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Abstract 

Differential Equation Interpretation of Deep Neural Networks 

By Qihang Zhang 

Deep Neural Networks have become the state-of-the-art tools for supervised machine learning 

with the ability to extract features and find patterns from complicated input data. Although there 

were no general guidelines for how to design good architectures that generalize well to unseen 

data, researchers have recently proposed the connection between deep neural network structures 

and ordinary differential equations. This innovative approach has gained much attention and has 

been widely accepted. In this thesis, we firstly illustrate the continuous interpretation of deep 

neural networks on a concrete example. To do so, we use a modified Residual Neural Network 

structure, which allows us to discretize the network and the weights separately. While the step 

size to discretize the network is big, the network cannot classify the labels well. However, as the 

step size gets smaller, the network's classification performance gets better. Next, based on the 

continuous interpretation, we look into the stability of the forward propagation of a deep neural 

network. We compute the eigenvalues of the Jacobian matrix of each time point. Furthermore, 

we visualize the objective function of a deep neural network to explore how to modify the 

network structure to make the training more efficient. Last, we propose new forward propagation 

architecture with Runge Kutta method of order four and compare it with the forward propagation 

of a standard Residual Neural Network.
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Chapter 1

Introduction

Since the 1950s, researchers and scientists have started to explore the field of

machine learning. In 1957, the idea of deep neural networks (DNNs) was first

introduced to the world by Frank Rosenblatt as a computational model that

would be able to make decisions based on given information just like a hu-

man’s brain. However, even though the concept has been proposed for a long

time, the progress of the study had been rather slow due to the lack of data

collection and low computational power. Fortunately, things have changed in

1989 when Yann LeCun developed the convolutional neural networks (CNNs)

along with the backpropagation algorithm. It was a great progress in the de-

velopment of DNNs as the network was able to recognize handwritten digits

in checks and zip codes with a high accuracy. As a special type of DNNs,

CNNs utilize convolutional operators to reduce the computational cost while

preserving the spatial structure of the input data. Nowadays, CNNs are
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widely applied in real-world tasks including image classification and speech

recognition. With the eminent performance of CNNs, the development of

DNNs has regained the public’s attention.

Along with the improvement of computational power, DNNs have now

become one of the most popular tools for supervised machine learning, and

scholars have been working on constructing deeper network structures with

the approach to add more layers to the network to retrieve better network per-

formance. Through the past decade, several groundbreaking network struc-

tures have been invented, including the AlexNet [8] with five convolutional

layers and GoogleNet [12] with twenty-two layers. However, network perfor-

mance does not improve solely through adding more layers to the structure.

Due to the notorious vanishing gradient problem [7], the performance of a

network might even degrade rapidly as the network gets deeper. Meanwhile,

the Residual Neural Network (ResNet), which was introduced in [7] in 2015,

could unprecedentedly reach hundreds or even thousands of layers with ac-

curate classification performance with the implementation of skip connection

technique which would keep the gradient from vanishing.

Despite the outstanding performance achieved by ResNet, there still exist

numerous critical issues that must be resolved. For example, the robustness

of DNNs against adversarial attacks has remained one of the most concerning

problems [13]. In particular, if a neural network is not stable, then some

small perturbations in the input data might change the output significantly,

thus lead to catastrophic consequences. For example, unstable autonomous



1.1 Contributions and Outline 3

vehicles could possibly miss a stop sign and hit a pedestrian.

In order to avoid those fatal accidents, researchers have proposed vari-

ous intriguing methods, and one especially promising approach appeared in

recent years. The core idea of this approach is to consider the network struc-

ture from a mathematical angle, implementing the network structure as the

discretization of ordinary differential equations (ODEs) [5].

In this thesis, several discretization methods of ODEs - including For-

ward Euler method and Runge Kutta method- will be introduced. An ODE

discretization is a numerical method to transfer the continuous ODE into dis-

crete counterparts and retrieve an approximate solution that is close to the

true solution of the original problem [1]. In this way, researchers can apply

the abundant knowledge of partial differential equations to the field of DNNs.

In our study, we conduct experiments to further validate this approach and

more specifically, to show how different discretization implementations will

affect the training of DNNs.

1.1 Contributions and Outline

In this thesis, I provide experimental evidence for the applicability of dif-

ferential equations interpretation of DNNs. In Chapter 2 I give brief back-

ground information about the neural network framework and the differential

equation interpretation of the neural network. In Chapter 3 I give details

about the experiments that I have done along with the results. This chapter
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includes:

• Numerical experiment of the ODE interpretation of DNNs on a concrete

example

• Numerical study of the stability condition of the ResNet forward prop-

agation

• Visualization and analysis of the effect of neural network structures on

the efficiency of network training

• New forward propagation algorithm implemented with RK4 method

Finally, in Chapter 4 I discuss the importance of these results to the machine

learning community. The MATLAB codes written for computing the results

are included in Chapter 5.
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Chapter 2

Background

In order to help the readers to understand the bedrock of this thesis, which

is the differential equation interpretation of deep neural networks (DNNs),

we introduce related mathematical topics based on the knowledge and ex-

planations from [5, 1, 7, ?, 4, 6, 10, 2] in this section. First, I present the

generalized mathematical description of DNNs and expand on this to the spe-

cific structure of the Residual Neural Network (ResNet). Second, I explain

the main idea of this paper, which is how the ResNet structure is related to

the forward Euler discretization method and thus how we can use the dif-

ferential equation knowledge to interpret the networks. Finally, I provide a

theoretical background of the new network structure we construct based on

higher order Runge Kutta discretization methods.
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2.1 Theoretical Background of Deep Neural

Networks

A deep neural network (DNN) is an advanced technique for various real-world

applications such as data classification and predictive analysis. Mathemati-

cally speaking, A DNN is a trainable function from an input space X ∈ Rn

to an output space Y ∈ Rm. It is a concatenation of many simple functions

parametrized by initially randomized weights w. Each function is called a

layer of the network. The goal is to optimize the weights such that ele-

ments from the X space can be classified most accurately. In particular,

we start with a group of data {(x1,y1), (x1,y1), . . . , (xs,ys)} where for each

i ∈ (1, . . . , s), we want the network to take xi as the input feature vector and

give us an accurate prediction of the class label vector yi and finally be able

to predict the label of unseen data from X.

2.2 Network Architecture

In this section, the ingredients of a DNN that are related to the thesis are

introduced. The notations used are based on the work done in [2, 5].

A neuron is the smallest unit in a neural network. Each neuron serves

as a single function which receives the output value of each neuron from the

previous layer, noted as xi, as the input values and then computes an output

value aj (also known as the activation of the unit). To achieve aj, we first
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compute zj as the linear combination of each input xj and the corresponding

weight wij of the ith output and the jth input from the current layer and then

add the bias bj as

zj =

p∑
i=1

wijxi + bj, (2.1)

where p is the number of neurons in the previous layer. Then, we pass

zi to a non-linear activation function σ, which is applied element-wised, to

obtain

aj = σ(zj). (2.2)

The activation function mentioned above is crucial to network training.

As σ introduces non-linearity to the network, we increase the complexity

of the network, which enables us to approximate more complex functional

mappings from the input data other than just affine functions. Two common

activation functions are the tanh activation function

σtanh(Z) = tanh(Z), (2.3)

and the rectified linear unit (ReLU) activation function

σReLU(Z) = max(0,Z). (2.4)
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As we zoom out to a larger scope, a network layer consists of numbers

of neurons based on the decision of the network designer, and the forward

propagation algorithm describes how each layer passes the evaluated outputs

to the next layer as the new inputs. The mathematical intuition of forward

propagation is to combine the function of each neuron and vectorize across

the full layer, and the formula expression of the forward propagation is

Xj+1 = σ(WjXj + bjek). (2.5)

To describe the forward propagation mathematically, we denote X0 = [x1,x2,

. . . ,xs] as the input values, Wj and bj as the corresponding weight matrix

and the bias term of jth layer, and ek is a k-dimensional vector of all ones.

A non-linear activation function σ is then applied to the linear combination

of the inputs, weights, and the bias to generate the outputs of the current

layer.

After the output of the output layer XN has been computed, a hypothesis

function h(ΦXN +µek) is used to calculate the class label probabilities. The

weight matrix associated to the hypothesis function is denoted as Φ and the

bias is µ multiplied to a k-dimensional vector of all ones ek.

There are several common choices for hypothesis functions. The logistic

regression function

h(x) = exp(x)/(1 + exp(x)) (2.6)
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is often used for Bernoulli variables (k = 1), and the softmax function

h(X) = exp(X)/(exp(X)es) (2.7)

is often used for multinomial distributions (k > 1).

2.2.1 Loss Function and Optimization Methods

Another key component of a DNN is the loss function (or an objective func-

tion) l. As we mentioned in Section 2.2, a neural network takes a number

of input feature vectors xi paired with its class label vectors yi to train the

initially randomized weights W in order to predict the class label of unseen

data samples. The loss function enables us to determine how well the neural

network makes predictions with the trained parameters of the forward prop-

agation W and b, and the hypothesis function parameters Φ, and µ [5]. In

particular, we want to minimize the minimization problem, i.e.,

arg min
1

k

k∑
i=1

l(h(ΦXN + µek),Y). (2.8)

A simple choice of the loss function l is the sum-of-square difference function

l(Y,Ypred) = 1
2
||Ypred−Y||2F . In our experiments, the cross-entropy function

is applied.

To solve problem (2.8), one of the most popular algorithms is the stochas-

tic gradient descent (SGD) method [2], which is an iterative method that
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updates all the weights based on the gradient of a randomly chosen data

sample. We implement the backpropagation algorithm [9] to compute the

gradients in a reverse order starting from the output layer to the input layer.

In our experiments, we applied another optimization method, which is

the Gauss-Newton method.

2.2.2 The Residual Neural Network

In the past decade, one approach that has gained much attention is to in-

crease the network depth. However, as more layers are added to the network,

new problems have arisen. By simply stacking more layers, one cannot guar-

antee the increase of classification accuracy and would actually decrease the

accuracy due to the degradation problem [7].

A Residual Neural Network (ResNet) is a special type of DNN that is

largely applied in real-world tasks such as image classification and speech

recognition. It was first proposed in [7] based on simple modifications to the

common network structure. Unlike a common network, a ResNet utilizes

shortcut connections between network layers. The theoretical motivation of

the structure is easy to understand. As mentioned in [7], the principle of this

network is to ensure that a model with more depth should produce no higher

training error than its shallower counterpart. Assume H(x) as an underlying

mapping to be fit by a few stacked layers, where x denotes the inputs to the

first of these layers. The authors of [7] then introduced the residual mapping
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F (x), where

F (x) = H(x)− x, (2.9)

assuming x and H(x) are of the same dimensions. Intuitively speaking,

it is easier to optimize the residual mapping than to optimize the original

desired mapping, because if x is optimal already, the residual term can be

just driven to 0. A ResNet could construct a deeper network with the same

level of accuracy, and the mathematical formula of a simplified ResNet is

Xj+1 = Xj + σ(WjXj + bj) for j ∈ {0, 1, . . . , N}. (2.10)

Even though ResNets have achieved great success in the DNN field, many

critical problems regarding the network structure have not yet been solved.

In particular, the development of DNNs has been mostly based on historical

knowledge and theoretical results with complex assumptions that are hard to

interpret [10]. Thus, innovative perspectives of neural network interpretation

seem necessary to the further development of DNNs.

2.3 Differential Equation Interpretation

Among all the researchers that works on exploring the features of ResNet,

the authors of [5] were the first, to our knowledge, to purpose a connection
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between DNN structures and continuous dynamic systems. These authors

observed that the forward propagation structure of a ResNet is the same as

the forward Euler discretization of an ordinary differential equation (ODE).

With a minor modification to the forward propagation structure introduced

in section 2.2.2, the authors generalized the forward propagation of a ResNet

as

Xj+1 = Xj + hσ(WjXj + bj) for j ∈ {0, 1, . . . , N}. (2.11)

Here, h is introduced to the equation that could be interpreted as the step

size in a finite difference approximation of the change of X with respect to

an artificial time variable t as

Xj+1 −Xj

h
= σ(WjXj + bj). (2.12)

In the original forward propagation structure, h is set to be 1. As pointed

out in [6], with the interpretation of WjXj as the discretization of s ∗ x,

when h→ 0, the ResNet could be interpreted as a continuous problem

dx

dt
(t) = σ(s(t)x(t) + b(t)), x(0) = X0, (2.13)

for t ∈ [0, T ], where T is the final time corresponding to the output layer.

The ODE interpretation of the ResNet has brought novel insight into
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the design of network structure and potential solutions to the critical issues

that have been impeded the wider application of DNNs [5]. One of the most

pervasive problems encountered in network construction is the phenomenon

of exploding and vanishing gradients, where vanishing gradients indicate the

insensitivity of the output with respect to the input and exploding gradients

show the instability of the output to the input. Furthermore, we also notice

limitations of ResNets from the network structure. As we known from the

forward Euler method, which is a first order method, the time step h must

be kept rather small for satisfying stability. Theoretically speaking, DNNs

with higher order forward propagation should give more robust performance

and more accurate classifications. With the help of the continuous ODE

interpretation, researchers are now able to study the stability of DNNs with

the rich knowledge of ODEs. We will discuss the stability of DNNs and

ODEs, and potential solutions to the problem in next section.

2.4 Stability of Deep Neural Networks

One promising approach to improve the robustness of network structures is

to look into the stability of their underlying ODEs [5].

2.4.1 Stability of ODEs

Theoretically speaking, an ODE is stable if small perturbations of initial data

lead to only small variations of the solution, i.e., the solution is robust to the
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initial value. Based on the theory stated in [5], an ODE is stable if

max(Re(λ(J(t)))) ≤ 0, ∀ t ∈ [0, T ] (2.14)

where Re(·) means the real part, λ(·) means the eigenvalues of a squared

matrix, and J(t) is the Jacobian matrix

J(t) = diag(σ′(W (t)x(t) + b(t)))W (t) (2.15)

The Jacobian matrix is the matrix of all first partial derivatives of a given

function, and the eigenvalues of the Jacobian matrix would tell us how much

variance there is in the data in the same direction as the eigenvalue’s corre-

sponding eigenvector is pointing to. Mathematically speaking, if in a neural

network, ∃ t ∈ [0, T ] s.t. Re(λ(J(t))) > 0, then it means that some features

that are passed through the network will be amplified without an upper

bound. On the other hand, a non-positive real part of an eigenvalue indi-

cates the convergence of the systems, i.e., the ODE is stable. Nevertheless, if

the real part of an eigenvalue is much smaller than zero, i.e, Re(λ(J(t)))� 0,

then relevant information from the input data could not be preserved prop-

erly. This type of networks is defined as ”lossy”. However, a moderate lossy

network has its own advantage while dealing with noisy input data because

higher order oscillation (noise) in the data is tend to be reduced when the

processed data is passing to the next layer.

In summary, the stability of the forward propagation of a DNN can be
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obtained when

Re(λ(J(t))) ≈ 0 ∀ t ∈ [0, T ]. (2.16)

For the eigenvalues that have real parts that are close to zero, the feature of

the data would be only amplified or shrunk in a moderate sense, i.e., even

a neural network with a considerable depth would still be stable enough for

effective learning.

2.5 Runge Kutta Methods

As the relationship between DNNs and dynamic systems has been explored

in [5] and [6], a novel approach of using continuous dynamic systems as

a tool for deep learning has gained more attention. Since a ResNet can be

regarded as an approximation of a time-dependent dynamical system utilizing

the forward Euler method (also known as Runge Kutta method of order 1),

higher order Runge Kutta methods could also be implemented to create new

network models intuitively.

The Runge Kutta Methods generate higher-order approximations of the

right hand side of (2.13) by utilizing repeated function evaluations at the

current step ti for a more accurate approximation of xi+1 at next step ti+1.

In this section, we introduce the most commonly used Runge Kutta method

of order 4 (RK4), i.e., the classical RK method [1]. The RK4 method uses
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four explicit K stages to achieve fourth order accuracy. The formula is given

as

K1 = xi (2.17)

K2 = xi +
h

2
f(ti, K1) (2.18)

K3 = xi +
h

2
f(ti+ 1

2
, K2) (2.19)

K4 = xi + hf(ti+ 1
2
, K3) (2.20)

xi+1 = xi +
h

6
(f(ti, K1) + 2f(ti+ 1

2
, K2) + 2f(ti+ 1

2
, K3) + f(ti, K4)). (2.21)

As the concept of differential equations interpretation of DNNs is accepted

by more and more scholars, it is reasonable to believe that RK methods can be

adopted to design effective network architectures as well. In our experiment,

a new forward propagation structure based on RK4 method is introduced

and the performance is compared to the forward propagation of a standard

ResNet.
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Chapter 3

Experiments and Results

The main purpose of conducting the first two experiments is to study the

ordinary differential equation (ODE) interpretation of deep neural networks

(DNNs) [5] and the stability of DNNs on a concrete example. In the third

experiment, we implemented a loss function visualization method [10] and

studied how different network structures affect the efficiency of training. In

the last experiment, we constructed a new forward propagation based on

Runge Kutta method of order four.
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Data Selection

The first three experiments were conducted on the Peaks data set described

in [5]. The Peaks data set is based on the peaks function in MATLAB R©

f(x) =3(1− x1)2 exp(−(x1
2)− (x2 + 1)2)− 10(x1/5− x13 − x25)

exp(−x12 − x22)−
1

3
exp(−(x1 + 1)2 − x22)

which has two variables x1 and x2, and x ∈ [−3, 3]2. The peaks function

is smooth but has some nonlinearities and, most importantly, non-convex

level sets. The function is discretized on a regular 256× 256 grid and all the

points are separated into five different classes based on the corresponding

function values. After the five classes are determined, the training data is

then randomly sampled from each class, such that the sampled data set

approximately represents the whole level sets. In the experiments, a total of

5,000 sample points were collected as training data, composed of 1,000 data

points were randomly selected from each of the five classes. Figure 3.1 from

[5] illustrates the data sampled for our experiments.
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Figure 3.1: The training data is illustrated by colored dots that represent the
five classes

Another 40 data points were selected from each class to form the test data

with 200 sample points in total. A Residual Neural Network was trained. The

width of each layer nc was set to 8 by duplicating the original two features (x1

and x2) four times; the number of time steps of the network nt and the total

time T were subject to change. Furthermore, the tanh activation function

and the softmax hypothesis function were applied.
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ResNet with different time steps

The ResNet structure we applied is modified based on the standard ResNet

by the authors of [5]. Different from the original ResNet, two terminologies

are introduced, which are the control layer nt, and the state layer nY. The

control layers are the discretized time points for the weights, and the state

layers are those of the underlying ODE with the continuous interpretation.

The two time points can be discretized separately with respect to the total

time T . Figure 3.2 illustrates the main idea. In particular, while we fix the

step size between two control layers, we change the number of state layers over

a fixed amount of time to see the difference in the classification performance

of each network training.

Figure 3.2: The modified ResNet can separately discretize the weights and its
underlying ODE. The number of control layers indicates the number of time points
we use to discretize the weights that needed to be trained. The number of state
layers indicates the number of time points we use to discretize the ODE.
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3.1 Classification Performance of ResNet with

Different Numbers of State Layers

The purpose of conducting the first experiment is to illustrate the contin-

uous interpretation of DNNs proposed in [5] on a concrete example. The

experiment was conducted on the Peaks example [5]. A modified ResNet

introduced in Chapter 3 was trained. With the modified ResNet, we are able

to see how different number of discretized time points of the underlying ODE

are going to affect the classification performance of a network.

The total time T is set to 20, the width of each layer nc is set to 8, and

the number of control layers nt is set to 16. The same group of data samples

and initialized weights and biases are used for every training. We first train

a network with 8 state layers. After we finish training the network, we record

the trained weights along with the loss function, which if combined together

will generate the classification result. Then, we keep everything fixed but

double the number of state layers, and we again train the network and record

the trained weights and the loss function. We repeat this procedure six times

until a network with 256 state layers is trained and the results are recorded.

Coding details of the network setup and how the weights and loss functions

are documented for each training are listed in Chapter 5.

After we trained the network, six sets of solutions (trained weights) and

the corresponding loss functions were recorded. The classification result is

one way to examine the performance of a neural network. Thus, we show
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the classification results of the combination of the six loss functions and six

solutions. A total number of thirty six classification results are displayed in

Figure 3.3. Coding details that illustrate how the results are computed and

plotted are referenced in Chapter 5.
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Classification results for different number of time steps

Figure 3.3: Classification results of each loss function combined with each set of
weights. The first column shows the classification results generated from the loss
function of the network with 8 state layers fit with all six sets of weights, while
the last column shows that of the network with 256 state layers. The diagonal
indicates the original prediction made from each time of training.

Result

From the figure, we can observe that the step size of the discretized time

points of the underlying ODE, i.e., the number of state layers, does affect
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the network’s classification performance. To be specific, if we take a closer

look at the first column, we see that even though the original classification

results show some level of accuracy, the network fails to classify when the

trained weights from other trainings are applied. Furthermore, when the

trained weights of the network with 8 state layers are fit into other loss

functions, the predictions are not satisfying. The same pattern is observed

for the second column and the second row, which both correspond to the

16-layer network. On the other hand, the classification results in the bottom

right 3 × 3 subplots are much better than the results on the left. Moreover,

we can observe less difference between the results as the trained weights

and the loss functions are combined together. From the observations, we

conclude that the number of state layers in a network affects the accuracy of

a network’s prediction on the data, and the more state layers a network has,

the better classification results a network will generate. In addition, we state

that in order to ensure the accuracy of the classification result, a network

must have a certain number of state layers subject to the total time T .
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3.2 Stability of the ResNet Forward Propa-

gation

The purpose of conducting the second experiment is to study the stability

of neural network forward propagation described in (2.16) by visualizing the

eigenvalues of the network on the Peaks example. Furthermore, we would

like to explore whether there is a relationship between the depth of a neural

network and the stability of the forward propagation. In the experiment, we

first achieved the Jacobian matrices of each layer of the network and then

computed the corresponding eigenvalues and visualized them. The experi-

ment was run with the Peaks data set described in Figure 3.1. A standard

ResNet was trained with a total time T = 20 and a layer width nc = 8

(duplicate the original two features by four times). The Jacobian matrix of

each layer was computed based on the code listed in Chapter 5.

After we computed the Jacobian matrix from each layer, we applied the

eig() function in MATLAB R© to find the eigenvalues of each matrix. Then,

we plotted the eigenvalues. As mentioned in Section 2.4, a stable discretiza-

tion method implies the good approximation of the discrete problem to the

continuous ODE. Furthermore, as the authors of [5] observed,forward Euler

is stable only under the condition that

|1 + hmaxλ(Ji)| < 1 for i = 0, 1, . . . , N − 1 (3.1)
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In order to evaluate the eigenvalues more straightforwardly, we constructed

the unit ball centered at (-1,0) in the complex z-plane with real numbers on

the x-axis and imaginary numbers on the y-axis along with the eigenvalues

while we do the plotting. The formula to compute the Jacobian matrices

is mentioned in (2.15) and shown in code in Chapter 5. Six networks were

trained, where each network was discretized with a different number of time

points. After the previous network has been trained, the number of time

points was doubled to discretize next network. The weights of each layer

were stored and used for computing the eigenvalues. Three networks were

trained in this experiment, the total time T is set to 10 and the layer width

nc is set to 8. The first network is discretized with 8 time points, while we

halve the step size, i.e., discretize the network with 16 time points for the

second network, and again half the step size for the third one. Figure 3.4

shows the distribution of the eigenvalues of the network with 8 control layers.

The red circle indicates the stability region. Figure 3.5 shows the eigenvalues

of the 16 layer network. Figure 3.6 shows 16 of the 32 sets of eigenvalues for

illustration purposes. The written codes for plotting the eigenvalues and the

stability region of forward Euler discretization method are listed in Chapter

5.
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Visualization of the Eigenvalues of networks with dif-

ferent time step sizes

Figure 3.4: The subplots above are the distribution of the eigenvalues of the
trained weights of each control layer of the first network, which is discretized with
8 time points.

Figure 3.5: The subplots above are the distribution of the eigenvalues of the
trained weights of each control layer of the second network, which is discretized
with 16 time points.
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Figure 3.6: The subplots above are the distribution of the eigenvalues of the
trained weights of selected 16 control layers of the third network, which is dis-
cretized with 32 time points.

Result

From the distributions, we can observe that the eigenvalues of a network dis-

cretized with fewer time points are more spread out, and there exist eigen-

values with a real part much larger than zero. This observation indicates
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the instability of forward propagation. As we increase the number of time

points, we detect less violation of the stability condition as shown in Figure

3.5 as more eigenvalues than that of the first network fall into the stability

region and fewer eigenvalue with positive real parts are observed. In Figure

3.6, we can see that the eigenvalues meet the stability condition stated in

2.16. Based on the observations, we conclude that there exists a relationship

between the step size and the stability of the network’s forward propagation.

With a fixed total time T , a decrease in the step size, will lead to an increase

in the stability of the network’s forward propagation.

3.3 Visualizing the Loss Function

As well-explained in [10], the training of neural networks relies heavily on

the minimizers found by solving the loss function introduced in section 2.2.1.

However, a lack of visualization of the loss function has constrained the stud-

ies to remain at an abstract and theoretical level. In the third experiment,

we first aimed to implement the visualization method introduced in [10] with

minor modifications to visualize the curvature of the loss landscapes of the

trained neural networks on the Peaks example. We also want to determine

how different network architectures affect the difficulty of minimizing a loss

function.
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In [10], the author first showed us the limitation of 1-Dimensional Linear

Interpolation, which is the difficulty to visualize non-convexities, and then

suggested using 2D Contour Plots for better understanding of the loss land-

scape. In order to realize the 2D plot, we first need to choose one center

point θ∗ and two direction vectors ξ and ζ. Then we plot the function

f(α, β) = L(θ∗ + αξ + βζ) (3.2)

using researcher’s choice of scalar parameters α and β.

The two direction vectors ξ and ζ, are both ∈ Rn. Here, n is the total

number of paramatrized weights in the network. Each entry of the two vectors

is sampled from a random Gaussian distribution in the range of [0, 1]. Though

it seems easy to plot the loss landscape with the ”random directions,” the

approach would not be able to be used for comparing two landscapes before

the directions are normalized using the filter normalization method [10]. The

reason we must normalize the directions is that the network weights are

invariant to scaling due to the use of batch normalization, i.e., a network’s

behavior would remain unchanged if we just re-scale the weights. The filter-

normalization method is introduced as

di,j ←
di,j
||di,j||

||wi,j||, (3.3)

where di,j represents the jthfilter of the ith layer of d, and the || · || is the

Frobenious norm. In our experiment, we normalized the vectors and weights
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with their averages instead of applying the Frobenious norm for simplicity.

The code for plotting the loss landscape is listed in Chapter 5. The total

time T was set to 5 and the width of each layer nc was set to 8. We plotted

the loss landscapes of trained networks with different depth. Figure 3.7 is

the loss function of a standard 8-layer ResNet. Figure 3.8 below is the loss

function of a standard 20-layer ResNet with the same total time and layer

width.

Figure 3.7: The loss function of an 8-layer standard ResNet. Lots of non-
convexities and a lack of smoothness can be observed.
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Figure 3.8: The loss function of a 20-layer standard ResNet. Much more smooth-
ness can be observed from this landscape than from that of the 8-layer network.

Result

With the visualization method from [10], we are now able to study the

properties of networks’ loss functions more directly. We observe more non-

convexities and less smoothness from the shallower network than from the

deeper one. If a loss function is more smooth and more convex, it is easier to

find the global minimizer, i.e., the network can be trained more efficiently.

This observation indicates that the increase of the number of layers in a

network would decrease the difficulty of finding the global minimizer and in-
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crease the chance of achieving a good generalization from the loss function.

This finding suggests that a ResNet with deeper structure could be trained

more efficiently.

3.4 RK4 Forward Propagation

There are several advantages that we can obtain from the ODE interpretation

of DNNs proposed in [5]. Most importantly, now we have a general guideline

for interpreting and constructing the network framework with the abundant

knowledge achieved from a more than 120 years of development of accurate

and efficient ODE solvers. With this novel approach, many works have been

accomplished by various researchers such as [3, 11], but the field of higher

order numerical methods, such as higher order Runge Kutta methods, are

rarely explored. Theoretically speaking, a higher order numerical method

could solve the problem with a lower truncation error [1]. Since the decrease

of a truncation error would lead to an increase of the accuracy, it is worth-

trying to design a new neural network structure based on higher order forward

propagation algorithms.

In our experiment, we modified the forward propagation of a standard

ResNet with RK4 method. The coding details can be found in Chapter 5.

The first goal of our experiment is to ensure the correctness of our new algo-

rithm by comparing the objective functions of the two forward propagations.

The package used is an example from Dr. Lars Ruthotto’s numerical deep
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learning course. The input data and class label were generated before the

network was trained and were stored for future runs in order to maintain

consistency. Then, the two propagation algorithms were trained at the same

time with different time steps. The effect of the total time and the time step

size of each propagation was observed from the objective functions respec-

tively. The total time T was set to 10. In order to check the correctness of

our algorithm, we set the time step h of the RK4 propagation to be four times

bigger than that of the ResNet. The reason behind this increased time step

assignment is because since each step in a RK4 method is evaluated four

times, then the objective function of a RK4 forward propagation network

with four-time bigger time step should be identical to the one of a standard

ResNet. Figure 3.9 illustrates the results.
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Figure 3.9: The first column includes the objective functions generated from the
training data, and the second column includes the objective functions achieved
from the test data. The first row indicates the objective functions of a RK4
implemented forward propagation network, and the second row shows the ones of
a standard ResNet.

Result

A high level of similarity can be observed from the objective functions. The

causes behind the slight differences between graphs are yet to be determined.

However, due to the time limitation, we did not have a chance for more in-

depth experiments to further validate the algorithm and apply the algorithm

on other examples.
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Chapter 4

Summary and Conclusion

In this thesis project, we look further into the continuous interpretation of

Deep Neural Networks (DNNs) and study on the stability of a DNN and how

does the network structure affect network training and performance.

In the first experiment, we applied the continuous interpretation of DNNs

on the Peaks example. Different from a standard ResNet, we discretized

the network and the weights separately, which gave us the state layer with

respect to the network and the control layer with respect to the weights. We

trained six networks with different number of state layers, and recorded the

weights and the loss function of each training. Then, we combined the six

set of weights and the six loss functions together, where each pair of weights

and loss function generated one classification result. Looking at all thirty

six classification results, we concluded that the increase of a network’s state

layers will increase the network’s classification performance.
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In the second experiment, we explored the connection between network

structure and the stability of the forward propagation by looking into the sta-

bility of the network’s underlying ODE. Six networks with different number

of layers were trained. For each network, we computed the eigenvalues of the

Jacobian matrix of each layer based on the stability theories of ODEs. Then,

the eigenvalues were plotted with the stability region. From the results, We

observed that the increase of number of layers of a network will lead to the

increase of the stability of the forward propagation, as the eigenvalues of the

network are more convergent to the stability region with the increase of the

network depth. This observation leads us to the conclusion that the stability

of a ResNet will increase if the number of layers in the network increases.

In the third experiment, a technique of visualizing a neural network’s

objective function was implemented. With this visualization method, the

relationship between network structure and the training efficiency can be

studied more directly. we observed that as the number of layers of a net-

work increases, more smoothness and convexities can be observed from the

objective function, i.e., the network can be trained more efficiently.

In the last experiment, we developed a new forward propagation algo-

rithm based on the Runge Kutta method order of four (RK4). Since RK4

is a higher order numerical method than forward Euler, a neural network

with RK4 forward propagation should perform with higher accuracy than a

standard ResNet can do. Due to the time limitation, we only had chance to

test the correctness of our algorithm by comparing the objective functions of
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a RK4 network and a ResNet, while the step size of the RK4 network is four

times bigger than that of the ResNet. The result has proven the correctness

of our algorithm, but more in-depth experiments are needed to prove that

the RK4 forward propagation works superior than the original algorithm.

This thesis project mostly aims at finding the relationship of a network’s

structure and its training. Some progress has been made throughout the

project, and our results will surely motivate future studies of DNNs from a

mathematical angle.
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Chapter 5

MATLAB R© Code

Network setup

%% setup network

T = 20; % final time

nt = 8; % number of time steps (number of theta in aResNN)

nc = 8; % number of channels (width)

h = T./(nt-1); %size of each time step

nYs = 2.^(3:8); %choices for the number of layers

LossF = cell(numel(nYs),1);

%the loss function of each network is recorded

for k = 1 : numel(nYs)

nY = nYs(k); %number of layer we use in the experiment

hY = T./(nY-1); % time step of nY
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Network training and data documentation

This piece of code is selected from the MegaNet package.The code explains

how the network is trained and how the weights and loss functions are doc-

umented.

%% setup objective function with training and validation data

fctn = dnnVarProObjFctn(net,pRegTh,pLoss,pRegW,

classSolver,Ytrain,Ctrain);

fval = dnnObjFctn(net,[],pLoss,[],Yv,Cv);

floss = dnnObjFctn(net,[],pLoss,[],Ytrain,Ctrain);

LossF{k} = floss;

%% solve the problem

if k == 1

th0 = 1e-1*initTheta(net);

end

diary([mfilename ’-nY-’ num2str(nY) ’.txt’]);

diary on;

[thetaOpt,His] = solve(opt,fctn,th0,fval);

thetaOpt = solve(opt,fctn,th0,fval);

[Jc,para] = eval(fctn,thetaOpt);

WOpt = reshape(para.W,[],5);

n = 16;
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thetaOpen = thetaOpt(1:16); %Weights of the open layer

thetaResNN = reshape(thetaOpt(17:end),[nc.*nc+1,nt]);

%Weights of the ResNet

thetaResNNK = reshape(thetaResNN(1:64,:),nc,nc,nt);

thetaBout = thetaResNN(65,:);

Weight = cell(nt,1); % get the weight matrices

for i = 1 : nt %total number of weight matrices

Weight{i} = thetaResNNK(:,:,i);

end

save([mfilename ’-nY-’ num2str(nY)],’thetaOpt’,’His’,’WOpt’);

diary off;

Plot results

The following piece of code is selected from the MegaNet package.The code

chunk shows how the classification results are computed and plotted.

%% plot results

%load(’Run4.mat’); %get the solution of each case

k = 0;

for i = 1 : 6
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for j = 1: 6

[Ydata,Yn,tmp] = apply(LossF{i}.net,

Run4{j}.thetaOpt,Yv);

k = k+1;

subplot(6,6,k);

viewContour2D([-3 3 -3 3],

Run4{j}.thetaOpt,Run4{j}.WOpt,

LossF{i}.net,LossF{i}.pLoss);

axis equal

hold on

viewFeatures2D(Yv,Cv);

title([’nY-’,num2str(2.^(2+j)),’Loss-’,

num2str(2.^(2+i))]);

end

end

Getting the weights

This piece of code is select from the MegaNet package.The code chunk com-

putes the Jacobian matrix of each layer.

thetaOpen = thetaOpt(1:16); %Weights of the open layer

thetaResNN = reshape(thetaOpt(17:end),[nc.*nc+1,nt]);

%Weights of the ResNet
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thetaResNNK = reshape(thetaResNN(1:64,:),nc,nc,nt);

thetaBout = thetaResNN(65,:);

Weight = cell(nt,1); % get the weight matrices

for i = 1 : nt %total number of weight matrices

Weight{i} = thetaResNNK(:,:,i);

end

section*Computing the Jacobian matrix This piece of code is selected

from the MegaNet package.The code chunk that computes the Jacobian ma-

trix of each layer.

%% compute the Jacobian of each layer

Main idea is to get the derivative of \sigma(K(t).’*y(t))

[Ytdata,~,~] = apply(net,thetaOpt,Ytrain(:,2));

Jacobian = cell(nt,1);

%Cell array to store Jacobian matrix for each layer

Y_Data = cell(nt,1); %Cell array to store Ys’ for each layer

Yj = Ytrain(:,2);%initial value of Y

thetaOpen = reshape(thetaOpen,[8,2]);

[Yj,~] = tanhActivation(thetaOpen*Yj); %First block to open up

for i = 1 : nt

Yj = Yj + h.*(tanhActivation(Weight{i}*Yj)+

ones(nc,1)*thetaBout(1,i));%input for next layer

Y_Data{i} = Yj;

[~,dYj] = tanhActivation(Weight{i}*Yj);
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Jacobian{i} = diag(dYj)*Weight{i};

end

Check stability

for k = 1:nt

A = Jacobian{k};

e = h.*eig(A);

centers = [-1,0];

radii = 1;

figure(1);

subplot(4,4,k);

plot(real(e),imag(e),’bo’)

% Plot real and imaginary parts

viscircles(centers,radii);

daspect([1 1 1])

xlabel(’Real’)

ylabel(’Imaginary’)

t1 = [’layer’ num2str(n)];

title(t1)

end
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Visualizing Loss Function

n = 2.*nc+nt.*(nc.*nc+1);

d1 = normrnd(0,1,[n,1]);

d2 = normrnd(0,1,[n,1]);

Q = zeros(9,n);

Q(1,1:16) = 1;

dim = nt+1;

for i = 2 : (dim)

Q(i,17+(65*(i-2)):17+65*(i-1)-1) = 1;

end

total = zeros(dim,1);

for i = 1:dim

total(i,1) = sum(Q(i,:));

end

d1Average = (Q’)*(Q*d1)./(Q’*total);

d2Average = (Q’)*(Q*d2)./(Q’*total);

thetaAverage = (Q’)*(Q*thetaOpt)./(Q’*total);

d1normed = (d1.*thetaAverage)./d1Average;

d2normed = (d2.*thetaAverage)./d2Average;

Viewer = zeros(20,20);

for a = 1:40

for b = 1:40
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thetaNormed = thetaOpt + ((.05*a-1)*d1normed)

+ ((.05*b-1)*d2normed);

Viewer(a,b) = eval(fctn,thetaNormed);

end

end

Standard ResNet Forward Propagation

th = linspace(0.2,2,nth);

Phic = zeros(nth,nth);

Phict = zeros(nth,nth);

for k1=1:nth

k1

for k2=1:nth

Cpred = Y0;

Cpredt = Y0t;

K = getK([th(k1);th(k2)]);

for j=1:N(1)

Cpred = Cpred + h(1)*activation(K*Cpred);

Cpredt = Cpredt + h(1)*activation(K*Cpredt);

end

Phic(k1,k2) = 0.5*norm(Cpred-C,’fro’)^2;

Phict(k1,k2) = 0.5*norm(Cpredt-Ct,’fro’)^2;
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end

end

RK4 Forward Propagation

th = linspace(0.2,2,nth);

Phic = zeros(nth,nth);

Phict = zeros(nth,nth);

for k1=1:nth

k1

for k2=1:nth

Cpred = Y0;

Cpredt = Y0t;

K = getK([th(k1);th(k2)]);

for j=1:N(1)

R1 = activation(K*Cpred);

R2 = (h(1)/2)*activation(K*(Cpred + (h(1)/2)*R1));

R3 = (h(1)/2)*activation(K*(Cpred + (h(1)/2)*R2));

R4 = h(1)*activation(K*(Cpred + h(1) * R3));

Cpred = Cpred + (h(1)/6)*(R1+2*R2+2*R3+R4);

Rt1 = activation(K*Cpredt);
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Rt2 = (h(1)/2)*activation(K*(Cpredt + (h(1)/2)*Rt1));

Rt3 = (h(1)/2)*activation(K*(Cpredt + (h(1)/2)*Rt2));

Rt4 = h(1)*activation(K*(Cpredt + h(1) * Rt3));

Cpredt = Cpredt + (h(1)/6)*(Rt1+2*Rt2+2*Rt3+Rt4);

end

Phic(k1,k2) = 0.5*norm(Cpred-C,’fro’)^2;

Phict(k1,k2) = 0.5*norm(Cpredt-Ct,’fro’)^2;

end

end
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