
Distribution Agreement

In presenting this thesis as a partial fulfillment of the requirements for a degree from Emory

University, I hereby grant to Emory University and its agents the non-exclusive license to

archive, make accessible, and display my thesis in whole or in part in all forms of media, now or

hereafter now, including display on the World Wide Web. I understand that I may select some

access restrictions as part of the online submission of this thesis. I retain all ownership rights to

the copyright of the thesis. I also retain the right to use in future works (such as articles or

books) all or part of this thesis.

Shen Gao April 7th, 2019

 Cloud-based Active Learning System for Question Answering on Multiparty Dialogue

by

Shen Gao

Dr. Jinho Choi

Adviser

Department of Computer Science

Dr. Jinho Choi

Adviser

Dr. Ken Mandelberg

Committee Member

Dr. Shun Yan Cheung

Committee Member

Dr. Michael Carr

Committee Member

2019

 Cloud-based Active Learning System for Question Answering on Multiparty Dialogue

By

Shen Gao

Dr. Jinho Choi

Adviser

An abstract of

a thesis submitted to the Faculty of Emory College of Arts and Sciences

of Emory University in partial fulfillment

of the requirements of the degree of

Bachelor of Sciences with Honors

Department of Computer Science

2019

Abstract

Cloud-based Active Learning System for Question Answering on Multiparty Dialogue

By Shen Gao

This thesis presents the design and architecture of an Active Learning system for

Question Answering on Multiparty Dialogue. The goal of this system is to collect a robust

Question Answering dataset and to improve the performance of the system on Question

Answering challenges on Multiparty Dialogue. The system has an interactive web-based user

interface which allows users to challenge the system with their own questions regarding a short

passage of dialogues between multiple characters in a TV series. This system makes use of a

state-of-art Machine Learning model to predict the answers to users’ questions. In the same

time, the system learns from users’ responses and performs online update on the model. The

system uses probability functions to guide user towards contributing data needed most for

model improvement. The system is designed to handle heavy internet traffic by efficiently

storing data and by carefully synchronizing the shared resources in the web system. The

system has shown promising results in guiding users to contribute high quality data useful for

model training.

Cloud-based Active Learning System for Question Answering on Multiparty Dialogue

By

Shen Gao

Dr. Jinho Choi

Adviser

A thesis submitted to the Faculty of Emory College of Arts and Sciences

of Emory University in partial fulfillment

of the requirements of the degree of

Bachelor of Sciences with Honors

Department of Computer Science

2019

Acknowledgements

First, I would like to thank my advisor, Dr. Jinho Choi for his support on this project. I

joined Dr. Choi’s lab in my junior year. Dr. Choi has not only taught me the fundamentals about

Natural Language Processing when I was completely new to the field, but also guided me when

I faced difficulties in this project. I truly appreciate the opportunity to work with Dr. Choi.

Secondly, I would like to thank my thesis committee members, Dr. Ken Mandelberg, Dr

Shun Yan Cheung and Dr. Michael Carr for providing constructive advice on this thesis.

Lastly, I would like to thank my fellow researchers at Emory NLP lab: Zhengzhe Yang,

Liyan Xu, Han He, Gary Lai, James Finch, Changmao Li, Jose Coves, Xinyi Jiang and Kate Li for the

insights they provided during lab meetings, that made this thesis possible. I would also like to

thank my girlfriend, Wenzhu Pan, who is a student at Goizueta Business School for the

emotional support she provided during my research career.

Contents

1 Introduction 1

1.1 Question Answering . 1

1.2 Question Answering on Dialogue 2

1.3 Active Learning . 3

1.4 Layout of the thesis . 4

2 Background 6

2.1 QA question types . 7

2.1.1 By Answer Formats . 7

2.1.2 By Degree of Inference 8

2.2 Annotation . 10

2.2.1 Amazon mTurk . 11

2.2.2 Process of Annotations 12

2.3 Friends Dataset . 15

i

2.4 Baseline Model . 17

3 Approach 19

3.1 User Interaction . 20

3.2 User Guidance . 21

3.3 Architecture . 24

3.3.1 Database . 25

3.3.2 Application Programming Interface 27

3.3.3 User Interface . 30

3.4 BERT Service . 32

3.4.1 Snapshot . 34

4 Experiment 35

4.1 Pre-Deployment . 36

4.1.1 User Guidance . 36

4.1.2 Environment . 37

4.1.3 Latency Test . 37

4.1.4 Concurrency Test . 38

4.2 Result . 38

4.2.1 Data Collecting & Model Improvement 38

4.2.2 User-Model F-1 . 40

5 Conclusion 41

List of Figures

2.1 Amazon Mechanical Turk Worflow 11

2.2 Bidirectional Flow in BERT; picture edited from [3]; The

arrows indicate the information flow from one layer to the next.

The green boxes at the top indicate the final contextualized

representation of each input word 17

3.1 User Interaction with Active Learning Model 20

3.2 Model-View-Controller Design in the System 25

3.3 Database Schema for the Active Learning System 26

3.4 Span Selection Tool Tutorial 31

3.5 Main User Interface . 31

4.1 User-Model F1 change versus time 40

iv

List of Tables

2.1 Sample Dialogue from TV series Friends 8

2.2 Inter-Annotator Agreement of Binary Question Annotations.

P denotes with plots presented to annotators and NP denotes

the scenes without plots presented the annotators; Question

Number dropped from 4 to 3 per scene in round 3 15

2.3 Inter-Annotator Agreement of “W” Question Annotations. . . 16

2.4 Count of “W” questions by type 16

3.1 Stats for Overhead of BERT execution, the data is an average

of 50 experiments on a single scene with same question rounded

up to the closest integer, experiment is conducted on machine

with i7-6700HQ with CPU computation 32

v

4.1 Results for the user guidance testing over 1000 ; All Question

Annotation Count is initialized to 0; P (Qi) denotes the out-

put from the probability function; ˆP (Qi) is normalized true

probability . 36

4.2 Request Time of API interfaces in staging instance; results

are in ms and obtained by average of 100 requests; predict is

tested by test data from 100 independent scenes of different size 38

4.3 Comparison between data collected in Annotation vs in Active

Learning; CAN : Count of questions from Annotation; PAN :

Percentage of questions from annotation; CAL: Count of ques-

tion from Active Learning; PAL: Percentage of questions from

Active Learning . 39

1

Chapter 1

Introduction

1.1 Question Answering

The topic of Question Answering has been drawing the attention of the Natural

Language Processing community for many years. Question Answering is a

Computer Science discipline focused on building automated systems which

are able to answer questions from humans in natural language [2]. Based

on this concept, a question answering challenge usually starts by giving the

machine a question and texts containing relevant information to the question

in natural language. The machine is then responsible for providing an answer

to the question raised.

Question Answering is crucial in improving the human-machine interaction,

because in order to attempt the Question Answering challenge, the machine

must not only be able to understand the question in natural language but

2

also understand the relevant context for forming an answer. Some of the most

widely used applications of Question Answering system in the industry are the

variety of personal voice assistants: Google Assistant, Apple Siri and Amazon

Echo etc, which are able to answer questions based on the open-domain

context of almost the entire internet.

1.2 Question Answering on Dialogue

There have been a number of attempts made in the Natural Language Pro-

cessing community on Question Answering challenges with a variety of texts

and questions. The specific classifications of the questions will be discussed

in Chapter 2.1. The texts on the other hand, vary by size and types. Some

data-sets simply provide a knowledge base containing quantities of passages

as context, which requires the model to use Information Retrieval models

to filter relevant passages to a specific question. Examples of this kind in-

cludes Quasar-T (Question Answering by Search and Reading) [4], which is

based on Trivia question set with 100 passages collected for each question;

Search QA [5], which is based on Jeopardy! question set with 50 web articles

collected for each question. Other data-sets provide more specific passages,

usually annotated from non-fiction writings or descriptive articles. Examples

3

of this kind include SQuAD (Stanford Question Answering Dataset) [8],

which is annotated from Wikipedia articles.

Regardless of the corpus size, all of the passages selected by previous work

feature non-fictional, descriptive or scholarly writings as relevant context

to the questions raised. Very little work has been conducted on Question

Answering with dialogue as context. Dialog data is significant, because not

only it is available in large quantity, but also the quantity is growing rapidly.

There were approximately 21.9 billion online messages sent each day in the

year of 2017, an increase of 17% increase from an daily average of 18.7 billion

from the year of 2016[10]. This resource only recently became available due to

the rapid growth of information technology. The ultimate aim of this project

is to collect a robust question answering data-set based on dialogue data as

well as to explore ways of attempting the Question Answering challenge on

this data set.

1.3 Active Learning

During the annotation phase of the project, there were some impediments,

on which Chapter 2.2 will elaborate. In order to collect more data for a more

robust data set and explore different ways to improve the performance of

4

model, a web-based online Active Learning system was developed in parallel

to the conventional offline data collection and offline model tuning.

Active Learning is a sub-branch of Machine Learning in which the learning

system will interactively query the user to obtain the desired data from the

user[9, 11]. In the implementation of the Active Learning model for Dialogue

Question Answering, the system will first analyze the performance of the

Machine Learning model against a fixed set of test cases, then prompt the

user who use the system to produce data that could potentially assist in the

improvement of the model, and finally the system will periodically use the

collected and targeted data to train and improve the model.

The main focus of the this thesis will be on the Active Learning system

built to assist the Question Answering model, including its architecture and

much of the engineering details.

1.4 Layout of the thesis

Chapter 2 will examine the rest of the background information needed for

illustrating the Active Learning system. The chapter will begin by defining

the specific types of questions we aimed to attempt, the data collection or

annotation process for our data, the source and statistics of the data set

5

generated and the baseline Machine Learning model selected for the Active

Learning system.

Chapter 3 will discuss the design and implementation of the Active Learn-

ing system. It will start by discussing the implementation details of the

system as a web application and then move on to the system as a machine

learning service.

Chapter 4 will summarize the work done in the deployment and testing of

the system as an web application and then analyze the results and collected

by the time writing this thesis.

Chapter 5 will provide a summary to this project and intended future

work on the Active Learning system after the writing of this thesis.

6

Chapter 2

Background

This chapter focuses on the work done before the development of an

Active Learning system. Section 2.1 will start by categorizing the common

types of the questions with examples and defining the question types we

picked to attempt in Dialogue Question Answering. Then Section 2.2 and

Section 2.3 will discuss the results and process of the annotation phase of the

project as well as its format and statistics. Finally, Section 2.4 will discuss

the performance and methodology behind the baseline Question Answering

model, BERT [3] (Bidirectional Encoder Representations from Transformers),

that we picked for the Active Learning system.

7

2.1 QA question types

2.1.1 By Answer Formats

During the preliminary stages of the data collection, the project started

with iterations of experimental annotations by the researchers who are part

of the project to explore what potential questions are meaningful in the

context of dialogues and what forms the reasonable answers to them take. By

English grammar [7], questions can be categorized into “Yes/No” questions

and “W” questions. The previous require a binary answer while the latter

have open-ended answers.

Since the binary questions by definition only have a limited set of answers,

no restrictions need to be applied on the question during data collection.

On the other hand, “W” questions can have answers of arbitrary length and

content. We applied the following limitation on the answer to “W” questions:

the answer must exists as a continuous span of texts inside the original passage.

This procedure is common in most popular Question Answering data sets.

Examples of data sets that follow this procedure include all of the data sets

mentioned in Chapter 1: Quasar-T [4], Search QA, [5], SQuAD, [8].

8

2.1.2 By Degree of Inference

Even if the answer to different questions take the same format, the questions

themselves can be vastly different in terms of the inference needed to resolve

the question. Take the dialogue in Table 2.1 as an example:

[Scene : A kitchen somewhere . Monica is interviewing for a job]
Interviewer Alright , let s see if you ’re as good in person as you are on
paper . Make me a salad .
Monica Geller A salad ? Really I , I could do something a little more
complicated if you like .
Interviewer No , just a salad will be fine .
Monica Geller You got it .
Interviewer Now , I want you to tell me what you ’re doing while you
’re doing it .
Monica Geller Alright , well I ’m tearing the lettuce .
Interviewer Uh-huh . Is it dirty ?
Monica Geller Oh - oh , no no do n’t worry , I ’m gon na wash it .
Interviewer Do n’t , I like it dirty .
Monica Geller That ’s your call .
Interviewer So , uh , what are you going to do next ?
Monica Geller Well , I thought that I would cut up the tomatos .
Interviewer Are they , uh , firm ?
Monica Geller They’r alright .
Interviewer You sure they have n’t gone bad ? You ’re sure they ’re not
very , very bad ?
Monica Geller No really , they ’re OK .
Interviewer You gon na slice them up real nice ?
Monica Geller Actually , I was gon na do them jullienne .
Interviewer Aaaahhhhhhh .
Monica Geller I ’m outa here .”,
Q1 Does the interview includes making a salad?
Q2 Is the interviewer picky?

Table 2.1: Sample Dialogue from TV series Friends

9

In order to resolve Q1, one can use the textual similarity of the highlighted

text to collect information on the fact that Monica is taking an interview

about making a salad and therefore answer,“Yes”. Very little inference is

needed from the text to draw this conclusion. In attempting to resolve Q2,

one can only infer from the fact that the interviewer kept asking about the

state of the ingredients of the salad, making specifications on the salad and

the impatient reactions from Monica to conclude that the interviewer is a

picky person. Significant inference is needed and there is no direct text that

has a similar meaning to picky.

Questions like Q1, which are answerable without inference from the

contextual similarity between text inside original passage and those inside

questions, are classified as Explicit Questions. Questions like Q2, which are

answerable through inferences of the text with little or no textual similarities

between the passage and the answer, are classified as Implicit Questions.

This type of question in dialogue usually describes some kind of state of an

entity inside the dialogue.

10

2.2 Annotation

The passages for dialogues are selected from the transcripts of famous TV

series Friends. The goal of the annotation is to generate question-answer

pairs from all episodes of Friends. Given the number of scenes inside the TV

series and limited researchers we have for annotation, we decide to make use

of the online crowd-sourcing platform, Amazon mTurk to gather support

from cloud workers. Instead of using the whole episode which can be lengthy

and hard to grasp, we broke down the episodes into a more reasonable unit

of scenes, from which the questions need to be generated.

As far as question types go, we picked both “W” questions and binary

questions as types for annotation. In terms of Explicit and Implicit Questions,

we only picked implicit questions for annotation on binary questions. If we

were to generate question answers pairs for “W” questions, we would need

to provide the states to be selected for the entities inside the conversation,

since the states describing an entity are often not available in the original

passage. Finding a comprehensive set of adjectives describing the possible

states is challenging. An incomplete set of states to choose from, posted in

instructions to workers, would exert unwanted guidance on the workers. The

workers could only generate questions based on the selections.

11

2.2.1 Amazon mTurk

Figure 2.1: Amazon Mechanical Turk Worflow

Amazon mTurk is a crowd sourcing platform which helps individuals

or small businesses outsource jobs to a distributed workforce. To start with,

the requester uses HTML and JavaScript to build a web template containing

the answer fields to be collected, which will be displayed to the workers

who attend the job. Then, a csv data file is used to populate the template

with information describing a specific task. The requester also specifies the

reward for each question completed. Additionally, the requester has the

option of specifying criteria, which workers need to fulfill in order to work

on the question including: native language, experience ... etc. Once the jobs

are posted, the workers use the web interface to complete the tasks and the

system collect results automatically. The requester finally has the chance of

12

performing quality control before paying the workers by rejecting the answers

that do not follow the instructions. The quality control phase also concludes

a batch of mTurk cycle.

2.2.2 Process of Annotations

The annotation process started with experimental annotations during which

we used small batches of data for question-answer generation so that we could

tweak the instructions and the interface for optimal results. Annotation for

the two types of questions were run in parallel and I was primarily responsible

for the binary questions. We developed two separate interfaces for the “W”

questions and binary questions. The prior has span selection tool which allows

user to select a continuous span for each of the questions. The latter allows

user to choose from a drop-down box of answers Yes and No. One small detail

worth noticing here is that we allowed users to select more than one span for

each question. We also supplied each template with the data granulated into

scenes from the transcript of the seasons of Friends. In order to provide a

uniform distribution of question types, we asked workers to generate equal

number of implicit and explicit questions for the binary case. Since each scene

varies in the amount of information for types of “W” questions, we asked

13

annotators to generate 4-6 “W” question with no limitation on the question

types. We also made use of the JavaScript functions to do preliminary quality

assuring on the input data includes ensuring all questions are attempted and

answered. We also proof read all of the responses from annotators to reject

question answer pairs that obviously diverged from the context of Friends

dialogue as supplemental quality control.

Following the question-answer generation phase, another phase of annota-

tion, the verification phase was conducted to record the agreement of human

performance on the types of questions. The goal of the verification phase was

to ensure high agreement between human beings on the question generated.

We developed two other similar annotation interfaces which allow different

workers to attempt the questions created by workers in question-answer

generation phase to record Inter-Annotator Agreement. The agreement

statistics was computed by F-1 score evaluation metric[8] for “W” typed

questions and exact-match percentages for the binary questions.

We experienced challenges during the annotation for both “W” questions

and binary questions. For “W” questions, the initial batch showed that some

question, were too ambiguous to answer. For binary questions, we noticed that

the use of ambiguous pronouns in generated questions caused the confusion

14

between annotators. We also noticed that collected questions contain much of

the wording from the original questions which would undermine the quality

of data for training. This occurred despite the fact that instructions had been

provided to require paraphrasing from original text.

We updated the instructions to disallow the use of pronouns, and to

substitute pronouns with explicit names of entities. We also supplied plots

from previous annotation on the scenes[13], which is paraphrased, descriptive

text of the content of a conversation in a scene, to the annotators of binary

questions so that they could directly combine the plot information with

original text to form questions. We also tried to reduce the number of

questions required to be generated from each scene, hoping for higher quality

binary questions.

15

2.3 Friends Dataset

Despite the effort made to improve the agreement between question-answer

generation phase and verification phase in binary questions, we could not

obtain high-agreement data between the annotators in experimental phase.

The following table summarizes the result of the agreement in binary questions.

ITA change Binary Annotations
Round Total EM Implicit EM Explicit EM

1 70.45% 70.45% 70.45%
2(P) 79.54% 72.72% 86.37%

2(NP) 77.08% 81.25% 72.91%
3 69.23% 74.35% 64.10%

Table 2.2: Inter-Annotator Agreement of Binary Question Annotations. P
denotes with plots presented to annotators and NP denotes the scenes without
plots presented the annotators; Question Number dropped from 4 to 3 per
scene in round 3

Since the answer is strictly binary, a random guess would produce an

expected value of agreement of 50%. We aimed that the human agreement

to stabilize in high 80% to 90% for the data to be useful in training, which

was never achieved. We also expected the agreement for explicit questions to

be higher than that of implicit question since the latter would require more

inference from the text to solve and should result in more divergence in the

opinions of annotators. Since no high quality data was available for binary

typed questions, we decided to drop those types of questions in the further

16

development of the project.

The annotations for “W” typed questions, on the other hand, showed

promising results in experimental phase. The Inter-Annotator Agreement

remained stable above 80% indicating the questions generated could be useful

in the development of an Question Answering model.

ITA change in “W” annotations
Round F1

1 83.42%
2 83.99%
3 83.12%
4 88.17%

Table 2.3: Inter-Annotator Agreement of “W” Question Annotations.

With the promising results observed in Table 2.3, we proceeded to collect

the 10,610 questions from 1,222 scenes. The overall Inter-Annotator Agree-

ment remained at the level stayed at 81.82%. The questions are further

classified by their types as:

Type Count
What 2,058
Where 1,896
Who 1,847
Why 1,688
How 1,628

When 1,493

Table 2.4: Count of “W” questions by type

17

2.4 Baseline Model

The Bidirectional Encoder Representations from Transformers (BERT) [3]

is developed by Google AI for Question Answering. Unlike conventional

models which usually follows End-to-End design, BERT incorporates a pre-

trained layer learned from text data publicly available on the web capturing

the general grammar and contextual information on a language. It also

introduces a new architecture allowing bidirectional flow between layers of

network (Figure 2.2). It have showed outstanding performance on many other

question answering data sets and pushed the F-1 score and Exact Match to

an unprecedented record of 87.4% and 93.2% in sQuAd data sets [8].

Figure 2.2: Bidirectional Flow in BERT; picture edited from [3]; The arrows
indicate the information flow from one layer to the next. The green boxes at
the top indicate the final contextualized representation of each input word

18

The code for BERT has been open sourced by Google and thus is convenient

for integration with the system. Limited by the resource available, we were

only able to train the BERT model with 12 layers with 80% of the total

annotation we collected, totaling 8535 questions. We also used the pre-

training provided by Google since the pre-training process is time consuming

and the computing resources needed are beyond our power. According to

Google, the pre-training provided took 4 days on 4 to 16 cloud TPUs [3].

19

Chapter 3

Approach

In retrospect of the failure of collecting high quality annotations for the

binary question types, we decide to explore unconventional way of model

learning as well as data collecting. This chapter will focus on the design and

development of the Active Learning system. The goal of the system is to guide

users towards contributing to types of data needed by the model to improve,

as well as actively learning from the responses of users online. Section 3.1

will explain the interaction design between the user and the system. Section

3.2 will discuss details on how the model guides user towards better input for

the system. Section 3.3 will illustrate the web-application design details of

the system as well as security and performance considerations. Section 3.4

will explain how the system is optimized for incorporating the BERT model

into online production.

20

3.1 User Interaction

Traditional data collecting platforms like Amazon mTurk provide a platform

where workers can provide contribution to the data set in exchange for

monetary rewards. To the workers, on the other hand, the optimal strategy

would be to minimize the amount of time spent on each task to maximize the

reward. The quality assurance check from the requester serves as a bar raiser

for the quality of the work. But for tasks such as those in verification phase

where the worker is asked to attempt questions of which ground-truth answers

are unknown to the requester, manually performing the quality assurance

requires the same amount of work as the work to be done by the workers.

Therefore, it is infeasible for the requester to perform quality control on tasks

like these.

Figure 3.1: User Interaction with Active Learning Model

21

In our Active Learning System design, we try to explore a user-system

relation which involves more interaction and hopefully will inspire the user

with more spontaneity in contribution. We start with a model trained for

answering “W” questions from scenes in Friends. The system selects scenes

and question types for the user to work on. Then user can challenge the

system with a question of the type specified. The system queries the model

for an answer, and displays the answer to the user. The user then has the

chance to confirm or correct the system’s response. The collected responses

are trained automatically by the system in batches to update the model. The

user can witness the growth of the model by visiting the sites and asking the

same type of questions, which, we hope, will encourage the user to contribute

more on the system.

3.2 User Guidance

The Active Learning System provide guidance on user input by two means:

selecting the scene and selecting question type for user to contribute to.

For the scenes, the goal is to ensure an even distribution among all scenes,

excluding ones that will be reserved for testing. For question types, the

goal is to encourage user to contribute more on the question types that: 1.

22

annotated the least; 2. the model showed insufficient performance on. On

the other hand, since continuously requesting the same scene and question

type would result in bad user experience, the system make use of random

generation with probability to ensure enough freshness in the user experience.

Since the data set has abundant number of scenes available, for scene

selection, we use an uniform distribution for the scenes which has least count

of annotation:

P (Si) =

1

Nmin
Si = Smin

0 Si 6= Smin

(3.1)

where Si denotes the count of annotation of Scene i, Smin denotes the the

min of all Si and Nmin denotes | {Si | Si = Smin} |.

For the question type selection, we start by defining the normalized

question type count Q̂iN = QiN

QN
, where QiN is the count of annotations on

question type Qi and QN is the total count of annotations.

f(Q) = 3− (Q̂iN + QiF1 + QiEM) (3.2)

P (Q) =
c− 1

e3 − 1
× (ef(Q) − 1) + 1 (3.3)

Here QiF1 and QiEM denotes the F-1 score and Exact Match for question

type Qi and c is a scaling factor used to control the upper bound of the

23

probability of a single question type. Since QiN , QiF1 and QiEM all have

range [0, 1], f(Q) has range of [0, 3]. The exponential function will then have

range of [1, e3]. The factor c scales the probability linearly range to [1, c]. It

denotes the ratio of probability of a question type with minimal statistics

being chose and one of an answer with maximal statistics being chose. The

exponential function guarantees the discrepancy between low stat and high

stat will rise rapidly while c ensures a question type with perfect statistics

still have 1
c

chance of selected with respect to a question type with minimal

statistics. The final probability is computed by normalizing P (Qi) for all

question types.

In order to prevent the side effect that revealing the test case statistics in

user guidance could cause biases in our results, a set of data disjoint with the

training data and test data is separated and used for obtaining statistics

for user guidance purpose only. Here QiF1 and QiEM are the statistics from

such dev data sets. The true exact match and F-1 scores of the test data

are not visible to the system during user guidance.

24

3.3 Architecture

The implementation of the system as an web application follows the design

pattern of Model-View-Controller[12]. In this design pattern, the Model is

responsible for managing all of the data relevant to the web application. The

View is responsible for organizing and displaying the data to the user. The

Controller contains the logic needed for interactions between the model and

view as well as serving as the handlers to the requests from front-end.

Many pieces of open-sourced software are incorporated into the build

of the Active Learning System. The Model layer is implemented using

standard mySQL database which stores all of information on the passages

text, user responses and machine learning model statistics. The View part is

implemented in HTML and JavaScript with the help of JQuery selectors. The

Controller part is implemented in python using the Django Framework[14],

which is a python based backend server framework. The Model and the View

is networked through standard REST API calls, while the communication

between controller and model is implemented by the convenience of Django

Object-Relation Mapping(ORM)[14], which allows manipulation of database

entries in python.

25

Figure 3.2: Model-View-Controller Design in the System

3.3.1 Database

The following database schema has been designed to support the operation

of the Active Learning System.

In the Figure 3.3, all entities with solid contour represent a table and all

with grey contour rep sent an abstract entity. Solid arrows represent Foreign

Key Pointing while grey arrows represent Inheritance in python code.

In an attempt to further optimize the database performance, Indexing

is applied to all fields related to serve a user request, which includes: hash

field on User Response, which is needed when user correct the answer from

26

Figure 3.3: Database Schema for the Active Learning System

27

system. response count field on Scene, which is needed when the system

selects a scene to serve the user. Aside from database indexes, since updating

index can be expensive, all writes into database are postponed after the

controller has returned response to user by starting a separate thread just

before the return the response.

In order to ensure consistency in the database during potential concurrency

racing conditions, row-level pessimistic lock [1] is applied on the Question

Type table and Scene table, since different users can respond in a racing

condition and increment the count of the total number of a specific scene.

The row lock prevents the dirty writes into the field of count and grantees

the ready-after-write constraint on count fields, such that the user guidance

module (Section 3.2) can use the latest available data on computing the

probability for each scene and question type.

3.3.2 Application Programming Interface

Three Representational State Transfer (REST) based API calls are designed

for communication between the front and back end. Since adding a user

management system could discourage people from using the system as it

would require all visitors to register and sign in, all interfaces are open to

28

public without authentication.

As soon as the front-end page loads, a GET call is sent to controller,

requesting for the scene and question type data. To reduce the overhead in

front end rendering, the HTML text of each scene that needs to be rendered

is pre-computed and stored in display text in Scene table. The controller

follows the user guidance procedure discussed in Section 3.2 to pick a scene

and question type then returns the scene display text and question type.

After the user finished composing a question, a second POST call is sent

to controller, which contains the payload with the question submitted by the

user. The question is verified by front-end to be consistent with the question

type required by the first GET call. The controller will then create a User

Response entry to store the question from the user. The controller then

queries the BERT service for an answer to the question, which the controller

will store as an Answer entry in the database with from model bit turned

on. Finally, the controller returns the prediction to the question and the view

will highlight the answer span inside the selection area in a different color

from user selection.

Once the user edits or confirms the answer, the third POST call is made

from front-end to either to confirm model prediction or to correct model

29

prediction. The controller will then add user’s correction as another Answer

entry with from model bit turned off. Note since the interfaces are open to

public and no authentication is required, a malicious user could abuse the

third POST call to change the responses from a previous user arbitrarily if the

interface is not implemented with care. To resolve the potential loophole, the

controller assigns each response with a unique identifier obtained by Django

PBKDF2 Password Hasher [14] with input from current time stamp, scene

id and a random salt in the second POST call and returns the hash with

answer to user. In other words, the controller creates a password hash for

each response which is hard to guess, given only the id of the scene. The id

of the scene is the only piece of information public to the users. This ensures

a malicious third party cannot obtain the hash by brute force attack without

significant amount of computation. The hash is also needed in the payload

of the third POST call along with the correction information to be used for

identification purposes for the original response.

30

3.3.3 User Interface

The User Interface of the web application is straight-forward. The user

starts interaction with the web application by reading a section containing an

introduction of the website, then the user needs to pass a tutorial for using

the span selection tool developed for answer selecting purpose (Figure 3.4).

Once the user has completed the tutorial, the main interface (Figure 3.5)

populates and the user can submit a question using the input fields on the

right hand side. Since the scenes are selected at random and there are cases

where a certain type of question is impossible to formulate in one scene, we

provide a button for user to get another scene and question type pair. Once

the user submits the question, the the system returns a prediction from the

model, which is highlighted using a different color on the passage text on the

left hand side. The user can finally use the span selection tool to change the

answer span and submit the correction to the server.

31

Figure 3.4: Span Selection Tool Tutorial

Figure 3.5: Main User Interface

32

3.4 BERT Service

The open-sourced code for BERT model provides interface for offline training

and testing[3]. Our Active Learning system needs the BERT model to be

integrated into a service which is efficient, concurrency safe and also supports

online updating. In order to modularize the model into an online service, the

integration development starts by timing the overheads incurred during the

offline execution of the BERT model.

Overhead of BERT execution
Task Execution Time (ms)

Convert input into feature 45
Write feature into file 10
Load model from file 4474

Use model for prediction 6771
Store write results back into file 5

Total 11305

Table 3.1: Stats for Overhead of BERT execution, the data is an average
of 50 experiments on a single scene with same question rounded up to the
closest integer, experiment is conducted on machine with i7-6700HQ with
CPU computation

As shown in Table 3.1, excluding the time actually taken by computation

to predict from input, we can optimize performance by loading model into

memory and eliminate the file operations to save 41% time. After ensuring all

data transition is done in memory and the model is pre-loaded into memory

33

on server start, the average execution time of same query handling reduced

to 6946 ms on the same query for 50 times.

On the other hand, the service needs to be configured for concurrency

handling. We encapsulate the BERT interface into worker objects with a

dedicated model loaded for each worker. On start up, the system creates a

list of workers populated with model data loaded from file system. A mutex

array is created to synchronize on the race conditions. A semaphore is used

to keep track of the total number of available workers. The controller starts

a query into BERT service by acquiring the semaphore by 1, then it checks

the mutex array for the available workers and acquire the mutex. Once the

prediction is returned, the calling process releases the mutex and then releases

the semaphore control.

The training for the BERT service is invoked by scheduled cron jobs at

fixed time intervals. The cron job starts training by querying the database

and checks if enough response for one training batch has been generated. The

answers generated by the system itself are then filtered out and training only

starts if the qualifying response has reached a fixed batch size. After the new

model checkpoint is generated, the training process populates another array

of workers of the new model and simply changes the pointer of the workers

34

array to point to the new array. The operation is concurrency safe since if

other processes are conducting prediction when the pointer change happens,

workers will not be destroyed as long as it is pointed to by some local pointer

in the request handler process.

3.4.1 Snapshot

The snapshot of the model performance is conducted via a cron jobs scheduled

at vacancy hours. The service is implemented via crontab feature of the Linux

system and a server interface reserved for local routing only. The controller

starts the snapshot by computing F-1 score between the user and the model

answers to the questions raised by user. The answer origin can be distinguished

by the state of the from model field in Answer table. The controller then

save the count of total responses and the F-1 score (in field user agreement)

into a new row in Table Snapshot. Finally, the controller acquires a new

worker from BERT service to test against all test data and dev data stored

in database respectively and save the statics into Table Type Snapshot.

The controller also updates the statistics in Question Type if any of the

statistics changed.

35

Chapter 4

Experiment

After the conclusion of the development of the Active Learning system,

the system is deployed into an staging instance on Web server and tested for

concurrency and latency measuring. The system is then opened to public and

an advertising email was sent to the students at the Department of Computer

Science at Emory University. Section 4.1 will discuss the testing conducted

before the system is shipped to production as well as the environment on

which the web application is hosted. Section 4.2 will discuss the results we

have collected by the time this thesis is written.

36

4.1 Pre-Deployment

4.1.1 User Guidance

To ensure the functionality of the User Guidance (3.2) module, a test was

conducted to verify the probability distribution of each question type. For our

experiment, we picked the scaling factor to be 3, which means the question

type with the minimal possible statistics will have 3 times the probability of

being chosen by the system for annotation as the question type with maximal

possible statistics. The initial statistics is obtained from the BERT model

with 12 layers, trained with 80% of the annotation collected through Amazom

mTurk (Section 2.4), against dev datasets (Section 3.2). The test is done

by 1000 test calls to the GET interface which returns a question type for

annotation.

Question Type EM F1 P (Qi) ˆP (Qi) Frequency
What 34.90 % 50.53% 10.95 17.1% 169
Where 58.94 % 69.15% 7.49 11.7% 115
When 43.61 % 59.00% 9.38 14.7 % 147
Who 48.02 % 53.26% 9.49 14.8% 149
Why 19.75 % 37.84% 14.14 22.1% 224
How 30.13 % 40.26% 12.56 19.6% 196

Table 4.1: Results for the user guidance testing over 1000 ; All Question
Annotation Count is initialized to 0; P (Qi) denotes the output from the

probability function; ˆP (Qi) is normalized true probability

37

Results in Table 4.1 confirm the functionality of the user guidance module,

having worst-performed Why typed questions being selected 94.7% more

than Where typed questions, which is the question type our model performed

the best on.

4.1.2 Environment

The Active Learning system as a web application is hosted on Amazon Web

Services (AWS). Since the system requires the use of GPU for accelerated

model prediction, P3-EC2.2xlarge instance is chosen to support prediction

and training of the machine learning module. The instance features 1 NVIDIA

Tesla V100 GPU, pairing 5,120 CUDA Cores and 640 Tensor Cores, 61 GB

memory and 16 GB GPU Memory, which meets the minimum requirement for

training the BERT model with 12 layers. It provides better performance in

model prediction with respects to the statistics collected on personal computer

using CPU prediction in Table 3.1.

4.1.3 Latency Test

To ensure user experience, the performance of each programming interface is

measured. The results in Table 4.2 demonstrated reasonable latency for the

data collecting purpose of our project.

38

Request Time of API interfaces
API Time(ms)

get-scene 235
predict 3573

post-correction 193

Table 4.2: Request Time of API interfaces in staging instance; results are in
ms and obtained by average of 100 requests; predict is tested by test data
from 100 independent scenes of different size

4.1.4 Concurrency Test

The concurrency test is conducted using Apache JMeter [6], which is a software

capable of generating requests in concurrency to a destination server address.

This test is to ensure the functionality of the database locks to prevent dirty

writes into the system as illustrated in Section 3.3. The test contains 1000

requests sent to server writing responses to a single scene of a single type and

the result count on the scene and question type stayed clean.

4.2 Result

4.2.1 Data Collecting & Model Improvement

By the time writing this thesis, the model has been shipped into production

for 7 days. Only limited responses and progress have been made given the

short time frame but the web service is going to continue online to collect

more data. So far, 151 responses have been collected from users and we have

39

not yet observed progress in terms of model performance, this is because the

data collected so far only constitutes 1.76% of the training data (Section 2.4)

which is too insignificant for performance improvement.

On the other hand, progress has been shown in user guidance. Compared

to the data collected in annotation phase, during which we did not provide

any kind of the instructions on which type of question to generate and allowed

the user to choose freely, the data collected in the Active Learning system is

more focused on weak question types despise the fact that users can choose

to refresh the types and scenes on the user interface (Section 3.3.3).

Type EM F1 CAN PAN CAL PAL

What 34.90 % 50.53% 2,058 19.39% 29 19.20%
Where 58.94 % 69.15% 1,896 17.81% 13 8.61%
Who 48.02 % 53.26% 1,847 17.66% 18 11.92%
Why 19.75 % 37.84% 1,688 15.91% 40 26.49%
How 30.13 % 40.26% 1,628 15.34% 40 26.49%

When 43.61 % 59.00% 1,493 14.07% 10 6.62%

Table 4.3: Comparison between data collected in Annotation vs in Active
Learning; CAN : Count of questions from Annotation; PAN : Percentage of
questions from annotation; CAL: Count of question from Active Learning;
PAL: Percentage of questions from Active Learning

As shown in Table 4.3, compared to questions collected from annotation,

user guidance in Active Learning system helped data collection to focus

on three weak question types: What, Why and How. The three types

40

total constitutes 72.18% in Active Learning with respect to 50.64% during

annotation.

4.2.2 User-Model F-1

Another important statistic that was kept track of during the operation

of the Active Learning system is the User-Model F1. This represents the

similarity between the ground truth answer provided by the user and the

original prediction from the system, which is used to display to the user.

Since the goal of the system is to obtain data to learn from, and the model

cannot improve from its own prediction, this score also measures the reverse

of available responses meaningful for learning.

Figure 4.1: User-Model F1 change versus time

As shown in Figure 4.1, the user-model F1 score dropped over time, indicating

more responses from user that the system can learn from were collected.

41

Chapter 5

Conclusion

This thesis presented the design and architecture of an Active Learning

System implemented to assist the data collecting and development for Question

Answering in dialogues. The challenge of collecting high quality training data

(Section 2.2) inspired the development of such system which promotes more

interaction in the data collecting for Question Answering data sets. The

system at the same time uses probability functions (Section 3.2) to guide

users towards contributing more to the data needed for model improvement.

The system has shown results in guiding users towards annotating for the

question types needed the model to improve. However, due to the limited

quantity of the responses collected, we have not yet observed the improvement

of model performance against the test cases.

For future work, since the progress of the system is currently limited

by the response quantity, we intend to publicize the system towards larger

42

audiences including public online forums of Natural Language Processing

and the Friends TV series to accelerate the data collection for this project.

Once progress is made in terms of model performance, we can experiment

with more types of user guidance and compare the effects of each to better

summarize the methodology.

Bibliography

[1] Haki Benita and Haki Benita. How to manage concurrency in django

models, Jul 2017. URL https://medium.com/@hakibenita/how-to-

manage-concurrency-in-django-models-b240fed4ee2.

[2] Philipp Cimiano, Andrea Christina Unger, and John McCrae. Ontology

based interpretation of natural language. Morgan & Claypool Publishers,

2014.

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.

Bert: Pre-training of deep bidirectional transformers for language under-

standing, 2018.

[4] Bhuwan Dhingra, Kathryn Mazaitis, and William W. Cohen. Quasar:

Datasets for question answering by search and reading, 2017.

[5] Matthew Dunn, Levent Sagun, Mike Higgins, V. Ugur Guney, Volkan

43

https://medium.com/@hakibenita/how-to-manage-concurrency-in-django-models-b240fed4ee2
https://medium.com/@hakibenita/how-to-manage-concurrency-in-django-models-b240fed4ee2

44

Cirik, and Kyunghyun Cho. Searchqa: A new q&a dataset augmented

with context from a search engine, 2017.

[6] Bayo Erinle. Performance testing with jmeter test web applications using

apache jmeter with practical, hands-on examples.

[7] Kitlum. Forming questions in english grammar. URL https://www.

fluentu.com/blog/english/questions-in-english-grammar/.

[8] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang.

Squad: 100,000+ questions for machine comprehension of text, 2016.

[9] Francesco Ricci, Lior Rokach, and Bracha Shapira. Recommender systems

handbook. Springer, 2015.

[10] Jeff Schultz. How much data is created on internet each day?,

Oct 2017. URL https://blog.microfocus.com/how-much-data-is-

created-on-the-internet-each-day/.

[11] Burr Settles. Active learning literature survey. Computer Sciences

Technical Report 1648, Nov 2014. URL http://pages.cs.wisc.edu/

~bsettles/pub/settles.activelearning.pdf.

[12] Artem Syromiatnikov and Danny Weyns. A journey through the land of

https://www.fluentu.com/blog/english/questions-in-english-grammar/
https://www.fluentu.com/blog/english/questions-in-english-grammar/
https://blog.microfocus.com/how-much-data-is-created-on-the-internet-each-day/
https://blog.microfocus.com/how-much-data-is-created-on-the-internet-each-day/
http://pages.cs.wisc.edu/~bsettles/pub/settles.activelearning.pdf
http://pages.cs.wisc.edu/~bsettles/pub/settles.activelearning.pdf

45

model-view-design patterns. 2014 IEEE/IFIP Conference on Software

Architecture, 2014. doi: 10.1109/wicsa.2014.13.

[13] Marilyn A. Walker, Heng Ji, and Amanda Stent, editors. Pro-

ceedings of the 2018 Conference of the North American Chapter

of the Association for Computational Linguistics: Human Lan-

guage Technologies, NAACL-HLT 2018, New Orleans, Louisiana,

USA, June 1-6, 2018, Volume 1 (Long Papers), 2018. Associ-

ation for Computational Linguistics. ISBN 978-1-948087-27-8.

URL https://aclanthology.info/volumes/proceedings-of-

the-2018-conference-of-the-north-american-chapter-of-the-

association-for-computational-linguistics-human-language-

technologies-volume-1-long-papers.

[14] Thomas Walter. Das python-framework django. Kompendium der Web-

Programmierung X.media.press, page 447461, 2008. doi: 10.1007/978-3-

540-33135-3\ 22.

https://aclanthology.info/volumes/proceedings-of-the-2018-conference-of-the-north-american-chapter-of-the-association-for-computational-linguistics-human-language-technologies-volume-1-long-papers
https://aclanthology.info/volumes/proceedings-of-the-2018-conference-of-the-north-american-chapter-of-the-association-for-computational-linguistics-human-language-technologies-volume-1-long-papers
https://aclanthology.info/volumes/proceedings-of-the-2018-conference-of-the-north-american-chapter-of-the-association-for-computational-linguistics-human-language-technologies-volume-1-long-papers
https://aclanthology.info/volumes/proceedings-of-the-2018-conference-of-the-north-american-chapter-of-the-association-for-computational-linguistics-human-language-technologies-volume-1-long-papers

	Honors Thesis Preliminary Pages 2019
	Honor_Thesis_Main.pdf
	Introduction
	Question Answering
	Question Answering on Dialogue
	Active Learning
	Layout of the thesis

	Background
	QA question types
	By Answer Formats
	By Degree of Inference

	Annotation
	Amazon mTurk
	Process of Annotations

	Friends Dataset
	Baseline Model

	Approach
	User Interaction
	User Guidance
	Architecture
	Database
	Application Programming Interface
	User Interface

	BERT Service
	Snapshot

	Experiment
	Pre-Deployment
	User Guidance
	Environment
	Latency Test
	Concurrency Test

	Result
	Data Collecting & Model Improvement
	User-Model F-1

	Conclusion

