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Abstract 

Associations between short-term exposures to ambient air pollution and emergency department 

visits for cardiovascular diseases in thirteen U.S. cities 

By Kexin Guan 

Objective 
 
This study aimed to estimate the association between short-term exposures to ambient air 
pollutants and emergency department (ED) visits for cardiovascular diseases (CVD) in 13 cities 
in the United States during the period 2005-2014. 
 
Methods 
 
Daily counts of ED visits were obtained from hospital associations or health departments in 9 US 
states. Daily air pollution and meteorological data were retrieved from data fusion products. 
Quasi-Poisson log-linear regression models were adopted to analyze the association between 
same-day exposures to six air pollutants (NO2, SO2, O3, CO, PM2.5, PM10) and ED visits for 
CVD and CVD subgroups, adjusted for temporal trends and meteorology. Co-diagnosis of 
diabetes was explored as a potential effect modifier.  
 
Results  
 
For all CVD ED visits, we found positive associations for CO (RR = 1.002, 95% CI = [1.001, 
1.003]), PM2.5 (1.001, [1.000, 1.002]), and SO2 (1.001, [1.000, 1.002]) per interquartile range 
(IQR) increase in same-day pollutant concentration. An IQR increase in NO2 was associated with 
increased risk in ED visits for ischemic heart disease (1.005, [1.001, 1.008]) and congestive heart 
failure (1.006, [1.001, 1.010]). Moreover, we found evidence of increased risks among patients 
with diabetes for several pollutants. For example, among patients with a diabetes co-diagnosis, 
ED visits for all CVD was associated with PM10 (1.004, [1.001, 1.006]), PM2.5 (1.004, [1.002, 
1.006]), and SO2 (1.002, [1.000, 1.003]), while associations among patients without a diabetes 
co-diagnosis were weaker or null. Diabetes co-diagnosis also increased the risk of ischemic heart 
disease ED visits associated with NO2 (1.008, [1.003, 1.013]), as well as risk for acute 
myocardial infarction ED visits with NO2 (1.020, [1.004, 1.036]) and SO2 (1.007, [1.001, 1.014]) 
concentrations. However, diabetes co-diagnosis had a protective effect on associations of O3 and 
congestive heart failure ED visits (e.g., for those with a diabetes co-diagnosis, RR = 0.994, 
[0.988, 0.999]). 
 
Conclusions 
 
We found adverse effects of short-term ambient air pollutants on ED visits for cardiovascular 
diseases, and that diabetes mellitus may increase patients’ vulnerability toward certain air 
pollutants. 
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1 Introduction  

Air pollution has become one of the major risks to health for the post-industrialization 

human society (Manisalidis et al., 2020). In the past decades, the effect of short-term ambient 

(outdoor) air pollutants on cardiovascular health has been extensively studied in epidemiologic 

research around the world. Many previous studies have found significant adverse effects of 

short-term air pollutants on hospital admissions and mortality of cardiovascular and respiratory 

diseases (de Bont et al., 2022).  

Two categories of air pollutants, gaseous and particulate-matter pollutants, have both 

been found to be associated with increased risk of cardiovascular disease of people who are 

exposed to them in long-term and short-term (Song et al., 2016). Among particulate-matter 

pollutants, particles less than 10 µm (PM10) and particles less than 2.5 µm (PM2.5) in diameter 

were frequently investigated and found to have significant positive association with increased 

risk of hospital admission and death for CVD (Dominski et al., 2021). For gaseous pollutants, 

carbon dioxide (CO2), nitrogen dioxide (NO2) and sulfur dioxide (SO2) were often observed to 

be associated with increased risk in CVD (Franchini & Mannucci, 2012). Research also suggests 

NO2 to be particularly associated with myocardial infarction and ischemic heart disease 

(Milojevic et al., 2014; Stieb et al., 2020). Some studies found ozone (O3) to have significant 

associations with the risk for cardiovascular injury (Srebot et al., 2009), while a systemic review 

by Song et al. (2016) resulted in opposite findings.  

Identification and assessment of associations among vulnerable population sub-groups 

is also an extensively studied topic in the area. Among factors conferring vulnerability, diabetes 

mellitus is one of the most explored co-morbidities with cardiovascular disease that may increase 

vulnerability to air pollution. A systematic review by Tibuakuu et al. (2018) identified that being 
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a racial minority, female, or diabetic, having prior heart disease, or smoking will lead to higher 

risk of adverse effect from exposure to air pollution. A study conducted in Tehran, Iran 

(Akbarzadeh et al., 2018), suggested that certain subgroups, including older, diabetic, and non-

hypertensive patients, were more susceptible to the adverse effect of PM2.5 and PM10. Their 

conclusions are consistent with the findings of Chen et al. (2013) and Zhang et al. (2016). 

Another study carried out in São Paulo, Brazil by Filho et al. (2008) again found that diabetic 

patients were vulnerable to the adverse effects of air pollutants. However, some research such as 

the one conducted by Rich et al. (2010) failed to find any significant effect modification by 

diabetes. 

Moreover, research results often vary depending on the location and time period of the 

study. In the past, a large number of studies have been focused on the metropolitan area in North 

America and Europe. However, a meta-analysis by Song et al. (2016) pointed out that stronger 

associations are likely to be found in Asia compared to Europe or North America, which aligns 

with the findings by Stieb et al. (2020).  

Although multiple studies have been conducted on the topic of air pollutants and CVD, 

many focused on long-term air pollutants instead of short-term, and focused on mortality or 

hospitalization rate of CVD as the outcome instead of emergency department (ED) visits. 

Moreover, most studies have limited their geographic representation to the common choice of 

urban area in single mega city. Hence, in this study, we aimed to investigate the association 

between same-day air pollutant concentration and ED visits for CVD, as well as the effect 

modification of diabetes mellitus on such association, leveraging a multi-state study that allows 

for broader geographic representation. ED visits were chosen as the measure of morbidity instead 

of mortality or hospital admission to cover a wider range for the severity of illness. A total of six 
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air pollutants were inspected, including NO2, SO2, O3, CO, PM2.5, and PM10. Data was collected 

from 13 cities defined by core-based statistical areas (CBSAs) among 9 states in the United 

States over a 10-year period of 2005-2014.  

 

2 Methods 

2.1 Study population 

ED visit data for this analysis were obtained for 2005-2014 from 9 U.S. states: Arizona 

(Department of Health Services, 2010-2014), California (Department of Health Care Access and 

Information, 2005-2014), Georgia (Georgia Hospital Association, 2011-2014), Maryland 

(Department of Health, 2005-2014), Missouri (Department of Health and Senior Services, 2005-

2014), New Jersey (Department of Health, Center for Health Statistics & Informatics, 2005-

2014), New York (Department of Health, 2005-2014), North Carolina (North Carolina Hospital 

Discharge Database, 2007-2014), and Utah (Department of Health, 2005-2014). To avoid low 

counts of daily ED visits, 13 cities with the largest populations defined by core-based statistical 

areas (CBSAs) were selected from these 9 states, covering 157 counties in total (Table 1).  

Primary diagnosis codes using the International Classification of Disease (ICD) version 

9 and version 10 (World Health Organization, 2019) were used to identify CVD ED visits: all 

circulatory diseases (ICD-9: 390-459, ICD-10: I00 - I99), ischemic heart disease (ICD-9: 410-

414, ICD-10: I20-I25), acute myocardial infarction (ICD-9: 410, ICD-10: I21, I22), and 

congestive heart failure (ICD-10: 428, ICD-10: I50). We also identified diabetes mellitus as the 

effect modifier using secondary diagnosis codes (ICD-9: 250, ICD 10: E10-E14). Daily time-

series of ED visit counts for each CVD outcome were created by aggregating visits by day within 

each county.   
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Table 1. Summary for study period and cities defined by core-based statistical areas   
 

State Cities Number of 
Counties  

Time Span 

Arizona Phoenix, Tucson 6, 1 07/01/2010 – 12/31/2014 
California Los Angeles, San Francisco 5, 6 01/01/2005 – 12/31/2014 
Georgia Atlanta 37 01/01/2011 – 12/31/2014 
New Jersey New York City a 14 01/01/2005 – 12/31/2014 
New York New York City  9 01/01/2005 – 12/31/2014 
North Carolina Charlotte, Raleigh 11, 12 01/01/2007 – 12/31/2014 
Maryland Baltimore 13 01/01/2005 – 12/31/2014 
Missouri St. Louis, Kansas City 16, 19 01/01/2005 – 12/31/2014 
Utah Salt Lake City, Ogden 6, 2 01/01/2005 – 12/31/2014 

a  Different parts of New York City core-based statistical area were used for New Jersey and New 
York. 

 

2.2 Air pollutants and meteorological data 

Ambient air pollutant concentration data were obtained from a bias-corrected Community 

Multiscale Air Quality Model (CMAQ) product, which provided daily average concentration 

from 2005 to 2014 in the United States with a 12 km spatial resolution (Senthilkumar et al., 

2022). Six pollutants were selected as exposures of the study, including NO2, SO2, O3, CO, 

PM2.5, and PM10. We first calculated daily ZIP code level concentrations by overlaying the 

CMAQ data grid on ZIP code polygons, followed by averaging observations for all overlapped 

CMAQ grid cells. Then, population-weighted county-level pollutant concentrations were 

calculated, for use as the exposures in epidemiologic analyses, by applying annual ZIP code 

population numbers.  

Daily maximum and minimum air temperature, along with water vapor pressure, were 

obtained from Daymet, which contains 1 km daily surface weather data (Hufkens et al., 2018). 

Daily mean air temperature was calculated by taking average of maximum and minimum 

temperature. Meteorological data were assigned to each ZIP code using ZIP code centroids, and 
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county-level averages were then calculated by averaging the meteorological data of the included 

ZIP codes.  

 

2.3 Statistical methods 

We utilized Quasi-Poisson log-linear models to estimate the association between 

concentrations of selected air pollutants and risk of ED visits for cardiovascular diseases. To 

mitigate possible non-linear effects of time-varying confounds, cubic splines for date, daily mean 

air temperature, and water vapor pressure as a measure of humidity, were included in the model. 

Additionally, we adjusted for indicators for weekday (Monday to Sunday) and federal holidays. 

The model can be expressed as: 

  
 
where for a particular county, E(Yt) is the expectation of count for CVD ED visits on day t and α 

is the intercept of the model. The two cubic splines for meteorological covariates, cs1 for lag 0 

average daily air temperature and cs2 for water vapor pressure, share the same degrees of 

freedom df1, which was set to 6 in the primary model. Cubic splines for date are represented by 

cs3 with df2 set to 8 per year. Parameter β1 represents the log relative risks for the pollutant of 

interest (lag 0), while β2, β3 are additional parameters for confounders. 

Implementation of the model was conducted in two stages. In the first stage, we fitted the 

time-series models within each county, and in the second stage we performed a meta-analysis to 

obtain pooled estimations for each pollutant-outcome combination. We reported the pooled 

relative risk per interquartile range increase in the pollutant concentration. In the first stage, we 

excluded county-outcome combinations that led to non-convergence in regression results due to 

low daily counts in ED visits, which mainly appeared in MI and CHF outcomes. The second-
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stage pooling assumes a random-effect model that accounts for between-county heterogeneity in 

associations. 

Several sensitivity analyses were conducted by adjusting the degrees of freedom for cubic 

splines to examine the robustness of the model. Two situations were tested separately, one for 

holding df1 for meteorological variables as 6 and changing df2 for date from 6 to 12 per year, and 

the other for holding df2 as 8 per year and switching df1 from 6 to 8. The choice for degrees of 

freedom for the primary model were based on previous studies of air pollution and CVD hospital 

admissions (Dominici et al., 2006). 

 

3 Results  

Table 2 gives the summary statistics for daily air pollution and meteorology by state. 

Among all the states, New York has the highest average CO (0.63 ppm), SO2 (6.86 ppb) and 

NO2 (23.53 ppb) levels. Arizona along with Utah have the highest average concentration of O3 

(0.05 ppm). California, including Los Angeles and San Francisco, has the highest number in 

PM10 (22.23 μg/m3). Meanwhile, Baltimore in Maryland has the highest average level of PM2.5 

(10.79 μg/m3). The overall IQR for pollutants presented in Table 2 were later used for scaling the 

estimated relative risks.  

 

Table 2. Means, minimum, maximum, and interquartile ranges (IQR) for air pollutants and 
meteorological data in 9 states. 
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a  The units for variables are CO (ppm), NO2 (ppb), O3(ppm), PM10 (μg/m3), PM2.5 (μg/m3), SO2 (ppb), VP 
(pa), Tmean (degrees C). 
b  VP = water vapor pressure, Tmean = mean air temperature. 

 

 

 

State Variablea   Mean IQR Min Max State Variable Mean IQR Min Max 
AZ CO  0.32 0.17 0.09 1.66 NC CO  0.36 0.20 0.06 4.56  

NO2 6.03 4.03 0.31 65.52 
 

NO2 10.73 8.07 0.78 73.65  
O3 0.05 0.01 0.01 0.12 

 
O3 0.04 0.02 0.00 0.12  

PM10 20.61 9.85 2.72 212.73 
 

PM10 15.71 6.28 1.53 92.40  
PM2.5 5.01 2.09 0.76 68.53 

 
PM2.5 9.82 4.91 0.69 42.82  

SO2 1.35 1.20 0.00 69.93 
 

SO2 3.54 3.07 0.00 193.85  
VP b  880.93 679.79 74.10 3651.48 

 
VP   1351.21 1308.04 147.27 3342.79  

Tmean 18.27 13.35 -16.70 39.33 
 

Tmean 15.74 14.97 -10.35 33.24             
CA CO  0.52 0.38 0.05 7.18 MD CO  0.44 0.30 0.05 8.25  

NO2 17.13 17.34 0.50 133.62 
 

NO2 18.30 15.01 1.11 100.41  
O3 0.04 0.02 0.00 0.17 

 
O3 0.04 0.02 0.00 0.12  

PM10 22.23 11.28 1.85 262.72 
 

PM10 17.31 7.06 2.46 60.32  
PM2.5 8.81 5.06 0.68 114.69 

 
PM2.5 10.79 5.96 0.96 45.52  

SO2 1.94 1.77 0.00 132.23 
 

SO2 6.76 6.66 0.01 142.74  
VP   799.08 413.63 84.57 2860.06 

 
VP   1252.00 1209.04 106.94 3728.91  

Tmean 16.39 8.72 -11.95 41.91 
 

Tmean 13.21 16.44 -17.73 33.92             
GA CO  0.37 0.22 0.04 2.30 MO CO  0.28 0.15 0.04 4.52  

NO2 11.38 9.19 0.61 66.48 
 

NO2 11.22 9.47 0.51 143.32  
O3 0.04 0.02 0.00 0.12 

 
O3 0.04 0.02 0.00 0.12  

PM10 14.89 5.64 3.33 70.47 
 

PM10 17.40 8.09 2.36 88.07  
PM2.5 9.07 4.17 1.27 32.25 

 
PM2.5 9.83 4.74 0.74 53.82  

SO2 2.26 1.77 0.01 70.74 
 

SO2 4.33 3.50 0.01 154.52  
VP   1408.82 1260.89 139.13 3215.23 

 
VP   1199.90 1269.99 67.24 3607.01  

Tmean 16.48 13.88 -13.11 32.58 
 

Tmean 12.66 17.75 -21.47 34.76             
NJ CO  0.60 0.38 0.03 3.94 UT CO  0.44 0.30 0.04 10.34  

NO2 23.26 17.35 0.69 108.99 
 

NO2 13.43 14.02 0.22 110.20  
O3 0.04 0.02 0.00 0.12 

 
O3 0.05 0.02 0.00 0.09  

PM10 18.47 8.10 1.50 135.17 
 

PM10 16.73 9.03 1.80 171.65  
PM2.5 10.41 6.00 1.21 51.90 

 
PM2.5 6.00 3.50 0.71 68.30  

SO2 5.76 5.71 0.03 86.55 
 

SO2 1.57 1.43 0.00 44.86  
VP   1157.11 1106.60 87.00 3776.30 

 
VP   652.72 409.63 25.89 3971.84  

Tmean 12.01 16.53 -16.89 34.14 
 

Tmean 8.86 16.19 -25.33 34.67             
NY CO  0.63 0.40 0.04 4.26 Overall CO  0.44 0.32 0.03 10.34  

NO2 23.53 19.37 0.61 108.74 
 

NO2 15.60 15.87 0.22 143.32  
O3 0.04 0.02 0.00 0.13 

 
O3 0.04 0.02 0.00 0.17  

PM10 18.20 8.08 2.05 61.17 
 

PM10 17.96 8.26 1.50 262.72  
PM2.5 10.32 6.12 1.20 47.97 

 
PM2.5 9.45 5.40 0.68 114.69  

SO2 6.86 6.42 0.04 72.22 
 

SO2 4.13 3.86 0.00 193.85  
VP   1168.51 1111.38 77.08 3720.05 

 
VP   1125.38 1018.16 25.89 3971.84 

  Tmean 11.64 16.28 -18.47 33.49   Tmean 13.65 14.97 -25.33 41.91 
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Table 3 shows the total counts and average daily ED visits for 4 types of CVD outcomes 

by states. Amongst all states, New Jersey has the smallest sample size. Acute myocardial 

infarction (MI) and congestive heart failure (CHF) have relatively lower counts compared to the 

other two outcomes.  

 
Table 3. Summary statistics for ED visits for four CVD outcomes by states and combined. 
 

State Outcome a Total 
Counts 

Daily 
Mean 

State Outcome Total 
Counts 

Daily 
Mean 

Arizona CIRC 442542 269.02 North 
Carolina 

CIRC 4360511 1492.3 
 

IHD 111905 68.03 IHD 1002173 342.98 
 

MI 11604 7.05 
 

MI 119998 41.07 
 

CHF 48499 29.48 
 

CHF 643280 220.15 
        

California CIRC 3495445 957.13 Maryland CIRC 2458613 673.22 
 

IHD 781644 214.03 
 

IHD 569513 155.95 
 

MI 97054 26.58 
 

MI 59600 16.32 
 

CHF 542049 148.43 
 

CHF 352697 96.58 
        

Georgia CIRC 2257355 1545.08 Missouri CIRC 2069622 566.71 
 

IHD 453155 310.17 
 

IHD 510717 139.85 
 

MI 44199 30.25 
 

MI 58140 15.92 
 

CHF 297681 203.75 
 

CHF 317577 86.96 
        

New 
Jersey 

CIRC 52974 14.51 Utah CIRC 611659 167.49 
IHD 12617 3.45 

 
IHD 102296 28.01 

 
MI 1522 0.42 

 
MI 14155 3.88 

 
CHF 5386 1.47 

 
CHF 67098 18.37 

        
New 
York 

CIRC 2328128 637.49 Overall CIRC 18076849 4949.85 
IHD 560282 153.42 

 
IHD 4104302 1123.85 

 
MI 61538 16.85 

 
MI 467810 128.1 

  CHF 351719 96.31   CHF 2625986 719.05 
a  CIRC = all circulatory diseases, IHD = ischemic heart disease, MI = acute myocardial infarction, CHF = 
congestive heart failure. 
 
 

Figure 1(a) - 1(d) and Table 4 present the estimated overall relative risks and 95% 

confidence intervals for CVD ED visits associated with per IQR increase in air pollutant 

concentration (IQR for CO: 0.32 ppm; NO2: 15.87 ppb; O3: 0.02 ppm; PM10: 8.26 μg/m3; PM2.5: 
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5.40 μg/m3; SO2: 3.86 ppb). The results for all circulatory disease indicate significant 

associations with CO (RR=1.002, 95% CI = [1.001, 1.003]), PM2.5 (RR=1.001, 95% CI = [1.000, 

1.002]), and SO2 (RR=1.001, 95% CI = [1.000, 1.002], Figure 1(a)). Among specific CVD 

outcomes, an IQR increase in NO2 was also significantly associated with increased risk on ED 

visits for ischemic heart disease (1.005, 95% CI = [1.001, 1.008], Figure 1(b)) and congestive 

heart failure (1.006, 95% CI = [1.001, 1.010], Figure 1(d)). No significant overall association 

was found between O3 and PM10 with ED visits for any CVD outcomes investigated (Table 4). 

Moreover, our results did not identify pollutants with significant adverse effect on ED visits for 

acute myocardial infarction (Figure 1(c)), except marginally for SO2.  

 

Table 4. Relative risk of ED visits for CVD associated with an IQR increase of pollutant concentration 
and 95% confidence intervals, combined and by diabetic status. 
 

Outcomea Pollutant Overall RR  
(95% CI)  

RR for Diabetic Patients 
(95% CI) 

RR for Non-diabetic 
Patients (95% CI) 

CIRC PM10 1.000 (0.999, 1.002) 1.004 (1.001, 1.006) * 0.999 (0.998, 1.001) 
 

PM2.5 1.001 (1.000, 1.002) * 1.004 (1.002, 1.006) * 1.001 (1.000, 1.002)  
O3 0.999 (0.997, 1.001) 0.998 (0.995, 1.001) 0.999 (0.997, 1.001) 

 
SO2 1.001 (1.000, 1.002) * 1.002 (1.000, 1.003) * 1.001 (1.000, 1.002) 

 
CO 1.002 (1.001, 1.003) * 1.002 (1.000, 1.004) * 1.002 (1.000, 1.003) *  
NO2 1.003 (0.994, 1.012) 1.007 (1.004, 1.010) * 1.004 (1.002, 1.006) * 

     

IHD PM10 1.000 (0.998, 1.002) 1.003 (1.000, 1.007) 0.998 (0.996, 1.001) 
 

PM2.5 1.002 (1.000, 1.003) 1.003 (1.000, 1.006) 1.001 (0.999, 1.003) 
 

O3 0.999 (0.996, 1.003) 0.997 (0.992, 1.001) 1.001 (0.996, 1.005)  
SO2 1.000 (0.999, 1.002) 1.000 (0.997, 1.004) 1.000 (0.999, 1.002) 

 
CO 1.001 (0.999, 1.003) 1.002 (0.999, 1.006) 1.001 (0.998, 1.003) 

 
NO2 1.005 (1.001, 1.008) * 1.008 (1.003, 1.013) * 1.001 (0.994, 1.009)      

MI PM10 0.995 (0.988, 1.001) 1.001 (0.990, 1.011) 0.994 (0.986, 1.001)  
PM2.5 1.000 (0.994, 1.006) 1.005 (0.996, 1.014) 0.997 (0.990, 1.004) 

 
O3 1.001 (0.992, 1.009) 1.002 (0.987, 1.016) 1.000 (0.989, 1.011) 

 
SO2 1.004 (1.000, 1.008) 1.007 (1.001, 1.014) * 1.002 (0.997, 1.007)  
CO 1.003 (0.997, 1.008) 1.004 (0.995, 1.014) 1.002 (0.995, 1.009) 

 
NO2 1.003 (0.994, 1.013) 1.020 (1.004, 1.036) * 0.995 (0.983, 1.007) 
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CHF PM10 1.000 (0.997, 1.003) 1.001 (0.996, 1.005) 1.000 (0.996, 1.003) 
 

PM2.5 1.000 (0.998, 1.003) 1.000 (0.997, 1.003) 1.000 (0.996, 1.004) 
 

O3 0.997 (0.993, 1.001) 0.994 (0.988, 0.999) * 0.999 (0.994, 1.004)  
SO2 1.001 (0.999, 1.002) 1.000 (0.998, 1.002) 1.002 (1.000, 1.004) 

 
CO 1.002 (0.999, 1.004) 1.000 (0.997, 1.004) 1.003 (1.000, 1.007) 

  NO2 1.006 (1.001, 1.010) * 1.004 (0.992, 1.017) 1.006 (1.001, 1.012) * 
a  CIRC = all circulatory diseases, IHD = ischemic heart disease, MI = acute myocardial infarction, CHF = 
congestive heart failure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Relative risk and 95% confidence interval estimation of emergency department visits for 
different cardiovascular diseases with an IQR increase of air pollutant concentrations. 
 

Diabetes mellitus as a potential effect modifier on the association between air pollution 

and CVD ED visits was inspected by dividing ED visits into two separate time-series. Amongst 

ED visits for all circulatory diseases, 30.14% had a diabetes co-diagnosis. This number was 

39.56% for ischemic heart disease, 34.75% for acute myocardial infarction, and 41.98% for 

congestive heart failure.  
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As shown in Figure 2(a) and Table 4, diabetic patients are more vulnerable to the risk of 

all circulatory ED visits due to increased concentration of PM10 (RR = 1.004, 95% CI = [1.001, 

1.006]), PM2.5 (RR = 1.004, 95% CI = [1.002, 1.006]) and SO2 (RR = 1.002, 95% CI = [1.000, 

1.003]) compared to non-diabetic patients. Being diabetic also increases the risk of IHD ED 

visits (RR=1.008, 95% CI = [1.003, 1.013]) with increase in NO2 concentration (Figure 2(b)). 

Figure 2(c) suggests that diabetic patients are more susceptible to the effect of NO2 (RR = 1.020, 

95% CI = [1.004, 1.036]) and SO2 (RR = 1.007, 95% CI = [1.001, 1.014]) on the ED visits for 

MI. However, result for CHF (Figure 2(d)) shows a protective effect of diabetes on O3 and CHF 

(RR=0.994, 95% CI = [0.988, 0.999]), indicating a decreased risk of CHF ED visits when O3 

concentration increases. 

Furthermore, we observed in Table 4 that NO2 has significant adverse effect on CIRC ED 

visits for both diabetic (RR = 1.007, 95% CI = [1.004, 1.010]) and non-diabetic (RR = 1.004, 

95% CI = [1.002, 1.006]) groups separately, but becomes insignificant for the combined group 

(RR = 1.003, 95% CI = [0.994, 1.012]). Such situation could be caused by overdispersion in the 

model, or possibility of large underlying differences in baseline risks between diabetic and non-

diabetic groups.  
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Figure 2. Relative risk and 95% confidence interval estimates of CVD ED visits associated with an IQR 
increase of pollutant concentration, stratified by diabetic and non-diabetic patients. 
  
 

Sensitivity analysis was conducted by adjusting the degrees of freedom for cubic splines 

to test the robustness of the model. In Figure 3(a) - 3(d), the degrees of freedom for mean air 

temperature and water vapor pressure were held at 6, while the degrees of freedom for date was 

adjusted from 6 to 12 per year. The relative risk and 95% confidence intervals show possible 

residual confounding by time trend for several combinations of pollutants and health outcomes 

when degrees of freedom for date was set to 6, including O3 on CIRC, NO2 and O3 on IHD, and 

O3 on CHF. Another abnormality observed is that the confidence intervals are noticeably wider 

for PM10 when df = 12 in Figure 3(a), df = 7 in Figure 3(b), and df = 7 and 10 in Figure 3(c) 

compared to other df specifications. These abnormalities are partly due to non-divergence of the 
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quasi-passion log-linear regressions. Larger degrees of freedom per year resulted in more 

frequent non-convergence models and hence a larger confidence interval. In general, estimated 

pooled relative risks show good robustness with higher degrees of freedom for date beyond that 

used by the primary model (df = 8 per year). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Relative risk and 95% confidence intervals of CVD ED visits associated with an IQR 
increase of air pollutant concentration, controlling degrees of freedom for mean air temperature 
and water vapor pressure (df = 6) while testing different degrees of freedom for date (df = 6-12). 
 

Further sensitivity analysis was conducted by changing the degrees of freedom for daily 

mean air temperature and vapor pressure from 6 to 8 and holding the degrees of freedom for date 

at 8 per year. The relative risks and 95% CI estimates are consistent as shown in Figure 4. In 

contrast to adjustment by temporal trend, the change in meteorological df generated a much more 

stable result, indicating the robustness of the model under different adjustment of meteorology. 
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Figure 4. Relative risk and 95% confidence interval estimates of CVD ED visits associated with 
an IQR increase of air pollutant concentration, controlling for degrees of freedom for date (df = 
8) while testing different degrees of freedom for mean air temperature and water vapor pressure 
(df = 6-8).  
 
 
4 Discussion 
 

In this study, we investigated the association between short-term (same-day) ambient air 

pollutant concentration and the risk of ED visits for CVD, and assessed effect modification by 

diabetes mellitus. The study included 13 cities in the United States with data collected over 

2005-2014.  

Our results suggest that short-term exposure to CO, PM2.5, and SO2 was associated with 

increased risk of ED visits for all circulatory diseases. For more specified CVD outcomes, NO2 
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was associated with increased risk for ischemic heart disease and congestive heart failure ED 

visits. Moreover, significant positive associations between NO2 and all circulatory disease was 

found in both diabetic and non-diabetic groups, but not in overall group. As for effect 

modification by diabetes mellitus co-diagnosis, our results in general indicate that being diabetic 

is associated with increased vulnerability towards short-term air pollutants. To be specific, we 

found that diabetes comorbidity increased the risk of PM10, PM2.5 and SO2 on ED visits for all 

circulatory diseases. It also modifies the effect of NO2 on ischemic heart disease, along with 

NO2 and SO2 on acute myocardial infarction.  

Such findings are consistent with existing studies: a review study by Meo et al. (2015) 

found strong evidence for the association between PM10 and PM2.5 and risk for CVD among 

existing literatures. The association between NO2 and ED visits for ischemic heart disease aligns 

with the result of a study in Montreal, Canada (Szyszkowicz, 2007), while a study conducted in 

South Korean cities also indicated significant association between NO2 and heart failure (Lee et 

al., 2021). The effect modification of diabetes also appears to be consistent with findings by 

previous studies (Tibuakuu et al., 2018; Akbarzadeh et al., 2018).  

Despite the null effects of O3 on CVD ED visits observed in overall group, a protective 

effect of O3 on congestive heart failure was found in diabetic patients only. The overall null 

effect is supported by research of Frampton et al. (2015) who found no consistent effect by 

ozone on CVD in young healthy adults, but conflicts with previous findings by Pothirat et al. 

(2019) which suggested a positive association between ozone level and ED visits for heart 

failure. As for the protective effect of O3 on congestive heart failure in diabetic patients, further 

research should be conducted in the future to examine the causation of such findings.  



   16 

While the clinical mechanisms behind air pollutant and CVD are still under investigation, 

latest studies suggest particulate matters are likely to influence human health by inducing 

oxidative stress, inflammation, metabolic dysfunction and dyslipidemia, which leads to vascular 

dysfunction and atherosclerosis, as well as autonomic dysfunction and hypertension (Aryal et al., 

2021). Meanwhile, clinical mechanisms behind the influence of gaseous pollutants on 

cardiovascular disease are still under-addressed in existing literatures. 

Several strengths of this study were identified, with the most prominent one being the 

scale of the study, which covered all ED visits for CVD in 13 major cities in the time span of a 

decade, leading to high statistical power. Moreover, our research filled in the gap by adopting 

ED visits for CVD as the outcome of interest, whereas previous studies largely focused on 

hospital admissions and mortality. Another strength was that the study population covered all age 

groups instead of the commonly inspected one single age group of 65+ year-olds so that a more 

inclusive assessment of the risk was made. At last, effect modification by diabetes was explored 

in the study to provide a deeper understanding of potential high-risk subgroups within the 

population. 

Besides the strengths, we also recognized some limitations of the study. First, population 

exposure to air pollutant was assessed by biased-corrected simulations from a numerical model. 

While this approach provides complete spatial and temporal coverage, it may not represent 

personal exposures. Second, the locations were mainly chosen to set in the urban areas where air 

pollution levels are disproportionately high compared to rural areas; while a focus on urban areas 

can capture a large percentage of the population, it is important to recognize that such a decision 

may lead to our results not being representative for the overall population (Tibuakuu et al., 

2018). Furthermore, we examined each pollutant separately. Future research in the synergy effect 



   17 

between gaseous pollutants should also be considered as pointed out by a study of Liu et al. 

(2022) in Liuzhou, China.  

In conclusion, we found adverse effect of short-term ambient air pollutant on CVD ED 

visits, and that diabetes mellitus serves as a modifier to such effect by increasing patients’ 

vulnerability toward certain air pollutants. 
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