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Abstract 
 

The Role of BMI-related DNA Methylations on Type II Diabetes Mellitus  
Among Male Veterans with HIV  

By Yutong Yao 
 
 

Background: People with HIV (PWH) are facing a significant burden and risk of non-

communicable diseases. Increasing development of T2DM and related mortality among the HIV-

infected cohort suggests a need for elucidating the association between diabetes and HIV. High 

body mass index (BMI) is identified as a common risk factor for T2DM among PWH in cohort 

studies; epigenetic studies have identified BMI-associated DNA methylation (DNAm) sites, which 

may lead to T2DM in general populations. However, few studies have examined the association 

between BMI-related methylations and T2DM among people living with HIV.  

 

Method: We examined the association between BMI-related methylation sites and T2DM status 

among male veterans with HIV from the Veterans Aging Cohort Study (VACS). BMI-related 

methylation sites were identified from previous BMI EWAS in general population and replicated 

among people with HIV adjusted for multiple testing. The associations were estimated with and 

without the adjustment by phenotypic BMI.  

 

Results: Seven previously reported BMI-related DNAm were replicated among the cohort of 

PWH. cg11024682 (SREBF1) was significantly associated with T2DM development among the 

HIV-infected cohort (p-value: 4.6710-5, Bonferroni-corrected threshold: 7.1410-3). After 

adjusting for phenotypic BMI in the model, the association was still significant with cg11024682 

(p-value: 3.5910-3, Bonferroni-corrected threshold: 7.1410-3).  

 

Conclusion: Some BMI-related DNA methylation sites are associated with T2DM among PWH. 

The epigenetic association with T2DM may be independent from the effect of phenotypic BMI. 
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I. Background 
 

Summary of Diseases 

Type II Diabetes Mellitus (T2DM), increasing and spreading over the world since the last 

few decades, is a major non-communicable disease caused by insulin resistance. Characterized by 

insufficient insulin secretion by pancreatic islet ß cells and decreased insulin sensitivity, T2DM is 

categorized as a metabolic disorder that prevents the body from processing glucose properly [1]. 

Main negative outcomes of T2DM include kidney diseases, lower extremity amputations and 

retinopathy with blindness [2]. 

HIV, or the human immunodeficiency virus can be spread of blood fluids. Infections can 

put individuals at risk of weakened immune system with loss of CD4 T cells [3]. At the end of 

2019, 38 million people including adults and children were estimated wot be infected and living 

with HIV globally. Among this HIV-infected population, 67% were taking antiretroviral therapy, 

which is estimated to have saved 15.3 million lives between 2000 and 2019 [4]. The daily-based 

treatment is called antiretroviral therapy (ART), combined antiretroviral therapy (cART) or highly 

active antiretroviral therapy (HAART), which decreases the virus load in the body and prevent 

individuals from progressing to the severe stage of HIV infection, acquired immunodeficiency 

syndrome (AIDS) [5].  

T2DM Burden Among HIV-infected Cohort 

People living with HIV are facing a significant burden and risk of non-communicable 

diseases including Type 2 Diabetes Mellitus (T2DM). In recent years, Cross sectional studies have 

found a high prevalence of diabetes and hypertension among HIV-infected cohort, 19.6%, 26.6% 

and 15.1% for Ethiopia, Malawi and London respectively [6-8]. Furthermore, the risk of T2DM 
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seems to elevate in PWH in some cases. Duncan et al. and Ye et al. found that the risk of T2DM 

for PWH was two times that for the general population [8, 9]. The outcome can also be worse for 

the HIV infected cohort than the common public when developing T2DM comorbidity. A three-

time higher mortality rate was identified in a retrospective cohort study data collected in the United 

States between 2006 and 2015 [10]. 

Risk Factors of T2DM among PWH 

Despite reported risks of T2DM higher in PWH, whether HIV status itself is associated 

with T2DM remains questionable. A meta-analysis on seven studies conducted in African 

population between 2008 and 2016 showed no significant differences in T2DM prevalence 

between HIV-infected and HIV-naive cohorts [11]. Rather than HIV status, ART and other non-

HIV related factors have been found to be associated with T2DM among PWH.  

Antiretroviral Treatment  

Drug treatment may also play a role in elevating T2D risks among PWH. In a large, 

matched cohort study including 13, 632 individuals from the South Carolina Medicaid system, 

protease inhibitor-based ART was associated with higher risk of diabetes among HIV-infected 

people with adjusted relative risk of 1.35 [12]. NNRTI efavirenz was more likely to cause incident 

diabetes compared with nevirapine with a hazard ratio of 1.33; NRTI zidovudine and stavudine 

were also reported to be associated with elevated risk of DM [13]. Other drugs found to play a role 

include protease inhibitors indinavir, saquinavir and NRTI didanosine [14]. Together with a high-

fat diet, ART may exacerbate obesity and induce dysregulation of glucose metabolic pathways. 

Non-HIV Related Factors 

The most common risk factors include obesity or overweight [8, 9, 12, 14-16], gender [12, 

15], baseline hypertension [8, 12]; non-white ethnicity, dyslipidaemia, Hepatitis C infection, older 
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age [12], lipoatrophy [14], statin use over 6 months [9], and hepatic steatosis [8] were factors 

associated with DM risk among PWH. Age and BMI, however, may play distinct roles in T2DM 

development among PWH. Isa et al. found that patients>40 years of age were associated with 

T2DM risk at baseline among PWH, and incident diabetes was associated with BMI≥25 [16]. 

Dimela et al. found higher BMI and hypertension were associated with elevated DM risk instead 

of HAART after adjusting for BMI-defined overweight, hypertension, age, sex, smoking and 

family history [17]. 

T2DM-Related Risk Factors 

Obesity is one of the most well-established factors contributing to T2DM risks [18-23]. In 

a Finnish diabetes prevention study, every kilogram of weight loss was found to be associated with 

16% reduction in T2DM development [24]. Biological pathways have also been studied to 

elucidate the association between BMI/obesity and T2DM. Pathways proposed include that 

intramyocellular triglyceride in bone, proinflammatory cytokines and adipose tissue macrophages 

induced by obesity [25-28]. Other factors contributing to T2DM include physical inactivity, 

smoking behavior, and alcohol consumption [29-31].  

Genetic variation plays an essential role in T2DM development as well.  Single nucleotide 

polymorphisms related to T2DM development have been identified using genome-wide 

association study (GWAS) and used to predict individual risks of T2DM [32-35]. In the latest 

GWAS meta-analysis with multiple ethnicities, 568 genetic associations were identified including 

autosomal and X chromosomal loci [35]. Functional enrichment analysis identified the involved 

biological pathways in AKT2 subnetwork, lung cancer, the GA1 signalosome, protein kinase 

binding, signal transduction and EGFR signaling [35]. Traits and diseases associated with T2D-
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correlated genes included waist circumference, BMI, hypertension, coronary artery disease, 

dyslipidemia, alcohol intake and smoking [35].  

Epigenome-Wide Association Study (EWAS) 

Mainly controlled by DNA methylation (DNAm), histone modification and microRNA, 

epigenetic regulation is subject to environmental factors and results in differential gene expression 

of DNA sequences. Common environmental modifiers of epigenetics include cigarette smoking, 

obesity, physical activity and diet [39]. While GWAS can be used to identify single nucleotide 

polymorphisms (SNPs) that are causal to diseases and traits, epigenome-wide association study 

(EWAS) can elucidate inter-individual and individual-environmental variations contributing to 

variation in phenotypes [36]. The most studied epigenetic modification is DNA methylation, 

measured by the methylation level of CpG sites on DNA. DNA methylation sites located on genes 

TXNIP, ABCG1, PHOSPHO1, SOCS3 and SREBF1 have been identified in multiple ethnicities as 

associated with T2DM through EWAS [37-39].  

A wide range of EWAS have been conducted to determine the relationship between BMI 

and DNA methylation. In 2014, Dick et al. found that the first methylation sites associated with 

BMI — methylated HIF3A locus was positively associated with increased BMI within the 

European origin cohort though none of the sites were found to be significant [40]. Using the 

Framingham Heart Study and the Atherosclerosis Risk in the Communities (ARIC) cohorts, 

Aslibekyan et al. conducted an EWAS and found methylation sites at CPT1A, PHGDH and CD38 

were associated with BMI adjusting for age, gender, study sites, T-cell purity, smoking and family 

structure [41]. Meeks et al. conducted a BMI EWAS within African cohort in 2017 and identified 

18 DNAm sites significantly associated with BMI and obesity [42]. Additionally, Mendelson et 

al. reported that the BMI-associated CpG site cg11024682 at SREBF1 region linked with cardio 
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metabolic disease [43]. However, these early EWAS had limited sample sizes, which may lead to 

insufficient power to discover more epigenetic associations with BMI. While most EWAS did not 

determine the causal relationship between BMI and CpGs, the largest EWAS conducted by Wahl 

et al. in 2017 determined that the methylations mostly resulted from adiposity; in addition, the 

study identified 187 loci associated with BMI and 62 of them also predicted incident T2D [44]. 

The most significant and consistent epigenetic markers include SOCS3, LGALS3BP, and ABCG1 

regions. All these EWAS studies employed Illumina 450K as the methylation platform to measure 

DNA methylation from peripheral blood samples. The 450K array, though covered majority of 

96% of human methylation islands, does not cover as much as the newest Illumina EPIC BeadChip 

[45], which surveys over 850,000 DNA sites, almost doubles the coverage of the previous 450K 

array. However, these studies do not address the epigenetic association with BMI specially among 

PWH cohorts. 

Epigenetic studies have been done to study HIV-1 infection to characterize epigenetic 

changes correlated with HIV infection. Zhang et al. identified 5 CpGs located in gene LPCAT1, 

NLRC5, and CD4 associated with HIV infection [46]. Methylations at NLRC5 were correlated with 

HIV viral load, suggesting an epigenetic function of the gene in virus replication [46]. Nelson et 

al. identified DNA methylation at VPS37B associated with HIV infection among ART-naïve PWH 

[47]. PWH receiving AIDS treatment also had DNA methylations that associated with HIV 

infection status and response to virus, interferon signaling pathway among people receiving AIDS 

treatments [48]. In addition to correlating with virus load and ART among PWH, HIV infection 

was also found to be associated with higher DNA methylation ages compared to HIV-negative 

groups [47, 49]. 
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Profiling DNA methylations related to T2DM among PWH, Mathur el al. identified novel 

sites at ADAMTS2, HGFAC and TLE3 among PWH in addition to previously reported sites at 

TXNIP, SOCS3 and PROC among general population with European and Indian Asian 

ancestry[50]. With few available studies on the epigenetic markers or mechanisms of developing 

T2DM within HIV, research needs to address the gap of the roles phenotypic factors play in T2DM 

development specifically within PWH cohort.  

Research Gap and Our Study 

The current gap in the research of T2DM risks among PWH is that how BMI plays a role 

in developing T2DM in HIV infected cohort. While cohort studies can estimate the effect of BMI 

on T2DM risks among HIV by controlling other variables, epigenetic studies can better estimate 

the magnitude of T2DM risks through BMI mediation among PWH. However, not many studies 

have been done to explore the BMI-mediated effects on T2DM within the HIV-infected cohort. 

To address the gap, our study will use BMI-associated methylation sites, which incorporated the 

latest results from the EPIC BeadChip, to estimate the epigenetic effect of BMI on T2DM 

development within HIV-positive cohort.  
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II. Manuscript Chapter  
 

 

Introduction  

The human immunodeficiency virus (HIV) can spread through blood, semen, breast milk, 

rectal and vaginal fluids and resulted in 38 million infected individuals worldwide in 2019 [4]. 

Untreated HIV infections can lead to weakened immune system with lower level of CD4 T cells 

and progressing to the severe stage of infection, acquired immunodeficiency syndrome (AIDS) [3, 

5]. However, progression to AIDS is preventable by the anti-retrovirus therapy (ART), which 

suppresses the virus load in the body. ART is estimated to have saved 15.3 million lives between 

2000 and 2019 [4]. Nowadays, the majority of people with HIV are documented to be taking ART 

(67%) [4]. While ART effectively decreases HIV-associated mortality among the infected 

population, HIV remains a major global public health burden due to the challenges in treating 

every HIV-infected patient with ART and preventing HIV transmission at the population level. 

Furthermore, people with HIV (PWH) also face the increasing burden and risk of non-

communicable diseases including type II diabetes mellitus (T2DM), one of the most common non-

communicable diseases around the world. Recent studies have found high prevalence of diabetes 

among HIV-infected cohort [6-8]. Duncan et al. and Ye et al. found that the risk of T2DM for 

PWH was two times that for the general population [8, 9]. The mortality rate due to T2DM was 

three times higher among PWH than the common population according to a retrospective cohort 

data collected in the US between 2006 and 2015 [10].  

The mechanism underlying elevated risk for diabetes among PWH has been an active 

research area. Both HIV-related and non-HIV related factors have been identified to contribute to 

the risk of T2DM among PWH. Several antiviral therapies used to treat HIV were found to be 
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associated with T2DM among PWH, including efavirenz, zidovudine and protease-inhibitor based 

ARTs [13]. A potential explanation for the association between HIV and T2DM is that ART may 

exacerbate obesity and induce dysregulation of glucose metabolic pathways with a high-fat 

diet [48]. One large Danish cohort study found the risk of developing diabetes to be associated 

with HIV before 1999 (adjusted incidence risk ratio (aIRR): 2.83; 95%CI: 1.57–5.09). This study 

suggested that this increased risk was related to the use of older ARTs including indinavir, 

saquinavir, stavudine and didanosine [14]. Further, the risk was dependent on diagnosis of 

lipoatrophy (aIRR: 2.30, 95%CI: 1.39-3.80), body mass index (BMI) larger than 30 (aIRR: 9.25, 

95%CI: 5.37-15.94) and age over 60 years (aIRR: 8.16, 95%CI: 1.91-34.74) [14]. The findings 

suggest that non-HIV related factors also play a role in the development of T2DM among PWH. 

Obesity or overweight defined by BMI according to the NIH [51] is the most common risk factor 

for T2DM identified through cross-sectional and longitudinal studies. Tripathi et al. found that 

obesity was associated with T2DM among PWH with an OR of 3.37 (p<0.0001) in South Carolina, 

United States [12]. Duncan et al. found weight gain following antiretroviral therapy associated 

with dysglycaemia (OR 1.07, 95% CI 1.04-1.11) in a cohort from London, UK [8]. A retrospective 

cohort study in Zimbabwe found obesity was associated with T2DM among PWH with aHR of 

2.26 (95%CI: 1.17-4.36) [15]. These studies together provide support for the association and its 

related risk factors between T2DM and HIV. However, they do not articulate a molecular pathway 

explaining the elevated risk of diabetes among PWH.  

Another proposed mechanism is that ART induces obesity and glucose intolerance. Pepin 

et al. found that ART together with high-fat diet can activate G-protein coupled receptor in white 

adipose tissue, interfering with glucose metabolism [52]. DNA methylations of the cytosine 

residue of a Cytosine-Guanine-dinucleotide (CpG) may explain the risk of T2DM among PWH 
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[50]. Epigenome-wide association study (EWAS) can elucidate inter-individual and individual-

environmental variations contributing to variation in phenotypes [36]. Previous EWAS have found 

multiple methylation sites including those on genes TXNIP, ACG1, PHOSPHO1, SOCS3 and 

SREBF1 associated with T2DM across ethnicities [37-39]. Using a cohort with both HIV-infected 

and HIV-uninfected participants, Mathur et al. identified DNA methylation sites associated with 

T2DM specifically among PWH, including novel sites at ADAMTS2, HGFAC and TLE3 and 

previously reported TXNIP, SOCS3 and PROC [47]. Nevertheless, the role of BMI reported in the 

cohort studies has not been considered from these EWAS of T2DM. The association between BMI 

and DNA methylation is also well established by a wide range of EWAS [40-44]. Wahl et al. 

conducted the largest EWAS on BMI with general European and South Asian cohorts. 

187 CpGs were identified to associate with BMI and 62 of them were associated with T2D using 

DNA methylation in peripheral blood [44]. However, the study did not provide any insight of the 

DNA methylation among PWH. The methylation data of all these studies were based on previous 

microarray platforms with limited epigenomic coverage. Further analysis involving BMI is 

necessary to elucidate the effect of BMI on development of T2DM among PWH using the latest 

Illumina EPIC BeadChip, which covers more methylation sites than all previous technologies.  

To address the gaps in the pathway of BMI affecting T2DM development among PWH, 

our study examined the association between T2DM within PWH cohort using BMI-related DNA 

methylation loci. Combining summary statistics from the literature, and methylation data from 

450K and EPIC BeadChips, our study aims to address: (1) whether BMI-associated DNA 

methylation sites are individually associated with T2DM; and (2) whether the epigenetic 

association with T2DM is dependent on BMI.  
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Method 

VACS Dataset Overview 

This study incorporated the epigenetic and phenotypic data from the Veterans Aging 

Cohort Study (VACS), which is prospective observational cohort of veterans with and without 

HIV infection matched for age, race/ethnicity, and site enrolled from eight Veterans Affairs 

facilities beginning in 1997. Consented individuals were enrolled to participate and granted access 

to their administrative data and complete medical records with their HIV status, comorbid 

conditions including diabetes, Hepatitis B and Hepatitis C infection, and related treatment details 

including blood pressures. VACS also collected patient characteristics including BMI, ethnicity, 

physical activity levels, smoking and drinking status. Laboratory data were collected from medical 

records for virus load, total white blood cells count, CD4+ T-cell counts in peripheral blood 

samples. The present study included 522 and 542 male veterans with HIV from VACS with the 

Illumina EPIC and 450K, respectively. The characteristics between two cohorts were compared 

using t and Chi-square tests for continuous and categorical variables, respectively. The definition 

of T2DM according to VACS is: (1) glucose level ≥200 mg/dL on 2 separate occasions or (2) 

glucose level ≥200 mg/dL on 1 occasion plus treatment with an oral hypoglycemic or insulin for 

≥30 days [50]. In addition, we defined hypertension as (1) SBP≥130 mmHg or DBP ≥ 80 mmHg, 

or (2) taking any anti-hypertensive drugs. The study obtained approval from the Veteran’s 

Administration Research and Development Committee and the Institutional Review Board of the 

Atlanta Veteran’s Administration.   

Previously Reported BMI-related sites 

16 EWAS studies were found through PubMed after searching for BMI or obesity-related 

methylation (Appendix A1). We selected methylation sites from the largest EWAS on BMI by 
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Wahl et al. in 2017 as the reference BMI-associated CpG sites. 187 methylation sites were 

identified to be associated with BMI with samples from 5,387 participants including the European 

and Asian Indian population. The reference study used 450K array for methylation data and the 

association tests were controlled by age, sex, smoking status, physical activity level, alcohol 

consumption, cell proportions as well as adjusted by probes [44]. 

VACS DNA Methylation Data  

Methylation levels of CpG sites were recorded and derived using the 

HumanMethylation450 BeadChip (450K) and the EPIC BeadChip provided by Illumina, Inc. 

Quantile normalization was applied to the signal intensities in both methylation datasets to derive 

the methylation levels. Additionally, a few filters were applied to the 450K dataset: (1) CpG sites 

with a call rate smaller than 0.95; (2) CpG sites contain SNP within 10 bp; (3) CpG sites that could 

be mapped to multiple genome location. 412,583 autosomal CpG sites from 450K remained in our 

study pool after the filtering. 754,428 autosomal sites from EPIC remained in our study pool after 

applying the call rate filter as 450K and removing missing legacy and non-positive distance to 

SNP.  

BMI-associated CpGs 

 Reported methylation sites found in either EPIC or 450K pool were selected to estimate 

and confirm their association with BMI within our cohort. We used linear mixed models to 

estimate the associations between BMI and the methylation sites from 450K and EPIC, 

controlling age, race, sex, smoking status, physical activity level, alcohol consumption, cell 

proportions (CD4T, CD8T, B cell, Monocyte, Granulocyte) and adjusted by probes. Cell 

proportions were calculated based on the method proposed by Houseman et al. to adjust various 

distribution of white blood cells among subpopulations including diabetic cohorts [53]. NK cell 
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proportions were not included in the model to avoid correlations between variables. Replicating 

the test standard by Wahl et al., we used 3 categories for smoking status: current, former, and 

never smoker. Alcohol consumption was divided into 4 categories: not current, non-hazardous, 

hazardous and abuse. Race/ethnicity included white Caucasian, African American, Hispanic and 

others. Association estimates based on methylation data from two BeadChips were combined 

using meta-analysis with METAL [54]. The association coefficients were estimated as change in 

DNA methylation levels per unit change in BMI. All p-values in the meta-analysis were adjusted 

for multiple testing using Bonferroni correction. We examined BMI-associated DNA 

methylation sites from previous studies among PWH from the VACS.   

Statistical Analysis of Association Between T2DM and BMI-related CpGs 

We estimated the association between T2DM and methylation levels of BMI-associated 

CpG sites with generalized estimating equations using the “geepack” package in R. Two models 

were used to explore the relationship between T2DM and BMI-associated CpG methylation levels. 

To account for potential confounders of T2DM, the estimations were controlled for age, race, 

hazardous alcohol consumption status, current smoking status, virus load, Hepatitis B and C 

infection as well as cell type proportions. BMI was modeled as an additional covariate to gauge 

the impacts of phenotypic BMI on the epigenetic associations with T2DM. Both models were 

adjusted for batch effect. Subset results for both models were combined using meta-analysis and 

adjusted with multiple testing using Bonferroni correction.  

(1) GEEGLM(T2DM) =   α + β CpG + γ1 age + γ2 HTN + γ3 HepC + γ4 HepB + γ5 VL + γ6ALC 

+ γ7 SMK + γ8 AA) 

(2) GEEGLM(T2DM) =   α + β CpG + γ0 BMI + γ1 age + γ2 HTN + γ3 HepC + γ4 HepB + γ5 VL 

+ γ6ALC + γ7 SMK + γ8 AA) 
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CpG: continuous variable indicating the DNA methylation level 

Age: continuous variable of sample age 

HTN: binary status of hypertension defined by SBP/DBP or antihypertensive drugs 

HepC: binary status of Hepatitis C infection 

HepB: binary status of Hepatitis B infection 

VL: binary status of HIV virus load < 75 

ALC: binary status of hazardous or abuse alcohol consumption level  

SMK binary status of a current smoker 

AA: binary status of African American ethnicity 

 

Results 

The baseline phenotypic characteristics of male veterans with HIV are summarized in 

Table 1 categorized by methylation BeadChip. The EPIC and 450K sub-cohorts had 529 and 555 

participants, respectively. The participants had comorbidities including diabetes (EPIC: 18.2%, 

450K: 18.8%), hypertension (EPIC: 76.4%, 450K: 83.3%), Hepatitis C (EPIC: 38.8%, 450K: 

54.5%) and Hepatitis B (EPIC: 9.41%, 450K: 11.1%). The median BMI for EPIC was 26.2 and 

25.6 for 450K. Majority of both cohorts were African American, hypertensive and had a smoking 

history; the median age for EPIC was 51.5, and 52.6 for 450K. Majority of both subsets were 

receiving antiretroviral treatment (83.4%, 83.8%). In the sub-cohort with 450K methylation data, 

Hepatitis C infection and hypertension were more prevalent than the EPIC cohort. Distributions of 

CD8T, B cell, NK and granulocyte were statistically different between two sub-cohorts.  

To examine how previously reported BMI-associated CpGs replicate in our cohort, we 

assessed the associations between DNA methylation levels and BMI and meta-analyzed the results 

of two sub-cohorts with METAL. The test results of significant associations were summarized in 
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Table 2. Out of 187 previously reported methylation sites, 183 passed quality control procedures 

in either EPIC or 450K BeadChip data. After the Bonferroni correction of 183 tests, 7 of them 

were estimated to have directional consistency as literature findings with statistical significance. 

These CpGs were considered BMI-associated methylation sites and further examined with T2DM. 

The associations between these DNAm loci and BMI were summarized in Table A3 (Appendix). 

cg09554443 was only included in the EPIC sub-cohort and cg11024682 (SREBF1) in the 450K 

sub-cohort.  

One out of seven BMI-related CpG sites were found to be statistically significantly 

associated with T2DM status (Table 3) after Bonferroni correction for multiple testing: 

cg11024682 (SREBF1) from EPIC, found on chromosome 17. The estimated odds ratio (OR) was 

4.74 (95%CI: 3.99-5.49) for every 10% change in DNA methylation levels (p-value: 4.6710-5, 

Bonferroni-corrected threshold: 7.1410-3). After adjusting for phenotypic BMI in the model, the 

association was still significant with cg11024682 (p-value: 3.5910-3, Bonferroni-corrected 

threshold: 7.1410-3). DNAm sites at LGALS3BP and MAD1L1 (chromosome 17 and 7) were also 

associated with T2DM with ORs 1.35 (95%CI: 1.13–1.658 p-value: 7.8710-3, Bonferroni-

corrected threshold: 7.1410-3) and 1.38 (95%CI: 1.11–1.65 p-value: 0.0190, Bonferroni-corrected 

threshold: 7.1410-3) respectively for every 10% change in DNA methylation levels at nominal 

significance level. Neither results were significant after adjusting for BMI. The association 

between T2DM and the methylation on IL5RA, not significant in BMI-independent model, was 

nominally significant after adjusting for BMI (OR: 1.64 for every 10% change in DNA methylation 

levels, 95%CI: 1.17–2.11, p-value: 0.0376, Bonferroni-corrected threshold: 7.1410-3).  
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EPIC  450K  

n = 529 n = 555   

Variable  n (%) / Mean (SD) n (%) / Mean (SD) p-value  

Race   

0.00304 
White 48 (9.07) 58 (10.4) 

AA 426 (80.5) 469 (76.3) 

Hispanic 40 (7.56) 15 (2.69) 

Other 15 (2.84) 13 (2.33) 

Smoking   

0.506 
Never 122 (23.6) 112 (20.3) 

Current 288 (54.4) 316 (56.8) 

Past 119 (22.5) 127 (22.9) 

Virus Load, < 75  156 (29.5) 125 (22.5) 0.103 

Age 51.5 (7.75) 52.6 (7.82) 0.835 

BMI 26.2 (5.05) 25.6 (4.72) 0.116 

eGFR 100.3 (31.8) 98.1 (33.7) 0.178 

CD4T proportion 0.0980 (0.0547) 0.114 (0.0582) 0.150 

CD8T proportion 0.265 (0.0919) 0.106 (0.0709) <0.0001 

NK proportion 5.49E-03 (0.0120) 0.130 (0.0555) <0.0001 

B cell proportion 0.0888 (0.0384) 0.131 (0.0476) <0.0001 

Monocyte proportion 0.147 (0.0336) 0.103 (0.0371) 0.0215 

Granulocyte proportion 0.454 (0.101) 0.525 (0.121) <0.0001 

Alcohol   

0.734 
Not Current 105 (33.5) 120 (35.8) 

Non-hazardous 107 (20.2) 112 (20.1) 

Hazardous 86 (16.3) 78 (14.0) 

Abuse/dependence 231 (30.1) 243 (30.0)  

Physical Inactivity 125 (23.9) 135 (18.9) 0.766 

Antiretroviral Treatment Recipient 441 (83.4) 465 (83.8) 0.852 

Duration HIV 2950 (1569) 2842 (1460) 0.0941 

Hypertension 404 (76.4) 460 (83.3) 0.00428 

Diabetes 96 (18.2) 103 (18.8) 0.861 

Hepatitis C 187 (38.8) 274 (54.5) <0.0001 

Hepatitis B 48 (9.41) 59 (11.1) 0.367 

Table 1. Phenotype summary of subsets with EPIC and 450K BeadChip methylation data. Cohorts were 

consisted of HIV-positive male veterans from VACS. Antiretroviral treatment included ART and HAART. 

Distribution of race/ethnicity, hypertension, Hepatitis C coinfection rate, and cell proportions (CD8T, NK, 

B cell, monocyte and granulocyte) were different between 450K and EPIC subsets at a significance alpha 
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level p-value of 0.05. The definition of diabetes according to VACS is: (1) glucose level ≥200 mg/dL 

on 2 separate occasions or (2) glucose level ≥200 mg/dL on 1 occasion plus treatment with an oral 

hypoglycemic or insulin for ≥30 days [50]. Hypertension is defined as (1) SBP≥130 mmHg or 

DBP ≥ 80 mmHg, or (2) taking any anti-hypertensive drugs. 

 

   

  Number 

Previously reported BMI-associated CpG loci 187 

Tested in the VACS BMI EWAS 183 

Consistent Direction of association with reported BMI EWAS 96 

Nominally significant (p<0.05) 28 

Significant after Bonferroni correction 7 

Table 2. Replication of previously reported BMI-related methylation sites in the meta-analysis of 

VACS BMI EWAS
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   Meta-analysis (n=948) EPIC Subset (n = 465) 450K Subset (n = 483) 

CpG Chr. Gene OR ( CI) P OR ( CI) P OR ( CI) P 

cg11024682 17 SREBF1 4.74 (3.99-5.49) 4.67E-05* 4.74 (3.99-5.49) 4.67E-05* NA NA 

cg08857797 17 VPS25 1.16 (0.797-1.53) 0.419 1.22 (0.601-1.84) 0.528 1.13 (0.679-1.59) 0.589 

cg11202345 17 LGALS3BP 1.35 (1.13-1.58) 7.87E-03 1.19 (0.780-1.60) 0.407 1.43 (1.16-1.70) 8.48E-03 

cg09554443 1 CD247 0.862 (0.446-1.28) 0.486 NA NA 0.862 (0.446-1.28) 0.486 

cg12593793 1 LMNA 0.787 (0.418-1.16) 0.202 0.811 (0.273-1.35) 0.446 0.766 (0.261-1.27) 0.300 

cg23032421 3 IL5RA 1.21(0.743-1.68) 0.423 0.647 (-0.0267-1.32) 0.206 2.17 (1.52-2.83) 0.0194 

cg05095590 7 MAD1L1 1.38 (1.11-1.65) 0.0190 1.37 (0.925-1.82) 0.166 1.38 (1.05-1.72) 0.0583 

* Bonferroni corrected p-value < 0.05 

Table 3. Estimates of association between T2DM and BMI-related CpGs (BMI independent). OR, 95% CI and P (p-value) were derived from 

meta-analysis and from subsets (EPIC and/or 450K). NA indicates the corresponding CpG was missing in the subset. 465 and 483 samples were 

included in EPIC and 450K subsets respectively. The ORs (95%CI) of T2DM were adjusted for every 10% change in DNA methylation levels. 
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   Meta-analysis (n=946) EPIC Subset (N = 463) 450K Subset (N = 483) 

CpG Chr. Gene OR ( CI) P OR ( CI) P OR ( CI) P 

cg11024682 17 SREBF1 3.37 (2.55-4.18) 3.59E-03* 3.37 (2.55-4.18) 3.59E-03* NA NA 

cg08857797 17 VPS25 0.919 (0.489-1.35) 0.700 0.944 (0.287-1.60) 0.865 0.900 (0.331-1.47) 0.717 

cg11202345 17 LGALS3BP 1.19 (0.925-1.46) 0.198 1.05 (0.601-1.49) 0.841 1.28 (0.948-1.61) 0.145 

cg09554443 1 CD247 1.04 (0.670-1.41) 0.837 NA NA 1.04 (0.670-1.41) 0.837 

cg12593793 1 LMNA 0.924 (0.568-1.28) 0.662 0.965 (0.432-1.50) 0.897 0.891 (0.413-1.37) 0.637 

cg23032421 3 IL5RA 1.64 (1.17-2.11) 0.0376 0.895 (0.225-1.56) 0.746 2.94 (2.28-3.59) 1.26E-03 

cg05095590 7 MAD1L1 1.21 (0.956-1.46) 0.143 1.16 (0.747-1.58) 0.479 1.24 (0.917-1.60) 0.192 

* Bonferroni corrected p-value < 0.05 

Table 4. Estimates of association between T2DM and BMI-related CpGs (BMI dependent). OR, 95% CI and P (p-value) were derived from meta-

analysis and from subsets (EPIC and/or 450K).  NA indicates the corresponding CpG was missing in the subset. 463 and 483 samples were 

included in EPIC and 450K subsets respectively. The ORs (95%CI) of T2DM were adjusted for every 10% change in DNA methylation levels. 
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Discussion 

We examined the roles of BMI in the development of T2DM among PWH by studying the 

association between BMI-associated DNA methylations in peripheral blood and risk of T2DM 

among male veterans with HIV in VACS. Our study confirmed that BMI-related methylation locus 

cg11024682 (SREBF1) is associated with elevated risk of T2DM among PWH. By adjusting BMI 

in the association between T2DM and cg11024682, we found the epigenetic association with 

T2DM may be independent from the effect of phenotypic BMI. In a paired correlation test, we 

found that cg11024682 was moderately correlated with other methylation loci in Chromosome 1, 

3 ,7 and 17. 

In a cohort of 946 multi-ethnic PWH, we replicated seven BMI-associated DNAm markers 

that were previously reported in a large cohort with 10,261 samples with European and Indian 

Asian ancestries from Wahl et al. within our VACS cohort. In addition, consistent with Karlsson 

et al., Campanella et al., and Dhana et al., we identified DNAm sites at LGALS3BP, LMNA, 

MAD1L1 and SREBF1 that were also previously recognized markers associated with BMI among 

African populations [55-57]. Our study successfully replicated the previous reported BMI-

associated methylation markers in our HIV-infected male veteran cohort. 

A key finding in our study is that we identified the association between T2DM and the 

methylation of the Sterol Regulatory Element Binding Transcription Factor 1 (SREBF1) on 

chromosome 17 male veterans with HIV. SREBF1 gene encodes a transcription factor binding to 

sterol regulatory element 1, which is part of a promoter of genes controlling sterol biosynthesis 

and LDL receptor genes [58]. Therefore, methylation of SREBF1 may disrupt lipid synthesis and 

cell metabolism through regulation of SREBF1 expression. SREBF1 can be inhibited by sterol and 

the methylation of SREBF1 has been reported as a predictor of future T2DM development as well 
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as glycemia, insulin resistance as well as obesity [59, 60]. This finding is also consistent with Wahl 

et al., who similarly found cg11024682 (SREBF1) was associated with T2DM as a single marker 

even after adjusted for BMI [44]. DNA methylation at SREBF1 was also previously reported to be 

associated with elevated T2DM risk through EWAS among Indian Asians, Europeans, and 

Mexican Americans [38, 39]. Our study finding suggests that the BMI-related DNAm cg11024682 

may also be associated with T2DM among the HIV-infected cohort. Future studies can investigate 

the methylation locus among general HIV-infected population. 

We did not find significant association between T2DM and other BMI-related DNAm loci. 

The findings are different from the referenced results of Wahl et al., which reported all 7 

methylation markers to be associated with T2DM [44]. Except cg09554443, all markers were 

associated with T2DM even after adjusted for BMI [44]. Explanations for this difference may 

likely include an insufficient sample size.   

There are several strengths to this study. Instead of using methylation data from a single 

subset, we incorporated methylation data from 450K and EPIC array in our association tests. 

Doubling measured CpG sites of 450K, the EPIC array provided us with DNA methylation data at 

better coverage. Previous studies have found inconsistency in a few sites between the two 

technologies and combined results were suggested to use for population studies [59]. Through 

meta-analysis of the association tests, we increased the robustness of our results and avoided 

potential bias caused by using subset data. Our study is also the first to explore the role of BMI-

related DNA methylation markers in the association between T2DM among PWH. We provide a 

potential epigenetic explanation to the elevated risk of T2DM among PWH mediated by BMI. 

Our study is subject to a few limitations. Using VACS cohort data with HIV-positive male 

veterans, our results would be limited to extending for the general HIV-positive population. Both 
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VACS cohorts were aged, suffered from chronic diseases and had a higher proportion of African 

Americans. We were unable to estimate the association of cg11024682 (SREBF1) in our 450K 

data even though the locus was previously reported using the 450K array. Quality control steps of 

our 450K array removed the CpG since it was within the 10 bp distance of known genome. The 

test standard of the reference was not fully replicated in our study. The association between DNA 

methylation and BMI was estimated as the change in DNA methylation per unit change in BMI, 

whereas the association in the reference was per unit change in methylation.  

Our study provided an epigenetic explanation of how T2DM may be mediated by BMI 

effects specifically among PWH. Using phenotypic data from VACS and combined epigenetic 

information of 450K and EPIC array, we identified BMI-associated DNA methylation sites and 

explored their association with T2DM with and without the mediation of phenotypic BMI. The 

analysis replicated the previous findings of the T2DM predictor and shed light on the potential 

effect of BMI mediating the association among PWH. The results provide new insights on the 

epigenetic pathways of T2DM development among the HIV-infected cohort. Specifically, this 

work confirms the role of DNA methylations through BMI mediation in elevated T2DM risk 

among PWH. Our study suggests that further molecular or epigenetic research may focus on the 

SREBF1 gene or cg11024682 DNAm locus to elucidate the mechanism of T2DM development 

among PWH. Future research can also be conducted and controlled for types of ART and duration 

of ART received within a larger cohort. Tissue-specific DNA methylations can be investigated to 

examine the biological pathway of BMI-mediated T2DM development. As we start to understand 

this mechanism, future investigations can be conducted to develop targeted therapeutics to prevent 

obesity and methylation on the key gene SREBF1.  
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III. Appendices 
           

First author 

(Year) 
(Discovery) Cohort Characteristics Study Design 

 Size Population Age, Gender 

BMI, 

Mean 

(SD) 

Underlying 

conditions 

Array, 

Sample 

Study 

design 
Validation 

Statistical 

Analysis 
Co-variables 

Karlsson 

(2020)[55] 
535 Swedish 

68.2yrs; 

58.5% 

female 

26.4 

(4.2) 
Smoking, T2D 

450K, 

EPIC 

Cross-

sectional, 

longitudinal 

Yes 

Linear mixed 

effects 

regression 

GLU, CHOL, 

triglycerides, smoking, 

T2D, age, sex, 

methylation array 

He 

(2019)[61] 
263 Penn State  

16.7yrs. 

44.1%female

. 

65.4% 

(28.5

%) 

Tobacco, alcohol, 

 Illumina 

HiSeq 

2500 

Cross 

sectional 
Yes 

Linear 

regression 

Age, race, sex, batch of 

assay 

Sun 

(2019)[62] 
1485 

The 

Bogalusa 

Heart Study  

44yrs; 59% 

female 

28.7-

33.3 
Smoking 450K 

Cross-

sectional, 

longitudinal 

Yes GLM 
Age, sex, smoking status, 

estimated WBC 

Li 

(2019)[63] 
60 

CN 

monozygoti

c twins  

53.53yrs; 

50% female 

25.1 

(4.33) 
NA 

Illumina 

HiSeq X 

Ten  

Cross-

sectional, 

longitudinal 

Yes 

Linear mixed 

effects 

regression 

Cell type composition, 

GLU, CHOL, TG, 

HDLC, LDLC 

Campanella 

(2018)[56] 
1941 European  NA NA 

Breast cancer, 

colorectal cancer, 

MI, b-cell 

malignancy, 

smoking 

450K 
Meta-

analysis 
Yes meta-analysis  

Microarray and position, 

sex, age at blood draw, 

case control status 

Dhana 

(2018)[57] 
1450 Dutch  

63.7yrs; 

55.9%female 

27.7 

(4.4) 
Smoking, T2D 450K 

Cross-

sectional 
Yes 

Linear mixed 

effects 

regression 

Sex, age, smoking, 

leukocyte proportions, 

array number, position 

on array 

Wahl 

(2017)[44] 
5387 

European, 

Asian 

Indian  

>50yrs. >50

%female 
>26.8 

Alcohol, 

hypertension, 

coronary heart 

disease, T2D, 

smoking 

450K 

Cross-

sectional, 

longitudinal 

Yes 

Inverse 

variance meta-

analysis  

Age, sex, smoking, 

physical activity, alcohol, 

probe, estimated WBC 

proportions 

Sayols-

Baixeras 

(2017)[64] 

641 
REGICOR, 

FOS 

63.2yrs, 

50.7% 

female 

27.0 

(4.0) 

Hypertension, 

diabetes, smoking, 
450K 

Cross-

sectional 
Yes 

Fixed effects 

meta-analysis 

of two cohorts 

Age, sex, smoking, 

surrogate var 

Mendelson 

(2017)[43] 
3743 

FHS & 

LBC 

67yrs,55% 

female 

28.3 

(5.4) 

Diabetes, coronary 

artery disease.  
450K 

Cross-

sectional 
Yes 

Meta-analysis 

of two cohorts 
Age, sex 
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Meeks 

(2017)[42] 
547 African 

50.5yrs, 

57.8%female 

26.7 

(0.5) 
Without T2D 450K 

Cross-

sectional 
Yes 

Linear 

regression 

Age, sex, recruitment 

site, estimated cell 

distributions, technical 

effects, first principal 

component from 

genotyping data 

Geurts 

(2017)[65] 
5361 

Melbourne 

cohort 

60yrs, 

32%female 
NA 

Prostate, 

colorectal, lung or 

kidney cancer, 

urothelial 

carcinoma or 

mature B 

neoplasms, 

smoking 

450K 

Cross-

sectional, 

longitudinal 

No 

Linear mixed 

effects 

regression of 

case & control 

Age, sex, smoking status, 

country of birth, sample 

type, white blood cell 

composition 

Crujeiras 

(2017)[66] 
55 

European 

Caucasian 

27.4yrs; 23% 

female;  
NA Diabetes  

450K; 

adipose 

tissue, 

leukocytes 

Case 

control 
No 

Wilcoxon rank 

test 
Age 

Ali 

(2016)[67] 
192 

Northern 

European 

ancestry 

36.2yrs, 

55%females 
NA 

Insulin resistance, 

hypertriglyceridem

ia 

450K 

 bisulfite 

validation 

seq 

Yes 

SOLAR, rank-

normal 

transformation 

Sex, age, interactions 

Demerath 

(2015)[68] 
2097 African 

56.2yrs, 

64%female 

30.1 

(6.1) 
Smoking, alcohol 450K 

 Cross-

sectional 
Yes 

Linear mixed 

effects 

regression 

Leukocyte proportions, 

sex, age, study center, 

WBC, education, 

household income, 

smoking, alcohol, 

physical activity, array 

Aslibekyan 

(2015)[41] 
991 GOLDN 

49yrs; 

52%female 
28 (6) Smoking 450K 

Cross 

sectional; 

bisulfite 

sequencing  

Yes 

Linear mixed 

effects 

regression 

Age, sex, smoking status, 

T cell purity, study site, 

family structure 

Dick 

(2014)[40] 
479 European  

43.8yrs, 

78%female 

24.2 

(na) 

MI, smoking, 

diabetes, 

450K; skin, 

adipose 

tissue 

Cross-

sectional 
Yes 

Linear mixed 

effects regression 

age, sex, smoking, 

methylation array batch, 

MI 
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Table A1. Summary of literature review on EWAS of BMI with discovery set cohort characteristics and study design if available. All studies consist 

of mixed gender. None of the studies include participants with HIV. All samples came from peripheral blood except noted otherwise.        
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Figure A2. Comparison of beta coefficients between previous reported BMI EWAS (Wahl et al.) and the 

meta-analysis of VACS BMI EWAS. Linear regression was estimated and yielded an adjusted R2 of 0.242. 

The BMI-related DNA methylation loci demonstrated with directional consistency at Bonferroni 

significance are shown in red. The association between DNA methylation and BMI (Beta) in meta-

analysis was estimated as the change in DNA methylation per unit change in BMI, whereas the 

beta in the reference was per unit change in methylation.  
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EPIC 
CHR 1 CHR 3 CHR 7 CHR 17 

cg12593793 cg23032421 cg05095590 cg08857797 cg11202345 cg11024682 

CHR 1 
cg12593793 1      

cg23032421 -0.0854* 1     

CHR 3 cg05095590 0.0595 -0.187* 1    

CHR 7 cg08857797 0.64* -0.431* 0.0682 1   

CHR 17 
cg11202345 0.042 0.208* 0.191* 0.0290 1  

cg11024682 0.235* -0.457* 0.339* 0.421* -0.0738 1 

* pair-wise correlation with p-value <0.05 

Table A3. Pair-wised correlations of DNA methylation sites in EPIC sub cohort. The DNAm locus at 

cg11024682 has moderate correlation with all other loci except cg11202345 in EPIC array. 
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450K 

CHR 1 CHR 3 CHR 7 CHR 17 

cg12593793 cg09554443 cg23032421 cg05095590 cg08857797 cg11202345 

CHR 1 

cg12593793 1      

cg09554443 -0.304* 1     

CHR 3 cg23032421 -0.226* 0.534* 1    

CHR 7 cg05095590 -0.103* 0.052 -0.234* 1   

CHR 17 
cg08857797 0.658* -0.526* -0.541* 0.0110 1  

cg11202345 -0.177* 0.174* 0.183* 0.0811 -0.133* 1 

* pair-wise correlation with p-value <0.05 

Table A. Pair-wised correlations of DNA methylation sites in 450K sub cohort.. The DNAm locus at 

cg11024682 has moderate correlation with all other loci except cg05095590 in 450K array. 
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   Meta-analysis  EPIC Subset (N =522) 450K Subset (N = 542) 

DNAm Chr. Gene Beta bonfP Beta bonfP Beta bonfP 

cg05095590 7 MAD1L1 2.02E-03 6.08E-04 1.48E-03 1.00 2.47E-03 5.39E-03 

cg08857797 17 VPS25 1.29E-03 6.84E-06 1.60E-03 5.06E-03 1.11E-03 4.27E-02 

cg11024682 17 SREBF1 1.30E-03 6.66E-04 1.30E-03 7.67E-04 NA NA 

cg11202345 17 LGALS3BP 1.84E-03 7.65E-04 1.39E-03 1.00 2.50E-03 1.27E-02 

cg12593793 1 LMNA -1.39E-03 1.68E-05 -1.12E-03 0.827 -1.58E-03 8.00E-04 

cg23032421 3 IL5RA -1.33E-03 1.83E-07 -1.42E-03 5.83E-03 -1.26E-03 1.60E-03 

cg09554443 1 CD247 -1.66E-03 1.97E-03 NA NA -1.66E-03 2.28E-03 

 
Table A5. Summary of coefficients and p-values of EWAS on BMI. The p-values were adjusted for Bonferroni correction. The p-values for meta-

analysis were adjusted for 183 tests; the p-values for EPIC cohort and 450K cohort were adjusted for 157 and 175 tests respectively. 522 and 542 

samples were included in each subset respectively.   
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