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Abstract

Exploratory Analysis of Climate Drivers of Vibrio vulnificus Wound Infections in the
Southeastern US
By Leslie Waller

Introduction: Vibrio vulnificus is a gram-negative marine bacteria that causes gastroenteritis
and skin and soft tissue infections through exposure of open wounds to sea water. The
infection is known as a seasonal infection, with cases peaking in the late summer. Due
to the pathogens affinity for brackish and salty warm water, there is much concern
surrounding the impacts of climate change on its behavior and likelihood of cases to
increase. This research aims to test associations between environmental parameters and
reported cases of v. vulnificus skin and soft tissue infections.

Methods: Poisson time series regressions were used to test precipitation and maximum daily
temperature as predictors of cases at different lag times. Cases were mapped and
analyzed using Local Moran’s I and kernel density functions to assess clusters of cases.

Results: Precipitation was only rarely significant, whereas temperature was significant in most
models. Three full models were significant: Mississippi and Florida at the 5 day lag
time, and Alabama at the 30 day lag time.
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Introduction
Substantial amount of scientific evidence shows that global climate change is

occurring, with widespread impacts on hydrological, geological, and atmospheric
systems 1-3. With these broad impacts, there is concern that climate change may be
altering the ecology of disease-causing pathogens on a large scale*. Diseases like
dengue, chikungunya, and malaria have been affected by climatic changes in
regional ecology in ways that allow vectors and pathogens to capitalize on changing
environmental factors like higher rainfall amounts and longer hot periods to further
spread disease in human populations 56, Researchers in the areas of new and
emerging infectious diseases are particularly keen to investigate changes in climate
and the subsequent environmental fluctuations on disease ecology as the
consequences of these changes can be widespread and expensive 7. This type of
research will be even more pertinent as changes in climate progress.

An important aspect of this research is investigating the extent to which the
environment may impact disease proliferation. One pathogen that appears to be
mediated by environmental factors is Vibrio vulnificus, a member of the genus of the
pathogen that causes cholera8. The genus Vibrio is also known for foodborne
outbreaks related to oysters and other raw shellfish due mainly to Vibrio vulnificus
and Vibrio parahaemolyticus °. Both of these species prefer warm marine and
brackish waters, and have demonstrated survivability in sediment, aquatic plants,
fish, shellfish, and as free-floating organisms during warmer months and in salinity
ranges of 10-12, However, V. vulnificus has the distinguishing characteristic of readily
causing skin and soft-tissue infections in humans as a result of open wound

exposure in the setting of habitats where the bacteria occur naturally 13 14,



These skin infections have been documented in the media as the ‘flesh-eating
bacteria’ since the hallmark symptom is necrotizing fasciitis of the infected area 1>
16, which sometimes leads to limb amputation 13. Other common symptoms include
septicemia, fever, nausea, vomiting, and organ failure 13. Individuals are much more
likely to develop an infection if they have one of several preexisting conditions,
including hepatic or renal diseases, or alcoholism!”. Upon exposure, cases typically
develop symptoms within 48 hours, but often sooner and sometimes within just a
few hours. From there, infected cases must seek prompt medical attention because
these infections progress rapidly and have led to death within 2 days of being
exposed for some people 13.17. Vibrio vulnificus has a high mortality rate for its skin
infections, estimates of which have been reported around 20%18. Three biotypes of
the pathogen exist: A, B, and AB, where B is the most virulent in humans 10. The
mechanism by which the bacteria infect humans is the release of an RTX toxin upon
contacting endothelial cells 1°. Additionally, v. vulnificus has dual morphology,
which is a hypothesized mechanism by which it survives in sediment or aquatic
plants in suboptimal environmental conditions like lower water temperatures 20.

Many in situ studies have shown the association of higher temperatures and a
wide range of salinities with greater v. vulnificus survival, which has also been
repeated in laboratory settings 21-24, Cases of reported vibriosis, the resulting illness
from infection with a member of vibrio genus, also peak in warm summer months,
further suggesting that the presence of v. vulnificus increases when environmental
conditions are prime ? (Figure 1). As it becomes more critical to understand the

impacts of a changing climate on human health, the body of knowledge and data on



v. vulnificus is growing so that further research can be done to test its significance to
human health as well as using it as a case study for impacts resulting from climate
change. The National Climate Assessment also calls for increased surveillance of v.
vulnificus as its affinity to cause skin and soft tissue infections could act as an
indictor of climate change, particularly warming oceans?2>. The Centers for Disease
Control and Prevention (CDC) began mandated reporting of all cases of vibriosis
beginning in 2007; the data set currently extends to 2012. Additionally,
environmental and climate change data exist for the entire timeframe of the data set
which allows for associations between reported cases and various environmental
parameters to be drawn.
Methods

The goal of this exploratory analysis was to evaluate postulated associations
between several environmental factors known to be important to v. vulnificus
ecology and skin and soft tissue infections acquired in the organism’s natural
environment in the coastal areas of the Southeastern United States using Poisson
time series regressions. We hypothesized that cases would be significantly
associated with temperature at the location of exposure at the shorter lag times of 0,
3, and 5 days while precipitation would be significantly associated with cases at
longer lag times of 15, 30, and 45 days. We also hypothesized that precipitation
would be an adequate proxy for water salinity since this data was unavailable. The
research also investigated demographic trends in the data set using univariate and

multivariate analyses, and cluster density analysis of cases throughout the study



area. It was hypothesized that cases would be clustered in areas where large
estuaries and freshwater inflows were present.

Data Sources and Preparation

Two data sets were used in this analysis. One is the Cholera and Other Vibrio Illness
Surveillance (COVIS) data set, which contains demographic, health, and medical
information on the reported cases. The second is the Daily Global Historical
Climatological Network (GHCN-D), which contains meteorological and
climatological variables. The COVIS data set includes variables on cases, locations of
exposure, type of exposure, water type associated with each exposure in each case,
preexisting conditions, employment, age, sex, and how they were exposed. Exposure
type includes fish, boats, sediment, water, and other aquatic life. The information
contained within is self-reported data that was collected by a state or local public
health official, and it was common for some information to be omitted for variables
throughout the data set, according to no theme. Environmental parameters were
downloaded from the National Oceanic and Atmospheric Association’s (NOAA)
National Climatic Data Center’s (NCDC) Daily Global Historical Climatological
Network (GHCN-D)?26, an online database of regularly acquired daily readings. State
and county level daily environmental parameters were sourced, and only stations
within each of these boundaries reporting readings at least 80% of the time during
the study period were used in the analysis. More specifically, state level data had to
be downloaded from NCDC, then averaged from all weather data stations from the

state. This was performed using Microsoft Excel 2013 (Redmond, Washington). Both



of these data sets were then merged in Excel at their respective dates within the
study timeframe and given an ObjectID and daily case count.
Data Analysis

Univariate and multivariate analyses were done for exploratory analysis of
the data. Cases were mapped to visualize locations and visually assess regional
distributions, as well as to analyze case densities and spatial autocorrelation. Lastly,
a Poisson time series analysis was conducted to analyze the association between
environmental parameters and cases.

Using SAS 9.4 (Cary, NC), case data were described based on sex, age, how the
case was infected, whether it was a recreational or occupational exposure, and pre-
existing conditions with frequency tables and univariate analyses. Cases were
mapped using ArcGIS 10.2 (Redlands, CA) using reported locations of the exposure
that caused the infection, and stratified by year of infection. Cases were visually
inspected for their distribution throughout the study area, and case density was
analyzed using a kernel density function to assess areas of higher case
concentrations. Significant spatial autocorrelations were assessed with a local
Moran'’s I statistic using ClusterSeer (BiomedWare, Ann Arbor, MI).

Multiple environmental parameters were assessed for use in regression
models to test associations between reported cases and corresponding
environmental parameters at different lag times, including Palmer Drought Severity
Index, minimum temperature, maximum temperature, average daily temperature,
precipitation, and sea surface temperature. Tests for multicolinearity were

performed on these environmental parameters using Pearson’s chi-square statistic



to determine if any parameters could be thrown out to prevent over-fitting the
models using SPSS 22(Armonk, NY). From this analysis, maximum daily
temperature (°C) and daily precipitation (mm) were chosen as two parameters for
regression analysis, and daily case counts were regressed against these two
parameters. Associations between environmental parameters and reported
infections were modeled at the state and county level, and assessed for their
significance, model fit, and power using SAS. Models were developed for a variety of
lag times that include testing associations with environmental parameters at 3, 5,
15, 30, and 45 days prior to the date of exposure. The 5 different lag structures
modeled were chosen based on lab-based revival studies that showed V. vulnificus
could return from a viable but not culturable state (VBNC) to a culturable state at 3
days after optimal environmental conditions were returned?’. Therefore, we started
with 3 days and went up from there to 45 days, which was selected as an arbitrary
cutoff. The interspersed lag times were also arbitrary. Some counties did not have
enough data coverage to analyze each lag structure, so in those instances analyses
were only run where data allowed, which accounts for the lack of models at the
county level. In addition, some counties only had one case, so a regression would not
be possible. Zero-inflated Poisson distributions were also performed using the same
inputs and the same lag structures to account for low case counts and to test a

different model.



Results

General Trends

There were 276 vibriosis cases in total and 182 in the Southeastern US region that
were infected with v. vulnificus and acquired the infection through wound exposure
to environmental media from 2007 to 2012. The analysis went forward with these
182 cases.

Since vibriosis became nationally notifiable to the CDC in 2007, annual reported
case counts exhibited an upward trend, with the highest peak in cases reported in
2010, with possible plateauing or slight fluctuations between 2010 and 2012
(Figure 2). Reported monthly case counts stratified by year exhibit increasingly
normal distributions as time progresses, with 2010-2012 displaying the most
normal distributions (Figure 3). There were some interesting and unsuspected
findings regarding case frequency distributions and demographic information. Some
months, like June 2012, where relatively high case counts would be expected
showed low or no cases reported. Next, 2008 and 2012 had anomalous frequencies
of reported cases with 2008 reporting relatively low frequencies across the entire
region, and 2012 exhibited the longest season for reported cases. When stratified by
year and state, reported case counts had high variability. For example, Alabama and
Mississippi had years when they did not report any cases. Other states had wide
ranges of frequencies, like Florida with a minimum of 3 cases in 2007 and 2008 to
22 cases reported in 2010. There is no apparent trend in yearly peaks across all
states in the region, as each state hits a maximum of annual reported cases in mostly

different years (Table 1). Of the cases in the region, 88% of cases in the study area



were males with a mean age of 58.3, in contrast to women who had a mean age of
50.6 (Table 2). The distribution of ages was normal about the mean. 93.9% of cases
(171/182) were exposed during recreational activities, predominantly in saltwater
followed by brackish water. Lastly, analysis shows that 50.5% of exposures to vibrio
vulnificus occurred as a result of bodily contact with water, followed by multiple
exposure types (33.6%) (Table 3). The locations of the cases are spread from South
Texas all the way to Key West and up the Atlantic Coast of Florida, with some areas
exhibiting an apparently higher frequency of cases based on significant spatial
autocorrelation results (p-value <0.001), indicating significant local clusters of cases
(Figure 4). Kernel density analysis also revealed high densities of cases surrounding
areas where there are large estuaries and bays relative to areas where these large
bodies of brackish water do not exist (Figure 5).
Regression Analysis

Tests for model fit were run in SAS, and statistics for each model had a very
high p-value for model fit, indicating that the Poisson distribution was a good fit for
the data. Likewise, model diagnostics showed the data were not over- or under-
dispersed for any of the states or counties at the various lag times. Zero-inflated
poisson model diagnostics were also run, and this distribution was deemed not a
good fit for the data.
Analysis of multicolinearity among the environmental parameters showed that
nearly all of them were highly correlated, with the exception of maximum
temperature and precipitation. The regression models were therefore carried out

using just daily maximum temperature and precipitation to test associations with



reported cases of vibriosis through wound exposure to the vulnificus species
without oversaturating the models (Appendix 1). A total of 151 models were run at
the county level and 25 at the state level. No full model was significant at the county
level, although temperature was frequently a significant predictor in the models
whereas precipitation was only a significant predictor at this finer scale in 11 out of
the 151 models. However, temperature was significant at a variety of lag times
according to no apparent trend. Two examples categorize the county level results
well. Two Texas counties, Harris and Aransas, are located on Trinity Bay and
Aransas Bay, respectively. Analysis performed on Harris County showed
temperature to be significant at every lag time with no significant precipitation,
whereas temperature was only significant in Aransas County at 15 and 45 days and
significant precipitation at the 30 day lag time. Second, maximum daily temperature
is significant at the 30 and 45 day lag in Orleans County, but is not significant at any
lag times in neighboring LaFourche County, just south of New Orleans. This type of
pattern, or rather lack thereof, is typical throughout all models in the analysis. At the
state level analysis, there were complete models that were significant, namely the
Alabama analysis at the 45 day lag time, the Florida analysis at the 5 day lag time,
and Mississippi at the 5 day lag time. Only temperature was in the Texas model due
to missing precipitation data. Temperature was significant in all state level models
except for two, Alabama at the 30 day lag, and Mississippi at the 45 day lag. Also at
this level, much like at the county level, models did not demonstrate a clear trend in

the significance of the predictors at various lag times.
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Discussion

General Trends

This is the first time to our knowledge that the association between incidence of
vibriosis resulting from wound exposure to Vibrio vulnificus and daily precipitation
and maximum temperature has been analyzed.. While some data points were
missing in each of the data sets, which made analysis of some features difficult or
impossible, there were novel and reaffirming results nonetheless.

Upon deeming vibriosis nationally notifiable from 2007, it could have taken
states some time to adjust policies and procedures for compliance with new CDC
reporting standards. Missing or contradicting variables for some cases reduced the
reliability of the information reported, particularly in the case of the type of water
present where the case was exposed, time and date of exposure, and the location of
exposure itself. There were also questions of whether increasing frequency of
reported cases was due to reporting habits as well. This increase could be due to
several reasons, including states adapting to new standards. This is the most likely
scenario, and would explain the increasingly normal distributions in monthly data
by year.

Alternately, cases are truly increasing, but data from more recent years would need
to be added to the data set to give such a statement any power. Even though there
are increasing frequencies of reported cases over time, the stratified data by year

hold the same seasonal pattern as previously described in the literature, with most
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cases reported in warmer months. Additionally, when cases are stratified by year,
there are months where no cases were reported. For example, in 2012 there were
no cases reported in June throughout the entire region, which is anomalous
considering every other year saw between 2 and 10 cases reported in June. Other
curious findings are relatively low frequency of reported cases in 2008, and a
relatively long season in 2012. Potential factors contributing to these findings
include environmental and sociological factors. First, there are a number of
parameters not used in this study, like chlorophyll a concentrations in water that
could influence the fluctuation in reported cases. 2008 was also the first year of the
Great Recession, so it's possible that fewer people took vacations, therefore
exposing fewer people to the bacteria.

The analysis reaffirmed findings in previous studies, as well as produced
some novel findings. It was interesting to see that a large percentage of cases were
males over 55 years old. One study has suggested that estrogen can be protective
against v. vulnificus infection, providing a possible explanation why men are more
likely to be infected?8. This also brings up questions of interaction between being a
male with no significant estrogen, older age and weaker immune systems, and
changing environmental factors associated with climate change. It could be possible,
and provides an important area of research, that shifting demographics in the face of
warmer and longer summers as a result of climate change are impacting frequencies
of reported cases of v. vulnificus.

Contrary to our assumption that many cases would be occupationally

acquired, the vast majority of cases (93.5%) were recreationally acquired. This is
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interesting because our data point to older individuals being more susceptible to
infection, on average, with a hypothesis regarding this distribution being that many
people infected are retired and/or vacationing at the time of infection. The
prevalence of saltwater reported at the location of exposure was also surprising,
since previous studies have noted that there is an optimal salinity of 10-25 ppt for
the bacterium. This salinity level is well below the salinity of typical oceanwater in
the Gulf of Mexico??, insinuating that either the reporting of the water type is
sometimes miscategorized, or V. vulnificus can live in much higher salinities than
previously described. One question that arises from this finding is based on
hydrological changes in marine systems when precipitation mixes with oceans.
During periods of rain, the salinity levels of the top 2-3 inches of ocean water can
drop so low that it can be considered potable3?. Due to this feature, it may be
possible for vulnificus to survive in local clusters in open oceans that have high
salinities and frequently experience rain.

The climate data sets contained a wealth of information on environmental
parameters, although some variables that could have been useful were missing, or
some locations had very low reporting frequency. For example, salinity varies
greatly even within short distances and by the time of day, so a daily average would
not truly capture the salinity at the time and location of an exposure in the COVIS
data set. Other desired variables were relative and absolute humidity, chlorophyll a,
and sea surface temperature at the state and county level. These variables either did
not exist, were not regularly reported enough to run a powerful regression in our

specific locations, or would not apply to a state level analysis. In doing the analysis,
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precipitation was assumed to be somewhat of a proxy for salinity, since
accumulation of rainwater in ocean water can alter salinity.
Analysis

Upon designing the study, it was assumed that precipitation would be a good
proxy measure for ocean salinity, since this particular measurement was hard to
find at the daily level and salinity frequently changes throughout the day. It was
hypothesized that it may take several days for rain upstream to flow to brackish
bays and the Gulf of Mexico, making statewide precipitation important to the habitat
of vulnificus, thereby leading to more reported cases. This was not the case, as most
of the models produced showed no significance for precipitation at the state or
county level.
The fact that significance of the models at the various lag structures adheres to no
apparent pattern was another surprising result of the analysis. In the models for
both state level and county level associations, maximum temperature’s significant
associations with a higher frequency of reported cases was not surprising, as it
corresponds to previous studies’ assertions that cases spike in the summer
months#9, it was expected that it would be significant at more lag times and
locations. Precipitation was also expected to be significant more often than it was.
There was again no clear pattern in the state level analyses, although three states
did have significant full models. Some factors contributing to difficulty in identifying
a pattern include the nature of the varied landscapes throughout the region, soil
texture and type, and groundwater saturation levels in each state. For example,

Florida’s significant model at the 5 day lag time could be significant due to the
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narrowness of the state, its low elevation, and the soil type. All of these things can
impact water flow and groundwater mixing zones in coastal areas, and therefore
precipitation may more quickly impact salinity levels of estuaries, bays, and oceans.
Statewide precipitation in other locations could still be relevant to levels of
vulnificus populations in marine habitats despite the results of being significant only
in 3 locations. One previous study has shown that drought conditions in North
Carolina correlated to lower frequency of positive environmental samples of v.
vulnificus in the Chesapeake Bay3!. This relationship deserves more analysis and
scrutiny to determine links between precipitation and frequency of reported cases
in terms of its effects on salinity of bays and estuaries and therefore its potential to
impact cases. While we can attest to the substantiated influences of higher
temperatures on increasing frequency of cases, from previous literature and these
analyses, we still cannot attest to a clear pattern in the different lag times.
Limitations

This study has several limitations. The first relates to the data available for the
study. The study period and region provide a small number of cases for the time
studied, which reduces the power of the findings. There is also a chance that less
severe infections are not diagnosed and subsequently treated as a skin infection,
and therefore not reported. The information contained in the data sets are all self-
reported, so there is the possibility for recall bias. The environmental and
climatological data sets also present with missing data and a lack of variables
pertinent to the study of marine bacteria. Chlorophyll, salinity, dissolved oxygen,

and turbidity are not regularly measured as part of any national monitoring
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program at distances from shore that are relevant to our study. Monitoring on
coastlines are limited to short, spatially defined independent studies performed
mostly by universities. Lastly, to our knowledge no one has been able to analyze the
association between environmental samples positive for v. vulnificus, reported
cases, and relevant environmental parameters. Regular monitoring of the bacterium
in the environment is rare, when it is conducted it is done in a narrow timeframe
and a fine spatial scale, often to inform studies.

The regression analysis was performed using a Poisson distribution to
accommodate case counts and the rarity of reported cases. While some of the
models were significant and tests performed in SAS supported good model fit for the
data, it would be prudent to re-analyze any trends when more data become
available since there remain no clear patterns of significance.

Future Directions

Some studies have shown associations and interactions between the presence of
free floating particles and chlorophyll a with temperature and salinity in predicting
the presence of v. vulnificus in the environment32-34, Using these types of studies to
look at associations between the parameters in these larger models and frequency
of reported cases is an area that could benefit our understanding of climate’s impact
on this bacterium. This type of analysis has not been done, and is a next logical step
in the field. Additional surveillance for the pathogen in the environment could
facilitate future analyses of this sort. More regular monitoring would allow for
correlation analysis between environmental parameters like temperature, drought

indices, and precipitation and levels of the pathogen in its habitat. Likewise, health
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officials could also correlate the levels of the pathogen with numbers of reported
cases to see if increased pathogen populations leads to increased reported cases, or
if the rise in numbers of reported cases is merely due to human population

fluctuations or random chance.
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Conclusions and Recommendations

The analyses within this research have shown spatial and temporal distributions of
vibrio vulnificus cases in the Southeastern US. This research is important as v.
vulnificus infections are seemingly increasing in frequency. At the same time,
evidence that the earth is warming and habitats are changing as a result is
indisputable. It is important to discover relationships between this pathogen and its
environment in order help public health agencies in prevention and adaptation
measures.

Clusters of cases in space and time were assessed, and several local clusters around
bays and estuaries were shown to be significant. The results here also reaffirm
evidence that v. vulnificus infections are seasonal, with peaks at the end of summers
when water temperatures are their warmest. Precipitation was not as significant as
we had hoped to find, however there are many hydrological and geological factors
that could play into this complex relationship, and must be studied further.

A primary recommendation is further research into the ecology of the pathogen
itself. Many factors like pathogen virulence in a variety of conditions, the variety of
habitats of vulnificus, and the impacts of the hydrology of bays and estuaries still
needs to be fully described. More immediately, and usable by public health officials
is a recommendation to inform beachgoers, fishermen, and stakeholders of the
potential for wound infection by this pathogen. Particular parties that should use
extra caution are older men, and anyone with a pre-existing condition that would

weaken the immune system.
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Tables and Figures

Figure 1: Causal pathway diagram for vibrio vulnificus

Distal Environmental Factors Environmental Determinants of
) Vibriosis Acquired Through Wound
mﬂ 1 wl Exposure to Aquatic Habitats of Vibrio
Deforestation vulnificus: A Causal Pathway
Erosion
Population Density Proximal Changes Leslie Waller
Partially adapted from Eisenberg et al

Figure 2: Frequency of reported cases stratified by year
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Monthly case counts stratified by year in the Southeastern US

Figure 3
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Table 1: Case counts by state and year, with counts stratified by sex and type of

exposure (recreational versus occupational). There are some discrepancies in the

totals, as there were many unknowns denoted, and those have not been listed in the

table.
Alabama (13) Florida (73) Louisiana (45) Mississippi (12) Texas (39) Total (182)
nane 3 a 1 10
male=1 male=9 male=1 male=9
female=2 rec=4 rec=1 fermale=1
2007 rec=2 occ=3 rec=7 23
F 3 5 nane 4
male=2 male=3 male=5 male=4
2008 rec=1 rec=3 rec=4 rec=4 14
3 17 7 nane 5
miale=2 male=16 male=5 male=5
female=1 female=1 female=2 rec=2
rec=2 rec=14 rep=4 oce=1
2009 occ=1 3z
3 i2 b i 10
male=3 male= 20 male=6 male=1 male=10
rec=3 female=2 rec=3 female=1 rec=8
rec=18 rec=1 acc=1
2010 occ=1 43
i 16 B 3 B
male=2 male=12 male=8 male=2 male=4
rec=1 female=4 rec=2 female=1 fermale=2
acc=1 rec=11 acc=2 rec=1 rec=5
2011 ace=2 iz
3 12 10 B 4
male=3 male=12 male=8 male=5& male=3
rec=3 rec=10 female=2 rec=3 female=1
2012 ace=1 rec=s rec=3 iz

Table 2: Age statistics of cases, stratified by gender

Male Mean Age

Female Mean Age

58.34
Median

61

Standard deviation

18.23

50.61

Median

51

Standard deviation

18.24



Table 3: Counts and percent of exposure types

Exposure Type Frequency Percent
Contact with fish 30 18.5
Bodily contact with water 58 35.8
Swimming 15 9.3
Multiple exposures 58 35.8
Unknown 1 .62
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Figure 4: Spatial distribution of cases, graphed by year of exposure and subsequent

infection
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Figure 5: Kernel density analysis results showing spatial clusters of cases,

predominantly in areas located around larger bays and estuaries
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Appendix 1: Correlation Test Between Environmental Parameters

Correlations

PCP TMIN TMAX PDSI SPO1 SP02

Spearman'srho PCP  Correlation Coefficient 1.000 .260™ 172" .399" .824™ 569"

Sig. (2-tailed) . .000 .000 .000 .000 .000

N 2380 2380 2380 2380 2380 2380

TMIN  Correlation Coefficient .260" 1.000 .970" -.126" .031 -.005

Sig. (2-tailed) .000 . .000 .000 135 .796

N 2380 2380 2380 2380 2380 2380

TMAX Correlation Coefficient 1727 .970™ 1.000 -.213" -.063" -.094™

Sig. (2-tailed) .000 .000 . .000 .002 .000

N 2380 2380 2380 2380 2380 2380

PDSI  Correlation Coefficient .399" -.126™ -.213" 1.000 483" .619™

Sig. (2-tailed) .000 .000 .000 . .000 .000

N 2380 2380 2380 2380 2380 2380

SP01 Correlation Coefficient 824" .031 -.063™ .483™ 1.000 .684™

Sig. (2-tailed) .000 135 .002 .000 . .000

N 2380 2380 2380 2380 2380 2380

SP02  Correlation Coefficient 569" -.005 -.094" .619™ .684™ 1.000
Sig. (2-tailed) .000 .796 .000 .000 .000

N 2380 2380 2380 2380 2380 2380

**_Correlation is significant at the 0.01 level (2-tailed).
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Appendix 2: County and State-level Model Outputs

Aransas County, TX

Bexar County, TX

Variable Regression

Variable Regression

Name Coefficient P-Value P-Value Name Coefficiant P-Value P-Value
TMAXD 0.0162 TMAXD 00020 07896 07896
PCPO -0.3764 . - PCPD 0.0001 09385 059565
TMAX3 00093 02327 02327 TMAX3 00040 06161 DE161
FCP3 00012 02666 02666 PCP3 DooDo1 09604 059604
TMAXS 00087 02183 02193 TMaxs 00003 09713 08713
PCPS 00013 03257 03257  pcps 00001 09533 09533
TMAX15 00233 00366 00366  TMAX1S 00033 06708 DBT706
PCP15 -00253 06371 06371 PCP15 -0.0005 00001 00001
TMAX30 00181 00899  0.0699 TMAX3D 00045 05669 0.56ED
PCP30 00021 00023 00023 PCP30 ooooi1 09620 09620
TMAXA5 00361 00104 00104 TMAXAS 00086 03352 03362
PCP45 00003 09458 09468 PCP45 ooooi1 09695 09695
Brazoria County, TX Calhoun County, TX

Variable Regression Variable Regression

Name Coefficient P-Value P-Value Name Coefficient P-Value P-Vaiue
TMAXD 00297 02324 02324 TMAXD 00030 04742 04742
PCPO 00052 04657 0657 PCPO 00004 O7V008 07006
TMAXS 00338 01509 0.1509 TMAXZ -0.0011 0.8956  0.8956
PCP3 -0.0582 0.7352 07352 FCP3 00004 08953 06953
TMAXS 00302 TMAXS 00073 05040 05040
PCRS -1.3532 PCP5 00004  07V135 07135
TMAX15 00204 03104 03104 TMAXAS DOoD9s 04084  D4064
PCP13 00048 01554 01554 PCP15 -0.0001 03446  D.3446
TMAX30 00413 02281 02281 TMAX30 00091 04265 04265
PCP30 00093 00013 00013 PCP30 00004 07147 07147
TMAX4S 0.0236 TMAXAS Do2s0 01106 D106
PCP45 -1.3881 PCP45 00003 07309 07309
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Galveston County, TX

Harris County, TX

Variable Regression Variable Regression

Name Coefficient P-Value P-Value  Name Coefficient P-Value P-Valua

TMAXD 00047 05354 05334 TMaXD 00564 00021 00021

PCPD -0.0002 08550 08550 PCPD -0.0030 07154 07154

TMAX3 00033 06338 06338  TMax3 00632 00011 00011

PCP3 -0.0002 08596 0.8596 PCP3 -0.0006 09222 09222

TMAXS 00021 07660 07EED  TMAXS 00745 0.0004 00004

PCPS -0.0002 05899 0.8899 PCPS 00012 O0F/s0 07760

TMAX1S 00080 03376 03376 TMAX1S 00413 00085 00085

FCP13 -0.0002 0.5488 08483 PCP15 00020 O0M70 01170

TMAX30 00056 04887 04687 TMAX3D 0027 00252 00252

PCP3D -0.0002 058530 08530 PCP3ID 00014 03574 03574

TMAX A4S 00159 01312 01312 TMAX4S 0039 00053 00033

PCP4S -0.0002 08315 08315 PCP45 -0.0074 0.5491 05491
Jefferson County, TX Nueces County, TX

Variable Regression Variable Regression

Name Coefficient P-Value P-Value Name Coefficient P-Value P-Walue

TMAXD -0.0005 0.5200 05200 TMAXD 00145 04050 04050

PCFOD DoDiD 04101 04101 PCPO 00026 04854 04854

TMAX3 00018 07168 07168 TMAXE 00057 06677 O0DBETT

PCP3 -0.0234 03962 03962 PCP3 -0.0070 08173 08173

TMAXS DOD16 0.7453 07453 TMAXS 0.0157

PCP5 -0.0022 06259 DB259 PCPS -0.6245

TMAX 1S 00055 02948 02948 TMAX 15 0.0285

PCP15 -0.0042 05144 D5144 PCP15 -0.514%

TMAX 3D 00121 00638 00698 TMAX3D 0.0299

PCP30 -0.0026 0.593% 05939 PCP30 -0.8042

TMAXAS5 00203 00177 00177 TMAXAS 00033 05262 0D5282

PCP45 00013 02927 02927 PCP45 -0.0024 08817 08817
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LaFourche Parrish, LA Orleans Parrish, LA

Variable Regression Variable Regression

Name Coefficient P-Value P-Value  Name Coefficient P-Value P-Value
TMAXD 00142 02184 02184  TMAXD 00051 02238 02238
PCPOD -0.0000 098585 08635  PCPD 00oooEs 05202 05202
TMAXS 00010 08994 08994  TMAX3 D0O0EE 01332 01332
PCP3 00000 09770 ODS770 PCP3 D0OODE OB776 DE776
TMAXS -0.0037 05905 05903 TMAXS 00035 03768 03768
PCP5S -0.0001 059040 05040 PCPS -0.0000 09946 09946
TMAX1S -0.0035 06223 06223 TMAXIS D0ooE9 01113 01119
PCP15 00011 05287 05287 PCP1S -0.0028 04881 04881
TMAX3D 00110 02894 02394  TMAX3D 00140 00104 00104
PCP30 00001 09632 08632 PCP3D -0.0029 04792 047392
TMAXAS 00010 08995 08993  TMAX4S 00131 00036 00036
PCP45 -0.0001 09341 089341  PCP45S -0.0002 09148 09148
St. Tammany Parrish, LA

Variable Regression

Name Coefficient  P-Value P-Value

TMAXD 00121 0.2382 02382

PCFO 00000 09975 09975

TMAX3 0023 01041 01041

PCP3 -0.0001 09303 059303

TMAKXS 00177 0.1494 01484

PCPS -0.0001 09490 0.9490

TMAX1S 00135 02063 02063

PCP15 -0.0000 09763 D.97E9

TMAXID 00164  0.168%  0.1689

PCP30 00013 0.3144 03144

TMAXAS 00156 01705 01705

PCP45 00oo: 09191 09191
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Hancock County, MS

Harrison County, MS

Variable Regression

Name Coefficient P-Value P-Value
TMAXD 00584 00021 00021
PCFO -0.0030 07154 07154
TMAXS 00632 00011 00011
PCP3 -0.0006 09222 09222
TMAXS 00745  0.0004  0.0004
PCP5 oooi2z  0O7F7e0 076D
TMAXAS 00413 00085 00085
PCP15 00020 04170 091170
TMAX30 00273 00252 00252
PCP3D 00014 03574 03574
TMAXAS 00393 00083 0.0083
PCP45 -0.0074 05491 05491

Variable Regression
Name Coafficient  P-Value P-Value
TMAXD 00216
PCPD -0.3417
TMAX3I 00107
PCP3 -0.3482
TMAXS 00123
PCPS -0.3470
TMAX 15 00100 04581 D4581
PCP15 00007 08134 0DB134
TWMAX30 00037
PCP30 -0.3455
THMAXA4S 0.oo14
PCP45 -0.3448
Jackson County, MS
Variable Reagression
Name Coafficient P-Value P-Valua
TMAXD 00172 01482 01482
PCFD -0.0001 0.BB48 08545
TMAX3 000EE 04810 04610
PCP3 00023 00159 00159
TMAXS 00239 00895  DOB9S
PCPS 00024 00496 00496
TMAX 15 00355 00481 00481
PCP15 00001 09524 09524
TMAX 3D 00195 01301 04301
PCP30 00o22 00599 00599
TMAXAS 00124 02263 02283
PCP45 00oDs 08835  0BB3S
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Baldwin County, AL

Mobile County, AL

Variable Regression

Variahle Regression

Name Coefficient P-Value P-Value  Name Coefficient P-Value P-Value
TMAXD 00141 00823 00823 TMAXD 0.0051 04529 04529
PCPO 00013 07786 0D7TBRE PCFO J0022 07023 07023
TMAXS 00287 00146 00146 TMAXS 0.0014 08331 083N
PCP3 00038 05953 05953 PCP3 0.0018 02956 02956
TMAXE 00205 00361 00361 TMAXS 0.0000 08948 05943
PCF5 00001 09795 09795 PCPS 00034 06386 (0.6386
TMAX1S 00209 00362 00362  TMAXI1S 0.0046 04828 04828
PCP15 0.0027 01468 01468 PCP15 00304 04865 04665
TMAX30 00184 00474 00474 TMAX3D 00091 02288 02269
PCP30 00022 03007 03007 PCP30 00056 05668 05669
TMAXAS 00278 00164 00164  TMAX45 0.0067 04031 04031
PCP45 00025 02069 02068 2 PCP45 0.0035 00001  0.0001
Bay County, FL Escambia County, FL
Variable Regression
Name Coefficient P-Value P-Value
TMAXD 00151 02519 02519
PCFO 00001 08830 0.8830
TMAX3 00128 03021 03021 Variable Regression
PCP3 00013 06796 06796 Name Coefficient  P-Value P-Value
TMAXS 0.0270 01304 0.1304 TMAXD 00204 00213 00213
PCP5 0.0033 00564 00564 PCPO 0.0010 03023 03023
TMAXIE 00109 03485 03485 TMAX3 00196 00235 00235
PCP15 00001 05108 09108 PCP3 00005 07759 07759
TMAX30 00388 00651 0.0651 TMAXS 00173 00329 00329
PCP30 00001 05050 09050 PCP5 000gs 05012 05012
TMAXAS 0.0186 01946 0.1948 TMAX15 0.0259 0.0087  0.0087
PCP45 00001 0858426 09426 PCP15 00058 05701 05701
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Franklin County, FL

Variable Regression

Hillsborough County, FL

Variable Regression

Name Coefficient P-Value P-Value  Name Coefficient P-Value P-Value
TMAXD 00074 04901 04901 TMAXD 0.0053

PCPO 00002 08777 08777 PCPD 04953

TMAXS 00163 02326 02326 TMAXS 0.0053

PCP3 00001 09129 09129 PCP3 04089

TMAXS 00154 02476 02476 TMAXE 0.0012

PCP5 00001 09100 09100 PCPR 04877

TMAXAS 00257 01345 01345 TMAX1S 00022 08175 08175
PCP15 -0.0001 089338 089333 PCP15 00026 00268 00268
TMAXI0 00292 01128 01128 TMAXID 00293 00831 0.0881
PCP30 00001 09448 09448 PCP30 00050 06425 06425
TMAXAS 00256 01328 01328 TMAXAR 00208 00838 00838
PCP45 00000 09910 09310 PCP45 400086 05852 05852

Indian River County, FL Martin County, FL

Variable Regression Variable Regression

Name Coefficient P-Value P-Value  Name Coefficient  P-Value P-Value
TMAXD 0.0332 TMAXD L0065 06735 06735
PCPO 04518 PCPO 00035 00190 0.0190
TMAXS 00348 01131 0113 TMAXS 00138 05090 05099
PCP3 00520 05829 05829 PCP3 0.0040 00037 00037
TMAXS 00403 00858 00858 TMAXE 00061 07380 0.7380
PCPS 0.0169 06252 0.6252 PCP5 00002 09575 09575
TMAXAS 00625 00182 00182 TMAX1S 00052 07180 0.7180
PCP15 00001 09865 09865 PCP15 00000 08982 0.0982
TMAX30 00228 02332 02382 TMAXID 0.0050 07908  0.7908
PCP30 00002 09743 09743 PCPA0 0.0037 0.0086 0.0086
TMAX4S 0.0208 TMAXAS £0062 06601 06601
PCP45 -0.4402 PCP45 00000 08732 09732
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Monroe County, FL

Okaloosa County, FL

Variable Regression

Variable Regression

Name Coefficient P-Value P-Value  Name Coefficient P-Value P-Value
TMAXD 00520 028 02018  TMAXD 0.0236 00977 00977
PCPO 0.0022 05716 05716 PCPO 00000 09997 00997
TMAX3 00756 00537 00537  TMAX3 00099 03005 03005
PCP3 00000 05624 09624 PCF3 00032 07224 07224
TMAXS 00552 00867 00867  TMAXS 0.0164

PCP5 00000 09722 09722 PCPS 0.5243

TMAX1S 00191 02314 02914  TMAXIS 00291 00732 00732
PCP15 00000 08779 09779 PCP15 00007 08791 08791
TMAX30 00363 01447 01447  TMAX30 00317 00518 00518
PCP30 00020 04467 04467 PCP30 00556 04620 04620
TMAX4S 00609 00748 00748  TMAX45 00646 00073 00073
PCP45 00000 08719 09719 PCP45 0.0021 05/953 05953

Palm Beach County, FL Pinellas County, FL

Variable Regression Variable Regression

Name Coefficient P-Value P-Value  Name Coefficient P-Value P-Value
TMAXD 00113 05837 053837 TMAXD 00268 01560 0.1560
PCFO 00247 07569 07569 PCPO 00001 05835 09335
TMAX3 -0.0045 TMAKS 0.0268

PCP3 05877 PCP3 -0.3739

TMAXS -0.0231 TMAKS 00162 02750 02750
PCF5 07421 PCP5 D0014 04414 04414
TMAX1S 00536 00214 00214 TMAX15 00322 01308 01308
PCP15 00066 01192 01192 PCP15 00019 02286 02286
TMAX30 -0.0003 09902 09902 TMAX30 00134 03253 03253
PCP30 00803 07175 07175 PCP30 0.0008 07847 07847
TMAXAS 0.0236 TMAXAS 00211 01831 0183
PCP45 -0.6511 PCP45 00215 04893 04893
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Polk County, FL

Santa Rosa County, FL

Variable Regression

Name Coefficient P-Value P-Value

TMAXD 01225 00172 00172

PCPO 00000 09843 09843

TMAX3 00756 00537 00537

PCP3 00000 09624 09624

TMAXE 0.0552 00887 00867 Variable Regression

PCP5 00000 09722 09722 Name Coefficient P-Value P-Value
TMAXAE 00191 02914 02914  TMAXD 0.0351 00662 0.0662
PCP15 00000 O0S779 09779 PCPFO 0.0010 08381 0.8381
TMAX30 00363 01447 01447  TMAX3 00248 01186 01186
PCP30 0.0020 04457 04467 PCP3 00003 0873 0.87TH
TMAXAE 00809 00748 00748  TMAXS 00311 00855 0.0855
PCP45 00000 09719 09719 PCPS 00002 08531 0.8591
Volusia County, FL

Variable Regression

Name Coefficient P-Value P-Value

TMAXD 00214 03149 03149

PCPO 00018 07200 07200

TMAXS 00201 03253 03253

PCP3 00055 07374 07374

TMAXS 0.0180 03630 03830

PCP5 00008 08035 09035

TMAX1E 00765 00337 00337

PCF15 00071 00446 0.0448

TMAX30 01137

PCP30 -0.44971

TMAXAE 00416 01673 01673

PCP45 00016 08822 08822
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