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Abstract 
 

Estimating PM2.5 Concentration and Evaluating National Ambient Air Quality Standard in 
Johannesburg Area, South Africa 

 
By Linlin Du 

 
 

    It is well recognized that fine particle (PM2.5) from multiple sources, including fuel 

combustion, vehicle emission and domestic burning, is strongly associated with a large 

burden of illness in South Africa, especially respiratory diseases, yet few studies well 

characterized ambient PM2.5 concentration with high spatiotemporal resolution in South 

Africa. We developed a random forest model to estimate daily PM2.5 concentration at 1 

km2 resolution in the Johannesburg Area, combining satellite AOD, meteorological 

factors and land-use variables, and evaluated the impact of implementation of national air 

quality standard on PM2.5 concentration. Overall cross-validation R2 was 0.67, indicating 

a good fit between model estimation and ground measurements. Mean PM2.5 for ground 

measurements was 28.15 µg/m3 and mean estimated PM2.5 concentration was 28.24 

µg/m3. MAIAC AOD, total precipitation, winter, population, population, spring, summer, 

policy, temperature at 2-meter, relative humidity at planetary boundary layer height, and 

wind speed at planetary boundary layer height were the most important predictors. 

Estimation from the model has captured the temporal pattern for ground monitoring 

stations. Mpumalanga had a lower annual PM2.5 concentration than Gauteng. The 

maximum annual PM2.5 concentration appeared in the region between Pretoria and 

Bronkhorstspruit. By comparing PM2.5 concentration, we concluded that the 

implementation of national air quality standards has not achieved the goal of reducing 

PM2.5 concentration. 
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1.Introduction 

    Fine particles (PM2.5) refer to atmospheric particulate matters with aerodynamic 

diameters of 2.5 µm or less, mostly released from various human-made sources, including 

industrial emission, power generation, vehicle combustion, agriculture incineration, and 

residential burning (Tucker 2000). It is widely reported that the majority of populations 

living in developing regions are disproportionately experiencing air quality levels 

exceeding WHO standard, resulting in estimated 4.2 million premature death worldwide 

(Cohen, Brauer et al. 2017) (WHO 2016). Numerous epidemiological studies had 

buttressed exposure to particle pollution is strongly associated adverse acute and chronic 

health outcomes, not only respiratory diseases but also cardiovascular and neurologic 

morbidity and mortality and even reproductive effects (Boogaard, Walker et al. 2019) (Liu, 

Xu et al. 2017) (Hamanaka and Mutlu 2018) (Babadjouni, Hodis et al. 2017). Despite these 

causes for concern, the current sparse air quality monitoring network is insufficient to 

quantify fine particle exposure and risk at a local level, particularly in low- and middle-

income countries. 

The past decade has seen the application of satellite remote sensing products, aerosol 

optical depth (AOD), providing global coverage and relatively high resolution, in 

estimating surface PM2.5 concentration. AOD measures the extinction of a ray of light at a 

wavelength as it passes the atmosphere column, and generally, it is positively related to the 

surface PM2.5 concentration (Liu, Koutrakis et al. 2007). Multi-Angle Implementation of 

Atmospheric Correction (MAIAC) algorithm used time series analysis and a combination 

of pixel and image-based processing for Moderate Resolution Imaging Spectroradiometer 

(MODIS) measurement to get a higher spatial resolution (1 km2) and improve the accuracy 
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of aerosol retrievals (Lyapustin et al. 2018). Various statistical models have been 

developed to capture the non-linear relationship between AOD and ground PM2.5 

measurement and improve the prediction accuracy and robustness, including nested linear 

mixed-effects model (Ma, Liu et al. 2016) , and geographically weighted regression 

(GWR) (Ma, Hu et al. 2014). Unlike these parametric models, the random forest model is 

a non-parametric model, without restrictive assumption for independence and population 

distribution, could capture non-linear relationships and interaction between the variables, 

and measure variables importance (Breiman 2001). MAIAC AOD and random forest 

model have been widely employed in the estimation of ambient PM2.5 concentration in 

China, the United States and Peru. Vu et al. (Vu, Sanchez et al. 2019) developed an 

advanced PM2.5 exposure model in Lima, Peru, from 2011 to 2016, applying MAIAC AOD 

and random forest method, with the result showing overall cross-validation R2 for the 

model was 0.70. Huang et al. (Huang, Xiao et al. 2018) built a random forest PM2.5 model 

for North China Plain with the cross-validation R2 for the model of 0.88, showing a good 

fit between MAIAC AOD and ground measurements. 

    In South Africa, coal is the dominant energy resource, which provided 77% of South 

Africa’s primary energy needs and more than 90% of electricity (Department of Energy 

2010). Other human activities, including mobile vehicle emission and biomass burning, 

could also exacerbate the generation of particulate matters, resulting in significant public 

health burden in South Africa (Katoto, Byamungu et al. 2019) (Wright et al. 2017). In 

Recent years, several studies had been conducted in South Africa to assess ambient air 

quality and its impact on public health. Saucy et al. (Saucy, Roosli et al. 2018) developed 

an annual land use regression model for outdoor PM2.5 concentration in Western Cape 
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Province, with the R2 of 0.21, indicating a lower explanatory power. Marais et al. (Marais, 

Silvern et al. 2019) applied the GEOS-Chem model and estimated pollutant emissions to 

simulate ambient PM2.5 concentration in 2030 and calculated excess deaths in Africa. 

Moreover, a Benefits Mapping and Analysis Program (BenMAP) model, using data of 

population, mortality rate and PM2.5 concentration, indicated 28,000 premature deaths in 

South Africa were attributed to current high PM pollution, which caused economy $29.1 

billion (Altieri and Keen 2019).  

To ensure South Africans could breathe air that is not harmful to public health, as a part 

of Air Quality Act (2004), the government established 136 ground ambient air quality 

stations across the country monitoring main air pollutants, like PM, carbon monoxide (CO), 

nitrogen oxide (NOx), sulfur dioxide (SO2), lead (Pb), hydrogen sulfide (H2S), black carbon 

and meteorological factors (Gwaze and Mashele 2018). To reduce PM2.5 concentration, in 

2012 Department of Environmental Affairs issued national ambient air quality standard for 

PM2.5, shown in Table 1, with the daily concentration from 65 µg/m3 to 40 µg/m3 effective 

since 2016 and annual concentration from 25 µg/m3 to 20 µg/m3 executed from 2016 

(Department of Environmental Affairs 2012). The Department of Environmental Affairs 

also issued other regulations incorporating with ambient PM2.5 concentration standards, 

including list of activities which might cause adverse effect to the environment and public 

health, as well as maximum emission standard for these activities (Department of 

Environmental Affairs 2013). In other countries, like China, multiple models were built to 

estimate PM2.5 concentration change to assess the impact of air pollution control policies 

on air quality, like GEOS-Chem model(Cai, Ma et al. 2018), WRF-CMAQ model(Cai, 

Wang et al. 2017).  
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    To date, there are few studies well characterizing ambient PM2.5 concentration with high 

spatiotemporal resolution in South Africa. In this study, we built a 1 km2 spatial resolution 

daily PM2.5 concentration model in the Johannesburg area from the year 2014 to 2018, 

based on satellite AOD, meteorological fields, and land use variables, and assessed PM2.5 

concentration change in the implementation of the new air quality standard. Also, the 

retrieved PM2.5 concentration might be applied in future epidemiologic studies to analyze 

its impact on health burden, respiratory and cardiovascular diseases. 

2.Method 

2.1 Study Area 

Our study area is in the northeast of South Africa, covering approximately 84000 km2, 

which includes Gauteng province and part of Mpumalanga province, as Figure 1 shows. 

Gauteng province, with a population of approximately 15 million people, contains 

Johannesburg, the country’s largest city, and Pretoria, its administrative capital. 

Mpumalanga covers several distinct physiographic: west plateau, east forested mountains 

and plain, which leads to diverse climate types, allowing for 68% of the Mpumalanga area 

used to agricultural activities. 

2.2 Ground measurement 

    There were 21 ground monitoring stations included in our study, shown in Table 2. 

Hourly PM2.5 data were downloaded from South Africa Air Quality Information System 

(SAAQIS) and underwent quality control, with the negative value and repeating value 

(more than 3 consecutive identical value) removed. To improve the data completeness and 

make it better representative, the daily aggregation was only conducted when more than 
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75% of data is available for the averaging period. 

2.3 Satellite AOD 

MAIAC AOD at 550 nm from Terra (transiting at 10:30 am local time) and Aqua 

(transiting at 1:30 pm local time) satellites were downloaded. To improve the coverage of 

AOD, we developed a customized approach to combine Aqua and Terra observations. First, 

we conducted a univariate linear regression analysis between Aqua AOD and Terra AOD 

separated by season and used the estimated coefficients, shown in Table 3, to gap-fill the 

missing Aqua AOD for those grids with only Terra AOD and vice versa. Second, Aerosol 

Robotic Network (AERONET) L2 measurements, which is the quality assured ground-

based remote sensing aerosol network (Giles), were used to validate the gap-filled AOD 

observations. The AERONET AOD at 550 nm within 30 minutes of MAIAC measurement 

was computed based on AOD at 440 nm and Angstrom exponent (α)of wavelength range 

440-675 nm, as Equation 1 shows. We developed a linear mixed-effect model, including 

season-specific random effect, between the AERONET site AOD and matched pixel AOD 

and used the resulting coefficients, displayed in Table 4, to correct gap-filled AOD data. 

Finally, the mean of validated Aqua and Terra AOD was calculated and used as the 

parameter in the PM2.5 model.  

𝐴𝑂𝐷550𝑛𝑚 =  𝐴𝑂𝐷440𝑛𝑚 ∗ (
550

440
)−𝛼(440𝑛𝑚−675𝑛𝑚)            Equation (1) 

2.4 Meteorological data 

    Hourly meteorological data, including surface albedo, surface incident shortwave flux, 

evaporation from turbulence, total cloud fraction, total precipitation, wind speed, wind 

direction, planetary boundary layer (PBL) height, temperature, humidity and surface 
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pressure, with a spatial resolution of 0.25° latitude × 0.3125° longitude, were obtained from 

Goddard Earth Observing System Data Assimilation System GEOS-5 Forward Processing 

(GEOS-5 FP). All data were converted to a daily level and interpolated to match with the 

MAIAC grid using the inverse distance weighting method. 

2.5 Land use 

    The European Space Agency Climate Change Initiative Land Cover (ESA CCI-LC) 

provided a global land cover map at 300m resolution. Percent for different types of 

materials on the earth’s surface, such as agriculture, forest, grassland, wetland, and 

settlement, was calculated through reclassifying the value and resampling to the MAIAC 

grid. The Gridded Population of the World (GPW) collection version 4 estimated the 

worldwide population counts and densities for 2000, 2005, 2010, 2015, and 2020, at the 

resolution of 30 arc-seconds (CIESIN 2016). Yearly population counts were retrieved by 

linear interpolation and matched to 1km2 pixel. 30-meter elevation data were extracted 

from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 

Global Digital Elevation Model Version 3 (GDEM 003) and were aggregated to the 

MAIAC grid level. The total main road and railway length within each pixel were 

calculated by ArcGIS. 

2.6 Temporal Variables 

    Season variables, including summer (Dec. – Feb.), winter (Jun.- Aug.) and spring (Sep. 

- Nov.) were introduced in this analysis. South Africa is in the southern hemisphere, so its 

seasonality is opposite to the northern hemisphere. Since the national standard for ambient 

air PM2.5 concentration was changed on January 1st, 2016, we classified the year to a 

dichotomous variable, before policy (2014-2015) and after policy (2016-2018). 
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2.7 Modelling 

    Random forest model constructs a high number of decision trees (ntree) at training time 

and randomly selects several variables from the dataset to form each decision split for the 

individual tree (mtry), which was used in estimating surface 1 km2 daily PM2.5 concentration. 

The response variable was daily mean PM2.5 concentration for each station. The 

independent variables included gap filled daily MAIAC AOD, meteorological factors, 

percent of land use type, population, elevation, road length and a dummy variable for 

season and policy. 10-fold cross-validation was carried out to evaluate the performance of 

the random forest model, which randomly divided the dataset into 10 segments with nine 

used for training and one used for predicting and repeated this process 10 times to get the 

equal number of observations to the original dataset. 

2.8 Policy Analysis 

    PM2.5 estimation from the random forest model, divided into before and after the 

implementation of the new standard by January 1st, 2016, was applied to evaluate the 

implementation of the national ambient air quality standard for PM2.5. The percentage of 

the study area with a PM2.5 concentration meeting nation standard was calculated. Besides, 

the difference in PM2.5 concentration between two time periods was computed and plotted. 

3.Results 

3.1 Ground Measurements 

    A total of 14927 daily average ground-based PM2.5 measurements were included in our 

study, which started on January 1st, 2014 and ended on December 31st, 2018, showing a 

right-skewed distribution. Mean and standard deviation of daily PM2.5 for all stations was 
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25.27 µg/m3 and 20.35 µg/m3 separately, with the range of 0.29 – 263.88 µg/m3. The 

minimum station average PM2.5 value occurred in Middelburg, 16.17 µg/m3 while 

Olivenhoutbosch had the maximum station average PM2.5, 88.42 µg/m3. Ten daily PM2.5 

observations exceeded 200 µg/m3 in this study, with nine happening in Olivenhoutbosch, 

in June 2017 and July 2017 and one in Sharpeville, in January 2017. 

    The time series of monthly averaged PM2.5 concentration for each ground station was 

shown in Figure 3. Most stations had the same temporal pattern, which increased from 

January, with the mean value of 17.34 µg/m3, reached the peak value of 37.94 µg/m3 in 

June, the winter for the southern hemisphere, and then decreased to 15.27 µg/m3 at 

December. The majority of monthly aggregated PM2.5 measurements were less than 50 

µg/m3, while some stations had winter PM2.5 observations approaching or exceeding 100 

µg/m3, such as Olivenhoutbosch in 2017 and Xanadu in 2015. 

3.2 Gap Filled MAIAC AOD 

    The coefficient for the univariate linear model between Aqua and Terra AOD, separated 

by season, was presented in Table 3 and Table 4 displayed season-specific coefficients for 

the mixed-effect model between AERONET and satellite AOD. Except for summer, the 

univariate linear model and mixed-effect model can explain about 60% variance of the 

dependent variable, illustrating good performance for these models. 

As is shown in Figure 2, the gap-filling method had increase coverage of MAIAC AOD 

during our study period, from 48% and 59%, average coverage for Aqua and Terra AOD, 

to 67%, mean coverage for gap filled MAIAC AOD. Apart from the water area, the 

coverage of gap filled MAIAC AOD was more than 60%. 
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Mean and standard deviation of gap filled AOD for all station-day was 0.153 and 0.07 

µg/m3 separately, with the range of 0.041 – 0.7. The max monthly AOD was 0.20, which 

occurred in September. 

3.3 Random Forest Model Performance 

    After matching all variables to the 1 km2 fixed pixel, our final training dataset had 10340 

station-day observations and 29 variables. The R-square (R2) and Root Mean Square Error 

(RMSE) for the cross-validation were 0.67 and 12.41 µg/m3 respectively, indicating the 

random forest model is reliable and there is a good fit between estimated PM2.5 value and 

ground-based PM2.5 measurement. The slope and intercept of the univariate linear 

regression between PM2.5 measurement and estimation were 1.06 and -1.94 µg/m3 

separately, demonstrated the random forest model might overestimate some low PM2.5 

concentration and underestimate some high PM2.5 value, especially when PM2.5 

concentration exceeds 150 µg/m3. 

    The importance rank of random forest model predictors, measuring parameters’ 

predictive power, was provided in Figure 5. As the plot suggested, gap filled MAIAC AOD 

was the most important variable, followed by total precipitation, winter, population, spring, 

summer, policy, temperature at 2-meter, relative humidity at planetary boundary layer 

height, and wind speed at planetary boundary layer height. 

3.4 PM2.5 Prediction 

    Figure 6 exhibited the time series plot for monthly PM2.5 ground measurement and 

estimation from the random forest model of each station. Our model captured main 

temporal trends, that is, peak in winter, but it tended to underestimate some high value and 

overestimate low observation, which appears in many stations. Xanadu ground 
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measurements had a similar yearly temporal pattern as other stations and a decrease of 

PM2.5 concentration from 2014-2015 to 2016-2018, which also shown in our model 

estimation. However, our model underestimated the peak value, especially in June 2015, 

with the difference of more than 25 µg/m3 between actual and estimated concentrations. 

Our model performed better in Middelburg in 2014-2016, with more estimation matching 

with ground measurement or only a slight difference. While, in 2017-2018, our model 

misestimated some PM2.5 value, with 4 difference larger than 5 µg/m3. In Diepkloof, the 

monthly PM2.5 ground measurements had high value in winter and low observations in 

summer. However, compared to other stations, it had a larger difference between adjacent 

months. The estimation only matched with the ground monitor on this trend in 2015. The 

largest difference between observed and estimated concentrations occurred in February 

2017 and March 2018, which were more than 10 µg/m3. In Three Rivers, our model 

indicated similar trends for PM2.5 ground measurement and estimation, with the most 

month the same or little difference, except October 2014, February and April 2017. In 

Ermelo, there is a good fit between observed PM2.5 concentration and estimated value in 

most months. The largest underestimation happened in June 2018, with a value of 

approximately 20 µg/m3. 

    Figure 7 showed the estimated annual mean PM2.5 concentration across the study domain, 

ranging from 15.97 µg/m3 to 97.62 µg/m3, with a similar spatial pattern from 2014 to 2018. 

Mpumalanga had a lower PM2.5 concentration than Gauteng, mostly less than 25 µg/m3. In 

other parts of our study zone, except for the stripe Magaliesberg Mountain area centered at 

Pretoria, a large amount of area had PM2.5 value not exceeding 50 µg/m3. The maximum 

annual PM2.5 concentration appeared in the region between Pretoria and Bronkhorstspruit, 
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with a value of more than 80 µg/m3. 

3.5 PM2.5 Concentration Changes in Implementation of New Standard 

    Table 5 shows the percentage of study area meeting annual PM2.5 concentration 

standards. Before the implementation of new policy (2014 – 2015), 42% of the study region 

met the national air quality standard at that time, with the annual PM2.5 concentration less 

than 25 µg/m3. After the new PM2.5 concentration criteria execution (2016 - 2018), only 

14% of the study area complied current level, which is 20 µg/m3 yearly. 

    Figure 8 displayed the difference in PM2.5 concentration due to the change in national 

air quality standard. The most eastern and southern parts didn’t have a significant change 

in PM2.5 concentration. There was a more than 0.5 µg/m3 decrease in PM2.5 concentration 

occurring in the northwestern part of the study domain after the new standard. However, 

since the new rule came into force, we observed a cluster of increase of more than 2 µg/m3 

in PM2.5 concentration existing in the middle of Gauteng and west of Mpumalanga, 

especially in Embalenhle and Secunda, with an increase of more than 5 µg/m3.  

4.Discussion 

    It is well recognized that fine particle from multiple sources, including fuel combustion, 

vehicle emission and domestic burning, is associated with a large burden of illness in South 

Africa, especially respiratory diseases. To assess and prevent the current air pollution, the 

South Africa government issued Air Quality Act in 2004 and put in place various measures 

in the past 15 years, such as developing ground air quality monitoring station network. 

However, these monitoring stations mainly located in the urban or industrial area with a 

high density of people, which is insufficient to assess fine particle exposure and risks at a 
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local level. Previous researchers have conducted several modeling methods, like land-use 

regression model, and GEOS-Chem model, to estimate PM2.5 concentration and their 

impact on public health. Nevertheless, these studies have coarse spatial resolution and low 

prediction power, which is limited to provide PM2.5 measurement at fine spatiotemporal 

resolution for epidemiological research.  Therefore, our model for estimating daily surface 

PM2.5 concentration at 1 km2 resolution in the Johannesburg Area, which implemented 

MAIAC AOD measurement and random forest method, is the first advanced model in 

Johannesburg area, improving the accuracy and robustness for the model as well as the 

coverage and resolution for PM2.5 measurement.  

    Estimation from this model has captured the temporal pattern for each ground 

monitoring station. Typically, maximum PM2.5 concentration occurred in May to August, 

the wintertime for the southern hemisphere, and minimum concentration was observed 

from November to February, the local summer. This trend can be attributed to the 

increasing amount of coal consumption for heating and electricity, due to a lower 

temperature in the winter season. However, for monthly PM2.5 concentration, our model 

might misestimate some value. The variable with the highest prediction power in our model 

is the gap-filled MAIAC AOD, whose temporal distribution did not correspond with PM2.5 

concentration in South Africa. PM2.5 concentration peaked in winter, mostly June and July, 

while maximum AOD value occurred in late winter and early spring, that is, August and 

September, which can be observed on both satellite AOD and AERONET AOD (Adesina, 

Piketh et al. 2017) (Hersey, Garland et al. 2015). AOD is a quantitative measurement for 

aerosol presenting in the atmosphere column. However, the composition of the aerosol 

column is not homogeneous vertically and only aerosol near ground could be inhaled and 
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cause adverse health effects. In winter and early spring, biomass burning in the tropical 

area could be transported to South Africa to the upper air. However, it would not affect 

surface atmosphere aerosol, which mostly comes from domestic pollution. This 

transportation causes an increase in aerosol, as well as AOD, but not in surface PM2.5 

concentration (Hersey, Garland et al. 2015) (Tyson et al., 1996). Another evidence for 

aerosol column inhomogeneity is the Goddard Ozone Chemistry Aerosol Radiation and 

Transport (GOCART) model, which estimated the composition of total column AOD. The 

maximum proportion of organic carbon in total column AOD was observed in August and 

September, consistent with the onset of biomass burning in the tropics. Therefore, different 

vertical composition of the aerosol column in different time causes the discrepancy of 

PM2.5 and AOD and we introduced season variable to the model to increase the accuracy 

of prediction. However, lack of predictors characterizing aerosol property affects the 

prediction capability of the model. 

    Annual PM2.5 estimation from our model shows the spatial pattern for fine particle 

pollution. Yearly average PM2.5 concentration eliminates the influence of time-dependent 

variables such as meteorological factors and MAIAC AOD, mainly reflecting the 

difference in elevation, land use type and population density in fixed grid. The eastern part 

of the study domain, in other words, Mpumalanga Province, has the lowest PM2.5 annual 

concentration. Since the Mpumalanga province was divided into west high-altitude 

grassland and east mountain, most of the land is used for agriculture, which means little 

PM2.5 sources, resulting in lower PM2.5 concentration. However, in Pretoria and its east, 

max PM2.5 concentration appears, which is mostly driven by elevation. Pretoria, as 

administrational capital, located in a valley surrounded by Magaliesberg Mountain, has a 
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large density of population, well-developed road network and manufacturing industry, 

which means prodigious PM2.5 sources. Due to the unique geographic location, particulate 

matters, generated from Pretoria and other industrial regions, quickly spreads around the 

surroundings, then was blocked by the mountain, causing accumulation of fine particles in 

this valley, forming PM2.5 pollution hotspot. 

    The difference in PM2.5 concentration, calculated from both ground monitor and our 

model, shows a constant trend. There was a reduction in PM2.5 concentration observed in 

the northwestern part of the study area, which could be attributed to the execution of the 

Air Quality Act 2012 Framework. The Department of Environmental Affairs set the new 

standard for fine particle, listed some manufacturing activities might exert adverse effects 

on human health and environment, and enact maximum emission standard for these listed 

activities. However, due to the lack of effective supervision and penalty, PM2.5 

concentration in most study regions didn’t have a significant change. Furthermore, in 

Embalenhle and Secunda, there is an evident increase in PM2.5 concentration. Secunda has 

Sasol South Africa Ltd manufacturing operations complex, which undertaking coal mining 

and synthesis of related chemicals. In 2016, Secunda Synfuels Operation also submitted 

application for postponement of compliance timeframes for the Air Quality Act Maximum 

Emission Standard and gain approval in 2018 (Sasol Ltd 2016) (Department of 

Environmental Affairs 2018). Therefore, PM2.5 concentration in some areas has increased 

since the implementation of new ambient air quality standards. 

    The limitation of this study is the lack of ground PM2.5 observations for some stations. 

In our training dataset, half of the ground stations only had PM2.5 concentration data 

available for less than half of study time, which would influence prediction ability across 
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the study period. For those stations only had PM2.5 data for one or two years, they would 

need to borrow prediction capability from other stations to estimate PM2.5 concentration 

for the entire study time. In addition, there is non-random missing value for AOD after the 

gap fill procedure, which might affect the performance for random forest, causing 

misestimation of PM2.5 concentration. The temporal and spatial variation in PM2.5, as well 

as the difference for new air quality standard, might be related to the non-random missing. 

5.Conclusion 

    Our model is the first advanced model estimating daily PM2.5 concentration at fine spatial 

resolution in the Johannesburg area, which combined satellite AOD, meteorological factors 

as well as land-use variables, and increased temporal and spatial coverage for PM2.5 

observations. Estimated PM2.5 concentration from this model could be applied to future 

epidemiologic health study as PM2.5 exposure data. By comparing PM2.5 concentration 

before and after the execution of new ambient air quality, we concluded that the strategic 

objectives for national ambient air quality standards have yet to be met. Since this study 

use the simple linear regression and mixed-effect model to gap fill MAIAC AOD, in the 

future, to further improve prediction capability, more accurate and robust model would be 

developed. Besides, more attention should be paid to PM2.5 composition and its adverse 

effects on health and environment in future study. 
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7.Figures and Tables 

 

Figure 1. Study Domain and Ground Monitoring Stations 

 

Figure 2. Coverage of AOD 

 

Figure 3. Time Series Plot for Monthly PM2.5 Ground Measurements
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Figure 4. Scatter Plot for 10-fold Cross-validation of Daily PM2.5 

 

Figure 5. Importance Rank Plot 
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Figure 6. Cont. 
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Figure 6. Observed and Estimated Monthly PM2.5 Concentration for Each Station  
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Figure 7. Annual Estimated PM2.5 Concentration Map 
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Figure 8. Difference in Annual PM2.5 Concentration for New Standard 
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Table 1. National Ambient Air Quality Standard for PM2.5 

Averaging 

Period Concentration 

Frequency of 

Exceedance Compliance Date 

24 hours 65 µg/m3 4 Immediate‒31 December 2015 

24 hours 40 µg/m3 4 1 January 2016‒31 December 2029  

24 hours 25 µg/m3 4 1 January 2030 

1 year 25 µg/m3 0 Immediate‒31 December 2015 

1 year 20 µg/m3 0 1 January 2016‒31 December 2029  

1 year 15 µg/m3 0 1 January 2030 
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Table 2. Number of Observations and Mean PM2.5 for Ground Stations 

Station Name Number of Observations Mean PM2.5 (µg/m3) 

Bodibeong 212 25.21 

Boitekong 72 17.75 

Bosjesspruit 618 20.67 

Buccleuch 190 34.55 

Club 1316 16.18 

Diepkloof 1043 21.80 

Embalenhle 1386 19.64 

Ermelo 1168 20.31 

Hammanskraal 385 26.63 

Hendrina 1020 17.65 

Jabavu 78 24.15 

Kliprivier 648 36.62 

Middleburg 1281 16.17 

Olivenhoutbosch 132 88.42 

Sebokeng 662 29.88 

Secunda 677 30.46 

Sharpeville 927 37.86 

Three Rivers 953 27.64 

Witbank 1196 25.42 

Xanadu 838 41.56 

Zamdela 125 23.15 
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Table 3. Linear Regression between Aqua and Terra AOD 

 AODAqua = α1 + β1*AODTerra AODTerra = α2 + β2*AODAqua 

 α1 β1 R2 α2 β2 R2 

Spring 0.034 0.848 0.57 0.029 0.676 0.57 

Summer 0.053 0.682 0.31 0.049 0.451 0.31 

Fall 0.021 0.892 0.57 0.024 0.644 0.57 

Winter 0.019 0.823 0.59 0.024 0.718 0.59 

 

Table 4. Mixed-effect Model for AERONET and Satellite AOD 

 AquaAERONET = α1 + β1*AquaSatellite TerraAERONET = α2 + β2*TerraSatellite 

 α1 β1 R2 α2 β2 R2 

Spring 0.043 0.936 0.63 0.021 1.121 0.74 

Summer 0.042 0.590 0.021 0.743 

Fall 0.042 0.711 0.021 0.909 

Winter 0.043 0.975 0.021 1.115 

 

Table 5. Percent of Area Meeting Annual PM2.5 Standard 

 < 20 µg/m3 20-25 µg/m3 

Before 16% 26% 

After 14% 26% 

 

 

 


