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Abstract

Domain Decomposition in Computational Fluid Dynamics for

Pipe-like Domains

By Wenda Zheng

Nowadays, as the result of progress of numerical methods for

solving complex problems, simulations of patient-specific cardio-

vascular districts are possible and used in medicine. Nevertheless,

when covering large portion of the circulation, simulations on reg-

ular computers can be not affordable. In this thesis, starting from

the evidence that the circulatory network is made of pipes and

junctions, we test the efficacy of “domain decomposition” tech-

niques on our constructed 2D models. Using FreeFem++ as the

simulation tool, we evaluates the Domain Decomposition tech-

niques on 2D problems and try to find the possibilities to extend

our work into 3D realistic cases.
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Chapter 1

Introduction

In the last 20 years, the contemporary progress of numerical methods for solving com-

plex problems, medical imaging devices and computational parallel architectures made it

possible the accurate simulation of difficult problems relevant for cardiovascular sciences.

Nowadays, simulations of patient-specific cardiovascular districts are possible and used

in medicine.

Nevertheless, some challenges need to be addressed for a penetration of mathematical

models in the practice of cardiovascular clinics. In particular, when covering large portion

of the circulation, simulations on regular computers can be not affordable. As in Figure

1.1, the circulatory systems are very complex. When viewing them as a single whole

domain, it requires a lot for a regular computer to run simulations on it.

In this work, starting from the evidence that the circulatory network is made of

pipes and junctions, we test the efficacy of “domain decomposition” techniques, where

nontrivial networks are regarded as the result of elementary components, cylindrical pipes

1



Introduction 2

(a) Example of Cardiovascular
System [1]

(b) Unique vascular anatomy of
the ADAN model comprising:

1598 named arteries, 544
perforator vessels, blood supply
to 28 specific organs, and to 116

vascular territories [2].

Figure 1.1: Large Circulation Examples

and the corresponding bifurcations. With domain decomposition techniques (see e.g.

[QuarteroniValli]) it is possible to split a complex domain into a sequence of simple

elementary domains, the solution being coupled by appropriate iterative procedures. As

the numerical solution of 3D problems is beyond the breath of a dissertation like the

present one, we will limit to 2D problems as a simplification of real problems, yet realistic

enough to identify possible numerical troubles.

Figure 1.2 refers to how a circulatory networks are simplified and viewed as pipes

and junctions.
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(a) Complex Vessels [3] (b) Pipe-like Domains

Figure 1.2: Converting Circulatory Networks to Pipes and Junctions

1.1 Motivation

In domain decomposition, one solves a problem on a complex domain by splitting it

on simpler domains and working iteratively to identify the solution on the original region.

In this way, the global cost of the simulation is broken up over the subdomains, along

the needed iterations. In this work we plan to use this method in 2D nontrivial domains

on the incompressible Navier-Stokes equations, one of the most important problems in

applied mathematics and computational fluid mechanics. We use this problem in 2D as

a preliminary work for more realistic cases in 3D.

1.2 Contribution

After testing our method on a simple diffusion-reaction problem to validate the ac-

curacy of the method, we present the methodology for the incompressible Navier-Stokes

equations, in different geometries with an increasing level of complexity. The results
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of simulations on our constructed 2D domains are reasonable and therefore it is possi-

ble to extend our problem into 3D realistic cases later. The reliability of our domain

decomposition procedure is discussed in details.

1.3 Outline

In Chapter 2, we will discuss our mathematical problems needed for simulation.

Then in Chapter 3, we will discuss domain decomposition techniques and simulation

procedures. After that we will introduce finite element method and FreeFem++. In

Chapter 4, we will present our numerical results from simulations. Chapter 5 includes a

conclusion and future directions.



Chapter 2

The Mathematical Problems

In this chapter, we first introduce some basic knowledge of Hilbert Spaces. Then

we will briefly discuss two PDE problems: one is a 2D Laplace equation, and the other

is the famous Navier-Stoke Equation. For the former one, we use it as a test for the

accuracy of domain decomposition techniques, and for the latter one, we use it for blood

simulations on our constructed models.

2.1 Intro to Hilbert Spaces

A Hilbert space is defined as a complete space with scalar product. In numerical

PDEs, we have also defined space of functions L2(0, 1) and H1(0, 1).

Given an arbitrary function f , define:

f ∈ L2(0, 1) if |
0∫

1

f 2dx| <∞, which means the function f is bounded above.

5



The Mathematical Problems 6

f ∈ H1(0, 1) if f satisfies |
0∫

1

f 2dx| < ∞ as well as |
0∫

1

(
df

dx
)2dx| < ∞, which means

the function f itself and its first order derivative are both bounded above.

Therefore, in general, a function f is in Hk(0, 1) if f , df
dx

, d2f
dx2 ...d

kf
dxk ∈ L2(0, 1). More-

over, we can see that Hk ⊂ Hk−1 ⊂ ... ⊂ H1 ⊂ L2, and L2 is a Hilbert Space.

In numerical PDEs, our functions are usually defined in Hilbert Spaces.

2.2 A simple 2D diffusion-reaction problem

Initially, in order to get familiar with domain decomposition method, we first try to

test our model using a 2D elliptic equation in a well defined domain Ω. Our problem is

the following:


−∆u+ 2u = 0 in Ω

u = g = ex+y on ∂Ω

(2.1)

The weak formulation of (2.1) reads: find u ∈ H1(Ω) s.t.

∫
Ω

∇u∇v + 2

∫
Ω

uv = 0 (2.2)

for all v ∈ H1(Ω). We write down the weak form of our problem because we need to use

FreeFem++ (will be discussed in Chapter3) to code the problem later.

In order to achieve the the exact solution of the problem, we assume the solution has

the form u = X(x)Y (y) using separation of variables. Moreover, the boundary g = ex+y
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can also be written as the separated form g = Bx(x)By(y). Thus, we can rewrite the

initial problem as

−X ′′
Y −XY ′′

+ 2XY = 0.

Then assuming X 6= 0 and Y 6= 0, we rearrange the above equation and get

X
′′

X
= 2− Y

′′

Y

Since X and Y are independent variables, both sides should be constants. Hence, we can

write

X
′′

X
= K

for some real constant K > 0. Then X can be written as the following:

X = C1e
√
kx + C2e

−
√
kx.

By prescribing the boundary conditions, we obtain X = ex. Similarly, we proceed the

same procedure for Y, and we get Y = ey. Therefore, the final exact solution reads:

uexact = ex+y
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2.3 Navier-Stokes Equations for Incompressible Flu-

ids

Navier-Stokes equation is used to describe the motion of viscous liquid in physics

world. Since blood is almost incompressible, we will use incompressible Navier-Stokes

Equation to do simulations. The equation is in the form:


−ν∆u + (u · ∇)u +∇p = f in Ω

∇ · u = 0 in Ω

u = g on Γ

(2.3)

The system (2.3) is referred to as incompressible Navier-Stokes equations. An in-

troduction to these equations can be found in [4]. These balance equations arise from

applying Newton’s second law to fluid motion, together with the assumption that the

stress in the fluid is the sum of a diffusing viscous term and a pressure term. In this

equation, u stands for the fluid’s velocity; p represents as the pressure divided by density,

but it is still called as “pressure” for simplification; and ν is the fluid’s viscosity.

The weak formulation of (2.3) reads: find u ∈ H1(Ω) and p ∈ L2(Ω) s.t.

∫
Ω

ν∇u : ∇v +

∫
Ω

(u · ∇)u · v −
∫
Ω

∇ · vp+

∫
Ω

∇ · uq −
∫
Ω

fv (2.4)

for all v ∈ H1(Ω) and q ∈ L2(Ω).

In the next chapter, we will present simulations on pipe-like domains using domain

decomposition with Navier-Stokes equation.



Chapter 3

Domain Decomposition Techniques

and Finite Element Method

In this chapter, we will first introduce domain decomposition techniques to-

gether with simulations of our constructed models. Next, we will present a method called

finite element to solve PDEs numerically. Moreover, in the finite element part, we will

also introduce FreeFem++, which is a powerful tool for PDE simulations. In the next

Chapter, we will present the numerical results of our simulations.

3.1 Domain Decomposition Techniques

Domain Decomposition technique is a well-established method designed for solving

the entire solution in a whole domain with boundary conditions from the solution of its

subdomains. More specifically, it is like a “divide and conquer” technique which splits one

9
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domain into several small subdomains. We solve each part iteratively and then coordinate

those adjacent parts until they converge.

Domain decomposition can be ascribed into two types: one is The Overlapping

Method and one is The Non-overlapping Method. Those two methods will be clarified

together with examples of the simulations on our constructed models.

Now, let us introduce our 2D models. In Figure 3.1, one is a single mesh with one

bifurcation, and the other is a more complicated model with two bifurcations. We enforce

the fluid flowing into the left part and flowing out of the right parts. In the rest of this

chapter, we will discuss domain decomposition on those two constructed models and how

the simulations work.

(a) Single Vessel Model (b) Modified Vessel Model

Figure 3.1: Examples of Two Constructed Model
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3.1.1 Test Cases Using 2D Elliptic Equation

Before further introduction of domain decomposition techniques, we first want to

simulate a test case for the 2D Elliptic Problem which is discussed in the previous chapter.

Let us consider a a unit square domain Ω = (0, 1)× (0, 1) and a rectangular domain

Ω = (0, 2)× (0, 1) as listed in Figure 3.2.

(a)
Single-Square

Domain Ω

(b) Rectangular Domain with Ω1

on the left and Ω2 on the right

Figure 3.2: Simple 2D models for Testing

For the square mesh in Figure 3.2, we use FreeFem++ to code the problem and

simulate the solution. We finally derive our analytic solution as unumerical. Then we

compare it with the exact solutions uexact derived in Chapter 2 by taking the 2-norm

‖uexact − unumerical‖2.

Then we add another domain Ω2 with the same size into Ω1 without overlapping

(please see section 3.1.3 for further details), and enforce the Dirichlet-Neumann boundary

conditions

As expected, after the simulation using FreeFem++, the error of the two-domain

problem tends to zero as well. Thus, the results of our test cases are good enough and

we may say that the Domain Decomposition technique is accurate and it is a good choice

for our computational fluid dynamic problem.
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In the rest of the chapter, all simulations that are discussed use Navier-Stokes equa-

tion defined in the previous chapter.

3.1.2 The Overlapping Method

One of the domain decomposition techniques is called “The Overlapping Method”. In

this method, we can divide the whole domain into several subdomains with each adjacent

subdomains overlapping more than their interfaces.

(a) A Rectangular Domain (b) Decomposed domain

Figure 3.3: Example of Domain Decomposition With Overlapping Method

Figure 3.3 shows how a regular rectangular domain can be decomposed into two

overlapping subdomains.

For overlapping methods, our project uses Schwarz Algorithm. To provide more

introduction, let us illustrate a simple 1D example [5]: for f(x) ∈ L2(0, 1), find u(x) s.t.

−d2u
dx2 = f x ∈ (0, 1)

u(0) = u(1) = 0

(3.1)

As in Figure 3.4, we enforce two points xl and xr in the interval (0, 1) such that

0 < xl < xr < 1 and the corresponding domains are [0,xr] and [xl,1].
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Figure 3.4: 1D Domain Discussed in the Example

Here, Figure 3.5 represents the algorithm which solves the problem in our example

above.

Figure 3.5: Addictive Schwarz Algorithm for Domain Decomposition with Overlapping
[5]

However, the above algorithm is designed for 1D problem, and it just provides an

inspiration of how domain decomposition works. Now that the goal of our project is to

do simulations on 2D pipe-like domains, we want to extend the algorithm to 2D. Since

the Schwarz solver can solve for rectangular domains, let us consider an L-shaped domain

Ω as illustrated in Figure 3.6. We decompose it into two domains Ω1 and Ω2, both has
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the same interface, or overlapping part. In order to achieve the convergence, we have the

following pseudocode for this 2D problem :

Figure 3.6: L-shape Domain and Its Decomposition with Overlapping

We define B.C. as the simplification of boundary condition and Sol as the simplifi-

cation of solution.

While error > threshold k < number of maximum iterations

P k(Ω1) = 0 with B.C.(Solk(Ω2))

P k(Ω2) = 0 with B.C.(Solk(Ω1))

error = (

∫
Ω1

(Solk(Ω1)− Solk−1(Ω1))2 +

∫
Ω2

(Solk(Ω2)− Solk−1(Ω2))2)
1
2

END While

Exploiting the algorithm above, we decompose our single model with overlapping

(see Figure 3.7).

As a whole domain, we first simulate Navier-Stokes Equation on it. After using

FreeFem++, the numerical solution is accurate enough. Thereafter, we try the same

problem on our decomposed model with overlapping domains and we still get a reasonable

result.
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(a) Example of a vessel
model

(b) Decomposed Model With
Overlapping Method

Figure 3.7: Example of Domain Decomposition for a blood vessel with One Bifurcation

However, our decomposed domains with overlapping are not rectangular. Further-

more, the way we decompose our model are not simplified enough. In order to reduce

the cost and information needed, we are willing to try domain decomposition with non-

overlapping method.

3.1.3 The Non-overlapping Method

Another domain decomposition techniques is called “Non-Overlapping Method”. In

this method, we divide the whole domain into several subdomains with each adjacent sub-

domains intersecting only on their interfaces. Figure 3.8 shows how a regular rectangular

domain can be decomposed into three non-overlapping subdomains.

Now, let us still focus on the problem in our previous example. The only change is

that we define xΓ(=xl=xr) be a point in (0,1) [citation] as showed in Figure 3.9 . Then

our non-overlapping algorithm reads in Figure 3.10 below.
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(a) A Rectangular Domain (b) Decomposed domain

Figure 3.8: Example of Domain Decomposition With Non-Overlapping Method

Figure 3.9: 1D Domain Discussed in the Example

Similarly, the algorithm is an example of 1D problem. We still need to extend our

case into 2D. Let us consider the following example with a rectangular domain.

In Figure 3.11, the two non-overlapping domains Ω1 and Ω2 have interactions to

each other. Suppose for the whole domain Ω, we have Laplace equation ∆u = f , and for

subdomains Ω1 we have ∆u1 = f and for Ω2 we have ∆u2 = f . The pseudocode is the

following, which is also known as Dirichlet-Neumann method [citation]:

While error > threshold k < number of maximum iterations

∆uk1 = f with Dirichlet B.C. uk1 = uk2

∆uk2 = f with Neumann B.C. ∇uk1 · n = ∇uk2 · n.

error = (

∫
Ω1

(uk1 − uk−1
1 )2 +

∫
Ω2

(uk2 − uk−1
2 )2)

1
2

END While

With knowledge of non-overlapping method in domain decomposition, we first de-

compose our model into four parts: one parent, two children and one triangle connecting
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Figure 3.10: Algorithm for Domain Decomposition with Non-overlapping [5]

Figure 3.11: Non-overlapping Example

other three subdomains (refer to Figure 3.12). Then similar to previous procedures, we

simulate Navier-Stokes equation on those new domains. The result is as good as that of

on overlapping domains.
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(a) Domain Decomposition With
Triangle

(b) Domain Decomposition
Without Triangle

Figure 3.12: Single Blood Vessel Model Without Overlapping

Not satisfying our current model, we try to modify our model more. This time, we

manage to pseudo gate the triangle in the middle for two reasons (please see the right

plot of Figure 3.12): firstly, the domain is not in rectangular shape; secondly, we want to

simplify our model more. We apply normal Neumann conditions from two child domains

to the left one. Moreover, the volume of the fluid Q from the left domain is divided

because of the existence of bifurcations. As those two bifurcated domains have the same

size, we assume that the volume of flow Q will be divided evenly into two parts, each

of which has the flow volume Q
2

. After introducing this new boundary condition, we run

simulations on this non-overlapping domain. With only several iterations, the calculated

error converges to a reasonable value, which means the way we decompose our model is

possible.

Figure 3.13 refers to the plot of errors in each iteration for our decomposed model

without triangle domain. We can infer that the solution will finally converge.

Now that the simulations on our single domain with bifurcation are very successful,

we would like to modify a little bit to our original model and see whether our FreeFem++
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Figure 3.13: Error for Domain Decomposition Without Triangle

are still powerful on the new one. Figure 3.14 represents our new model with its domain

decomposition. The modified model has one more child bifurcation after its first bifurca-

tion. In our simulation, we still enforce the blood flowing into the left side and flowing

out of the right side. Similar to the above procedure, we divide the volume of main flow

Q to some ways according to the ratio of the size of the domains. Here in our model, we

can also prescribe different values of pressure in order to control the way blood flows.

(a) Model without Domain
Decomposition

(b) Model with Domain
Decomposition

Figure 3.14: New Blood Vessel Model With Child Bifurcation
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The simulations in our new model still work well and the final solutions converges

to some points that is tolerable even though there are tiny oscillations (see Figure 3.15).

Figure 3.15: Error for Modified Model with Domain Decomposition

3.2 Introduction to Finite Elements

In recent years, the progress of numerical method makes it possible for accurately

solving PDEs numerically. The finite elements method is one of the numerical methods

capable of solving many industrial problems including blood flow in computational fluid

dynamics.

3.2.1 Finite Elements Using Galerkin Method

There are several cases in Finite Element Method, one particular cases of which is

called Galerkin Finite Elements Method. Before introducing Galerkin Method, we first

recall Lagrange Polynomial which interpolates our nodes piece-wise linearly.
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For interpolation, we have several points. i.e. (1, 1), (2, 3), (3, 7).... In general, we

denotes those points as (xi, fi). We define the Lagrange Polynomial as the following:

P (x) = f1φ1(x2) + f2φ2(x2) + ...+ fnφn(xn) =
n∑

j=0

fjφj(xj)

where the function φj(x) satisfies

φj(x) =


0 i = j

1 i 6= j

Hence, for a given Lagrange Polynomial, we have P (x1) = f1, P (x2) = f2 ... P (xn) =

fn.

Now, let as consider a generic elliptic problem in a domain Ω [4]:

Find u ∈ V: a(u,v) = F(v) for any v∈ V, where V is an appropriate Hilbert space.

Then let Vh ⊂ V which depends on a positive parameter h. Now we approximate

our original problem as

Find uh ∈ Vh : a(uh, vh) = F (vh) ∀v ∈ V.

The above equation is called Galerkin problem and we denote {φj, j = 1, 2, 3...Nh} as a

basis of Vh. We rewrite the problem as

a(uh, φj) = F (φj), i = 1, 2, ..., Nh
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And we can also derive that

uh(x) =

Nh∑
j=1

ujφj(x)

Then we can write the Galerkin problem as

Nh∑
j=1

uja(φj, φi) = F (φi).

Denoting the matrix aij = a(φj, φi) by A, we have the following linear system:

Au = f

The above procedure is called Galerkin Method. It is often used for solving numerical

PDEs.

3.2.2 FreeFem++

FreeFem++ is a very powerful tool for solving numerical partial differential equation.

It is written in C++ and the way it solves the problem is using finite element method. The

code below is an example of FreeFem++ code using finite elements method to evaluate

the solutions.

listings xcolor

1 border down1(t=0,1){x=t;y= -0.5; label =1;};

2 border down2(t=1,2){x=t;y=-t+0.5; label =2;};

3 border down3(t=2 ,2.5){x=t;y=t-3.5; label =3;};

4 border down4(t=2.5 ,1.5){x=t;y=-t+1.5; label =4;};

5 border up5(t=1.5 ,2.5){x=t;y=t-1.5; label =5;};
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6 border up6(t=2.5 ,2){x=t;y=-t+3.5; label =6;};

7 border up7(t=2,1){x=t;y=t-0.5; label =7;};

8 border up8(t=1,0){x=t;y=0.5; label =8;};

9 border left(t=0.5 , -0.5){x=0;y=t;label =9;};

10

11 int nm=16;

12 mesh Th1=buildmesh(down1(nm)+down2(nm)+down3(nm)+down4(nm)

13 +up5(nm)+up6(nm)+up7(nm)+up8(nm)+left(nm)); //1 first domain

14 plot(Th1 ,wait =1);

15 fespace X1h(Th1 ,P1);

16 X1h u1h ,v1h ,u1hold;

17

18 bool convergence;

19 int k=0,kmax =100;

20 real thr =0.001 , error =1000.0 , gamma =0.75,e1,e2;

21

22 u1h =0.0;

23 u1hold=u1h;

24 func ue=exp(x+y);

25 func dxue=exp(x+y);

26 func dyue=exp(x+y);

27

28 problem Problem1(u1h ,v1h) =

29 int2d(Th1)(dx(u1h)*dx(v1h) + dy(u1h)*dy(v1h))

30 + int2d(Th1 )(2* u1h*v1h)

31 + on(1,2,3,4,5,6,7,8,9,u1h=ue); //2

32

33

34 convergence=false;

35

36 while(convergence ==false && k<=kmax)

37 {

38 u1hold=u1h;

39 Problem1;

40 plot(u1h ,wait=1,fill=1,value =1);

41 error = sqrt(int1d(Th1)((u1h -ue )^2));
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42 cout << "Error at iteration " << k << " is " << error << endl;

43 if (error <=thr) convergence=true;

44 cout << "Convergence is " << convergence << endl;

45 k++;

46 u1h = gamma*u1h + (1-gamma)* u1hold;

47 }

48 plot(u1h ,wait=1,fill=1,value =1);

Here we would like to interpret a little more about my example code above. This code is

designed for simulating 2D elliptic equations which is discussed in Chapter 2.

First, through line 1 to line 9, we define our 2D model. Then through line 11 to 16,

we are building an object called Th of Mesh corresponding to our 2D model with mesh

size 16. At the same time, we plot our mesh and define our finite element space as P1,

which means linear interpolation.

We then declare our unknown numerical solution as u1h and our generic test function

as v1h. We also define our exact solution as ue, where ue = ex+y as we calculated in

Chapter 2.

Starting at Line 28, we define our problem which corresponds to the weak formulation

discussed in Chapter 2 expect for notations of variables:

a(u, v) =

∫
Ω

∇u∇v + 2

∫
Ω

uv (3.2)

for all v ∈ H1(Ω).

In Line 31, we prescribe Dirichlet boundary conditions as Function ue.
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Finally, through Line 36 to Line 47, we use domain decomposition technique to com-

pute our numerical solution u1h after several iterations. And then we plot the resulting

picture as Figure 3.16.

Figure 3.16: Final Result of The Example Code



Chapter 4

Numerical Results

In this chapter, we only present results of simulations with Navier-Stokes equation.

Because simulating 2D elliptic equation is trivial and it is just a test case for the accuracy

of domain decomposition techniques.

Since we cannot solve Navier-Stokes equation exactly, what we do in each iteration

is to compute the norm of its current solution with its previous solution, i.e. error

=‖uh − uhold‖2. Then if error converges to zero or a relatively small value, we stop our

simulation.

4.1 Results of a Single Model with Bifurcation

For our single model, the numerical results looks very good. Figure 4.1 refers to the

plot of error analysis for domain decomposition on the single model. X-axis stands for

the number of iterations and Y-axis represents the value of errors. We can see errors in

26
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the plots converge to a relatively small value. At the first glimpse, we can see that the

trend seems to tend to zero.

However, since we do not have time to collect enough data to prove that our solution

converges, we can only focus on our plots to make a general comment: the error will

finally converge.

Figure 4.1: Error Plots for a Single Model with Domain Decomposition

Figure 4.2 and Figure 4.3 represent plots of velocity and pressure after FreeFem++

simulation. As said before, there are not enough data. Thus, one possible way is to

compare our numerical solution with domain decomposition with that of the whole do-

main. Comparing each part eye by eye, we can see that with domain decomposition, our
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(a) Left Main Vessel (b) Top Bifurcation (c) Bottom Bifurcation

(d) Whole Single Model

Figure 4.2: Velocity Plots by FreeFem++ Using Domain Decomposition

solution is still close to that of the whole domain, which means in general for our single

model, domain decomposition works well.

4.2 Results of Modified Model with Child Bifurca-

tion

Let us focus on Figure 4.5. Unlike the error analysis in the previous section, some

little oscillations occur in the error plot with domain decomposition on our modified

model. However, the trend of the error plot here is still reasonable and tolerable. We

may conclude that the error finally converges to some extent.
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(a) Left Main Vessel (b) Top Bifurcation (c) Bottom Bifurcation

Figure 4.3: Pressure Plots by FreeFem++ Using Domain Decomposition

(a) Whole Single Model

Figure 4.7 and Figure 4.9 represent plots of velocity and pressure after FreeFem++

simulation for our modified model. Just like the result of previous section for single

model, after comparing eye by eye with plots, we find that with domain decomposition,

our solution is still close to that of the whole domain.
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Figure 4.5: Error Plots for the Modified Model with Domain Decomposition
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(a) Left Main Vessel (b) Top Bifurcation (c) Bottom Bifurcation

Figure 4.6: Velocity Plots by FreeFem++ Using Domain Decomposition

(a) Child Top Bifurcation (b) Child Bottom Bifurcation (c) Modified Whole Model

Figure 4.7: Velocity Plots by FreeFem++ Using Domain Decomposition



Numerical Results 32

(a) Left Main Vessel (b) Top Bifurcation (c) Bottom Bifurcation

Figure 4.8: Velocity Plots by FreeFem++ Using Domain Decomposition

(a) Child Top Bifurcation (b) Child Bottom Bifurcation (c) Modified Whole Model

Figure 4.9: Pressure Plots by FreeFem++ Using Domain Decomposition
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Conclusion

In general, our project successfully explores the domain decomposition techniques in

computational fluid dynamics for pipe-like domains in 2D. By domain decomposition, we

can split a complex model into several simple parts in 2D on the incompressible Navier-

Stokes equations. The results of the simulations are reasonable and to some extent good

enough. We may conclude that the way we decompose our model is plausible and accurate.

Therefore, it is possible for us to extend our 2D problems to 3D realistic cases for future

research.

For future directions, we may explore the ordering of solving problem in domain

decomposition. More specifically, during our work, we find that solving different parts in

various orders can lead to different number of iterations required to converge and therefore

resulting in different converging time. Sometimes, there are huge differences between the

converging time using different orders. However, we do not have time to continue and to

further explore it. If we could explore more the truth of ordering, then it is possible to

33
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increase the efficiency of simulations in large circulatory networks and reduce the cost a

lot.



Appendix A

FreeFem++ Code

listings xcolor

1 /* *****************************************************

2 *

3 * *

4 * *

5 * *

6 * 2 *

7 * *

8 * *

9 * * * * * * * * * * *

10 * 1 *

11 * *

12 * * * * * * * * * * *

13 * *

14 * *

15 * 3 *

16 * *

17 * *

18 * * * * * * *

19 * 4 *

20 * * * * * *

35
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21 * * *

22 * *

23 * 5 *

24 * *

25 * *

26 * * *

27 ***************************************************** */

28 border down1(t=0,1){x=t;y= -0.5; label =1;};

29 border lowerRight1(t= -0.5 ,0){x=1;y=t;label =2;};

30 border upperRight1(t=0 ,0.5){x=1;y=t;label =3;};

31 border up1(t=1,0){x=t;y=0.5; label =4;};

32 border left1(t=0.5 , -0.5){x=0.0;y=t;label =5;};

33 int nm=32;

34

35 mesh Th1=buildmesh(down1(nm)+ lowerRight1(nm)+ upperRight1(nm)+up1(nm)+ left1(nm)); // first domain

36 plot(Th1 ,wait =1);

37

38 ofstream merror("materrors.m");

39

40 merror << "error =[ ";

41

42 fespace X1h(Th1 ,P2);

43 X1h u11 ,u12 ,u11old ,u12old ,v11 ,v12 ,k11 ,k12;

44 fespace Q1h(Th1 ,P1); //2

45 Q1h p1,q1;

46

47 // ------------------------------------------------------------------

48 border down2(t=1.5 ,2.5){x=t;y=t-1.5; label =1;};

49 border right2(t=2.5 ,2){x=t;y=-t+3.5; label =2;};

50 border up2(t=2,1){x=t;y=t-0.5; label =3;};

51 border left2(t=1 ,1.5){x=t;y=-t+1.5; label =4;};

52

53 mesh Th2=buildmesh(down2(nm)+ right2(nm)+up2(nm)+left2(nm)); // second upper -right domain

54 plot(Th2 ,wait =1);

55

56 fespace X2h(Th2 ,P2);
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57 X2h u21 ,u22 ,u21old ,u22old ,v21 ,v22 ,k21 ,k22;

58 fespace Q2h(Th2 ,P1); //2

59 Q2h p2,q2 ,p2old;

60

61 // ------------------------------------------------------------------

62

63 border down3(t=1,2){x=t;y=-t+0.5; label =1;};

64 border downright3(t=2 ,2.25){x=t;y=t-3.5; label =2;};

65 border upright3(t=2.25 ,2.5){x=t;y=t-3.5; label =3;};

66 border up3(t=2.5 ,1.5){x=t;y=-t+1.5; label =4;};

67 border left3(t=1.5 ,1){x=t;y=t-1.5; label =5;};

68

69 mesh Th3=buildmesh(up3(nm)+ downright3(nm)+ upright3(nm)+ down3(nm)+ left3(nm)); //third lower -right domain

70 plot(Th3 ,wait =1);

71

72

73 fespace X3h(Th3 ,P2);

74 X3h u31 ,u32 ,u31old ,u32old ,v31 ,v32 ,k31 ,k32;

75 fespace Q3h(Th3 ,P1); //2

76 Q3h p3,q3 ,p3old;

77

78 // ------------------------------------------------------------------

79

80 border down4(t=2.5 ,3.5){x=t;y=-1.5; label =1;};

81 border right4(t=-1.5,-1){x=3.5;y=t;label =2;};

82 border up4(t=3.5 ,2.5){x=t;y=-1;label =3;};

83 border left4(t=-1,-1.5){x=2.5;y=t;label =4;};

84

85 mesh Th4=buildmesh(up4(nm)+ right4(nm)+down4(nm)+left4(nm)); //right child domain

86 plot(Th4 ,wait =1);

87

88 fespace X4h(Th4 ,P2);

89 X4h u41 ,u42 ,u41old ,u42old ,v41 ,v42 ,k41 ,k42;

90 fespace Q4h(Th4 ,P1); //2

91 Q4h p4,q4 ,p4old;

92
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93 // ------------------------------------------------------------------

94 border down5(t=2 ,2.5){x=t;y=-2.5; label =1;};

95 border right5(t=-2.5 ,-1.5){x=2.5;y=t;label =2;};

96 border up5(t=2.5 ,2){x=t;y= -1.5; label =3;};

97 border left5(t=-1.5 ,-2.5){x=2;y=t;label =4;};

98

99 mesh Th5=buildmesh(up5(nm)+ right5(nm)+down5(nm)+left5(nm)); //down child domain

100 plot(Th5 ,wait =1);

101

102 fespace X5h(Th5 ,P2);

103 X5h u51 ,u52 ,u51old ,u52old ,v51 ,v52 ,k51 ,k52;

104 fespace Q5h(Th5 ,P1); //2

105 Q5h p5,q5 ,p5old;

106

107 // ------------------------------------------------------------------

108 u11 =0.; u12 =0.; u11old = 0.; u12old =0.;

109 u21 =0.; u22 =0.; u21old = 0.; u22old =0.;

110 u31 =0.; u32 =0.; u31old = 0.; u32old =0.;

111 u41 =0.; u42 =0.; u41old = 0.; u42old =0.;

112 u51 =0.; u52 =0.; u51old = 0.; u52old =0.;

113 p1=0.; p2=0.; p2old =0.; p3=0.; p3old =0.;p4=0.; p4old =0.; p5=0.; p5old =0.;

114 q1=0.; q2=0.;q3=0.;q4=0.;q5=0.;

115 k11=u11;k12=u12;

116 k21=u21;k22=u22;

117 k31=u31;k32=u32;

118 k41=u41;k42=u42;

119 k51=u51;k52=u52;

120

121 func g=(0.4-y)*(y+0.4)*(y <0.4)*(y> -0.4);

122 real nu=1.e-1;

123 real toll =1.e-4;

124 real gamma =.3;

125 real P11= 0.35;

126 real errL2=0., errL2max =0.;

127

128 problem Stokes1 ([u11 ,u12 ,p1],[v11 ,v12 ,q1],solver=UMFPACK) =
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129 int2d(Th1)(//dti*u1*v1 + dti*u2*v2 +

130 nu * ( dx(u11)*dx(v11) + dy(u11)*dy(v11)

131 + dx(u12)*dx(v12) + dy(u12)*dy(v12) ))

132

133 - int2d(Th1)(p1*dx(v11) + p1*dy(v12))

134 - int2d(Th1)(dx(u11)*q1 + dy(u12)*q1)

135

136 + int2d(Th1)( (k11*dx(u11)+k12*dy(u11))* v11

137 + (k11*dx(u12)+k12*dy(u12))*v12 )

138

139 + int1d(Th1 ,3)(((p2-nu*dx(u21))*N.x-nu*dy(u21)*N.y)*v11+

140 ((p2-nu*dy(u22))*N.y-nu*dx(u22)*N.x)*v12)

141

142 + int1d(Th1 ,2)(((p3-nu*dx(u31))*N.x-nu*dy(u31)*N.y)*v11+

143 ((p3-nu*dy(u32))*N.y-nu*dx(u32)*N.x)*v12)

144

145 + on(5,u11=g,u12 =0.)

146 + on(1,4,u11=0.,u12 =0.);

147

148

149 problem Stokes2 ([u21 ,u22 ,p2],[v21 ,v22 ,q2],solver=UMFPACK) =

150 int2d(Th2)(//dti*u1*v1 + dti*u2*v2 +

151 nu * ( dx(u21)*dx(v21) + dy(u21)*dy(v21)

152 + dx(u22)*dx(v22) + dy(u22)*dy(v22) ))

153 - int2d(Th2)(p2*dx(v21) + p2*dy(v22))

154 - int2d(Th2)(dx(u21)*q2 + dy(u22)*q2)

155 + int2d(Th2)( (k21*dx(u21)+k22*dy(u21))* v21

156 + (k21*dx(u22)+k22*dy(u22))*v22 )

157 + on(4,u21=-u11*N.x*3.0/4.0 , u22=-u11*N.y*3.0/4.0)

158 + on(1,3,u21=0.,u22 =0.);

159

160 problem Stokes3 ([u31 ,u32 ,p3],[v31 ,v32 ,q3],solver=UMFPACK) =

161 int2d(Th3)(//dti*u1*v1 + dti*u2*v2 +

162 nu * ( dx(u31)*dx(v31) + dy(u31)*dy(v31)

163 + dx(u32)*dx(v32) + dy(u32)*dy(v32) ))

164 - int2d(Th3)(p3*dx(v31) + p3*dy(v32))



Appendix 40

165 - int2d(Th3)(dx(u31)*q3 + dy(u32)*q3)

166 + int2d(Th3)( (k31*dx(u31)+k32*dy(u31))* v31

167 + (k31*dx(u32)+k32*dy(u32))*v32 )

168 + int1d(Th3 ,3)(((p4-nu*dx(u41))*N.x-nu*dy(u41)*N.y)*v31+

169 ((p4-nu*dy(u42))*N.y-nu*dx(u42)*N.x)*v32)

170 + int1d(Th3 ,2)(((p5-nu*dx(u51))*N.x-nu*dy(u51)*N.y)*v31+

171 ((p5-nu*dy(u52))*N.y-nu*dx(u52)*N.x)*v32)

172 + on(5,u31=-u11*N.x*1.0/4.0 , u32=-u11*N.y*1.0/4.0)

173 + on(1,4,u31=0.,u32 =0.);

174

175 problem Stokes4 ([u41 ,u42 ,p4],[v41 ,v42 ,q4],solver=UMFPACK) =

176 int2d(Th4)(//dti*u1*v1 + dti*u2*v2 +

177 nu * ( dx(u41)*dx(v41) + dy(u41)*dy(v41)

178 + dx(u42)*dx(v42) + dy(u42)*dy(v42) ))

179 - int2d(Th4)(p4*dx(v41) + p4*dy(v42))

180 - int2d(Th4)(dx(u41)*q4 + dy(u42)*q4)

181 + int2d(Th4)( (k41*dx(u41)+k42*dy(u41))* v41

182 + (k41*dx(u42)+k42*dy(u42))*v42 )

183 + on(4,u41=-u31*N.x*0.5,u42=-u31*N.y*0.5)

184 + on(1,3,u41=0.,u42 =0.);

185

186 problem Stokes5 ([u51 ,u52 ,p5],[v51 ,v52 ,q5],solver=UMFPACK) =

187 int2d(Th5)(//dti*u1*v1 + dti*u2*v2 +

188 nu * ( dx(u51)*dx(v51) + dy(u51)*dy(v51)

189 + dx(u52)*dx(v52) + dy(u52)*dy(v52) ))

190 - int2d(Th5)(p5*dx(v51) + p5*dy(v52))

191 - int2d(Th5)(dx(u51)*q5 + dy(u52)*q5)

192 + int2d(Th5)( (k51*dx(u51)+k52*dy(u51))* v51

193 + (k51*dx(u52)+k52*dy(u52))*v52 )

194 + on(3,u51=-u31*N.x*0.5,u52=-u31*N.y*0.5)

195 + on(4,2,u51=0.,u52 =0.);

196

197 real[int]xx(50); real[int]yy (50);

198 real thr =0.001;

199 real Error =10^5;

200 int nmax = 200;
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201 int j=0;

202 while(Error >thr && j<nmax )

203 {

204 cout << "Iteration " << j << endl;

205 u11old=u11; u12old=u12;

206 u21old=u21; u22old=u22; p2old=p2;

207 u31old=u31; u32old=u32; p3old=p3;

208 u41old=u41; u42old=u42; p4old=p4;

209 u51old=u51; u52old=u52; p5old=p5;

210

211 Stokes3;

212 plot([u31 ,u32],value=true ,nbiso=10,wait=false);//,ps=" es10_vel_a.eps");

213 plot(p3 ,fill=1,value=true ,wait=false );//,ps=" es10_pre_a.eps");

214

215 Stokes4;

216 plot([u41 ,u42],value=true ,nbiso=10,wait=false);//,ps=" es10_vel_a.eps");

217 plot(p4 ,fill=1,value=true ,wait=false );//,ps=" es10_pre_a.eps");

218

219 Stokes5;

220 plot([u51 ,u52],value=true ,nbiso=10,wait=false);//,ps=" es10_vel_a.eps");

221 plot(p5 ,fill=1,value=true ,wait=false );//,ps=" es10_pre_a.eps");

222

223 Stokes1;

224 plot([u11 ,u12],value=true ,nbiso=10,wait=false);//,ps=" es10_vel_a.eps");

225 plot(p1 ,fill=1,value=true ,wait=false );//,ps=" es10_pre_a.eps");

226

227 Stokes2;

228 plot([u21 ,u22],value=true ,nbiso=10,wait=false);//,ps=" es10_vel_a.eps");

229 plot(p2 ,fill=1,value=true ,wait=false );//,ps=" es10_pre_a.eps");

230

231 real Error1 = int2d(Th1)((u11 -u11old )^2+(u12 -u12old )^2);

232 Error1 = sqrt(Error1 );

233 cout << "Error1 " << Error1 << endl;

234 real Error2 = int2d(Th2)((u21 -u21old )^2+(u22 -u22old )^2);

235 Error2 = sqrt(Error2 );

236 cout << "Error2 " << Error2 << endl;
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237 real Error3 = int2d(Th3)((u31 -u31old )^2+(u32 -u32old )^2);

238 Error3 = sqrt(Error3 );

239 cout << "Error3 " << Error3 << endl;

240 real Error4 = int2d(Th4)((u41 -u41old )^2+(u42 -u42old )^2);

241 Error3 = sqrt(Error4 );

242 cout << "Error4 " << Error4 << endl;

243 real Error5 = int2d(Th5)((u51 -u51old )^2+(u52 -u52old )^2);

244 Error5 = sqrt(Error5 );

245 cout << "Error5 " << Error5 << endl;

246 Error = int2d(Th1)((u11 -u11old )^2+(u12 -u12old )^2)+ int2d(Th2)((u21 -u21old )^2+(u22 -u22old )^2) + int2d(Th3)((u31 -u31old )^2+(u32 -u32old )^2)+

247 int2d(Th4)((u41 -u41old )^2+(u42 -u42old )^2)+ int2d(Th5 )((u51 -u51old )^2+(u52 -u52old )^2);

248 Error = sqrt(Error );

249 cout << "Convergence " << Error << endl;

250

251 u11 = gamma*u11 + (1-gamma)* u11old;

252 u12 = gamma*u12 + (1-gamma)* u12old;

253

254 u21 = gamma*u21 + (1-gamma)* u21old;

255 u22 = gamma*u22 + (1-gamma)* u22old;

256 p2 = gamma*p2 + (1-gamma)*p2old;

257

258 u31 = gamma*u31 + (1-gamma)* u31old;

259 u32 = gamma*u32 + (1-gamma)* u32old;

260 p3 = gamma*p3 + (1-gamma)*p3old;

261

262 u41 = gamma*u41 + (1-gamma)* u41old;

263 u42 = gamma*u42 + (1-gamma)* u42old;

264 p4 = gamma*p4 + (1-gamma)*p4old;

265

266 u51 = gamma*u51 + (1-gamma)* u51old;

267 u52 = gamma*u52 + (1-gamma)* u52old;

268 p5 = gamma*p5 + (1-gamma)*p5old;

269

270 k11=u11;k12=u12;

271 k21=u21;k22=u22;

272 k31=u31;k32=u32;
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273 k41=u41;k42=u42;

274 k51=u51;k52=u52;

275 xx[j]=Error;

276 yy[j]=j;

277 merror << xx[j] << "; \n";

278

279

280 j++;

281 }

282

283 merror << "]; \n";

284 plot([xx ,yy],value=true ,nbiso=10,wait=true);

285 plot(p1 ,[u11 ,u12],value=true ,wait=false);

286 plot(p2 ,[u21 ,u22],value=true ,wait=false);

287 plot(p3 ,[u31 ,u32],value=true ,wait=false);

288 plot(p4 ,[u41 ,u42],value=true ,wait=false);

289 plot(p5 ,[u51 ,u52],value=true ,wait=false);

290 plot([u11 ,u12],value=true ,nbiso=10,wait =1);//,ps=" es10_vel_a.eps");

291 plot(p1 ,fill=1,value=1,wait =1);//,ps=" es10_pre_a.eps ");

292 errL2 = int2d(Th1)((u11 -g)*(u11 -g)+u12*u12);

293 errL2 = sqrt(errL2 );

294 cout << "Error vs Exact " << errL2 << endl;

295 plot([u21 ,u22],value=true ,nbiso=10,wait =1);//,ps=" es10_vel_a.eps");

296 plot(p2 ,fill=1,value=1,wait =1);//,ps=" es10_pre_a.eps ");

297 errL2 = int2d(Th2)((u21 -g)*(u21 -g)+u22*u22);

298 errL2 = sqrt(errL2 );

299 cout << "Error vs Exact " << errL2 << endl;

300 plot([u31 ,u32],value=true ,nbiso=10,wait =1);//,ps=" es10_vel_a.eps");

301 plot(p3 ,fill=1,value=1,wait =1);//,ps=" es10_pre_a.eps ");

302 errL2 = int2d(Th3)((u31 -g)*(u31 -g)+u32*u32);

303 errL2 = sqrt(errL2 );

304 cout << "Error vs Exact " << errL2 << endl;

305 plot([u41 ,u42],value=true ,nbiso=10,wait =1);//,ps=" es10_vel_a.eps");

306 plot(p4 ,fill=1,value=1,wait =1);//,ps=" es10_pre_a.eps ");

307 errL2 = int2d(Th4)((u41 -g)*(u41 -g)+u42*u42);

308 errL2 = sqrt(errL2 );



Appendix 44

309 cout << "Error vs Exact " << errL2 << endl;

310 plot([u51 ,u52],value=true ,nbiso =10,wait =1);//,ps=" es10_vel_a.eps");

311 plot(p5 ,fill=1,value=1,wait =1);//,ps=" es10_pre_a.eps");

312 errL2 = int2d(Th5)((u51 -g)*(u51 -g)+u52*u52);

313 errL2 = sqrt(errL2 );

314 cout << "Error vs Exact " << errL2 << endl;
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