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Abstract  
Describing and leveraging interaction effects for HIV prevention 

By Kevin Payton Delaney, MPH  
 

Interaction can occur at many levels. People interact in conversations, sexual relations or virtually 

through the internet. In individuals, sometimes one factor can combine with another to cause 

disease that wouldn’t have been observed otherwise; epidemiologists refer to this as causal 

interaction. In infectious disease epidemiology there is another level of interaction, in that the 

infected and uninfected populations must interact to transmit disease, and, because of this, at the 

population level public health interventions can also interact.  

In my first study I collected data from 2,666 user profiles of men who use a social networking 

application, mostly to meet other men for sex. Overlapping circles defined by the geolocation data I 

extracted from the app covered the entire 132.4 square miles in the City of Atlanta and were 

analyzed with spatial statistics to highlight areas with higher densities of minority and young minority 

users.  This simple method can describe the spatial density of users of a sexual networking app for 

future behavioral surveys and to identify areas of highest need for targeting prevention resources.  

In the second study I used simulated data to compare 10 tests for statistical interaction and contrast 

these with 3 tests for causal interaction. I found that, at sample sizes typical for epidemiologic 

studies, the power to detect interaction is limited unless exposures have both strong individual 

effects and their combined effects are closer to multiplicative than additive. The power is even lower 

for tests specifically designed to detect causal interaction. 

The aim of my third study was to describe population level interactions of interventions associated 

with HIV testing, in a model of the sexual networks of gay men. I found more frequent HIV testing will 

not result in reduced HIV incidence unless combined with improvements in effective HIV care. Only 

once care and viral suppression become the normative outcome of HIV diagnosis does additional 

focus on increasing HIV testing as the gateway to this outcome become warranted.  

These three very different studies evaluate interaction on several levels. Together they emphasize 

the importance of studying and leveraging interaction effects for HIV prevention. 
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Chapter 1: Overview, Objective and Specific Aims  

Interaction 

Merriam-Webster defines the term interaction as “mutual or reciprocal action or 

influence” 

which is great because, there are four potential definitions in that conglomerate of 

terms. Interaction can occur at many levels, individuals can interact in personal 

conversations, sexual relations or only virtually through the internet. Different factors 

can interact in individuals, sometimes one factor can combine with another to lead to 

an effect that wouldn’t have been observed from either factor alone1,2. This can happen 

at the population level as well, when public health interventions can interact to produce 

additional benefits3-6. In my dissertation I propose to evaluate interaction on several 

levels in three different studies. All of these use novel epidemiologic research methods 

to study different aspects of interactions, and apply information about interaction to 

HIV prevention.  

Social networking websites and applications represent novel means for individual 

interaction. A variety of new social networking tools are now available for most “smart” 

phones. Many of these applications are specifically designed for men who have sex with 

men (MSM) to meet each other, often to engage in anonymous sex7.  Combined 

applications designed for this purpose have more than 6 million users and 10,000 new 

users added daily.7-11 Many of these applications build their services on the ability to use 

the geolocation features available on most phones and other communication devices 
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(iPods, iPads, and tablets) to provide location information for other application users, 

including their geographic proximity (in feet or miles) to the user’s location.8-11 Thus 

apps represent a technological advance in social interaction because they tell users how 

far away each other user and potential sex partner currently is, and update in real time.  

Social interactions on such apps occur in both space and time, in a way that was not 

possible even 10 years ago.  

Statisticians have very specific mathematical formulas that they use to describe 

interaction, defined statistically as when the effects of two exposures are different when 

both are present than what would be expected based on adding or multiplying the effects 

of each exposure individually.12,13  Epidemiologists generally hope to limit this definition 

to interactions of causal effects, pointing out that two factors can “interact” statistically, 

without acutally meeting the definition of causal interaction.1,2,14-17  Although the concept 

of statistical interaction was described more than 3 decades ago,12 and two models of 

statistical interaction were evaluated as far back as 1983,13 there has a been a recent 

growth in the number of models and methods used to detect both statistical18-23and 

causal14-17 interactions.  

In infectious disease epidemiology there is another level of interaction, in that the 

infected and uninfected populations must “interact” to transmit disease. It was recently 

pointed out that this type of interaction is mathematically synonymous with statistical 

interaction5, but occurs at the population level. In general infectious diseases are 

different from other diseases because exposures do not occur independent of one 

another.2-5  For example, one person infected with the flu can cough on a train car or in 
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an elevator and expose many people all at once.   Conversely, my cholesterol does not in 

and of itself put you at risk for a heart attack, although this is of course relative as if you 

had lunch with me every day for 30 years our outcomes would likely be correlated.  

Conversely, if an intervention, such as vaccination, is applied in the community, every 

individual does not necessarily need to receive the intervention to receive protection. This 

is the concept of herd immunity.3 Additionally the effects of two community level 

interventions may be greater than their individual effects. This concept is commonly 

referred to in the infectious disease modelling literature as “synergy.”6   

Novel methods for HIV Prevention 
 

In a 2010 survey of pregnant women in South Africa24 we collected data using a cell-

phone based survey, an example of how this type of technology can be used to collect 

public health information.  Even in Sub-Saharan Africa the majority of individuals have 

access to mobile phones and/or the internet25, and methods for public health 

practitioners to use mobile and social networking technology to both collect and 

disseminate information about how populations at risk for HIV interact in these media is 

an area of growing research.25-27  

For interactions of effects within a person we have identified 13 different proposed tests 

for interaction that have appeard in the literature in the last 5 years.14-23 The theoretical 

framework and mathematical proofs provided by Vanderweele, Robins and Hernan have 

definitely sparked this advance.14-17  The rapid expansion of proposed methods for 

estimating these quantities is likely also due to the availability of software packages that 
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can fit models necessary to quantify them.14-23 However, this rapid advance comes with 

many caveats and comments as to the appropriate study design and methods to identify 

interaction effects.28-30 Two recent HIV prevention studies I co-authored24,31 found 

significant interaction effects leading me to seek practical applications of the newly 

proposed methods as guidance for how to evaluate interaction. Despite descriptions of 

how to report causal interaction,32-33 there has been surprisingly little in the way of 

epidemiologic literature providing a practical guide to the performance, assumptions or 

appropriate use of the abundance of tests proposed to detect interaction.  Although 

early work on interaction directly compared two of the many statistical tests13, there 

has not been a recent update that compares and contrasts the newer tests for detection 

of additive interaction directly.   

Despite the lack of guidance in this one area of growth resulting from advances in 

computing power, the power of computers for complex data analysis is proving useful in 

other areas of Infectious disease epidemiology. The complexity of describing even a 

simple system of infectious disease transmission through epidemiologic methods grows 

as the number of contacts and exposures change in a population over time.   The simple 

systems of one or two household members experiencing a single-point exposure3,5 do 

not expand well to the study of airborne or sexually transmitted diseases particularly 

among MSM.  Although in theory it is possible to draw a causal diagram depicting the 

transmission dynamics in a population would require a near infinite number of vertices 

and edges to illustrate the changes in population probabilities of exposure over time34.  

Luckily the technologic advances of modern computing have provided a variety of 
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alternative models for infectious disease transmission, including compartmental or 

mean-field models that describe infectious disease transmission through a system of 

differential equations35-36 as well as individual or agent-based models that use a series 

of rules to describe individual behavior and use computerized simulations to assess the 

effects of interventions at both individual and the population level.36-38  These 

computationally intensive models that track invididuals over time have recently39 been 

combined with models that describe network characteristics40-43 to develop models that 

can be used to model sexual partnership formation and disease transmission through a 

network of sexual contacts over time. Advances in computing power that have occurred 

even over the time I have been working on my dissertation have cut the time to run 

these types of models from days to hours.  
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Objective and Specific Aims 

Overall the objective of this dissertation is to use novel epidemiologic methods to study 

the concept of interaction at three different levels: social interaction, statistical and 

causal interactions in individuals, and the interaction or synergies that can occur in 

population level intervantions. All of these interactions are studied within the contect of 

the HIV epidemic, and we seek to describe and take advantage of interaction effects to 

inform HIV prevention efforts in the United States and abroad.  

In order to evaluate different types of interaction with these novel technologies we 

have developed three specific areas of research in the hopes of advancing HIV 

prevention.  

Specific Aim 1: Use the geolocation features of the a social networking application as a 

novel approach to calculating the population density of a population at high-risk for HIV 

infection.  

Specific Aim 2: Compare proposed tests for statistical interaction of two exposures using 

simulated data in which two dichotomous variables interact to have effects that are 

greater than additive risk differences  but less than multiplicative risk ratios, indicative 

of sufficient component cause interaction 

Specific Aim 3: Use modern infectious disease modeling techniques to describe synergy 

between HIV testing interventions for men who have sex with men in the United States 

The rest of this dissertation  is presented in the following sections. In Chapter 2, we 

present an overview of the HIV epidemic, and HIV prevention generally. Then we 
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describe each of the three specific aims of this dissertation, providing an aim specific 

background, study methods and findings in Chapters 3-5. Chapter 6 provides an overall 

summary describing how the findings relate and next steps for these areas of research.  
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Chapter 2: The HIV Epidemic 
After more than three decades since the identification of the Human Immunodeficiency 

virus (HIV) as the causative agent of the Acquired Immune Deficiency syndrome (AIDS), 

transmission of HIV infection is still a major health problem.1-4  This despite the fact that 

modes of virus transmission are well-defined.1-5  One interesting aspect of the 

worldwide HIV epidemic is that its characteristics vary widely throughout the world.1  

Heterosexual sex is the most common exposure pathway in sub-Saharan Africa and 

most of Southeast Asia. However, in parts of Southeast Asia, Eastern Europe and the 

former Soviet Republics exposure through injection drug use is thought to be the source 

of sustained and increasing HIV transmission.  In the United States, men who report 

having sex with another man (MSM) as their main risk for HIV infection have been, and 

continue to be, the most heavily impacted risk group.3-4  

According to the US Centers for Disease Control and Prevention the MSM risk group 

represented the highest percentage of both new diagnoses and prevalent (previously 

diagnosed) infection, and the only group in the United States for whom HIV incidence is 

estimated to be increasing.3-4  The CDC reported that 63% of all incident HIV infections 

estimated to have occurred in 2010 in the US occurred in MSM,3 despite the fact that this 

group is estimated to account for less than 2% of the US population.6 White MSM 

accounted for 11,200 new HIV infections while black/African American MSM accounted 

for 10,600 in 2010,3 even though there are more than 5 times as many white men as black 

men in the US.7  Whereas new HIV infections were relatively stable among MSM overall 
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from 2007–2010, they increased 22% among young MSM; among young MSM black 

men accounted for 55% of  all new infections in 2010.3  

Among heterosexuals, the risk of new HIV infection is highest among African American 

(AA) women.3  Much like the disparities among African American MSM, in 2010 the 

rate of new HIV infections among black women was 20 times that of white women, and 

over 4 times the rate among Hispanic/Latina women.3  Some women become infected 

because they may be unaware of a male partner’s risk factors for HIV infection.  AA 

MSM are more likely to report having had sex with a woman in the past year than are 

MSM of other races, although MSM who also have sex with women (MSMW) have been 

reported to have lower risk for and prevalence of HIV infection than MSM only 

(MSMO).8    Relationship dynamics may also play a role in the increased risk for AA 

women. For example, some women may not insist on condom use because they fear that 

their partner will physically abuse or leave them.9 Among all races combined, it is 

estimated that more than 220,000 women in the United States are infected with HIV.4  

Nearly one out of four of these women don’t know they have HIV. This puts them at 

high risk of passing the virus to their babies.10 

Women can pass HIV to their babies during pregnancy, while the baby is being 

delivered, or through breast-feeding.1  Mother-to-child transmission is the most 

common way children become infected with HIV.1  Nearly all AIDS cases in U.S. children 

are because of mother-to-child transmission.4  Because black women are 

disproportionately affected by HIV, the rate of HIV diagnosis per 100,000 live births is 

also markedly higher in the black population than among whites.4    
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HIV Epidemic Worldwide 

Overall, the US HIV epidemic, with an estimated 1.2 million people infected (<0.02% of 

the population) pales in comparison to the global HIV epidemic.  In many sub-Saharan 

African countries more than 20% of the total population is infected with HIV.1  This is 

part of the reason that it appears the US HIV epidemic, concentrated in MSM, is so 

different from that in the rest of the world.  It is estimated that, globally 2-4% of the 

male population has had sex with another man.11  Worldwide, prevalence rates of HIV 

are consistently an order of magnitude higher for MSM than other populations.11 It is 

believed that this disparity is driven by the increased probability of HIV transmission for 

receptive anal sex relative to insertive anal sex or vaginal sex.10-12  However, in countries 

with so-called “generalized” HIV epidemics,1 much more of the overall population is 

infected, e.g. if 10% of a 98% heterosexual population has HIV and 30% of a 2% MSM 

population has HIV, then overall there would be 9.8% of the total population 

represented by heterosexual infections, compared to 0.67% of the population being 

infected MSM.  In the US where only 0.02% of the heterosexual population is infected, it 

is clear why MSM represent the majority of the epidemic.   

In much of the rest of the world however, the HIV epidemic is centered in the 

heterosexual population.  WHO estimated that, in 2013, 35 million people were infected 

with HIV worldwide, with 5700 new infections occurring each day.  Most of these were 

in low or middle income countries, and nearly half (48%) among women. Nearly 71% of 

all HIV infected persons live in sub-Saharan Africa.  The disparity is even more striking 

when you consider infections among children.  One in seven new infections in 2013 
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were estimated to occur in children <15 years of age, the vast majority of these 

occurring due to mother to child transmission during pregnancy or the first year of life.  

Of an estimated 3.2 million children <15 years infected 91% live in sub-saharan Africa.1  

This occurs primarily because of the nearly 1.5 million  HIV-infected women who 

become pregnant annually worldwide, all of whom need antiretroviral medications for 

prevention of mother to child transmission, less than half receive these drugs that have 

been shown in a variety of clinical trials to reduce the risk of transmission from mother 

to infant significantly.1   

HIV Prevention Strategies/Interventions 

This failure of the public health and healthcare infrastructure to provide even the 

simplest of HIV therapies to people who need it argues against the effectiveness of what 

has been touted as the next great innovation in HIV prevention.  Granich13 recently used 

a mathematical model to suggest that significant reductions in transmissions and 

therefore incident HIV cases would be gained from identifying all HIV-infected 

individuals, and starting them on anti-retroviral therapy to reduce the concentration of 

circulating HIV virus to levels would make transmission to HIV-negative sex partners 

unlikely if not impossible.  Cohen14 then implemented this strategy in randomized 

controlled trial within a cohort of heterosexual couples in which one of the two was HIV-

infected and the other was HIV-uninfected.  This study found that, of the 28 

transmissions that could be virologically linked to the enrolled partner, only 1 occurred 

in the group receiving HIV drug therapy.  This lead to rapid expansion from the 

mathematical model, to proof of concept to global recommendations.13-16 In 2013 WHO 
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revised recommendations for HIV therapy such that they now recommend that ART be 

initiated for all patients with CD4 ≤500 cells/ mm3, and initiated immediately regardless 

of CD4 for children up to five years old, people with active TB or coinfected with 

hepatitis B virus with severe chronic liver disease and people living with HIV in 

serodiscordant partnerships.16 Many countries in Africa have begun to offer therapy to 

their population, but as we have seen for HIV-infected mothers, coverage at even the 

lower threshold of clinically indicated therapy has been challenging.1  Even in the United 

States it is estimated that only 35% of HIV-infected persons currently have viral 

suppression to the point of an undetectable HIV viral load.17-18   

An alternative to early-initiation of HIV therapy is the use of antiretroviral medication by 

uninfected persons to prevent infection, called pre-exposure prophylaxis.19  This 

strategy has recently been shown to be effective in reducing HIV incidence among gay 

men,20 and discordant heterosexual couples,21-22 but was not effective in a clinical trial 

which enrolled high –risk women.23  Despite these conflicting results, the CDC recently 

released guidelines for clinician with recommendations for how PreP should be used in 

the US.24  Because this intervention targets uninfected persons at high-risk of acquiring 

HIV, an even greater number of individuals could potentially require both ongoing HIV 

therapy, and frequent medical visits for monitoring while they are taking antiretrovirals 

for PreP.   

For pregnant women, WHO has recently revised their guidelines for treatment, so that 

HIV-infected pregnant women should be started on a combination of antiretrovirals as 
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early as 14 weeks of pregnancy.16  To implement such an intervention requires that all 

pregnant women who are unaware of their HIV status be offered an HIV test, ideally 

early in pregnancy.  However, WHO estimates that globally on 54% of HIV-infected 

pregnant women received an HIV test in 2013.1 Recently there have been multiple 

reports of pregnant women testing negative for HIV antibodies early in pregnancy, only 

to be identified as HIV-infected after their baby is born through infant testing.25-27  This 

suggests that these women were infected later in their pregnancy than when they were 

offered their routine HIV test during pre-natal care.  As a result WHO recommends 

rescreening pregnant women at or after 32 weeks, in order to identify the maximum 

number of women infected in time to start antiretroviral therapy before they deliver.28  

Still, many women do not receive this test, and as a result their infants are needlessly 

exposed to HIV.25 

For all of these biomedical strategies HIV diagnosis and linkage to HIV medical care are 

necessary but not sufficient first steps. In the United States HIV testing is recommended 

during pregnancy, at least once in their lifetime for the entire US population, and 

annually for MSM.29,30  Recent data suggests that the uptake of testing is increasing, 

particularly among  black MSM, but most persons newly diagnosed with HIV infection 

have been infected for over 5 years prior to their diagnosis.31-34 There is ongoing debate 

as to the appropriate testing frequency for MSM, with a CDC workgroup recently 

concluding that there was insufficient evidience to recommend testing more frequently 

than annually.29,30,35-41 In spite of this controversy, the US still does much better with HIV 

testing than other parts of the world; in the US it is estimated that 18% of the infected 
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population is unaware of their infection,42 internationally as many as 50% of the 

infected population remains undiagnosed.1 However, many people with diagnosed 

infection do not receive appropriate HIV care, and treatment required to achieve viral 

suppression and reduce transmission risk to others.2,17,18,42 
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Chapter  3  - Specific Aim 1  
 

Use the geolocation features of the a social networking application as a novel 

approach to calculating the population density of a population at high-risk for HIV 

infection.  
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Using a geolocation social networking application to calculate the population density of 

sex-seeking gay men for research and prevention services  
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Introduction 

In the US HIV epidemic, men who report have sex with men (MSM) have been, and 

continue to be, the most heavily impacted HIV risk group [1-2]. Although HIV incidence 

is increasing among MSM overall, there are pronounced disparities in both prevalence 

and incidence within the United States’ MSM HIV epidemic by race/ethnicity.  A CDC 

surveillance study conducted in 2008 [3] found that black non-Hispanic MSM were 

significantly more likely to be living with HIV than were white non-Hispanic MSM (28% 

vs 18%), and among those living with HIV, blacks were also significantly more likely to be 

unaware of their HIV infection (59% vs 26%).    The disparity in HIV prevalence is 

consistent with a marked difference in estimated incidence of new infections for young 

minority MSM. From 2006 to 2009, black MSM under age 30 experienced a 47% 

increase in the estimated annual number of new infections and in 2009, and there were 

more new infections in black MSM under age 30 than in white MSM under age 39 and 

more than all Hispanic MSM [4].   

As a result, there is renewed emphasis [5] on identifying reasons for these disparities [6-

7] and developing and providing interventions specifically for young minority MSM.  

However, the number of HIV prevention interventions implemented and evaluated with 

young minority MSM remains relatively low [8-9]. One reason for the lack of 

interventions specifically targeted to black MSM may be difficulty identifying a sampling 

frame for this population [6,8].  Stigma experienced by black MSM [10-12] may pose 

particular challenges in enumerating and accessing these men for provision of services 
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[11]. A variety of sampling methods have been developed to access hidden or 

marginalized populations [13-18], with varying degrees of success [17-24].  

Social networking websites and applications represent novel means for individual 

communication. A variety of new social networking tools designed for MSM are now 

available for most “smart” phones [25-28] and combined these applications have more 

than 6 million users and 10,000 new users added daily. Many of these applications build 

their services on the ability to use the geolocation features available on most phones 

and other communication devices (iPods, iPads, and tablets) to provide location 

information for other application users, including their geographic proximity (in feet or 

miles) to the user’s location. In this manuscript, we describe methodology for using the 

geolocation features of one of these applications as a novel approach to calculating the 

population density of men using the application at given times, and describe how to use 

this density measure to highlight areas with a high-density of minority and young 

minority MSM. 
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Methods 

To pilot the study methodology, we chose a sexual networking app, and collected data 

from publicly available profiles at sampled locations around the City of Atlanta.  

Application profiles (See Figure 1 for two examples) include information on the linear 

distance from the user to each other member, in feet for distances less than one mile, 

and miles for larger distances. For example, the person whose profile is represented in 

Figure 1a was 2,676 feet from our sampling location when the profile was viewed. 

Although we piloted this approach with several of the available applications [25-28], 

data generated for this manuscript were from a single application, whose name is not 
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revealed at the request of 

the application developer. 

Application profiles indicate 

the distance but not the 

direction of the person in 

question. In order to develop 

measures of density of users, 

we began by establishing a 

grid over the City of Atlanta, 

and selecting points within 

the grid at which to collect 

information (Figure 2).  

Points were selected 

systematically with the 

following protocol: we selected a starting point near KPD’s home and drove along major 

roads to sample at roughly 2 mile intervals through most of the city.  In areas with a high 

density of application users, we used a sampling strategy designed to (see below) collect 

data more frequently at closer intervals.  At each point where profile data were 

observed, study staff used the “GEOLOCATION” application [29] to pinpoint the location 

of data collection to latitude and longitude.  

Validation of geolocation data: In order to assess the accuracy of the geolocating 

application, we also recorded the GPS location at a subset of the same points at several 

Figure 2: Map of the City of Atlanta (Grey Outline) 

including major interstates (black lines) and selected 

major roads (dark red lines).  Points in the figure 

represent the 70 locations at which data were collected.   
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different days/times using both the GeoLocation and a GPS unit (Garmin model GPSmap 

60CS [30]). The Geolocation application was found to be consistent with the GPS unit, 

with the mean of the difference between the two being 144 feet (Range: 7-344 feet) 

over a total of 25 sampled points.  The GeoLocation application was also used at the 

same 10 locations 6 months apart and found to give consistent results with a mean of 

the difference in location coordinates of 76 feet (Range: 0-232).  Thus we found it 

sufficient to use the free GeoLocation latitude and longitude data available on the same 

device as the social networking app for our purposes, rather than using two different 

devices for data collection.  (See Figure 3 for a screenshot from the GeoLocation iPhone 

app, Available from [29].  Similar tools available for Android devices [31] were not 

evaluated in this study.  

V 

 

 

https://itunes.apple.com/us/app/geolocation/id376832615?mt=8
https://play.google.com/store/apps/details?id=com.exposure101.geolocation&feature=search_result#?t=W10
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Data collection  

At each sampling point study staff collected screen shots of user profiles.  These 

applications sort profiles based on distance from the user to other users.  We collected 

profile data for either the 50 closest users or for all users within 2 miles of the sampling 

point, whichever was less.  Profiles were saved on a password-protected iPod Touch.  

These data were entered into a database after field collection of the screenshots. Staff 

also recorded the day and time of data collection at each point.  We calculated the total 

time spent collecting data as a process measure for this pilot study.  

For each profile recorded, we extracted self-reported race and age, and the reported 

distance from the sampled point (See Figure 1).  Race was categorized as “white,” 

“black,” or “other”, and age was recorded as a continuous variable.  If a profile included 

no information on race or age this was indicated with a missing value in the database.  

Because the main objective was to compare the distribution of persons reporting their 

race as white to those reporting their race as black, when either race or age were 

missing, we recorded missing race as “other” and missing age as missing.  Individual 

profile data from each sampled point were aggregated as the number of users by self-

reported race (grouped as white, black and other) and self-reported age group (grouped 

as 18-24, 25-30, >30 or unknown), and summary measures comparing those reporting 
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black or white race in their profiles (further described below) were calculated for the 

City of Atlanta. 

Sampling Strategy  

At points where there were greater than 50 users within less than a two mile radius, we 

Figure 4: Map of the City of Atlanta showing 79 points at which data were collected from 

profiles of a sex seeking networking app. Radii of yellow circles represent the distance to the 

user sample at the maximum distance from the sample point. Overlapping circles completely 

cover the City of Atlanta, with smaller circular areas used for data collection in areas where 

there were the largest numbers of application users.  
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recorded the maximum distance to the 50th closest user (ordered by distance) and 

moved this same distance along city streets to establish the next sample point.  

Thus smaller radii were utilized in areas with a higher density of users.  Figure 4 shows 

the sampling radii for each point, the smaller circles represent the areas of Atlanta with 

the highest density of users, and thus larger numbers of individual profiles available 

within a given (e.g. 2 mile) radius.  Because we collected different numbers of users 

from circles of different radii we choose to standardize these measures to a common 

area, for example, converting each observation into the number of users within 1 mile 

of the point (thus describing a circle with a mile radius and/or an area of π square 

miles), and stratifying these measures by race and age group.  

Analysis 

The data in this study provide a somewhat unique challenge to geospatial statistical 

methods, because they combine the characteristics of point and area processes [32-37].  

Data are collected at points on a grid, but the data at that point represent a density over 

an area of sampling in a concentric circle around that point.   Still, the data are more 

analogous to point data, with the measure collected at each point representing an area 

rather than an individual data point.  Thus we chose to treat these densities of users per 

square mile as the measure of interest but use point data statistics [32, 38-39] to 

summarize over the entire study area. ArcGIS [39] performs kernel smoothing to 

estimate the density measured at each sample point where each sample point is 

weighted by the observed population density at that point.  In our case, the Kernel 

Density smoother [34] counts every white and black user observed at that location.  For 
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example a point at which we observed 12 profiles within 2 miles, including 8 white and 4 

black users, would be counted 8 times in the white density measure and 4 times in the 

black density measure. Next these weighted values for each point are also averaged 

with other points within a specified radius [32, 36-37], resulting in a smoothed surface 

representing the density of users, by race, in the sample space.  The kernel approach 

may place non-zero density in areas where no data were collected, but only as a result 

of averaging between points separated by the area with no data.  We also experimented 

with methods for interpolation of spatial data such as kriging [32, 38] and found similar 

results.  We focus on kernel density estimates here.  As noted above, sampling was 

conducted at different times and days of the week over a 6 month period (See online 

appendix for documentation of days and times sampled). While an in-depth analysis of 

time of day and day of week variability is of interest for future research, to illustrate our 

approach, we present the kernel densities calculated here as averages over sampled 

days and times.  

After estimating the population density, we used ArcGIS to compute the mean and 

standard deviation for the calculated density measure over the entire sample space.  

We compared density surfaces through ratio and difference measures via the Map 

Algebra tool in ArcGIS, which solves standard algebraic equations at each point in a grid 

across the density surface and creates a new map displaying the results of these 

calculations. When comparing the density of users, the difference between surfaces for 

different races, e.g. (density of black users – density of white users) has the property 

that its null value (no difference) is zero, and if positive, it identifies an area with a 
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higher density of black users than white users. This represents an absolute difference in 

the densities of the two groups.  When positive, this approach identifies areas where it 

might be easier to recruit black users because the density of black users is greater in 

absolute terms (i.e., the number of excess individuals).  We note that this example says 

nothing about the magnitude (size of the density of black and/or white users), only that 

one number is bigger than the other.  To capture areas where there are relatively more 

black users than white users (i.e., the ratio of black to white users is higher), we also 

calculated the ratio of the two density surfaces.    

As a further exploration of the possibilities with the approach, we also considered a 

measure to highlight areas with the largest densities for each race, and then compare 

these areas as follows.  First, for each density surface (e.g. the density of black users less 

than 25 years of age) we identified areas with the highest density values (density value > 

mean + 2 SD). For example, if the estimated mean density for white users was 

14/square mile with standard deviation of 7, we would ask ArcGIS to select points with a 

density of white users greater than 28.  We then used Map Algebra to calculate the 

difference between the surfaces including these highest density points for each race 

according to the following formula: 
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where I(statement) represents an indicator function with value 1 if the statement is true 

and zero otherwise.  This equation takes only three values: zero when a point is greater 

than Mean + 2SD  of both distributions or neither is greater than Mean + 2SD, 1 when a 

point is greater than the Mean + 2SD for only the first distribution, and -1 when the 

point is only greater than the Mean + 2SD of the second distribution.  This measure 

identifies not only locations with more users of a given race, but also locations with the 

highest density areas overall.    Similar measures can be constructed to highlight other 

features of interest, e.g. comparing densities by age group or combinations of race and 

age.   Finally, to provide some context to our results, we present them in relation to the 

location of recruitment sites seeking to enroll MSM for two ongoing HIV prevention 

studies in Atlanta.  

Results 

Over a two-week period we spent a total of 21 hours traversing Atlanta, collecting data 

at the 79 sample points (Figure 2) covering 883 square miles of area (Figure 4) in order 

to collect overlapping circles of data and cover the entire 132.4 square miles in the city 

of Atlanta.  The average radius of data collection at each sample point was 1.65 miles, 

with smaller radii resulting from the more densely populated areas in Midtown Atlanta 

(the area bounded by the rectangle in Figures 2 and 4).  

We extracted profile data (race and age) for 2,666 user profiles.  Of these 1,563 (59%) 

were white, 810 (30%) were black, 146 (5.5%) were some other race, and 147 (5.5%) did 

not report a race in their profile. The mean age was 31.5 years, with 591 (22%) between 

the ages of 18-25, and 496 (19%) between the ages of 26-30.  Age was more likely than 
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race to be missing from profile information with 593 (22%) of profiles sampled not 

providing age information. The remaining 37% of profiles reported ages greater than 30; 

whites were more likely to report being > 30 years of age than blacks (46% vs. 25%, 

p<0.0001).  Black users were younger than white users (median 28 vs. 33 years, P<0.001 

via the Wilcoxon Sign rank test).  

Across the 79 sampled points the mean number of users was 33 per square mile, but the 

distribution of users across points was highly skewed with median of 17 and range 0.86-

208 (Figure 5).  
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Figure 6 shows the density of application users, smoothed using a kernel density 

function with a 2 mile radius, for white (A) and black (B) users.  A 2 mile radius was 

chosen as the smoothing parameter because it was the next largest integer that covered 

the average radius of 1.6 miles for in the sampled points, and also was the maximum 

distance to which we sampled data when a sample point had fewer than 50 users.  The 

online appendix shows the analogs of Figures 6 and 7 with a 1-mile kernel density 

smoothing parameter for comparison, the results were not qualitatively different. The 

highest density of white users (the darkest blues in Figure 6A) concentrates in the 

Figure 6: Estimated density of white (A) and black (B) social network application users in 

the City of Atlanta (grey outline), showing major highways (black lines) and roads (dark 

red lines) and highlighting the “Midtown” area of Atlanta (yellow rectangle).  Kernel 

Densities were estimated from sample data standardized to 1 mile circular radii, and 

smoothed to 2 miles using a Gaussian smoother that concentrates the majority of the 

density at the sample point, and averages over all adjacent data points within the 

smoothing radius.  

A B 
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midtown area of Atlanta (roughly bounded by the yellow rectangle on the map).  While 

much of the highest density of black users also concentrates in this area, it is clear that 

there are areas with high densities of black users further south and to the west (to the 

lower left) of the midtown area The kernel approach smooths observations according to 

a two-dimensional distribution centered at the observed point and declining out to the 

radius used to define the search area, essentially “spreading” observations from sample 

points across the study area.  For example, the density values for white users over the 

79 sample points ranged from 0.3 to 154 profiles per square mile, but the range of 

values for the smoothed density shown in Figure 6A was 0-57 profiles per square mile. 

For the 1-mile smoothed density (supplementary appendix Figure 1) the range (0-138) 

was closer to the observed values, but with many more points with density estimates of 

zero (i.e., observations were not “spread” as far).      

There are several ways to compare surfaces to illustrate local differences between the 

densities of white and black users.  Figure (7) shows two similar but nonidentical ways 

to compare these densities.  Figure 7A shows the difference between the two surfaces, 

colored so that areas with higher absolute density of white users are blue and areas 

with higher density of black users are red.  Figure 7B shows the relative difference, with 

areas where the ratio of black to white profile densities is higher than one as red and 

lower than one as blue.   
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The ratio measure shows that most of Southwest Atlanta has relatively more black user 

profiles observed than white profiles, but when we compare the map with that of the 

A B 

Figure 7: Comparison of the density of black and white social networking application 

users in the City of Atlanta.  Panel A shows the absolute difference in users (Density 

of black users – Density of white users) color coded so that areas with more black 

users appear red and those with more white users appear blue.  Yellow regions are 

areas where the two densities are similar.  Panel A highlights a small section of the 

city (the area shaded the darkest red) where there are many more black than white 

application users.  Panel B shows a comparison of the relative size of the densities of 

black and white users (Density of black users/Density of white users).  With this 

measure, Atlanta is divided nearly in half, with relatively more black users in the 

southwest and more white users to the North and East. The yellow band in Panel B 

shows the region with the highest absolute excess of black users for comparison 

purposes.  
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overall number of black users, we find a much smaller region in which to focus efforts, 

south and west of the midtown area, shown with a yellow band in Figure 7.   

A third way to visualize differences between the surfaces is to focus on the areas 

with extreme values. This provides a within-density comparison: over the entire surface 

of the density of black user profiles, where is the density the greatest?   In Figure 8, we 

highlight the regions with density greater than the Mean+2 standard deviations over the 

entire map, separately for all black (A), all white (B) and young black (<25years old, C) 

users based on data in their observed profiles. This approach again highlights the 

midtown area of Atlanta (yellow rectangle) as the region with the most users observed 

in each graph.  

Figure 8: Density of social networking application users in Atlanta, highlighting points with 

values greater than the 95th percentile of the estimated kernel densities for white (Panel 

A), black (Panel B) and young black (<25 years of age, Panel C) users.  For Panel A points 

with an estimated density greater than 17.2 users/mile^2 are highlighted dark blue; for 

Panel B those >5.65/mile^2 are dark red and for Panel C >2.8/mile^2 are dark green.  The 

Yellow rectangle highlights the midtown area of Atlanta for reference.  The yellow oval in 

Panel B highlights an area with high density of black users but not white users.  The yellow 

circle in Panel C highlights an area with a high density of young black users, but not black 

users overall (i.e. an area highlighted in Panel C but not Panel B).  

A B C 
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Figure 9: Difference Between Extreme Values of Estimated Kernel Densities of White 

and Black users of a social networking application.   

In this figure we use the formula I(Density of black users > mean+2 standard deviations) 

– I(Density of white users > mean+2 standard deviations). We then present regions 

where the values of this equation are -1 (green shading, indicating areas with extremes 

of density for white but not black users), 1 (Red shading, indicating areas with extremes 

of the density for black but not white users) and 0 (white shading indicating areas which 

are either not extremes of either density or are extremes for both races).  

Figure 9, calculates the difference between Figure 8B and Figure 8A, and shows 

that black user profiles have high density much further south than white profiles.   
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The supplementary online materials show the kernel density and map algebra 

calculations using a 1-mile radius. Overall the results obtained with the smaller radius 

are similar (Supplemental Figures 1-3) with the peaks in areas that at 2 miles (Figure 8C) 

had previously shown up as having a higher concentration of young black user profiles 

rather than black user profiles overall.  The Supplemental Figures compare the 

difference between the 1 mile smoothed densities for young black and all black users.  

Overall the results are similar, but there are a few additional areas (highlighted in the 

Supplemental Figures), with extreme densities of young black users that did not appear 

in the 2-mile estimates shown in Figure 8C or Figure 9.   

Discussion 

We sampled 2,666 profiles from a mobile phone-based social networking application at 

79 sites in Atlanta, and, under our sampling protocol, observed a mean of 33 application 

users per square mile.  We also identified areas where there were more black and young 

black user profiles observed compared to white user profiles, describing 3 different 

summary measures of the density of profiles in a sampling frame.  Finally, we showed 

the impact of the choice of the kernel radius in construction and interpretation of such 

data.  

The goal of this study was primarily descriptive, in that we sought to describe a method 

for calculating the density of user profiles by race and age in Atlanta, and to compare 

and contrast the information provided by different outcome measures that can be 

constructed from these data. In addition, the methods described here may have 

practical application in HIV prevention research.  The results are promising and illustrate 
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how the use of self-reported location data can provide information on the geographic 

distribution of users in time and space. The study methodology could provide a more 

efficient way to identify locations for recruitment of MSM in future studies.  Significant 

time and effort is spent on formative research to develop sampling frames for studies of 

MSM [15, 21].  The goal of such formative research is to identify locations for sampling 

MSM using time space sampling methods [15].  Our methodology, based on the 

geolocation data incorporated into popular social networking applications, allowed us to 

quickly describe the density of sex-seeking MSM in Atlanta. Furthermore, we were able 

to use profile information to stratify these density measures by race and age.  This might 

allow for oversampling or exclusive sampling in areas of the city that are expected to 

yield a particular subset of the population, for example, young black MSM.  As an 

example, Figure 10 illustrates how these data can inform study implementation in 

practice. Figure 10 shows Figure 7b and a variation of Figure 9, along with recruitment 

venues currently in use for two HIV prevention studies in Atlanta (green triangles).  

Figure 10a shows that, to date, there have not been very many sampling locations in the 

southwestern part of Atlanta, where, based on the ratio of the density of black to white 

application users, there are relatively more black users than white users. However, 

Figure 10b shows the difference between extremes for the densities of young white and 

young black users of the social networking application, using a formula similar to that 

used to calculate Figure 9.  Looking at this representation of the data, we see that we 

have identified recruitment venues in an area of the city where there are the most 

young black application users and not that many white users. In this case, while going 



                                                                                                                                                         50  

further into the areas of higher relative densities of black users might yield additional 

recruitment sites, we seem to have covered the areas with the highest number of both 

black and white users. Also, we find that there aren’t many recruitment sites outside of 

the area with the highest densities of white users, black users or both, confirming that 

 

 

Figure 10: Application of two density metrics to evaluate recruitment for HIV prevention 

studies in Atlanta, GA.  

This figure shows Figure 7b and a variation of Figure 9, along with recruitment venues 

currently in use for two HIV prevention studies in Atlanta (green triangles). Figure 10a 

illustrates that there are not very many recruitment locations in the southwestern part of 

Atlanta, where there are relatively more young black application users than white users. 

Figure 10b uses the formula (Density of young black users > mean+2 standard deviations) 

– (Density of young white users > mean+2 standard deviations). Regions where the values 

of this equation are -1 (blue shading, indicating areas with extremes of density for young 

white but not young black users), 1(Red shading, indicating areas with extremes of the 

density for young black but not young white users) and 0 (white shading indicating areas 

which are either not extremes of either density or are extremes for both races) can then 

be compared to the locations of current recruitment venues.  
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past recruitment sites were located in parts of the city where there are the most 

applications users overall.  Further potential applications of this methodology include 

identification of areas with need for prevention services, e.g. overlaying HIV testing 

locations on the density grid to identify local areas with greatest unmet need.    

Since the early 2000’s, there has been a significant rise in internet usage by MSM [40-

43] and young minorities [44-46]. Three different groups have found that gay men now 

report meeting the majority of their sex partners online [40,47-49], and many [43,47-49] 

but not all [50] studies of sex behavior have shown increased reports of behaviors 

associated with higher HIV risk amongst partners met online compared to offline.  The 

most popular and well-studied of these location-based social networking applications is 

Grindr [51-53], which is currently being used by over 4 million men worldwide [25], and 

is likely to continue to grow in popularity. MSM use this application for a variety of 

purposes, but a survey of Grindr users in Los Angeles found that 76% have had sex with 

someone they met on Grindr [51], suggesting that Grindr users are using the application 

to help find sex partners.  Many other similar applications exist such as Adam-4-Adam, 

Jack’d, and BoyAhoy [26-28], and our methodology can be applied to any such 

application that provides data on race and age as well as distance to the user within 

member profiles.  In our research we have found that users of these applications vary by 

race and less so by age, with, for example a greater proportion of white men reporting 

using Grindr and more Black men reporting using Jack’d (unpublished Emory University 

data).  In this study, although we illustrate our approach using only one application (and 

have chosen not to identify the specific application used to generate these data) we did 
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validate the methodology with more than one application.   Any of the apps that report 

race, age and other characteristics of interest (e.g. HIV serostatus) as well as geographic 

distance from the user’s present location could be used to make density maps and 

calculate summary statistics using the methods we report in this manuscript.  In some 

cases, it may be useful to calculate one or more density measures with more than one 

app to try to get a better overall picture of the spatial distribution of men using sex-

seeking apps in a given location.   

Because users of these applications make both their profile information and their 

location public, it was possible to simply observe these publically available data without 

contacting the users directly for this research.  However, there is still an ethical 

requirement to protect individually identifying information when the information is 

collected for research purposes.  In this study we used screen captures to record profile 

information, storing these pictures on a password protected iPod touch until the data of 

interest (age, race and location information) could be entered into a database with no 

identifiers.  Because we were only recording publically available data from user profiles 

without identifiers, the Institutional Review Board at Emory University considered the 

study to be research exempt from IRB review.  

More generally, using social networking applications for HIV prevention is likely a key 

strategy for future research [52-54], but comes with new ethical and methodological 

questions. Our study only sought to summarize the data publically available within these 

applications, but social media applications may themselves serve as an important public 
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health communications tool.  Recently, public health agencies have sought to partner 

with Grindr, and use its built in advertisements as a medium for disseminating 

prevention information and recruit MSM for research studies [52, 53].   Future research 

might adapt our methodology further to establish a sampling frame, and then use the 

density information to sample application users and contact them to either conduct a 

cross-sectional survey or recruit them into a follow-up study. At that time one would 

have to develop mechanisms for consenting study participants, as well as a way to keep 

sensitive information, such as sex and drug use behavior, protected and ideally separate 

from any identifying online profile information.   

Piloting this methodology in Atlanta exposed other challenges as well.  Atlanta is 

geographically large and contains both densely settled neighborhoods in the inner city 

along with a large amount of semi-urban and even rural areas with less dense 

populations. Atlanta also exhibits a large degree of geospatial segregation by race, both 

in the population overall [55] and in the relative measures of the distribution of social-

network application users (Figure 7b).   However, although the overall black population 

density is low in the midtown area of Atlanta [55, 56], it still represented the area with 

the highest concentration of black users of the sex-seeking application (Figure 4). To 

obtain a picture of the distributions of both black and white application users we 

therefore had to sample enough points with a sufficiently wide radius to cover the 

entire city.  We also found the density of users to vary widely within the city, and we 

therefore had to adapt our sampling strategy.  We choose to collect either the first 50 

profiles and record the distance to the 50th user, or to sample out to a 2-mile radius if 
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there were less than 50 profiles observed in that area. In areas with large numbers of 

users, we had to collect data at more closely sampled points, e.g. if there were 50 

profiles within a half mile, we only moved that short distance before collecting more 

data, if there were only 13 users within the 2 mile radius we moved the full 2 miles 

between sample points. This allowed us to cover the whole city, but despite collecting 

data at 79 points that represented an area equivalent to 882 square miles, there were 

still areas of the city where we did not directly sample any users.   

This makes the choice of the smoothing parameter (radius) for the kernel smoothing 

algorithm important, because it provides a balance between too much interpolation of 

data between sampling points and presuming that the data collected at a particular 

sampling point only occur at the point and do not represent an area defined by the 

radius of a circle based on the linear distance to the person whose profile is being 

observed.  Using our sampling plan, we collected data from concentric circles with an 

average radius of 1.65 miles, and then fit weighted kernel densities smoothed to 1 and 2 

miles.  Both of these smoothing parameters provided similar interpretations of density 

of black, white and young black individuals, with the 1-mile radius leaving more areas of 

the city with no estimates for the density of application users. The 2-mile radius covers 

the whole city, but as a result it reduces the emphasis of several points which, when 

using a 1-mile radius are considered to have a particularly high density of black users.   

 

Some questions remain about the precise interpretation of the density of social-network 
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application users.  For example, are users simply a subset of all MSM seeking sex on the 

internet?   Is the population that uses any one of these applications different by 

important characteristics (race, age, sex behavior with persons met through a social-

network application or with sex partners generally) from the underlying population?   

Are persons who use specific services, (e.g., Adam-4-Adam, Jack’d, Grindr) different by 

one or more of these characteristics than those that use other online applications [47-

49]?   Future studies [54] will seek to quantify the density and characteristics of men 

who use each of these applications and compare the characteristics of men who use 

each of the applications exclusively, while also capturing information about men who 

use more than one service to describe whether their behaviors vary when using 

different services.   

It would be useful to test the methodology in other cities with significant minority MSM 

populations (e.g. Washington, DC or Los Angeles, CA) and also to assess the utility of the 

method in less densely populated areas (e.g. in rural areas of Georgia), to describe the 

extent to which the utility of the methods vary by characteristics of the geography of 

the region.  We have already identified that Atlanta is a challenging place to conduct this 

kind of study because of its racial distribution, which was borne out in the social-

network application user density data.  In areas with sparse numbers of users, our 

adaptive sampling methodology which sampled a minimum of 50 users or to a 1-mile 

radius might help to stabilize density estimates, but this needs further testing.   

Additionally, although we averaged over day and time of sampling in our current 

analysis, the method could be refined to capture spatiotemporal trends in density.  For 



                                                                                                                                                         56  

example, it would be possible to select points to be sampled multiple times over a grid 

of specific times and days [14-15].  This modification could provide a clear description of 

how the user profile’s population density changes over the course of a week.  This last 

component may identify trends in the spatial and temporal clustering of application 

users, for example on weekend nights, as compared to mid-day during the work week.   

We have found that it is possible to use a limited number of sample points to develop a 

geospatial density of men using a social-networking application to seek sex in the City of 

Atlanta. Such a density could serve as a sampling frame for future cross-sectional or 

longitudinal research.  We also describe several methods to compare two densities with 

a goal of identifying areas with a high density of a particular subset of the population. 

We hope that this novel methodology and its further adaptations will prove useful to 

future research and prevention efforts that can be tailored to areas of the community 

where they will be most effective.  
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Chapter 3: Supplemental Figures:  

Figures 6, 7 and 9 from the main text duplicated with Kernel Density calculations set with a 1 mile search radius 

Supplemental Figure 1: Estimated density of white (A) and black (B) social network application users in the City of Atlanta (grey 

outline), showing major highways (black lines) and roads (dark red lines) and highlighting the “Midtown” area of Atlanta (yellow 

rectangle).  Kernel Densities were estimated from sample data standardized to 1 mile circular radii, and smoothed to 2 miles using a 

Gaussian smoother that concentrates the majority of the density at the sample point, and averages over all adjacent data points 

within the smoothing radius.  
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Supplemental Figure 2: Replicate of Figure 7 from the main text with 1 mile search radius for the kernel density smoother.. This figure again 

shows a comparison of the density of black and white social networking application users in the City of Atlanta.  Panel A shows the absolute 

difference in users (Density of Black users – Density of White users) color coded so that areas with more Black users appear red and those with 

more white users appear blue.  Yellow regions are areas where the density is estimated to be about the same.  Panel A highlights a small section 

of the city (the yellow band around the area shaded the darkest red) where there are many more black than white application users.  Panel B 

shows a comparison of the relative size of the densities of black and white users (Density of Black Users/Density of White Users).  With this 

measure, Atlanta is divided nearly in half, with relatively more black users in the southwest and more white users to the North and East. The 

yellow band in Panel B shows the region with the highest absolute excess of black users for comparison purposes. Figure 1: Highlighted examples 

of how outcome measures will change depending on the smoothing radius used for the kernel density. Panel A shows the difference measure 

(Density of black users – Density of White users) calculated based on densities with a 1 mile smoothing radius.  Areas with blue shading indicate 

points where the absolute value of this difference is negative (indicating more white users); areas with red shading highlight points with higher 

absolute numbers of black users.   The yellow circle in Panel A highlights an area that was also highlighted at a 2 mile radius, but there are two 

other points to the south and east of this circle, that did not appear in the analysis using the 2 mile smoothing radius.  
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Supplemental Table 1: Matrix of day and time of sampling For 79 data collection points included in the analysis 

 

 

Time 

 

Morning Afternoon/Evening Late Night 

Day 

   Monday 5 4 

 Tuesday 6 5 

 Thursday 

  

20 

Friday 10 18 11 
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Chapter 4 - Specific Aim 2:  
Compare proposed tests for statistical interaction of two exposures using simulated 

data in which two dichotomous variables interact to have effects that are greater than 

additive risk differences but less than multiplicative risk ratios, indicative of sufficient 

component cause interaction 

Section 1: Introduction 

Sufficient component cause interaction (SCC interaction, sometimes also called biologic 

interaction,1-3 causal co-action,1,2 or synergism3) arises in the situation when two or 

more causes participate in the same sufficient cause for a given disease.1-3 This 

particular type of interaction is important to public health because, when present, 

intervening on either cause will prevent disease. Methods for detecting a mechanism in 

which two exposures interact in this way to cause disease have seen recent rapid 

development in the epidemiology literature. Significant work by VanderWeele and 

Robins3, further developed by Vanderweele and others,4-8 provides a theoretical 

framework and gives conditions sufficient to identify this specific type of interaction. 

However, this rapid advance comes with many caveats about limited power to identify 

“interaction” effects in practice.9-14 The situation is complicated by the fact that the 

term “interaction” is used loosely by epidemiologists,11 and there are situations when 

statistical interaction (also called effect measure modification1-3,11), detected as a 

departure from the assumptions about how risks of two exposures combine in a 

statistical model, does not indicate the presence of SCC interaction.1,2,5,8,11   
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Vanderweele and Robins3 defined what they called “definitive interdependence.”  It is a 

set of response patterns or types, presented in Appendix 1, which they show definitely 

imply that SCC interaction is present.   They propose5 statistical tests to detect these 

response types thereby providing a way to detect SCC interaction.  Appendix 1 contains 

definitions of important terms including statistical interaction, SCC interaction, and 

definitive interdependence.   In this manuscript we use “interaction” to refer to 

statistical interaction which may or may not be causal, “SCC interaction” to refer the 

specific type of interaction defined as such by Rothman1,2 and “definitive 

interdependence” to refer to  the subset of patterns of risk defined by Vanderweele and 

Robins.3  

Two recent studies involving the authors of the present manuscript identified significant 

interaction between two risk factors,17,18 leading us to seek practical applications of the 

newly proposed methods as guidance for how to evaluate these interactions in terms of 

causality. Although some early work on interaction compared two of the many 

statistical tests,12 we are not aware of any recent updates directly comparing and 

contrasting the newer approaches for detection of interaction, particularly those based 

on definitive interdependence.19-26   

In the current study, we begin with a detailed description of: the range of ways two 

dichotomous causal exposures can interact; an outline of several statistical models that 

accommodate interaction in different ways; and statistical tests of interaction that can 

be formulated from these models.   We then compare performance across 13 variations 
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of these tests to assess the presence of SCC interaction, including several newly 

implemented within existing statistical software for this study (specified in Table 1).  We 

evaluate test performance in two general areas:  1) the proportion of times the tests 

identify interaction when no SCC interaction exists (Type 1 error); and 2) the ability of 

each test to detect SCC interaction of varying magnitude when it exists (Power). To do 

so, we conduct a series of simulations based on binomial outcomes where we set the 

disease risk depending on presence or absence of 2 dichotomous exposures X1 and X2. 

We compare the tests across ranges of sample sizes often employed in epidemiologic 

studies and a range of risks and risk patterns (detailed below). We conclude with 

practical recommendations for how to proceed when the goal is to assess SCC 

interaction.   

Section 2: A review of proposed methods to assess interaction 

When two causes act together 

To begin, assume we have two dichotomous exposures X1 and X2 (Notation used 

throughout this manuscript is defined and differentiated from that used in other 

texts2,3,5 in Appendix 1.)  There are a range of possible effects that could be observed 

when two exposures that each has an effect are present. In the presence of SCC 

interaction, the combined effects of X1 and X2 might differ from the sum of each 

exposure’s individual effect measured on the risk difference scale. But, how much 

departure from risk difference additivity is observed would depend on the mix of the 

sufficient component causes that are present due to interaction of X1 and X2 in the 

study population. The range of possible combined effects of X1 and X2 could be 
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described in many ways, but one is to consider the observed combination of the effects 

of X1 and X2 relative to the effects estimated by typical statistical techniques, to see if 

and how they depart from assumptions of additive risk differences or multiplicative risk 

ratios.    

Specifying the Pattern of Disease Risk   

To  describe the pattern of disease risk in the presence of two exposures, we can specify 

the relationship between exposures and risk of disease as additive or multiplicative, 

although other specifications have been proposed.27-28 Equations 1 and 2 provide typical 

formulation for additive risk and for multiplicative risk, respectively.    

R(X1,X2) = P(D|X1,X2) =  α0 + α1X1+ α2X2+ α3X1X2   (eq 1) 

R(X1,X2) = P(D|X1,X2) =  exp(B0 + β1X1+ β2X2+ β3X1X2)  (eq 2) 

These formulations describe the risk of disease associated with exposures X1 and X2, 

using parameters α3 and β3 to quantify departures from additive risk differences and 

multiplicative risk ratios for X1 and X2, respectively.  In Equation 1, when α3 is equal to 

zero, the combined effect of exposures X1 and X2 is exactly what you would expect if 

the risk differences associated with X1 and X2 were added together. The risk (the 

probability of disease P(D)) for those exposed to both X1 and X2 under additivity is given 

by: P(D|X1=1,X2=1)= P(D|X1=1, X2=0) + P(D|X1=0, X2=1) – P(D|X1=0,X2=0). That is, 

with an additive pattern the risk for someone exposed to both X1 and X2 equals the sum 

of the individual risks, minus the baseline risk for those not exposed to either X1 or X2. 

In Equation 2, when β3 equals zero, risk ratios are exactly multiplicative. In terms of risks 
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(as opposed to risk ratios) a multiplicative pattern would mean that the probability of 

disease for those exposed to both X1 and X2 is given by the product of the individual 

risks and the inverse of the baseline risk: 

P(D|X1=1,X2=1)=P(D|X1=1,X2=0)*P(D|X1=0,X2=1)*(1/P(D|X1=0,X2=0). Equation 1 is 

referred to as a linear binomial model or a binomial model with “identity” link.23,24  

Multiplicative risk models typically either use a Poisson or Binomial distribution to 

model counts of incident disease based on the probability of disease as defined in 

equation 2.13, 29-30 The logistic (logit binomial risk) model is another popular model of 

multiplicative risk, a special case of the binomial risk model which uses the logit function 

to scale the risks to be between 0 and 1.  Other models have also been proposed.  

R(X1,X2)= P(D|X1,X2) = exp(β0)*(1+ β1X1 + β2X2 + β3X1X2)    /  

    (1+ (exp(β0)*(1+ β1X1 + β2X2 + β3X1X2)))  (eq 3) 

R(X1,X2)= P(D|X1,X2) = Exp(β0+β1X1+ β2X2+ β3X1X2) /  (eq 4) 

 

   (1+ Exp(β0+β1X1+ β2X2+ β3X1X2))   

Richardson and Kaufman21 showed how to use equation 3 with logit risks to assess 

effect modification on the risk difference scale; with this parameterization β1, β2, 

correspond to the relative excess risk odds for X1 and X2, and β3 corresponds to the 

relative excess risk odds due to interaction. However, the vast majority of logit models 

use the multiplicative form in equation 4.12,13 To assess interaction as modification of 

the risk difference based on equations 2 and 4 requires manipulating model parameters 

to estimate risks for each level of exposure.   It is well-known that risk odds ratios, such 
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as those calculated from parameters of the logistic model, may overestimate 

corresponding risk ratios when disease is common.2,21,29-31  

Measures of departure from additive risk differences 

Rothman and Greenland describe two measures of departure from additive risk 

differences that can be used, with assumptions, to identify SCC interaction. The 

measures are the interaction contrast (IC) and interaction contrast ratio (ICR) also 

referred to as the relative excess risk due to interaction (RERI).2 The IC is the difference 

of risk differences 

IC = (R11 - R10) – (R01 - R00) = R11-R10-R01+R00    (eq 5) 

where, for example, R11 is the P(D|X1=1,X2=1). The risks at each combination of the 

levels of the two exposures can be calculated from any statistical model that estimates 

these risks; the more difficult piece is calculating the variance of functions of model 

parameters such as the IC and ICR.9 When risk is modeled as if it were additive (equation 

1), the IC can be estimated directly as the parameter α3, with variance and confidence 

limits provided by the software used to fit the model.  The ICR is calculated by dividing 

the IC by the risk in the unexposed group R00, resulting in a difference in the excess 

relative risks (RR-1): 

ICR= R11/R00 -R10/R00 -R01/R00+R00/R00  

      = RR(11) – RR(10) – RR(01) + 1      (eq 6) 

The IC and ICR are important for the assessment of SCC interaction because when 

exposures X1 and X2 are never preventive (the related concept of monotonic exposures 

is defined in Appendix 1), and if there is no confounding, then an IC > 0 or ICR >0 implies 
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the presence of SCC interaction.2,3,5  Thus, one can test for SCC interaction by testing if 

IC or ICR is > 0 (when exposure effects are never preventive).3,5  

These risk ratios and the ICR can be calculated from the parameters of multiplicative risk 

models in several different ways (examples of SAS code in Appendix 2) using software 

available to fit these models. 

Methods of risk model estimation and tests for interaction using SAS software 

The rapid expansion of proposed methods for estimating quantities such as IC and ICR 

and for detecting SCC interaction based on them is likely due to the availability of 

software packages that provide the elements necessary to calculate them.21-26 Most of 

the published examples use SAS software (SAS Institute, Cary, NC) to implement the 

estimation of these parameters, although other software contain similar methods for 

estimating risks (e.g. STATA, (Stata Corp, College Station, TX) and R, (www.rproject.org)).   

Within SAS there are at least three procedures that can be used to estimate the 

parameters in models of disease risk, and we review advantages and disadvantages of 

each; example code is referenced in Table 1 and included in Appendix 2. The GENMOD 

procedure advocated by Spiegelman23 and Brumback24 provides perhaps the most 

straightforward methods for estimating the IC using a linear risk model as in equation 1, 

and allows for direct estimation of the confidence interval for the α3 parameter using 

both Wald and likelihood ratio methods.2,12,13,32,33 The main drawback to this approach 

is that it does not constrain the individual risks (i.e. R11, R10, R01 and R00) to be 

between 0 and 1 and there is potential to obtain estimates that are not possible true 

values of risk.34   
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There are similar issues with both Poisson and log-binomial models used to calculate 

risk ratios, in that they do not constrain the risk to be less than 1. Additionally, in 

practice log-binomial models frequently fail to converge, while Poisson models will 

overestimate the standard error of modeled parameters if risks truly follow a binomial 

distribution.30,34 GENMOD can also be used to calculate multiplicative risk models, both 

with model and the empirical standard errors derived from generalized estimating 

equation fitting methods recommended for Poisson models.29,30,34  However, GENMOD 

does not allow one to manipulate the estimated results to enable calculation of the IC or 

ICR directly from multiplicative model parameters. In contrast, the NLMIXED procedure 

does allow for custom linear combinations of fitted parameters, and uses the Delta 

method35 to approximate their standard errors.36 For example, to calculate the ICR for 

the log-binomial model similar to equation 2, one uses an ESTIMATE statement in SAS:  

ESTIMATE "ICR" exp(β1+ β2+ β3)- exp(β1)-exp(β2)+1;    (eq 7) 

Kuss25 recommends setting the degrees of freedom for the calculation of the variance 

for this estimate to a large number (e.g. 10,000), thereby artificially increasing the 

sample size from that observed in order to approximate a Wald confidence limit.  

Richardson21 also provides a SAS macro that utilizes NLMIXED to estimate a likelihood 

ratio-based confidence limit for a linear odds model (as defined in equation 3 above).  

Kuss25  also used a third SAS procedure, PROC NLP (for non-linear 

programming/optimization), which can directly calculate the likelihood ratio-based 

confidence interval for the ICR, when the fitted likelihood is coded such that the ICR is a 
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parameter to be estimated. Note that both Richardson21 and Kuss25 provide SAS code 

based on the logit risk model, and we have extended the latter’s approach to use the 

log-binomial and Poisson risk models in our examples included in Appendix 2.  

Tests for SCC interaction when exposure effects are not monotonic 

The approaches above identify  interactions through tests of ICR>0 or IC>0, which 

Vanderweele5 notes are valid indicators of SCC interaction only when exposure is 

monotonic, specifically when there is never an instance when increasing exposure 

protects an individual from disease. The rationale for this is presented in detail in 

Appendix 1. In practice, one often cannot rule out this possibility. In this situation, 

Vanderweele5 suggests another test for SCC interaction based on  definitive 

interdependence; this test corresponds to IC− R00 >0 which is equivalent to ICR>1.  

When considering linear risk models of the form in equation 1, Vanderweele’s test for 

SCC interaction when monotonic effects of exposure cannot be guaranteed is  

α3-α0 > 0                 (eq 8) 

This linear contrast can also be calculated directly using SAS’s GENMOD procedure, 

again with both Wald and likelihood-based confidence limits provided, and it is possible 

to identify when the lower limit does not include zero. Vanderweele5 also derives an 

equivalent test to equation 8 using parameters of a multiplicative risk model:  

exp(β1+ β2+ β3)- exp(β1)-exp(β2)= (ICR-1) > 0                        (eq 9) 

and shows this to be equivalent to a joint test of: 
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(β3+ β1 -log(2) > 0 and β3+ β2 -log(2)>0)                              (eq 10) 

However, Vanderweele5 does not provide an example of how these might be calculated 

within statistical software.  Because the criterion in equation 9 corresponds to an ICR>1 

we can use the confidence bounds around the ICR calculated by any of the 

aforementioned SAS procedures to test for situations when the lower limit of the ICR is 

greater than 1. The condition in equation 10 can also be coded as a linear contrast 

providing a joint test of the two inequalities, including an adjustment for multiple tests 

using the SAS PROC PLM procedure.  Again, code to assess the criteria in equations 8 – 

10 are provided in Appendix 2.  

Section 3. Monte Carlo Simulations 

We conducted a series of Monte Carlo simulations to evaluate the performance of the 

tests to detect SCC interaction based on the IC or ICR as described in Section 2.  For all 

tables and figures except Supplemental Figure 2 (described in Appendix 1) we assigned 

binary exposures X1 and X2 as if exposure was assigned experimentally as in a 

randomized controlled trial (RCT) of both X1 and X2; we refer to this scenario as the RCT 

design. In this design the number of participants in each of the 4 exposure categories or 

“arms” of the trial (see Supplemental Figure 1 for a schematic) is assigned to be equal.  

We considered sample sizes (for each arm) of 200, 500, 750, 1,000 and 500,000, where 

the last scenario, with a total population size of 2 million, would be realized only in an 

extremely large study or perhaps a pooled study. .   
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After assigning exposure to the population, we next assign a dichotomous disease 

outcome as a random variate with the number of disease cases (ones) following a 

binomial distribution with density function  

𝑓(𝑑) = ( )𝑑
𝑛 𝑝𝑑 ∗ (1 − 𝑝)𝑛−𝑑, 

with sample size n as defined in the previous paragraph, d as the count of diseased 

cases in n, and p as the underlying disease risk. We next define p as a function of the 

baseline probability of disease p0 multiplied by a risk ratio associated with exposures X1 

and X2, RR(X1,X2). We assign the baseline risk of disease p0=0.05 and vary the risk ratios 

for each exposure RR(X=1,X2=0) and RR(X1=0,X2=1) over a range from 1 to 4. We then 

multiply p0 by the risk ratio to obtain the risk p for those exposed to only X1 and only 

X2. For the risk associated with both exposures we simulated situations where the risk 

was: exactly additive on the risk difference scale, exactly multiplicative on the risk ratio 

scale, or the risk for the combined exposure condition was somewhere in between 

these two values, as specified below. We define risk as exactly additive on the risk 

difference scale when the binomial risk parameter p was calculated as  

 p= (RR(X1=1,X2=0)+RR(X1=0,X2=1)−1)*p0    (eq 11) 

which is equivalent to equation 1 with α3=0 and IC = ICR =0. In this case the β3 

parameter for models defined by equation 2 (log-binomial or Poisson risk models) and 

equation 4 (logit binomial risk models) should be negative.  In this case  the null 
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hypothesis (IC = 0) is true, although SCC interaction cannot be ruled out for reasons 

described in Section 5 and Appendix 1.  

We define the combined risk as exactly multiplicative on the risk ratio scale when: 

 p=RR(X1=1,X2=0)*RR(X1=0,X2=1)*p0    (eq 12) 

Note this is equivalent to equation 2 with β3=0. In this case, models such as equation 1 

will have positive values for the α3 parameter, indicating departure from additive risk 

differences, and the null hypothesis (IC =0, or ICR = 0) is false.  IC > 0 or ICR > 0 implies 

SCC interaction is present because effects of both X1 and X2 are present and monotonic 

(never preventive).   

To set p to be somewhere between additive risk differences (equation 11) and 

multiplicative risk ratios (equation 12) we define 

 p=         (eq 13) 

(RR(X1=1,X2=0)+RR(X1=0,X2=1)−1)*p0 +      

  

((RR(X1=1,X2=0)*RR(X1=0,X2=1)*p0 − (RR(X1=1,X2=0)+RR(X1=0,X2=1)−1)*p0 )/κ) 

and set κ between 1.25 and 5. The range of magnitudes of risk ratios associated with a 

single exposure results in a range of possible risk ratios for those with both exposures. 

Supplemental Table 2 in Appendix 1 shows the expected value of the ICR for values of 

RR(X1=1,X2=0) and RR(X1=0,X2=1) under the exactly additive and exactly multiplicative 
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scenarios as well as for κ = 2.  For risks in the range defined by equation 13, equation 1 

should have an α3 parameter greater than zero, again indicative of SCC interaction and 

definitive interdependence when effects of X1 and X2 are monotonic, which is the case 

here. β3 in equation 2 and equation 4 should be negative for the range considered, but 

β3 < 0 does not generally indicate SCC interaction, even under monotonicity. For all 

simulated data sets, because we set the true risk associated with each exposure, we can 

calculate the true values of the IC and ICR directly.  

Two measures of test performance were first compared with 500,000 persons in each 

exposure category: 1) the proportion of times the measures (incorrectly) “identify” SCC 

interaction when effects are exactly additive on the risk difference scale, using data 

generated from equation 11 (Type 1 error); and 2) the ability of each test to detect non-

zero values of IC or ICR of varying magnitude when they are  positive but less than what 

would be expected if risk ratios were multiplicative, using data generated from equation 

13 (Power).  We then compare these measures of test performance across ranges of 

sample size typically employed in epidemiologic studies. Supplemental Table 1 provides 

the values for sample size, individual risk ratios for X1 and X2, and interaction effects 

considered when creating each of the tables and figures included in the manuscript and 

supplemental results.  All simulations were conducted using SAS version 9.2.3. Each 

scenario outlined in Supplemental Table 1 was repeated for 1,000 replicates.  A sample 

program is included as Appendix 2 and shows both how the simulated dataset (in the 

RCT scenario) was created and how each test of interaction that we evaluated can be 

performed. Throughout, we assume no confounding, misclassification or selection bias. 
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Section 4: Results 

Figure 1 shows the proportion of 1,000 simulations in which each of 6 tests for 

interaction detected effects that would lead to an IC and ICR > 0, an indicator of SCC 

interaction (Power) under the assumption of monotonicity. In this scenario, the IC and 

ICR have values that correspond to risks between additive on the risk difference scale 

and multiplicative on the risk ratio scale (κ=2 in equation 13), and the effect of each 

individual exposure was varied between a risk ratio of 1 and 4, in a sample with 500,000 

people in each of four categories of 2 dichotomous exposures. All of the tests 

considered detected interaction effects in all 1,000 simulations (100% Power) when the 

risk ratio for both individual exposures exceeded 1.25. Figure 2 shows the converse, the 

Type 1 error rate when the true risk for those exposed to both X1 and X2 is exactly 

additive on the risk difference scale (IC=ICR=0), as defined in equation 11.  Contrasting 

the top row of Figure 2 with that of Figure 1 illustrates the expected problem with using 

multiplicative models to test for interaction. When risk difference modification exists 

but is less than what would be observed if risk ratios were multiplicative (Figure 1) the  

β3 term in multiplicative models is often significantly less than zero. In models where the 

risks of X1 and X2 have exactly additive risk differences (Figure 2), this is also true. A 

“significant” departure from the multiplicative model can be due to a risk pattern that is 

exactly additive or greater than additive.  

Figure 2 also shows that ICRs calculated from the parameters of a logit binomial risk 

(logistic) model as though the risk odds ratio was a risk ratio also have high Type 1 error 

rates. This is expected because the estimates of the ICR are incorrectly calculated by 
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treating risk odds ratios as though they were risk ratios when the outcome is not rare.  

Figure 3 displays both the Type 1 error rates (the leftmost bar in each cluster) and 

power (the other 8 bars in each cluster) for 8 tests for interaction over 1000 simulations 

in which the sample size was set at 1,000 in each strata of exposure, and the risk ratios 

for X1 and X2 were set at 2.75 and 2.25, respectively. Figure 3 shows that, even at a 

sample size of 1,000 in each of four strata of exposure, power remains low when the 

true effects are close to additive (the left side of each cluster of bars), even though the 

individual effects of X1 and X2 are strong.  However, the power and Type 1 error rates 

are generally similar across all the tests based on estimates of the IC from additive risk 

models (the first two clusters of columns) or the ICR from multiplicative risk models 

(Poisson and log-binomial models). At this sample size, the results are similar within 

model type whether we considered Wald or likelihood ratio tests. Results of the macro 

suggested by Richardson and Kaufman were nearly identical to the likelihood ratio 

results from the logit model estimated using PROC NLP presented in Figure 3(data not 

shown).  Supplemental Figure 4 in Appendix 1 is similar to Figure 3 except that the 

sample size is 200 in each of the 4 combined strata of X1 and X2. This figure along with 

Supplemental Figures 2 and 3 shows that power is expected to be too low to 

consistently detect interaction effects at this sample size. When baseline risk or the 

individual and combined effects of X1 and X2 were smaller, sample sizes required to 

detect interaction effects increased, and several of the models (particularly those 

estimated using PROC NLP and log-binomial models estimated using NLMIXED) had 

convergence issues (data not shown).    
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Figure 4 shows the simulated power (Row 1) and Type 1 error (Row 2) for the measures 

in equations 8 – 10, which indicates SCC interaction when the effects of individual 

exposures cannot be assumed to be monotonic. These results can be compared to 

Figures 1 and 2, where  the test was the less stringent (e.g. null, IC = 0) since IC > 0 

indicates SCC interaction under the assumption of monotonic effects. The tests 

presented in Figure 4 are based on lower limits of confidence intervals of the linear 

contrasts α3-α0 and the ICR being greater than 0 and 1 as defined in equations 8 and 9 

respectively.  We see null hypotheses are rarely rejected when the risk differences are 

truly additive (they have low Type 1 error), but hypotheses are also rarely rejected (they 

have low power) when the risk ratio for either X1 or X2 is less than 2 and the combined 

effects of X1 and X2 are greater than additive on the risk difference scale but less than 

multiplicative on the risk ratio scale.  Furthermore, as in Figure 3 and Supplemental 

Figure 4, the power to detect interaction effects that would lead to an IC or ICR > 0 is 

lower when the interaction is closer to additive than multiplicative, even if the  risk 

ratios for both X1 and X2 are greater than 2 (Figure 5 and Supplemental Figures 6 and 

7).  

Section 5: Discussion of simulation results and practical recommendations for 

testing for interaction 

We provide a systematic comparison of 13 proposed tests for interaction, considering 

situations when risk is in the range between exactly additive on the risk difference scale 

and exactly multiplicative on the risk ratio scale. We illustrate how the power to detect 

SCC interaction effects of this magnitude depends the strength of the individual effects 

of each exposure on disease, and the amount of interaction (reflected in the IC or ICR), 
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as well as the sample size, particularly for the subset of the population with both 

exposures. We also showed that only exceptionally large observational studies are likely 

to have enough participants with both exposures to detect SCC interaction effects in this 

range. This suggests that studies with a goal of detecting or quantifying SCC interaction 

should consider a study design such as a prospective cohort or most ideally a 

randomized controlled trial in order to achieve adequate numbers of individuals with 

exposure to all combinations of both causes.37,38  

Vanderweele has methodically illustrated the assumptions necessary to detect what he 

defines as definitive interdependence along with proposed tests based on the IC and 

ICR.3,5 Here we have shown both how to estimate the ICR or other statistics needed for 

these tests using existing statistical software, when we can and cannot assume 

monotonic effects. If we cannot assume monotonic effects, detection of SCC interaction 

when it truly exists is difficult at typically achievable sample sizes.   

When the criteria described in equations 8-10 are met, Vanderweele and Robins have 

shown that SCC interaction must exist. However, the converse is not true, when their 

proposed criteria are not met SCC interaction may still occur. Vanderweele and Robins 

have cautioned that the power of these tests would be lower than that of tests of 

departure from additive risk differences that can be used when effects of X1 and X2 are 

monotonic. In our simulations, we evaluate scenarios that illustrate the extent to which 

the power is lowered.  It seems unlikely that researchers could presume effects of 

exposures to always be monotonic, unless the causal mechanism for disease occurrence 
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is so well understood that a study that would include 1,000 individuals exposed to both 

exposures is unnecessary, if not unethical. However, we find that the Type 1 error rates 

are low for both the tests of ICR > 0 and ICR > 1. Thus, differences between the tests for 

definitive interdependence proposed by Vanderweele and those for SCC interaction 

proposed by Rothman2 should be reported and interpreted carefully.  

The results of our simulations provide some additional practical guidance for 

assessment of SCC interaction effects.  First, we find tests of IC or ICR > 0 can have 

sufficient power to detect interaction effects that lie between exactly additive on the 

risk difference scale and exactly multiplicative on the risk ratio scale, but require large 

sample sizes. Unfortunately, observational studies generally do not have very large 

sample sizes in all strata of the exposures of interest. Second, our simulations suggest 

that interaction patterns that are close to additive on the risk difference scale cannot be 

detected with sufficient power at sample sizes typical of observational studies. 

Interaction patterns that are closer to multiplicative on the risk ratio scale were 

detected with adequate power when the sample size included from 750 to 1,250 

individuals in each of the four combinations of exposure to two dichotomous causes of 

interest.  If baseline risk or the individual and combined effects of X1 and X2 were 

smaller, sample sizes required to detect departure from additive risk differences using 

the IC or ICR would increase.   

Because the effects of each exposure need to be strong to be reliably detected, 

methods that rely on logistic models to approximate risk ratios via odds ratios are also 
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not advised. The ICRs calculated from parameters of these models will be biased 

estimates of the true ICRs calculated from risk ratios.2,21,25  We adapted tests using ICRs 

calculated from parameters of logistic models offered by Kuss25 for implementation with 

parameters estimated by log-binomial risk models instead and included sample code to 

fit these models in Appendix 2.  

The results from PROC NLP provide likelihood ratio-based confidence limits directly, and 

consensus in the literature is that these limits are generally preferred over the Wald-like 

limits produced by NLMIXED. The macro by Richardson and Kaufman21 could also be 

modified to calculate the ICR and its likelihood ratio-based confidence limits using 

parameters of a log-binomial model. However, one by-product of requiring large sample 

sizes in each strata of exposure is that the Wald-based confidence limits provide nearly 

identical results to likelihood ratio-based limits in this setting.   

Model fitting algorithms for NLMIXED and NLP do not allow for estimation of empirical 

standard errors as recommended when trying to fit Poisson models to data arising from 

a log-binomial risk model.29,30  As a result, ICR estimates that use risk parameters from 

log-binomial models (matching the data generation model), when they converge, have 

better power than those based on Poisson estimates of risk (which only approximate 

the data generation model). The differences between models are largest when sample 

sizes and the effect modification on the risk difference scale are small.  Programming 

log-binomial models to obtain estimates of the ICR is more straightforward using the 

NLMIXED procedure compared to the NLP procedure, and using code similar to equation 
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7, the risks in each strata of exposure, the IC, the ICR, and other related measures8 (See 

Appendix 2, example 5) can be calculated directly from the parameters estimated by the 

model.  GENMOD can be used to test for IC > 0 and IC – R00 > 0, and the estimates 

necessary to formulate these tests may be easier to generate when linear binomial 

models converge. But, while we have provided the example code to calculate all of the 

measures we evaluated, for the scenarios considered we feel that performance of tests 

based on parameters from log-binomial models estimated using NLMIXED as well as its 

relative ease of use suggest it is the most effective current approach within SAS for 

testing for IC > 0, ICR > 0 and ICR > 1 within the same procedure, and thus may be 

preferred in practice.  

In our simulations, we focused mainly on RCT analyses and didn’t include confounding in 

our sample size or power calculations. In the presence of a strong confounder it would 

be necessary to also ensure that there is a sufficient sample size for participants 

exposed to both X1 and X2 within the strata of the confounder(s).2,10-11,37,38  There is at 

least one other approach to modeling risk which we didn’t cover here, marginal mean 

models estimated by back-transforming parameters from a logit binomial model to the 

risk scale.39  Software to perform these calculations exists, but, in the presence of 

confounding, requires assumptions about the distribution of confounders used to 

transform the log-odds parameters back to log-risk parameters, and the existing 

software does not calculate the IC or ICR or their confidence intervals directly.39,40 This 

represents an area for future research. 
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In summary, we have provided several examples of new code for tests of for departures 

from risk difference additivity, designed to detect SCC interaction. We also show 

through simulations that these tests give similar results when the individual exposures 

have monotonic effects. However, the power to detect SCC interaction is limited unless 

exposures have both strong individual effects and their combined effects approach or 

are greater than what would be expected if risk ratios were multiplicative, within studies 

based on large sample sizes. When a monotonic effect cannot be assumed, a more 

stringent test must be used (ICR > 1) and power is reduced. We hope that these results 

and the compendium of SAS code used to generate them provide practical insight into 

when and how to detect SCC interaction effects using concepts based on the IC and ICR 

within epidemiologic studies.  
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Table 1: Tests of interaction described in Section 2 and tables and figures in which evaluations of each test are presented 

Test of Interaction  Equation 
in main 
text 
describing 
test 

Reference  SAS 
example in 
Appendix 1 

Tables and Figures in which the measure of 
interaction was evaluated 

Tests of β3≠0 (departures from 
multiplicative risk ratios) 

    

Logit risk model eq 4 2,13 Examples 3 Figures 1 and 2, supplemental figures 4 and 5 
Log-risk model eq 2 29,30 Examples 2 Figures 1 and 2, supplemental figures 4 and 5 

Tests of α3≠0 in linear risk model 
(departures from additive risk 
differences, equivalent to the 
Interaction contrast of eq 5) 

eq 1 23,24 Examples 1 
and 11 

Figures 1,2,3,5, supplemental figures 4-7 

Test of β3>0 in linear odds model eq 3 21 Example 8 Not presented results equivalent to logit risk 
model (NLP) 

Tests of ICR > 0 eq 6    
Logit risk model (NLMIXED) eq 7 25 Example 4 Figures 1,2, supplemental figures 4 and 5 

Logit risk model (NLP) eq 7 25 Example 7 Figure 3 
Log-binomial model (NLMIXED) eq 7 a Example 5 Figures 1,2, 3, supplemental figures 2-7 

Log-binomial model (NLP) b a Example 
10 

Figure 3, supplemental figures 2,3,4,5 

Poisson model (NLMIXED) eq 7 a Example 6 Figures 1,2, 3, supplemental figures 4 and 5 
Poisson model (NLP) b a Example 9 Figure 3, supplemental figures 4 and 5 

Tests of α3-α0>0 (Vanderweele’s 
test for definitive interdependence 
using a linear risk model parameter 
when effects cannot be assumed to 

eq 8 5, c Example 
11 

Figures 4 and 5, supplemental figures 6 and 7 

 
9

8
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Test of Interaction  Equation 
in main 
text 
describing 
test 

Reference  SAS 
example in 
Appendix 1 

Tables and Figures in which the measure of 
interaction was evaluated 

be monotonic) 
 
Test of ICR > 1 (Vanderweele’s test 
for definitive interdependence 
when effects cannot be assumed to 
be monotonic using parameters 
from multiplicative risk models - 
only presented for NLMIXED log-
binomial model) 

eq 9 c Example 5 Figures 4 and 5, supplemental figures 6 and 7 

Joint test of: 
(β3+ β1 -log(2) > 0 and β3+ β2 -
log(2)>0) 
Another representation of the  test 
for definitive interdependence 
when effects cannot be assumed to 
be monotonic using parameters 
from multiplicative risk models 

eq 10 c Example 
12 

Figures 4 and 5, supplemental figures 6 and 7 

eq. = equation as referenced in the text, ICR= Interaction contrast ratio 

a) Kuss25 presented only a logit binomial (logistic) model in his examples presented in reference 25, we have adapted both 

examples to use both a log-binomial and Poisson risk model estimation 

 

9
9
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b) Kuss25 manipulated the linear combination of parameters for a logit binomial (logistic) model such that the ICR was included 

as a parameter estimated from the model, with the interaction term being a combination of the ICR parameter and the 

parameters estimating the relative risks for each exposure level: b_interaction=log((ICR+exp(b_X1)+ exp(b_X2)-

1)/(exp(b_X1)*exp(b_X2))). He then used this new parameter in the linear estimator of the overall effect: 

Eta=b_0+b_X1*X1+b_X2*X2+b_interaction*X1*X2. As described above, the examples provided in reference 25 only provided 

estimation of logit binomial (logistic) models, but we have added examples that use this same manipulation in log-binomial 

and Poisson based estimations of our risk models.  

c) Vanderweele provided a description of these tests for definitive interdependence in reference 5, but no example code to 

calculate them. We have extended the linear binomial risk model23,24 example to test whether the lower limit of the 

confidence interval for the linear contrast α3-α0 is greater than 0, the NLMIXED examples (i.e. equation 7) to test for the 

lower limit of the confidence interval of the ICR > 1, and provide example code to test for both inequalities in equation 10 

using the SAS PROC PLM procedure. These examples are all included in the code provided in Appendix 2.  

 

 

 
1

0
0
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Figure Legends: 

 

Figure 1 – Power to detect SCC interaction for six different proposed tests for 

interaction 

This figure presents the proportion of 1,000 simulations in which 500,000 individuals 

were included in each of four levels of combinations of two dichotomous exposures, X1 

and X2.  Six tests for interaction are presented: a) the p-value for the test of  α3 ≠ 0 from 

a linear risk model23,24 as in equation 1; b) the p-value for the test of β3 ≠ 0 in a log-

binomial risk model2 as in equation 2; c) the p-value for the test of β3 ≠ 0 in a 

multiplicative logit binomial (logistic) model2,13 as in equation 4; d) the proportion of 

times the lower limit of the confidence interval of the ICR (equation 6) calculated from a 

multiplicative logit binomial (logistic) model did not include 0; e) the proportion of times 

the lower limit of the confidence interval of the ICR calculated from a log-binomial 

model of risk did not include 0; and f) the proportion of times the lower limit of the 

confidence interval of the ICR calculated from a Poisson risk model did not include 0. For 

d-f all models were calculated using equation 7 and the SAS PROC NLMIXED procedure, 

which approximates Wald-confidence limits using the delta method.35,36 The strength of 

two exposures X1 and X2 was set using risk ratios ranging from 1 to 4; the strength of 

the interaction was set to be exactly halfway between additive risk differences and 

multiplicative risk ratios(κ=2 in equation 13) given the two assigned individual risk 

ratios; and a random draw from a binomial distribution was then used to assign the 
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disease outcome based on these effects. All methods have an expectation of high power 

when the risk ratios for both exposures exceeds 1.25.  

Figure 2 –Probability of detecting SCC interaction when it doesn’t exist (Type 1 error 

for six different proposed tests of interaction 

This figure presents the proportion of 1,000 simulations in which 500,000 individuals 

were included in each of four levels of combinations of two dichotomous exposures, X1 

and X2.  Six tests of interaction are presented: a) the p-value for the test of  α3≠0 from a 

linear risk model23,24 as in equation 1; b) the p-value for the test of β3 ≠ 0 in a log-

binomial risk model2 as in equation 2; c) the p-value for the test of β3 ≠ 0 in a 

multiplicative logit binomial (logistic) model2,13 as in equation 4; d) the proportion of 

times the lower limit of the confidence interval of the ICR (equation 6) calculated from a 

multiplicative logit binomial (logistic) model of risk did not include 0; e) the proportion 

of times the lower limit of the confidence interval of the ICR calculated from a log-

binomial model of risk did not include 0; and f) the proportion of times the lower limit of 

the confidence interval of the ICR calculated from a Poisson risk model did not include 0. 

For d-f all models were calculated using equation 7 and the SAS PROC NLMIXED 

procedure, which approximates Wald-confidence limits using the delta method.35,36 The 

strength of two exposures X1 and X2 was set using a risk ratios ranging from 1to 4; and 

the interaction was set to be exactly additive on the risk difference scale, or 

equivalently, RR(X1=1,X2=1)= RR(X1=1, X2=0)+RR(X1=0,X2=1)-1 (equation 11); and a 

random draw from a binomial distribution was then used to assign the disease outcome 

based on these effects. Methods based on tests to identify departures from 
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multiplicative risk ratios (parts b and c) identify interaction in these scenarios where SCC 

interaction does not exist due to departure from the assumed multiplicative risks.  Part 

d also shows high type 1 error due to overestimation of the ICR when using parameters 

of a multiplicative logit binomial (logistic) model when the outcome is common.  

 

Figure 3 – Probability of detecting an effect indicative of SCC interaction over a range 

between exactly additive risk differences and exactly multiplicative risk ratios when 

the individual risk ratios for two exposures X1 and X2 are 2.75 and 2.25 and sample 

size in each of four strata of exposure is 1000. 

   

This figure presents the proportion of 1,000 simulations in which 1,000 individuals were 

included in each of four levels of combinations of two dichotomous exposures, X1 and 

X2.  Eight tests for interaction are presented as clusters within the figure: a) the 

proportion of times when the lower limit of the Wald-based confidence interval of  the 

α3 term from a linear risk model did not include zero23,24; b) the proportion of times 

when the lower limit of the likelihood ratio-based confidence interval of  the α3 term 

from a linear risk model did not include zero;23,24  c) the proportion of times the lower 

limit of the confidence interval of the ICR (equation 6) calculated using Wald limits from 

a multiplicative logit binomial (logistic)25 model did not include 0; d) the proportion of 

times the lower limit of the confidence interval of the ICR (equation 6) calculated using 

likelihood ratio-based limits from a multiplicative logit binomial (logistic)25 model did not 

include 0; e) the proportion of times the lower limit of the confidence interval of the ICR 
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calculated using Wald limits from a Poisson risk model29,30 did not include 0; f) the 

proportion of times the lower limit of the confidence interval of the ICR calculated using 

Wald limits from a log-binomial model29 of risk did not include 0; g) the proportion of 

times the lower limit of the confidence interval of the ICR calculated using likelihood 

ratio-based limits from a Poisson risk model did not include 0; i) the proportion of times 

the lower limit of the confidence interval of the ICR calculated using likelihood ratio-

based limits from a log-binomial model of risk did not include 0;  . For c, e and f Wald-

confidence limits were approximated via the delta method35,36 using the ESTIMATE 

statement in SAS PROC NLMIXED25. For d, g, and h, likelihood ratio-based limits are 

calculated using SAS PROC NLP using code adapted from Kuss.25  The strengths of two 

exposures X1 and X2 were set to risk ratios of 2.75 and 2.25 respectively, relative to a 

baseline risk of disease of 0.05; the strength of the interaction was set to range between 

exactly additive risk differences and exactly multiplicative risk ratios given the two 

assigned individual risks using equations 11-13; and a random draw from a binomial 

distribution was then used to assign the disease outcome based on these effects. All 

tests for departures from additive risk differences based on linear binomial (a,b) or 

multiplicative risk models (e-h) have similar type 1 error rates and power to detect 

interaction effects in this range. For these tests power exceeds 80% only when the true 

ICR exceeds 1.25 (κ=1.75 in equation 13), i.e. when risk is closer to multiplicative than 

additive. Because the outcome is common, the power to detect an ICR based on 

multiplicative logit binomial risks (c,d) is higher than the corresponding tests of ICRs 

calculated from models where exponentiated parameters correspond to risk ratios 
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rather than odds ratios; however the type 1 errors are also higher for tests c and d than 

for tests e through h.    

Figure 4 – Probability of detecting sufficient component cause interaction when it 

does and doesn’t exist for 3 tests of definitive interdependence 

This figure presents the proportion of 1,000 simulations in which 500,000 individuals 

were included in each of four levels of combinations of two dichotomous exposures, X1 

and X2.  Three additional (relative to Figures 1 and 2) tests5 hypothesized to be 

sufficient conditions for detection of definitive interdependence when exposure effects 

cannot be assumed to be monotonic are presented in columns a-c: a) the proportion of 

times the lower limit of the confidence interval of the linear combination of parameters 

α3-α0 was greater than zero (equation 8 in the text); b) the proportion of times the lower 

limit of the confidence interval of the ICR calculated from a log-binomial model of risk 

did not include 1; and c) the proportion of times the one-sided p-value for both tests of 

β3+ β1 >log(2) and β3+ β2 >log(2) (equation 10) were < 0.05.  All tests were calculated 

using SAS with code included in Supplemental Appendix 2. The strength of two 

exposures X1 and X2 was set using a risk ratio ranging from 1 to 4. For the top row the 

strength of the interaction was set to be exactly halfway between exactly additive risk 

differences and exactly multiplicative risk ratios, given the two assigned individual risk 

ratios (κ=2 in equation 13). For the bottom row the interaction was set to be exactly 

additive on the risk difference scale, that is RR(X1=1,X2=1)= RR(X1=1, 

X2=0)+RR(X1=0,X2=1)-1 (equation 11).  A random draw from a binomial distribution was 

then used to assign the disease outcome based on these effects. Type 1 error rates for 
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these tests of interaction (bottom row) are less than 5%. When the true interaction 

effects are between those anticipated when risk differences are additive and what 

would be expected when risk ratios are multiplicative these three tests only detect this 

SCC interaction when the individual  risk ratios for exposures X1 and X2 are greater than 

2. 

 

Figure 5 – Comparison of the power to detect definitive interdependence when two 

dichotomous exposures can and cannot be assumed to have monotonic effects 

This figure presents the proportion of 1,000 simulations in which 750 individuals were 

included in each of four levels of combinations of two dichotomous exposures, X1 and 

X2.  Clusters of columns represent 5 different tests for SCC interaction and definitive 

interdependence. From right to left: a) the p-value for the test of  α3 ≠ 0 from a linear 

risk model23,24 as in equation 1; b) the proportion of times the lower limit of the 

confidence interval of the linear combination of parameters α3-α0 was greater than zero 

(equation 8 in the text)5; 3) the proportion of times the lower limit of the confidence 

interval of the ICR (equation 6) calculated from a log-binomial model of risk did not 

include 0; 4) the proportion of times the lower limit of the confidence interval of the ICR 

calculated from a log-binomial model of risk did not include 1; and 5)  the proportion of 

times the one-sided p-value for both tests of β3+ β1 > log(2) and β3+ β2 > log(2) (equation 

10) were < 0.05. Models were calculated using SAS with code included in Supplemental 

Appendix 2. The strength of two exposures X1 and X2 was set as a risk ratio of 2.5 



                                                                                                                                                         107  

compared to the unexposed who have an underlying risk of 0.05 (5%). In this figure the 

strength of the interaction was varied according to equation 13, such that the true ICR 

ranged from 0.45 to 1.8; and a random draw from a binomial distribution was then used 

to assign the disease outcome within each of four strata of combinations of levels of 

exposure based on these effects. The tests that identify definitive interdependence 

when the effects of X1 and X2 are monotonic (a and c), have higher power to detect 

interaction when it exists than do tests that make no assumption of monotonic effect 

(b,d,e).  However, none of the tests have very good power to detect interaction except 

at the strongest effect sizes presented, with greater than 80% power only when the 

ICR=1.8, close to the expected value of multiplicative risk ratios (ICR=2.25) for these 

individual exposure risks.  
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Figure 2 – Probability of detecting SCC interaction when it doesn’t exist (Type 1 error) for six different proposed tests 
for interaction 

Figure 1 – Power to detect SCC interaction for six different proposed tests for interaction 

Figure 1 – Power to detect SCC interaction for six different proposed tests for interaction 
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Figure 3 – Probability of detecting an effect indicative of SCC interaction over a range between exactly additive risk differences and 

exactly multiplicative risk ratios when the individual risk ratios associated with two exposures X1 and X2 are 2.75 and 2.25 and 

sample size in each of four strata of exposure is 1000. 

 

 

 

 

 

 

 

1
10

 
 



                                                                                                                                                         111  

 

 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

1
11

 
 

Figure 4 – Probability of detecting sufficient component cause interaction when it does and doesn’t exist for 3 tests 

of definitive interdependence 
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Figure 5 – Comparison of the power to detect definitive interdependence when two dichotomous exposures can 
and cannot be assumed to have monotonic effects 
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Supplemental materials for Aim 2:  

Supplemental Appendix 1: Notation, Definitions and Further description 

of simulation parameters, distinction between sufficient component 

cause interaction, definitive interdependence  and statistical 

interaction, and additional results 
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Notes on Notation 

 

Here we define the notation used in our work and contrast it with notation used in the 

definitions provided in the next section.  

In our examples we have two dichotomous exposures, labeled X1 and X2. In modern 

epidemiology1 similar examples use labels X and Z, while Vanderweele and Robins2,3 

used E1 and E2. We indicate the presence of the risk factor X1 via X1=1, and absence of 

the risk factor X1 via X1=0.  

We defined the risk of a dichotomous (0,1) outcome D as the probability of D=1 

conditional on the two dichotomous exposures X1 and X2: P(D|X1=x1, X2=x2). For 

example the risk of disease in the population exposed to X1 but not X2 would be given 

as P(D|X1=1, X2=0). We also use the shorthand R(X1, X2) to describe risk, the equivalent 

to P(D|X1=1,X2=0) would be R(10) as in Modern Epidemiology1, e.g. in Table 5-1 on 

page 73.  

We also use RR(X1,X2) to define the risk ratio for those with exposure to one or both of 

X1 or X2, relative to the baseline risk in the unexposed (P(D|X1=0,X2=0). For example 

we define the risk ratio RR(11) to mean RR(X1=1,X2=1) or P(D|X1=1,X2=1) / 

P(D|X1=0,X2=0).  

Finally, we define the excess relative risk as the risk ratio – 1 , such that additivity of risk 

differences can also be defined in terms of additivity of the excess risk ratios: (RR(11) – 
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1) = (RR(10) – 1) + (RR(01) – 1) which is algebraically equivalent to the condition when 

the Interaction Contrast Ratio (ICR)=0.  
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Dictionary of terms related to the concept of interaction and how they are used in 

our manuscript 

Sufficient component cause interaction/synergism/causal co-action –This type of 

interaction is generally defined within the framework of a sufficient component cause 

model. In this case, of the 9 possible combinations of two exposures X1 and X2 and their 

other necessary component causes, types F, G, H and I as defined in Figure 5-1 in 

Modern Epidemiology1 on pages 80-81 exhibit sufficient component cause interaction in 

that they require the presence of two different causes in the same sufficient cause for 

disease to occur. Although these pages explain the concept of sufficient component 

cause interaction, Vanderweele and Robins2 define it explicitly, but use the term 

“synergism”  on page 330: “we will say that 2 causes, E1 and E2, for some outcome D, 

exhibit synergism if E1 and E2 are ever present together in the same sufficient cause. If 

E1 and �̅�2 are present together in the same sufficient cause then the 2 causes E1 and E2 

are said to exhibit antagonism; in this case it could also be said that E1 and �̅�2 exhibit 

synergism. Note that E1 and E2 may exhibit both antagonism and synergism if, for 

example, E1 and E2 are present together in one sufficient cause and if E1 and �̅�2 are 

present together in another sufficient cause. In what follows we will not maintain the 

distinction between synergism and antagonism in so far as we will refer to a sufficient 

cause in which both E1 and �̅�2 are present as synergism between E1 and �̅�2 rather than 

as antagonism between E1 and E2.” Because others use “synergism” to refer to only a 

subset of sufficient component cause interaction we use the latter when we refer to this 

concept in the manuscript, with the abbreviation SCC interaction after the first usage. 
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Definite Interdependence – This term was coined by Vanderweele and Robins2, and 

formally defined as follows on pg. 332 (note that the use of “synergism” in the quote is 

as defined above, equivalent to SCC interaction): “Suppose that D and 2 of its causes, E1 

and E2, are binary. We say that there is definite interdependence between the effect of 

E1 and E2 on D if there exists an individual ω for whom one of the following holds: 

D10(ω) = D01(ω) = 0 and D11(ω) = 1; or D11(ω) = D00(ω) = 0 and D01(ω) = 1; or D11(ω) 

= D00(ω) = 0 and D10(ω) = 1; or D01(ω) = D10(ω) = 0 and D00(ω) = 1. The definition of 

definite interdependence is equivalent to the presence within a population of an 

individual with a counterfactual response pattern of type 7, 8, 10, 12, 14, or 15… 

although definite interdependence is sufficient for a synergistic relationship, it is not 

necessary. There may be synergism between E1 and E2 even if they do not exhibit 

definite interdependence.” We will use this term directly throughout the manuscript, 

particularly in the sections that describe conditions proposed by Vanderweele to test for 

this type of interaction.  

Biologic interaction – This term is defined in two ways within Modern Epidemiology1, 

one based on a potential outcomes model, the other based on the sufficient component 

cause model. In the potential outcomes model it is defined as any of the 16 possible 

potential outcome response types (See the last section of this appendix for a description 

of the counterfactual response types) for which the Interaction contrast is not = 0. This 

is best described in words on page 76 “For an interaction type, the effect of one factor 

depends on the person’s status for the other factor”.  The definition based on the 

sufficient component cause model is the same as that used above to define sufficient 
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component cause interaction, (again, what Vanderweele and Robins2 refer to as 

“synergism”), namely that “two or more component causes participate in the same 

sufficient cause” (Modern epidemiology, page 80.) However, Vanderweele and Robins 

point out (page 330 at the end of the second to last paragraph) “In contrast with 

“biologic interaction” which suggests that causes biologically act upon each other in 

bringing about the outcome, the term “synergism” suggests joint work on the outcome 

regardless of whether or not the causes act on one another.” Also on page 330, they 

provide an example of “synergism” in which no biologic mechanisms “act upon each 

other in bringing about the outcome” and state that they prefer not to use this term 

when they mean what they define as “synergism” and what we refer to as sufficient 

component cause interaction (see the definition of this term above for why 

Vanderweele’s definition2 is equivalent to sufficient component cause interaction as 

defined in Modern Epidemiology.1) We agree that the term “biologic interaction” is 

ambiguous and also refrain from using it in the current work.   

 

Statistical interaction/effect-measure modification – As defined in Modern 

Epidemiology on page 72, a departure from an additive or multiplicative risk model 

defined by a statistical test . Effect-measure modification is ambiguous and it is 

suggested that this term should be replaced with more specific phrasing. In our 

manuscript when we refer to statistical interaction we are generally referring to risk 

difference modification. Throughout the text we use risk difference modification or 

departure from additive risk differences to refer to tests involving interaction contrasts 
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and interaction contrast ratios and will specifically reserve risk-ratio or odds-ratio 

modification for the two tests we evaluate that actually are based on comparisons on 

the multiplicative (log or logit additive) scales.  

Exactly multiplicative risk ratios– When the combined effect of two exposures X1 and 

X2 is exactly what you would expect if the risk ratio comparing risk due to X1 to the 

baseline risk, P(D|X1=1,X2=0)/P(D|X1=0, X2=0) and the risk ratio comparing the risk due 

to X2 to the baseline risk P(D|X1=0,X2=1)/P(D|X1=0, X2=0) were multiplied together. In 

terms of the risks associated with X1 and X2 (as opposed to the risk ratios) this would 

mean that the probability of disease P(D) for those exposed to both X1 and X2 is defined 

by the product of the individual risks and the inverse of the baseline risk: 

P(D|X1=1,X2=1)= P(D|X1=1, X2=0) * P(D|X1=0, X2=1)*(1/P(D|X1=0,X2=0)). For 

multiplicative risk models as defined by equation 2 in the main text, exactly 

multiplicative risk ratios would lead to β3=0. Rothman has shown (Modern 

Epidemiology1 pages 82-83, reiterated on pages 299-300) that the condition of exactly 

multiplicative risk ratios indicates a departure from additive risk differences and thus 

indicates the presence of sufficient component cause interaction.  

Exactly additive risk differences – This concept is defined in Modern epidemiology1 on 

page 72: “When both X1 and X2 have effects and the risk difference of one remains 

constant across levels of the other, e.g. (P(D|X1=1,X2=1 – P(D|X1=0, X2=1)= R11–R01 = 

P(D|X1=1,X2=0) – P(D|X1=0,X2=0)= R10-R00, so there is no modification of risk 

differences … the combined effect for X1 and X2 on risk can be computed simply by 
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adding together the separate risk differences for X1 and X2.”  Exactly additive risk 

differences occur when the combined effect of two exposures X1 and X2 is exactly what 

you would expect if the risk differences associated with X1 and X2 were added together. 

In terms of risk (the probability of disease P(D)) for those exposed to both X1 and X2 it is 

defined by: P(D|X1=1,X2=1)= P(D|X1=1, X2=0) + P(D|X1=0, X2=1) – P(D|X1=0,X2=0). In 

this case Rothman has shown (Modern Epidemiology1 pages 77-78) that while a 

departure from additive risk differences indicates the presence of interaction response 

types in the potential outcomes model and SCC interaction as defined, because in the 

potential outcomes framework interaction response types may cancel each other out, 

the condition of exactly additive risk differences does not rule out the possibility of 

sufficient component cause interaction occurring in the population under study. In fact 

Vanderweele and Robins2 provide an example in their Appendix 3 to explicitly show why 

“There can be synergism without the risk difference condition P(D=1|E1=1, E2=1, C=c) – 

P(D=1|E1= 0, E2=1, C=c) > P(D=1|E1=1,E2=0, C=c) –P(D= 1|E1=0, E2=0, C= c) holding.” 

 

Monotonic effect – Again, this term is defined explicitly in Vandweerle and Robins2 as: 

“We will say that E1 has a positive monotonic effect on D if for all individuals ω we have 

Dij(ω) ≥ Di’j(ω) whenever i ≥ i’ ; we will say that E2 has a positive monotonic effect on D if 

for all individuals ω we have Dij(ω) ≥ Dij’(ω) whenever j ≥ j’. Similarly, we will say that E1 

has a negative monotonic effect on D if for all individuals ω we have Dij(ω) ≤ Di’j(ω) 

whenever i ≤ i’ and that E2 has a negative monotonic effect on D if for all individuals ω 

we have Dij(ω) ≤ Dij’(ω) whenever j ≤ j’.  The definition of a monotonic effect essentially 
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requires that some intervention either increase or decrease some other variable D—not 

merely on average over the entire population, but rather for every individual in that 

population, regardless of the other intervention. The requirements for the attribution of 

a monotonic effect are thus considerable.”  When an exposure (e.g. X1) is dichotomous 

this can be translated to the condition that exposure only either causes or prevents 

disease. In the potential outcomes framework (as described in more detail later in this 

appendix) requiring two dichotomous exposures to both exhibit monotonic effects 

eliminates response types 3,5,7,9,10,11,12,13,14,15 such that only interaction response 

types 2 and 8 remain as potential outcomes that exhibit synergistic (Vanderweele’s 

usage) effects; in the sufficient component cause model this eliminates sufficient cause 

types D, E G H and I, so that only type F remains among the possible sufficient causes 

that exhibit sufficient component cause interaction.  This concept and the implications 

of it are defined and utilized to formulate a test for synergism by Vanderweele2,3 and 

discussed as a condition in which “we assume that neither factor is ever preventive” but 

not specifically defined as monotonic effects in Modern Epidemiology1 on pages 79 and 

82.  
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Description of model parameters used in each output in the main text and this 

appendix 

In Supplemental Appendix 2 we have provided SAS code that was used to make Figure 3 

in the main text as well as Supplemental Figures 4 and 5; here we provide a description 

of the simulations conducted in that code and which factors were varied to make the 

various Tables and Figures included in our work. In all of our simulations we model two 

dichotomous exposures X1 and X2, and their relationship with disease outcome D. 

Supplemental Figure 1 illustrates that the possible combinations of these two 

dichotomous exposures result in four possible levels of risk for D. Variables included in 

the simulation and the ways in which these variables were manipulated to create all 

output presented are listed in Supplemental Table 1. Table 1 in the main text provides a 

listing of each of the tests of interaction evaluated and shows in which tables and 

figures of each of these evaluations are presented, as well as the SAS code in appendix 2 

that is used for each test.  
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Supplemental Figure 1: Two equivalent causal representations of the relationship 

between exposures X1 and X2 and disease outcome D.  The right side has been 

adapted to show the sufficient component causes containing different combinations 

of X1 and X2, similar to the example presented by Vanderweele and Robins.4   
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Supplemental Table 1: Parameter values varied in simulations and corresponding Table and Figure outputs 

Scenario Measure Output 

Sample size in doubly exposed group  

(X1=1, X2=1) 

Effect Size (Risk 

ratio) associated 

with each 

exposure 

Interaction Effect size    

500,000 Range between 1 

and 4 

Fixed at halfway between 

additive on the risk 

difference scale and 

multiplicative on the risk 

ratio scale 

Ability to 

detect 

interaction 

when present 

(Power) 

Figure 1 

500000 Range between 1 

and 4 

Fixed at exactly additive risk 

difference 

Probability of 

detecting SCC 

interaction 

Figure 2 
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Scenario Measure Output 

Sample size in doubly exposed group  

(X1=1, X2=1) 

Effect Size (Risk 

ratio) associated 

with each 

exposure 

Interaction Effect size    

when it is not 

present (Type 

1 Error) 

5% of the population independently 

exposed to X1 and X2, with total 

population of: 50,100, 500, 750, 1000, 

5000, 10000,20000,50000,75000, 

100000, and 500000 and expected 

sample size for the population X1=1 

RR(X1=1,X2=0) 

=2.75 

RR(X1=0,X2=1) 

=2.25 

Fixed at RR(X1=1,X2=1) 

=5.0925 (halfway between 

additive on the risk 

difference scale and 

multiplicative on the risk 

ratio scale) 

Power Supplemental 

Figure 2 
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Scenario Measure Output 

Sample size in doubly exposed group  

(X1=1, X2=1) 

Effect Size (Risk 

ratio) associated 

with each 

exposure 

Interaction Effect size    

and X2=1 to be 0.25% of these totals 

As in a randomized controlled trial with 

sample size in each arm (including X1=1 

and X2=1) of:  50 to 500 by 50, 1000, 

5000, 10000 to 15000 by 1000, 20000, 

50000, 75000, 100000 and 500000 

RR(X1=1,X2=0) 

=2.75 

RR(X1=0,X2=1) 

=2.25 

Fixed at RR(X1=1,X2=1) 

=5.09375 (halfway between 

additive on the risk 

difference scale and 

multiplicative on the risk 

ratio scale) 

Power Supplemental 

Figure 3 

200 RR(X1=1,X2=0) 

=2.75  

Range from exactly additive 

on the risk difference scale 

Power Supplemental 

Figure 4 
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Scenario Measure Output 

Sample size in doubly exposed group  

(X1=1, X2=1) 

Effect Size (Risk 

ratio) associated 

with each 

exposure 

Interaction Effect size    

RR(X1=0,X2=1) 

=2.25 

to exactly multiplicative on 

the risk ratio scale 

1000 RR(X1=1,X2=0) 

=2.75  

RR(X1=0,X2=1) 

=2.25 

Range from exactly additive 

on the risk difference scale 

to exactly multiplicative on 

the risk ratio scale 

Power Figure 3, 

Supplemental 

Figure 5 

500000 Range 1 to  4 Fixed at halfway between 

additive on the risk 

difference scale and 

Power Figure 4 
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Scenario Measure Output 

Sample size in doubly exposed group  

(X1=1, X2=1) 

Effect Size (Risk 

ratio) associated 

with each 

exposure 

Interaction Effect size    

multiplicative on the risk 

ratio scale 

500000 Range  1 to 4 Fixed at exactly additive on 

the risk difference scale 

Type 1 error Figure 4 

750 RR(X1=1,X2=0)= 

RR(X1=0,X2=1)=2.5 

Range from exactly additive 

on the risk difference scale 

to exactly multiplicative on 

the risk ratio scale 

Power Figure 5 

750 RR(X1=1,X2=0)= Range from exactly additive Power Supplemental 
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Scenario Measure Output 

Sample size in doubly exposed group  

(X1=1, X2=1) 

Effect Size (Risk 

ratio) associated 

with each 

exposure 

Interaction Effect size    

RR(X1=0,X2=1)=1.5 on the risk difference scale 

to exactly multiplicative on 

the risk ratio scale 

Figure 6 

750 RR(X1=1,X2=0)= 

RR(X1=0,X2=1)=3.5 

Range from exactly additive 

on the risk difference scale 

to exactly multiplicative on 

the risk ratio scale 

Power Supplemental 

Figure 7 
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Description of the range of risks of disease D assigned for those exposed to both X1 

and X2 in the simulated data 

The methods used to assign exposure and disease status in the simulated population are 

described in the main text. Here we elaborate further on the range of values for the ICR 

that results from assignment of the combined risk for persons assigned both 

dichotomous exposures over a range of risk ratios associated with each exposure X1 and 

X2. Supplemental table 2 shows the ICR for values of RR(X1=1,X2=0) and RR(X1=0,X2=1) 

under the exactly additive risk difference and exactly multiplicative risk ratio scenarios 

as well as for κ = 2 for equation 13 in the main text.   
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Supplemental Table 2: Example of the magnitude of the Interaction Contrast Ratio 

(ICR)a for two dichotomous exposures wherein the combined risks exhibited exactly 

additive risk differences, exactly multiplicative risk ratios or the combined risk was 

somewhere in between these two values. 

  RR(X1=1,X2=0)b 

  1.5 2.5 3.5 

 RR(X1=0, 

X2=1)b 

   

Risk difference is exactly additive 

RR(X1=1,X2=1)= 

RR(X1=1,X2=0)+RR(X1=0,X2=1)-1 

1.5 0 0 0 

2.5  0 0 

3.5   0 

Risk ratio is exactly multiplicative 

RR(X1=1,X2=1)= 

RR(X1=1,X2=0)*RR(X1=0 X2=1) 

1.5 0.25 0.75 1.25 

2.5  2.25 3.75 

3.5   6.25 

Risk is (exactly halfway) between additive 

risk differences and multiplicative risk 

ratios 

RR(X1=1,X2=1)= 

(RR(X1=1,X2=0)+RR(X1=0,X2=1)-1) + 

(((RR(X1=1,X2=0)*RR(X1=0,X2=1))- 

(RR(X1=1,X2=0)+RR(X1=0,X2=1)-1))/2c) 

   

 

 

 

1.5 

 

 

 

 

0.125 

 

 

 

 

0.375 

 

 

 

 

0.625 

2.5  1.125 1.875 

3.5   3.125 

 

a) The ICR is calculated as RR(X1=1,X2=1)-RR(X1=1,X2=0)-RR(X1=0,X2=1)+1  
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b) In simulations the values of each risk ratio were varied between 1 and 4 to 

provide a range of effect sizes. The probability of disease in the unexposed (i.e. 

P(D|X1=0, X2=0)) was fixed at 0.05 and multiplied by these risk ratio values to 

obtain the probability of disease when exposed to one or both of X1 and X2.  

c) In simulations the value of the divisor κ was varied between 1.25 and 5 to 

provide a range of true interaction effects (the larger the number the closer the 

effect is to additive risk differences) between additive risk differences and 

multiplicative risk ratios. 
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In this section we provide additional results that supplement the findings reported in 

the main paper.  

Power to detect greater than additive risk differences and the need to use study 

designs where the number of participants exposed to both exposures can be 

controlled experimentally 

We used two different methods to simulate a population exposed to both X1 and X2. In 

both cases a binomial distribution was used to generate the data. First, we simulated an 

observational epidemiologic study in which the population is not selected based on 

exposure risk, or assigned exposure experimentally. This method was used only to 

develop Supplemental Figure 2.  We assign a probability of exposure to each covariate 

(P(X1=1) and P(X2=1)) independently using a draw from a binomial distribution with 

probability equal to 0.05, 0.10, and 0.30. This results in approximately 0.0025, 0.01, and 

0.09 of the population exposed to both X1 and X2, respectively. Within this scenario we 

consider total population sizes between 50 and 500000 people, resulting in an expected 

mean of up to 500000*0.0025 = 1250 persons exposed to both X1 and X2 when each 

exposure occurs independently in 0.05 of the population. An alternative method was 

used for all other tables and figures including Supplemental Figure 3 and is described in 

the main text, but the description is repeated here for completeness. For this version of 

the simulations, which we call the randomized controlled trial (RCT) scenario, we 

assigned X1 and X2 as if exposure was assigned experimentally as in a RCT of both X1 

and X2. The population is the same size in each of the 4 exposure categories or “arms” 

of the trial depicted in Supplemental Figure 1.  We considered sample sizes (for each 

arm) of 200, 500, 750, 1000 and 500000, with the last scenario, with a total population 
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size of 2 million, designed to emulate the performance of the various tests for 

interaction in expectation.  

 

Supplemental Figures 2 and 3 show the power of each of 6 measures of interaction to 

detect true interaction effects when both exposures have strong individual effects 

(RR(X1=1,X2=0)=2.75, RR(X1=0,X2=1)=2.25) and the interaction effect is exactly halfway 

between what would be observed in the case of additive risk differences and 

multiplicative risk ratios (κ=2 in equation 13). In this case RR(X1=1, X2=1)=5.0925 which 

leads to an ICR of 1.0925, indicative of SCC interaction. Figure 2 shows that, when each 

exposure is rare, it would take hundreds of thousands of subjects to acquire the power 

necessary to detect SCC interaction. Supplemental Figure 2 shows that, under a study 

design where the number of persons with exposure to both X1 and X2 is controlled, 

over 1000 participants are required in each of four strata of exposure to detect 

interaction of this magnitude. Both Figures show the same trend for the individual 

measures, with the log-binomial models showing better power than Poisson models and 

linear-binomial or additive risk models showing similar power to log-binomial models. 

These figures also show that methods based on likelihood-ratio tests have slightly better 

power than those based on Wald methods. 
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Supplemental Figure 2: Power and sample size for 6 tests of SCC interaction when 

0.25% of the total population is exposed to both of 2 exposures 
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Supplemental Figure 3: Power and sample size for each of four levels of combinations 

of two dichotomous exposures for 6 tests of SCC interaction  
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Power to detect SCC interaction is limited to both large sample sizes and interaction 

effects that are closer to multiplicative on the risk ratio scale than additive on the 

risk difference scale 

Supplemental Figures 4-7 provide additional information on the power to detect SCC 

interaction over a range of values between exactly additive on the risk difference scale 

and exactly multiplicative on the risk ratio scale, at fixed sample sizes and risk ratios for 

each exposure. In figure 4 the sample size in each of four (See supplemental Figure 1) 

levels of the two dichotomous exposures is fixed at 200, such that the total sample size 

for the simulated study is 800. Supplemental Figure 5 increases the sample size to 1000 

in each level or 4000 overall (this figure is similar to Figure 3 in the main text, but 

includes results for tests of departure from multiplicative models defined as in equation 

2, where the test is whether the interaction term β3 is different from zero). In both 

figures the risk ratios are fixed at RR(X1=1,X2=0)=2.75 and RR(X1=0,X2=1)=2.25, 

representing relatively strong individual effects.  The underlying prevalence of disease in 

the unexposed (X1=0 and X2=0) population is 5%, such that disease occurs in more than 

10% of the population exposed to either X1 or X2 and in >20% of the population 

exposed to both X1 and X2. Supplemental Figure 4 suggests that no test of interaction 

will be able to detect an interaction effect that is greater than what would be expected 

if risk differences were additive but less than that expected when risk ratios are 

multiplicative reliably when only 200 participants are included in each strata of 

combinations of X1 and X2.  A maximum of just over 60% of all simulations produced a 

significant test of interaction for tests of either IC>0 or ICR>0. Note also that, even at 

this moderate sample size, the Wald and likelihood ratio methods for estimating 
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confidence intervals for both the IC and ICR parameters produce nearly identical results, 

suggesting that Wald limits may be adequate for testing for interaction when it is 

present. Further, traditional tests of departure from multiplicative risk ratios (i.e. β3 ≠0 

in models defined as equation 2 or 4) have high type 1 error rates when risk differences 

are exactly additive (ICR=0 in the legend, the leftmost bar in each cluster) and perform 

poorly relative to tests of effect modification on the risk difference scale at all levels of 

the ICR. In Supplemental figure 5, when sample size is increased to 4000, all tests of 

effect modification on the risk difference scale perform adequately when the amount of 

interaction is closer to multiplicative than additive (an ICR of 1.094 represents the 

midpoint between exactly additive risk differences and exactly multiplicative risk ratios, 

κ=2 in equation 13, when the risk ratios of RR(X1=1,X2=0)=2.75 and 

RR(X1=0,X2=1)=2.25). None of the tests of effect modification on the risk difference 

scale perform well when the interaction effect is less than halfway between exactly 

additive risk differences and exactly multiplicative risk ratios. Again the tests of 

interaction parameters in multiplicative risk models perform even worse in terms of 

their ability to detect interaction effects greater than additive risk differences but less 

than multiplicative risk ratios at this sample size, with large type 1 error rates due to 

their ability to detect departures from the multiplicative model in the absence of any 

true SCC interaction, and a general inability to detect interaction as the combined 

effects approach the expected value under the condition of multiplicative risk ratios.  



 

  

1
3

9 

Supplemental Figure 4: Comparison of the Type 1 error rates and Power to detect SCC interaction effects that are greater than 

additive on the risk difference scale and less than multiplicative on the risk ratio scale, for 8 tests of interaction over a range of 

true combined effects of two dichotomous variables 
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1) NLMIXED calculates confidence limits for linear combinations of parameters through a delta method approximation, in this 

case the limits approximate Wald limits  

2) NLP produces profile likelihood limits for parameters, including the ICR reported here 

3) An ICR of zero represents a situation with exactly additive risk differences and any detected interaction represents type 1 

error 
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Supplemental Figure 5: Comparison of the Type 1 error rates and Power to detect SCC interaction for 8 tests over a range of true 

interaction effects, measured as the proportion of 1000 simulations in which each effect was detected, when the risk ratios for 

exposures X1 and X2 equal 2.75 and 2.25, respectively, and 1000 participants are included in each of four strata of exposure to X1 

and X2 
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2) NLP produces profile likelihood limits for parameters, including the ICR reported here 

3) An ICR of zero represents a situation with exactly additive interaction and any detected interaction represents type 1 error 
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More on the differences between detecting interaction, SCC interaction and 

definitive interdependence 

 

As defined by Vanderweele and Robins2 exposure effects are monotonic when they only 

cause and never prevent disease, or vice versa, for all individuals in the population. This 

is an important assumption that is often not known to be valid in studies being 

undertaken to investigate potential causes of disease.   

Supplemental Table 5 is adapted from Table 5-2 in Modern Epidemiology,1 and presents 

the individual interaction contrast values for each of 16 possible counterfactual 

conditions arising from  combinations of potential dichotomous disease outcome D of 

two dichotomous exposures X1 and X2. In this framework causal types labeled 3,5,7,8 

and 15 show positive interdependence, in that the observed effects of X1 and X2 are 

greater when both are present than for one exposure alone and as a result the IC is 

greater than zero. Conversely types 2, 9, 10, 12 and 14 show negative interdependence, 

with their effects reduced when both exposures are present compared to situations 

where only one is present; for these types the IC is less than zero. At the population 

level, where pi represents the proportion of the study population with causal type i, the 

IC has been shown2,3 to be: 

IC  = R11 – R10 – R01 + R00 

= p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 – (p1 + p2 + p5 + p6 + p9 + p10 + p13 + p14) – 

(p1 + p2 + p3 + p4 + p9 + p10 + p11 + p12) + (p1 + p3 + p5 + p7 + p9 + p11 + p13 + p15) 
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= (p3 + p5 + 2p7 + p8 + p15) – (p2 + p9 + 2p10 + p12 + p14) 

which is the difference between the proportion of the population with positive 

interdependence  and the proportion with negative interdependence types. This is why 

departures from zero for the IC indicate that some interaction is present in the 

population. However, the IC can be exactly zero in a situation when the proportion with 

positive interdependence exactly cancels out with the proportion of the population with 

negative interdependence. Note also that causal types 7 and 10 have an IC with an 

absolute value of 2 because in both cases the effect of one variable reverses across 

strata of the other variable, e.g. for type 7, persons exposed to X2 get disease only when 

also exposed to X1, while persons not exposed to X2 only get disease when they are also 

not exposed to X1. Inclusion of people with types 7 or 10 in the study cohort is one 

reason the IC does not provide a direct estimate of the proportion of the overall effect 

due to interaction. The other reason is the potential for types 3, 5, 9, 11, 12, 13, 14, 15, 

where exposure can prevent disease. These are the types that lead to a lack of 

monotonic effects of X1 and X2 on disease as described by Vanderweele,2,3 and make it 

more difficult to untangle true sufficient component cause interaction from effect 

modification on the risk difference scale detected on the basis of an IC or ICR greater 

than zero. However, Vanderweele2,3 showed that if we can exclude types in which one 

or both exposures prevent disease (3,5,7,9,10,11,12,13,14,15) then the IC becomes a 

comparison of the proportions of the population with type 8 and type 2, and if the IC is 

greater than zero then we can conclude that there must be some SCC interaction 

because potential outcome type 8 only arises from a sufficient component cause in 
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which both exposures are component causes.  This is the condition that he defines as 

definitive interdependence. Additionally he showed that even if we can’t make 

assumptions about monotonic effects of X1 and X2, a test of R11 – R10 – R01 > 0, 

parameterized as either equation 8 or equation 9 in the main text is sufficient to 

conclude definitive interdependence has been detected when the test concludes that it 

is present. This is because such a test simplifies the calculation of the inequality to be  

(p7 + p8) – (p1 + p2 + 2p9 + 2p10 + p11 + p12 + p13 + p14) > 0 

and, if this is true then some people with either types 7 or 8 must be present, and both 

types achieve disease only through SCC interaction. The implications of this restriction 

to the tests for interaction based on effect modification on the risk difference scale are 

presented in Figure 5 in the main text and Supplemental Figures 6 and 7. Supplemental 

Figure 6 shows the power to detect an interaction when the sample size is fixed at 750 

in each of four exposure categories as defined in Supplemental Figure 1, for a total 

sample size of 3000, with the risk ratios for X1 and X2 set to 1.5, and a range of 

interaction effects created with equation 13 corresponding to ICRs of 0.05, 0.083, 0.143 

and 0.20. Supplemental Figure 6 clearly shows that none of the tests presented is 

powered to detect interaction when the effects are this small. Supplemental Figure 7 

increases the individual risk ratios for X1 and X2 to 3.5, and, again using equation 13 to 

create a range of effects that are greater than additive on the risk difference scale but 

less than multiplicative on the risk ratio scale, presents ICRs of 1.25, 2.08, 3.51, and 5.0. 

Here we see that, as in Figure 5 in the main text, although all of the tests have high 
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power to detect an ICR of 3.51 or 5.0, there is a large drop in the proportion of times 

when the effect is detected when we add the restrictions suggested by Vanderweele.2,3 

Clusters 2, 4, and 5 show power for tests of definitive interdependence, while clusters 1 

and 3 show traditional tests for departures from risk difference additivity, which 

Vanderweele shows only test for definitive interdependence when X1 and X2 are 

monotonic. 
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Supplemental Table 3: Listing of 16 potential outcome types for two dichotomous 

exposures X1 and X2 and a dichotomous outcome, with individual values of the 

Interaction Contrast (IC) for each type 

 Individual  Risk IF:  

Causal 

Type X1=1, X2=1 X1=0, X2=1 

X1=1, 

X2=0 

X1=0, 

X2=0 IC 

1 1 1 1 1 0 

2 1 1 1 0 -1 

3 1 1 0 1 1 

4 1 1 0 0 0 

5 1 0 1 1 1 

6 1 0 1 0 0 

7 1 0 0 1 2 

8 1 0 0 0 1 

9 0 1 1 1 -1 

10 0 1 1 0 -2 

11 0 1 0 1 0 

12 0 1 0 0 -1 
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 Individual  Risk IF:  

Causal 

Type X1=1, X2=1 X1=0, X2=1 

X1=1, 

X2=0 

X1=0, 

X2=0 IC 

13 0 0 1 1 0 

14 0 0 1 0 -1 

15 0 0 0 1 1 

16 0 0 0 0 0 
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Supplemental Figure 6: Comparison of the power to detect SCC interaction when it exists when the monotonicity1 of effects X1 

and X2 can and cannot be assumed: Results of 1000 simulation when X1 and X2 both have a risk ratio of 1.5 relative to the 

baseline risk of disease of 5%  
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Supplemental Figure 7: Comparison of the power to detect SCC interaction when it exists when the monotonicity1 of effects X1 
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Supplemental Appendix 2: Example SAS code for all tests of interaction 

evaluated  
ods html close; 

ods listing; 

 

proc format; value power 0-0.05="Detected" 0.05<-high="Not Detected"; 

    Value ICR_power low-0="Not Detected" 0<-

high="Detected"; 

    value icr_powerb low-1="Not Detected" 1<-

high="Detected"; 

    run; 

 

ods listing close; 

ods trace off; 

 

data from_RRs3; 

array RR (9) RR1-RR9; 

do n=200,500,750,1000;*I am surprized (even though I know the outcome 

is very rare, how wide the CI's still are; 

call streaminit(1234); 

do rep=1 to 1000; 

Do RR10=1.5, 2.5,3.5; 

do RR01=1.5, 2.5,3.5; 

do type=1,2,3,5,7,9; 

if type=1 then do; 

rr1=.; 

rr2=.; 

rr3=.; 

rr4=.; 

rr5=.; 

rr6=.; 

rr7=.; 

rr8=.; 

rr9=.; 

end; 

if type=1 then RR(type)=RR10+RR01-1;*Exactly additive, used to assess 

type 1 error; 

if type=2 then RR(type)=RR10*RR01;*Exactly multiplicative; 

*A Range of values between additive and multiplicative, used to assess 

power 

over a range of effects; 

if type=3 then RR(type)=RR(1)+((RR(2)-RR(1))/5); 

if type=4 then RR(type)=RR(1)+((RR(2)-RR(1))/4); 

if type=5 then RR(type)=RR(1)+((RR(2)-RR(1))/3); 

if type=6 then RR(type)=RR(1)+((RR(2)-RR(1))/2); 

if type=7 then RR(type)=RR(1)+((RR(2)-RR(1))/1.75); 

if type=8 then RR(type)=RR(1)+((RR(2)-RR(1))/1.5); 

if type=9 then RR(type)=RR(1)+((RR(2)-RR(1))/1.25); 

*if type=10 then RR(type)=R10*RR01*1.2; 

do p0=.05 ;*This and RR10 act to determine the number of events; 

true_ICR=RR(type)-RR10-RR01+1; 

true_ic=true_icr*p0; 

R10=RR10*p0; 

R01=RR01*p0; 

R11=RR(type)*p0; 
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*Assume that there is a fixed population (variable n above) in each 

risk group; 

*This is a way to represent the counterfactual risks and the "ideal" 

RCT; 

 

count=rand("Binomial",p0,n); 

e1=0; e2=0; 

output; 

count=rand("Binomial",R10,n); 

e1=1; e2=0; 

output; 

count=rand("Binomial",R01,n); 

e1=0; e2=1; 

output; 

count=rand("Binomial",R11,n); 

e1=1; e2=1; 

output; 

end; 

end; 

end; 

end; 

end; 

end; 

run; 

options notes; 

proc sort data=from_RRs3 out=for_figures; 

by rep type R11 RR10 RR01 ; 

*suggest you only use one sample size to limit output; 

Where n=1000 and type in(3,9) and RR10=1.5; 

*Can use the commented statement above (remove first semi-colon and 

asterisk (;*)) to limit the range of interaction effects included in 

analysis; 

run; 

 

 

*This code is necessary because of the large number of simulation runs; 

*In practice, with one dataset with which to implement these tests of 

interaction this code  

is unnecessary and the notes/output may be informative; 

ods trace off; 

ods html close; 

ods listing close; 

options nonotes; 

ods results off; 

 

 

 

*Example 1: Linear risk model to produce estimates of the interaction 

contrast (IC); 

ods output estimates=ICsRR; 

proc genmod data=for_figures descending; 

by rep type R11 RR10 RR01; 

*where rr11=&RR11_2; 

class e1(param=ref ref="0") e2(param=ref ref="0"); 

model count/n=e1 e2 e1*e2/link=identity dist=binomial lrci; 

*Comments below calculate risks at each of four levels of exposure; 

*estimate "R10" intercept 1 e1 1 ; 
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*estimate "R01" intercept 1 e2 1 ; 

*estimate "R11" intercept 1 e1 1 e2 1 e1*e2 1 ; 

*estimate "R00" intercept 1; 

estimate "IC"  e1*e2 1; 

*Commented code produces estimates of risk differences; 

*estimate "RD RR10-RR00" e1 1; 

*estimate "RD RR01-RR00" e2 1; 

*estimate "RD RR11-RR00" e1 1 e2 1 e1*e2 1; 

run; 

 

 

 

 

ods results off; 

ods listing close; 

*Example 2: Log-binomial risk model, Interaction contrast ratio cannot 

be calculated directly in GENMOD,  

but a test of multiplicative interaction provided by default; 

ods output 

parameterestimates=B3_LogRiskRR2(where=(trim(left(upcase(parameter)))="

E1*E2")); 

proc genmod data=for_figures descending; 

by rep type R11 RR10 RR01; 

*where rr11=&rr11_2; 

class e1(param=ref ref="0") e2(param=ref ref="0"); 

model count/n=e1 e2 e1*e2/link=log dist=binomial lrci; 

run; 

 

 

ods results off; 

ods listing close; 

options nonotes; 

ods output 

parameterestimates=B3_ORRR2(where=(trim(left(upcase(parameter)))="E1*E2

")); 

*Example 3: Logit risk model, will produce overestimates of risk when 

outcome is common; 

proc genmod data=for_figures descending; 

by rep type R11 RR10 RR01; 

class e1(param=ref ref="0") e2(param=ref ref="0"); 

model count/n=e1 e2 e1*e2/link=logit dist=binomial; 

run; 

 

 

*Examples above show B3 is significant in multiplicative models with 

exactly additive risk... but what happens when we calculate the ICR?; 

 

ods listing close; 

options nonotes; 

ods results off; 

ods trace off; 

 

ods output additionalestimates=NLM_ICR_RR1; 

*Example 4: Logit risk model in NLMIXED to estimate ICR directly, with 

Wald-like confidence limits; 

*Title2 "PROC NLMIXED Wald CI for ICR"; 
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*This is a logit risk model, so estimates of ICR do not approximate 

true estimates well when outcome is common; 

PROC NLMIXED DATA=for_figures DF=10000 ; 

by rep type R11 RR10 RR01; 

PARMS beta0=0 b_e1=.4055 b_e2=.4055 

           b_interaction=0; 

 

     eta=(beta0+b_e1*e1+b_e2*e2+b_interaction*e1*e2); 

  p= exp(eta)/(1+exp(eta)); 

     MODEL count~Binomial(n,p); 

*Use NLMIXED to calculate the ICR directly, with degrees of freedom 

(df=) very large to approximate Wald confidence intervals for the ICR 

estimate; 

 

     ESTIMATE "ICR" exp(b_e1+b_e2+b_Interaction)- 

                    exp(b_e1)-exp(b_e2)+1; 

 

   

RUN; 

 

 

 

ods listing close; 

ods results off; 

options nonotes; 

ods output additionalestimates=NLM_ICR_RR2; 

 

PROC NLMIXED DATA=for_figures df=10000; 

by rep type R11 RR10 RR01; 

*Example 5: Log-binomial risk model, calculates the ICR directly with 

Wald-like Confidence intervals when df=10000 (see Kuss 2008); 

PARMS beta0=-4 b_e1=.4055 b_e2=.4055 

           b_interaction=0;*A large negative starting value for 

intercept helps convergence in log-binomial models; 

 

     eta=(beta0+b_e1*e1+b_e2*e2+b_interaction*e1*e2); 

  mu=exp(eta); 

 * p= exp(eta); 

  ll = count*log(mu)- mu - lgamma(count+1); 

     MODEL count~general(ll); 

     ESTIMATE "ICR" exp(b_e1+b_e2+b_Interaction)- 

                    exp(b_e1)-exp(b_e2)+1; 

*Can also calculate the Estimate for ICR>1 proposed by Vanderweele 

(2009); 

 ESTIMATE "TVW2009" exp(b_e1+b_e2+b_Interaction)- 

                    exp(b_e1)-exp(b_e2); 

*And the newest estimate for the proportion of total effect due to 

interaction (pX1=pX2=0.5 in our RCT design...); 

 estimate "TVW2014" (exp(b_e1+b_e2+b_Interaction)-exp(b_e1)-

exp(b_e2)+1)*.5 

       / 

        (exp(b_e1)-

1+(exp(b_e2+b_e1+b_Interaction)-exp(b_e2)-exp(b_e1)+1)*.5); 

   

RUN; 
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ods listing close; 

ods results off; 

options nonotes; 

ods output additionalestimates=NLM_ICR_RR3; 

PROC NLMIXED DATA=for_figures df=10000; 

by rep type R11 RR10 RR01; 

PARMS beta0=-4 b_e1=.4055 b_e2=.4055 

           b_interaction=-1; 

 

*Example 6: Poission risk model, slightly worse power than the log-

binomial model, probably due to inability to estimate robust standard 

errors; 

     eta=(beta0+b_e1*e1+b_e2*e2+b_interaction*e1*e2); 

  p= exp(eta); 

  ll =  count*log(p) + (n-count)*log(1-p); 

     MODEL count~general(ll); 

     ESTIMATE "ICR" exp(b_e1+b_e2+b_Interaction)- 

                    exp(b_e1)-exp(b_e2)+1; 

    

RUN; 

 

*PROC NLP can be manipulated to calculate the ICR directly, but 

estimating other version proposed by  

Vanderweele is not as simple; 

*NLP provides both Wald and Profile likelihood limits, at the sample 

sizes required to show an effect these 

are nearly the same!; 

Options nonotes; 

ods listing close; 

ods results off; 

 

ods output WaldPLLimits=NLP_PL_Limits_ICR1; 

*title2 "PROC NLP Profile and WALD CI for the ICR"; 

PROC NLP DATA=for_figures VARDEF=N cov=2 pstderr maxit=200 all; 

by rep type R11 RR10 RR01; 

 *Bounds -500 <= ICR <= 500; 

 PARMS beta0=-3, b_e1=1.4, b_e2=1.4, 

           ICR=1; 

     b_interaction=log((ICR+exp(b_e1)+  

                        exp(b_e2)-1)/ 

                       (exp(b_e1)*exp(b_e2))); 

  Eta=beta0+b_e1*e1+b_e2*e2+b_interaction*e1*e2 ; 

*Example 7: Logit risk model, again a poor estimate of the true ICR 

because the outcome is common; 

p=    exp(eta)/ 

       (1+ exp(eta)); 

 

     loglike=((count)*log(p)) + ((n-count)*log(1-p)); 

 

     MAX loglike; 

 

     PROFILE ICR /alpha=.05 ; 

RUN; 

 

*Example 8: Richardson and Kaufman demonstrated a linear odds model in 

which the B3 parameter of NLMIXED is manipulated to estimate the ICR 

directly (on the logit scale); 
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*As with Examples 4 and 7 this overestimates the true ICR because 

interaction can only be detected when the effects are strong and 

therefore the outcome is common; 

 

*their macro used data in the "counting" format of input, so let's 

create a dataset in that form for our example; 

data for_figures_freq; 

set for_figures; 

freq=count; 

outcome=1; 

output; 

freq=n-count; 

outcome=0; 

output; 

run; 

 

 

%macro bounds (data= , outcome= , odds= , param= , replicate=);  

 

ods output fitstatistics = fitstatistics 

ParameterEstimates=ParameterEstimates;  

ods listing close; 

ods results off; 

proc nlmixed data=&data ;  

by rep n type R11 RR10 RR01 ; 

odds = &odds;  

where rep=&rep and n=&n and type=&type; 

model &outcome ~ binary( odds/(1+odds) );  

%if %scan(&replicate,1) ne %str() %then %do; 

replicate &replicate; 

%end; 

run; 

 

 

data fitstatistics;  

set fitstatistics; 

 if (Descr = "-2 Log Likelihood") then do;  

 call symput ('LL', put(value,best16.));  

 call symput("refLL",put(value,best16.));  

 end;  

run; 

 

data ParameterEstimates;  

set ParameterEstimates;  

if (PARAMETER = "&param") then do;  

call symput("istep",put(STANDARDERROR,best16.));  

call symput("ibeta",put(ESTIMATE,best16.));  

end;  

if (PARAMETER = "b0") then call symput("ibeta0",put(ESTIMATE,best16.));  

if (PARAMETER = "b1") then call symput("ibeta1",put(ESTIMATE,best16.));  

if (PARAMETER = "b2") then call symput("ibeta2",put(ESTIMATE,best16.));  

run; 

 

 

data lci uci;  

set _null_;  

 null= 0;  
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 neglogl=0;  

 difference=0;  

 param=0;  

 step=0;  

%DO I = 1 %TO 2;  

%* I=1 is Lower Bound ;  

 %let conv=0;  

 %let step=&istep;  

 %let beta=&ibeta;  

%DO %WHILE (&CONV=0);  

 ods output fitstatistics = fitstatistics 

ParameterEstimates=ParameterEstimates;  

 proc nlmixed data=&data ;  

 by rep n type R11 RR10 RR01 ; 

 where rep=&rep and type=&type and n=&n; 

 parms b0=&ibeta0 b1=&ibeta1 b2=&ibeta2 ;  

 &param=&beta;  

 odds = &odds;  

 model &outcome ~ binary( odds/(1+odds) );  

 title1 "beta is &beta " ;  

 %if %scan(&replicate,1) ne %str() %then %do; 

 replicate &replicate; 

 %end; 

 Run; 

 

 data fitstatistics;  

 set fitstatistics;  

 format value best16.;  

 if (Descr = "-2 Log Likelihood") then call symput ('LL', 

put(value,best16.));  

 run;  

 

 data ParameterEstimates;  

 set ParameterEstimates;  

 if (PARAMETER = "b0") then call 

symput("ibeta0",put(ESTIMATE,best16.));  

 if (PARAMETER = "b1") then call 

symput("ibeta1",put(ESTIMATE,best16.));  

 if (PARAMETER = "b2") then call 

symput("ibeta2",put(ESTIMATE,best16.));  

 run; 

 

 %let diff=%sysevalf(&LL-&refLL); 

 %if %sysevalf(3.8413 <= &diff) %then %do;  

  %if %sysevalf( &diff <= 3.8415) %then %do;  

   %let CONV=1;  

  %end;  

 %end;  

 %if %sysevalf( &diff > 3.8415 ) %then %do;  

  %IF &I=1 %then %let beta=%sysevalf(&beta+&step);  

  %IF &I=2 %then %let beta=%sysevalf(&beta-&step);  

  %let step=%sysevalf(&step*0.5);  

 %end;  

 data tmp;  

 null= &refLL;  

 neglogl=&LL;  

 difference=&diff;  
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 param=&beta;  

 step=&step;  

 run;  

 %IF &I=1 %then %do;  

 proc append base =lci data = tmp; 

 run;  

 %end;  

 

 %IF &I=2 %then %do;  

 proc append base =uci data = tmp; 

 run;  

 %end; 

 

 %IF &I=1 %then %let beta=%sysevalf(&beta-&step);  

 %IF &I=2 %then %let beta=%sysevalf(&beta+&step);  

 %end;  

 %end;  

 /*  

 dm 'out; clear; pgm';  

 proc print data=lci;  

 title1 "95% Lower Confidence Bound - Iterations";  

 run; 

 

 proc print data=uci;  

 title1 "95% Upper Confidence Bound - Iterations";  

 run; 

 */ 

 data lb (keep=PARAM);  

 set lci end=eof;  

 if eof then output lb;  

 run; 

 

 data ub (keep=PARAM);  

 set uci end=eof;  

 if eof then output ub;  

 run; 

*the code below was added to the original Kaufman macro to allow this 

to run the simulated data with multiple repetitions and across a range 

of parameter values; 

 

proc sql; 

create table output as 

select a.param as lb, b.param as ub, 

input(trim(left(symget("rep"))),best.) as rep,  

    input(trim(left(symget("n"))),best.) as n,  

    input(trim(left(symget("type"))),best.)as type,  

    input(trim(left(symget("ibeta"))),best.) as estimate 

from lb as a, ub as b; 

quit; 

%if %sysfunc(exist(out)) %then %do; 

 data out; 

 set out output; 

 run; 

 %end; 

%else %do; 

   data out; 

   set output; 
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   run; 

  %end; 

 

/*data bd (rename=(param=Bound)); 

 merge lb ub;  

 by _n; 

 rep=&rep; 

 type=&type; 

 n=&n; 

 run; 

 

ods listing; 

 proc print data=bd NOOBS;  

 title1 "Likelihood-Based 95% Lower and Upper Confidence Bounds 

for Paramater &param";  

 title2 "Point Estimate is &ibeta";  

 run;  

*/ 

%mend bounds; 

 

 

options nomprint nomlogic nosymbolgen nonotes; 

ods results off; 

ods listing close; 

*this macro is added to call the Richardson and Kaufman code many times 

over the simulated repetitions and a range of interaction effects; 

%macro wrapper ; 

%do rep=1 %to 1000;*Change as needed; 

%let typea=1 2 4 6 7 9; 

%let n=1000;*again limited to one sample size at a time; 

%do kd=6 %to 6; 

%let type=%scan(&typea,&kd);*Limit number of types, here only type 9; 

%bounds (data=from_rrs_freq, outcome=outcome, odds=exp(b0)*(1+ b1*e1 + 

b2*e2 + b3*e1*e2), param=b3,replicate=freq ); 

%end; 

%end; 

%mend wrapper; 

 

%wrapper 

 

ods listing close; 

options nonotes; 

ods results off; 

ods output WaldPLLimits=NLP_PL_Limits_ICR2; 

title2 "PROC NLP Profile and WALD CI for the ICR"; 

PROC NLP DATA=for_figures VARDEF=N cov=2 pstderr maxit=200 all; 

by rep type R11 RR10 RR01; 

*where rep in (1,2); 

*where rr10=2.75 and rr01=2.25 ; 

 

 *Bounds -500 <= ICR <= 500; 

 PARMS beta0=-3, b_e1=1.4, b_e2=1.4, 

           ICR=1; 

     b_interaction=log((ICR+exp(b_e1)+  

                        exp(b_e2)-1)/ 

                       (exp(b_e1)*exp(b_e2))); 

  Eta=beta0+b_e1*e1+b_e2*e2+b_interaction*e1*e2 ; 
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     p=    exp(eta); 

  *Example 9: Poission risk model, virtually identical to NLMIXED 

output, i.e. worse than the log-binomial in terms of type 1 error and 

power; 

  ll = count*log(p)- p - lgamma(count+1); 

      

 

     MAX ll; 

 

     PROFILE ICR /alpha=.05 ; 

RUN; 

 

 

ods listing close; 

options nonotes; 

ods results off; 

ods output WaldPLLimits=NLP_PL_Limits_ICR3; 

ods trace off;; 

PROC NLP DATA=for_figures VARDEF=N cov=2 pstderr maxit=200 all; 

by rep type R11 RR10 RR01; 

*where rep =1 ;*and RR10=1.2 and RR01=3.4; 

*where rr10=2.75 and rr01=2.25 ; 

 

 *Bounds -500 <= ICR <= 500; 

 PARMS beta0=-4, b_e1=1.4, b_e2=1.4, 

           ICR=1; 

     b_interaction=log((ICR+exp(b_e1)+  

                        exp(b_e2)-1)/ 

                       (exp(b_e1)*exp(b_e2))); 

  Eta=beta0+b_e1*e1+b_e2*e2+b_interaction*e1*e2 ; 

     p=    exp(eta); 

  *Example 10: Log-binomial model, nearly identical to NLMIXED 

output; 

  ll = count*log(p)+(n-count)*log(1-p); 

      

 

     MAX ll; 

 

     PROFILE ICR /alpha=.05 ; 

RUN; 

 

 

*Below this line tests will be for causal interaction per Vanderweele 

2007 and 2009, rather than any interaction; 

*Example 11: Test of a3-a0>0 from linear risk model; 

ods output estimates=ICsRR2; 

ods output contrasts=TVWLRtest; 

ods output 

parameterestimates=a3_LogRiske1_e2a2(where=(trim(left(upcase(parameter)

))="E1*E2")); 

ods output 

parameterestimates=a0_LogRiske1a2(where=(trim(left(upcase(parameter)))=

"INTERCEPT")); 

proc genmod data=for_figures descending; 

by rep type R11 RR10 RR01; 

*where rr11=&RR11_2; 

class e1(param=ref ref="0") e2(param=ref ref="0"); 
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model count/n=e1 e2 e1*e2/link=identity dist=binomial lrci; 

 

*estimate "R10" intercept 1 e1 1 ; 

*estimate "R01" intercept 1 e2 1 ; 

*estimate "R11" intercept 1 e1 1 e2 1 e1*e2 1 ; 

*estimate "R00" intercept 1; 

estimate "IC"  e1*e2 1; 

*Estimate produces the value of a3-a0 and a likelihood ratio based 

confidence interval by default; 

*Vanderweele proposes that a test of a3-a0>0 represents a test for 

causal interaction; 

estimate "TVW" e1*e2 1 intercept -1/; 

*the contrast statement provides an actual likelihood ratio test of the 

signficance of this term, although it is a two-sided test; 

contrast "TVW" e1*e2 1 intercept -1; 

*estimate "RD RR10-RR00" e1 1; 

*estimate "RD RR01-RR00" e2 1; 

*estimate "RD RR11-RR00" e1 1 e2 1 e1*e2 1; 

run; 

 

 

data tvw; 

*Limit output to data of interest; 

set icsrr2; 

where label="TVW"; 

run; 

 

proc sql; 

*combine estimates into a summary table; 

create table tvw_Ic as  

select a.type,a.rr10, 

a.rr01,trim(left(put(a.type,best8.)))||"_"||trim(left(put(a.rr10,best8.

)))||"_"||trim(left(put(a.RR01,best8.))) as indicator, 

  a.estimate as a0, b.estimate as a3, a3-a0 as tvw_ic,  

 (c.meanlowercl>0) as test_ICgt0, ((d.probchisq<.05) and 

((b.lowerlrcl-a.lowerlrcl)>0)) as test_JOINT_MANUAL 

  from a0_logriske1a2 as a, a3_logriske1_e2a2 as b,tvw as 

c,tvwlrtest as d 

  where a.rep=b.rep=c.rep=d.rep and a.type=b.type=c.type=d.type 

and a.RR10=b.RR10=c.RR10=d.rr10 and a.RR01=B.RR01=c.rr01=d.rr01; 

  quit; 

 

*We can also develop these tests from within a log-binomial risk model, 

as in eq 10 in the main text; 

ods output 

parameterestimates=B3_LogRiske1_e2(where=(trim(left(upcase(parameter)))

="E1*E2")); 

ods output 

parameterestimates=B3_LogRiske1(where=(trim(left(upcase(parameter)))="E

1")); 

ods output 

parameterestimates=B3_LogRiske2(where=(trim(left(upcase(parameter)))="E

2")); 

proc genmod data=for_figures descending; 

by rep type R11 RR10 RR01; 

class e1(param=ref ref="0") e2(param=ref ref="0"); 

model count/n=e1 e2 e1*e2/link=log dist=binomial lrci; 
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store work.genmod2; 

run; 

 

*You can calculate the ICR by hand, and could program your own delta 

method solution to the Confidence intervals if you were so inclined; 

proc sql; 

create table byhand as 

select 

a.rr10,a.rr01,a.type,trim(left(put(a.type,best8.)))||"_"||trim(left(put

(a.rr10,best8.)))||"_"||trim(left(put(a.RR01,best8.))) as indicator, 

  a.estimate as b1, b.estimate as b2, c.estimate as b3, 

(exp(b1 + b2 + b3) -  

exp(b1) - exp(b2) +1) as ICR  

from B3_logriske1 as a, b3_logriske2 as b, b3_logriske1_e2 as c 

where a.rep=b.rep=c.rep and a.type=b.type=c.type and 

a.rr10=b.rr10=c.rr10 and a.rr01=b.rr01=c.rr01; 

run; 

quit; 

 

*But PROC PLM will conduct a JOINT test of Vanderweele's requirements 

for you; 

data _null_; 

testval=put(log(2),16.15); 

call symput("testval",testval); 

run; 

%put &testval; 

 

ods listing close; 

ods results off; 

options nonotes; 

ods output 

plm.estimates=KDTV_est_testval1(where=(trim(left(upcase(label)))="TESTV

ALA")); 

ods output 

plm.estimates=KDTV_est_testval2(where=(trim(left(upcase(label)))="TESTV

ALB")); 

*Example 12: THE PLM procedure produces ChiBar square tests of the 

joint, one-sided inequality, but these do not perform well with 

dictomous outcomes; 

ods output plm.contrasts=kdtv_Pvals_testval2; 

*Testval makes the macro run more easily and is probably more 

straightforward in general; 

*Note that with 1000 repetitions this takes a long time (much longer 

than examples above) but it does eventually finish, 

and for a single dataset this is not a problem; 

proc plm source=work.genmod2; 

estimate "testvala"  e1*e2 1 e1 1 ,"testvalb" 

    e1*e2 1 e2 1 /e  upper joint testvalue=&testval 

adjust=T cl ; 

 

run; 

*this dataset manipulates the output from PROC PLM to test for the 

joint effects described in eq 10 of the main text manually; 

*ChiBar square output can also be considered, but it behaves strangely 

when the strength of one effect is <RR=2 and the other has an effect 

RR>2; 

proc sql; 
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create table byhand2 as 

select a.rep,a.type, a.rr10,a.rr01, 

trim(left(put(a.type,best8.)))||"_"||trim(left(put(a.rr10,best8.)))||"_

"||trim(left(put(a.RR01,best8.))) as indicator, 

  a.estimate as T1, b.estimate as T2, 

((put(a.probZ,power.)="Detected") and (put(b.probz,power.)="Detected")) 

as kdtest,c.probchibarsq  

from kdtv_est_testval1 as a, kdtv_est_testval2 as b,kdtv_pvals_testval2 

as c 

where a.rep=b.rep=c.rep and a.type=b.type=c.type and 

a.rr10=b.rr10=c.rr10 and a.rr01=b.rr01=c.rr01; 

run; 

quit; 
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Chapter 5 - Specific Aim 3 

Additional background on Infectious Disease modeling 

Epidemiologic considerations 

Quantifying the effect of an intervention designed to reduce the transmission of an 

infectious disease is complicated by the lack of independence between the disease in 

one individual and the requirement that that individual also interact with someone 

susceptible to disease (not yet infected) in order to cause a new case of disease.1 This 

complicates the definition of a counterfactual effect for an intervention, because the 

effects of multiple individuals can be seen to “interfere” with each other leading to 

multiple potential outcomes with the same set of exposures depending on how 

individual members of the population and population level factors such as disease 

prevalence interact.1-3  However, this also means there is an opportunity for the effects 

of an intervention be be greater than the expected effect, particularly when 

interventions can be combined, this concept is also referred to in the infectious disease 

modeling literature as “synergy”.4  Vanderweele (ref) discusses the detection of this 

“interference” and its relation to detection of sufficient cause interaction, defining 

interference as a population average effect greater than the individual direct effects of 

the intervention – interaction of effects in the sense of Chapter 5, but at the population 

level.3  However, the examples he uses involve no more than 2 individuals (one treated, 

one untreated), and as described in the overall background for this proposal, scaling a 

directed acyclic graph (DAG) or potential outcomes model to the population level would 

be a challenge.1,2,5   
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Compartmental Models 

However, methods have been developed to model transmission dynamics of many 

infectious diseases, including sexually transmitted infections.  The simplest model for 

infectious disease transmission that adequately accounts for these dependencies is the 

Kermack-McKendrick model of population transmission dynamics.6-7 Because persons 

infected with HIV do not develop immunity and recover, the simplest model of HIV 

transmission would contain only two compartments, one for those susceptible to 

infection, and another with those infected with HIV.  This “SI” model would be 

completely defined by only two differential equations: 

𝜕𝑆

𝜕𝑡 
= 𝐵 − 𝛽𝑆𝐼 − 𝜇(𝑁 − 𝑆) 

Figure 1: Compartmental model of HIV transmission 
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𝜕𝐼

𝜕𝑡 
= 𝛽𝑆𝐼 − (𝜇 + 𝜖)𝐼 

Where B= the number of new births in time t, S= the number of persons in the 

population that is susceptible to disease, I=the number infected at time t.  The greek 

letters β, µ and ε correspond to rates of infection, death due to causes other than 

disease and death due to disease respectively.  The model of Granich8 and that shown 

as Figure 1 are examples of how this simple compartmental model can be expanded to 

allow for heterogeneity in population risk(through the addition of more compartments 

with different rates of risk), and changes in risk over time(through either additional 

compartments or partial differential equations). Figure 1 is even simpler than the 

Granich model as it does not distinguish HIV serostatus knowledge or treatment in the 

acute or late stages from treatment in other stages, and limits the population at risk of 

HIV infection to a proportion f that ever engage in risk.  As illustrated by Granich,8 when 

a compartmental model is adequately developed, simulations can be performed in both 

the presence and the absence of an intervention, to quantify the counterfactual average 

effects at the population level.   

These models have gained popularity because they allow for the derivation of an 

analytic solution to the model through a system of ordinary differential (or partial 

differential) equations.  However, the use of “compartments” leads to only population 

average effects, because we model the average movements of groups of individuals 

over time.6-7  This approach makes sense for a variety of pathogens, e.g. respiratory 

viruses such as influenza, where persons are exposed to an airborne pathogen and their 
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interaction with infected individuals is not necessary for disease to occur.  Furthermore, 

for rare diseases (in the general population HIV occurs in less than 5% of the population 

even in sub-Saharan countries such as Nigeria,9 and in less than 2% of the population in 

areas such as China and the US9-10), with very low probability of transmission during a 

given exposure (a per sex act risk <<1/100 for all but receptive anal sex11) stochastic, or 

random chance effects can mean the difference between the extinction of an epidemic 

and an outbreak in a closed population.  The deterministic Kermack-McKendrick model 

can be modified to capture stochasticity, by substituting a distribution of values for each 

parameter (greek letter in Figure 1) and sampling from that distribution.  However, this 

leads to a loss of the simple analytic solution for the model.7    

For a sexually transmitted disease, the interaction with two individuals leading to 

exposure is explicitly defined (pun intended).   It is possible, through the use of 

increasing complex ODE models with more and more compartments, to make the 

interaction between populations more explicit.  However, for a sexually transmitted 

disease the timing of interactions between groups defines transmission risk as well.10-14  

Figures 2 and 3 show two examples of sequencing of sexual partnerships.  
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Figure 2: Schematics of sexual partnerships over time from the perspective of two individuals A1 and C4, with no concurrency 

(overlap of partnerships) for person C4.  

If group A individuals do not interact with an infected person in group B and subsequently become infected before or while engaging 

in a sexual relationship with group C then there is no risk from the group A person or the group B person to the group C person.  In 

Figure 2, only persons C4, C5, and C6 are at risk of HIV infection.  However, if there is overlap between partnerships the risk of 

infection can increase by to the power of the number of overlapping partnerships (i.e. exponentially).  In Figure 3 person C6 is also at 

risk due to the overlap between C4’s relationship with C6 and A1.    
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Figure 3: Sexual partnerships with overlap for person C4.  

So the timing of the interactions of groups matters, and this can be captured through the use of partial differential equations.  When 

using a system of partial differential equations, a closed form solution becomes far more complicated, and depending on the 

parameters available to be held fixed, a closed form solution may not be estimable. Coupled with the desire to add complexity 

through stochasticity for our model for HIV transmission we end up in a situation where our model becomes one of simulated 

interactions amongst population groups over time. 
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Agent-based models 

If we take pains to add stochasticity and time-dependant interactions to our model, we 

can do so by explicitly modeling individuals, rather than groups of individuals, and their 

interactions over time.  Such models are called individual or agent-based models.15-16  

These models create a population of individuals with given characteristics (agents) and 

then model their interactions explicitly through a series of tests of probabilistic 

equations designed to mimic how persons come into contact, in this case, have sex, and 

then move on to the next interaction.  They allow us to form and dissolve relationships 

based on described distributions of partner types, and relationship duration, defined by 

sampling from these distributions over the course of time.  In our case, we can then add 

an intervention that affects some or all of the population at a given point in time, and 

see what would have happened in the presence and absence of the intervention.  

Exponential Random Graph Models 

In the current work we developed a separable temporal exponential random graph 

model17 (STERGM) for sexual partnership formation.  STERGMs are the dynamic, 

stochastic and agent-based extension of cross-sectional exponential random graph 

models (ERGMs) and as such allow for simulation of stochastically evolving sexual 

partnership networks.18,19 These models accommodate the statistical dependence 

among partnerships described in Figures 2 and 3, and model parameters describe 

factors associated with both partnership formation and dissolution over time.  The 

ability to include statistical dependence among partnerships (e.g. as in the case of two 
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or more partnerships overlapping in time, see figure) is a major strength of the 

applicability of the ERGM framework to the modeling of sexual partnerships, since 

classical compartmental methods  for modeling HIV transmission cannot capture such 

dependence.12-13 Additionally ERGMs allow us to define a set of network features, and 

the STERGM portion of the model allows simulation of partnership formation and 

dissolution over time while maintaining the underlying network structure (within 

stochastic variation). This give statistical rigor to partnership formation and dissolution, 

making STERGM models reproducible within stochastic variation and mathematically 

tractable in ways that agent-based models are not able to be.15-17   
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Aim 3 - Manuscript to be submitted to Lancet HIV 

 

Introduction 

 

In the US HIV epidemic, men who have sex with men (MSM) have been, and continue to 

be, the most heavily impacted HIV risk group.1-2 Recent estimates of HIV incidence 

among young black MSM have led to calls3,4 for immediate action to improve HIV 

prevention in the United States. HIV-infected persons who are not aware of their HIV 

infection are more likely to engage in behaviors that place their partners at risk of HIV 

transmission, and there is meta-analytic evidence that most persons who learn of their 

HIV-positive status take steps to reduce the risk of HIV transmission to others.5  

The US Centers for Disease Control (CDC) recommends that MSM should test for HIV at 

least annually.6,7 However, recent reports suggest that most men are not testing for HIV 

this frequently.4,7-8 How many US MSM have ever tested, how frequently they test, and 

if MSM should test more frequently than once a year are still under debate.9-15 In 

addition to behavioral changes that result from an HIV diagnosis, this diagnosis serves as 

a necessary but insufficient first step to receiving HIV medical care and antiretroviral 

treatment, which can result in reduced viral load and associated decreases in 

infectiousness.16 In the United States, a minority of those diagnosed with HIV actually 

achieve viral suppression.17-19 The proportion of all infections that are diagnosed and the 

testing frequency among MSM are increasing7 but there has been relatively little change 

in the proportion of all diagnosed persons achieving viral suppression17-19, with some 
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estimates18 suggesting that this proportion has recently decreased. It is unclear if the 

potential behavioral changes associated with increased awareness of HIV infection 

resulting from increased testing frequency are sufficient to result in reduced incidence 

in the absence of increased viral suppression in the population. 

We developed interaction and transmission models, parameterized using data from a 

national online survey of MSM20 to assess the impact of increases in testing frequency 

on 3-year HIV incidence, and to determine how testing frequency interacts with viral 

suppression, test sensitivity and the proportion of the population seeking testing.  

Methods 

Modeling strategy and source of parameter values 

 

We developed individual based models (IBMs) using the time-varying extensions of 

exponential random graph models (ERGMs), called Separable Temporal ERGMs 

(STERGMs).21  STERGMs have the ability to capture statistical properties of sexual 

networks, a feature that cannot be described in either IBMs alone or within 

compartmental (e.g., susceptible-infected) models  for HIV transmission.22  We used this 

methodology to define partnership formation and dissolution and simulate HIV 

transmission in a MSM sexual network of 5250 men. STERGM models were fit using the 

Statnet21 suite of packages in R, and we use customized extensions to the R package 

EpiModel23 to control testing intervention parameters within our simulations.  

A national online survey of MSM provided information on behaviors with up to five 

partners in the 6 months prior to interview,20,24 data that were used to define 
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partnership formation and dissolution parameters of the model.  Additional detail about 

the structure of our STERGM model and other model parameters that were held 

constant in all simulations is included in the Supplemental appendix.  The survey also 

collected: partnership type (main, casual, and one-time), current partners (number at 

the time of interview) and in the last 6 months, partnership duration, and self-reported 

HIV serostatus of the participant and each reported partner. In addition, a 735-person 

subset of study participants was tested for HIV at baseline, and, if HIV-negative, enrolled 

in follow-up with an HIV-test performed 12 months after completion of the baseline 

questionnaire.  This longitudinal follow-up provided a measure of HIV incidence against 

which to validate our model.25  

Statistical analysis of outcomes from model simulations 

 

The model was utilized to assess the impact of hypothetical manipulations of HIV testing 

on HIV incidence, circulating virus, and time to diagnosis. These simulated interventions, 

including changes in testing frequency distribution and other testing intervention 

parameters were varied as described in Panel 1 and the Supplemental Appendix, and 

complete cohorts were simulated 20 times to capture the stochastic variation inherent 

in the model and develop a sample of populations in which three year incidence of HIV 

infection could be summarized. Supplemental Figures S4 and S5 describe the rationale 

for presenting data on 20 simulations of each scenario. We calculated the median and 

interquartile range, used these observed incidence measures to calculate incidence 

rates, then compared these values for the baseline model and models with modified 
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testing frequency distributions or other key factors related to HIV testing as described in 

Panel 1.     

Investigation of the effects of changes in testing frequency on transmission dynamics  

 

Like individual based models, our STERGM approach allow us to: track each MSM 

throughout the 3-year simulation; calculate summary measures of the number of 

infected men, their total viral load, and the number of onward transmissions each man 

contributes; and stratify each of these measures by serostatus awareness, and testing 

status.  Calculation details appear in the Supplemental Appendix.  The model records 

how often each man tests for HIV and calculates the time between infection and 

diagnosis. To assess the impact on HIV incidence, we compare the distributions of these 

intermediate factors and their impact on HIV transmission dynamics in the population 

across levels of testing frequency and other testing interventions.   

Investigation of population level interactions of testing intervention components 

 

To address how the effect of increasing testing frequency varied depending on the 

values for parameters of other testing interventions under our control in the 

simulations, we evaluated the effect of testing frequency at higher levels of viral 

suppression, with more sensitive tests, and with more complete coverage of testing 

interventions (i.e. with fewer MSM who never test for HIV). We modified these variables 

to represent typical US situations as well as an ideal situation, and assess the effect of 

increasing testing frequency under each of these counterfactual scenarios. By varying 

one facet of a testing intervention at a time and then combining interventions we can 
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describe any synergy across interventions, where the effect of interventions in 

combination is more (or less) than when each intervention was implemented on its 

own. 

Results 

Baseline model and the effects of increases in testing frequency  

Our baseline scenario, in which 80% of the MSM population test on average annually 

with 43·4% of the diagnosed population achieving viral suppression (Panel 1), resulted in 

a median of 422·5 infections over three years, corresponding to an incidence rate of 

2·87 per 100 person-years (Table). In this scenario, over 11,000 HIV tests were 

performed over the 3-year study period. Both the total number of tests performed 

(Figure 1) and the mean number of tests per person (Supplemental Appendix, Table S3) 

increased as testing frequency increased. Under the scenario where participants tested 

every 90 days, we observed a greater than 3-fold increase in testing compared to 

baseline.  Both the median time from infection to diagnosis and the variance around 

that time decreased with more frequent testing (Figure 2). HIV incidence decreased 

slightly (Figure 1) but not meaningfully with increasing testing frequency.   

Effects of testing interventions other than increases in testing frequency 

In simulations that reflected other possible interventions related to HIV testing, 

incidence did not change from baseline with more sensitive HIV tests (detection at 22 or 

even 0 days), or with decreasing proportions of the population that does not ever test 

(Table). In contrast, increasing from the estimated US national average17 of 43.4% 

achieving viral suppression to 68.5% (corresponding to a scenario where all those 
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currently estimated to be receiving HIV care17 are suppressed) reduced the median 

incidence by 24% to 2·19 per 100 person-years (IQR: 2·03–2·47). Increasing the 

proportion virally suppressed to an ideal goal of 100% of those diagnosed reduced 

incidence to a median of 1·43 per 100 person-years (IQR: 1·32–1·57), a reduction of 50% 

relative to baseline.  

Effects of increases in testing frequency under a scenario where viral suppression is 

improved 

To investigate why increasing the frequency of testing had little to no impact on HIV 

incidence, whereas HIV care had a large impact, we estimated the proportion of the 

total infections and circulating viral load in each stage of serostatus awareness and 

infection, under varied testing and care scenarios.  Figures 3 and 4, and Figure S3 in the 

supplemental appendix show how increasing testing frequency can only have a limited 

impact on the total circulating viral load (Figure 3) and, as a result, on transmitted 

infections (Figure 4), because diagnosis alone only moves those previously undiagnosed 

to the diagnosed group and has a small impact on circulating viral load overall.  

However, if treatment coverage can be increased, changes in testing frequency begin to 

have a greater impact on HIV transmission. Figures 3 and 4 show that increasing viral 

suppression among those whose infection is diagnosed reduces circulating viral load 

(Figure 3) and onward transmission (Figure 4) substantially within both the baseline 

testing scenario and a scenario where MSM test every 90 days. In Figure 3, when the 

diagnosed population no longer contributes to the total circulating viral load, increasing 

testing frequency to once every 90 days and using a test that detects HIV within 22 days 
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of infection removes an additional 26% of the circulating viral load, reducing the total 

viral load to only 35% of the baseline estimate.  In Figure 4, under the baseline testing 

scenario, a change to a more sensitive test alone also does not have any impact on 

incidence. However, when treatment coverage improves to 100% of the diagnosed, 

changing to a more sensitive test appears to decrease incidence even further than 

increasing treatment coverage or testing frequency alone. Figure 5 shows the 

proportion of all infections averted for each component of this last scenario. With three 

testing interventions combined, there is an additional 7% reduction in incidence over 

the 3-year simulation, over and above what was observed when each intervention was 

applied to the population individually. A similar synergistic effect was observed when 

viral suppression among the diagnosed population was 100% and more (93% compared 

to 80% at baseline) MSM test for HIV at least annually (See supplemental appendix).  

Discussion  
 

We developed a simulation model for MSM sexual partnerships parameterized in part 

by data from an online survey of MSM, and evaluated 4 hypothetical interventions 

related to HIV testing in terms of their effects on resulting HIV incidence in our 

simulated population over a short (3-year) period. We found that, at current rates of 

HIV viral suppression in the US, increasing the frequency of HIV testing by MSM 

increased the numbers of test performed, but did little to affect 3-year incidence of HIV. 

The only scenario that led to reduced HIV incidence was increasing the proportion of 

MSM who proceed from diagnosis to achieve HIV viral suppression. Under the 
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assumption that 100% of those who are diagnosed with HIV achieve viral suppression, 

circulating viral load and, ultimately, HIV transmissions could be reduced if MSM tested 

every 90 days instead of testing annually. Thus, increased HIV testing frequency for 

MSM has a role to play as part of a comprehensive package of services that culminates 

in effective linkage and care, but, according to our data, it would not lead to reductions 

in HIV incidence if implemented without improvements in downstream continuum 

steps. 

Our baseline scenario was parameterized using behavioral data from a prospective HIV 

incidence cohort of US MSM,20,25 and produced an annualized estimate of HIV incidence 

of 2·87/100 person years). The cohort study observed a very similar HIV incidence 

(2·4/100 person years; 95% CI 1·4–4·1),25 which suggests our model was reasonably 

calibrated. The model estimates of incidence and the cohort estimate are consistent 

with meta-analysis results describing the annual HIV incidence among MSM recruited 

from community-based studies in the US (mean 2·25, 95% CI: 2·05–2·45).26 In addition, 

we achieved a baseline distribution of HIV testing frequency that was consistent with 

our survey data and which produced relatively stable estimates of HIV testing over time, 

but at equilibrium values that may be more realistic than those used in other models of 

HIV testing behavior.9-15  

Our finding that testing frequency had little to no impact on 3-year HIV incidence is 

consistent with several of these other studies. Gray9 found that increasing testing to 

twice or four times annually resulted in a non-significant trend in infections averted, 
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with reductions in 10 year incidence of 8·5% (range -5·7–20%) and 13·8% (-4·2–20·6%) 

respectively. For the baseline scenario in her deterministic model of HIV transmission, 

Long12 assumed that only 23% of high-risk individuals (including MSM) test annually; the 

counterfactual scenarios were to deploy high sensitivity testing strategies (i.e., able to 

identify persons at 22, 17 and 11 days after infection). She found a large reduction in 

HIV incidence if more high risk people tested annually, but only small marginal benefits 

from testing every 6 months. Semi-annual testing of MSM with a test with a 17 day 

window period was estimated to provide a 1·9% reduction in incidence at a cost of $4·9 

billion dollars for additional testing.12 Likewise, Lucas10 found that testing MSM every 3 

months would be the “optimal” strategy, being cost effective ($45,074/QALY), but at a 

cost of $8·1 billion per year. It is unclear whether the publically and privately funded 

healthcare systems responsible for such testing are prepared to absorb these costs. 

Khanna15 studied a scenario where testing frequency was tailored to personal risk 

(based on number of non-main sex partners with whom condomless anal intercourse 

occurs), and found this strategy to significantly reduce incidence compared to both 

annual and less frequent (testing every 2 and 10 years on average) testing. CDC 

recommends that highest risk MSM, which would include men with more than 3 casual 

sex partners in 3 months as modeled by Khanna, consider pre-exposure prophylaxis, 

which also requires frequent re-testing for HIV.27 Because the average partnership 

duration reported by our survey participants was greater than 365 days, annual testing 

corresponds roughly to testing with every new partner. Strategies that can encourage 
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testing with each new partner28-29 may be an alternative that is appealing to lower risk 

MSM.  

We further previous reports by examining the intermediate impacts of HIV testing on 

transmission. Given our current situation, with large gaps in viral suppression for those 

MSM with diagnosed HIV infection,18-19 the interaction between increasing testing 

frequency and achieving viral suppression given a positive test result is important. Even 

without additional testing, in our model increasing the proportion of HIV-infected men 

on treatment reduced incidence dramatically. In the absence of treatment and viral 

suppression for those who are aware of their infection, the only mechanism for reducing 

incidence after diagnosis is through behavioral changes due to serostatus awareness. 

When only 43% of the diagnosed population achieves viral suppression (reported by 

CDC in early 2014,17 but recently updated estimates are even lower18,19) the majority of 

testing results in moving small percentages of men from undiagnosed to “diagnosed but 

not suppressed”, leading to only small reductions in the circulating viral load in the 

population overall. In contrast, if universal and prompt suppression of viral load after 

HIV diagnosis were achieved, increasing testing frequency and increasing test sensitivity 

could further reduce the remaining circulating viral load by a relatively larger 

percentage, ultimately reducing transmission. This interaction of the impacts of testing 

programs and treatment efforts has been observed in other models10,13,15 but not 

always identified as such. For example, Lucas et al10 accounted for this concept by 

assuming immediate access to therapy for all those who were diagnosed when 

determining that the “optimal” strategy was for MSM to test every 90 days, but did not 
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present a counterfactual situation in which testing frequency was increased without 

perfect follow-up care. CDC estimates that proportion of all infected individuals who are 

aware of their infection has increased in the last 3 years, but will likely not reach the 

NHAS 2015 goal of 90%.4,7 The current estimates of the proportion of MSM that have 

achieved viral suppression fall even shorter of the 2015 NHAS target.18-19 Efforts to 

improve both outcomes simultaneously are needed. 

Our analysis has several potential limitations. In our model, although we parameterized 

test sensitivity to allow for false-negative results to occur, we did not consider the 

impact of false-positive results. With a low prevalence of HIV in the population overall, 

increasing the frequency of testing among the uninfected population will likely increase 

the number of false-positive results given to MSM annually, which could impact future 

testing behavior. We assume testing behaviors are periodic, and do not account for risk-

based episodic HIV testing (for example, testing based on recent exposure or symptoms 

of HIV seroconversion illness). The extent to which such testing could change the 

transmission dynamics of HIV will again be limited by how quickly men newly identified 

as being infected are able to access treatment and suppress their viral load. As in 

Lucas,10 in our model treatment and viral suppression are started by MSM immediately 

after diagnosis. This is in contrast to other recent models9,11-15 which instead assumed 

that treatment will commence based on time since infection and disease progression. 

However, in the US it is recommended that all HIV-infected persons be offered 

treatment as soon as possible after diagnosis.30 Even if this is not happening currently 
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throughout the US, for our most optimistic scenario we wanted to model viral 

suppression as being available to all as soon as possible after diagnosis.    

According to our data more frequent HIV testing by US MSM will not result in reduced 

HIV incidence unless combined with improvements in effective HIV care. With limited 

resources available for reducing onward transmission of HIV, efforts focused on 

increasing the proportion of infected men who achieve and maintain viral suppression 

would have a larger impact on HIV transmission. Only once viral suppression becomes 

the normative outcome of HIV diagnosis does additional focus on increasing HIV testing 

as the gateway to this outcome become warranted.  
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Panel 1:  Description of Testing Interventions 

Increase the frequency of testing 

Our modeling of HIV testing frequency is fully described in the Supplemental 

Appendix. At Baseline, on average MSM test approximately annually, but some 

test more or less frequently (9.3% test every 90 days, 14.3% test only once every 

3 years). We modified this so that all men actually test annually, and also more 

(every 180 days, every 90 days, every 5 days) or less (every 3 years) frequently.  

Improve the proportion that ever test 

To consider the effects of a strategy which would get more MSM to test at least 

once (such as a social media campaign, routine testing in a hospital or other 

clinical setting, or other outreach to the MSM population that is not currently 

testing), we increased the proportion of the population that ever tests for HIV 

from the baseline value of 80% to 93% and 99%. 

Changing the type of test used for HIV screening 

We implemented a test sensitivity parameter by varying the number of days 

after infection when a test, if conducted on the infected individual, would return 

a (correct) HIV-positive result. We used 22, 45 and 70 days to correspond to 

estimates of sensitivity for the newest lab tests, standard blood tests, and oral 
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fluid rapid tests that are also available for home use. We also include a 

hypothetical “perfect” HIV test which can detect infection the day it occurs. 

Improve HIV treatment access and viral suppression 

In the US there is a large proportion of the HIV-infected population that is aware 

of their infection but not receiving effective therapy to suppress their virus and 

thereby reduce the risk of transmission.17-19 However, although the national 

average in the US is low (43.4%), there are some cities with higher proportions of 

the population achieving viral suppression, as high as the 68.5% of all HIV-

infected persons estimated to be in care for HIV17, and guidelines for HIV 

treatment in the US recommend universal treatment for all HIV-infected 

persons.30 Thus we varied the proportion of the population suppressed, setting 

this parameter to 43.4%, 68.5% and 100% to assess the effect of increased 

testing frequency in situations where a higher proportion of the population 

follows their diagnosis with effective treatment. 
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Panel 2: Research in context 

Evidence before this study 

Although the US Centers for Disease Control and prevention currently 

recommends that Men who have sex with Men (MSM) test for HIV at least 

annually6, recent reports suggest that most men are not testing for HIV this 

frequently7-8 and how many MSM have ever tested, how frequently they test, 

and how frequently they should test is still being debated.9-15  In October 2014, 

we searched PubMed, Medline, and Embase for studies that included the terms , 

“HIV Seropositivity”,  “HIV Infections “, “AIDS Serodiagnosis “ ,  “Men who have 

sex with men” and “MSM”, “high risk”, “Test” , and/or “screen.” We limited the 

results to studies published after January 2005, and limited the review to studies 

conducted in the United States, Europe and Australia, and reported in English, 

with an endpoint of incident HIV infection that compared annual testing with 

more frequent testing among MSM. We identified 14 studies that compared the 

HIV incidence in populations with different HIV testing frequencies, 12 of 14 

studies were mathematical models with different assumptions about HIV 

transmission in the MSM population. Some models suggested trends toward a 

reduction in HIV incidence when MSM test more frequently10-12, and at least two 

concluded that more frequent testing of MSM in the United States could be cost-

effective.11-12 However, those models also suggested that the costs associated 

with more frequent testing would be substantial (>$8billion dollars per year12, 
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nearly $5 billion annually to increase from annual testing to testing every 180 

days11).  

Added value of this study 

Unique aspects of our modeling approach include: acknowledging that an 

unknown and perhaps large segment of the US MSM population is not currently 

testing for HIV at all, and that the duration of sexual partnerships varies by the 

perceived HIV infection status of the MSM partners.  While other studies10,13,15 

have alluded to the potential for synergistic effects when considering the level of 

HIV treatment coverage and viral suppression in the population and any strategy 

aimed at increasing the uptake of testing (for example increasing testing 

frequency among those MSM already testing or increasing the percentage that 

ever test), we believe this is the first study to describe how this synergy impacts 

the effects of these interventions on the incidence of HIV infection for US MSM. 

We found that, under current conditions for HIV therapy in the US, an 

intervention that increased the frequency with which MSM test to more than the 

annual testing currently recommended by CDC did little to affect overall 

incidence of HIV, many more HIV tests having been performed. Increasing the 

proportion of the infected population that successfully achieves HIV viral 

suppression was the only intervention that, on its own, was able to significantly 

reduce incidence compared to the baseline scenario. However, if those who are 

aware of their infection achieve viral suppression at much higher rates than 
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currently observed in the US, increasing the testing frequency of MSM and using 

more sensitive HIV tests to conduct this testing may be able to impact HIV 

incidence. In an optimal scenario where 100% of those who are aware of their 

infection achieve viral suppression, HIV transmissions could be reduced by an 

additional 17% if MSM tested every 90 days instead of testing annually.  

Implications of all available evidence 

It appears that, for MSM that test at all, testing more than annually will have 

little impact on HIV incidence until the proportion of MSM with diagnosed 

infection who go on to achieve viral suppression can be improved. The limited 

benefits of more frequent testing occur secondarily to the reduction in incidence 

that arises from viral suppression of the diagnosed population. However, if we 

could combine improvements in the proportion of the diagnosed population 

who achieve and sustain viral suppression, with increasing frequency of HIV 

testing in the at-risk but undiagnosed population we could reduce HIV incidence 

more than what was observed as a results of each intervention individually.  
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Table: Median and Inter-quartile range of incidence observed in 20 simulations of 3 years of 

follow-up in a simulated population of 5250 MSM under Baseline and 12 alternative scenarios 

for HIV testing interventions in the United States.  

Model Scenario Value New infections/ 100 
person years 

  Median IQR 
Baseline*  2·87   2·76–3·06 

    
Increasing test frequency 
 (Distribution’s for each scenario reported in 
Supplemental Table S3) 

Test 
every  

  

5 days 2·63 2·32–2·75 

90 days 2·57   2·34–2·78 

 180 days 2·80   2·50–2·92 

 365 days 2·98  2·64–3·07 

 1095 
days 

3·27 3·10–3·57 

    
Reduce the proportion of MSM who have never 
tested for HIV (Baseline 21%) 

7% 2·67 2·58–2·86 
0.2% 2·60 2·44–2·86 

    
Increasing viral suppression through linkage to 
care and treatment (Baseline 43%) 

68.5%  2·19 2·03–2·47 

100% 1·43 1·32–1·57 

    

Using tests with different sensitivity for early 
infection (Baseline 45 days) 

70 days 2·89 2·83–3·12 

22 days 2·68 2·53–3·02 

0 days 2·84 2·64–3·17 

*Baseline testing frequency is assigned based on data collected from an online survey; under 

this scenario MSM test almost annually on average, but many test more (9.7% test every 90 

days) and less (14.7% test once every 3 years). A complete description of the baseline testing 

frequency distribution and how testing was implemented is included in the supplemental 

appendix. Baseline values for other testing intervention parameters include 21% of MSM never 

testing, 43% of the population with diagnosed infection achieving viral suppression, and a test 

capable of detecting infection 45 days after it occurs. 
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Figure 1: Population level impact of increasing testing frequency on both total 

tests performed and 3-year HIV incidence in a simulated population of 5250 

men who have sex with men (MSM) in the United States 
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Figure 2: Individual level impact of increasing testing frequency on time to HIV 

diagnosis over 20 3-year simulations of a population of 5250 men who have sex 

with men (MSM) in the United States 
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Figure 3: Synergistic effects of HIV testing frequency, test sensitivity and viral suppression among the diagnosed population on 

the median 3-year total of circulating viral load, by HIV testing and diagnosis group of MSM in a simulated population
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Figure 4: Synergistic effects of HIV testing frequency, test sensitivity and viral 

suppression among the diagnosed population on 3-year HIV incidence across 

20 simulations of a population of 5250 men who have sex with men (MSM) in 

the United States 
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Figure 5: Breakdown of the synergistic effects on the median of 3-year HIV incidence estimated from 20 simulations of a 

population of men who have sex with men (MSM) in the United States in which MSM test every 90 days with a test that detects 

HIV 22 days after infection and all diagnosed MSM suppress their HIV virus through HIV care and treatment.  
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Supplemental Materials for Aim 3:  

In the current work we developed a separable temporal exponential random graph 

model1 (STERGM) for sexual partnership formation.  STERGMs are the dynamic, 

stochastic extension of cross-sectional exponential random graph models (ERGMs) and 

as such allow for simulation of stochastically evolving sexual partnership networks2,3. 

These models accommodate statistical dependence among partnerships, and model 

parameters describe factors associated with both partnership formation and dissolution 

over time. Dissolution of partnerships is approximated using the method derived by 

Carnegie et al4, and dynamic extensions to the R statnet packages5-7. Once the 

partnership network statistics are estimated we use customized extensions to the R 

package EpiModel8 to control all of the testing intervention parameters within our 

dynamic stochastic model of HIV transmission.  Because the time horizon of interest in 

changes in HIV incidence is limited to 3 years, we do not model either entrance to or 

exit from the study population of 5250 MSM. 

Parameterization of the separable temporal random graph model for partnership 

formation and other aspects of model for transmission dynamics.  

 

As far as we know our model is unique to the literature in that partnership formation 

probabilities differ based on the perceived HIV serostatus of the two men interested in 

forming a partnership. This assumption is based on data collected in an online survey9 

which we have used to parameterize the following STERGM model.   

STERGM Model parameters 
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In defining the model, yi,j,t  is a variable describing whether MSM i and j are in a sexual 

partnership at time t taking the value 1 when they are and 0 otherwise. The variable 

Ye
i,j,t describes the rest of the network (i.e. all other sexual partnerships among the 5250 

total men in our simulation, EXCLUDING the partnership information for MSM i and j.  

Partnership formation is described by:  

Logit(P(yi,j,t=1|yi,j,t-1=0, Ye
i,j,t)) =  

β0*edges +  

β 1*concordant_Unknown_status  +  β2*concordant_both negative + 

β3*concordant_both_positive + β4*Degree0_unknown_status + β5*Degree0_negative + 

β6*Degree0_positive +                β7*concurrent_unknown_status + 

β8*concurrent_negative + β9*concurrent_positive  

 

This form of the model is written such that the log odds of a partnership forming 

between MSM i and MSM j at time t, given both that i and j were not in a partnership 

together at the last time step and the composition of the rest of the network under 

study, is a function of 10 parameters.  The terms included in our model are: a) the total 

number of partnerships in the network (edges), b) the selective mixing by perceived HIV 

status, so that the number of ties between individuals of the same perceived HIV status 

is greater than would be expected by chance, and different for each perceived status, c) 

the number of individuals of each serostatus who do not currently have a partner 

(degree 0) or d) who have 2 or more partners (concurrent partnerships).   
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These network statistics are calculated for each of three groups of perceived serostatus: 

unknown serostatus for those never tested; negative serostatus for those whose most 

recent test result was reported as negative; and positive for those who have received a 

positive HIV test result.  For those with either an unknown or negative perceived status, 

a proportion of them are actually infected with HIV, they just don’t know it. Note that, 

as in traditional multivariable generalized linear models (GLMs), the edges term (which 

describes the total number of partnerships not defined by any other parameter, and is 

equivalent to an intercept term in a GLM) in this captures the log odds of forming a 

partnership for those with discordant perceived HIV status.   

Parameters for the model are averaged over data reported for both main and causal 

partnerships in the survey that provides the source of these data.  Supplemental table 1 

provides network characteristics that were used to parameterize the initial model.  

There are subtle differences in both the number of partners (expressed as mean degree 

in Table S1) by serostatus awareness, but the most interesting finding in terms of 

transmission is that HIV-positive participants reported more partners overall and more 

perceived discordant partnerships than HIV-negative participants.  However, in our 

survey HIV-infected participants were also more likely to form partnerships with other 

HIV-infected participants (31% of all partnerships were between 2 HIV-infected men, 

compared with 5% that would have been expected to be observed by chance); as a 

result many of the sex partners of HIV-infected men are not at risk of acquiring HIV 

infection.  
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Table S1 Characteristics of individual respondents collected from an internet-based survey of 

men-who have sex with men, used to parameterize our model 

 Perceived HIV status 

  Don’t know  Negative Positive 

Degree 0.88 1.11 1.14 

Homophily 0.41 0.70 0.31 

Expected Homophily 0.32 0.6 0.05 

 

Baseline prevalence and serostatus awareness 

 

The population includes 5250 men who have sex with men, and we simulate both 

network formation and dissolution and HIV transmission dynamics over a three year 

period.  Baseline perceived HIV serostatus is based on the information collected in our 

survey sample9, while prevalence of diagnosed and undiagnosed infection are set to be 

consistent with data from most sites participating in CDC surveillance of MSM10-12 and 

population based surveys of this risk group13-15.   

Table S2: Distribution of HIV infection and perceived serostatus at simulation 

initiation 

Network 
model 
characteristics   N (%) 

Sample size  5250 
HIV Status Truth Perceived  
 HIV-infected  HIV-Positive 350 
  HIV-negative 105 
  Unknown 140 
 HIV-

Uninfected HIV-negative 3395 
  Unknown 1260 
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At the start of our simulation, 585 of the 5250 men (11%) are infected with HIV, with 

350 (60%) of these aware of their infection. A total of 3500 believe they are uninfected 

(e.g. based on a test result in the past 4 years), including 105 (3%) who are actually 

infected.  The remaining 1400 (26%), including 140 (24% of all HIV-infected individuals) 

who are infected, are considered unaware of their HIV status.  

The model is incremented in 5 day time steps for efficiency, based on two assumptions 

that should make this simplification valid:   

1)  The average partnership duration is an order of magnitude larger than this time 

increment 

2) MSM have sex on average once in this time period16 

We model HIV transmission as occurring through anal intercourse acts without a 

condom within an ongoing partnership, with an allowance for additional one-time acts 

with other HIV-infected individuals occurring outside this partnership as a probability of 

a one-time act per five days as described below. We consider only an average rate of 

transmission per sex act in which no condom was used, and do not attempt to account 

for differences in risk associated with insertive, receptive or both types of anal 

intercourse occurring within a given sexual encounter.  Similar to a model considered by 

Goodreau2, we model the risk of transmission as a daily per act probability of 

transmission that changes over the infected lifetime of each individual based on 

changes in their HIV viral load. For those aware that they are infected with HIV, we also 

include a parameter for the overall probability of accessing HIV anti-retroviral therapy 

and achieving full suppression of detectable HIV virus.   
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Entry into and exit from the population 

 

Although migration into and out of a given community of MSM undoubtedly occurs, the 

majority of entries into a given population of MSM are through aging into sexual debut 

and exiting due to death either from HIV or other causes. Others2,3,17 have used rates of 

birth and death based on US population dynamics, but these effects should be minimal 

in our 3 year time scale. However, by not allowing for births and deaths our population 

will not settle into equilibrium values for HIV prevalence, as no one with infection will 

die and be removed from the simulation. Thus we actually capture the short term 

dynamics in a closed system, rather than long-range dynamics of a system in 

equilibrium. It should be pointed out that both incidence and prevalence are increasing 

rapidly in some subsets of the MSM population in the US, and insights from a short term 

evaluation of the impact of an intervention on a system that is not at equilibrium18-19 

may help to guide expectations for short term outcomes of interventions better than 

estimating effects on longer timescales17. In future work we will expand the model to 

include entry to and exit from the system to see how our interventions might affect HIV 

incidence once the system achieves equilibrium. 

Parameters for partnership durations, and one-time partnerships and comparison of 

our approach to others in the literature 

 

After partnerships are formed based on the STERGM model described above, they 

persist for an average duration based on serostatus of the men in each partnership, with 

durations based on information collected in our surveys.  Recently other research 
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groups have reported STERGM models that capture the nature of overlapping 

partnerships2,3,17, but they model only main partnerships, considering all casual 

partnerships to be one-time occurrences, which our data suggest is not the case. Others 

have chosen to model partnership formation within agent or individual based models, 

capturing main, casual and one-time partnerships as a function of partner 

characteristics, but without considering the overall structure of the sexual network in 

their model20-22.  Still others have used deterministic models with groups of high and 

lower risk MSM, but these capture neither the overlap we have found to be common in 

the sexual partnerships of MSM (both men with perceived HIV-negative and perceived 

HIV-positive status have >1 partnership ongoing at the same time on average, Table S1), 

nor the stochastic nature of HIV transmission23-25.  In this analysis, we take a different 

approach than others because we have found that many non-main partnerships are 

recurring, if not ongoing, relationships, so we do not treat them as one-time events. 

Instead we capture the duration of all partnerships and use these data to describe the 

duration of partnerships using differing rates of partnership dissolution by perceived 

serostatus.  Thus, our partnership durations tend to be shorter on average than those 

reported in other similar work that employs STERGM models2,17.  

Table S2 shows the distribution of partnership durations used in our initial 

parameterization of the model, in which we average partnership duration over main and 

casual partnership types, for:  serodiscordant partnerships, partnerships where the 

study participant reported that both he and the partner did not know their HIV status, 
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partnerships where both were reported as negative and partnerships where both were 

reported as HIV-infected. 

Table S3: Mean duration of partnerships used to parameterize the dissolution 

model  

Model 1 Perceived HIV status of participant and partner 

  Discordant* Neither knows 
their serostatus 

Both 
Negative 

Both Positive 

Partnership duration     

Exponential Mean 369 254 436 570 

Weibull Mean 332 217 465 646 

*This category combines survey respondents who reported being HIV-negative with an 
HIV-positive partner, and those who reported being HIV-positive with an HIV-negative 
partner. Reported partnership durations were similar for these two groups 
 

Persons in concordant HIV-positive partnerships have the longest duration, those in 

perceived concordant negative partnerships are nearly ½ year shorter on average, and 

those for persons with discordant and unknown partners are the shortest, with average 

partnership lengths less than 1 year. In2,3,17 average partnership duration was 1248 days, 

or between 2 and 6 times longer than the durations used in our model. As a sensitivity 

analysis to attempt to quantify the importance of partnership duration to our main 

findings about the effects of testing interventions on HIV incidence, we reran the 

simulations with partnership durations set to one quarter of the lengths reported in 

Table S2.   

Discussion of the importance of partnership duration as a model assumption 
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When we decreased the average duration of all partnerships modeled within our 

STERGM to 1/4  of median length of the duration observed in our data, incidence 

increased to a median of 3.84 (IQR: 3.61-4.44) per 100 person years under the 

assumptions of the baseline model related to testing interventions. Under this scenario 

in which partnerships were on average much shorter, increasing testing frequency from 

the baseline distribution to once every 90 days still had little effect (median 3.87/100 

person years)  on 3 year HIV incidence.   

Thus, we found that partnership duration can impact overall HIV incidence, suggesting 

that structural interventions aimed at reducing the number of partners and encouraging 

stable partnerships could be important areas for future research26-28.  The drastic 

differences in mean partnership duration that we found, with short partnership 

durations for serodiscordant men and the population that did not know their serostatus, 

lead to more frequent opportunities for the infected men in these groups to expose new 

partners to the virus. As has been reported by others2,17,19 the mean degree of HIV-

infected men who were aware of their infection is higher than that of HIV-negative men, 

this is in part the reason they are now infected.  However, in our data, infected men 

who are aware of their infection were observed to be more likely to be in a relationship 

with other infected men, and for those relationships to be more stable than other 

combinations of HIV serostatus.  Among those who know they are infected, the average 

durations for relationships with men who are of negative or unknown status was 332 

days compared to 646 days for relationships with other HIV-infected men.   The lack of 
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effect of increasing testing frequency to more than annually is partially due to the 

average relationship lasting longer than one year.   

Probability of having a one-time partner 

 

Because we attempt to capture the duration of casual partnerships through shorter 

average partnership duration, the only portion of our sample of partnership 

distributions that remains poorly explained is the number of partnerships that are one-

time events. In our data these account for 40% of all reported anal sex partners in the 

last 6 months.  The proportion of all partnerships reported as one-time was substantially 

lower when participants reported knowing both their HIV status and that of their 

partner (35%) than when reporting unknown serostatus for themselves and or their 

partners (45%), suggesting the anonymous nature of a one-time sexual encounter 

precluded discussion of HIV serostatus. However, from the survey we were unable to 

ascertain the proportion of all one-time partnerships that were relevant for 

transmission, namely those in which one partner is HIV-infected, the other is not, and a 

condom is not used for the entire anal sex encounter. To keep the parameterization of 

these episodes simple, but still attempt to account for them in our model, we added an 

additional unprotected anal sex act in each simulated 5-day time step for serodiscordant 

partnerships with probability based on an exponential distribution.  The probabilities 

were based those above; when one or both partners did not know their serostatus the 

5-day probability of having an additional one-time act in addition to all ongoing 
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relationships was 0.03, when both partners perceived themselves to be either HIV-

negative or HIV-infected the 5-day probability of a one-time act was set to 0.014.  

Evaluation of the underlying rate of HIV testing and its impact on our transmission 

models 

 

The main goal of this analysis is to assess the impact of increasing average testing 

frequency from the baseline scenario, which results in approximately annual testing, to 

every 6 months and every 3 months. Changes in testing frequency result in more 

frequent updating of the percieved serostatus of the men in our simulated population, 

providing more accurate serostatus information leading to changes in partnership 

formation based on this perceived serostatus over time.    

We used data from our online survey of MSM9 to define the baseline probability of HIV 

testing.  
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Table S4: Testing frequency at Baseline and under various intervention 

scenarios that increase the frequency of testing 

   

Testing 
Frequency 

Baseline  
N  

Test Every 
3 years 
N 

Annual 
testing 
N 

Twice 
annual 
testing 
N 

Every 90 
days 
N 

Every 5 
days 
N 

Never 1400  1400 1400 1400 1400 1400 

Every 3 
years 

700 3850     

Every 2 
years 

1050      

Annually 1050  3850    

Twice 
Annually  

595   3850   

Every 90 
days or less 

455    3850  

Every 5 days 
or less 

     3850 

       

Median 
number of 
tests  

2.93 0.89 2.57 4.9 8.45 22.86 

Expected 
Number of 
tests 

 1 3 6 12 219 

 

If testing occurred at a constant rate (which we know is not true) and there were an 

infinite amount of resources to conduct testing daily (also not true) testing 0.01425 

percent of the population every 5 days should achieve a population mean  of testing 

once every 351 days, and 64% of the population should be tested annually.  However, 

we also wanted to control the inter-test interval for men, such that once they test they 

will not consider themselves eligible to retest for 365, 180 or 90 days after the date of 

their most recent test.  We choose to increase the daily probability of testing to 0.1308; 

at this level we would expect 99.996% of the population to test annually (every 365.25 

days), and 92% of the population to be able to test every 90 days. We then vary a 
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parameter for when MSM would seek retesting from 1095, to 365, 180, 90 and finally to 

every 5 days after the most recent test.  At this rate, the average number of tests 

recorded by those MSM testing in the simulation in each scenario was 2.93 at baseline, 

and increased from 0.89 in our scenario where men test every 3 years to 22.86 tests 

when men test every 5 days. While we would have expected 1 and 219 tests if we 

performed testing deterministically on every individual in the simulations of three year 

and 5 day testing frequencies, the actual testing frequencies were somewhat lower than 

this (See Table S3) and become more divergent from deterministic testing as testing 

becomes more frequent. Although we don’t achieve the number of annual tests that 

would be expected if testing occurred deterministically, in our model we do a) observe a 

distribution of simulated testing frequency that corresponds roughly with what we 

observed in an online survey and b) are able to dramatically shift this distribution by 

instituting interventions that increase the frequency of testing.  

Modeling the impact of men who never test on HIV incidence 

 

Another difference between our STERGM model and others that have examined this 

question is that we have explicitly included a proportion of the MSM population that 

never tests for HIV, and can manipulate this proportion along with other aspects of 

testing interventions. Khanna et al3,17 attempted to account for the large proportion of 

MSM who never test for HIV through a scenario in which MSM test only once every 10 

years on average, and found much higher incidence in this scenario compared to their 

baseline scenario where MSM test annually. In their model based on data from MSM in 
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Australia21, Gray found that an intervention targeting the estimated 5% of MSM that 

have never tested and getting them to test annually would have a modest impact on HIV 

incidence.  In our baseline model, 20% of the population has never been tested for HIV, 

higher than observed in venue-based samples of MSM10-12 but consistent with or lower 

than population based estimates13-15. To consider the effects of a strategy which would 

get more MSM to test at least once (such as a social media campaign, routine testing in 

a hospital or other clinical setting, or other outreach to the MSM population that is not 

currently testing, we increased the proportion of the population that ever tests for HIV 

from the baseline value of 80% to 93% and 99%.  We found (See Table in the main text) 

that, at baseline levels of testing frequency, test sensitivity, and treatment coverage, 

increasing the proportion of this group that received at least one HIV test had a small 

but linear relationship with HIV incidence. 

Figure S1 shows that, when combined with a test capable of detecting infection within 

22 days and 100% viral suppression for those whose infection is diagnosed, synergistic 

effects similar to that shown for increasing the frequency of testing to once every 90 

days can be achieved by reducing the proportion who of MSM who never test from 20% 

to 7%. If social media or other campaigns could be targeted to this largely undescribed 

population, such a campaign would require a 20% increase in annual testing compared 

to baseline, and thus might be a more efficient strategy than one that would require 4 

times as much testing as is currently performed on MSM in the US. 
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Figure S1: Synergistic effects of accessing more of the population for testing while using a highly sensitive test and achieving 100% Viral 

suppression among the population with diagnosed infection 

 

 

  

 

 

 

 

 

 

 

*In this model HIV testing frequency was held constant at the baseline distribution observed in our online survey and thus does not 

contribute to infections averted. This can be compared to the effects reported in Figure 5 in the main text in which the proportion 
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of MSM that never test was held constant while testing frequency, treatment coverage for the diagnosed population, and HIV test 

sensitivity were varied.  
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Future research is needed to better describe this group of MSM that never test for HIV 

despite recommendations to test at least annually, and to design interventions that 

would motivate them to join the population of MSM that do seek out testing for HIV.  

Calculating the total circulating HIV viral load over time 

 

We also calculate and report the total circulating viral load, by diagnosis status of the 

men in the model. Similar to Goodreau and Khanna2,3 we model viral load over time 

using a function with 5 parameters for log10 viral load: 

 

(a) Days 0-21: rises linearly from 0 to 6.886 

(b) Days 21-100 declines linearly from 6.886 to 4.5  

(c) Days 100-3370: assumes a set point of 4.5 that lasts until the onset of AIDS 

approximately 9 years post-infection [17] 

(d) Days 3371-3650: linear rise from 4.5 to 7.0 

(e) Day 3650: death 
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Figure S2: Distribution of log10 HIV-1 viral load over time of infection 

 

This is a simplistic function (Figure S2) of viral load over time, which we can then 

integrate for each individual after they become infected, summing their viral load for all 

observed person time for each infected man in the simulation.  To illustrate the impact 

(or lack thereof) of diagnosis alone on circulating viral load we can then divide each 

man’s “Cumulative Viral load” by other factors, including their perceived HIV status. For 

Figure S3, we categorize perceived HIV status as diagnosed as HIV-infected, perceived to 

be HIV-negative even though they are infected and currently testing for HIV, or currently 
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infected but with unknown serostatus for the group of men who do not seek HIV 

testing. For those who are diagnosed and access treatment we assume their viral load 

will be reduced to an undetectable level, and that at that point it does not contribute to 

the calculation of the total circulating viral load. We calculated the median of the total 

viral load in each category (diagnosed HIV-infection, undiagnosed but not testing, 

undiagnosed and currently testing for HIV) across 20 simulations for each of our model 

scenarios. Then, we compare the resulting proportions of circulating viral load over time 

in each category across model scenarios with different testing frequency distributions 

for the MSM who test.  

In Figure S3 the rows represent the distribution of the: 1) Diagnosis status awareness of 

infected MSM, 2) the total circulating viral load and 3) the total number of HIV 

transmissions. The columns are different scenarios for HIV testing frequency. In the 

baseline scenario for column 1, on average MSM test approximately annually, but some 

test more or less frequently (9.3% test every 90 days, 14.3% test only once every 3 

years). We modified this so that all men test closer to every 6 months, every 90 days, 

every 5 days (weekly), with the results of these scenarios presented in columns 2-4 

respectively.  

In the first row, light blue is the proportion of all infections undiagnosed at the end of 

follow-up, light purple represents the proportion undiagnosed at the start of the 

simulation but diagnosed by the end(i.e. over 3 years of follow-up), dark purple is the 

proportion diagnosed at the start and red the proportion who never test. As testing 
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frequency increases the proportion of all infections that remain undiagnosed decreases, 

but this is the smallest grouping of HIV-infected menat baseline.  

In the second row the color coding  is retained, with light blue corresponding to the 

proportion of the total viral load contributed by men while infected but undiagnosed 

(including during acute infection), purple is the proportion of the total circulating viral 

load contributed by those with diagnosed infection
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Figure S3: Impact of testing frequency on transmission dynamics in a population where only 43% of those with 

diagnosed HIV infection achieve viral suppression 

 

2
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(under conditions where only 43.4% of the diagnosed population has their virus 

suppressed by therapy) and red corresponds to  the viral load contributed by the MSM 

that never test. Columns 2-4 have orange sections corresponding to the percent of 

circulating virus removed compared to baseline, in this case through increases in testing 

frequency.  

In the third row, information about the effect of test sensitivity on diagnosis category 

has been added. In this row, dark blue represents the proportion of transmissions that 

arise from the population that is currently infected and testing but undiagnosed, 

including those testing false-negative based on the sensitivity of the test, and those 

testing infrequently such that they have been infected since their last test. The light blue 

is the transmissions in this group that occur within the first 22 days of infection and are 

currently deemed “unstoppable” through testing alone. Likewise the dark red shading 

represents transmissions arising from the population that never tests, and the pink 

corresponds to those transmissions occurring within the first 22 days for this subset. The 

purple again represents the proportion of transmissions from the diagnosed population.  

The orange section now represents the proportion of transmissions removed compared 

to baseline, i.e. present in the baseline scenario but which did not occur in the 

counterfactual scenarios where testing frequency increased.. For all three rows the data 

presented represent the changes in median values across testing scenarios, the 

interquartile ranges for these estimates overlapped for all scenarios at baseline values 

of treatment coverage. 
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Taken together Figure S3 shows that at baseline only 14% of the HIV-infected 

population is “up for grabs” from a testing frequency intervention’s perspective. While 

this group does represent a disproportionate amount of the circulating viral load (row 

2), testing alone only moves them to the diagnosed group and has a small impact on 

circulating viral load overall. The impact on onward transmission is therefore also small, 

with the confidence interval around the 10.65% of infections averted when comparing 

the scenario where MSM test every 90 days to baseline testing frequency including zero 

(-8.6%,26.8%). The non-significance is also shown in a lack of a trend for increasing 

testing frequency and percent of infections averted, with testing weekly having slightly 

fewer infections averted on average.  

Figure 3 in the main text shows that the median values of total circulating viral load 

decreased substantially when we parameterize the model such that the entire 

diagnosed population achieves viral suppression, and in Figure 4 in the main text this is 

also shown to lead to reductions in 3 year HIV incidence.  

 

Stochastic variation in models and implications for our main outcomes 

Despite the computational intensity of building these models (each simulation takes on 

average 2 hours to run) we report 340 total simulations with large variability in 

incidence within a given model. In another recently published individual-based 

stochastic model, of HIV transmission among South African MSM, Brookmeyer et. al.22 

varied the number of simulations based on a pre-defined standard error threshold of 

0.01 (1%) for the mean of the proportion of the population infected (prevalence) over 5 

years after each replication using all replications performed up to that point. If the 
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standard error was above 0.01 they proceeded and performed an additional replication, 

stopping when the standard error fell below this threshold. The mean number of 

replications performed for their 163 distinct combinations of 4 interventions was 13 

with a minimum of at least 5 replications performed for each combination of 

interventions. This should be contrasted with deterministic models that have examined 

the impact of testing frequency on HIV incidence, which by definition only have one 

mathematical solution and therefore can only observe variations in outcome measures 

through sensitivity analyses of uncertain parameter values.  In our work we observed a 

large range in HIV incidence within a given model scenario across the 20 simulations 

reported in the main paper. Additional simulations of a given scenario might have 

provided tighter fInterquartile ranges of around our median values, but due to the 

stochastic nature of the models and the effect of network substructure on model 

incidence, it is unlikely that the distribution of the values we report here would have 

changed substantially beyond the interquartile ranges we observed, even if we ran 

additional simulations. Supplemental Figures S4 and S5 illustrate this point for the main 

comparison of interest. The panels for both figures show the distribution of observed 3 

year HIV incidence (Figure S4) and the standard error of incidence per 100 person years 

(Figure S5) for between 20 and 100 simulations of the baseline and 90 day retesting 

scenarios.  

 

 



231 
 

  

Figure S4: Impact of the number of simulations on the primary outcomes of 3 

year HIV incidence  for populations of 5250 MSM, comparing baseline testing 

frequency to testing every 90 days.  
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Figure S5: Impact of the number of simulations on the standard error of 

annualized incidence for populations of 5250 MSM, comparing baseline 

testing frequency to testing every 90 days.  

 

In each scenario, the minimum, maximum and interquartile range (IQR) vary little with 

increasing number of simulations, suggesting that by 20 simulations we have described 

most of the expected range in incidence for our model.  The range of the IQR and 

extreme values for the  scenario where men test every 90 days overlap those from the 

baseline scenario even after 100 simulations. Although the standard error of incidence 

per 100 person-years decreases slightly as the number of simulations increases, this 

value is driven more by the sample size of the population (set at 5250) and number of 

events (observed incidence), which are not affected by increasing the number of 
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simulations. Even if simulations with a larger population (e.g. a simulation of the entire 

US population of MSM) or an extremely large number of simulations were to indicate 

that a difference in incidence could be considered ‘significant’ under traditional 

statistical inference , we only observed a 10% reduction in median incidence comparing 

baseline (near annual) testing with testing every 90 days, and the total volume and 

therefore cost of testing was so different for quarterly and annual testing that it is 

unlikely to be clinically meaningful or cost effective to decrease testing interval to less 

than annually, relative to interventions that increase the proportion of the infected 

population that achieves viral suppression. 
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Chapter 6: Summary of findings and next steps 
 

In this dissertation we used three different studies to look at different aspects of 

interaction. In this chapter we conclude by first summarizing the findings of the three 

studies and how they interrelate and contribute collectively to advance HIV prevention 

research. .  We then suggest directions for future research in each of the areas studied, 

with both specific questions and research trajectories that arise from the results 

decribed in Chapters 3 through 5 and also some opportunities to expand infectious 

disease epidemiology methods and HIV prevention research more broadly.  

Contributions to HIV Prevention Research 
 

In the first study we demonstrated a new way to collect and apply data from 

smartphone applications being used for social interaction for HIV Prevention research. 

We demonstrated that, in less than 24 hours of effort only one research staff (KD) could 

sample 2666 application user profiles. We then used spatial statistics to describe a 

method for calculating the density of user profiles by race and age in Atlanta, and 

compared and contrasted the information provided by different outcome measures that 

can be constructed from these data. The methods described here may have practical 

application in HIV prevention research.  The results are promising and illustrate how the 

use of self-reported location data can provide information on the geographic 

distribution of users in time and space. The study methodology could provide a more 

efficient way to identify locations for recruitment of MSM in future studies.  Significant 

time and effort is spent on formative research to develop sampling frames for studies of 
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MSM.1-2  The goal of such formative research is to identify locations for sampling MSM 

using time space sampling methods.1  Our methodology, based on the geolocation data 

incorporated into popular social networking applications, allowed us to quickly describe 

the density of sex-seeking MSM in Atlanta. Furthermore, we were able to use profile 

information to stratify these density measures by race and age.  This might allow for 

oversampling or exclusive sampling in areas of the city that are expected to yield a 

particular subset of the population, for example, young black MSM.   

In the second study we provided a systematic evaluation of 13 proposed tests for 

interaction of two dichotomous exposure effects on an individual. The rapid 

proliferation of tests for interaction suggests that there is much interest in this area.3-17 

Unfortunately we have shown that only exceptionally large observational studies will 

likely have enough participants with both exposures to observe a true interaction effect 

that is greater than additive but less than multiplicative. This is however very practical 

information for the design of randomized trials of combinations of HIV prevention 

interventions.18-20 It implies that studies with a goal of quantifying or describing the 

significance of interaction effects should consider a randomized controlled design in 

which there are at least 4 different arms of the study, where patients are assigned one 

intervention, the other intervention and both together and compared to a control 

condition. We have also provided context to another study we recently authored.21 In 

this study we detected an effect that met the criteria for a test for detection of any 

interaction, but not for causal interaction, in that the interaction contrast ratio was 

greater than zero but less than 1. We also observed that the effects in different strata of 
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our exposure were not monotonic. The results presented in Chapter 4 suggest that, 

while this effect could possibly be causal interaction, it requires more study to explain 

what we observed. In addition to providing information that is useful to us currently, we 

hope that Aim 2 has also provided practical guidance for others seeking to quantify 

causal interaction of two exposures, with SAS code, sample size calculations and 

practical advice on how to proceed with such an analysis.  

In our third aim we used a mathematical model to study the impact of various changes 

to HIV testing policies for MSM in the United States. We parameterized the model to 

consider perceived HIV serostatus as part of sexual partnership formation and duration, 

something that we believe to be unique in the HIV prevention literature. We were able 

to validate our baseline model against an external estimate of incidence obtained from 

the population that was surveyed for the model parameters, something that can also 

not normally be done in practice. With this new model we were able to show that there 

is little benefit to increased frequency, coverage or sensitivity of HIV testing among 

MSM unless men diagnosed through enhanced testing programs are also engaged in 

effective HIV care. This has implications both for HIV testing guidelines and for HIV 

prevention in the United States more broadly. It suggests that the White House’s 

National Strategy for HIV and AIDS rightly focuses on the poor rates of viral suppression 

in the US and that more focus is needed to improve this outcome of HIV diagnosis.22 But 

we also showed that, if HIV care and viral suppression are improved to higher rates than 

currently observed, that changes in HIV testing frequency can have additional impact. 

This helps to explain conflicting results of both mathematical models and other HIV 
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prevention studies. For example, studies from Seattle routinely show poorer 

performance for HIV tests than studies conducted in other settings.23-25 However, 

Seattle seems to have some of the highest rates of viral suppression among the 

diagnosed population and highest frequency of repeat testing in the US.25  Insights into 

the interactions of viral suppression, HIV testing frequency and test sensitivity are 

important when establishing HIV testing policy in the US. Our results suggest that the 

focus of HIV testing and prevention programs more broadly should likely vary based on 

the current proportion of all infections that remain undiagnosed and rates of viral 

suppression among the diagnosed, a finding that we do not believe has been previously 

described.  

Areas for Future Research 
 

In addition to the opportunity for immediate impact of this work, there are also ample 

opportunities for future growth and funded research that build on our current findings. 

Each of our studies represents a unique area of research, but we also present a general 

body of work that advances the methodology for infectious disease epidemiology.  As 

such there are specific foci that arise from each individual study and a general 

overarching path to growth and opportunity that emanate from this work. 

There are specific questions that could be answered to further the work of aim 1. For 

example, are users of a sexual networking smartphone application simply a subset of all 

MSM seeking sex on the internet?  In order to evaluate this question we need to collect 

data from a larger group of MSM and compare the group that uses these types of sex 



243 
 

  

seeking applications to those that don’t use them, or that use the internet but not the 

apps with geolocation services.  A similar question is whether the population that uses 

specific services, (e.g., Adam-4-Adam, Jack’d, Grindr) different by one or more 

characteristics than those that use other online applications?26-28   There is really two 

parts to this question. First, would we find different results for the densities of 

application users in Atlanta or elsewhere if we used our methods with multiple services. 

Then there are questions about whether the types of men who use a particular service 

are different from those who use another service. There is anecdotal evidence that this 

is true. In future studies  we will seek to quantify the density and characteristics of men 

who use each of these applications and compare the characteristics of men who use 

each of the applications exclusively, while also capturing information about men who 

use more than one service to describe whether their behaviors vary when using 

different services.   

It would also be useful to test the methodology in other cities with significant minority 

MSM populations (e.g. Washington, DC or Los Angeles, CA) and also to assess the utility 

of the method in less densely populated areas (e.g. in rural areas of Georgia), to 

describe the extent to which the utility of the methods vary by characteristics of the 

geography of the region.   Additionally, although we averaged over day and time of 

sampling in our current analysis, the method could be refined to capture spatiotemporal 

trends in density.  For example, it would be possible to select points to be sampled 

multiple times over a grid of specific times and days.1-2  This modification could provide 

a clear description of how the user profile’s population density changes over the course 
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of a week.  This last component may identify trends in the spatial and temporal 

clustering of application users, for example on weekend nights, as compared to mid-day 

during the work week.   

More generally, using social networking applications for HIV prevention is likely a key 

strategy for future research, but comes with new ethical and methodological 

questions.29-31 Our study only sought to summarize the data publically available within 

these applications, but social media applications may themselves serve as an important 

public health communications tool.  Recently, public health agencies have sought to 

partner with Grindr, and use its built in advertisements as a medium for disseminating 

prevention information and recruit MSM for research studies.29,30   This is one example 

of an area where Aim 1 and Aim 3 overlap. One recent study offered MSM using a 

smartphone app to meet sex partners access to HIV tests through the internet.32 Based 

on findings from Aim 3 this could be an additional useful strategy for accessing the 

population of MSM who currently never test for HIV, as well as those MSM who test less 

than annually. The authors of this study did point out that this strategy, in which there is 

no confirmation that the men receiving the test kits via the internet use the kits and, if 

they test positive, access care and treatment, poses additional challenges.32  Given the 

importance of ensure linkage to care, treatment and viral suppression that we found in 

Aim 3, future research will need to find ways to combine the access to high-risk men 

through smartphone applications with linkage to care for those with HIV. Future 

research might adapt our methodology further to establish a sampling frame, and then 

use the density information to sample application users and contact them to either 
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conduct a cross-sectional survey or recruit them into a follow-up study. At that time one 

would have to develop mechanisms for consenting study participants, as well as a way 

to keep sensitive information, such as sex and drug use behavior, protected and ideally 

separate from any identifying online profile information.  Another approach would be to 

again use the spatial data as the sampling frame, and weight data from surveys that use 

banner ads or other methods within the app by the density distribution data to adjust 

for selection bias in the resulting sample.  When weighted samples are reported for 

geographic areas of interest it might be easier to direct needed HIV prevention, care and 

treatment services to the areas highlighted as those with the highest density of 

application users.  

Aim 2 represents a different area for future research entirely. I am very interested in 

developing manuscripts similar to this one that take complicated concepts and provide 

practical epidemiologic advice based in simulated and practical examples. An obvious 

extension of our findings is to author a paper describing modeling strategy for studies 

that seek to assess whether two exposures interact, with examples in which the 

exposures are and are not monotonic, and when the results of tests for additive 

interaction give conflicting results. Such a manuscript would complement the 

recommendations for modeling strategy already in the literature and being taught in the 

Emory Department of Epidemiology,33,34 and add newer methods and modeling 

techniques to this strategy.  This is just one example of work in the area of practical 

application of epidemiologic methods that I would like to pursue further. Another 

example of this type of work would be providing practical guidance on when collinearity 
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is important in epidemiologic modeling, how to test for it and how to evaluate the 

results of those tests for different types of models (e.g. linear, log-linear, logistic, log-

binomial).   

 

The type of research conducted in Aim 3 is likely to have the most opportunity for 

growth and future work. In both the US and sub-Saharan Africa there is growing 

awareness of the need for “combination prevention” the idea that one intervention will 

not be enough to control the HIV epidemic, and that there are synergies like the ones 

we observed when interventions can be combined effectively.18-20  The beauty of 

building a model for infectious disease transmission is that it can then be adapted to 

address many different new questions. One area of immediate need is to assess the 

interaction between the factors we have not yet included in our model, and factors 

associated with HIV testing. The most obvious prevention intervention to include in 

future modeling work is Pre-exposure prophlylaxis (PreP).35 This intervention has been 

shown to significantly reduce the incidence of HIV in the highest risk MSM.36  

Furthermore, the clinical regimen for PreP that has been recommended by the CDC 

includes testing quarterly to ensure that infection hasn’t occurred and reduce the risk of 

developing resistance by taking sub-optimal HIV therapy after infection.35  In a future 

collaboration between Emory and CDC we will propose to look at the interaction 

between PreP guidelines and HIV testing guidelines to assess the optimal mix of these 

two interventions and whether there is any additional benefit of more frequent HIV 

testing for high risk MSM who choose not to initiate PreP.  
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Another way to expand the model would be to look at the overlap between the MSM 

epidemic and the heterosexual epidemic. To our knowledge to date there has not been 

an ERGM model developed that models both MSM and heterosexuals and the mixing 

between the two groups. This risk factor may be particularly important in minority MSM 

and as a bridge to the black female population in the United States.37 Developing a 

heterosexual ERGM model would also be useful to answer research questions specific to 

sub-Saharan Africa.38  For example, in countries such as Nigeria, where the epidemic is 

large but is still concentrated in high-risk groups such as sex workers and MSM, we 

could model the impact of targeted interventions such as PreP, testing, and treatment 

to see how each would impact the epidemic overall. We can also answer questions 

related to the optimal coverage of multiple interventions for epidemics such as that in 

South Africa where a much higher proportion of the population is infected. In summary, 

there are a wide variety of additional applications of infectious disease modeling, 

particularly separable-temporal exponential random graph models such as the ones I 

employed in my dissertation.  

Through the three research aims of this dissertation I have explored various aspects of 

interaction, and how interaction can be leveraged to improve HIV prevention efforts. I 

have demonstrated a novel method for quantifying the amount of social and sexual 

interaction occurring in a defined geographic area using social networking applications 

and spatial statistics. I have also described the performance of a wide variety of 

statistical tests appropriate for assessing the interaction of two or more disease causing 

exposures in individuals. Finally, I have built a model of HIV transmission parameterized 
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based on the US MSM population and described how different public health 

interventions can interact at the population level to prevent disease. I hope to continue 

to study different aspects of interaction and build on this work in future research over 

the next several years. 
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