular viability was subsequently assessed by 

the trypan-blue exclusion method.   
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Detection of apoptosis using Annexin V, PI staining   

Ukrain-treated cells were washed once with PBS, re-suspended in 1X Binding 

Buffer and Annexin V-FITC (5µL) and Propidium Iodide-PE (10µL) (Sigma, St. Louis, 

MO) was added to each cell suspension. Cells were incubated for 10 minutes at room 

temperature in the dark.  Staurosporine, 2.5µM, (Sigma) was used as a positive control 

for apoptosis induction.  Stained cells were analyzed immediately using a FACSCaliber 

(Beckman Coulter, Fullterton, CA) and FlowJo software. 

 

Quantification of active caspase-3 

 Following Ukrain treatment, cells were washed, fixed and permeabilized for 20 

min at 4
o
C  using BD cytofix/cytoperm solution (BD Pharmingen).  Permeabilized cells 

were washed and stained for intracellular caspase-3 using the FITC rabbit anti-active 

caspase-3 antibody (clone C92-605) for 30 min at 4
o
C in the dark (BD Pharmingen).  

Cells were then analyzed using flow cytometry as described previously. 

 

Clonogenic Assay 

The long-term effects of Ukrain treatment on murine and human breast cancer 

cells were assessed using a clonogenic assay.  Following 24, 48 and 72 h treatment with 

Ukrain, cells were plated in 60 mm tissue culture plates at 100 cells/plate. Cells were 

allowed to form colonies for two weeks. The colonies were then gently washed with PBS, 

fixed and stained with crystal violet (0.5% w/v in 90% ethanol) and counted by light 
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microscopy.  The surviving fraction of colonies was calculated as previously described 

[17].  

 

Tumor growth inhibition studies 

4TO7 cells were passaged 4 times in vivo to obtain reproducible tumor growth 

with palpable tumor development within 6 days (4TO7RG).   To assess the in vivo 

cytotoxicity of Ukrain in a mouse model, female BALB/c mice were challenged 

subcutaneously (s.c.) with 5x10
4
 4TO7RG cells on the shaved right hind flank. Mice 

were then administered 5mg/kg or 12.5mg/kg body weight Ukrain via tail vein injection 

(i.v.) on the same day.  The mice were then administered an additional dose of Ukrain 3 

days later.  Tumors were measured 2-3 times a week using a Vernier caliper.  Mice were 

sacrificed once the tumors became ulcerated or exceeded 1 cm
2 

in diameter.  At the 

conclusion of the experiment (day 35), tumor-free mice were re-challenged with 5x10
4 

4TO7RG cells and monitored for tumor growth for an additional 35 days to determine 

whether Ukrain is capable of inducing protective anti-tumor immunity.   

Therapeutic administration of 12.5mg/kg Ukrain was administered i.v. on days 1 

and 3 post tumor challenge.  Mice were then vaccinated subcutaneously (s.c.) with 2x10
5 

irradiated (80Gy) 4TO7 cellular vaccines expressing the immune stimulatory molecules 

B7-1 and GPI-IL-12 on day 7 post challenge as previously described [18].     

 

Cellular phenotyping of splenocytes  

Spleens were harvested and weighed from Ukrain treated mice on day 35 

following re-challenge with 4TO7RG cells.  Single cell suspensions were prepared and 
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red blood cells were removed by hypotonic lysis.  Splenocytes were then washed in 

FACS buffer (PBS/1%CCS/1%EDTA), incubated in Fc block (CD16/32, clone 2.4G2) 

and stained for 25 minutes at 4
o
C with the appropriate antibodies to detect T cells (CD4 

and CD8), B cells, and myeloid derived suppressor cells (MDSCs).  Antibodies used for 

analysis were anti-CD4-FITC, anti-CD8-FITC, anti-B220-PE, anti-CD11b-FITC, anti-

Gr-1-PE.  Sample readings were collected using a FACSCaliber and analyzed with 

FlowJo software. 

Statistical analysis 

All in vitro experiments were performed in duplicate or triplicate and were 

repeated at least twice.  Differences between caspase-3 activation following Ukrain 

treatment as well as tumor growth curves were assessed using ANOVA analysis. For 

survival curves, P values were determined using the Log-rank (Mantel–Cox) test. P < 

0.05 was considered statistically significant.  All graphs and statistical calculations were 

done using GraphPad Prism software (GraphPad Software Inc., San Diego).  
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RESULTS 

 

Ukrain exhibits cytotoxic effects specifically on breast cancer cells not non-malignant 

cells     

Human and murine breast cancer cells were treated with 25, 50, 75 and 100 

µg/mL Ukrain for 24, 48, and 72 h.  At each time-point, viability was determined using 

the trypan-blue exclusion method.  We began to observe morphological changes of all 

three breast cancer cell lines after 48 hours of Ukrain exposure. The Ukrain-treated cells 

began to shrink in size, undergo membrane blebbing, loose cell-to-cell contact and 

adherence to the tissue culture plate (Figure 1A).    Additionally, we observed a dose and 

time-dependent decrease in viability with 50 µg/mL Ukrain leading to 50% cell death 

after 48 h exposure for all three breast cancer cell lines tested (Figure 1B).  Following 72 

h Ukrain exposure at 100 µg/mL maximal cell death was observed with the viability of 

4TO7, TUBO and SKBR-3 cells being 12.9%, 17.53% and 30.8% respectively.  As 

specificity controls, mouse fibroblasts (NIH 3T3 cells) and ConA-stimulated 

mononuclear cells were treated with similar doses of Ukrain.  We observed minimal 

cytotoxic effect of Ukrain on mouse fibroblast cells (Figure 1C) and ConA-stimulated 

lymphocytes (data not shown) even at higher exposure doses with the viability remaining 

above 90%.  These findings indicate that the cytotoxic effects of Ukrain are specific to 

the breast cancer cells while not affecting non-malignant cells.  

 

Ukrain treated tumor cells fail to regain proliferative capacity 
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To determine whether Ukrain treated cells have a reduced ability to proliferate, a 

clonogenic assay was conducted.  Following Ukrain treatment for 24, 48 or 72h, cells 

were washed and replated in fresh culture media lacking Ukrain.  After two weeks of 

culture, colonies were washed, stained with crystal violet and counted by light 

microscopy.  The surviving fraction is defined as the number of colonies derived from 

pre-treated tumor cells following two week removal of Ukrain expressed in terms of 

plating efficiency as previously described [17].   The pre-treated cells showed a reduced 

ability to form colonies relative to untreated cells (Figure 2).  Following 24h pre-

treatment with 50 µg/mL Ukrain, 4TO7, TUBO and SKBR-3 tumor cells exhibited a 

comparable inability to form colonies with surviving fractions of 0.0024, 0.0039 and 

0.0019 respectively.  Minimal differences were observed in the surviving fractions of 

4TO7 and TUBO cells exposed to 50 µg/mL Ukrain for 24, 48 or 72 h.  However, 72h 

exposure to 50 µg/mL Ukrain led to a 10-fold reduction in the surviving fraction of 

SKBR-3 cells (0.000135) relative to 24h and 48h from exposure from 0.0019 and 

0.001315, respectively. Both murine and human breast cancer cells that were pre-treated 

with Ukrain for 72h with 100 µg/mL Ukrain, were unable to form any visible colonies 

(denoted by †).  This data illustrates the long-term effects of Ukrain treatment on the 

clonogenic potential of breast cancer cells and indicates that upon removal of Ukrain, the 

treated tumor cells are unable to recover from the drug’s cytotoxic effects.     

 

Ukrain exerts anti-tumor activity through apoptosis induction   

Ukrain has previously been shown to induce apoptosis of Jurkat T cell lymphoma 

through mitochondrial membrane depolarization and caspase activation [19] and HeLa 
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cervical cancer cells through the activation of the intrinsic pathway (caspase-9 cleavage) 

[20] . Therefore to investigate whether the observed cytotoxic effects of Ukrain on breast 

cancer cells are due to the induction of apoptosis we carried out an Annexin-V binding 

assay as well as intracellular staining for active caspase-3.  As shown in Figure3A, there 

was a 10-15 fold increase in activated caspase-3 among 4TO7 and TUBO cells and a 2-3 

fold increase among SKBR-3 within 48 h of drug exposure.   Similarly, 80-90% of the 

Ukrain-treated tumor cells were apoptotic as indicated by AnnexinV/PI dual staining 

after 48h (Figure 4A).   The kinetics of apoptosis induction indicates a dose and time 

dependent increase in activated caspase 3 and Annexin V/PI staining (Figures 3B and 

4B).  Our findings indicate apoptosis as the cytotoxic mechanism of action which is 

consistent with previous reports in other tumor model systems [19-22].   

 

Systemic administration of Ukrain significantly reduces breast cancer tumor growth in 

mice   

To assess the in vivo efficacy of Ukrain in causing tumor inhibition in a murine 

breast cancer model, mice were challenged with 5x10
4
 4TO7RG cells (s.c.) and 

administered varying doses of Ukrain (5mg/kg or 12.5mg/kg) on the same day (i.v.).  

Three days later, mice received an additional dose of Ukrain (i.v.).  It has previously been 

reported that following subcutaneous or intraperitoneal injection of Ukrain, no inhibitory 

effect on the growth of established DA-3 mammary adenocarcinoma was observed 

whereas significant inhibition was observed following intravenous Ukrain administration 

[12].  We observed that treatment with two doses of 12.5mg/kg Ukrain led to a 

significant reduction in overall tumor burden by day 31 relative to untreated mice with an 
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average tumor burden of 22.7 mm
2
 compared to 78.9 mm

2
 for untreated mice (Figure5A).  

While all mice had palpable tumors by day 7 post challenge, we began to observe the 

effects of the Ukrain treatment regimes on day 14 post challenge (11 days after the last 

Ukrain administration).  The mice that received 5mg/kg Ukrain, on average, also had 

smaller tumors that developed more slowly than the untreated mice with a mean tumor 

burden of 47.7 mm
2
.  By the end of the experiment, tumors in several mice treated with 

5mg/kg and 12.5mg/kg had completely regressed with tumor incidences being 60% and 

40%, respectively (Figure 5B).  Importantly, we observed no visible signs of morbidity 

such as weight loss among the Ukrain treated groups (Figure 5C).  Interestingly, when the 

Ukrain dose was increased to 20mg/kg, the treated mice failed to be protected and 

developed progressive tumor growth similar to the untreated mice (data not shown).  

While 25mg/kg Ukrain has been reported to effectively inhibit metastases of murine 

Lewis lung carcinoma [23], our observation suggests that similarly high doses of Ukrain 

may not be effective in vivo in breast cancer models. Taken together, these findings 

indicate that moderate doses of Ukrain can inhibit tumor progression and induce tumor 

regression in a highly tumorigenic mouse breast cancer model. 

 

Ukrain treatment induces protective immunity 

  Next, to determine whether Ukrain administration can provide protection against 

a secondary tumor challenge, thirty-five days post initial challenge, tumor-free mice from 

each Ukrain-treated group were re-challenged with 5x10
4 

4TO7RG cells.  We observed 

that all mice remained tumor free up to day 35 post re-challenge indicating that protective 

immunity was induced following Ukrain treatment (Figure 6A).   
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Interestingly, we observed that untreated, tumor-bearing mice developed 

significant splenomegaly (1.16g) relative to the Ukrain treated mice (0.1g) whose spleens 

were comparable in size and weight to naïve, unchallenged mice (Figure6B, photograph).  

To gain insight into potential immune modulatory effects of Ukrain that could be 

responsible for the observed protective immunity, we conducted cellular phenotyping of 

cells that were found within the spleens of Ukrain treated mice.  Previous reports have 

shown that splenomegaly in the 4T1 mouse breast cancer model, derived from the same 

parental clone as 4TO7, to be associated with an increased infiltration of myeloid derived 

suppressor cells (MDSCs) [24].  Our observations indicate that in the 4TO7 tumor model 

system, wild-type challenged mice develop a similar splenomegaly which correlates with 

a 12-15 fold increase in the percentage of CD11b
+
Gr-1

+
 MDSCs relative to the Ukrain 

treated, tumor-free mice (Figure 6C).  Interestingly, when we compared the percentage of 

MDSCs in naïve mice to the Ukrain-treated, tumor-free mice, we noticed a 2-3 fold 

decrease in the splenic population of these cells.  Taken together, these studies 

demonstrate that Ukrain treatment results in persistent protective immunity in a highly 

immunosuppressive and tumorigenic breast cancer model. 

 

Cellular vaccination enhances tumor inhibition induced following Ukrain treatment  

We have previously reported that vaccination with irradiated 4TO7 cellular 

vaccines co-expressing the costimulatory molecule B7-1 and the Th1-promoting cytokine 

IL-12 is effective in reducing overall tumor burden and tumor incidence following 

4TO7RG tumor challenge [18].  Because we observed that Ukrain was effective as a 

monotherapy against 4TO7RG tumor challenge, we then evaluated whether combining 
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Ukrain with an irradiated 4TO7 cellular vaccine co-expressing B7-1/GPI-IL-12 could 

lead to more complete protection in a therapeutic setting.  Following tumor challenge, 

mice were administered two doses of Ukrain (12.5mg/kg) on days 1 and 3 either alone or 

in combination with the irradiated cellular vaccine on day 7.  We observed significant 

tumor inhibition in mice receiving combined Ukrain treatment and vaccination relative to 

PBS-treated mice with average tumor sizes of 6.4mm
2
 and 43.5 mm

2
, respectively 

(Figure 7A).   However, there was no significant difference in average tumor burden in 

mice vaccinated with the irradiated 4TO7 cellular vaccine alone and the combined 

treatment group.  Due to severe tumor ulceration, PBS-treated mice had to be sacrificed 

on day 21 post tumor challenge.  Tumor incidence was decreased to 40% in the combined 

treatment group, while 80% of mice treated with Ukrain alone developed tumors.  Taken 

together, this data indicates that, within a therapeutic setting, cellular vaccination can 

serve to augment the anti-tumor responses elicited following Ukrain treatment leading to 

greater protection as evidenced by smaller tumors and a reduction in overall incidence.    
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DISCUSSION 

 

The anticancer drug Ukrain has been assessed for potential clinical efficacy in 

Europe in patients suffering from colorectal, pancreatic, bladder and breast cancers as 

reviewed in [8].  In vitro studies have demonstrated the anti-proliferative and cytotoxic 

effects of Ukrain in a wider variety of tumor models including colon, brain, ovarian, 

Ewing, melanoma, lymphoma and glioblastoma [5, 25-28].  The property that 

distinguishes Ukrain from typical therapies, such as radiation therapy and chemotherapy, 

lies in its unique ability to specifically target and kill malignant cells while leaving 

healthy cells unharmed [5].  However, the direct anti-tumor effects of Ukrain in breast 

cancer models remain obscure.  Therefore, in this report we investigated the in vitro and 

in vivo efficacy of Ukrain in murine and human breast cancer models.  Consistent with 

previous reports in other tumor models, we observed that Ukrain induces apoptosis of 

breast cancer cells through caspase 3 activation.  Additionally, after a short exposure 

time, 24h, Ukrain treated cells have reduced clonogenic potential in the absence of the 

drug and are unable to form colonies following longer exposure (72h) at 100µg/mL 

Ukrain.  Most importantly, in vitro cytotoxicity is translatable in vivo in the form of 

significant tumor inhibition and regression.  Interestingly, we observed that Ukrain is also 

capable of inducing protective anti-tumor immune responses which is consistent with 

clinical observations of patients achieving sustained/long-term remissions for years 

following Ukrain treatment [29-31].   

At present, the mechanism(s) responsible for these protective anti-tumor 

responses induced by Ukrain remain unclear.  However, it is possible that Ukrain could 
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potentially be working through two related mechanisms: 1) direct cytotoxic effects on 

tumor cells leading to a significant reduction in overall tumor burden and 2) as a result of 

the direct killing of tumor cells, antigen-presenting cells such as dendritic cells (DCs) 

could endocytose tumor-derived apoptotic bodies and in turn elicit a robust tumor-

specific CTL response as reported in other tumor models [32].  The induction of 

“immunogenic cell death” has been demonstrated following treatment with 

chemotherapeutic agents such as doxorubicin and cyclophosphamide such that due to 

their enhanced antigenicity, apoptotic tumor cells are more efficiently phagocytosed by 

DCs [33, 34].  The characteristics of immunogenic apoptosis of cancer cells include: 

phosphatidylserine (PS) exposure, caspase activation, and mitochondrial depolarization 

[35].   Additionally, this type of cell death is associated with the surface expression of 

certain molecules including calreticulin and HSP90 as well as the ability to elicit a 

protective immune response against tumor cells [36, 37].    As we observed in our 

studies, Ukrain treatment led to the activation of effector caspase 3 and PS surface 

expression as detected by positive Annexin-V staining in all three breast cancer models 

tested in vitro.  Further, Ukrain has been shown to induce mitochondrial depolarization in 

Jurkat cells [19].  Our study also demonstrated the in vivo efficacy of 5mg/kg and 

12.5mg/kg Ukrain administration in the form of tumor inhibition and protective 

immunity. However, at a higher dose, 25mg/kg, these responses were not observed which 

suggest the induction of a less immunogenic, potentially tolerogenic, form of cell death 

as reported following treatment with other anticancer drugs such as alkylating agents and 

cisplatin [37, 38].  Taken together our findings, along with others, are in support of the 
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potential induction of immunogenic tumor cell death following ‘low dose’ Ukrain 

treatment.      

Alternatively, Ukrain could also act directly on immune cells and thus mediate the 

induction of anti-tumor immune responses.  It has been reported that Ukrain can enhance 

the cytolytic activity of macrophages and lymphocytes in vitro [12, 39]. We observed that 

following secondary challenge, Ukrain treated mice remained tumor free, failed to 

develop splenomegaly and correspondingly had a significantly lower prevalence of 

splenic MDSCs relative to untreated mice.  Additionally, the Ukrain treated mice had 

increased percentages of CD4
+
, CD8

+
 and B220

+
 cells in the spleen relative to the 

untreated, tumor-bearing mice (data not shown).  Interestingly, we also observed a 2-3 

fold decrease in the percentage of MDSCs in the spleens of Ukrain treated mice when 

compared to naïve mice.  These findings suggest that Ukrain could potentially inhibit the 

expansion of splenic CD11b
+
Gr-1

+
 MDSCs thus reducing the overall level of immune 

suppression present within the treated mice.  This reduction in immune suppression could 

ultimately lead to protection against subsequent challenge and the splenomegaly observed 

in untreated, tumor-bearing mice.  While chemotherapeutic drugs, namely gemcitabine 

and 5-fluorouracil, have been shown to effectively deplete MDSCs [40, 41], additional 

studies would be needed to determine whether Ukrain has any direct effects on this 

immune suppressive cell population in vivo particularly in tumor-bearing mice.   

Finally, we assessed whether the use of 4TO7 cellular vaccines co-expressing B7-

1 and GPI-IL-12 could augment anti-tumor immune responses induced by Ukrain 

administration.  The combination of immunotherapeutic approaches and cytotoxic agents 

(i.e. chemotherapy) have been previously investigated [42].  Surprisingly, our studies 
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indicate that Ukrain treatment minimally enhanced the efficacy of cellular vaccination.  

In contrast, we observed the most profound enhancement in tumor inhibition between 

Ukrain treatment alone and the combinatorial approach suggesting that the cellular 

vaccines served as an adjuvant to anti-tumor responses mediated by Ukrain.  Further, 

while Ukrain was able to induce significant tumor inhibition when administered on the 

same day as tumor challenge, delaying treatment one day failed to have any inhibitory 

effects on 4TO7RG tumor development.   The reason for these observations is currently 

unknown.  However, it is likely that within one day of transplantation, tumor cells have 

begun to form a niche, several days prior to palpable tumors being formed.  Disruption of 

this niche may thus require a higher dose of Ukrain than was used in previous studies to 

enhance its therapeutic efficacy.      

Taken together, our findings provide insight into the direct cytotoxic effects of 

Ukrain on breast cancer cells and the in vivo efficacy of Ukrain administration on the 

reduction of overall tumor burden and the induction of protective anti-tumor immunity.  

Based on these observations, it is likely that the immune modulatory effects following 

Ukrain administration in vivo are a result of enhanced phagocytosis of apoptotic tumor 

cells either alone or in combination with direct effects on the relative 

abundance/prevalence of effector and suppressive immune cell populations.   
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FIGURE LEGENDS 

 

Figure 1. Dose and time dependent cytotoxic effects of Ukrain on breast cancer cells. 

A) Morphological changes are observed for murine and human breast cancer cells 

following 48hr exposure to Ukrain by light microscopy (10X magnification).  B) 

Following 24h, 48hr 72hr Ukrain exposure, the viability of B) murine (4T07 and TUBO) 

and human (SKBR-3) breast cancer cells and C) mouse fibroblast cells were assessed for 

viability by trypan blue exclusion. Data shown is mean ± SD of three individual 

experiments. 

 

Figure 2. Survival Fractions following Ukrain treatment. Following 24h, 48h, and 

72h exposure, Ukrain treated cells were plated for two weeks to allow for colony 

formation.  Colonies were washed, fixed and stained with crystal violet and counted by 

light microscopy.  The surviving fraction was then calculated as the ratio of the plating 

efficiency of drug-treated cells to the plating efficiency of untreated cells.  (†) denotes a 

surviving fraction of zero. Data shown is mean ± SD of two individual experiments.   

 

Figure 3. Ukrain induces the activation of intracellular caspase-3 in a dose and time 

dependent manner. Following Ukrain treatment, cells were washed, fixed, 

permeabilized and stained for intracellular caspase 3 with FITC rabbit anti-active 

caspase-3 antibody A) Representative plots of intracellular caspase 3 activation following 

48h Ukrain exposure by flow cytometry. B) Dose response and kinetics of intracellular 

caspase 3 activation following 24h and 48h Ukrain treatment. Data shown is mean ± SD 
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of two individual experiments.  Statistical analyses of caspase 3 activation P values were 

calculated using ANOVA.  (*) p < 0.05, (**) p<0.01, (***) p< 0.001 relative to 

untreated. 

 

Figure 4. Cytotoxic effects of Ukrain are mediated by apoptosis. Ukrain treated cells 

were washed and stained with Annexin-V-FITC and PI-PE and analyzed by flow 

cytometry.  A) Representative plots of Annexin V/PI staining following 48h Ukrain 

exposure by flow cytometry. B) Mean ± SD of two individual experiments. B) Dose 

response and kinetics of Annexin V/PI staining following 48h and 72h Ukrain treatment. 

Mean ± SD of two individual experiments. 

 

Figure 5. Ukrain administration led to significant tumor inhibition.  Mice (n=10) 

were challenged with 5x10
4
 4T07RG cells.  Ukrain was administered (i.v.) on the same 

day and day 3 post challenge. A) Average tumor size of mice treated with Ukrain. B) 

Tumor incidence C) Average Body Weight. Statistical analyses of tumor growth P values 

were calculated using one-way ANOVA.  (*) p < 0.05 relative to untreated. Data shown 

is mean ± SEM. Representative of 2 independent experiments. 

 

Figure 6. Ukrain administration induced protective anti-tumor immunity.  On day 

35 post primary challenge, Ukrain treated, tumor-free mice (n=10) were re-challenged 

with 5x10
4
 4T07RG cells and monitored for an additional 35 days for tumor development 

(A).  On day 35 post re-challenge, spleens were harvested from Ukrain treated mice and 

analyzed for MDSCs (CD11b
+
, Gr-1

+
).  Protective immunity induced by Ukrain 



123 

 

 

correlates with a reduced spleen weight (B) and reduced prevalence of splenic MDSCs 

(C).   

 

Figure 7. Combinatorial strategy of Ukrain and a cellular vaccine led to greater 

tumor inhibition than Ukrain treatment alone in a therapeutic setting.  Mice 

received two doses of Ukrain (12.5mg/kg) on days 1 and 3 post tumor challenge and a 

single dose of irradiated 4TO7 cellular vaccines expressing B7-1/GPI-IL-12 (Irr-vaccine) 

on day 7.  Mice were monitored for A) tumor growth and B) tumor incidence.  Mean ± 

SEM is plotted. 
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  Despite our best efforts as cancer researchers, breast cancer continues to claim 

hundreds of thousands of lives each year [1].  With the gold standard of treatment being 

surgery with adjuvant chemotherapy and/or radiation therapy, new strategies for 

combatting this deadly disease are in desperate need.  As more knowledge has been 

gleaned about the hallmarks of cancer including sustained angiogenesis, apoptosis 

evasion and tissue invasion/metastasis, more targeted therapies have been developed.   

The development of numerous drugs, some of which has gained FDA approval, has led to 

clinically-relevant responses, extending the mean survival for many patients with 

advanced or metastatic disease.  However, many patients eventually develop resistance to 

these drugs rendering them no longer effective. 

 

Tumor heterogeneity: a major therapeutic hurdle 

Due to the heterogeneity of breast cancer, whether it is between patients 

(intertumoral) or within a given tumor mass (intratumoral), the task of developing 

effective treatments becomes even more daunting.  While breast cancer has been 

categorized based on a number of factors including hormone receptor status, stage of 

tumor development and tissue location, there exists a substantial degree of heterogeneity 

within each group which poses a significant hurdle to determining the appropriate 

treatment regime for a given classification of breast cancer [2, 3].  While the passive 

administration of monoclonal antibodies (mAbs) such as Trastuzumab and Pertuzumab 

has proven to be among the most successful immunotherapies to date for HER-2 positive 

breast cancer, therapeutic resistance is frequently observed in these patients as well.  In 

these cases, the source of resistance is thought to be compounded by either epitope 
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masking, signaling through alternate pathways, down-modulation of targeted proteins, 

overactive downstream tyrosine kinase activity, or the inability of the mAbs to trigger the 

appropriate immune mechanism to destroy HER-2 positive tumor cells [4, 5].  

Additionally, individual tumor samples may not be representative of the whole tumor due 

to the high degree of intratumoral heterogeneity that exists in most cancers [6]. This 

heterogeneity, which can be genetic or phenotypic, further contributes to disparate 

therapeutic responses among patients as well as within a patient during his/her course of 

treatment [7].      

 

Induction of anti-tumor immune responses in the many faces of immune suppression 

The concept of augmenting the host’s natural ability to eliminate tumors is the 

goal of immunotherapy.  This can be achieved through various methods such as the 

adoptive transfer of effector cells, namely dendritic cells (DCs) or T cells, that were ex-

vivo primed against specific tumor antigens [8, 9].  Additionally, the use of cellular 

vaccines provides the host with a vast repertoire of tumor antigens which potentially 

minimizes the likelihood of resistance or tumor escape.  Modification of otherwise poorly 

immunogenic tumor cells with immune stimulatory molecules (ISMs) such as 

costimulatory molecules and cytokines, aids in augmenting the induced anti-tumor 

immune response.  The host fails to respond appropriately to a developing tumor, in part, 

because tumors often lack the expression of costimulatory molecules such as B7-1 thus 

leading to the induction of anergy and/or apoptosis of T effector cells [10, 11].  

Additionally, due to the critical role played by T cells in anti-tumor immunity, this is 

particularly problematic.  Lastly, genetic modification of cellular vaccines with the 
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cytokines IL-2 and IL-12 can help promote the activation and cytotoxic capabilities of T 

cells and natural killer (NK) cells, both of which are key in many tumor models  [12, 13]. 

Tumors further evade the host’s immune response through the perpetuation of 

multiple layers of suppression systemically as well as locally within the tumor 

microenvironment. Intrinsic characteristics of the tumor itself including the expression of 

inhibitory molecules such as PD-L1 and CD47 as well as the lack of costimulatory 

molecule expression, as previously mentioned, well-equips tumors to develop in an 

otherwise immune-competent host.  The engagement of these molecules with their 

cognate receptors on T cells (PD-1) and phagocytes (SIRPα) directly inhibits the effector 

functions of these immune cells.  Further immune suppression is mediated via secretory 

factors such as TGF-β, VEGF and G-CSF that acts to promote the recruitment and 

maintenance of regulatory T cells (Tregs) and myeloid derived suppressor cells 

(MDSCs).  The studies presented in this dissertation provide strong evidence that cellular 

vaccines expressing GPI-anchored ISMs (GPI-ISMs) are capable of overcoming these 

layers of suppression, to some degree, in order to induce effective and long-lasting anti-

tumor immunity. 

   Genetic modification of otherwise soluble proteins such that they become 

membrane associated via a GPI-anchor poses several advantages.  The primary advantage 

is that rather than the proteins acting systemically in a potentially harmful manner (i.e. 

induction of systemic toxicity), the GPI-ISMs remain locally at the vaccination site.  Our 

data shows that while GPI-IL-2 and GPI-IL-12 are expressed on the surface of breast 

cancer cells, partial shedding of these molecules from the cell surface occurs.  This slow 

release of molecules at the site of vaccination allows for the local and sustained priming 
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of effector cells.  When B7-1 and GPI-IL-12 are co-expressed at the tumor site, we 

observed an enhancement in the infiltration of effector cells such as DCs and CD8
+
 T 

cells.  Moreover, when these molecules are co-expressed, the immune suppressive nature 

of the tumor microenvironment is significantly altered as evident by a reduction of 

MDSCs and Tregs.  Additionally, while we observed that the breast cancer models used 

in these studies secrete high levels of immune suppressive factors such as G-CSF and 

TGF-β, the expression of GPI-ISMs are able to overcome this layer of immune 

suppression as well.   

While we demonstrate the local effects of GPI-ISMs, we also observed significant 

inhibition of tumors growing at a site distant from the vaccination area.  These 

concomitant responses are often hindered by the presence of suppressor cells such as 

Tregs [14, 15].  This finding indicates that the anti-tumor effects of GPI-ISM expression 

extends beyond the local vaccination site and can act systemically either by entering the 

circulation or, more likely, by priming cells locally and promoting cell migration towards 

the developing tumor.       

One of the more striking observations from our studies is the induction of anti-

tumor immunity by our cellular vaccines against a more aggressive tumor variant (RG) 

that was selected by several rounds of in vivo passage.  While our vaccines were 

established from the parental tumor cell line (WT), the expression of GPI-ISMs still 

allowed for the significant reduction of tumor burden and tumor incidence of RG tumors 

similar to cellular vaccines derived from RG cells.  Our findings suggest that 

modification of vaccines prepared from a patient’s initial tumor with GPI-ISMs could 
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potentially remain as an effective therapy for patients over an extended period of time 

when tumors typically become resistant to primary treatment options.   

 

Sustained protective immunity induced by cellular vaccines expressing GPI-ISMs 

 Cancer recurrence is an ever-present concern for patients undergoing cancer 

treatment.  Due to the cellular heterogeneity that is present within tumors, it is almost 

impossible to predict which individuals will relapse or when the relapse will occur.  

While many treatments are able to de-bulk the tumor mass, cancer stem cells (CSCs), 

which are thought to possess the intrinsic ability to initiate tumor development, are likely 

to remain after treatment eventually leading to tumor relapse [16, 17].  Pre-clinical mouse 

models seek to recapitulate this relapse scenario by subjecting tumor-free or “cured” mice 

to subsequent tumor challenges.  Our data indicates that GPI-ISM expression by cellular 

vaccines, in both breast cancer models, is capable of inducing durable memory responses 

as evident by complete or partial protection for up to 60 days following secondary tumor 

challenges.   

 

Attacking breast cancer with multiple strategies 

Due to the immense degree of immune suppression present during tumor 

development, optimal anti-tumor immunity is more likely to be achieved through the use 

of multiple approaches.  Our studies sought to assess the potential synergy between our 

cellular vaccines with the cytotoxic agent Ukrain or with the blockade of the program 

death ligand-1 (PD-L1) inhibitory checkpoint utilized by tumors.  The plant-derived 

compound Ukrain had previously been shown to be highly cytotoxic towards lymphoma, 
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colon, brain, melanoma and brain cancer cells while non-malignant cells remain viable.  

The data presented in this dissertation extends the cytotoxic scope of Ukrain to breast 

cancer, both murine and human, at doses comparable or lower than standard 

chemotherapeutic drugs such as doxorubicin, paclitaxel and cyclophosphamide [18, 19].  

Additionally, Ukrain treatment was well tolerated as evident by maintenance of body 

weight and no visible signs of morbidity.  Further, our data provide insight for the first 

time into the immune modulatory effects of Ukrain administration on MDSC recruitment.   

Similar immune modulatory effects on suppressor cells have been demonstrated by 

chemotherapeutic drugs [20, 21] and the combination of chemotherapy prior to 

vaccination has been shown to enhance vaccine efficacy [22].  In our studies, Ukrain 

treatment followed by cellular vaccination led to greater tumor inhibition than Ukrain 

treatment alone, however only a minimal enhancement was seen relative to vaccination 

alone. It is likely that pre-administration of Ukrain at higher, more frequent doses could 

further enhance the therapeutic efficacy of cellular vaccines and provide further support 

for the use of Ukrain as a less harmful, potential alternative to chemotherapy.   

Additionally, we established, consistent with other tumor models, that D2F2/E2 

tumor cells express PD-L1.  We utilized that knowledge to incorporate blocking 

antibodies against PD-L1 into our vaccination strategy as an adjuvant to our cellular 

vaccines.   We observed an enhancement in the efficacy of our cellular vaccines when 

administered in conjunction with αPD-L1 mAbs.  It is likely that upon further 

optimization of the dosing schedule (both amount and duration) this enhancement can be 

maximized.  These studies strengthen the view that analysis of tumor characteristics in 
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conjunction with the host immune response to a given tumor can provide greater insight 

into therapies that are more likely to induce an effective response.  

 

Current studies provide a solid “spring-board” for future investigations 

The work presented herein has formed a strong foundational basis for a more 

potentially translational vaccine design, the use of protein transferred GPI-ISMs onto 

isolated tumor membrane vesicles (TMVs).  The GPI-anchor allows for proteins to 

spontaneously incorporate onto the plasma membrane of cells.  Protein transfer utilizes 

this unique characteristic of GPI-proteins. Due to the difficulty in establishing cell lines 

from primary tumor cells, the use of TMVs circumvents that requirement.  These studies 

demonstrate that the combination of the costimulatory molecule B7-1 and the cytokine 

IL-12 whether co-expressed by the same cell or co-administered on different cells 

significantly reduces the overall tumor burden in HER-2 negative and HER-2 positive 

breast cancer models.  We observe similar findings upon administration of TMVs co-

expressing B7-1 and GPI-IL-12 (unpublished data).  Our data also further supports data 

previously published from our laboratory indicating that TMVs expressing B7-1 or IL-12 

can be effective in EG7 lymphoma or P815 mastocytoma tumor models, respectively [23, 

24].   

 

Potential pitfalls of cellular vaccines 

With the main pitfall limiting the clinical use of whole cell vaccines being the 

difficulty in establishing cell lines from primary tumors, cellular vaccines expressing 

GPI-ISMs would potentially benefit roughly 10% of cancer patients by which cell lines 
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can be developed [25].  However, the success rate of establishing cell lines from primary 

colon and pancreatic cancers has been increased following xenotransplantation of 

primary tumors into immune-compromised mice prior to in vitro culture [26, 27].  While 

established cell lines may no longer be fully representative of the primary tumor from 

which it was derived, comparative analysis revealed that along with secondary 

aberrations, there was a preservation of genomic alterations in breast and pancreatic 

cancer lines that were originally found in the primary tumor tissue [28-30].  Additionally, 

the use of allogeneic cellular vaccines, which are composed of two or three established 

human cell lines, may circumvent the limitations of establishing autologous vaccines 

from each patient [31]. 

 

Concluding Thoughts 

In spite of it all, great promise remains in the area of breast cancer vaccine 

development particularly with the identification of key tumor-associated antigens namely 

HER-2, MUC-1, carcinoembryonic antigen (CEA) and alpha-lactalbumin [32].  The most 

relevant clinical application of cancer vaccines, including our proposed cellular vaccines 

expressing GPI-ISMs, would be an adjuvant setting to prevent tumor recurrence or in a 

minimum residual disease setting.  In our constant quest to cure cancer, a number of 

hurdles must be conquered including the immune suppressive microenvironment, the thin 

line between anti-tumor immunity and autoimmunity and the development of therapeutic 

resistance, which are further confounded by the variability in hosts’ ability to respond 

appropriately to an emerging tumor.  While cancers are constantly becoming “smarter”, 

we as cancer researchers are also becoming more aware and astute to the crafty strategies 
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exercised by tumors.  In doing so, we are devising novel approaches, in the form of 

monotherapies and combinatorial therapies, to more effectively combat this deadly 

disease.   
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