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Abstract

Topics in Analytic Number Theory

By Jesse Aaron Thorner

In this thesis, the author proves theorems on the distribution of primes by extending

recent results in sieve theory and proving new results on the distribution of zeros of

Rankin-Selberg L-functions. The author proves for any Galois extension of number

fieldsK/Q, there exist bounded gaps between primes with a given “splitting condition”

inK, and the primes in question may be restricted to short intervals. Furthermore, we

can count these gaps with the correct order of magnitude. The author also proves log-

free zero density estimates for Rankin-Selberg L-functions with effective dependence

on the key parameters. From this, the author proves an approximate short interval

prime number theorem for Rankin-Selberg L-functions, an approximate short interval

version of the Sato-Tate conjecture, and a bound on the least norm of a prime ideal

counted by the Sato-Tate conjecture, all of which exhibit effective dependence on the

key parameters.
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Chapter 1

Introduction

1.1 The distribution of primes

Let N denote the set of positive integers, and let a, q ∈ N satisfy (a, q) = 1. Let p

be a rational prime, and define π(x) = #{p ≤ x} and π(x; q, a) = #{p ≤ x : p ≡

a (mod q)}. The prime number theorem states that

π(x) ∼ Li(x),

where

Li(x) =

∫ x

2

dt

log t
=

x

log x
+O

( x

(log x)2

)
.

The proof can be adjusted to give the prime number theorem for arithmetic progres-

sions: if q ≤ (log x)D for some fixed D > 0, then

π(x; q, a) ∼ π(x)

ϕ(q)
,

where ϕ denotes Euler’s totient function. Understanding the error term in the prime

number theorem for arithmetic progressions is important for many arithmetic prob-

lems. The generalized Riemann hypothesis (GRH) for Dirichlet L-functions implies
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if ε > 0, then for any q ≤ x1/2−ε, we have that

π(x; q, a)− π(x)

ϕ(q)
�
√
x log qx.

While this is currently out of reach, we know that the mean value of the error term in

the prime number theorem for arithmetic progressions is about as small as predicted

by GRH when we average over moduli q. Specifically, if 0 < θ < 1
2
and D > 0 are

constant, Bombieri and Vinogradov [Mon71, Theorem 15.1] proved that

∑
q≤xθ

max
(a,q)=1

max
y≤x

∣∣∣π(y; q, a)− π(y)

ϕ(q)

∣∣∣� x

(log x)D
.

To any value of 0 < θ < 1 for which the above inequality holds, we give the name level

of distribution of the primes; thus Bombieri and Vinogradov showed that the primes

have a level of distribution θ for any 0 < θ < 1/2. This provides significant evidence in

favor of GRH, and in several arithmetic problems, the Bombieri-Vinogradov theorem

may be used as a substitute for GRH. It is conjectured by Elliott and Halberstam

[EH70] that the primes have a level of distribution θ for any 0 < θ < 1.

These results have been extended to a broader context. Let L/K be a Galois

extension of number fields with Galois group G, let a, q ∈ N with (a, q) = 1, and

let NK/Q denote the absolute field norm of K. For a prime ideal p of K which is

unramified in L, there corresponds a certain conjugacy class C ⊂ G of Frobenius

automorphisms attached to the prime ideals of L which lie over p. We denote this

conjugacy class by the Artin symbol [L/K
p

]. For a fixed conjugacy class C, define

πC(x; q, a) = #
{

NK/Qp ≤ x : NK/Qp ≡ a (mod q) , p unramified in L,
[L/K

p

]
= C

}
.

The Chebotarev density theorem asserts that if q ≤ (log x)D, then

πC(x; q, a) ∼ d(C; q, a)π(x)



3

for some rational density d(C; q, a) ≥ 0. If ζq = e2πi/q and L ∩Q(ζq) = Q, then

d(C; q, a) =
|C|
|G|

1

ϕ(q)
.

If H ⊂ G is a largest abelian subgroup such that H ∩C is nonempty and E is the

fixed field of H, then M. R. Murty and V. K. Murty [MM87] proved that if K = Q

and θ < 1/max{[E : Q]− 2, 2}, then

∑′

q≤xθ
max

(a,q)=1
max
N≤x

∣∣∣πC(N ; q, a)− |C|
|G|

π(N)

ϕ(q)

∣∣∣� x

(log x)D
,

where
∑′ denotes summing over moduli q satisfying L ∩Q(ζq) = Q. (This was later

generalized by M. R. Murty and Petersen [MP13] to encompass any Galois extension

L/K.) This extends the Bombieri-Vinogradov estimate to a nonabelian setting. In

fact, the Bombieri-Vinogradov estimate is recovered when L = Q.

1.2 Gaps between primes

The elusive twin prime conjecture states that if pn is the n-th prime, then

lim inf
n→∞

(pn+1 − pn) = 2.

The fact that there is a large amount of numerical evidence supporting the twin prime

conjecture is fascinating, considering that the prime number theorem tells us that on

average, the gap between consecutive primes pn+1 − pn is about log pn. A resolution

to the twin prime conjecture seems beyond the reach of current methods. The next

best result for which one could hope is that there are bounded gaps between primes;
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that is, there exist a constant C ≥ 2 such that

lim inf
n→∞

(pn+1 − pn) ≤ C.

In [GPY09], Goldston, Pintz, and Yıldırım developed the “GPY method”, which

led to the proof that

lim inf
n→∞

pn+1 − pn
log pn

= 0.

This method relies heavily on the distribution of primes in arithmetic progressions;

in particular, it relies on the fact that the primes have level of distribution θ for any

θ < 1
2
. The GPY method produces bounded gaps between primes assuming that

θ > 1
2
. In [Zha14], Zhang proved that

lim inf
n→∞

(pn+1 − pn) ≤ 70× 106

by finding a suitable modification for the Bombieri-Vinogradov estimate which is valid

for θ > 1
2
. Zhang’s work is inspiring but seems difficult to adapt to other settings.

In [May15], Maynard improved Zhang’s bound (using techniques independent of

Zhang’s proof) to

lim inf
n→∞

(pn+1 − pn) ≤ 600.

Furthermore, for any fixed positive integer m, Maynard proved that

lim inf
n→∞

(pm+n − pn)� m3 exp(4m),

which does not follow from Zhang’s work. (Tao developed the underlying sieve theory

independently, but arrived at slightly different conclusions.) These results follow from

a dramatic improvement to the GPYmethod arising from the use of more general sieve

weights. Once we have this improvement, all that one must know in order to obtain
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bounded gaps between primes is the distribution of primes within the integers (which

is given by the prime number theorem) and the fact that the level of distribution θ

of the primes is positive (which is given by the Bombieri-Vinogradov theorem).

We exploit the flexibility in the methods presented in [May15] to obtain analogous

results on bounded gaps between primes in Chebotarev sets P determined by a Galois

extension L/Q. Such a set takes the form

P =
{
p : p - dL,

[L/Q
p

]
= C

}
,

where dL is the absolute discriminant of L. (A union of Chebotarev sets is also

considered a Chebotarev set since the union of conjugacy classes is invariant under the

action of conjugation.) The Chebotarev density theorem asserts that P has relative

density within the primes that is both positive and rational, and the aforementioned

work of Murty and Murty [MM87] tells us that we can extend the notion of a positive

level of distribution to P if we omit certain “bad” arithmetic progressions (namely,

those progressions with moduli q such that L ∩ Q(ζq) 6= Q). These two ingredients,

in conjunction with the sieve developed in [May15], enable us to prove the existence

of bounded gaps between primes in any Chebotarev set.

Theorem 1.1. Let L/Q be a Galois extension of number fields with Galois group G

and absolute discriminant dL, and let C be a conjugacy class of G. Let P be the set

of primes p - dL for which [L/Q
p

] = C, and let qn be the n-th prime of P. Let H be

a largest abelian subgroup of G such that H ∩ C is nonempty, and let E be the fixed

field of H. If m is a fixed positive integer, then

lim inf
n→∞

(qm+n − qn)� (ηm)3 exp(2ηm),
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where

η = max{[E : Q]− 2, 2}|G|
|C|

dL
ϕ(dL)

.

The implied constant is absolute.

Remark. We note that if L/Q is Galois, then [E : Q] − 2 ≤ [L : Q]/2. The upper

bound is noticeably larger when the abelian subgroup H ⊂ G has small index in G,

but it is more computationally tractable.

We use Theorem 1.1 to prove several results in algebraic number theory with an

emphasis on applications to ranks of quadratic twists of elliptic curves, congruences

for the Fourier coefficients of cuspidal modular forms, and representations of integers

by binary quadratic forms. These are listed and proven in Chapter 2. One example

of such a result is as follows.

Theorem 1.2. Let Q(x, y) = ax2 + bxy + cy2 ∈ Z[x, y] be a primitive, positive-

definite quadratic form with b2 − 4ac < 0, and let qn denote the n-th prime such that

Q(x, y) = qn for some (x, y) ∈ Z2. There exists a positive constant cQ (which depends

only on Q) such that if m ∈ N, then

lim inf
n→∞

(qm+n − qn)� m3 exp(cQm)

with an implied constant depending on Q. In particular, if n is a positive integer,

then there are bounded gaps between primes of the form x2 + ny2.

1.3 The distribution of primes in short intervals

The Bombieri-Vinogradov estimate implies that the error term in the prime number

theorem for arithmetic progressions for primes lying in intervals of length x is about

as small as predicted by GRH when we average over moduli q. If GRH is true, then
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the error term in the prime number theorem for arithmetic progressions is so strong

that one can easily prove that if δ < 1
2
and h ≥ x1−δ, then

π(x+ h; q, a)− π(x; q, a) ∼ π(x+ h)− π(x)

ϕ(q)
∼ 1

ϕ(q)

h

log x
.

This predicts a rather high degree of regularity in the distribution of primes. In an

attempt to find evidence in favor of the truth of GRH, one wants to find how small

h can be while unconditionally maintaining the expected distribution of primes.

Depending on the quality of the error term in the prime number theorem for arith-

metic progressions, it is possible to deduce a “short interval” prime number theorem,

in the form

π(x+ h)− π(x) ∼
∫ x+h

x

dt

log t
∼ h

log x
,

provided that h is not too small. With the presently best known error terms, we may

take h a bit smaller than x/(log x)D for any fixed D > 0, but not as small as x1−δ for

any δ > 0. Improving the error term in the prime number theorem to allow for h to

be of size x1−δ is a monumentally hard task, known as the quasi-Riemann hypothesis,

and amounts to showing that there are no zeros of the Riemann zeta function ζ(s) in

the region <(s) > 1− δ.

Nevertheless, in 1930, Hoheisel [Hoh30] made the remarkable observation that,

with Littlewood’s improved zero-free region for ζ(s), if there are simply not too many

zeros in the region <(s) > 1− δ, then one can deduce a variant of the prime number

theorem for intervals of length h = x1−δ. In particular, it turns out that if we define

N(σ, T ) := #{ρ = β + iγ : ζ(ρ) = 0, β ≥ σ, |γ| ≤ T},

we have that

N(σ, T )� T c(1−σ)(log T )c
′
,
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where c > 2 and c′ > 0 are absolute constants; this is an example of a zero density

estimate. Recall that there are about T
π

log T
2πe

nontrivial zeros ρ = β + iγ of ζ(s)

with |γ| ≤ T . Thus the above zero density estimate for ζ(s) implies that there is

a vanishingly small proportion of zeros with β > 1 − 1/c. By the work of Huxley

[Hux72], we may take c to be any number larger than 12
5
, which translates to a prime

number theorem for intervals of length h ≥ x1−δ for any δ < 5
12
.

Hoheisel’s original observation was for the set of all primes, but his ideas are easily

extended to arithmetic progressions. Let L(s, χ) be a Dirichlet L-function. Defining

Nχ(σ, T ) := #{ρ = β + iγ : L(ρ, χ) = 0, β ≥ σ, |γ| ≤ T},

one can prove that ∑
χ mod q

Nχ(σ, T )� (qT )c(1−σ)(log qT )c
′

for any c > 12
5

and a suitable absolute constant c′ > 0. From this, one deduces a

short interval prime number theorem for arithmetic progressions of the form

π(x+ h; q, a)− π(x; q, a) ∼ π(x+ h)− π(x)

ϕ(q)
,

where δ < 5
12
, h ≥ x1−δ, and q ≤ (log x)D for any fixed D > 0.

Building on the methods in Bombieri’s original proof [Bom65] of the Bombieri-

Vinogardov theorem, Jutila [Jut70] proved the “hybrid” density estimate

∑
q≤Q

∑?

χ mod q

Nχ(σ, T )� (Q2T )c(1−σ)(logQT )c
′
,

where
∑?

denotes summation over primitive Dirichlet characters modulo q; Mont-

gomery [Mon71] improved upon Jutila’s work to show that one may take c = 5
2
. As

a consequence of Jutila and Montgomery’s estimate, one sees that the average value
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of Nχ(σ, T ) is noticeably smaller that what was previously shown. Furthermore, Ju-

tila and Montgomery’s estimate can be used to prove a short interval version of the

Bombieri-Vinogradov theorem in the form

∑
q≤xθ

max
(a,q)=1

max
y≤h

1
2
x≤N≤x

∣∣∣π(N + y; q, a)− π(N ; q, a)− π(N + y)− π(N)

ϕ(q)

∣∣∣� h

(log x)D
,

where δ > 0 and θ > 0 are constants, D > 0, and h ≥ x1−δ. It follows from GRH

that the above estimate holds when 0 ≤ δ < 1
2
and 0 < θ < 1

2
− δ. Despite the fact

that GRH remains unproven, there has been much progress toward this conjectured

estimate; see [PPS84] and the sources contained therein. Currently, the sharpest

version is due to Timofeev [Tim87], with

0 ≤ δ <
5

12
, 0 ≤ θ <


1
2
− δ if 0 ≤ δ < 2

5
,

9
20
− δ if 2

5
≤ δ < 5

12
.

Using a generalization of Montgomery’s zero density estimate for Hecke L-functions,

we prove a short interval variant of the Bombieri-Vinogradov estimate in the context

of the Chebotarev density theorem for any Galois extension. This extends the work

of M. R. Murty and V. K. Murty [MM87] and M. R. Murty and Petersen [MP13] to

a short interval setting.

Theorem 1.3. Let L/K be a Galois extension of number fields with Galois group G,

and let C ⊂ G be a fixed conjugacy class. Let H ⊂ G be a largest abelian subgroup of

G such that H ∩ C is nonempty, and let E be the fixed field of H. Let 0 ≤ δ < 2
5[E:Q]

and 0 < θ < 1
3
( 2

5[E:Q]
− δ). If h ≥ x1−δ, then for any constant D > 0,

∑′

q≤xθ
max

(a,q)=1
max
y≤h

1
2
x≤N≤x

∣∣∣πC(N + y; q, a)− πC(N ; q, a)− |C|
|G|

π(N + y)− π(N)

ϕ(q)

∣∣∣� h

(log x)D
,

where
∑′ denotes summing over moduli q satisfying L ∩Q(ζq) = Q.
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In Chapter 3, we use Theorem 1.3 to prove refinements in the bounded gaps results

in Chapter 2 where the primes in question can be restricted to a short interval. We

also consider additional applications to the study of Fourier coefficients of half-integer

weight modular forms, central critical values of modular L-functions, and ranks of

quadratic twists of elliptic curves.

1.4 The distribution of zeros of L-functions

Another classical problem in analytic number theory is to determine the least prime

in an arithmetic progression a (mod q) with (a, q) = 1. Linnik [Lin44] was able to

show that the least such prime is no bigger than qA, where A is an absolute constant;

Xylouris [Xyl11] proved that one may take A = 5.2. (An improvement to A =

5 is in his Ph.D. thesis.) Modern treatments of Linnik’s theorem typically use a

simplification due to Fogels [Fog65], which involves proving a technically involved

refinement of the zero density estimate for all Dirichlet L-functions L(s, χ) given in

the previous section. Specifically, if we define

Nχ(σ, T ) := #{ρ = β + iγ : L(ρ, χ) = 0, β ≥ σ, and |γ| ≤ T},

then Fogels showed that

∑
χ(mod q)

Nχ(σ, T )� T c(1−σ), T ≥ q.

Due to the absence of a log T term, it is standard to call such a result a log-free zero

density estimate. We are interested in log-free zero density estimates for automorphic

L-functions and their arithmetic applications, specifically to analogues of the above

theorems of Hoheisel and Linnik.

We consider the following general setup. Let K/Q be a number field with ring
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of adeles AK , and let π be a cuspidal automorphic representation of GLd(AK) with

unitary central character; we simply refer to such a representation π as an automor-

phic representation. There is an L-function L(s, π,K) attached to π whose Dirichlet

series and Euler product are given by

L(s, π,K) =
∑
a

λπ(a)

Nas
=
∏
p

d∏
j=1

(1− απ(j, p)Np−s)−1,

where the sum runs over the non-zero integral ideals of K, the product runs over the

prime ideals, and Na = NK/Qa denotes the norm of the ideal a.

Let π and π′ be automorphic representations of GLd(AK) and GLd′(AK), respec-

tively. The Rankin-Selberg convolution

L(s, π ⊗ π′, K) =
∑
a

λπ⊗π′(a)

Nas
=
∏
p

d∏
j1=1

d′∏
j2=1

(1− απ(j1, p)απ′(j2, p)(Np)−s)−1

is itself an L-function with an analytic continuation and a functional equation. Define

Nπ⊗π′(σ, T ) := #{ρ = β + iγ : L(ρ, π ⊗ π′, K) = 0, β ≥ σ, |γ| ≤ T}.

In joint work with Lemke Oliver, we prove a log-free zero density estimate for L(s, π⊗

π′, K) which is effective in its dependence on π, π′, and K. This dependence is most

naturally stated in terms of the analytic conductors q(π) and q(π′) of π and π′,

respectively. We prove the following.

Theorem 1.4. Let K be a number field with absolute discriminant DK. Let π and

π′ be automorphic representations of GLd(AK) and GLd′(AK), respectively. Suppose

that either both d ≤ 2 and d′ ≤ 2 or that at least one of π and π′ is self-dual, and
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suppose that the generalized Ramanujan conjecture (GRC) holds for L(s, π,K). Let

Q = Q(π, π′) =


q(π)q(π′) if π is nontrivial,

q(π′) if π is trivial,

let

D = D(π, π′) =


d2 if d = d′ and both π and π′ are self-dual,

(d′)4 if π is trivial,

(d+ d′)4 otherwise,

and let T � [K : Q]Q1/[K:Q]. There exists an absolute constant c > 0 such that if

1
2
≤ σ ≤ 1, then

Nπ⊗π′(σ, T )� d2T cD[K:Q](1−σ).

All of the � implied constants are absolute.

In Chapter 4, we prove several log-free zero density estimates for automorphic

L-functions, including Theorem 1.4, and explore several arithmetic consequences,

including applications to the Sato-Tate conjecture for certain automorphic represen-

tations of GL2(AK) when K is totally real.
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Chapter 2

Bounded gaps between primes in

Chebotarev sets

The Bombieri-Vinogradov theorem, which may be thought of as an average form of

the generalized Riemann hypothesis for Dirichlet L-functions, states that

∑
q≤xθ

max
(a,q)=1

∣∣∣π(x; q, a)− π(x)

ϕ(q)

∣∣∣� x

(log x)A

for any θ < 1
2
and any fixed A > 0. In other words, the primes have level of

distribution θ for any θ < 1
2
. In [May15], Maynard uses new sieve techniques in

conjunction with the Bombieri-Vinogradov theorem to prove the existence of many

primes in infinitely many intervals of bounded length. In this chapter, we use the work

of M. R. Murty and V. K. Murty [MM87] and the work of Maynard to extend this

progress toward the twin prime conjecture and study some arithmetic consequences.

Theorem 2.1. Let L/Q be a Galois extension of number fields with Galois group G

and absolute discriminant dL, and let C be a conjugacy class of G. Let H ⊂ G be

a largest abelian subgroup such that H ∩ C is nonempty, and let E be the fixed field

of H. Let a and q be fixed integers satisfy (a, q) = 1 and (q, dL) = 1. Let qn be the
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n-th prime not dividing dL for which [L/Q
p

] = C and qn ≡ a (mod q). If m is a fixed

positive integer, then

lim inf
n→∞

(qm+n − qn)� q(ηm)3 exp(2ηm),

where

η = max{[E : Q]− 2, 2}|G|
|C|

dL
ϕ(dL)

.

The implied constant is absolute.

2.1 Notation

We will let k be a fixed positive integer. A set Hk of nonnegative integers {h1, . . . , hk}

is said to be admissible if the polynomial
∏k

i=1(n + hi) has no fixed prime divisors.

The functions ϕ, τr(n), and µ refer to the Euler totient function, the number of

representations of n as a product of r positive integers, and the Möbius function,

respectively. We let p be a rational prime; given a set P ⊂ P, qn will denote the n-th

prime of P . We let #S or |S| denote the cardinality of a finite set S. If x ∈ R, we

write bxc = min{a ∈ Z : a ≤ x} and dxe = max{a ∈ Z : a ≥ x}. For a number field

F , we let dL be the absolute discriminant of L and nF = [F : Q].

2.2 Bounded gaps between primes

The variant of the Selberg sieve developed by Maynard in [May15] eliminates the

θ > 1
2
barrier to achieving bounded gaps between primes that the original GPY

method encountered. By studying the proof of the following theorem, it is clear

that we obtain bounded gaps between primes as long as θ > 0, a condition which is

guaranteed by the Bombieri-Vinogradov theorem.
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Theorem 2.2 (Maynard-Tao). For any m ∈ N,

lim
n→∞

(pm+n − pn)� m3 exp(4m).

We provide a brief outline the important components of the proof given in [May15].

For a fixed admissible set Hk = {h1, . . . , hk}, we consider the sums

S1(N) =
∑

N≤n<2N
n≡v0(modW )

wn, (2.1)

S2(N) =
∑

N≤n<2N
n≡v0(modW )

k∑
i=1

χP(n+ hi)wn, (2.2)

S(N, ρ) = S2(N)− ρS1(N), (2.3)

where wn are nonnegative weights, ρ > 0, χP is the indicator function of the primes,

and

W =
∏
p≤D0

p, D0 = log log logN. (2.4)

By the prime number theorem, W � (log logN)2.

The goal is to show that S(N, ρ) > 0 for all sufficiently large N . This would imply

that for infinitely many N , there exists n ∈ [N, 2N) for which at least bρ+ 1c of the

n+ hi are prime, establishing an infinitude of intervals of bounded length containing

bρ+ 1c primes.

Let Rk = {~x ∈ [0, 1]k :
∑k

i=1 xi ≤ 1}, let F : [0, 1]k → Rk be a infinitely

differentiable function supported on Rk, and let R = N θ/2−ε. The weights wn are of

the form

wn =
( ∑
di|n+hi∀i

λd1,...,dk

)2

, (2.5)
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where

λd1,...,dk =
( k∏
i=1

µ(di)di

) ∑
r1,...,rk
di|ri ∀i

(ri,W )=1 ∀i

µ(
∏k

i=1 ri)
2∏k

i=1 ϕ(ri)
F
( log(r1)

logR
, . . . ,

log(rk)

logR

)
. (2.6)

Setting d =
∏k

i=1 di, we choose λd1,...,dk to be supported when d < R, (d,W ) = 1, and

µ(d)2 = 1.

First, Maynard estimates the sums S1(N) and S2(N).

Proposition 2.3. Let P have level of distribution θ > 0. Let F : [0, 1]k → R be a

fixed infinitely differentiable function supported on Rk. We have

S1(N) = (1 + o(1))
ϕ(W )kN(logR)k

W k+1
Ik(F ),

S2(N) = (1 + o(1))
ϕ(W )kN(logR)k

W k+1

logR

logN

k∑
i=1

J
(i)
k (F ),

provided that Ik(F ) 6= 0 and J (i)
k (F ) 6= 0 for each i, where

Ik(F ) =

∫ 1

0

· · ·
∫ 1

0

F (t1, . . . , tk)
2 dt1 · · · dtk,

J
(i)
k (F ) =

∫ 1

0

· · ·
∫ 1

0

(∫ 1

0

F (t1, . . . , tk) dti

)2

dt1 · · · dti−1dti+1 · · · dtk.

Proof. This is proven in Sections 5 and 6 of [May15].

Following the GPY method, we want S2(N)− ρS1(N) to be positive for all suffi-

ciently large N , ensuring that for infinitely many n, several of the n + hi are prime.

The following proposition states this formally.

Proposition 2.4. Let P have level of distribution θ > 0, and let Hk = {h1, . . . , hk} be

an admissible set. Let Sk denote the set of smooth functions F : [0, 1]k → R supported
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on Rk with Ik(F ) 6= 0 and J (i)
k (F ) 6= 0 for each i. Define

Mk = sup
F∈Sk

∑k
i=1 J

(i)
k (F )

Ik(F )
, rk =

⌈θMk

2

⌉
.

There are infinitely many n such that at least rk of the n+hi are prime. Furthermore,

if pn is the n-th prime, then

lim inf
n→∞

(pn+rk−1 − pn) ≤ max
1≤i<j≤k

(hi − hj).

Proof. This is proven in Section 4 of [May15].

All that remains is to find a suitable lower bound for Mk.

Proposition 2.5. If k is sufficiently large, then

Mk > log k − 2 log log k − 2.

Proof. This is proven in Section 8 of [May15].

The exact manner in which these propositions are put together is outlined in

Section 4 of [May15]. We emulate those arguments in the next section.

2.3 Proof of Theorem 2.1

One fascinating aspect of the proof of Theorem 2.2 is how adaptable it is to exploring

bounded gaps between primes in special subsets of the primes. In this section, we

will modify the proof to obtain a version applicable to sets of primes satisfying a

Chebotarev condition.

Let L/Q be a Galois extension of number fields with Galois group G and discrim-

inant dL, and let C be a conjugacy class of G. Let H ⊂ G be an abelian subgroup
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such that H ∩ C is nonempty, and let E be the fixed field of H. Let

P =
{
p prime : p - dL,

[L/Q
p

]
= C

}
, (2.7)

where [L/Q· ] is the Artin symbol, and define

πP(N) = #{N ≤ p < 2N : p ∈ P}, (2.8)

πP(N ; q, a) = #{N ≤ p < 2N : p ∈ P : p ≡ a (mod q)}. (2.9)

We say that P has level of distribution θ if there exists a fixed positive integer M

such that for any fixed A > 0,

∑
q≤Nθ

(q,M)=1

max
(a,q)=1

∣∣∣πP(y; q, a)− 1

ϕ(q)
πP(y)

∣∣∣� N

(logN)A
. (2.10)

Lemma 2.6. Assume the above notation. Let δ = |C|/|G|.

1. We have πP(N) = δN/ logN +O(N/(logN)2).

2. Equation 2.10 holds when M = dL and 0 < θ < 1
max{[E:Q]−2,2} .

Proof. The first part is the Chebotarev density theorem with error term. The second

part follows from the main result in [MM87].

In order to use the second part of Lemma 2.6, we must modify the work in the pre-

vious section. Let W be defined as in (2.4), and let Hk = {h1, . . . , hk} be admissible.

For a positive integer n, let

rad(n) =
∏
p|n

p.

Define

det(Hk) =
∏
i 6=j

(hi − hj), U = W/rad(dL). (2.11)
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By the Chinese Remainder Theorem and the admissibility of Hk, there exists an

integer u0 satisfying (
∏k

i=1(u0+hi), U) = 1. Instead of the restriction n ≡ v0 (modW ),

we use n ≡ u0 (modU). We note that when N is sufficiently large, rad(dL det(Hk))

divides W . As in the previous section, λd1,...,dk will be supported when

d =
k∏
i=1

di < R, (d,W ) = 1, µ(d)2 = 1, (di, dj) = 1 for all i 6= j. (2.12)

Therefore, if N is sufficiently large, then (2.4), (2.11), and (2.12) tell us

λd1,...,dk 6= 0 implies that
∏

1≤i<j≤k

(di, dj) = (d, U det(Hk)dL) = 1. (2.13)

Define

S1(N,P) =
∑

N≤n<2N
n≡u0(modU)

( ∑
di|n+hi∀i

λd1,...,dk

)2

, (2.14)

S
(m)
2 (N,P) =

∑
N≤n<2N

n≡u0(modU)

χP(n+ hm)
( ∑
di|n+hi∀i

λd1,...,dk

)2

, (2.15)

S2(N,P) =
k∑
i=1

S
(i)
2 (N,P), (2.16)

S(N, ρ,P) = S2(N,P)− ρS1(N,P), (2.17)

where ρ > 0. For a fixed θ > 0 satisfying (2.10), let R = N θ/2−ε. We have the

following estimate S1(N,P).

Proposition 2.7. Assume the above notation. If P has level of distribution θ > 0,

then

S1(N,P) = (1 + o(1))rad(dL)
ϕ(W )kN(logR)k

W k+1
Ik(F ),

where Ik(F ) is defined in Proposition 2.3.

Proof. The only difference between S1 from Proposition 2.3 and S1(P) is that instead
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of the condition n ≡ v0 (modW ), we have n ≡ u0 (modU). Following the proof of

Lemma 5.1 in [May15], we will alleviate S1(P) of any conditions in the sums that

depend on U . Then the Selberg sieve manipulations and analysis from [May15] will

give us the desired estimates.

Expanding the square gives us

S1(N,P) =
∑

d1,...,dk
e1,...,ek

λd1,...,dkλe1,...,ek
∑

N≤n<2N
n≡u0(modU)
[di,ei]|n+hi∀i

χP(n+ hm).

We now show that we can write the conditions n ≡ u0 (modU) and [di, ei] | n + hi

for all i as a single congruence condition. Let d =
∏k

a=1 da and e =
∏k

a=1 ea. If

µ(d)2 = 0 or µ(e)2 = 0, then λd1,...,dkλe1,...,ek = 0 by (2.12). Thus we assume that

µ(d)2 = µ(e)2 = 1, so each di and ei is squarefree. With each di, ei squarefree, we

consider the following two cases:

1. If a prime p divides (U, [di, ei]) for some i, then p | (U, di) or p | (U, ei). Thus

p | (d, U) or p | (e, U), and λd1,...,dkλe1,...,ek = 0 by (2.13).

2. If a prime p divides ([di, ei], [dj, ej]) for some i 6= j, then

p | d or p | e, p | n+ hi, and p | n+ hj.

Thus p | (d, hi − hj) or p | (e, hi − hj). Therefore, p | (d, det(Hk)) or p |

(e, det(Hk)), and λd1,...,dkλe1,...,ek = 0 by (2.13).

Using the Chinese Remainder Theorem, we conclude that the inner sum can be writ-

ten as a sum over a single residue class modulo q = U
∏k

i=1[di, ei] when U and each

[di, ei] are pairwise coprime, in which case the inner sum is N/q + O(1). Otherwise,
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λd1...,dkλe1,...,ek = 0. Using Lemma 5.1 of [May15] and (2.11), we have

S1(N,P) =
N

U

∑′

d1,...,dk
e1,...,ek

λd1,...,dkλe1,...,ek∏k
i=1[di, ei]

+O
( ∑′

d1,...,dk
e1,...,ek

|λd1,...,dkλe1,...,ek |
)

= rad(dL)
N

W

∑′

d1,...,dk
e1,...,ek

λd1,...,dkλe1,...,ek∏k
i=1[di, ei]

+O(λ2
maxR

2(logR)2k),

where λmax = supd1,...,dk |λd1,...,dk | and
∑′ denotes the restriction that U and each

[di, ei] are pairwise coprime and each di, ei is squarefree. If a prime p divides ([di, ei], U)

for some i, then we have already shown that λd1,...,dkλe1,...,ek = 0. Therefore, we may

take
∑′ to denote the condition that

∏
i 6=j([di, ei], [dj, ej]) = 1, which is a condi-

tion that is independent of the arithmetic progression containing n. Therefore, the

condition
∑′ is independent of our modulus U , as desired.

We now see that S1(N,P) is a multiple (depending only on dL) of S1(N) in one of

the intermediate steps in Lemma 5.1 of [May15]. Therefore, the proposition follows

from Lemmata 5.1 and 6.2 of [May15].

We will use the reasoning from the above proof to estimate S2(N,P).

Proposition 2.8. Assume the above notation. Let L/Q be a Galois extension of

number fields with Galois group G and discriminant dL, and let C be a conjugacy

class of G. Let δ = |C|/|G|. If the primes in P have level of distribution θ > 0, then

S2(N,P) = (1 + o(1))δϕ(rad(dL))
logR

logN

ϕ(W )kN(logR)k

W k+1

k∑
i=1

J
(i)
k (F ),

where J (i)
k (F ) is defined in Proposition 2.3.

Proof. The desired result follows from estimating each S(m)
2 (N,P) for each 1 ≤ m ≤ k.
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Expanding the square gives us

S
(m)
2 (N,P) =

∑
d1,...,dk
e1,...,ek

λd1,...,dkλe1,...,ek
∑

N≤n<2N
n≡u0(modU)
[di,ei]|n+hi∀i

χP(n+ hm).

As with S1(N,P), the inner sum can be written as a sum over a single residue class

am modulo q = U
∏k

i=1[di, ei] when U and each [di, ei] are pairwise coprime, and

λd1,...,dkλe1,...,ek = 0 otherwise.

Choose integers d1, . . . , dk, e1, . . . , ek such that λd1,...,dkλe1,...,ek 6= 0. Clearly

am ≡ u0 (modU) and [di, ei] | am + hi for all i.

We conclude from the support of λd1,...,dk and our choices of u0 and am that

(u0 + hm, U) = 1 and (hm − hi, [di, ei]) = 1 for all i 6= m,

so

(q/[dm, em], am + hm) = 1 and [dm, em] | am + hm.

Therefore, (q, am + hm) = 1 if and only if dm = em = 1. In this case, the inner sum

will have size πP(N)/ϕ(q) +O(E(N, q)), where

E(N, q) = max
(a,q)=1

∣∣∣πP(N ; q, a)− 1

ϕ(q)
πP(N)

∣∣∣.
If (q, am+hm) 6= 1, then the inner sum equals either 0 or 1. The inner sum equals

1 if and only if there exists a prime p satisfying n + hm = p for some n ∈ [N, 2N)

with p | q. Since N is large, we have N −|hm| >
√
N > R. Thus n+hm = p for some

n ∈ [N, 2N) implies that p > R, so if p | q, then λd1,...,dkλe1,...,ek = 0. Thus the inner
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sum only contributes to S(m)
2 (P) when (q, am + hm) = 1. We conclude that

S
(m)
2 (N,P) =

πP(N)

ϕ(U)

∑′

d1,...,dk
e1,...,ek

dm=em=1

λd1,...,dkλe1,...,ek∏k
i=1 ϕ([di, ei])

+O
( ∑′

d1,...,dk
e1,...,ek

|λd1,...,dkλe1,...,ek |E(N, q)
)
,

where q = U
∏k

i=1[di, ei] and
∑′ denotes the restriction that U and each [di, ei] be

pairwise coprime.

We first analyze the error term. From the support of λd1,...,dk , we only need

to consider squarefree q < R2U ≤ N θ−ε satisfying (q, dL) = 1, where ε > 0 is

sufficiently small. Given a squarefree integer r, there are at most τ3k(r) choices of

d1, . . . , dk, e1, . . . , ek for which r = U
∏k

i=1[di, ei]. From Lemma 5.2 of [May15], the

error term is now

� λ2
max

∑
r<Nθ−ε

(r,dL)=1

µ(r)2τ3k(r)E(N, r),

Using the Cauchy-Schwarz inequality and the trivial bound E(N, q) � N/ϕ(q), the

error term is

� λ2
max

( ∑
r<Nθ−ε

(r,dL)=1

µ(r)2τ3k(r)
2 N

ϕ(r)

)1/2( ∑
r<Nθ−ε

(r,dL)=1

µ(r)2E(N, r)
)1/2

.

It follows from elementary bounds on τ3k(r) and Lemma 2.6 that the error is �

λ2
maxN/(logN)A for any fixed A > 0, which is also true of the error term in S(m)

2 (N)

in Lemma 5.2 of [May15].

Using (2.11), for any fixed A > 0, we have

S
(m)
2 (N,P) = ϕ(rad(dL))

πP(N)

ϕ(W )

∑′

d1,...,dk
e1,...,ek

dm=em=1

λd1,...,dkλe1,...,ek∏k
i=1 ϕ([di, ei])

+O(λ2
maxN/(logN)A),

where
∑′ denotes the restriction that U and each [di, ei] be pairwise coprime. As in
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the proof of Proposition 2.7, we can take
∑′ to denote the restriction that

∏
i 6=j

([di, ei], [dj, ej]) = 1.

Therefore, up to the choice of prime counting function (which results in the factor of

δ in the statement of the proposition), S(m)
2 (N,P) is a multiple (depending only on δ

and dL) of S(m)
2 (N) in one of the intermediate steps in Lemma 5.2 of [May15]. Thus

the proposition follows from Lemmata 5.2 and 6.3 of [May15] and Lemma 2.6.

We now modify Proposition 2.4 accordingly.

Proposition 2.9. Let Hk = {h1, . . . , hk} be an admissible set, let P have level of

distribution θ > 0, and let

Mk = sup
F∈SK

∑k
i=1 J

(i)
k (F )

Ik(F )
, rk =

⌈δθϕ(dL)Mk

2dL

⌉
.

Then there are infinitely many n such that at least rk of the n + hi are in P. Fur-

thermore, if pn is the n-th prime in P, then

lim inf
n→∞

(pn+rk−1 − pn) ≤ max
1≤i<j≤k

(hi − hj).

Proof. We want to show that S(N, ρ,P) > 0 for all sufficiently large N . Recall that

R = N θ/2−ε for some small ε > 0. By the definition of Mk, we can choose F0 ∈ Sk

such that
k∑
i=1

J
(i)
k (F0) > (Mk − ε)Ik(F0).
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Using Propositions 2.7 and 2.8 and the identity ϕ(rad(dL))
rad(dL)

= ϕ(dL)
dL

, we have

S(N, ρ,P)

=
ϕ(W )kN(logR)k

W k+1

( logR

logN
δϕ(rad(dL))

k∑
i=1

J
(i)
k (F0)− ρrad(dL)Ik(F0) + o(1)

)
≥ ϕ(W )kN(logR)kIk(F0)

W k+1

(δϕ(dL)

dL

(θ
2
− δ
)

(Mk − 2δ)− ρ+ o(1)
)
.

Let

ρ = Mk

(δθϕ(dL)

2dL
− ε
)
.

By choosing δ suitably small (depending on ε), we have S(N, ρ,P) > 0 for all suffi-

ciently large N . Thus there are infinitely many n for which at least bρ + 1c of the

n+ hi are in P . If ε is sufficiently small, then

bρ+ 1c =
⌈δθϕ(dL)Mk

2dL

⌉
,

and we obtain the claimed result.

Since a suitable lower bound for Mk is given by Proposition 2.5, we are ready to

proceed with the proof.

Proof of Theorem 2.1. Lemma 2.6 tells us that P has level of distribution

θ =
1− 1

k

max{[E : Q]− 2, 2}
.

Recall that δ = |C|/|G|. By Proposition 2.5, if k is sufficiently large, then

δθϕ(dL)Mk

2dL
≥ |C|max{[E : Q]− 2, 2}ϕ(dL)

2|G|dL

(
1− 1

k

)
(log k − 2 log log k − 2). (2.18)

It follows that (2.18) is greater than m if k = c(2ηm)2 exp(2ηm) for some suitably
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large positive absolute constant c, where

η = max{[E : Q]− 2, 2}|G|
|C|

dL
ϕ(dL)

.

Thus for any admissible set Hk = {h1, . . . , hk} with k as above, at least m+ 1 of the

n+ hi are in P for infinitely many integers n.

To construct an admissible set Hk which gives good bounds that are uniform

over all choices of L/Q all conjugacy classes in the Galois group of L/Q, we choose

hj = q · pπ(k)+j, where 1 ≤ j ≤ k and pj is the j-th prime in P; such a set is easily

seen to be admissible. By the prime number theorem,

pn = n log n+ n log log n+O(n) and π(n) =
n

log n
+O

( n

(log n)2

)
.

Thus pπ(k)+k − pπ(k)+1 � k log k. Therefore, if qn is the n-th prime of P , then

lim inf
n→∞

(qm+n − qn) ≤ max
1≤i<j≤k

|hj − hi| � k log k � (ηm)3 exp(2ηm)

with an absolute implied constant, as desired.

We now briefly describe why we may restrict the primes qn to lie in an arith-

metic progression a (mod q) with (a, q) = 1. Instead of considering the admissible set

{pπ(k)+1, . . . , pπ(k)+k}, consider the admissible set {q · pπ(k)+1, . . . , q · pπ(k)+k}. By the

Chinese remainder theorem, we may choose v0 ≡ a (mod q). Thus the prime values

attained by the linear forms n+ q · pπ(k)+1, . . . , n+ q · pπ(k)+k must be congruent to a

modulo q. Now,

lim inf
n→∞

(qm+n − qn) ≤ max
1≤i<j≤k

|hj − hi| � q · k log k � q(ηm)3 exp(2ηm).
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2.4 Applications to number fields and elliptic curves

We use Theorem 2.1 to prove several results in algebraic number theory. In order to

make the results more explicit, we use the following result.

Proposition 2.10. Let L/Q be a Galois extension of number fields with absolute

discriminant dL, and let nL = [L : Q]. Let C be a fixed conjugacy class of G, and let

H ⊂ G be an abelian subgroup such that H ∩ C is nonempty. Let E be the fixed field

of H, and let

η = max{nE − 2, 2}|G|
|C|

dL
ϕ(dL)

.

We have that η = 2 if and only if L = Q. Otherwise,

η ≤ max{nL, 4}nL(log log dL + 2) ≤ max{nL, 4}nL(log(nL log(nLrad(dL))) + 2).

Proof. The first part follows from Minkowski’s inequality and basic Galois theory.

For the second part, it follows from Theorem 8.8.7 of Bach and Shallit [BS96] that

for dL ≥ 2,
dL

ϕ(dL)
≤ eγ log log dL + 4 ≤ 2(log log dL + 2),

where

γ = lim
N→∞

( N∑
n=1

1

n
− logN

)
= 0.5772 . . .

By Serre [Ser81, Proposition 6], we have that since L/Q is Galois,

nL
2

log rad(dL) ≤ log dL ≤ nL log nL + (nL − 1) log rad(dL).

The fact that |G| = nL and max{nE − 2, 2} |G||C| ≤ max{nL/2, 2}nL follows from basic

Galois theory.

Our first two applications are immediate.
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Corollary 2.11. Let L/Q be a Galois extension of number fields with ring of integers

OL, and let nL = [L : Q] ≥ 2. If L/Q is abelian, let cond(L) be the smallest positive

integer q such that L ⊂ Q(e2πi/q). There exist infinitely N ∈ N such for any m ∈ N,

there are m + 1 non-conjugate prime ideals in OK whose norms lie in a subinterval

of [N, 2N ] of length � q(cLm)3 exp(2cLm), where

q =


cond(L) if L/Q is abelian,

1 otherwise

and

cL =


1/2 if L/Q is abelian,

max{nL/2, 2}nL · (eγ log log dL + 4) otherwise.

The implied constant is absolute.

Proof. This follows from applying Theorem 2.1 to the set of primes P that are inert

in L. In the special case that L/Q is abelian, the Kronecker-Weber theorem says that

for some q ≥ 1, L ⊂ Q(e2πi/q), and so the least prime that is inert in L is congruent

to a modulo q for some a ∈ Z with (a, q) = 1 and a 6= 1. The computation of cL

follows from Proposition 2.10.

Let f ∈ Z[x] be monic polynomial of degree d and discriminant dL that is irre-

ducible over Q, and let G be the permutation representation of the Galois group of

f . Let p - dL be a prime, let 1 ≤ r ≤ d, and suppose that f ≡
∏r

i=1 fi (mod p) with

the fi distinct irreducible polynomials in (Z/pZ)[x] of degree ni. Then G contains a

permutation σp that is a product of disjoint cycles of length ni; we call the cycle type

of σp the factorization type of f mod p.

Corollary 2.12. Assume the above notation. Let f ∈ Z[x] be an irreducible monic

polynomial of degree nf ≥ 3 and discriminant df . Let qn denote the n-th prime such
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that f mod qn has a given factorization type. For any m ∈ N,

lim inf
n→∞

(qm+n − qn)� (cfm)3 exp(2cfm)

with an absolute implied constant. Here, cf ≤ (nf !)2

2
· (eγ log(2nf ! log df ) + 4).

Proof. Consider the Galois group G of f as a permutation group, and let L be the

fixed field of G. For all but finitely many primes p, f mod p has a given factorization

type if and only if the Artin symbol [L/Q
p

] is the conjugacy class of automorphisms in

G with the corresponding cycle type. Thus the primes p for which the factorization

type of f mod p is fixed is a Chebotarev set, and one may apply Theorem 2.1. Since

[L : Q] divides nf ! and L is unramified outside of the primes dividing df , we use

Proposition 2.10 to compute cf .

Theorem 2.1 has many interesting applications to the theory of elliptic curves.

Let E/Q be an elliptic curve with Weierstrass equation

E : y2 = x3 + ax2 + bx+ c,

and let Ed/Q denote the quadratic twist of E by d with Weierstrass equation

Ed : y2 = x3 + adx2 + bd2x+ cd3.

We denote the rank of the group of Q-rational points E(Q) by rk(E(Q)). Our appli-

cations are related to the following conjecture due to Silverman regarding rk(E±p(Q))

when p is prime.

Conjecture. For a given elliptic curve E/Q, there are infinitely many primes p for

which rk(Ep(Q)) = 0 or rk(E−p(Q)) = 0, and there are infinitely many primes ` for

which rk(E`(Q)) > 0 or rk(E−`(Q)) > 0.
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In light of Silverman’s conjecture, we prove the following result for certain “good”

elliptic curves, which is related to the rank zero component of Silverman’s conjecture.

Theorem 2.13. Let E/Q be a “good” elliptic curve (see Definition 2.14) with discrim-

inant ∆. Let qn denote the n-th prime for which rk(Eεp(Q)) = 0, where ε ∈ {−1, 1}

depends on E. For any m ∈ N

lim inf
n→∞

(qm+n − qn)� (cEm)3 exp(2cEm)

with an absolute implied constant. Here, cE ≤ 18(eγ log(12 log |∆|) + 4).

To prove Theorem 2.13, let E/Q be an elliptic curve with Weierstrass form

E : y2 = x3 + ax2 + bx+ c, a, b, c ∈ Z,

where the discriminant of the cubic is nonzero. We will assume that E and its points

are Q-rational. If d is a squarefree integer, we define Ed to be the d-quadratic twist

of E given by

Ed : dy2 = x3 + ax2 + bx+ c.

Definition 2.14. Let E/Q be an elliptic curve without Q-rational 2-torsion. Follow-

ing [BD10], we call E good if E satisfies the following criteria:

1. The 2-Selmer rank of E is zero.

2. The discriminant ∆ of E is negative.

3. If p is any prime for which E has bad reduction, then E has multiplicative

reduction at p, and vp(∆) is odd.

4. E has good reduction at 2 and the reduction of E modulo 2 has j-invariant zero.
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A prototypical example of a good elliptic curve is E = X0(11), which has Weier-

strass form E : y2 = x3 − 4x2 − 160x− 1264.

We define a squarefree integer d to be 2-trivial for E if E has no rational 2-torsion

modulo p for every odd prime p | d. For good elliptic curves, the following is proven

in [BD10].

Theorem 2.15. Let E/Q be a good elliptic curve. If d is a squarefree 2-trivial integer

for E with (d,∆) = 1, then

dimF2(Sel2(Ed(Q)) =


0 if d is odd,

1 if d is even.

In particular, for such odd d, we have rk(Ed(Q)) = 0.

We now prove Theorem 2.13.

Proof of Theorem 2.13. We write E in Weierstrass form E : y2 = f(x), where f(x) =

x3 + ax2 + bx + c ∈ Z[x] has Galois group G and discriminant ∆. Since E is good,

f is irreducible over Z and G ∼= S3. By the above discussion, the primes p satisfying

the hypotheses of Theorem 2.15 are exactly the primes p - ∆ such that f mod p is

irreducible, that is, the factorization type of f mod p corresponds to 3-cycles in S3.

The desired result now follows from Corollary 2.12.

We now consider an elliptic curve satisfying the rank one component of Silverman’s

conjecture. In light of recent results by Coates, Li, Ye, and Zhai [CLTZ15], we use

our results to study ranks of twists of the elliptic curve E = X0(49), whose minimal

Weierstrass equation is given by E : y2 + xy = x3 − x2 − 2x − 1. Let p > 7 be a

prime such that p ≡ 3 (mod 4) and p is inert in the field Q(
√
−7). For k ≥ 0, let

q =
∏k

i=1 qi be a product of distinct primes qi 6= p, each of which splits completely

in Q(E[4]), where E[4] denotes the torsion points of order 4. Suppose further that
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the ideal class group of Q(
√
−pq) has no element of order 4. Under these hypotheses,

Coates, Li, Yian, and Zhai prove that the Hasse-Weil L-function L(E−pq/Q, s) has a

simple zero at s = 1, rk(E−pq(Q)) = 1, and the Shafarevich-Tate group X(E−pq/Q)

is finite of odd cardinality. They predict that every elliptic curve should satisfy a

property similar to this. We prove the following.

Theorem 2.16. Let E = X0(49). Let qn be the n-th prime such that L(E−qn/Q, s) has

a simple zero at s = 1
2
, rk(E−qn(Q)) = 1, and X(E−qn/Q) is finite of odd cardinality.

For any m ∈ N,

lim inf
n→∞

(qm+n − qn)� m3 exp(4m)

with an absolute implied constant.

We use the main result of [CLTZ15], which we now state, to prove Theorem 2.16.

Theorem 2.17 (Coates, Li, Ye, Zhai). Let E = X0(49). For k ≥ 0, let p, q1, . . . , qk

be distinct primes, and let N = p
∏

j≤k qj satisfy

1. p ≡ 3 (mod 4), p 6= 7, and p is a quadratic non-residue modulo 7.

2. q1, . . . , qk split completely in Q(E[4]).

3. The ideal class group HN of the field Q(
√
−N) has no element of order 4.

Then the Hasse-Weil L-function L(E−N , s) has a simple zero at s = 1, E−N(Q) has

rank 1, and the Shafarevich-Tate group of E−N is finite of odd order.

Proof of Theorem 2.16. We consider the case of Theorem 2.17 where k = 0. Using the

theory of quadratic forms, Gauss proved that if p ≡ 3 (mod 4), then |Hp| is odd. Thus

Theorem 2.17 holds when N is a prime such that N 6= 7 such that N ≡ 3 (mod 4)

and N is a quadratic non-residue modulo 7. Every prime p congruent to 3, 19, or 27

modulo 28 satisfies this condition, and the desired result follows from Theorem 2.1

by taking L = Q and choosing the arithmetic progression 3 (mod 28).
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A specific elliptic curve for which the entirety of Silverman’s conjecture is true is

the congruent number elliptic curve E : y2 = x3 − x. We call a positive squarefree

integer d a congruent number if d is the area of a right triangle with sides of rational

length. It is well-known that d is a congruent number if and only if Ed(Q) has positive

rank. If p is prime, it is known [Mon90] that

• If p ≡ 3 (mod 8), then rk(Ep(Q)) = 0.

• If p ≡ 5 (mod 8), then rk(E2p(Q)) = 0.

• If p ≡ 5 or 7 (mod 8), then rk(Ep(Q)) = 1.

• If p ≡ 3 (mod 4), then rk(E2p(Q)) = 1.

We obtain the following result for twists Ep(Q), but one can easily adapt the statement

to suit the twists E2p(Q).

Theorem 2.18. Let E/Q denote the congruent number elliptic curve y2 = x3 − x.

Let qn denote the n-th prime for which rk(E ′qn(Q)) = 0. For any m ∈ N,

lim inf
n→∞

(qm+n − qn)� m3 exp(4m)

with an absolute implied constant. The same is true if we replace the condition

rk(Eqn(Q)) = 0 with the condition rk(Eqn(Q)) = 1. In particular, we have bounded

gaps between primes which are congruent numbers, and we have bounded gaps between

primes which are not congruent numbers.

Proof. This follows immediately from Theorem 2.1 with L = Q after choosing the

appropriate arithmetic progression.
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2.5 Applications to modular forms and quadratic forms

We consider applications to the Fourier coefficients of holomorphic cuspidal normal-

ized Hecke eigenforms, i.e. newforms, on congruence subgroups of SL2(Z).

Theorem 2.19. Let f(z) =
∑∞

n=1 af (n)e2πinz ∈ Z[[e2πinz]] be a newform of even

weight k ≥ 2 and level N ≥ 1, let d be a positive integer, and let p0 - dN be a fixed

prime. Let qn be the n-th prime for which af (qn) ≡ af (p0) (mod d). For any m ∈ N,

lim inf
n→∞

(qm+n − qn)� (cd,Nm)3 exp(2cd,Nm)

with an absolute implied constant, where cd,N ≤ d8

2
(eγ log(2d4 log(dN)) + 4). In par-

ticular, we have bounded gaps between primes p satisfying af (p) ≡ 0 (mod d).

Following Murty and Murty [MM84], let q = e2πiz, and let

f(z) =
∞∑
n=1

af (n)qn ∈ Snew
k (Γ0(N), χ) ∩ Z[[q]]

be a newform of even weight k ≥ 2 and character χ. (This forces χ to be real, and

χ is nontrivial if and only if f has complex multiplication.) Let G = Gal(Q̄/Q)

be the absolute Galois group of Q, and let d be a positive integer. By the work of

Deligne, there exists a representation ρd : G → GL2(
∏

`|d Z`) with the property that

if p - dN is prime and σp is a Frobenius element at p in G, then ρd is unramified

at p and trρd(σp) = af (p) and det ρd(σp) = χ(p)pk−1. Let ρ̃d : G → GL2(Z/dZ) be

the reduction modulo d of ρd. Let Hd be the kernel of ρ̃d, let Kd be the subfield of

Q̄ fixed by Hd, and let Gd = Gal(Kd/Q). If q - dN is prime, then the condition

af (q) ≡ 0 (mod d) means that for any Frobenius element σq of q, ρ̃d(σq) ∈ Cd. Since

Cd contains the image of complex conjugations, Cd is nonempty.

Proof of Theorem 2.19. By the preceding discussion, the set of primes p for which

af (p) ≡ 0 (mod d) is a Chebotarev set. By similar arguments, we find that for any
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fixed prime p0 - dN , the set of primes p for which af (p) ≡ af (p0) (mod d) is also a

Chebotarev set. The desired result now follows from Theorem 2.1. In all cases, the

ensuing Galois extension L/Q has degree at most d4 and is unramified outside of dN ,

so the computation of cd,N follows from Proposition 2.10.

As an application of Theorem 2.19, let τ be the Ramanujan tau function, so that

f(z) = q
∞∏
n=1

(1− qn)24 =
∞∑
n=1

τ(n)qn ∈ Snew
12 (Γ0(1), χtriv).

In this case, we have bounded gaps between primes p for which τ(p) ≡ 0 (mod d) for

any positive integer d. If k = 2, then f is the newform associated to an elliptic curve

E/Q with conductor N . In this case, af (p) = p+ 1−#E(Fp), and we have bounded

gaps between primes p for which #E(Fp) ≡ p+ 1 (mod d) for any d ≥ 1.

Finally, we consider primes represented by binary quadratic forms.

Theorem 2.20. Let Q(x, y) = ax2 +bxy+cy2 ∈ Z[x, y] be a primitive quadratic form

with discriminant D = b2 − 4ac < 0, let h(D) be number of such quadratic forms of

discriminant D, and let qn be the n-th prime represented by Q. For any m ∈ N,

lim inf
n→∞

(qm+n − qn)� (cDm)3 exp(2cDm)

with an absolute implied constant. Here, cD ≤ 2h(D)2(eγ log(4h(D) log |D|) + 4). In

particular, if n ∈ N, then there are bounded gaps between primes of the form x2 +ny2.

Proof. Up to finitely many exceptions, the primes represented by Q form a Cheb-

otarev se (cf. Theorem 9.12 of Cox [Cox89]). The proportion of primes that are

represented by Q is either 1/h(D) or 1/2h(D) (depending on Q). If K = Q(
√
D), O

is the order of the discriminant D, and L is the ring class field of O, then the Cheb-

otarev condition satisfied by these primes is in the extension L/Q, which is unramified

outside of D. Thus the bound on cD follows from Proposition 2.10.
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Chapter 3

A variant of the Bombieri-Vinogradov

theorem for short intervals and some

questions of Serre

Using deep analytic properties of Dirichlet L-functions, one can produce a short

interval analogue of the Bombieri-Vinogradov estimate (2.6) in the form

∑
q≤xθ

max
(a,q)=1

max
y≤h

max
1
2
x≤N≤x

∣∣∣π(N + y; q, a)− π(N ; q, a)− π(N + y)− π(y)

ϕ(q)

∣∣∣
� h

(log x)D
, (3.1)

where δ > 0 and θ > 0 are certain constants, D > 0, and h ≥ x1−δ. In this chapter,

we extend this result to the context of the Chebotarev density theorem and consider

some arithmetic applications.

We now recall the Chebotarev density theorem for any Galois L/K, but we will

introduce a standard and equivalent restatement that will make the ensuing analysis

more convenient. Let L/K be a Galois extension of number fields with Galois group

G, let a, q ∈ N with (a, q) = 1, and let NK/Q denote the absolute field norm of K. For
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a prime ideal p of K which is unramified in L, there corresponds a certain conjugacy

class C ⊂ G of Frobenius automorphisms attached to the prime ideals of L which

lie over p. We denote this conjugacy class by the Artin symbol [L/K
p

]. For a fixed

conjugacy class C and an integral ideal a of K, define

ΛC(a) :=


log NK/Qp if a = pm, m ≥ 1, p unramified in L,

[
L/K
p

]m
= C,

0 otherwise

and

ψC(x; q, a) = ψC(x, L/K; q, a) :=
∑
Na≤x

NK/Qa≡a(mod q)

ΛC(a). (3.2)

The Chebotarev density theorem asserts that if q ≤ (log x)D, then

ψC(2x; q, a)− ψC(x; q, a) ∼ d(C; q, a)x (3.3)

for some rational density d(C; q, a) ≥ 0. If ζq = e2πi/q and L ∩Q(ζq) = Q, then

d(C; q, a) =
|C|
|G|

1

ϕ(q)
.

Building on the work of M. R. Murty and V. K. Murty [MM87], M. R. Murty and

Petersen [MP13] proved that if H ⊂ G is a largest abelian subgroup of G such that

H ∩ C is nonempty, E is the fixed field of H, and

0 < θ <
1

max{[E : Q]− 2, 2}
,

then ∑′

q≤xθ
max

(a,q)=1
max
N≤x

∣∣∣ψC(N ; q, a)− |C|
|G|

N

ϕ(q)

∣∣∣� x

(log x)D
, (3.4)

where
∑′ denotes summing over moduli q satisfying L ∩ Q(ζq) = Q. This extends
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(2.6) to a nonabelian setting; in fact, (2.6) is recovered when L = Q.

Balog and Ono [BO01] extended (3.3) to a short interval setting using Heath-

Brown’s zero density estimate for Dedekind zeta functions [HB77]. Specifically, if

0 < δ <


1/[L : Q] if [L : Q] ≥ 3,

3/8 if [L : Q] = 2,

5/12 if [L : Q] = 1

(3.5)

and h ≥ x1−δ, then

ψC(x+ h; 1, 1)− ψC(x; 1, 1) ∼ |C|
|G|

h. (3.6)

Our main result is a short interval variant of (3.4).

Theorem 3.1. Let L/K be a Galois extension of number fields with Galois group G,

and let C ⊂ G be a fixed conjugacy class. Let H ⊂ G be a largest abelian subgroup of

G such that H ∩ C is nonempty, and let E be the fixed field of H. Let 0 < δ < 2
5[E:Q]

and 0 < θ < 1
3
( 2

5[E:Q]
− δ). If h ≥ x1−δ, then for any constant D > 0,

∑′

q≤xθ
max

(a,q)=1
max
y≤h

max
1
2
x≤N≤x

∣∣∣ψC(N + y; q, a)− ψC(N ; q, a)− |C|
|G|

y

ϕ(q)

∣∣∣� h

(log x)D
, (3.7)

where
∑′ denotes summing over moduli q satisfying L ∩Q(ζq) = Q.

When |H| ≥ 3, Theorem 3.1 immediately yields an improvement to the range of δ

in (3.5) for Balog and Ono’s short interval variant of the Chebotarev density theorem.

This improvement holds for the vast majority of choices of L/K and C. Examples of

such situations include when C has an element of order at least 3 or when [L : K] is

odd.

Corollary 3.2. Let L/K, G, C, H, and E be as in Theorem 3.1, and suppose that

|H| ≥ 3. Let a, q ∈ N satisfy L ∩ Q(ζq) = Q and (a, q) = 1; furthermore, for any
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constant D > 0, let q ≤ (log x)D. If 0 < δ < 2
5[E:Q]

and h ≥ x1−δ, then

ψC(x+ h; q, a)− ψC(x; q, a) ∼ |C|
|G|

h

ϕ(q)
.

3.1 Preliminary Setup

For a number field F , we let nF = [F : Q] and dF equal the absolute discriminant

of F . Let L/K be a Galois extension of number fields with Galois group G, and let

C ⊂ G be a fixed conjugacy class. Unless otherwise specified, all implied constants

in the asymptotic notation � or O(·) will depend in an effectively computable way

on at most dL.

The setup in this section is essentially the same as in [LO77, MP13]. To single out

those pm in K such that both [L/K
p

]m = C and NK/Qp
m ≡ a (mod q), we will use the

characters η = φ⊗χ of the Galois group Gal(L(ζq)/K) ∼= G× (Z/qZ)×, where φ is an

irreducible character of G and χ (mod q) is a Dirichlet character. We work under the

assumption that L∩Q(ζq) = Q so that η(a) = φ(a)χ(NK/Qa) for any integral ideal a

of K. Let

FC(s) = −|C|
|G|

1

ϕ(q)

∑
η

η̄(g)
L′

L
(s, η, L(ζq)/K),

where L(s, η, L(ζq)/K) is the Artin L-function associated to η. For Re(s) > 1, we

have the Dirichlet series expansion

FC(s) =
∑
p

∞∑
m=1

θ(pm)(log NK/Qp)NK/Qp
−ms.

If p is unramified in L, then θ(pm) = 1 if [L/K
p

]m = C and NK/Qp ≡ a (mod q);

otherwise, θ(pm) = 0. If p ramifies in L or Q(ζq), then |θ(pm)| ≤ 1. Thus apart from

ramified primes, ψC(x; q, a) is a sum of the coefficients of FC(s).

Unfortunately, θ(pm) is expressed in terms of Artin L-functions corresponding
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to the (usually nonabelian) characters of G × (Z/qZ)×. Fortunately, FC(s) can be

written in terms of L-functions associated to abelian characters. Let H ⊂ G be a

largest abelian subgroup such that H ∩C is nonempty, let E be the fixed field of H,

and let ξ denote the irreducible characters of H. Since H is abelian, the characters

ω = ξ⊗χ of the Galois groupHq = Gal(L(ζq)/E) ∼= H×(Z/qZ)× are one-dimensional.

Because L ∩ Q(ζq) = Q, we have that ω(a) = ξ(a)χ(Na); furthermore, if fω is the

conductor of ω, then NE/Qfω � qnE . (We let N = NE/Q for the rest of the chapter.)

Choose g ∈ C ∩ H. By the same arguments as in [LO77, Lemma 4.1], we may

write

FC(s) = −|C|
|G|

1

ϕ(q)

∑
ω∈Ĥq

ω̄(c)
L′

L
(s, ω, L(ζq)/E).

Repeating the analysis in [LO77], we find that if 2 ≤ T ≤ x, then

ψC(x; q, a)− |C|
|G|

1

ϕ(q)

(
x−

∑
ω∈Ĥq

ω̄(c)
( ∑
ρ=β+iγ
|γ|≤T

xρ

ρ
−
∑
ρ

|ρ|≤1/2

1

ρ

))
� x(log x)2

T
,

where ρ is a nontrivial zero of L(s, ω̃, L(ζq)/E) and ω̃ is the primitive character which

induces ω. Now, suppose y ≤ h and 1
2
x ≤ N ≤ x. Since

∣∣∣(N + y)ρ −Nρ

ρ

∣∣∣ =
∣∣∣ ∫ N+y

N

tρ−1dt
∣∣∣ ≤ yNRe(ρ)−1 � hxRe(ρ)−1,

we find that

max
(a,q)=1

max
y≤h

max
1
2
x≤N≤x

∣∣∣ψC(N + y; q, a)− ψC(N ; q, a)− |C|
|G|

y

ϕ(q)

∣∣∣
� h

ϕ(q)

∑
ω∈Ĥq

∑
ρ=β+iγ
|γ|≤T

xβ−1 +
x(log x)2

T
.
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Therefore, the left hand side of (3.7) is

� h
∑′

q≤Q

1

ϕ(q)

∑∗

ω∈Ĥq

∑
ρ=β+iγ
|γω |≤T

xβ−1 +
Qx(log x)2

T
, (3.8)

where ρ is a nontrivial zero of L(s, ω, L(ζq)/E) and
∑∗ denotes summing over prim-

itive characters ω.

Theorem 3.1 will follow from proving that for any fixed D > 0, we have

h
∑′

q≤Q

1

ϕ(q)

∑∗

ω∈Ĥq

∑
ρ=β+iγ
|γ|≤T

xβ−1 +
Qx(log x)2

T
� h

(log x)D
, (3.9)

where Q = xθ, h ≥ x1−δ, and δ and θ are given in Theorem 3.1.

3.2 Proof of Theorem 3.1

Decompose the interval [1, Q] into the dyadic intervals [2n, 2n+1), where 0 ≤ n ≤

dlog2Qe. Since ϕ(q)−1 � q−1 log log q, (3.8) is

� h(logQ)(log logQ) max
1≤R≤Q

1

R

∑′

q≤R

∑∗

ω∈Ĥq

∑
ρ=β+iγ
|γ|≤T

xβ−1 +
Qx(log x)2

T
. (3.10)

If ω = η ⊗ χ is primitive, then fω is also the modulus of ω. Since Nfω � qnE , where

q is the modulus of χ, (3.10) is

� h(logQ)(log logQ) max
1≤R≤Q

1

R

∑
Na≤RnE

∑∗

ω mod a

∑
ρ=β+iγ
|γ|≤T

xβ−1 +
Qx(log x)2

T
. (3.11)
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For 1
2
≤ σ ≤ 1, let N(σ, T ) := #{ρ = β + iγ : L(ρ, ω) = 0, σ ≤ β, |γ| ≤ T} and

N(σ,R, T ) :=
∑

Na≤R

∑∗

ω mod a

N(σ, T ).

Proposition 3.3. If T ≥ 2, R ≥ 1, and 1
2
≤ σ ≤ 1, then

N(σ,R, T )� (R2T nE)
5
2

(1−σ)(logRT )9nE+10.

Proof. This follows directly from the work Montgomery [Mon71, Theorem 12.2] for

nE = 1 and Hinz [Hin76, Satz A and B] for nE ≥ 2. It is weaker than either

Montgomery’s or Hinz’s results, but it is more convenient for our proof.

Proof of Theorem 3.1. Let D > 0, let 0 ≤ δ < 2
5nE

, and let h ≥ x1−δ. Let

Q = x
1
3

( 2
5nE
−δ)− 2

15nE
ε
(log x)−

D+2
3 and T = x

2
15nE

(1+5nEδ−ε)(log x)
2(D+2)

3 ,

where 0 < ε < 1− 5nEδ/2 is fixed. With 1 ≤ R ≤ Q, we have

∑
Na≤RnE

∑∗

ω mod a

∑
ρ=β+iγ
|γ|≤T

xβ−1 � log x max
1
2
≤σ<1

xσ−1N(σ,RnE , T ). (3.12)

By the zero-free region for Hecke L-functions proven by Bartz [Bar89] and the fact

that we restrict q so that L ∩Q(ζq) = Q, there exists a constant bL > 0 such that if

1− α(R, x) < σ ≤ 1, α(R, x) :=
bL

max{logR, (log x)3/4}
, (3.13)

then N(σ,RnE , T ) is either 0 or 1. If N(σ,RnE , T ) = 1, then the counted zero β1

is a Landau-Siegel zero associated to an exceptional modulus q1 and an exceptional

real quadratic character in Ĥq1 . Just as in [MP13, Section 2], a field-uniform version

of Siegel’s theorem implies that xβ1−1 � (log x)−D−3 with an ineffective implied



43

constant.

Since (Q2T )5nE/2 = x1−ε, it follows from Proposition 3.3 that

max
1
2
≤σ≤1−α(R,T )

xσ−1N(σ,RnE , T )� (log x)9nE+10 max
1
2
≤σ≤1−α(R,T )

((Q2T )5nE/2/x)1−σ

� (log x)9nE+10x−εα(R,x).

By our definition of α(R, x), we have that x−εα(R,x) � (log x)−(9nE+14+D) when 1 ≤

R ≤ exp((log x)3/4), and x−εα(R,x) � 1 when exp((log x)3/4) < R ≤ Q. We have now

bounded (3.12), and so (3.11) is bounded by

h(logQ)2(log x) max
R≤Q

1

R
((log x)−D−3 + (log x)9nE+11x−εα(R,x)) +

Qx(log x)2

T
.

For our choice of h, Q, and T , this is � h(log x)−D, proving (3.9).

Using the full strength of Montgomery and Hinz’s work [Mon71, Hin76] instead

of Proposition 3.3, one can improve the ranges of δ and θ in Theorem 3.1 by fol-

lowing Huxley and Iwaniec [HI75]. The improvement is very small, and the ensuing

dependence of θ on δ and nE is cumbersome. Ultimately, our proof of Theorem 3.1

cannot produce values of δ and θ comparable to those in [HI75] because we sum over

primitive characters ω with Nfω � QnE instead of � Q, which seems unavoidable at

this time.

3.3 Bounded gaps between primes in Chebotarev sets:

the short interval version

Much like the results of [MM87, MP13], nonabelian analogues of the Bombieri-

Vinogradov theorem in short intervals can have interesting arithmetic consequences.

In this paper, we will focus on consequences related to recent advances toward the
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Hardy-Littlewood prime k-tuples conjecture. For these applications, we consider a

Galois extension L/Q with Galois group G and absolute discriminant dL, and we

consider a fixed conjugacy class C ⊂ G. In this setting, (3.2) counts primes sets of

the form

P =
{
p : p - dL,

[L/Q
p

]
= C

}
(3.14)

Let P denote the set of all primes, and let hi denote a nonnegative integer. Recall

that a collection of nonnegative integers Hk = {h1, . . . , hk} admissible if
∏k

i=1(n+hi)

has no fixed prime divisor. (We could consider more general admissible sets, but this

sometimes hinders the applications we consider.)

Conjecture (Hardy-Littlewood). If Hk is admissible, then as x→∞, we have

#{n ∈ [x, 2x] : #({n+ h1, . . . , n+ hk} ∩ P) = k} ∼ S
x

(log x)k
,

where S is a certain positive constant depending on Hk.

Choosing H2 = {0, 2}, the Hardy-Littlewood conjecture implies the twin prime con-

jecture.

In [May], Maynard generalized his methods in [May15] to prove weak forms of

the Hardy-Littlewood conjecture with specializations to primes in short intervals and

primes in Chebotarev sets. More specifically, given 0 < δ < 5
12

and h ≥ x1−δ, Maynard

proved that there exists an absolute constant C > 0 such that if k ≥ C and Hk is an

admissible set, then

#{n ∈ [x, x+ h] : #({n+ h1, . . . , n+ hk} ∩ P) ≥ C−1 log k} � h

(log x)k
(3.15)

Furthermore, if P is given by (3.14), then Maynard also proved that there exists a
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constant CL > 0 such that if k ≥ CL and Hk is admissible, then

#{n ∈ [x, 2x] : #({n+ h1, . . . , n+ hk} ∩ P) ≥ C−1
L log k} � x

(log x)k
. (3.16)

Using Theorem 3.1, we prove the following mutual refinement of (3.15) and (3.16),

which extends applications in Chapter 2 to a short interval setting.

Theorem 3.4. Let L/Q be a Galois extension of number fields, let P be as in (3.14),

and choose h as in Theorem 3.1. There exists a constant CL ∈ N such that if k ≥ CL

and Hk = {h1, . . . , hk} is admissible, then

#{n ∈ [x, x+ h] : #({n+ h1, . . . , n+ hk} ∩ P) ≥ C−1
L log k} � h

(log x)k
.

Remark. Some of the parameters in the statement of Theorem 3.4 can have some

uniformity in x by appealing to the arguments in [May]. In what follows, we will

assume that all parameters are constant with respect to x.

We will use Theorem 3.1 to prove Theorem 3.4. Given a set of integers A, a set

of primes P ⊂ A, and a linear form L(n) = n+ h, define

A(x) = {n ∈ A : x < n ≤ 2x},

L(A) = {L(n) : n ∈ A},

PL,A(x, y) = L(A(x)) ∩P,

A(x; q, a) = {n ∈ A(x) : n ≡ a (mod q)},

ϕL(q) = ϕ(hq)/ϕ(h),

PL,A(x; q, a) = L(A(x; q, a)) ∩P.

We consider the 6-tuple (A,Lk,P, B, x, θ), where Hk is admissible, Lk = {Li(n) =

n + hi : hi ∈ Hk}, B ∈ N is constant, x is a large real number, and 0 ≤ θ < 1. We

present a very general hypothesis that Maynard states in Section 2 of [May].

Hypothesis 1. With the above notation, consider the 6-tuple (A,Hk,P, B, x, θ).
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1. We have ∑
q≤xθ

max
a

∣∣∣#A(x; q, a)− #A(x)

q

∣∣∣� #A(x)

(log x)100k2
.

2. For any L ∈ Hk, we have

∑
q≤xθ, (q,B)=1

max
(L(a),q)=1

∣∣∣#PL,A(x; q, a)− #PL,A(x)

ϕL(q)

∣∣∣� #PL,A(x)

(log x)100k2
.

3. For any q ≤ xθ, we have #A(x; q, a)� #A(x)/q.

For (A,Hk,P, B, x, θ) satisfying Hypothesis 1, Maynard proves the following in [May].

Theorem 3.5. Let (A,Hk,P, B, x, θ) satisfy Hypothesis 1 with 0 ≤ θ < 1. There is

a constant C > 0, depending only on θ, such that if k ≥ C and η > (log k)−1 satisfies

1

k

ϕ(B)

B

∑
L∈Hk

#PL,A(x) ≥ η
#A(x)

log x
,

then

#{n ∈ A(x) : #(Hk(n) ∩P) ≥ C−1η log k} � #A(x)

(log x)k exp(Ck)
.

Proof of Theorem 3.4. Let δ, h, and θ be as in Theorem 3.1. Let A = N ∩ [x, x+ h],

B = dL, and P = P (as in (3.14)). The proof is the same as Theorems 3.4 and 3.5 in

[May]: we show that the 6-tuple (N∩ [x, x+ h],Hk,P , dL, x, θ2) satisfies Theorem 3.5.

Parts (i) and (iii) of Hypothesis 1 are trivial to check. For Part (ii), note that if

(dL, q) = 1, then L∩Q(ζq) = Q. Thus by Theorem 3.1 and partial summation, all of

Hypothesis 1 holds when D and x are sufficiently large in terms of k and θ. Given a

suitable constant CL > 0 (computed as in Chapter 2), we let k ≥ CL. Then for all

sufficiently large x,

1

k

ϕ(dL)

dL

∑
L∈Hk

#PL,A(x) ≥ (1 + o(1))
ϕ(dL)

dL

|C|
|G|

#A(x)

log x
,
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where the o(1) implied constant depends only on L.

3.4 Arithmetic applications

We now consider arithmetic consequences of Theorem 3.4 in the theory of elliptic

curves, modular forms, and modular L-functions. We consider the following ques-

tions of Serre [Ser81], which may be seen as an automorphic analogue of Bertrand’s

postulate that every interval [x, 2x] contains a prime.

Serre’s Questions. Let q = e2πiz, and let S`(Γ0(N), χ) be the space of weight `, level

N cusp forms of nebentypus χ. For a nonzero cusp form f(z) =
∑∞

n=1 af (n)qn ∈

S`(Γ0(N), χ), let

If (n) = max{i : af (n+ j) = 0 for all 0 ≤ j ≤ i}.

1. Suppose that f is of weight ` ≥ 2 and is not a linear combination of forms with

complex multiplication. Is If (n)� nδ for some 0 ≤ δ < 1?

2. More generally, are there analogous results for forms with non-integral weights,

or forms with respect to other Fuchsian groups?

Motivated by Serre’s questions, Balog and Ono [BO01] used (3.6) to prove that if

f(z) =
∑∞

n=1 af (n)qn ∈ S`(Γ0(N), χ) is a cusp form of weight ` ∈ 1
2
N \ {1

2
} which is

not a linear combination of weight 3
2
theta functions, then there exists νf ∈ N such

that if 0 ≤ δ < 1
νf

and h ≥ x1−δ, then

#{n ∈ [x, x+ h] : af (n) 6= 0} � h/ log x. (3.17)

For such a cusp form f , it follows that If (n) � n
1− 1

νf
+ε

for any ε > 0, affirmatively

answering Serre’s questions. By using Theorem 3.4 instead of (3.6) in Balog and
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Ono’s proof, we immediately conclude that the integers n for which af (n) 6= 0 exhibit

dense clusters in short intervals.

Theorem 3.6. Let f(z) =
∑∞

n=1 af (n)qn ∈ S`(Γ0(N), χ) be a nonzero cusp form of

weight ` ∈ 1
2
N \ {1

2
} which is not a linear combination of weight 3

2
theta functions.

There exist constants Cf , νf ∈ N such that if 0 ≤ δ < 1
νf
, h ≥ x1−δ, k ≥ Cf and

Hk = {h1, . . . , hk} is admissible, then

#{n ∈ [x, x+ h] : #{hi ∈ Hk : af (n+ hi) 6= 0} ≥ C−1
f log k} � h

(log x)k
.

We use Theorem 3.6 to study the central values of modular L-functions and ranks

of elliptic curves. Let f(z) =
∑∞

n=1 af (n)qn ∈ S`(Γ0(N), χ) be a cusp form such that

` ≥ 2 is an integer, af (1) = 1, and f is an eigenform of the Hecke operators Tp for

p - N and Up for p | N ; we call such a cusp form f a newform. Let D be the set of all

fundamental discriminants; given d ∈ D, we consider the twisted L-function

L(s, fd) =
∞∑
n=1

af (n)χd(n)

ns+(`−1)/2
,

where χd is the Kronecker character for Q(
√
d). For newforms of weight ` ∈ 2N and

trivial nebentypus χ, Goldfeld [Gol79] conjectured that the proportion of d ∈ D for

which L(1
2
, fd) 6= 0 is 1

2
.

If g is a half-integer weight cusp form satisfying the hypotheses of Theorem 3.6,

then by the work of Shimura [Shi73] and Waldspurger [Wal81], the Fourier coefficients

ag(n) interpolate central critical values L(1
2
, fd) as d varies, where f is the Shimura

correspondent of g. Even though the Shimura correspondence is not surjective, Ono

and Skinner [OS98] proved that such central critical values can be obtained in this

fashion when f is a newform of even weight and trivial nebentypus χ. Using this

along with (3.17), Balog and Ono [BO01] proved that there exists νf ∈ N such that
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if 0 ≤ δ < 1
νf

and h ≥ x1−δ, then

#{|d| ∈ [x, x+ h] : d ∈ D, L(1/2, fd) 6= 0} � h/ log x. (3.18)

This is the sharpest result toward Goldfeld’s conjecture which is valid for all newforms

f of even weight and trivial nebentypus; for most such newforms, the power of log x

can be improved [Ono01]. By using Theorem 3.6 instead of (3.17) in Balog and Ono’s

proof, we conclude that fundamental discriminants d for which L(1/2, fd) 6= 0 exhibit

dense clusters in short intervals.

Corollary 3.7. Let f ∈ S2`(Γ0(N), χtriv) be a newform with ` ∈ N. There exists an

arithmetic progression a mod q (depending on f) and there exist constants νf , Cf ∈ N

such that if 0 ≤ δ < 1
νf
, h ≥ x1−δ, k ≥ Cf , Hk = {h1, . . . , hk} is admissible, and

Nf (k, n) = {hi ∈ Hk : n+ qhi ∈ D, L(1/2, fn+qhi) 6= 0}, then

#{|n| ∈ [x, x+ h] : n ≡ a (mod q),#Nf (k, n) ≥ C−1
f log k} � h/(log x)k.

Remark. We need to restrict to the arithmetic progression a mod q for technical rea-

sons; see [OS98] for details. We accomplish this by choosing Hk using the arguments

at the very end of the proof of Theorem 2.1.

Let f be the newform associated to an elliptic curve E/Q of conductor N with

Weierstrass equation y2 = x3 + ax2 + bx + c. If (d, 4N) = 1, then L(s, fd) is the

L-function of the d-quadratic twist Ed/Q, whose Weierstrass equation is given by

y2 = x3 + adx2 + bd2x + cd3. By the work of Kolyvagin [Kol88], if L(1/2, fd) 6= 0,

then the rank rk(Ed(Q)) of the Mordell-Weil group Ed(Q) is zero. Thus Corollary

3.7 immediately implies the following result.

Corollary 3.8. Let E/Q be an elliptic curve. There exists an arithmetic progression

a mod q (depending on E) and there exist constants νE, CE ∈ N such that if 0 ≤ δ <
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1
νE
, h ≥ x1−δ, k ≥ CE, Hk = {h1, . . . , hk} is admissible, and we define NE(k, n) =

{hi ∈ Hk : n+ qhi ∈ D, rk(En+qhi(Q)) = 0}, then

#{|n| ∈ [x, x+ h] : n ≡ a (mod q),#NE(k, n) ≥ C−1
E log k} � h/(log x)k.

Consider an elliptic curve E/Q. The distribution of the quantity aE(p) := p +

1 − #E(Fp) is well-studied [Mur97, MMS88, Ser81]; we apply our results to study

the distribution of aE(p) (modm) in short intervals. It follows from the work of Shiu

[Shi00] that if E/Q has a rational point of order m, then for every j ∈ N and every

i 6≡ 1 (modm), there exists an n ∈ N such that

aE(pn) ≡ aE(pn+1) ≡ aE(pn+2) ≡ · · · ≡ aE(pn+j) ≡ i (modm) ,

where pn is the n-th prime. Using (3.6) and the action of Galois on the torsion points

of E, Balog and Ono [BO01] proved that for anym ∈ N and any residue class i mod m

for which there is a prime of good reduction p0 with aE(p0) ≡ i (modm), there exists

νE,m ∈ N such that if 0 ≤ δ < 1
νE,m

and h ≥ x1−δ, then

#{p ∈ [x, x+ h] : aE(p) ≡ i (mod m)} � h/ log x.

Using Theorem 3.4 instead of (3.6) in Balog and Ono’s proof, we immediately have:

Corollary 3.9. Let E/Q be an elliptic curve, let m ∈ N, and let i mod m be a residue

class for which there is a prime of good reduction p0 with aE(p0) ≡ i (modm). There

exist constants νE,m, CE,m ∈ N such that if 0 ≤ δ < 1
νE,m

, h ≥ x1−δ, k ≥ CE,m, and

Hk = {h1, . . . , hk} is admissible, then

#{n ∈ [x, x+ h] : #{hj ∈ Hk : n+ hj ∈ P, aE(n+ hj) ≡ i (mod m)} ≥ C−1
E,m log k}

� h

(log x)k
.
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Chapter 4

Effective log-free zero density

estimates for automorphic L-functions

and the Sato-Tate conjecture

For a prime p, let Zp denote the p-adic integers, and let Ẑ =
∏

p Zp be the profinite

completion of Z. We define the ring of integral adeles AZ by the direct product R× Ẑ.

We define the ring of adeles AQ of Q to be the tensor product Q⊗ZAZ, which can be

endowed with a topology such that AZ is an open subring. More generally, for any

number field K, we define AK = K ⊗Z AZ, which can be topologized as a product of

[K : Q] copies of AQ.

We consider the following general setup. Let K/Q be a number field with ring

of adeles AK , and let π be a cuspidal automorphic representation of GLd(AK) with

unitary central character. We simply refer to such a representation π as an automor-

phic representation. There is an L-function L(s, π,K) attached to π whose Dirichlet

series and Euler product are given by

L(s, π,K) =
∑
a

λπ(a)

Nas
=
∏
p

d∏
j=1

(1− απ(j, p)Np−s)−1,
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where the sum runs over the non-zero integral ideals of K, the product runs over the

prime ideals, and Na = NK/Qa denotes the norm of the ideal a.

Let π and π′ be automorphic representations of GLd(AK) and GLd′(AK), respec-

tively. The Rankin-Selberg convolution

L(s, π ⊗ π′, K) =
∑
a

λπ⊗π′(a)

Nas
=
∏
p

d∏
j1=1

d′∏
j2=1

(1− απ(j1, p)απ′(j2, p)(Np)−s)−1

is itself an L-function with an analytic continuation and a functional equation. Define

Λπ⊗π′(a) by the Dirichlet series identity

−L
′

L
(s, π ⊗ π′, K) =

∑
a

Λπ⊗π′(a)

Nas
.

If π̃ is the representation which is contragredient to π, then it follows from standard

Rankin-Selberg theory and the Wiener-Ikehara Tauberian theorem that we have a

prime number theorem for L(s, π ⊗ π̃, K) in the form

∑
Na≤x

Λπ⊗π̃(a) ∼ x.

It is reasonable to expect (for example, it follows from the generalized Riemann

hypothesis) that there is some small δ > 0 such that for x sufficiently large and any

h ≥ x1−δ, we have ∑
x<Na≤x+h

Λπ⊗π̃(a) ∼ h. (4.1)

Unfortunately, a uniform analogue of Littlewood’s improved zero-free region does

not yet exist for all automorphic L-functions, so it seems that (4.1) is currently

inaccessible except in special situations. Despite this setback, Moreno [Mor73] proved

the following approximate short interval prime number theorem, which he called the

Hoheisel phenomenon.
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Theorem 4.1. Suppose that L(s, π ⊗ π̃,Q) has a “standard” zero-free region (one of

a quality similar to Hadamard’s and de la Vallée Poussin’s for ζ(s)). Suppose also

that there is a log-free zero density estimate of the form

Nπ⊗π′(σ, T ) := #{ρ = β + iγ : L(ρ, π ⊗ π′, K) = 0, β ≥ σ, |γ| ≤ T} � T cπ,π′ (1−σ)

for L(s, π ⊗ π̃,Q). For any 0 < δ < 1/cπ,π̃ and any h ≥ x1−δ, one has

∑
x<Na≤x+h

Λπ⊗π̃(a) � h.

At the time of Moreno’s work, such log-free zero density estimates only existed

in special cases. Moreover, in general, it is only known that L(s, π ⊗ π̃, K) has a

standard zero-free region if π is self-dual.

Recall that π and π′ are automorphic representations of GLd(AK) and GLd′(AK),

respectively. Suppose that K = Q and that either both d and d′ are at most 2 or that

one of π and π′ is self-dual. Building on the work of Fogels, Akbary and Trudgian

[AT15] proved in this case that if one has a certain amount of control over the Dirichlet

coefficients of L(s, π,Q) and L(s, π′,Q) in short intervals and T is sufficiently large

in terms of π and π′, then

Nπ⊗π′(σ, T ) ≤ T cd,d′ (1−σ),

where cd,d′ > 2 is a constant depending on d and d′. This allowed them to prove

a variant of the Hoheisel phenomenon for L(s, π ⊗ π̃,Q) when π is self-dual. Un-

fortunately, the dependence of cd,d′ on d and d′ was not made effective, whence also

the length of the interval in their variant of the Hoheisel phenomenon. This makes

their result difficult to use in situations where uniformity in parameters over several

L-functions is required, especially when the L-functions in question vary in degree.
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Furthermore, the range of T for which their bound holds is also not made effective.

This is necessary to obtain analogues of Linnik’s theorem.

Effective log-free zero density estimates have been proven for certain natural fam-

ilies of L-functions. Weiss [Wei83] proved an effective analogue of Fogels’ log-free

density estimate for the Hecke L-functions of ray class characters, which enabled him

to access prime ideals of K satisfying splitting conditions in a finite extension M/K.

Additionally, Kowalski and Michel [KM02] obtained a log-free zero density estimate

for L-functions associated to any family of automorphic representations of GLd(AQ)

satisfying certain conditions, including the generalized Ramanujan conjecture (see

Hypothesis 2). Their result works best when T is essentially constant, which is useful

for variants of Linnik’s theorem but not for the Hoheisel phenomenon.

Our first result is a log-free zero density estimate for L(s, π ⊗ π′, K) which is

effective in its dependence on π, π′, andK; it is useful for variants of both the Hoheisel

phenomenon and Linnik’s theorem. This dependence is most naturally stated in terms

of the analytic conductors q(π) and q(π′) of π and π′, respectively, whose definition

we postpone to Section 4.1.1. We prove the following.

Theorem 4.2. Let K be a number field with absolute discriminant DK. Let π and

π′ be automorphic representations of GLd(AK) and GLd′(AK), respectively. Suppose

that either both d ≤ 2 and d′ ≤ 2 or that at least one of π and π′ is self-dual, and

suppose that the generalized Ramanujan conjecture (GRC) holds for L(s, π,K). Let

Q = Q(π, π′) =


q(π)q(π′) if π is nontrivial,

q(π′) if π is trivial,
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let

D = D(π, π′) =


d2 if d = d′ and both π and π′ are self-dual,

(d′)4 if π is trivial,

(d+ d′)4 otherwise,

and let T � [K : Q]Q1/[K:Q].1 There exists an absolute constant c1 > 0 such that if

1
2
≤ σ ≤ 1, then

Nπ⊗π′(σ, T )� d2T c1D[K:Q](1−σ).

Remark. 1. We impose the self-duality condition in Theorem 4.2 in order to ensure

that L(s, π ⊗ π′, K) has a standard zero-free region; see Lemma 4.7.

2. In the case where π is trivial, Theorem 4.2 gives the first unconditional log-free

zero density estimate for all automorphic L-functions L(s, π′, K). (Recall that Akbary

and Trudgian’s result is conditional on a hypothesis on the Dirichlet coefficients of

L(s, π,K) in short intervals.) In particular, Theorem 4.2 gives an unconditional log-

free zero density estimate for L(s, π′,Q) when π′ is an automorphic representation of

GL2(AQ) associated to a Hecke-Maass form, which was not previously known.

In addition to the density estimate of Fogels that helps simplify the proof of

Linnik’s bound on the least prime in an arithmetic progression, Jutila [Jut70] proved

a “hybrid” density estimate of the form

∑
q≤Q

∑?

χ mod q

Nχ(σ, T )� (Q2T )c(1−σ)(logQT )c
′
, (4.2)

where the ? on the summation indicates it is to be taken over primitive characters;

Montgomery [Mon71] improved upon Jutila’s work to show that one may take c =

5
2
. This simultaneously generalizes Fogels’ result and Bombieri’s large sieve density

estimate [Bom65]. As a consequence of (4.2), one sees that the average value of
1Unless mentioned otherwise, the implied constant in an asymptotic inequality is absolute and

computable.
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Nχ(σ, T ) is noticeably smaller than what is given by Fogels’ result. Furthermore,

(4.2) can be used to prove versions of the Bombieri-Vinogradov theorem in both long

and short intervals.

Gallagher [Gal70] proved that

∑
q≤T

∑?

χ mod q

Nχ(σ, T )� T c(1−σ), T ≥ q. (4.3)

Gallagher’s refinement of (4.2) can be used to prove both Linnik’s bound on the

least prime in an arithmetic progression and variants of the Bombieri-Vinogradov

theorem for short intervals. Our second result generalizes (4.3) to consider twists of

Rankin-Selberg L-functions associated to automorphic representations over Q.

Theorem 4.3. Assume the above notation. Under the hypotheses of Theorem 4.2

with K = Q, there exists an absolute constant c2 > 0 such that

∑
q≤T

∑?

χ mod q

N(π⊗π′)⊗χ(σ, T )� d2T c2D(1−σ).

We now turn to the applications of Theorems 4.2 and 4.3. We begin by consider-

ing a version of the Hoheisel phenomenon for L-functions satisfying the generalized

Ramanujan conjecture. In some cases, it is desirable to incorporate an auxiliary split-

ting condition on the prime ideals. To this end, we let M/K be a Galois extension

with Galois group G, let C ⊆ G be a conjugacy class, and let
[
M/K
·

]
denote the Artin

symbol. For an ideal a, define 1C(a) to be 1 if a = pk for some unramified prime p

with
[
M/K

p

]k
= C and to be 0 otherwise. It is then possible to prove an analogue of

the Chebotarev density theorem for L(s, π ⊗ π̃, K) in the form

∑
Na≤x

1C(a)Λπ⊗π̃(a) ∼ |C|
|G|

x. (4.4)

Our first application is a short interval version of (4.4), with effective bounds on the
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size of the intervals.

Theorem 4.4. Assume the above notation. Let π be a self-dual automorphic rep-

resentation of GLd(AK) whose L-function L(s, π,K) satisfies GRC. There exists an

absolute constant c3 > 0 such that if

δ ≤ c3

d4[M : Q] log(3d[M : K])
,

x is sufficiently large, and h ≥ x1−δ, then

∑
x<Na≤x+h

1C(a)Λπ⊗π̃(a) � h,

where the implied constant depends on π and the extension M/K. If π is an auto-

morphic representation of GL2(AK) or the symmetric square of such a representation,

then the assumption of GRC can be removed. If M = K, then d4 can be replaced with

d2.

Remark. In certain instances, we can remove the assumption of GRC when we know

how L(s, π ⊗ π̃, K) factors. For example, let π be a self-dual cuspidal automorphic

representation of GL2(AK), and consider the factorization

L(s, Symnπ ⊗ Symnπ,K) = L(s, ω,K)
n∏
j=1

L(s, Sym2jπ,K), (4.5)

where ω is the central character; an analogous factorization holds when the represen-

tations are twisted by Hecke characters. Thus we see that the result is unconditional

when the symmetric power L-functions are known to be automorphic and cuspidal.

For n = 1, this follows from Kim and Shahidi [KS02b], and for n = 2, this follows

from Kim [Kim03]. When n = 3 or 4 and π is associated to a classical modular form,

this follows from the recent work of Clozel and Thorne [CT] when K∩Q(e2πi/35) = Q.

A case where this is interesting is when π is associated to a Hecke-Maass form over
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Q, where GRC is not known. However, in this case, Motohashi [Mot15] recently es-

tablished a log-free zero density estimate for L(s, Sym2π,Q), thus obtaining Theorem

4.4.

It is of course somewhat unsatisfying that we cannot obtain an asymptotic formula

in Theorem 4.4 to provide a true short interval analogue of (4.4), but, as remarked

earlier, this is due to the lack of a strong zero-free region for general automorphic

L-functions and seems unavoidable at present. Good zero-free regions of a quality

better than Littlewood’s exist for Dedekind zeta functions, which enabled Balog and

Ono [BO01] to prove a prime number theorem for primes in Chebotarev sets lying in

short intervals.

Even though versions of Theorem 4.4 with asymptotic equality are only known

in special cases, we can use Theorem 4.3 to show that the predicted asymptotic

holds on average. We prove the following generalization of [Gal70, Theorem 7]; to

obtain unconditional and effective results, we restrict ourselves to consider cuspidal

automorphic representations of GL2(AQ).

Theorem 4.5. Assume the above notation. Let π be either a self-dual automor-

phic representation of GL2(AQ) with trivial central character or the symmetric square

of such a representation. There exist absolute constants c4, c5 ∈ (0, 1) such that if

exp(
√

log x) ≤ Q ≤ xc4 and x/Q ≤ h ≤ x, then

∑
q≤Q

∑?

χ mod q

∣∣∣ ∑
x<n≤x+h

Λπ⊗π̃(n)χ(n)− δ(χ)h+ δq,∗(χ)hξβ1−1
∣∣∣� h exp

(
− c5 log x

log(Qq(π))

)

for some ξ ∈ [x, x+ h]. Here, δ(χ) = 1 if χ is the trivial character and is zero other-

wise, and β1 denotes the Landau-Siegel zero associated to an exceptional real Dirichlet

character χ∗ (mod q) if it exists. We set δq,∗(χ) = 1 if χ = χ∗ and zero otherwise, in-

cluding if the exceptional zero does not exist. The implied constant depends effectively

on at most q(π).
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Unlike the previous log-free zero density estimates for general automorphic L-

functions discussed earlier, Theorem 4.2 allows us to handle questions where main-

taining uniformity in parameters is crucial. One famous example of such an appli-

cation is the Sato-Tate conjecture, which concerns the distribution of the quantities

λπ(p) attached to a cuspidal automorphic representations π of GL2(AK), where K

is a totally real field; for generalizations to higher degree representations, see, for

example, Serre [Ser12]. If π has trivial central character and is genuine in the sense

of Shahidi [Sha94, Section 2] (in the case that K = Q, this amounts to assuming

that π is associated with a holomorphic cuspidal Hecke newform), then, by work of

Deligne [Del74], it satisfies the generalized Ramanujan conjecture that |λπ(p)| ≤ 2 at

all unramified p. We may thus write λπ(p) = 2 cos θp for some angle θp ∈ [0, π], and

the Sato-Tate conjecture predicts that if I = [a, b] ⊂ [−1, 1] is a fixed subinterval,

then

lim
x→∞

1

πK(x)
#{Np ≤ x : cos θp ∈ I} =

2

π

∫
I

√
1− t2 dt =: µST(I),

where πK(x) := #{p : Np ≤ x}. The Sato-Tate conjecture is now a theorem, due to

the remarkable work of Barnet-Lamb, Geraghty, Harris, and Taylor [BLGHT11]. The

proof relies upon showing that the odd symmetric power L-functions L(s, Symnπ,K)

are all potentially automorphic, i.e., automorphic when restricted to some finite

extension of K. It is expected that L(s, Symnπ,K) is automorphic over K for

each n ≥ 1, but as of right now, this is known in general only for n ≤ 4 (see

[GJ78, Kim03, KS02a, KS02b]). By recent work of Clozel and Thorne [CT], if π is

associated to a classical modular form, then L(s, Symnπ,K) is automorphic for n ≤ 8,

provided that K ∩ Q(e2πi/35) = Q. Consequently, the number of symmetric powers

needed to access the interval I is especially important in this problem.
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Recall that the Chebyshev polynomials Un(t), defined by

∞∑
n=0

Un(t)xn =
1

1− 2tx+ x2
,

form an orthnormal basis for L2([−1, 1], µST). If πp is unramified, then Un(cos θp)

is the Dirichlet coefficient of L(s, Symnπ,K) at the prime p. We say that a subset

I ⊆ [−1, 1] can be Symn-minorized if there exist b0, . . . , bn ∈ R with b0 > 0 such

that

1I(t) ≥
n∑
j=0

bjUi(t) (4.6)

for all t ∈ [−1, 1], where 1I(·) denotes the indicator function of I. Note that if I can

be Symn-minorized, then it is the union of intervals which individually need not be

Symn-minorizable. We have the following.

Theorem 4.6. Assume the above notation. Let K/Q be a totally real field, and let π

be a genuine automorphic representation of GL2(AK) with trivial central character.

Suppose that a fixed subset I ⊆ [−1, 1] can be Symn-minorized and that the L-functions

L(s, Symjπ,K) are automorphic for each j ≤ n. Let B = max0≤j≤n |bj|/b0, where

b0, . . . , bn are as in (4.6).

1. There exists an absolute constant c6 > 0 such that if

δ ≤ c6

n4[K : Q] log(3Bn)
,

x is sufficiently large, and h ≥ x1−δ, then

∑
x<Np≤x+h
πp unramified

1I(cos θp) log Np � h,

where the implied constant depends on B, I, and K. In particular, if I can be

Sym4-minorized, then this is unconditional; the assumption of automorphy can
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be dropped if I can be Sym8-minorized and K ∩Q(e2πi/35) = Q.

2. If I can be Symn-minorized and L(s, Symjπ,K) is automorphic for each j ≤ 2n,

then there exists an absolute constant c7 > 0 such that the statement “x is

sufficiently large” can be replaced with

x ≥ ([K : Q][K:Q]q(Symnπ))c7n
4 log(3Bn).

In particular, if I can be Sym4-minorized, then the assumption of automorphy

can be dropped when K ∩Q(e2πi/35) = Q.

Remark. 1. For any fixed n, determining the subsets I ⊂ [−1, 1] that can be Symn-

minorized is an elementary combinatorial problem. We carry this out in Lemma 4.17

to determine the intervals that can be Sym4-minorized, which we consider to be the

most interesting case; it turns out that the proportion of subintervals of [−1, 1] which

can be Sym4-minorized is roughly 0.388. If one is not concerned with obtaining the

optimal minorization or if n is large, it is likely more convenient to apply a standard

minorant for I instead. For the Beurling-Selberg minorant (see Montgomery [Mon94,

Lecture 1]), a tedious calculation shows that if n ≥ 4(1 + δ)/µST(I) − 1 for some

δ > 0, then I can be Symn-minorized and

B ≤ 2 + 3/δ

µST(I)
.

It follows that any interval can be Symn-minorized for n sufficiently large, and thus

every interval is at least conditionally covered by Theorem 4.6; at the end of this

chapter, we will show that this minorant might be far from optimal. With the

Beurling-Selberg minorant, we have unconditional results for intervals I satisfying

µST(I) > 4/5. By contrast, Lemma 4.17 implies unconditional results for all intervals

satisfying µST(I) ≥ 0.534, and for some with measure as small as 0.139.
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2. It is tempting to ask whether one can exploit existing results on potential

automorphy for symmetric power L-functions and the explicit dependence on the base

field in Theorem 4.2 to obtain unconditional, albeit weaker, results for all intervals.

The proof of the Sato-Tate conjecture uses crucially work of Moret-Bailly [MB89]

establishing the existence of number fields over which certain varieties have points.

The proof of this result unfortunately only permits control over the ramification at

finitely many places, so it is not possible to even obtain bounds on the discriminants

of the fields over which the symmetric power L-functions are automorphic. Thus, the

authors do not believe it is possible to obtain an unconditional analogue of Theorem

4.6 for all I at this time.

3. When K = Q and the arithmetic conductor of π is squarefree, Cogdell and

Michel [CM04] use the local Langlands correspondence to predict what q(Symnπ)

should be when Symnπ is an automorphic representation satisfying Langlands func-

toriality. Under these assumptions, they prove that log q(Symnπ)� n log q(π). In all

other cases, we have that log q(Symnπ)� n3[K : Q] log q(π) by Rouse [Rou07] under

the assumption of automorphy alone.

4. Part 2 gives an upper bound on the least norm of an unramified prime p

such that cos θp ∈ I. When I is fixed and π varies, this upper bound has the shape

Np ≤ q(π)A for some absolute constant A, and so is comparable to Linnik’s theorem.

However, if π is fixed and I is varying, the dependence is much worse. This comes

partially from the constants in the zero-free region for L(s, Symnπ,K), where the n

dependence in particular is of the form n4 (see Lemma 4.7). Without improving the

quality of these constants, it seems likely that only minor improvements can be made

to the lower bound on x.

In Section 4.1, we discuss the basic properties of automorphic L-functions that we

will use in the proofs of the theorems and we prove a few useful lemmas. In Section

4.2, we prove Theorems 4.2 and 4.3. In Section 4.3, we prove Theorems 4.4-4.6.
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4.1 Preliminaries

4.1.1 Definitions and notation

We follow the account of Rankin-Selberg L-functions given by Brumley [Bru06, Sec-

tion 1] and Moreno [Mor85, Sections 0 and 1]. Let K/Q be a number field of absolute

discriminant DK , and let nK := [K : Q]. Let AK denote the ring of adeles over K,

and let π be a cuspidal automorphic representation of GLd(AK) with unitary central

character. For brevity, we will say that π is an automorphic representation.

We have the factorization π = ⊗vπv over the places of K. For each nonar-

chimedean p, we have the Euler factor

Lp(s, π,K) =
d∏
j=1

(1− απ(j, p)Np−s)−1

associated with πp. Let Rπ be the set of primes ideals p for which πp is ramified. We

call απ(j, p) the local roots of L(s, π,K) at p, and if p /∈ Rπ, then απ(j, p) 6= 0 for

all 1 ≤ j ≤ d. The representation π has an associated automorphic L-function whose

Euler product and Dirichlet series are given by

L(s, π,K) =
∏
p

Lp(s, π,K) =
∑
a

λπ(a)

Nas
,

where p runs through the finite primes and a runs through the non-zero integral

ideals of K. This Euler product converges absolutely for Re(s) > 1, which implies

that |απ(j, p)| < Np. Luo, Rudnick, and Sarnak [LRS99] showed that this may be

improved to

|απ(j, p)| ≤ Np
1
2
− 1
d2+1 ,

and the generalized Ramanujan conjecture asserts a further improvement.

Hypothesis 2 (GRC). Assume the above notation. For each prime p /∈ Rπ, we have
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|απ(j, p)| = 1, and for each prime p ∈ Rπ, we have |απ(j, p)| ≤ 1.

Remark. It is expected that all automorphic L-functions L(s, π,K) satisfy GRC.

Indeed, it is already known for many of the most commonly used automorphic L-

functions. Such L-functions include Hecke L-functions and the L-function of a cusp-

idal normalized Hecke eigenform of positive even integer weight k on the congruence

subgroup Γ0(N).

At each archimedean place v, we associate to πv a set of n complex numbers

{µπ(j, v)}dj=1(the Langlands parameters), which are known to satisfy Re(µπ(j, v)) >

−1/2 by the work of Luo, Rudnick, and Sarnak [LRS99]. The local factor at v is

defined to be

Lv(s, π,K) =
d∏
j=1

ΓKv(s+ µπ(j, v)),

where ΓR(s) = π−s/2Γ( s
2
) and ΓC(s) = ΓR(s)ΓR(s + 1). Letting S∞ denote the set of

archimedean places, we define the gamma factor of L(s, π,K) by

γ(s, π,K) =
∏
v∈S∞

Lv(s, π,K).

For notational convenience, we will define the complex numbers κπ(j) by

γ(s, π,K) =

dnK∏
j=1

ΓR(s+ κπ(j)).

Let q(π) be the arithmetic conductor of π; for a certain integral ideal f of K

depending on π, we have that

q(π) = Dd
KNf.

Any automorphic L-function L(s, π,K) admits a meromorphic continuation to C with

poles possible only at s = 0 and 1. Letting r(π) denote the order of the pole at s = 1,



65

and defining the completed L-function

Λ(s, π,K) = (s(1− s))r(π)q(π)s/2γ(s, π,K)L(s, π,K),

it is well-known that Λ(s, π,K) is an entire function of order 1 and that there exists

a complex number ε(π) of modulus 1 such that Λ(s, π,K) satisfies the functional

equation

Λ(s, π,K) = ε(π)Λ(1− s, π̃,K),

where π̃ is the representation contragredient to π. We have the relations

απ̃(j, p) = απ(j, p), γ(s, π̃,K) = γ(s, π,K), and q(π̃) = q(π).

To maintain uniform estimates for the analytic quantities associated to L(s, π,K),

we define the analytic conductor of L(s, π,K) by

q(s, π,K) = q(π)

dnK∏
j=1

(|s+ κπ(j)|+ 3). (4.7)

We will frequently make use of the quantity q(0, π,K), which we simply write as q(π).

As in the introduction, define the von Mangoldt function Λπ(a) by

−L
′

L
(s, π,K) =

∑
a

Λπ(a)

Nas
,

and let ΛK(a) be that associated to the Dedekind zeta function ζK(s). Using the

bounds for |απ(j, p)| from Luo, Rudnick, and Sarnak [LRS99], we have that

|Λπ(a)| ≤ dΛK(a)Na
1
2
− 1
d2+1 , (4.8)
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and under GRC, we have

|Λπ(a)| ≤ dΛK(a).

Consider two cuspidal automorphic representations π and π′ of GLd(AK) and

GLd′(AK), respectively. We are interested in the Rankin-Selberg product π ⊗ π′ of π

and π′, which, at primes p /∈ Rπ ∪Rπ′ , has a local factor given by

Lp(s, π ⊗ π′, K) =
d∏

j1=1

d′∏
j2=1

(1− απ(j1, p)απ′(j2, p)Np−s)−1.

For p ∈ Rπ ∪ Rπ′ , there exist local roots βπ⊗π′(j, p) which satisfy |βπ⊗π′(j, p)| <

Np
1− 1

d2+1
− 1

(d′)2−1 for all 1 ≤ j ≤ d′d, and we define for such p

Lp(s, π ⊗ π′, K) =
d′d∏
j=1

(1− βπ⊗π′(j, p)Np−s)−1.

This gives rise to the L-function L(s, π ⊗ π′, K), which we call the Rankin-Selberg

convolution of π and π′, whose Euler product and gamma factor are given by

L(s, π ⊗ π′, K) =
∏
p

Lp(s, π ⊗ π′, K)

and

γ(s, π ⊗ π′, K) =
∏
v∈S∞

d∏
j1=1

d′∏
j2=1

ΓKv(s+ µπ⊗π′(j1, j2, v)) =

d′dnK∏
j=1

ΓR(s+ κπ⊗π′(j)),

where Re(µπ⊗π′(j1, j2, v)) > −1 and Re(κπ⊗π′(j)) > −1. By Equation 8 of Brumley

[Bru06], we have

q(s, π ⊗ π′) ≤ q(π)d
′
q(π′)d(|s|+ 3)d

′dnK .

Finally, we note that if π′ = π̃, then L(s, π⊗ π′, K) has a pole at s = 1 of order 1, so

that r(π ⊗ π′) = 1.
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4.1.2 Preliminary lemmata

We begin with a zero-free region for L(s, π ⊗ π′, K), obtained by adapting Theorem

5.10 of Iwaniec and Kowalski [IK04] to L-functions over number fields.

Lemma 4.7. Suppose that either both d and d′ are at most 2 or that at least one of

π and π′ is self-dual. Let T ≥ 3, and let

L = L(T, π ⊗ π′, K) = D log(QT nK ),

where D and Q are defined in Theorem 4.2. There is a positive absolute constant c8
2

such that the region

{s = σ + it : σ ≥ 1− c8L−1, |t| ≤ T}

contains at most one zero of L(s, π ⊗ π′, K). If such an exceptional zero β1 exists,

then it is real and simple, and L(s, π ⊗ π′, K) must be self-dual.

Proof. If π is trivial, then the result follows from the proof of [IK04, Theorem 5.10],

but we bound the ensuing analytic conductors using (4.1.1). Now, assume that π is

nontrivial. If one of π and π′ is not self-dual or d 6= d′, then this follows from the

proof of Lemma 5.9 and Exercise 4 in [IK04, Chapter 5] by considering the auxiliary

L-function

L(s+ it/2, π ⊗ π′, K)L(s, π ⊗ π̃′, K)L(s, π̃ ⊗ π′, K)L(s− it/2, π ⊗ π′, K).

Again, we bound the ensuing analytic conductors using (4.1.1). In the remaining

cases, we have that d = d′ and both π and π′ are self-dual; thus one may use Moreno’s

zero-free region [Mor85, Theorem 3.3].
2We denote by c1, c2, . . . a sequence of constants, each of which is absolute, positive, and ef-

fectively computable. We do not recall this convention in future statements, as we find it to be
notationally cumbersome.
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Lemma 4.8. Let T � 1, and let τ ∈ R satisfy |τ | ≤ T .

1. Uniformly on the disk |s− (1 + iτ)| ≤ 1/4, we have that

L′

L
(s, π ⊗ π′, K) +

r(π ⊗ π′)
s

+
r(π ⊗ π′)
s− 1

−
∑

|ρ−(1+iτ)|≤1/2

1

s− ρ
� L,

where the sum runs over zeros ρ of L(s, π ⊗ π′, K).

2. For 1 ≥ η � L−1, we have that

∑
|ρ−(1+iτ)|≤η

1� ηL.

Proof. Part 1 is Lemma 2.4 of Akbary and Trudgian [AT15]. Part 2 follows from

combining Theorem 5.6 of [IK04] and Proposition 5.8 of [IK04].

Lemma 4.9. If 0 < η � 1 and y � 1, then

1.
∑
a

|Λπ⊗π′(a)|
Na1+η

� 1

η
+ d′d log(Q).

2.
∑
Na≤y

|Λπ⊗π′(a)|
Na

� log y + d′d log(Q).

Proof. By the Cauchy-Schwarz inequality, we have

∑
a

|Λπ⊗π′(a)|
Na1+η

�
(∑

a

Λπ⊗π̃(a)

Na1+η

)1/2(∑
a

Λπ′⊗π̃′(a)

Na1+η

)1/2

=
(
− L′

L
(1 + η, π ⊗ π̃, K)

)1/2(
− L′

L
(1 + η, π′ ⊗ π̃′, K)

)1/2

.

We first estimate −L′

L
(1 + η, π ⊗ π̃, K), which is a positive quantity because η > 0 is

real and the Dirichlet coefficients of −L′

L
(s, π ⊗ π̃, K) are real and nonnegative. By
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Theorem 5.6 of [IK04] and part 3 of Proposition 5.7 of [IK04], we have that

−Re
(L′
L

(1 + η, π ⊗ π̃, K)
)

=
1

2
log q(π ⊗ π̃) + Re

(γ′
γ

(1 + η, π ⊗ π̃, K)
)

+
1

1 + η
+

1

η
−
∑
ρ 6=0,1

Re
( 1

1 + η − ρ

)
.

Since

Re
( 1

1 + η − ρ

)
≥ η

(1 + η)2 + γ2
> 0,

we have that

−Re
(L′
L

(1 + η, π ⊗ π̃, K)
)
≤ 1

2
log q(π ⊗ π̃) + Re

(γ′
γ

(1 + η, π ⊗ π̃, K)
)

+
1

1 + η
+

1

η
.

By the proof of part 2 in Proposition 5.7 in [IK04], we have that

Re
(γ′
γ

(s, π ⊗ π̃, K)
)

= −
∑

|s+κπ⊗π̃(j)|<1

Re
( 1

s+ κπ⊗π̃(j)

)
+O(log q(π ⊗ π̃)).

Since Re(κπ⊗π̃(j)) > −1 for all 1 ≤ j ≤ d′dnK , we find

Re
( 1

s+ κπ⊗π̃(j)

)
≥ η

(1 + η + Re(κπ⊗π̃(j)))2 + Im(κπ⊗π̃(j))2
> 0.

Now, using (4.1.1), we find that

−L
′

L
(1 + η, π ⊗ π̃, K)� 1

η
+ log(q(π ⊗ π̃))� 1

η
+ d log q(π).

Since the analogue must hold for π′, part 1 follows. Part 2 follows by choosing

η = 1
log y

.

We conclude this section with a bound on the mean value of a Dirichlet polynomial.



70

Lemma 4.10. Let T � nKQ1/nK and u > y > T 16nK . Define

Sy,u(τ, π ⊗ π′) :=
∑

y<Np≤u

Λπ⊗π′(p)

Np1+iτ
.

1. If L(s, π,K) satisfies GRC, then

log y

∫ T

−T
|Sy,u(τ, π ⊗ π′)|2dτ � d2((log u)2 + (d′)2(log q(π′))(log u)).

2. If K = Q and L(s, π,Q) satisfies GRC, then

∑
q≤T 2

log
T 2

q

∑?

χ mod q

∫ T

−T

∣∣∣Sy,u(τ, (π⊗π′)⊗χ)
∣∣∣2dt� d2((log u)2 + (d′)2(log q(π′))(log u)).

Proof. 1. Let b(p) be a complex-valued function on the prime ideals of K such

that
∑

p |b(p)| < ∞ and b(p) = 0 whenever Np ≤ y. By [Wei83, Corollary 3.8],

if T � D
1/nK
K nK and y ≥ T 16nK , then

∫ T

−T

∣∣∣∑
p

b(p)Np−iτ
∣∣∣2dτ � 1

log y

∑
p

|b(p)|2Np.

If we define b(p) by

b(p) =


Λπ⊗π′(p)

Np
if y < Np ≤ u,

0 otherwise,
(4.9)

and recall the definition of Sy,u(τ, π ⊗ π′), then it follows immediately that

∫ T

−T

∣∣∣Sy,u(τ, π ⊗ π′)∣∣∣2dτ � 1

log y

∑
y<Np≤u

|Λπ⊗π′(p)|2

Np
.

Since q(π) = Dd
KNf for a certain integral ideal f of K, the condition T � nKQ1/nK

ensures that y is larger than any norm of a prime p ∈ Rπ ∪ Rπ′ and T � D
1/nK
K nK .
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By assuming GRC for L(s, π,K), we conclude that

∑
y<Np≤u

|Λπ⊗π′(p)|2

Np
=

∑
y<Np≤u

|λπ(p)|2|λπ′(p)|2(log Np)2

Np
� d2

∑
y<Np≤u

(log Np)Λπ′⊗π̃′(p)

Np
.

The claimed result now follows by partial summation using Part 2 of Lemma 4.9.

2. Let K = Q. Suppose that b(p) is a function on primes such that b(p) = 0 if

p ≤ Q and
∑

p |b(p)|2p < ∞. By [Gal70, Theorem 4], we have that for T ≥ 2 and

Q ≥ 3,

∑
q≤Q

log
Q

q

∑?

χ mod q

∫ T

−T

∣∣∣∑
p

b(p)χ(p)p−it
∣∣∣2dt�∑

p

(Q2T + p)|b(p)|2.

If we define b(p) as in (4.9) and let Q = T 2, then

∑
q≤T 2

log
T 2

q

∑?

χ mod q

∫ T

−T

∣∣∣Sy,u(τ, (π ⊗ π′)⊗ χ)
∣∣∣2dt� ∑

y<p≤u

(T 5 + p)
|Λπ⊗π′(p)|2

p2
.

By assuming GRC for L(s, π,Q), it follows that

∑
y<p≤u

(T 5 + p)
|Λπ⊗π′(p)|2

p2
� d2

∑
y<p≤u

(log p)Λπ′⊗π̃′(p)

p
.

The claimed result now follows by partial summation using Lemma 4.9.

4.2 The zero density estimate

In this section, we prove Theorem 4.2 by generalizing Gallagher’s [Gal70] and Weiss’s

[Wei83] treatment of Turán’s method for detecting zeros of L-functions, obtaining

a result that is uniform in K, π, and π′. The key result is the following technical

proposition, whose proof we defer to the end of the section.

Proposition 4.11. Let T � nKQ1/nK , L = D log(QT nK ), and y = ec9L. Suppose
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that η satisfies L−1 � η � 1. Let

Sy,u(τ, π ⊗ π′) :=
∑

y<Np≤u

Λπ⊗π′(p)

Np1+iτ
.

If L(s, π ⊗ π′) has a non-exceptional zero ρ0 satisfying |ρ0 − (1 + iτ)| ≤ η, then

yc10η

(log y)3

∫ yc11

y

|Sy,u(τ, π ⊗ π′)|2
du

u
� 1.

We first deduce Theorem 4.2 from Proposition 4.11. The proof of Proposition 4.11

relies on certain upper and lower bounds on the derivatives of L′
L

(s, π⊗π′), which are

proven and assembled subsequently.

4.2.1 Proof of Theorems 4.2 and 4.3

By Theorem 5.8 of [IK04], we have

Nπ⊗π′(0, T ) =
T

π
log
(q(π ⊗ π′)T d′dnK

(2πe)d′dnK

)
+O(log q(iT, π ⊗ π′)). (4.10)

Thus it suffices to prove the theorem for 1 − σ sufficiently small. Since the left side

of Theorem 4.2 is a decreasing function of σ and the right side of Theorem 4.2 is

essentially constant for 1−σ � L−1, it suffices to prove the theorem for 1−σ � L−1.

Therefore, we may assume that c12 ≤ σ ≤ 1 − c8L−1, where 1
2
< c12 < 1 and c8 > 0

are chosen such that we may take η =
√

2(1− σ) in Proposition 4.11.

It follows from the same reasoning as in the proof of Theorem 4.3 in [Wei83] (with

Proposition 4.11 replacing Lemma 4.2 of [Wei83]) that

Nπ⊗π′(σ, T )� L yc10η

(log y)3

∫ yc11

y

(∫ T

−T
|Sy,u(τ, π ⊗ π′)|2dτ

)du
u
.

Suppose that L(s, π′, K) satisfies GRC. By Part 1 of Lemma 4.10, the definition of y,
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and the definition of Sy,u(τ, π ⊗ π′),

Nπ⊗π′(σ, T )� d2L yc10η

(log y)4

∫ yc11

y

(log u)2 + (d′)2(log u) log q(π′)

u
du� d2yc10η.

Since we may take η =
√

2(1− σ), recalling the definition of y, we have

Nπ⊗π′(σ, T )� d2y
√

2c10(1−σ) � d2(QT nK )D
√

2c10(1−σ).

To conclude the proof of Theorem 4.2, let c10 be sufficiently larger than c9 and set

c1 =
√

2c10.

Theorem 4.3 is proven in almost exactly the same way as Theorem 4.2, except

that it requires Part 2 of Lemma 4.10; we omit the proof.

4.2.2 Bounds on derivatives

We begin by introducing notation which we will use throughout this section and the

next. First, let r = r(π ⊗ π′) be the order of the possible pole of L(s, π ⊗ π′, K)

at s = 1. We suppose that L(s, π ⊗ π′, K) has a non-exceptional zero ρ0 satisfying

|ρ0 − (1 + iτ)| ≤ η, and we set

F (s) =
L′

L
(s, π ⊗ π′, K).

Suppose that |τ | ≤ T , where T ≥ 2, as in the statement of Proposition 4.11. On the

disk |s− (1 + iτ)| < 1/4, by part 1 of Lemma 4.8, we have

F (s) +
r

s
+

r

s− 1
=

∑
|ρ−(1+iτ)|≤1/2

1

s− ρ
+G(s),
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where G(s) is analytic and |G(s)| � L. Setting ξ = 1 + η + iτ , we have

(−1)k

k!

dkF

dsk
(ξ) + r(ξ − 1)−(k+1) =

∑
|ρ−(1+iτ)|≤1/2

(ξ − ρ)−(k+1) +O(8kL), (4.11)

where the error term absorbs the contribution from integrating G(s) over a circle of

radius 1/8 centered at ξ and the term coming from differentiating r
s
. We begin by

obtaining a lower bound on the derivatives of F (s).

Lemma 4.12. Assume the notation above. For any M � ηL, there is some k ∈

[M, 2M ] such that
ηk+1

k!

∣∣∣dkF
dsk

(ξ)
∣∣∣ ≥ 1

2
(100)−(k+1),

where ξ = 1 + η + iτ .

We prove Lemma 4.12 using a version of Turán’s [ST55] power-sum estimate.

Lemma 4.13 (Turán). Let z1, . . . , zm ∈ C. If M ≥ m, then there exists k ∈ Z ∩

[M, 2M ] such that |zk1 + · · ·+ zkm| ≥ ( 1
50
|z1|)k.

Proof of Lemma 4.12. We begin by considering the contribution to (4.11) from those

zeros ρ satisfying 200η < |ρ− (1 + iτ)| ≤ 1/2. In particular, by decomposing the sum

dyadically and applying part 2 of Lemma 4.8, we have

∑
200η<|ρ−(1+iτ)|≤1/2

|ρ− ξ|−(k+1) �
∞∑
j=0

(2j200η)−(k+1)2j+1rL � (200η)−kL,

This shows that it suffices to consider the zeros ρ whose distance from 1 + iτ is less

than 200η.

Since η � 1, we have

1

k!

dkF

dsk
(ξ) + r(ξ − 1)−(k+1) ≥

∣∣∣ ∑
|ρ−(1+iτ)|≤200η

(ξ − ρ)−(k+1)
∣∣∣−O((200η)−kL). (4.12)
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By Lemma 4.8 (part 2), the sum over zeros has � ηL terms. Choosing M � ηL,

Lemma 4.13 tells us that for some k ∈ [M, 2M ], the sum over zeros on the right side

of (4.12) is bounded below by (50|ξ−ρ0|)−(k+1), where ρ0 is the nontrivial zero which

is being detected.

Since |ξ − ρ0| ≤ 2η, the right side of the above inequality is

≥ (100η)−(k+1)(1−O(2−kηL)).

Since k ≥M � ηL and L−1 � η � 1, there is a constant 0 < θ < 1 so that

O(2−kηL) = O(θηLηL) ≤ 1/4.

Therefore, for some k ∈ [M, 2M ] with M � ηL, we have

ηk+1

k!

∣∣∣dkF
dsk

(ξ)
∣∣∣+ rηk+1|(ξ − 1)−(k+1)| ≥ 3

4
(100)−(k+1).

During the proof of Theorem 4.2 in [Wei83], Weiss proves that

rηk+1|(ξ − 1)−(k+1)| ≤ 1

4
(100)−(k+1).

The desired result now follows.

We now turn to obtaining an upper bound on the derivatives of F (s), for which

we have the following.

Lemma 4.14. Assume the notation preceeding Lemma 4.12. Set M = 300η log y,

and let k be determined by Lemma 4.12. Then

ηk+1

k!

∣∣∣dkF
dsk

(ξ)
∣∣∣ ≤ η2

∫ yc11

y

|Sy,u(τ, π ⊗ π′)|
du

u
+

1

4
(100)−(k+1),
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where Sy,u(τ, π ⊗ π′) is as in Proposition 4.11.

Proof. Let M = 300η log y and recall that y = ec9L for some c9, which we will take to

be sufficiently large. For u > 0, define jk(u) = uke−u

k!
, which satisfies

jk(u) ≤


(100)−k if u ≤ k/300,

(110)−ke−u/2 if u ≥ 20k.

Letting c11 ≥ 12000 be sufficiently large, we thus have

jk(η log(Na)) ≤


(110)−k if Na ≤ y,

(100)−k(Na)−η/2 if Na ≥ yc11 .

(4.13)

Differentiating the Dirichlet series for F (s) directly, we obtain

(−1)k+1ηk+1

k!

dkF

dsk
(ξ) = η

∑
a

Λπ⊗π′(a)

Na1+iτ
jk(η log(Na))

Splitting the above sum
∑

in concert with the inequality (4.13) and suppressing the

summands, we write

∑
=

∑
Np∈(0,y]∪(yc11 ,∞)

+
∑

a not prime

+
∑

y<Np≤yc11
.

We will estimate these three sums separately.

First, note that

1� ηL � η log y �M � k. (4.14)
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We use Lemma 4.9 and (4.14) to obtain

∣∣∣η ∑
Np∈(0,y]∪(yc11 ,∞)

∣∣∣� η(110)−k
( ∑

Na≤y

Λπ⊗π′(a)

Na
+
∑
a

Λπ⊗π′(a)

Na1+η/2

)
� η(110)−k

(1

η
+ log y + d′d logQ

)
� (110)−k

(
1 + η log y + ηL

)
� k(110)−k.

If η ≤ 1/55, which we may assume, then the identity
∑

m≥0 jm(u) = 1 implies that

Na−1/2jk(η log(Na)) = (2η)kNa−ηjk(log(Na)/2) ≤ (110)−kNa−η.

Thus, as above,

∣∣∣η ∑
a not prime

∣∣∣� η(110)−k
∑
a=pm

m≥2

Λπ⊗π′(a)

Na1/2+η
� η(110)−k

∑
a

Λπ⊗π′(a)

Na1+2η
� k(110)−k.

as well. Finally, recall that Sy,u(τ, π ⊗ π′) =
∑

y<Np≤u
Λπ⊗π′ (p)

Np1+iτ
. Summation by parts

gives us

∑
y<Np≤yc11

= Sy,yc11 (τ, π ⊗ π′)jk(η log yc11)− η
∫ yc11

y

Sy,u(τ, π ⊗ π′)j′k(η log u)
du

u

since Sy,y(τ, π ⊗ π′) = 0. Much like above,

|ηSy,yc11 (τ, π ⊗ π′)jk(η log yc11)| � η(110)−ky−c11η/2
∑

Np≤yc11

Λπ⊗π′(p)

Np
� k(110)−k.

Therefore, since |j′k(u)| = |jk−1(u)− jk(u)| ≤ jk−1(u) + jk(u) ≤ 1, we have

∣∣∣η ∑
y<Np≤yc11

∣∣∣ ≤ η2

∫ yc11

y

|Sy,u(τ, π ⊗ π′)|
du

u
+O(k(110)−k).
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However, by (4.14) and η � L−1, we have that if k is sufficiently large, then each

term of size O(k(110)−k) is at most 1
16

(100)−(k+1). The lemma follows.

4.2.3 Zero detection: The proof of Proposition 4.11

We now combine our upper and lower bounds on the derivatives of F to prove Propo-

sition 4.11. Thus, we wish to show that if ρ0 is a zero satisfying |ρ0 − (1 + iτ)| ≤ η,

then
yc10η

(log y)3

∫ yc11

y

|Sy,u(τ, π ⊗ π′)|2
du

u
� 1.

Combining Lemmas 4.12 and 4.14, we find that

η2

∫ yc11

y

|Sy,u(τ, π ⊗ π′)|
du

u
≥ 1

4
(100)−(k+1).

Using (4.14), we have

η2

∫ yc11

y

|Sy,u(τ, π ⊗ π′)|
du

u
� y−c10η/4,

where c10 is sufficiently large. Multiplying both sides by y−c10η/4 yields

y−c10η/4η2

∫ yc11

y

|Sy,u(τ, π ⊗ π′)|
du

u
� y−c10η/2.

Since y−c10η/4η2 � (log y)−2, we have

1

(log y)2

∫ yc11

y

|Sy,u(τ, π ⊗ π′)|
du

u
� y−c10η/2.

Squaring both sides and using the Cauchy-Schwarz inequality yields the proposition.
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4.3 Arithmetic consequences

For this section, we assume that π satisfies GRC. Ultimately, we will take π′ to either

be trivial or π̃.

4.3.1 Setup and proof of Theorem 4.4

Let T > 0, and define

η1(x) =



√
T/2 if |x| < 1/

√
T ,

√
T/4 if |x| = 1/

√
T ,

0 if |x| > 1/
√
T .

Let ηk(x) = (η1 ∗ ηk−1)(x) for all k ≥ 2, where (f ∗ g)(x) =
∫
R f(x− t)g(t)dt, and

η̂k(s) =

∫ ∞
−∞

ηk(x)e−sxdx, s ∈ C.

Lemma 4.15. Let k ≥ 3.

1. The function ηk(t) is even and is supported on [−k/
√
T , k/

√
T ]. Moreover,

0 ≤ ηk(t) ≤
√
T/2 for all t ∈ R.

2. The function η̂k(s) is entire.

3. Uniformly for |σ| ≤
√
T/k, |η̂k(s)| � 1 with an absolute implied constant.

4. For every c ∈ R, we have that if y > 0, then ηk(log y) = 1
2πi

∫ c+i∞
c−i∞ η̂k(s)y

sds.

The integral converges absolutely.

Proof. These classical results are proven in Lemma 3.2 of [Wei83].

We use Lemma 4.15 to bound sums of Dirichlet coefficients of L(s, π ⊗ π′, K).

Lemma 4.16. Assume the above notation. If

0 < ∆ < c13Q−2/nK , T =
16(2nK + 3)2

∆2
, x ≥

(
Q
(30nK

∆

)2nK
)4c1D

,
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then

∑
p

Λπ⊗π′(p)

Np
η2nK+3

(
log

xe∆/4

Np

)
= r(π ⊗ π′)−

∑
ρ=β+iγ
β≥1− 5

4c1
|γ|≤T

η̂2nK+3(ρ− 1)(xe∆/4)ρ−1 +O(D∆),

where r(π⊗π′) is the order of the pole at s = 1 of L(s, π⊗π′, K) and ρ runs through

the nontrivial zeros of L(s, π ⊗ π′, K).

Proof. With ∆ as in the theorem statement and xe∆/4 ≥ Q2D, we essentially repeat

the proof of [Wei83, Lemma 5.1], mutatis mutandis, to find that

∑
p

Λπ⊗π′(p)

Np
η2nK+3

(
log

xe∆/4

Np

)
= r(π ⊗ π′)−

∑
ρ=β+iγ

β≥1− 5
4c1

, |γ|≤T

η̂2nK+3(ρ− 1)(xe∆/4)ρ−1

+O(((xe∆/4)
− 5

4c1 + T−(2nK+3)/2)TL), (4.15)

where r(π⊗π′) is the order of the pole at s = 1 of L(s, π⊗π′, K) and ρ runs through

the nontrivial zeros of L(s, π ⊗ π′, K). (The proof of [Wei83, Lemma 5.1] proceeds

along classical lines.) Let c13 be sufficiently small so that T ≥ ∆−2. We note that

L = D log(QTnK ) = D log
(
Q
(4(2nK + 3)

∆

)2nK
)
≤ 1

4c1
log x. (4.16)

By our parameters choices, xe∆/4 ≥ (QT nK )2c1D. Thus (xe∆/4)
− 5

4c1 ≤ T−5DnK/2 ≤

T−
5nK
2 ≤ T−

2nK+3

2 . Thus the error in (4.15) is� T 1−(2nK+3)/2DQ1/2T nK/2 � D∆.

We now use Theorem 4.2 and Lemma 4.16 to prove Theorem 4.4.

Proof of Theorem 4.4. The upper bound easily follows from GRC and the prime num-

ber theorem, so we prove only the lower bound. Choose g ∈ C, and let H = 〈g〉 be

the cyclic group generated by g. Regarding 1C(·) as a class function on G, we have

1C =
|C|
|G|

∑
χ∈Ĥ

χ̄(g)IndHG χ.
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Thus, if we let E be the fixed field of H and set ψ = π ⊗ π̃, by applying Frobenius

reciprocity, we find that, as class functions of the absolute Galois group,

tr(ψ) · 1C =
|C|
|G|

∑
χ∈Ĥ

χ̄(g) · tr(ψ ⊗ IndHG χ) =
|C|
|G|

∑
χ∈Ĥ

χ̄(g) · tr(ψ|E ⊗ χ),

where ψ|E denotes the restriction of ψ to E. At the level of primes, this implies

∑
x<Na≤x+h

1C(a)Λπ⊗π̃(a) =
|C|
|G|

∑
χ∈Ĥ

χ̄(g)
∑

x<Np≤x+h

Λψ|E⊗χ(p) +O(
√
x log x),

where the implied constant depends on M/K and π effectively.

Recall the notation of Theorem 4.2 and Lemma 4.16, with ∆ = h/x. We have

that h
√
T = 4(2nK + 3)x, so

|C|
|G|

∑
χ∈Ĥ

χ̄(g)
∑

x<Np≤x+h

Λψ|E⊗χ(p) =
h
√
T

4(2nK + 3)x

|C|
|G|

∑
χ∈Ĥ

χ̄(g)
∑

x<Np≤x+h

Λψ|E⊗χ(p)

≥ h
√
T

4(2nK + 3)

|C|
|G|

∑
χ∈Ĥ

χ̄(g)
∑

x<Np≤x+h

Λψ|E⊗χ(p)

Np
.

By Lemma 4.15 Part 1, 0 ≤ η2nE+3(t) ≤
√
T/2 for all t ∈ R. Furthermore, when

h ≤ x, the support of η2nE+3(log(xe
h
4x/Np)) is [x, xe

h
2x ] ⊂ [x, x+ h]. Thus

1[x,x+h](Np) ≥ 2√
T
η2nE+3

(
log

xe
h
4x

Np

)
,

so by Lemma 4.16,

|C|
|G|

h
√
T

4(2nE + 3)

∑
χ∈Ĥ

χ̄(g)
∑

x<Np≤x+h

Λψ|E⊗χ(p)

Np

≥ |C|
|G|

h

2(2nE + 3)

∑
χ∈Ĥ

χ̄(g)
∑
Np

Λψ|E⊗χ(p)

Np
η2nE+3

(
log

xe
h
4x

Np

)
=
|C|
|G|

h

2(2nE + 3)

(
1−

∑
χ∈Ĥ

χ̄(g)
∑

ρχ=βχ+iγχ 6=β1
βχ≥1− 5

4c1
, |γχ|≤T

η̂2nE+3(xe
h
4x )ρχ−1

)
+O

(
D[M : K]

h2

x

)
+ o(h),
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where ρχ denotes a nontrivial zero of L(s, ψ|E⊗χ,E) and the o(1) contribution arises

from a potential Landau-Siegel zero β1.

Lemma 4.15 Part 3 and Lemma 4.7 imply that

∑
ρχ=βχ+iγχ 6=β1

βχ≥1− 5
4c1

, |γχ|≤T

η̂2nE+3(ρχ − 1)(xe
h
4x )ρχ−1 �

∑
ρχ=βχ+iγχ 6=β1

βχ≥1− 5
4c1

, |γχ|≤T

(xe
h
4x )βχ−1

=

∫ 1−c8/L

1− 5
4c1

(xe
h
4x )σ−1dNπ⊗π̃(σ, T ). (4.17)

By Theorem 4.2 and our choice of parameters in Lemma 4.16,

N(π⊗π̃)⊗χ(σ, T )� d2T c1DnE(1−σ) ≤ d2
((2(2nE + 3)

15nE
Q−

1
2nE

)2c1DnE
x1/4

)1−σ
. (4.18)

Now, let c1 be sufficiently large (so that x is sufficiently large), and let h ≥ x
1− 1

16c1DnE .

Using integration by parts, (4.16), and (4.18), the integral in (4.17) equals

(xe
h
4x )−5/4c1N(π⊗π̃)⊗χ

(
1− 5

4c1
, T
)

+ log(xe
h
4x )

∫ 1−c8/L

1− 5
4c1

(xe
h
4x )σ−1N(π⊗π̃)⊗χ(σ, T )dσ

� d2 log(xe
h
4x )

∫ 1−4c1c8/ log x

1− 5
4c1

( xe
h
4x

(2(2nE+3)
15nE

Q−
1

2nE )2c1DnEx1/4

)σ−1
dσ � d2e−3c1c8 .

After combining the contribution from each of the [M : E] characters χ of Ĥ, we

conclude that there exists an absolute constant c14 > 0 such that

∑
x<Np≤x+h

Λπ⊗π̃(p) ≥ h

2(2nK + 3)
(1− c14[M : E]d2e−3c1c8 − o(1)).

Since [M : E] ≤ [M : K] and nE ≤ nM , we increase c1 so that c14d
2[M : K]e−3c1c8 < 1

to obtain desired result.
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4.3.2 The Sato-Tate conjecture

We now address applications to the Sato-Tate conjecture. Thus, we assume that K

is a totally real field and that π is a genuine cuspidal automorphic representation of

GL2(AK) with trivial central character. Recall that the Sato-Tate conjecture concerns

the distribution of the quantities λπ(p) = 2 cos θp as p ranges over primes for which

πp is unramified, where θp ∈ [0, π]. At each such prime p, the local factor of the n-th

symmetric power L-function is given by

Lp(s, Symnπ,K) =

n∏
j=0

(1− eiθp(n−2j)Np−s)−1 =

∞∑
k=0

Un(cos(kθp))

Nps
,

where Un is the n-th Chebyshev polynomial of the second kind. We observe that

L(s, Sym1π,K) = L(s, π,K) and L(s, Sym0π,K) = ζK(s).

Langlands functoriality implies that Symnπ is a cuspidal automorphic represen-

tation of GLn+1(AK) with trivial central character for all n ≥ 1, in which case

L(s, Symnπ,K) would have an analytic continuation to the entire complex plane

and satisfy a functional equation of the type described in Section 4.1. Unfortunately,

the analytic continuation is only known for n ≤ 4 for all totally real number fields

K. If one restricts to the case where K ∩ Q(e2πi/35) = Q, then the analytic con-

tinuation is known for n ≤ 8. This poses problems if one wants finer distributional

information about the sequence {cos θp} than the ineffective equidistribution result

of Barnet-Lamb, Geraghty, Harris, and Taylor [BLGHT11].

In Theorem 4.6, our goal is to estimate for I ⊆ [−1, 1] the summation

∑
x<Np≤x+h
πp unramified

1I(cos θp) log Np (4.19)

where h ≥ x1−δ for some δ > 0. We recall from the introduction that I can be
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Symn-minorized if there exist b0, . . . , bn with b0 > 0 such that

1I(t) ≥
n∑
j=0

bjUj(t) (4.20)

for all t ∈ [−1, 1]. Thus, if I can be Symn-minorized, we can obtain a non-trivial lower

bound for (4.19) by considering an appropriate linear combination of the logarithmic

derivatives of L(s, Symjπ,K) for j ≤ n. We now prove Theorem 4.6.

Proof of Theorem 4.6. It suffices to prove the second part. Let K be a totally real

number field, and let π be a genuine automorphic representation of GL2(AK) with

trivial central character. Suppose that I ⊂ [−1, 1] can be Symn-minorized and that

Symjπ is an automorphic representation of GLj+1(AK) with trivial central character

for all j ≤ 2n. In this setting, Q = q(Symnπ) and D = (n+ 1)4.

Recall the notation and setup of Lemma 4.15, Lemma 4.16, and the proof of

Theorem 4.4; with Symjπ in place of π⊗ π′, choose T , x, and ∆ = h/x as in Lemma

4.16. We have that

∑
x<Np≤x+h

1I(cos θp) log Np =
h
√
T

4(2nK + 3)

∑
x<Np≤x+h

1I(cos θp) log Np

Np

≥ h

2(2nK + 3)

n∑
j=0

bj
∑
p

Uj(cos θp) log Np

Np
η2nK+3

(
log

xe
h
4x

Np

)
.

Since x ≥ Q is larger than the norm of any ramified prime, Uj(cos θp) log Np =

ΛSymjπ(p) for all x < Np ≤ x+ h. Thus by Lemma 4.16,

h

2(2nK + 3)

n∑
j=0

bj
∑
p

Uj(cos θp) log Np

Np
η2nK+3

(
log

xe
h
4x

Np

)
=

h

2(2nK + 3)

(
b0 −

n∑
j=0

bj

( ∑
ρj=βj+iγj

βj≥1− 5
4c1

, |γj |≤T

η̂2nK+3(ρj − 1)(xe
h
4x )ρj−1 +O(n4∆)

))
,

where ρj is a nontrivial zero of L(s, Symjπ,K) and B = maxj≤n |bj|/|b0|. Recall that

since we are assuming that L(s, Symjπ,K) is automorphic for all j ≤ 2n, it follows
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from Section 4 of [HR95] that there are no Landau-Siegel zeros in any of the sums

over nontrivial zeros.

By choosing h ≥ x
1− 1

16c1(n+1)4nK and repeating the proof of Theorem 4.4, mutatis

mutandis, there exists c15 > 0 such that

∑
x<Np≤x+h

1I(cos θp) log Np ≥ b0
h

2(2nK + 3)
(1−Bc15n

6(e−3c1c8 + h/x)).

After increasing c1 so that Bn6c15e
−3c1c8 < 1, we obtain the claimed lower bound. Fur-

thermore, choosing h as small as we are permitted, our lower bound holds when x ≥

(Q(30nK
h/x

)2nK )4c1(n+1)4 = (30nKQ
1

2nK )8c1(n+1)4nK
√
x. Solving for x gives the claimed

upper bound for the least value of x for which our lower bound holds.

4.3.3 Proof of Theorem 4.5

In what follows, all implied constants depend on q(π).

Proof of Theorem 4.5. Our proof will handle the case where π is a self-dual cuspidal

automorphic representation of GL2(AQ) with trivial central character; the case where

it is the symmetric square of such a representation is proven similarly.

Let Q5 = T ≤ x
1

512c2 , and suppose that x ≤ hQ and log x ≤ (logQ)2. Let χ be a

primitive Dirichlet character modulo q ≤ Q. By (4.5) and the assumption that π has

trivial central character, we have that

L(s, (π ⊗ π̃)⊗ χ,Q) = L(s, χ,Q)L(s, Sym2π ⊗ χ,Q). (4.21)

Furthermore, L(s, Sym2π ⊗ χ,Q) has no Siegel zero (cf. Ramakrishnan and Wang

[RW03, Theorem A]), so L(s, (π ⊗ π̃) ⊗ χ,Q) has a Siegel zero if and only if it is

inherited from L(s, χ,Q).
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By arguments similar to those in [Gal70, Section 4], we have that

∑
x<n≤x+h

Λπ⊗π̃(n)χ(n)− δ(χ)h+ hξβ1−1 � h
( ∑
|γ|≤T

xβ−1 +Q2/T
)
,

where the summation on the right-hand side is over the nontrivial, non-exceptional

zeros of L(s, (π ⊗ π̃)⊗ χ,Q). Thus

∑
q≤Q

∑?

χ mod q

∣∣∣ ∑
x<n≤x+h

Λπ⊗π̃(n)χ(n)− δ(χ)h+ δq,∗(χ)hξβ1−1
∣∣∣

� h
(∑
q≤Q

∑?

χ mod q

∑
|γ|≤T

xβ−1 +Q4/T
)
. (4.22)

Using the factorization (4.21), the triple sum in (4.22) is bounded by

log x

∫ 1

1
2

xσ−1
∑
q≤Q

∑?

χ mod q

Nχ(σ, T )dσ + x−1/2
∑
q≤Q

∑?

χ mod q

Nχ(1/2, T )

+ log x

∫ 1

1
2

xσ−1
∑
q≤Q

∑?

χ mod q

NSym2π⊗χ(σ, T )dσ + x−1/2
∑
q≤Q

∑?

χ mod q

NSym2π⊗χ(1/2, T ),

Using Theorem 4.3 and recalling our choice of T , the triple sum is now bounded by

log x

∫ 1−c8/L

1/2
x(σ−1)/2dσ + x−1/2 � x−c8/2L

′
+ x−1/4,

where L′ = 256 log(q(Sym2π)QT ). Since T = Q5 and log q(Sym2π) � log q(π) (with

an absolute implied constant), the right-hand side of (4.22) is bounded by the quantity

claimed in the statement of the theorem.

4.4 Symn-minorants

We close with an easy lemma on Symn-minorants which explicitly classifies the inter-

vals which can be Sym4-minorized.

Lemma 4.17. Let β0 = 1+
√

7
6

= 0.6076 . . . and β1 = −1+
√

7
6

= 0.2742 . . . . The
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interval [a, b] ⊆ [−1, 1] can be Sym4-minorized if and only if it satisfies one of the

following conditions:

1. a = −1 and b > −β0,

2. −1 < a ≤ −β0 and b > a+
√

16a4−11a2+2
2(1−4a2)

,

3. −β0 ≤ a ≤ −β1 and b > −1
6a
,

4. −β1 ≤ a < β1 and b > a+
√

16a4−11a2+2
2(1−4a2)

, and

5. β1 ≤ a < β0 and b = 1.

Proof. We begin with sufficiency. For each case, we list a polynomial F (x) which,

for x ∈ [−1, 1], is positive only if x ∈ [a, b]. We then compute b0(F ) :=
∫ 1

−1
FdµST

and verify that it is positive. This is sufficient, since any such F (x) can be scaled to

minorize the indicator function.

1. F (x) = (x− 1)(x− b)(x− β1)2 and b0(F ) = (b+ β0)(14+
√

7
36

).

2. F (x) = −(x− a)(x− b)
(
x+ a+b

4ab+1

)2

and b0(F ) = (1−4a2)b2−ab+a2−1/2
4(4ab+1)

.

3. F (x) = (x− 1)(x+ 1)(x− a)(x− b) and b0(F ) = −3
4
(ab+ 1

6
).

4. F (x) = −(x− a)(x− b)
(
x+ a+b

4ab+1

)2

.

5. F (x) = (x+ 1)(x− a)(x+ β1)2 and b0(F ) = (β0 − a)(14+
√

7
36

).

The proof of necessity necessarily involves tedious casework, which we omit. Let

us say only that we consider polynomials F (x), ordered by degree, the number of real

roots, and the placement of those roots relative to a, b, 1, and −1, and in each case

we determine conditions under which b0(F ) > 0.
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