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Abstract 
 

Relationships Among Microbial Indicators of Fecal Contamination on Produce Farms 

By Allison McKenzie White 

 
 
Background: Produce is the leading single ingredient cause of foodborne outbreaks and illnesses in 
the US, and detecting and preventing contamination before it reaches consumers is essential. 
Microbial indicators, which are related biologically and ecologically to foodborne pathogens, are 
used to test for potential routes of pathogen contamination along the fecal-oral pathway. Goal: This 
study examines the relationships between the presence and concentrations of four microbial 
indicators of fecal contamination in agricultural samples and how they differ based on sample type, 
produce type, and stage in the production process. Methods: Hand-rinse, soil, water, and produce, 
samples collected from 11 tomato, jalapeño, and cantaloupe farms in Mexico were tested for the 
presence and concentration of pathogens and four microbial indicators of fecal contamination (fecal 
coliforms, Enterococcus, generic E. coli, and somatic coliphage). Linear and logistic regression, as 
well as chi-squared and Spearman’s correlation were used to assess the relationships between the 
microbial indicators on each sample type, controlling for potential effect modifiers (produce type, 
time of sample collection, and stage in the production process). Results: Significant relationships 
between concentrations of Enterococcus and fecal coliforms were observed across all sample types 
Several other significant relationships between microbial indicators were observed with no 
apparent trends by either sample type or indicator-pair. Conclusions: These results provide 
evidence to support the idea that, while some indicators may be related in certain settings, 
unknown factors influence the presence of indicators in the agricultural environment and using 
multiple indicators may be the best way to test for the presence of fecal contamination in produce 
farms. Implications: These results should be considered as safety guidelines and standards for 
produce are being developed, since the choice of indicator can have implications on whether fecal 
contamination is being identified, and whether the potential presence of various types of pathogens 
is being accurately predicted.  
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Literature Review  

 

Each year, one in six Americans, or almost 50 million people, become ill from a 

foodborne related illness (1). According to the US Centers for Disease Control and 

Prevention (CDC) estimates, three thousand people are killed and 128,000 more are 

hospitalized from foodborne illnesses each year (2). Produce is the leading single 

ingredient cause of foodborne outbreaks and of illnesses in the US, causing nearly 25% 

(over 25,000) of all foodborne illnesses (1). Since the year 2000, multiple produce items 

have been involved in outbreaks throughout the US —including tomatoes, sprouts, 

jalapeño and serrano peppers, lettuces, cantaloupes, papayas, mangoes, spinach, and 

cucumbers (3).  

Produce related illnesses are caused by an equally wide mix of bacterial, viral, and 

parasitic pathogens—including multiple strains of Salmonella, several Escherichia coli 

serogroups, norovirus, Hepatitis A, and Cyclospora (3). In a CDC study of outbreak-related 

foodborne illnesses from 1998 to 2008, 60% of viral, 30% of parasitic and 27% of bacterial 

illnesses were attributed to produce (4). Between 2005 and 2006, four separate outbreaks 

spanning multiple states were caused by three different strains of Salmonella, infecting at 

least 429 people in 21 states (5). Many cases of Salmonella, particularly in adults, do not 

require hospitalization, and even fewer have a specimen tested, thus, the majority of 

Salmonella cases are not reported and lab confirmed (6-8). Because of this, the overall 

reach of this outbreak, and others involving Salmonella may have actually been much 
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higher (8). Epidemiological analyses and lab testing linked these specific outbreaks to 

tomatoes consumed in restaurants. Fields, farms, and/or packing facilities located across 

the US (Virginia, Florida, and Ohio) were implicated in three of the four outbreaks (5). 

Another, more recent, example of produce-related outbreaks involves contamination by 

Listeria monocytogenes in cantaloupes. This 2011 outbreak infected 147 people in 28 

different states (9). Cantaloupes had previously been associated with outbreaks of 

Salmonella in 2008, 2011, and in 2012 (3). Produce-related outbreaks lead to a significant 

public health burden nationwide, and also have substantial negative economic impacts.  

A 2008 multistate outbreak of Salmonella on jalapeño and serrano peppers-and 

potentially tomatoes-was traced to farms and a packing facility in Mexico (8). This lead to 

temporary FDA recommendations to avoid peppers grown, harvested, or packaged in 

Mexico (8). During the initial stages of the outbreak investigation, before the source had 

been identified, the FDA recommended that consumers in some areas of the US avoid raw 

tomatoes grown domestically (10). An analysis of the economic impact of the regulations 

regarding tomatoes alone estimates total losses of hundreds of millions of dollars—figures 

which do not include the economic and trade impact of the later recommendations 

regarding peppers grown in Mexico (11). These figures highlight the impact that produce 

related outbreaks can have, not only on human health, but on the agricultural community 

as well as both domestic and international economies. These issues emphasize the need for 

effective ways to prevent produce outbreaks by detecting and preventing contamination 

before it reaches consumers.  
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Contamination that starts at the farm (pre- or post-harvest) or processing levels has 

the potential to spread over a wide geographic area (i.e. lead to multi-state outbreaks) and 

must be traced back from cases to the ultimate source(12). The trace back investigation 

process can take time and often involves laboratory testing to identify pathogen subtypes 

such as pulse-field gel electrophoresis (PFGE), which can be timely and costly (12-14). The 

increasing intricacy of the global food chain makes outbreaks more difficult to trace and 

contain, which can result in more illnesses (15). Thus, prevention of contamination is 

essential in reducing outbreaks.  

 

How does produce become contaminated? 

 

Foodborne pathogens are typically transmitted to produce through various routes 

in the fecal-oral pathway, whereby infection of a new host occurs as a result of 

consumption of contaminated feces from an infected warm blooded animal (including 

humans) (7, 16). Produce can become contaminated at any point in the food production 

process, from before the produce is harvested to steps involving food preparation and 

serving. Looking specifically at the farm and production stages, contamination can occur at 

almost any stage: before produce is harvested, at the time of harvest, while produce is 

being transported, or during cleaning, packaging, and preparation (16-18).  

Furthermore, fecal contamination can be spread to produce through a variety of 

sources. These sources include agricultural water (used for irrigation, cleaning, and 

fertilizer mixing), soil amendments (such as manure), domestic and wild animals, human 
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contact, and equipment, tools, and buildings (17, 19). Interrupting these pathways of fecal 

contamination is crucial in preventing produce contamination and reducing foodborne 

illnesses. Although detecting the specific sources and most commonly implicated pathways 

can be difficult, given the multitude of steps and potential points for contamination, source 

detection is crucial as it allows for the development of targeted interventions and 

preventative measures (12). One common way of detecting contamination is through 

testing for pathogens or related microorganisms.  

 

What causes these produce-related foodborne diseases?  

 

The organisms commonly linked to produce-related outbreaks vary in their 

biological and ecological characteristics. Bacterial, viral, and parasitic organisms have all 

been linked to produce-related outbreaks. Salmonella is the most prevalent bacterial 

source of produce related outbreaks, followed by E. coli (3, 20). Norovirus is the leading 

viral cause of produce-related outbreaks, and is attributed to the highest number of 

illnesses overall (20).  

Salmonella, which was attributed to 19% of all produce-related outbreaks between 

1990 and 2004, is a genus of bacteria of the family Enterobacteriaceae (16, 20). Over 2,500 

serotypes of Salmonella, not all of which are pathogenic, have been identified. Pathogenic 

strains can cause headache, fever, and diarrheal illness (7). Its reservoirs include domestic 

and wild animals and humans, where it lives in the gastrointestinal tract. Animals can often 

be chronic carriers (7). Food products are contaminated with Salmonella by coming in 
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contact with contaminated fecal matter (16). A wide variety of factors, including pH, 

acidity, moisture, competitive microflora, and nutrient content can impact the growth of 

Salmonella in food(16). Ideal growing temperatures for Salmonella are from 35-40°C; 

however, Salmonella can grow in temperatures from 2 to 54°C (16). Furthermore, 

Salmonella has been shown to be more resistant to extreme temperatures (both hot and 

cold) when previously exposed to similar sub-lethal temperatures (16). This ability to 

adapt quickly has wide ramifications for implementing control measures to prevent 

Salmonella outbreaks and monitor its potential spread in produce.  

Escherichia coli is a species of bacteria which is also a member of the 

Enterobacteriaceae family. Six major strains of E. coli cause gastroenteritis in humans (7). 

E. coli O157:H7, which has been linked to a variety of foodborne outbreaks, is of the 

enterohemorrhagic strain(3, 16). Bacteria in this strain produce Shiga toxins and are often 

referred to as Shiga toxin-producing E. coli (STEC)(7, 16). STECs can cause severe diarrhea 

in humans and, in severe cases lead to hemolytic uremic syndrome (HUS) and death(7). 

Children are particularly vulnerable to developing HUS (7, 16). Like Salmonella, E. coli is 

found in the gastrointestinal tract of animals. Ruminant animals are the most common 

reservoirs of STEC; cattle are particularly important reservoirs(7). Humans may also serve 

as a reservoir. Most E. coli strains are nonpathogenic and “account for the majority of 

facultative flora found in the gastro-intestinal tracts of most vertebrates, including 

humans,” a fact which is relevant in pathogen detection (16). Pathogenic E. coli is of 

particular danger as a produce contaminant, due to its ability to withstand harsh conditions 

including low pH, temperature stresses, and nutrient depletion, and its ability to persist in 
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the environment for long periods of time (16). It appears that pathogenic E. coli is most 

prevalent in fall and summer months(16).  

Produce-related outbreaks can also be caused by viruses. Of all potential viral 

pathogens, norovirus is of greatest concern; between 1990 and 2004 norovirus alone was 

the cause of 39% of all produce-related outbreaks and over 9,000 illnesses, higher than any 

other organism (20). Norovirus, also called a Norwalk-like virus, is from the family 

Caliciviridae and is an RNA virus with size ranging from 27-40 nm in diameter (much 

smaller than a bacterial agent)(16). Norovirus can cause severe diarrhea sometimes 

accompanied by nausea, vomiting, and other symptoms (7). The virus lives in the human 

gastrointestinal tract (7). As with the organisms above, norovirus is transmitted through 

the fecal-oral pathway; however, unlike the other pathogens discussed, human fecal matter 

is the primary source of the pathogen (since humans are the only know reservoir of human 

norovirus) (7). Norovirus can also be transmitted person to person through contamination 

from fecal matter or vomitus, which can make detecting the precise source of the virus 

difficult (16). Norovirus is a nonenveloped virus, meaning it lacks a lipid envelope. 

Nonenveloped viruses are hardier than enveloped viruses, allowing them to persist for 

longer periods of time in the environment (16). In one study, norovirus remained 

infectious in groundwater for over 60 days (21).   

To ensure produce safety, a number of methods have been developed to test for the 

presence of these disease-causing pathogens on produce (22, 23). There are three primary 

types of tests used to search for pathogens: cell culture methods, microscopy, and nucleic 

acid based detection, all of which have specific advantages and disadvantages (22). Cell-
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culture methods, for example, cannot be performed on norovirus as it cannot be cultured 

(22). Microscopy is appropriate mainly for cysts of parasites, which are larger and easier to 

view than bacteria or viruses. Nucleic acid based detection is generally accomplished by 

polymerase chain reaction (PCR) and is often used for virus detection (22). However, PCR 

methods can detect non-infectious viruses and the reaction may be inhibited by certain 

compounds found in produce and the environment (22). While detection methods are 

improving, detecting specific pathogens can be difficult, time-consuming, and expensive 

(24, 25). Furthermore, detection of pathogens in water and agricultural samples is quite 

rare, and the lack of a pathogen in one specific sample does not exclude the possibility of 

contamination (24, 25). Since there are a number of pathogens which can contaminate 

produce it is unfeasible to test for every pathogen (26), testing for specific pathogens is 

generally considered nether the best nor the most effective way to check environmental 

samples for fecal contamination.  

Microbial Indicators  

Because of the above mentioned constraints in pathogen testing, other fecal 

organisms are often used to indicate risk of potential pathogen contamination. These 

organisms, called microbial indicators, are related to disease-causing pathogens both 

biologically and ecologically (26). For example, fecal coliforms, which are one of the most 

commonly used microbial indicators, are from the same family of bacteria as E. coli, which 

is also a coliform (27). Initially, the choice of which indicator to use was guided by the 

available technology (28). Total coliforms were one of the first indicators used, and 



10 
 

represent the total number of coliform-type bacteria present in a sample (28). However, 

this was later refined to test for fecal coliforms specifically, as it was felt that this would 

give a better suggestion of possible pathogen contamination (28). Fecal coliforms are a 

subset of coliforms that are thermotolerant—i.e. they produce gas from lactose at 45.5°C 

within 2 days—and, as such, are able to live and reproduce in feces, making them more 

precise indicators of potential fecal contamination than total coliforms (28, 29).  

Currently, fecal coliforms, Enterococcus, and generic E. coli are commonly used fecal 

indicator bacteria (30). More recently, bacteriophages (viruses which infect bacteria), have 

been used as microbial indicators (26, 27, 31, 32). Somatic coliphage, a viral indicator 

which infects E. coli, has similar survival and reproductive patterns as several enteric 

viruses and, as such, has been suggested as a marker of potential pathogenic virus 

contamination (25, 32). 

Microbial indicators have been used since the late 19th century, when water in 

London was first tested for bacteria (28). Since then, technologies for enumerating 

indicators have made many improvements. The multiple-tube fermentation procedure, also 

called the most probable number (MPN) procedure was one of the first tests developed, 

and involves estimation of bacterial counts based on production of gas and statistical 

procedures (28). Since then, membrane filtration and culture methods, processes in which 

bacteria are concentrated on membranes and grown on culture media, have become the 

more common method (28). There have been numerous advances in the membranes and 

media used for enumeration of specific bacteria (22). For viral indicators, a number of tests 

have been developed, including modified membrane filtration methods, PCR techniques, 
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and counting plaque-forming units; these tests continue to be refined for additional virus 

types (22, 28, 33).   

Indicators and Pathogen Relationships  

Despite the widespread use of microbial indicators as measures of fecal 

contamination and indicators of potential pathogen contamination, there is no clear 

scientific consensus on how microbial indicators relate to pathogens in the environment, 

particularly in agricultural settings (24, 30, 34). Ideal indicators are easily detected, 

present in fecal matter, and have environmental survival and reproductive patterns similar 

to pathogens (30). However, no indicator meets all of these criteria in relationship to every 

pathogen, therefore no single ideal exists. Thus, there is a need to identify the ‘best’ 

indicator for predicting risk of pathogen contamination (22, 35).  

Several studies have sought to elucidate the relationships between specific 

pathogens and their possible indicators; few have found these relationships to be clear. A 

study in French rivers and wastewater treatment plants found that there was no 

correlation between the presence of the indicators Enterococcus or fecal coliforms and 

Salmonella, although they did find a relationship between Cryptosporidium and both 

indicators in riverine water samples only (36). A similar study looked at relationships 

among several pathogens and the indicators total coliforms, fecal coliforms, and 

Enterococcus in river and coastal waters in Greece. Although indicators were present in all 

samples where pathogens were found, the study found no significant statistical 

relationships between any indicators and any pathogens (23). A Canadian study, again 
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using water samples, found that overall relationships between indicators (total coliforms, 

fecal coliforms, E. coli, Entercococcus, and Clostridium perfringens) and pathogens (Listeria 

monocytogenes, E. coli O157:H7, Salmonella, and Campylobacter) were weak. The study also 

found positive significant (yet weak) relationships between Salmonella and the indicators. 

Less than 3% of samples with a pathogen did not have any indicator and classification and 

regression trees (CART) analysis found that fecal coliforms and E. coli were the most 

appropriate predictors for the pathogens studied (30). However, in a separate study in 

marine, estuary and river waters, significant relationships of varying strength were 

observed between Salmonella and total coliforms, fecal coliforms, fecal streptococci, and 

coliphage (32). Another study showed no evidence of correlation between somatic 

coliphage and enteroviruses in farm pond water and sewage, and enteroviruses were 

present in effluents absent of coliphage (25). A review of indicator and pathogen 

relationships in biosolids found a lack of correlation between pathogens and their 

biological indicators, leading the authors to conclude that in many settings indicators may 

be better utilized in testing for the efficacy of a treatment process, for example, than in 

testing for a specific pathogen (22).  

A comprehensive review of research that modeled the relationships between 

indicators and pathogens, controlling for intervening variables, found no single indicator 

that correlated most often with pathogens (37). However, several were more likely to be 

correlated than other commonly used indicators, including coliforms and coliphage. For all 

significantly linearly correlated cases used in the review, across all indicator types, the 

average overall correlation was 0.554 (37). Coliphage correlated better with viral 
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pathogens (adenoviruses, astroviruses, hepatitis A virus, noroviruses, sapoviruses, 

enteroviruses, human enteric viruses, rotavirus) than did the bacterial indicators (total 

coliforms, fecal coliforms, fecal streptococci, Enterococci, E. coli, Clostridium perfringens, 

heterotrophic bacteria,), while also correlating with bacterial pathogens (Aeromonas, 

Campylobacter, Helicobacter pylori, Salmonella, Staphylococcus aureus, Vibrio cholerae, total 

vibrio, Pseudomonas aeruginosa). This study also found that the number of samples testing 

positive for a pathogen was the most important predictor in determining indicator-

pathogen correlation (37). As discussed above, pathogens are difficult to detect, suggesting 

that the lack of evidence of association between indicator and pathogens may be due, in 

part, to insufficient sample size (37). These relationships highlight the need for a deeper 

understanding of how all indicators function in the environment and emphasize their 

strengths and weaknesses for potential use in testing contamination pathways and 

monitoring microbial quality during agricultural processes.  

 

Indicator Relationships 

Due in part to the varied relationships between indicators and pathogens and the 

environmental factors that can contribute to this variation, testing for multiple indicators 

has been recommended (24, 30, 31, 37). However, there is no consensus on which 

indicator(s) need to be considered and how these might vary based on ecological factors. 

Understanding the relationships between indicators is important both in guiding 

regulations on produce safety and as well as identifying routes of contamination. A single 
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indicator may not be indicative of total contamination, since microorganisms differ in their 

ability to persist and replicate in different environments (24, 30, 31). However, if some 

indicators behave similarly in certain environments or sample types, it may be necessary to 

test for only one of those indicators, which could simplify and reduce the expense of 

environmental testing.  

As with the relationships between pathogens and indicators, several studies have 

examined the relationships indicators have to one another. A study of surface waters in an 

agricultural area found weak to moderate non-significant correlations between 

Enterococcus and total coliforms, fecal coliforms, and E. coli, yet found that the latter three 

were all significantly related to each other. The strongest correlation existed between E. 

coli and fecal coliforms (rho=0.79), providing some support for the idea that some 

indicators may be interchangeable, depending on the sample type (23). An additional study 

examining river and stream samples from an agricultural area in Canada, found similar 

results with moderate to strong correlations between total coliforms, fecal coliforms, E. 

coli, and Enterococcus (rho range: 0.74-0.82) (30). A separate study in groundwater 

aquifers found that there was a significant difference in the percentages of detection for 

somatic coliphage and E. coli, lending support to the idea that a viral indicator might be 

useful in addition to bacterial indicators (31).  

While it appears that some indicators are related in certain environments, the 

results are not definitive, and the majority of evidence comes from water samples. 

Although studies have used indicators to assess microbiological contamination on farms, 

studies examining indicator relationships on farms are particularly limited (24, 38-40). A 
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study examining the relationship between fecal coliforms and E. coli on a variety of food 

samples (including produce) from grocery stores found that there was no significant 

difference in concentrations between the indicators in any sample type, with correlation 

coefficients ranging from 0.78 to 0.99, providing evidence that some indicators may be 

interchangeable in terms of the information they provide regarding fecal contamination in 

agricultural environments (29). Another study examined the relationships between 

indicators in soil, crop, and water samples on a lettuce farm in Belgium (24). Across all 

sample types, a low (yet significant) correlation was observed between the indicators E. 

coli and total psychrotropic aerobic plate count (TPAC). In irrigation water samples alone, 

however, stronger (0.437-0.918) significant correlations were observed between all pairs 

of the four indicator organisms studied (TPAC, E. coli, coliforms, Enterococci) (24).  

These differences in relationships by sample type underscore the need to further 

understand how these relationships change in different types of agricultural samples: 

specifically, how viral indicators relate to bacterial indicators on produce farms. This 

relationship has important implications for produce safety testing and regulations.   

Regulations  

One of the reasons microbial indicators are of such interest is to ensure safety and 

quality standards in a variety of environmental samples. The most common examples of 

this come from water standards. Most of these standards set acceptable concentration 

levels of the chosen indicators—above which a sample is considered contaminated. The 

levels generally have a maximum value allowed in any one sample and a (lower) max value 
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allowed for the geometric mean concentration across multiple samples. Examples of 

government quality standards which have been established using indicators include the US 

Environmental Protection Agency’s (EPA) recreational water quality (e.g. beach/swimming 

water) standards which recommend testing for E. coli and Enterococcus with a geometric 

mean acceptable level of 126 and 35 colony forming units (cfu) per 100 mL of water over 

any 30 day period (41). These standards, which have been in place and undergone 

revisions for several decades, were developed and refined based on epidemiological 

studies of gastrointestinal illness, as well as through extensive lab testing to identify the 

concentrations that present an unacceptable level of risk (41).  

The US Food and Drug Administration (FDA) also has regulations on water quality 

with standards based on EPA research (42). The FDA requires testing of bottled water for 

total coliforms and, if coliforms are detected, a follow-up test for E. coli is performed, since 

E. coli is not permitted in bottled water (42).  

Until recently, no similar standards existed for the agricultural industry. In 2011, the 

Food Safety Modernization Act (FSMA) was created by the FDA (17). A part of the FSMA is 

the Produce Safety Rule, which focuses on 5 main areas of microbial contamination of 

produce (agricultural water, biological soil amendments of animal origin, health and 

hygiene, domesticated and wild animals, and equipment, tools and buildings) and creates 

science-based standards to reduce the risk of produce contamination (17). The current 

Produce Safety Rule sets specific indicator-based standards for agricultural water and for 

preparation methods for manure (non-indicator-based standards exist in the other 

areas)(43). These standards are based on the existing evidence, much of which comes from 
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studies of water. New evidence from agricultural environments is needed to ensure that 

present and future standards are based on the most relevant evidence.  

Produce-related foodborne outbreaks contribute to a large burden of disease. 

Preventing these illnesses by interrupting the fecal-oral pathway and preventing produce 

contamination is a complex process. A key step in this process is using appropriate 

methods to detect fecal contamination. Due to the aforementioned low prevalence of and 

challenges in detection of pathogens, alternative methods, such as the use of microbial 

indicators for determining fecal contamination must be used. While there is a large body of 

epidemiological data and research studies on water quality, insufficient evidence exists to 

determine how microbial indicators of fecal contamination relate to one another in farm 

environments.  

Many current standards have been adapted from water quality regulations; these 

are insufficient, however, since the behavior and relationships of both pathogens and 

microbial indicators may differ on produce, in soil or manure, on hands, or on tools and 

equipment. Understanding how commonly used indicators behave on produce and in the 

agricultural environment is essential in the development of produce specific standards and 

regulations to prevent illness. While the primary goal of determining appropriate and 

necessary indicators is to reduce produce-related illnesses, understanding clearly which 

indicators are related can also minimize the labor and expense of testing for multiple highly 

correlated pathogens. Thus, clear knowledge of the relationships between microbial 

indicators benefits regulators, consumers, and commercial farmers.   
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This study aims to characterize the relationships between the presence and 

concentration of microbial indicators of fecal contamination (fecal coliforms, Enterococcus, 

generic E. coli, and somatic coliphage) on 11 produce farms in Mexico, and determine if and 

how those relationships differ based on potential effect modifiers including sample type, 

time, and point in the production process. Understanding what, if any, relationships exist 

between indicators can advance food safety research, help inform regulations on produce 

safety, and ultimately prevent illness by making our food supply safer through reducing 

pathogen contamination.  
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Introduction  

Each year, one in six Americans, almost 50 million, people become ill from a 

foodborne related illness (1). According to the US Centers for Disease Control and 

Prevention (CDC) estimates, 3,000 people are killed and 128,000 more are hospitalized 

from foodborne illnesses each year (2). 

Produce is the leading single ingredient cause of outbreaks and of illnesses in the 

US, causing nearly 25% (over 25,000) of all foodborne related illnesses(1). Produce has 

been the recent source of several high profile outbreaks in the US. Between 2005 and 2006, 

four multistate outbreaks causing illness in over four hundred people were linked to 

Salmonella contamination of tomatoes supplied to restaurants from multiple farms in the 

US (5). In 2008, an outbreak of Salmonella infected 1,442 people across 43 states. The 

outbreak was linked to jalapeño and serrano peppers grown in Mexico (6, 8). A 2011 

outbreak that infected 147 people across 28 states was traced to the bacteria Listeria 

monocytogenes on cantaloupes grown on a farm in Colorado (9). 

While some of these produce-related outbreaks can be linked to specific farms, the 

mechanisms of contamination of produce with disease-causing agents are often unclear. 

Because of the high burden of disease from produce-related foodborne illness, there is a 

need to understand how the produce is becoming contaminated and how to prevent this 

contamination (1). 

Produce can become contaminated by a variety of bacteria, viral, and parasitic 

organisms, although bacteria and viruses collectively cause the vast majority of the 
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outbreaks (20). Salmonella, E. coli O157:H7, Shigella, and norovirus (Norwalk-like viruses) 

are the pathogens which pose the greatest risk for foodborne produce outbreaks, based on 

historical data (20). Since 2010, there have been several high profile Listeria outbreaks, 

making it another pathogen of particular interest (3). These human disease-causing 

pathogens are found in human and animal fecal matter and are transmitted to produce 

through the fecal oral pathway (i.e. by ingesting produce which has been contaminated 

with pathogen-containing fecal matter). Soil, water, manure, animal contact, and human 

contact are the main modes of fecal contamination of produce (16). 

To ensure produce safety, a number of methods have been developed to test for the 

presence of these disease-causing pathogens on produce (22, 23). Detecting specific 

pathogens is difficult, however, and their prevalence on the produce itself as well as in 

potential sources of contamination (e.g. irrigation water) is quite rare (32, 35). 

Furthermore, it is logistically infeasible to test for every potential pathogen since a 

veritable multitude of pathogens can cause produce-related outbreaks (22, 44). Finally, the 

absence of one specific disease-causing pathogen does not indicate the lack of potential for 

other pathogen contamination and transmission of foodborne illness.  

Because of these pragmatic and logistical constraints, microbial indicators of fecal 

contamination are frequently used to test for evidence of fecal contamination, and risk of 

potential pathogen contamination. Fecal coliforms, Enterococcus, and generic E. coli are 

commonly used fecal indicator bacteria (30). These microbial indicators are typically 

organisms (bacteria or viruses) that are ecologically and biologically related to the disease-

causing pathogens (35, 44). For example, fecal coliforms, which are one of the most 
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commonly used microbial indicators, are from the same family of bacteria as E. coli, which 

is also a coliform.  

Initially, the choice of which indicator to use was guided by the available technology. 

Total coliforms were one of the first indicators employed, and represent the total number 

of coliform-type bacteria present in a sample (28). However, this was later refined to test 

for fecal coliforms specifically, (i.e. coliforms that live in the gut and generally live and 

reproduce in feces) as it was felt that this would give a better suggestion of possible 

pathogen contamination (30). More recently, bacteriophages (viruses which infect 

bacteria), have been used as microbial indicators (22, 26, 27, 32). Somatic coliphage, a viral 

indicator which infects E. coli, has similar survival and reproductive patterns as several 

enteric viruses and, as such, has been suggested as a marker of potential virus 

contamination (22, 28, 32).  

For decades, microbial indicators have been used in setting quality and safety 

standards. Since these indicators (bacterial and viral alike) have reproductive and survival 

patterns similar to the pathogens for which they are being used as proxies, the presence of 

a microbial indicator in a sample therefore suggests contamination with fecal matter of that 

sample (25, 27) . However, as some indicators (as well as certain pathogens) can replicate 

outside of the animal gut (their typical environment), and have different susceptibility to 

decontamination methods, the validity of certain indicators has been questioned (e.g. a 

microbe which can readily multiply outside of the animal gut may not be the best indicator 

of fecal contamination) (45, 46). Because indicators often represent larger categories of 

which these pathogens are a subset (e.g. pathogenic E. coli represents only a few subtypes 
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of generic E. coli, which in turn is a small portion of fecal coliforms) and eliminating all 

traces of microorganisms from a sample is unrealistic, small concentrations of microbial 

indicators are often deemed acceptable in quality and safety standards (27, 41).  

Several government organizations use microbial indicators in setting health 

standards, primarily for water quality. The US Environmental Protection Agency (EPA) has 

been regulating recreational water quality (e.g. beach/swimming water) through the use of 

microbial indicators for several decades (41). The 2012 Recreational Water Quality Criteria 

recommends testing for E. coli and Enterococcus with a geometric mean acceptable level of 

126 and 35 colony forming units (cfu) per 100 mL of water (41). 

These standards were developed and refined based on epidemiological studies of 

gastrointestinal illness as well as through extensive lab testing (41). Similarly, the US Food 

and Drug Administration regulates the quality of bottled water, and bases those standards 

on EPA research and recommendations (42). The FDA requires testing of bottled water for 

total coliforms and, if coliforms are detected, a follow-up test for E. coli is performed. E. coli 

is not permitted in bottled water (42).  

In 2011 the FDA signed into law The Food Safety Modernization Act (FSMA) (47). A 

portion of this Act is the Produce Safety Rule, which calls for the creation of science-based 

standards to reduce the risk of produce contamination (17). The Produce Safety Rule 

focuses on 5 main areas of microbial contamination of produce: agricultural water, 

biological soil amendments of animal origin, health and hygiene, domesticated and wild 

animals, and equipment, tools and buildings (43). The FSMA sets standards for agricultural 
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water and manure; these standards are based on existing evidence and may be modified as 

the body of evidence for contamination on farms grows (17).  

Testing for multiple indicators has been recommended in the literature, recognizing 

that a single type of indicator may not be indicative of total contamination, since pathogens 

(and their related microbial indicators) vary in their ability to persist outside of their host 

environment, and behave differently based on a multitude of environmental factors (24, 30, 

31, 37). However, as suggested by the differing governmental regulations cited above, there 

is not a consensus on which microbial indicators need to be considered, and how that 

might vary based on ecological factors. Studies of indicator-pathogen relationships have 

found varying relationships of differing strength, with no clear overarching relationships 

(22, 23, 30, 32, 37). Furthermore, insufficient evidence exists to determine how microbial 

indicators relate to one another and how those relationships are impacted by time, 

potential contamination source (e.g. water v. soil), and/or other environmental conditions, 

particularly in the field of agricultural and produce safety (23, 24, 29-31). 

Many current standards have been adapted from water quality regulations;, the 

behavior and relationships of both pathogens and microbial indicators may differ, however, 

for contamination on produce, in soil or manure, or through packing equipment (22, 24). 

Thus, there is a need to better understand how these microbial indicators behave on 

produce farms. Understanding what, if any, relationships exist between indicators can help 

inform regulations on produce safety.  

This study aims to characterize the relationships between the presence and concentration 

of microbial indicators of fecal contamination (fecal coliforms, Enterococcus, generic E. coli, 
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and somatic coliphage) on 11 produce farms in Mexico and determine if and how those 

relationships differ based on potential effect modifiers, including sample type, time, and 

point in the production process. Knowing how indicators relate to one another in the farm 

setting can guide the development of appropriate produce safety recommendations and 

regulations. More accurate, science-based regulations can decrease produce-related 

foodborne outbreaks and the resultant public health and economic impacts.    
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Materials and Methods  

Study area 

The study area comprised the Mexican states of Nuevo León and Coahuila on the 

United States-Mexico border. Eleven farms and three packing sheds participated in this 

study: five farms produced cantaloupes, five produced jalapeño peppers, and five produced 

tomatoes (four of which were also included as jalapeño farms). Institutional review board 

approval was received by the lead institution (Emory University) covering the duration of 

the study (approval number IRB00035460).  

Sample collection 

Samples were collected from May 2011 to December 2012. During each sampling 

event, 8 to 10 samples were obtained consisting of soil, water from the irrigation source 

and/or field irrigation lines, fresh produce rinses at several points in the production 

process (before harvest, during harvest, just prior to distribution from the field, and during 

packing if a packing facility was present on the farm), and of hand rinses from the 

pickers/packers. For each final sample, three samples from random locations were 

combined to form a single composite sample. The collection protocol, which differed for 

each sample type, is described below. All samples were placed on ice after collection, 

driven to the laboratory at the Universidad Autónoma de Nuevo León (UANL), and stored 

at 4°C until processing for microbial indicator analyses. At the time of collection, data 

identifying the field, farm, type of produce grown, date of sample collection, and point in 

chain (e.g. before harvest, during packing) were recorded for each sample.  
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Soil. At each random sampling location on the field, seven ~15g scoops of soil were 

collected to form a minimum sample of 100g. Samples were collected using the same 2 oz. 

scoop inserted to a depth of 5 cm below the soil surface and were transferred to the same 

Whirl-Pak bag (Nasco, Ft. Atkinson, WI). All three samples were combined in the laboratory 

using aseptic technique into a 300g composite sample. Before microbial analyses, 25 g soil 

was suspended in 0.15% sterile peptone water (PW) (75 ml PW for samples collected May 

2011-June 2011, 225 ml for samples collected July 2011-December 2012), shaken 

vigorously for 60 s, and allowed to settle for 10 min. Rinse solution was used for later 

analyses.  

Water. Water samples were collected from the source well and from the irrigation 

lines on the field. Well water samples were collected by first disinfecting the pump with 

200 ppm hypochlorite. The pump was allowed to run for 30 s before three 1.5-liter water 

samples were collected in Whirl-Pak bags. Irrigation water samples were collected as close 

as possible to the harvest row where the drip tape deposited irrigation water or from the 

center of the distribution system when this was not possible and were collected in the 

same manner as well water. All three of the well or in-field irrigation water samples were 

combined to create a composite sample of ~4.5 liters, which was then re-divided into 

smaller subsamples for specific microbiological testing. 

Produce rinses. Multiple fruits were rinsed in the same solution to create a single 

produce rinse sample. Specifically, 2 melons, 18 tomatoes, or 14 jalapeño peppers were 

rinsed to comprise one sample. For preparation of the rinses, half of each batch of produce 

was placed in a Whirl-Pak bag containing 500 ml PW, shaken for 30 s, massaged for 30 s, 
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and shaken again for 30 s. The first half of the produce batch was removed and replaced 

with the second half, and the process was repeated. This process was done three times with 

three different produce batches, and the rinses were combined to create a composite 

sample of 1,500 ml. The composite sample was divided into smaller subsamples for 

microbiological testing.  

Hand rinses. Before sample collection, researchers obtained written consent from 

farm managers and oral consent from farm workers to collect a hand rinse sample per IRB 

approved protocol. The worker placed his or her hand in a Whirl-Pak bag containing 750ml 

PW. The worker was asked to shake the hand for 30 s, and then the hand was massaged for 

an additional 30 s. The first hand was removed from the PW, the second hand was placed in 

the same bag, and the process was repeated. Three individual hand rinse samples were 

combined to create a composite sample of 2,250 ml that was divided into smaller 

subsamples for specific microbiological testing. 

Microbial indicator Analyses 

All samples were tested for four microbial indicators of fecal contamination: generic 

Escherichia coli, Enterococcus, fecal coliforms, and somatic coliphage. Bacterial samples 

were assayed within 13 days of receipt (with the majority of samples assayed within two 

days of receipt). Coilphage samples were assayed within one month of receipt (<7 days was 

more typical). Samples were analyzed for all three bacterial indicators (generic E. coli, 

Enterococcus, and fecal coliforms) at UANL using a membrane filtration method to 

concentrate and incubation on defined media to enumerate. For each sample, a range of 
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volumes (effective original sample volume, 1 μl to 250 ml) were vacuum filtered through a 

47-mm diameter, 0.45-μm-pore-size S-Pack filter (Millipore, Billerica, MA). After filtration, 

the filter was removed and placed onto an agar plate. Enterococcus was grown on KF 

Streptococcus agar (Oxoid Limited, Basingstoke, Hampshire, UK), fecal coliforms and 

generic E. coli were grown on RAPID'E.coli 2 (Bio-Rad Laboratories, Inc., Hercules, CA). 

Coliphage tests were conducted using FastPhage MPN Quanti-tray (Charm Sciences, Inc., 

Lawrence, MA).  

The average concentration (number of CFU per volume filtered) of the bacterial 

indicators in each sample was determined. For statistical analyses, samples with 

concentrations below the assay lower limit of detection (with no growth on any plates) 

were reported as 0.5 CFU per greatest volume filtered (one half of the limit of 

detection)(48). Samples with concentrations above the upper limit of quantification (with 

greater than 250 CFU on all plates) were reported as 500 CFU per smallest volume tested 

(two times the upper limit of quantification). For coliphage samples, most probable 

numbers (MPN) were calculated from the Quanti-tray per manufacturer instructions, and a 

similar approach was followed when concentrations were outside the quantifiable range 

(values of 0.5 limit of detection were assigned for samples with concentrations below the 

quantifiable range and values of twice the limit of quantification were assigned for samples 

with concentrations above the quantifiable range). The limits of quantification for each 

assay are as follows (lower, upper): fecal coliforms: (0.104, 21500000) cfu/mL; E. coli 

(0.116, 660000); Enterococcus (0.112, 108000000), Coliphage (0.01, 15.85) MPN/mL. 
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Statistical Analyses 

Statistical analyses were performed using SAS 9.3 (SAS Institute Inc., Cary, NC) at an 

alpha level of 0.05. Microbial indicator concentrations were transformed on a log10 scale; 

all further analyses were conducted using log transformed data. To ensure adequate 

sample size, imputed values described above were included in analysis.  

Analyses were conducted separately for each sample type (soil, water (both source 

and irrigation), hand-rinse, and produce) as indicator concentrations were not in uniform 

units across sample types. Geometric mean and associated confidence intervals, as well as 

prevalence, were calculated for each of the four indicators. Spearman’s rank correlation 

analyses were performed to compare microbial indicator concentrations to one another. 

Pearson’s chi-squared analyses were conducted to identify any univariate associations 

between indicator prevalence.  To further evaluate the relationship between microbial 

indicators, multivariate logistic and linear modeling was conducted, which allowed 

assessing potential interaction while controlling for the potential effect modifiers produce 

type (tomato, jalapeño, cantaloupe), time of sample collection (pilot, year 1, year 2) and 

point in chain (before harvest, after harvest, at distribution, at the packing shed).  

 

Logistic Regression  

Univariate analyses were conducted to confirm the findings of the chi-squared 

analysis. For each sample type, models were constructed with one indicator as the outcome 
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variable and a single indicator as the predictor variable (i.e. E. coli prevalence = 

Enterococcus prevalence). This was repeated for all pairwise combinations of indicators. 

Potential interaction by year of sample collection was also assessed in these 

univariate analyses to determine if the relationships between indicators were influenced 

significantly by the year of sample collection—which might be expected in years with 

drastically different climate patterns. Interactions were assessed for each indicator pair 

combination across all 4 sample types (48 total models) (see Appendix A)(49). The 

majority of models did not show any significant effects of interaction; for those which did 

(two models) there were no clear patterns. Since including these effects did not impact the 

overall significance or interpretability of these models, they were excluded from the final 

models.  

Collinearity was assessed for all models prior to full analysis using condition indices 

(CNIs) and variance decomposition properties (VDPs) to ensure that the exposure 

indicators were not too closely related to one another, impacting model estimates. A CNI of 

greater than 30 with at least two corresponding VDPs greater than 0.5 was used as the 

cutoff in determining if colliearity issues existed (49). No collinearity problems were found 

and no variables had to be removed from the model (data not shown).  

The final full logistic models included all microbial indicators as well as produce 

type and point-in-chain, in order to examine the relationships between presence of 

microbial indicators after controlling for produce type, point in chain, and the other 

indicators. For water and soil samples, point-in-chain was excluded since all samples were 

collected from the same point (immediately before harvest). Additionally, Enterococcus 
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was uninformative and therefore excluded from hand sample models due to 100% 

prevalence. Similarly, fecal coliforms were excluded from water sample models due to near 

100% prevalence which did not allow for appropriate separation of data. 

Linear Regression  

Linear regression was conducted to examine the relationship between the 

concentration of microbial indicators after controlling for produce type, point in chain, and 

the other indicators. The strategy for linear regression was the same as that for logistic 

regression; univariate analyses were conducted to confirm the results of the correlation 

analysis; and interaction was assessed for sample collection year. 

As with logistic regression, interaction terms in most models were not significant and not 

show significant effects there were no clear trends; thus, interaction terms were not 

included in the full linear models (see Appendix B)(50).  Collinearity and regression 

diagnostics were conducted using partial plots and VIFs with VIFs greater than 10 

indicating collinearity issues (51). No major issues with collinearity were found (data not 

shown). Not all variables met the normality assumption.  

Full models included all microbial indicators as well as produce type. As with 

logistic models, point-in-chain was included for hand and produce samples and not for 

water and soil samples (which were always collected before harvest).  
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Results 

Descriptive Statistics  

To gather information on the general distribution of indicators across sample types, 

we calculated the prevalence, geometric mean indicator concentration, and associated 95% 

confidence intervals (Table 1). Produce samples were also stratified by type of produce and 

calculations were repeated (Table 2). Concentrations and prevalence of indicators varied 

greatly across sample types, however there were some trends. The prevalence of fecal 

coliforms was greater than 90% across all sample types. Concentrations of fecal coliforms 

also tended to be higher than those of other indicators. Enterococcus was also quite 

prevalent across sample types, with prevalence values ranging from 69% to 100%. When 

different types of produce were compared, melons consistently had higher concentrations 

and greater prevalence than jalapeños and tomatoes for all indicators. Overall, both 

concentrations and prevalence of all indicators varied across sample types, with fecal 

coliforms and Enterococcus generally showing the highest prevalence and concentration 

compared to E. coli and coliphage.  

Indicator Concentrations 

Spearman’s correlation analyses were conducted as a preliminary approach to 

determine the presence and significance of correlations between concentrations of each of 

the four indicators of fecal contamination (Table 3). Concentrations of Enterococcus and 

fecal coliforms were significantly correlated across all sample types (p-value range: 
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<0.0001-0.0003) with rho values ranging from 0.38-0.65, indicating moderate correlations. 

This relationship persisted when produce samples were stratified by produce type. 

Concentrations of Enterococcus and E. coli were significantly correlated for hand, 

water, and produce samples (p-values: all <0.0001, rho values 0.37-0.60). When produce 

samples were stratified by produce type, this relationship did not persist. For produce 

samples, all microbial indicators were significantly correlated with one another (p-values: 

all <0.0001, rho values 0.28-0.65). Several other significant correlations were observed and 

were not part of apparent trends (Table 3).  

Linear regression was conducted to determine how the relationships between 

concentrations of the different microbial indicators differed within each sample type while 

controlling for other factors (point-in-chain, produce type, and the microbial indicators). 

Significant associations were found between concentrations of several indicators (Table 4). 

Concentration of Enterococcus was significantly associated with concentration of fecal 

coliforms across all sample types (p-value range: <0.0001-0.0007). Conversely, 

concentration of fecal coliforms also predicted concentration of Enterococcus regardless of 

sample type (p-value range: <0.0001-0.0007).  

Enterococcus concentrations were significantly associated with E. coli 

concentrations in water and produce samples (p-value range: 0.0014-0.0204) and with 

coliphage concentrations in hand and produce samples (p-value range: 0.0008-0.0481). 

Concentration of fecal coliforms predicted concentration of E. coli in water and produce 

samples (p-value range: 0.0002-0.0096) and predicted concentration of coliphage in hand-

rinse samples alone (0.0002-0.0242).  
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In summary, in produce samples, concentrations Enterococcus were significantly 

associated with concentrations of all of the three additional indicators (E. coli, fecal 

coliforms, and coliphage) (p-value range: <0.0001-0.0204) (i.e. all indicator variables 

included in the model were significant). This trend was not seen across any other indicator 

outcomes or sample types. Several models using concentrations of E. coli and coliphage 

showed significant associations; however there were no clear trends. For water and 

produce samples, E. coli concentration was a significant predictor for both Enterococcus 

and fecal coliforms samples but not for coliphage.  

Indicator prevalence 

Chi-squared analyses were conducted as a preliminary approach to determine the 

relationships between the presence of each of the four indicators of fecal contamination 

(Table 5). Among water samples, prevalence of E. coli was significantly associated with 

prevalence of Enterococcus, fecal coliforms, and coliphage (p-values: 0.0012-0.0115, OR: 

4.08-8.8). Among hand samples, the prevalence of E. coli was significantly associated with 

prevalence of fecal coliforms and coliphage (p-values: 0.0027-0.0391, OR: 3.24 for 

coliphage sample, N/A for fecal coliforms). The relationship between Enterococcus and E. 

coli could not be calculated due to 100% prevalence of Enterococcus. No other trends were 

observed; other significant relationships are indicated in Table 5.  

Logistic regression was conducted to determine how the relationships between the 

prevalence of the different microbial indicators differed within each sample type while 

controlling for other factors (point-in-chain and produce type and the microbial indicators) 
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(Table 6). There were no clear trends in significant ORs after controlling for point-in-chain 

and produce type. Some of the relationships observed in the chi-squared analyses persisted 

in the logistic regression. Due to 100% or near 100% prevalence not all estimates could be 

calculated.  

The prevalence of E. coli was significantly associated with the prevalence of 

coliphage in hand-rinse and produce samples (OR: 3.77, p-value: 0.0025, and OR: 3.77, p-

value: 0.0498, respectively). Conversely, the prevalence of coliphage was a significant 

predictor of the prevalence of E. coli in hand and produce samples (OR: 3.92, p-value: 

0.0021, OR: 4.01, p-value: 0.0408, respectively). Other significant relationships are listed in 

Table 5.  
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Discussion  

This analysis sought to determine the relationships between four microbial 

indicators of fecal contamination (fecal coliforms, Enterococcus, generic E. coli, and somatic 

coliphage) on produce farms and how those relationships differ based on sample type, 

time, and point in the production process. Across all sample types, there were significant 

associations between concentrations of fecal coliforms and Enterococcus. Results from 

linear and logistic regression confirmed the results seen in initial chi-squared and 

Spearman’s correlation analyses. Although a few additional significant relationships were 

observed beyond the associations between fecal coliforms and Enterococcus, there were no 

additional trends either between indicator pairs or across sample types.  

Key Results  

Concentrations of Enterococcus and fecal coliforms were significantly, although 

modestly, associated across all sample type, after controlling for produce type, point-in-

chain, and E. coli and coliphage concentrations (regression coefficients between 0.38 and 

0.65). This association indicates that testing for both Enterococcus and fecal coliforms on 

produce farms may be redundant and that one indicator may be sufficient to indicate fecal 

contamination. Results from other studies do not show evidence of a clear relationship 

across all settings. One study which analyzed surface water contamination showed a 

significant relationship (rs=0.74) between Enterococcus and fecal coliforms, while a 

separate study, also of surface water, found a non-significant correlation (rs=0.34) between 

the same two indicators (23, 30). Moreover, study of recreational water found that the 
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correlations between concentrations of fecal coliforms and Enterococcus differed based on 

the season of sample collection, further complicating the relationship (34).  

While Enterococcus and fecal coliforms possess different survival times outside the 

host and are impacted differentially by environmental factors, they remain closely related 

biologically and ecologically (22). Both fecal coliforms and Enterococcus are broader 

indicator terms which include numerous subgroups (i.e. fecal coliforms refers to the broad 

category of thermotolerant coliform-type bacteria while Enterococcus is an entire genus of 

streptococcal bacteria)(28). These indicator bacteria are subsequently detected in greater 

concentrations than indicators that represent only a subgroup (e.g. specific E. coli 

subtypes), which may, in part, explain this similar relationship (29). A wastewater study 

found similar mean concentrations of fecal coliforms and Enterococcus as well as the same 

overall frequency of detection in samples for the two indicators (46). The same study; 

however, found no significant correlation between the two indicators (46). Further 

research may need to be conducted on additional produce farms to confirm whether fecal 

coliforms and Enterococcus persist in similar concentrations across farms; if so, testing for 

one indicator may be sufficient to test for certain types of fecal contamination and for the 

potential presence of bacterial pathogens.  

Both Spearman’s correlation analyses and linear regression were similar in their 

utility to identify associations between indicators. While the correlation analyses showed 

more significant associations than did the linear regression analyses, both methods 

displayed the same overall trends in the identified relationships between concentrations of 

microbial indicators. That is, that fecal coliforms and Enterococcus concentrations were 
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significantly related, and that, among produce samples, microbial indicator concentrations 

were related across produce types. The identification of fewer significant associations by 

the linear regression analyses was likely due to the control variables used in the model, 

which helped to refine the associations observed by Spearman’s correlation. Similarly, 

congruent patterns were observed between chi-squared analyses and logistic regression 

results. Again, the associations from the chi-squared analysis that did not emerge in the 

logistic regression were likely due to the use of control variables. This has important 

implications for future studies; firstly, unadjusted analyses may be sufficient to give a 

broad picture of how indicators and pathogens are behaving on produce farms. However, 

when using evidence to craft regulations and guidelines for produce studies, it is important 

to control for potential confounders; otherwise false relationships may be found. For 

example, studies have shown that levels of contamination vary by produce type (38, 52).  

For future research to be generalizable to a variety of produce farms and settings, it is 

important to control for these potential confounding variables.   

Overall, few relationships and clear trends were shown across indicator-pairs or 

sample types, indicating that both the prevalence and concentration of microbial indicators 

differ within and across sample types on produce farms. Past literature has shown wide 

variation in the presence and concentrations of specific indicators in certain settings and 

that pathogen-indicator and indicator-indicator relationships differ based on the pathogen 

being tested, the indicator used, and various environmental factors (24, 31, 34, 37). 

Because of this variation, and to ensure that contamination from the full breadth of 

possible pathogens was being detected, testing for multiple indicators has been widely 
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proposed (22, 26, 27).  This has particularly been the case with the use of viral indicators, 

such as coliphage (22, 26, 31, 32, 37). The lack of clear trends involving coliphage and any 

of the three bacterial indicators in our results provide further evidence that coliphage 

behaves differently than bacteria and that it may be not only appropriate but necessary to 

include a viral indicator in testing.  

Our results further show that microbial indicators in samples from produce farms 

vary in prevalence and concentration, likely based on individual indicator characteristics 

and environmental factors. This contributes to the body of evidence that supports the 

testing for multiple indicators to prevent fecal contamination, and, in particular, the use of 

multiple indicator standards in produce safety guidelines. Additionally, future research to 

better understand the underlying relationships between indicator and pathogen behavior, 

particularly after controlling for site and environmental variables, should be conducted. 

Recognizing the environmental and farm-specific factors which influence concentrations 

and prevalence of indicators will provide better assistance in the development of produce 

safety rules and the subsequent prevention of foodborne illness.  

Limitations 

After all microbial indicator variables were log-transformed for analysis, some 

variables remained non-normally distributed. Spearman’s rank correlation analyses 

(nonparametric tests appropriate for these data) were conducted in the preliminary 

analyses. However, linear regression, which allows for the introduction of control variables 

but requires a normality assumption, was used for subsequent analyses. The violation of 
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the normality assumption of linear regression may have led to less accurate results. 

However, as discussed above, similar patterns were observed between the Spearman’s 

correlation analyses and the linear regression. This suggests that the violation of this 

assumption did not greatly impact the observed results.  

The tests for microbial indicators have a lower limit of detection and an upper limit 

of quantification which must be accounted for in analysis. Due to sample size constraints, 

models could not be run using datasets restricted to contain only those indicator 

concentration values within the detection and quantification limits. For samples with 

concentrations above and below these limits in this study, values were imputed. These 

imputed values were used in analysis; however, they were not adjusted for in linear 

regression, due to the difficulties in accounting for the imputed values in both the exposure 

and outcome variables. These unadjusted methods may have impacted the results. 

Additional analyses using more complex methods for censoring of imputed values could be 

considered. Previous analyses using similar data found that, while the results garnered 

using a Tobit regression strategy to adjust linear models (an adjustment option for left-

censored data) were more accurate than simple linear regression, the results did not differ 

in significance (53). Therefore, we hypothesize that results similar to those presented here 

would be obtained using a censored modeling approach, and recommend future research 

to test this hypothesis and confirm the findings of the uncontrolled analysis. 

Strengths  
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To the best of our knowledge, this study is one of the first to examine the 

relationships among fecal indicators in four sample types and in agricultural environments. 

A similar study on lettuce farms considered only bacterial pathogens and indicators, 

whereas our study examined both bacterial and viral indicators (24). Furthermore, the 

sampling methods and lab tests employed in this study were standardized across sample 

types, thus allowing for comparability across sample types.  

The sample sizes for this study were sufficient to provide adequate power for linear 

and logistic regression including several control variables. Many previous studies have 

focused primarily on Spearman’s correlation analyses in reporting their results. Controlling 

for variables such as produce type and point-in-chain allows for more interpretable and 

generalizable results, which is desirable as produce quality standards and tests are not 

likely to be developed separately for each specific type of produce, nor for each step in the 

farming process. Thus, understanding the overall relationships between the indicators in 

the presence of these control variables allows the results to guide the development of 

practical policy recommendations, with the confidence that these findings are not being 

heavily influenced by any of the factors discussed above.  

Implications  

This study adds to the growing evidence that multiple indicators are necessary to 

predict potential pathogen contamination and also provides important context for these 

tests in an agricultural setting. This evidence is relevant not only for policy-makers, but for 

farm owners as well. As the FDA revises and updates the regulations under the FSMA, 
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increased evidence on relatedness of indicator and pathogen behavior on produce farms is 

needed. Currently, only agricultural water has specific regular microbial testing 

requirements and thresholds under the FSMA. Although organic soil amendments (i.e. 

compost) must be treated using methods shown to reduce pathogen and indicator 

contamination, these standards do not include regular testing requirements. Given that 

contamination was found across sample types, implementing standards that require testing 

of both soil and produce, for example, should be considered as well.  

Furthermore, standards that require testing for multiple indicators should be 

considered, given the evidence that indicator patterns vary in the environment and that 

certain indicators are better predictors of pathogens than others. Whether the goal is to 

test for the presence of fecal contamination or for the potential presence of a disease-

causing pathogen, the presence of a single indicator may not be sufficient.  

These results also highlight the need to further understand the interplay between 

disease-causing pathogens and microbial indicators on farms. A review of randomized and 

control trials focused on produce contamination found that several trials have been able to 

characterize some of the ways in which specific pathogens behave on various produce 

types and how this behavior differs based on various factors, including environmental 

factors such as water, soil, and produce type, as well as pathogen specific factors (54). 

Combining these trials with indicator testing as a means to understand how well microbial 

indicator presence detects specific pathogens will further ensure that the best indicators 

are being used to predict pathogen contamination.   



43 
 

Conclusions  

Our results support findings from research on water safety and show that, on 

produce farms, indicator prevalence and concentrations vary, and that there are no two 

indicators which are related across all characteristics. Overall high prevalence of certain 

indicators provides evidence of fecal contamination on produce farms. Even without 

detailed understanding of pathogen-indicator interplay, these results underscore the need 

for increased use of good agricultural practices and other methods to minimize 

contamination of farms, and highlight the need for further research and development of 

industry-specific standards of testing for produce contamination. This study is the first to 

characterize indicator relationships across agricultural samples of hand-rinse, soil, water, 

and produce, considering several steps in the pre-harvest and packaging process. Hopefully 

this research can be the first step in fully understanding the complex relationships and 

processes at play in the produce growing environment.  With the development of the 

FSMA’s Produce Safety Rule, this evidence should to contribute to scientific standards on 

produce safety regulations which, in turn, have the potential to improve food safety and 

reduce pathogen contamination and foodborne outbreaks.  
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Tables 

Table 1: Mean¥ and Prevalence of Microbial Indicators on Produce and Environmental Samples  
 Sample Type 

 Produce (cfu/fruit)* Hand-Rinse (cfu/hand)* Soil (cfu/g)* Source Water 
(cfu/100ml water)* 

Irrigation Water  
(cfu/100ml water)*  

Indicator Geometric 
Mean (CI)Σ 

Prevalence 
N (%) 

N Geometric 
Mean (CI)Σ 

Prevalence  
N (%) 

N Geometric 
Mean (CI)Σ 

Prevalence 
N (%) 

N Geometric 
Mean (CI)Σ 

Prevalence 
N (%) 

N Geometric 
Mean (CI)Σ 

Prevalenc
e N (%) 

N 

E. coli  1.31 
(1.06, 1.56)  

69 (27%)  254 2.40 
(2.12, 2.67) 

63 (37%)  171 -0.004 
 (-0.26, 0.25)  

17 (21%)  81 0.14  
(-
0.15,0.42) 

27 (54%)  50 -0.09  
(-0.29, 0.12) 

31 (41%) 76 

Enterococcus  5.06  
(4.76, 5.36)  

215 (85%) 254 6.53 
(6.29, 6.76) 

171 (100%)  171 1.36  
(1.15, 1.58)  

56 (69%)  81 0.52  
(0.26, 0.77)  

41 (87%)  47 0.52 
 (0.25, 0.80) 

63 (84%)  75 

Fecal 
coliforms  

5.22  
(4.96, 5.49)  

243 (97%)  250 5.72  
(5.43, 6.00)  

164 (96%)  171 2.50  
(2.25, 2.75)  

80 (100%)  80 1.59  
(1.27, 1.90) 

41 (95%)  43 1.65 
 (1.35, 1.95) 

68 (93%)  73 

Coliphage  2.12  
(1.85, 2.38)  

159 (83%)  191 2.13  
(1.84, 2.43) 

85 (65%)  130 -0.42 
(-0.65, -
0.19)  

22 (36%) 61 1.15  
(0.41, 1.87)  

11 (44%) 25 0.99 
 (0.54, 1.45) 

21(45%)  47 

¥ Log10 transformed data are used in calculation of geometric mean  
*For coliphage samples units are MPN rather than cfu (e.g. MPN/fruit, MPN/g); units otherwise remain unchanged 
Σ 95% confidence interval (lower bound, upper bound) 
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Table 2: Mean¥ and Prevalence of Microbial Indicators on Produce Samples by Produce Type 

 Tomato (cfu/fruit)* Jalapeño (cfu/fruit)* Melon (cfu/fruit)* 

Indicator Geometric 
Mean (CI)Σ  

Prevalence 
N (%) 

N Geometric 
Mean (CI)Σ   

Prevalence 
N (%) 

N Geometric 
Mean (CI) Σ  

Prevalence 
N (%) 

N 

E. coli  0.19 
(-0.06, 0.44)  

16 (19%) 84 0.27  
(-0.02, 0.56) 

10 (16%) 64 2.83 
(2.44, 3.21) 

43 (41%) 106 

Enterococcus  3.50 
(3.17, 3.83)  

65 (77%) 84 3.58 
(3.10, 4.05) 

45 (70%) 64 7.20 
(6.90, 7.49) 

105 (99%) 106 

Fecal coliforms  4.59  
(4.17, 5.00)  

81 (98%) 83 3.88 
(3.24, 4.52)  

56 (92%) 61 6.49  
(6.27, 6.71) 

106 (100%) 106 

Coliphage  0.91 
(0.61, 1.22)  

53 (80%) 66 1.22 
(0.77, 1.67)  

36 (78%) 46 3.64 
(3.35, 3.93) 

70 (89%) 79 

¥ Log10 transformed data are used in calculation of geometric mean  
*For coliphage samples units are MPN rather than cfu (e.g. MPN/fruit, MPN/g); units otherwise remain unchanged  
Σ 95% confidence interval (lower bound, upper bound)  
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Table 3: Spearman’s Correlations Between Microbial Indicator Concentrations by Sample Type*¥€  

  E. coli Enterococcus  Fecal coliforms 

Environmental 
Samples  

    

Hand-rinse Enterococcus  0.37 (<0.0001)‡   

 Fecal coliforms 0.24(0.0017)‡ 0.56(<0.0001)‡  

 Coliphage  0.15 (0.0938) 0.17 (0.0601) 0.07 (0.4634) 

     

Soil Enterococcus  -0.07 (0.5263)   

 Fecal coliforms 0.08 (0.4581) 0.38 (0.0003)‡  

 Coliphage  -0.31 (0.0111)‡ 0.15 (0.2385) 0.15 (0.2371) 

     
Water Enterococcus  0.60 (<0.0001)‡   

 Fecal coliforms 0.50 (<0.0001)‡ 0.54(<0.0001)‡  

 Coliphage  0.34(0.0031)‡ 0.26(0.0251)‡ 0.17 (0.1642) 

Produce Samples      

Produce (All) Enterococcus  0.47 (<0.0001)‡   

 Fecal coliform 0.28 (<0.0001)‡ 0.65(<0.0001)‡  

 Coliphage  0.39 (<0.0001)‡ 0.62(<0.0001)‡ 0.44(<0.0001)‡ 

     

Tomato Enterococcus  -0.13 (0.2372)    

 Fecal coliform -0.17 (0.1322) 0.47 (<0.0001)‡  

 Coliphage  -0.16 (0.1958) 0.17 (0.1739)  0.17 (0.1704)  

     
Melon Enterococcus  -0.02 (0.8762)   

 Fecal coliform 0.30 (0.0018)‡ 0.25(0.0094)‡  

 Coliphage  0.07 (0.5157) 0.27(0.0163)‡ -0.17 (0.1373) 

     
Jalapeño Enterococcus  -0.09 (0.4616)   

 Fecal coliform -0.07 (0.5748) 0.58 (<0.0001)‡   

 Coliphage  -0.12 (0.4208) 0.17 (0.2476)  0.17 (0.2703) 

*Rho values and p-value (in parentheses) reported for all sample types  
¥Log10 transformed variables used for all analyses  
€ Spearman’s correlation test used due to non-normally distributed data  
‡Indicates p-value of less than 0.05, significant difference from Rho=0 (null) 
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Table 4: Relationships between Microbial Indicator Concentrations, controlling for produce type, point in chain, and other microbial indicator 

concentrations¤ 
 Predictor  

  E. coli Enterococcus Fecal coliform Coliphage 

Outcome Sample Type Coefficient  
(p-value)  

Std. Error  Coefficient  
(p-value) 

Std. 
Error   

Coefficient  
(p-value)   

Std. 
Error  

Coefficient  
(p-value) 

Std. Error  

E. coli Hand-rinse   0.22 (0.1078)  0.13 0.19 (0.1202)  0.12 0.10 (0.3089) 0.10 
 Soil£   0.15 (0.3164) 0.15 <-0.01 (.9982) 0.15 -0.17 (0.2514) 0.15 
 Water£   0.31 (0.0014)‡ 0.09 0.37 (0.0002)‡ 0.10 0.07 (0.1336) 0.05 
 Produce     -0.20 (0.0204)‡ 0.09 0.23 (0.0096)‡ 0.09 -0.04 (0.6732)  0.10 
Enterococcus Hand-rinse 0.10 (0.1078)  0.06   0.51 (<0.0001)‡  0.07 0.14 (0.048)‡ 0.07 
 Soil£ 0.11 (0.3164)  0.11   0.44 (0.0003)‡ 0.17 0.18 (0.1593)  0.13 
 Water£ 0.48 (0.0014)‡ 0.14   0.43 (0.0007)‡ 0.12 -.024 (0.6935)  0.06 
 Produce  -0.15 (0.0204)‡  0.06   0.52 (<0.0001)‡ 0.07 0.27 (0.0008)‡  0.08 
Fecal coliform Hand-rinse 0.11 (0.1202) 0.07 0.65 (<0.0001)‡  0.08   -0.17 (0.0242)‡ 0.08 
 Soil£ <-0.01 (0.9982)  0.11 0.45 (0.0003)‡  0.12   -0.03 (0.8149) 0.13 
 Water£ 0.51 (0.0002)‡ 0.13 0.38 (0.0007)‡  0.11   <-0.01 (0.8907)  0.06 
 Produce  0.16 (0.0096)‡  0.06 0.51 (<0.0001)‡  0.06   .005 (0.9557) 0.08 
Coliphage Hand-rinse 0.08 (0.3089) 0.08 0.24 (0.0481)‡ 0.12 -0.24 (0.0242)‡ 0.10   
 Soil£ -0.14 (0.2514)  0.12 0.19 (0.1593)  0.13 -0.03 (0.8149)  0.13   
 Water£  0.48 (0.1336) 0.32 -0.10 (0.6935) 0.26 -0.03 (0.8907)  0.27   
 Produce  -0.03 (0.6732)  0.06 0.23 (0.0008)‡ 0.07 <0.01 (0.9557)  0.07   

¤ Each row represents one full linear model (non-indicator control variables not reported)  
‡Significant result at α=0.05 
£ Models all collected ‘Before harvest’; point in chain not included in models  
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Table 5: Relationships between the Prevalence of Microbial Indicators by Sample Type¥ 

 

  E. coli Enterococcus  Fecal coliform 

Hand-rinse Enterococcus  N/A€    
 Fecal coliform (0.0391)‡** N/A€  
 Coliphage* 3.24 (0.0027)‡ N/A€ 1.95 (0.4173) 
     
Soil Enterococcus  1.31 (0.6473)   

 Fecal coliform (0.3019) ** 0.65 (0.7171)  
 Coliphage*  0.33 (0.1005) 0.33 (0.0400)‡ 0.00 (0.0471)‡ 

     
Water Enterococcus  8.8 (0.0012)‡   

 Fecal coliform (0.0115)‡ ** 2.25 (0.3453)  
 Coliphage*  4.08 (0.0041)‡ 3.29 (0.1390) N/A€ 

     
Produce (All) Enterococcus  1.85 (0.1596)   

 Fecal coliform (0.1009)** 8.79 (0.0011)‡   
 Coliphage* 4.36 (0.0048)‡ 0.99 (0.9876) 9.00 (0.0053)‡ 
     
Tomato Enterococcus  0.85 (0.8003)   
 Fecal coliform (0.4842)** 3.76 (0.3253)  
 Coliphage* 4.74 (0.1202) 0.39 (0.2336) (0.0025)‡** 
     
Melon Enterococcus  (0.4065)**   
 Fecal coliform N/A€ N/A€  
 Coliphage* 4.4 (0.0584) N/A€ N/A€ 
     
Jalapeño Enterococcus  0.98 (0.9812)   
 Fecal coliform (0.3316) ** 4.50 (0.0944)  
 Coliphage*  2.17 (0.4858) 1.18 (0.8217) 2.36 (0.4967) 

¥ Mantel-Hantzel OR and Pearson’s chi-squared p-value (in parentheses) reported  
‡Significant at α=0.05 
*Smaller sample sizes for coliphage limit accuracy of results 
€ Analysis not conducted due to 100% prevalence of at least one indicator 
** M-H OR could not be calculated due to at least one zero cell
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Table 6: Relationships between Prevalence of Microbial Indicators, Controlling for Produce Type, Point in Chain, and Other Indicators¤ 

Outcome  Sample Type E. coli Enterococcus Fecal coliform Coliphage 

  OR (95% CI)  P-value  OR (95% CI)  P-value  OR (95% CI)  P-value  OR (95% CI)  P-value  

E. coli Hand-rinse   N/A¥ N/A¥  9.34  
(0.35, 249.34)* 

0.1823 3.92 
(1.64, 9.37) 

0.0021‡ 

 Soil£   1.23  
(0.32, 4.76) 

0.7690 1.42  
(0.02, 83.94)* 

0.8666 0.80 
(0.16, 4.07) 

0.7925 

 Water£    17.05  
(0.78, 373.31)* 

0.0717 N/A€  N/A€  3.01  
(0.94, 9.69) 

0.0643 

 Produce     1.06  
(0.36, 3.18) 

0.9124 1.77  
(0.07, 47.19)*  

0.7345 4.01  
(1.06, 15.18) 

0.0408‡ 

Enterococcus Hand-rinse N/A¥ N/A¥   N/A¥ N/A¥ N/A¥ N/A¥ 
 Soil£ 1.22  

(0.31, 4.78) 
0.7775   0.08  

(0.002, 3.96)* 
0.2028 0.40 

(0.11, 1.41) 
0.1549 

 Water£  15.78  
(1.11, 225.01)* 

0.0419‡   N/A€ N/A€ 1.10  
(0.17, 7.29) 

0.9237 

 Produce   1.09 
(0.36, 3.26) 

0.8792   20.43  
(1.53, 272.23) 

0.0224‡ 0.26  
(0.05, 1.25) 

0.0918 

Fecal coliform Hand-rinse  7.09  
(0.61, 82.54)* 

0.1181 N/A¥ N/A¥   1.37 
(0.24, 7.83) 

0.7202 

 Soil£ 2.36  
(0.12, 46.56)* 

0.5727 0.11  
(0.01, 1.85) * 

0.1241   0.22  
(0.02, 3.02)* 

0.2555 

 Water£  N/A€ N/A€ N/A€ N/A€   N/A€ N/A€ 
 Produce   2.25  

(0.18, 28.16)* 
0.5284 12.96  

(1.56, 108.05)* 
0.0179‡   25.51  

(2.55, 255.37)* 
0.0059‡ 

Coliphage Hand-rinse 3.77  
(1.59, 8.93) 

0.0025‡ N/A¥ N/A¥ 1.19 
(0.22, 6.61) 

0.8410   

 Soil£ 1.00  
(0.19, 5.20) 

0.9966 0.40 
(0.11, 1.44) 

0.1597 0.12  
(0.002, 6.14)* 

0.2894   

 Water£  2.87 
(0.91, 9.04) 

0.0720 1.32  
(0.22, 8.14) 

0.7622 N/A€ N/A€   

 Produce   3.77  
(1.00, 14.16) 

0.0498‡ 0.29  
(0.06, 1.40) 

0.1226 18.86 
(1.85, 192.24) 

0.0132‡   

¤ Each row represents one full logistic model (results for non-indicator control variables not reported)  
‡Significant result at α=0.05 
 £ Samples all collected ‘Before harvest’; point in chain not included in models   
*Indicates that Firth corrections were used to yield OR and 95% CI estimates due to sparsity of data in stratified subsets   
¥ Values could not be calculated due to 100% prevalence for sample types  
€ Values could not be calculated; all observations the same (near 100% prevalence) 
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Appendices 

Appendix A 

Logistic Regression Interaction Tests: Interaction Term P-Value*  

Outcome  Sample 
Type  

E. Coli  Fecal Coliform Enterococcus  Coliphage  

E. Coli Produce    0.9891 0.9749 0.9639 

 Hand   0.9937 N/A€ 0.6890 

 Water   N/A£ 0.2468 0.0296‡ 

 Soil   0.9979 0.9538 0.1204 

Fecal Coliform  Produce 0.9981  0.9623 0.9959 

 Hand  0.9963  N/A€ 0.9971 

 Water  0.9715  0.9952  N/A€ 

 Soil  0.9987  0.9683 0.9746 

Enterococcus Produce  0.9919 0.9601  0.9999 

 Hand N/A€ N/A€  N/A€ 

 Water 0.2467 N/A£  0.9974 

 Soil  0.9763 0.9681   0.9669 

Coliphage¥ Produce 0.9881 N/A£ N/A£  

 Hand 0.6891 N/A£ N/A£   

 Water 0.0296‡ N/A£ N/A£  

 Soil   0.1204 N/A£ 0.9555   

*Results presented show Pilot Year and Year 1 together compared to Year 2. Analysis for the three levels 
separately were conducted and yielded similar results. Results not shown.  
‡Significant at α=0.05 
€ Could not be calculated due to 100% prevalence of at least one variable  
£Interaction term is a linear combination of other variables and could not be calculated  
¥ Used Coliphage Year in interaction term. All other samples used year of bacterial sample collection.  
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Appendix B  

 Linear Regression Interaction Tests: P-value of interaction term as explanation of model 

variance* 

Outcome  Sample 
Type  

E. Coli  Fecal 
Coliform 

Enterococcus  Coliphage  

E. Coli Produce   0.0589 0.6235 0.6097 

 Hand   0.5320 0.5366 0.2255 

 Water   0.0001‡ 0.0012‡ 0.8196 

 Soil   0.4238 0.8165 0.6557 

Fecal Coliform  Produce 0.3176  0.1385 <.0001‡ 

 Hand  0.6286  0.3203 0.8608 

 Water  0.1067  0.9417 0.1065 

 Soil  0.0021‡  0.2220 0.4681 

Enterococcus Produce  0.4619 0.1401  0.0045‡ 

 Hand 0.1302 0.2861  0.3049 

 Water 0.0001‡ <.0001‡  0.3692 

 Soil  0.4096 0.5438  0.8181 

Coliphage¥ Produce 0.8842 <.0001‡ 0.0009‡  

 Hand 0.3521 0.2625 0.6405  

 Water 0.4305 0.2500 0.4624  

 Soil  0.8071 0.7358 0.1694  

*Interaction terms for linear regression considered Pilot, Year 1, and Year 2 separately.  
‡Significant at α=0.05 
¥ Used Coliphage Year in interaction term. All other samples used year of bacterial sample collection.  
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Appendix C  

IRB Approval was received to work on this project.  An excerpt of the approval document 

with relevant reference numbers is included below.   
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