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Abstract

NUMERICAL OPTIMIZATION FOR
TRANSPORT AND REGISTRATION PROBLEMS

By Raya Horesh

In this thesis we develop numerical methods for the solution of large-
scale PDE-based constrained optimization problems. Overall three studies
are presented; the first two are application driven, addressing volume pre-
serving image registration and optimal mass transport problems. The third
study is more generic and embarks at the development of a new inexact
sequential quadratic programming framework. Image registration aims at
finding a plausible transformation which aligns images taken at different
times, different view-points or by different modalities. This problem is ill-
posed and therefore, regularization is required. In that study, elastic regu-
larizer is considered along with volume preserving constraint. A numerical
framework based on augmented Lagrangian along with geometrical multi-
grid preconditioner was devised. The proposed algorithm was tested with
real data. The optimal mass transport seeks for an optimal way to move a
pile of soil from one site to another using minimal energy, while preserving
the overall mass. In that study, a fluid dynamics formulation was consid-
ered. This formulation introduces an artificial time stepping, which on the
one hand transforms the non-convex problem to a convex one, but on the
other hand increases the dimensionality of the problem. A Schur comple-
ment and algebraic multigrid formed a preconditioner within a sequential
quadratic programming scheme. Results for both three and four dimensional
problems were presented. Inside each step of nonlinear optimization, solu-
tion for an ill-conditioned, indefinite linear system, known as a KKT system
is required. As problem size increases, linear iterative solvers become the
bottleneck of the optimization scheme. In the third study, a new approach
for inexact step computation is proposed. The general idea is to reduce the
number of linear iteration while still maintaining convergence of the overall
scheme. This is done, by the embedment of a filter inside a linear solver.
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Chapter 1

Introduction

Optimal transport and registration problems are part of a large group of

problems, namely inverse problems. Those problems arise in many impor-

tant applications, including medical imaging, geophysics and economics. The

basic idea in inverse problems is to recover the model from some knowledge

of the geometry of the problem and from a given measurement data, which

in many cases is noisy. In this thesis we will develop numerical methods that

are applicable for real life applications, in particular such that involve partial

differential equations (PDEs). Often, after discretization, these problems re-

sult in large amount of data and unknowns that need to be processed. Thus,

special numerical treatment and algorithms need to be developed and imple-

mented for large-scale inverse problems. These algorithms need to be chosen

carefully and take into account stable discretizations of the PDEs involved 1.

Moreover, a discretized problem of such a nature is usually ill-conditioned,

and requires a suitable and often problem dependent preconditioner. Specifi-

cally, we will consider optimal transport and registration problems, where the

unknowns to be recovered are the transformation in two or three dimensions

1Stability in the context of discretization is further discussed in Chapter 3, Section 2.2

and in Chapter 4, Section 3.
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and the density distribution of the images.

1 Image Registration - Problem Statement

The goal of image registration is to align two related images by finding a

feasible and plausible transformation. Given two images, T,R ∈ Ω, we want

to find a transformation u : Rd → Rd that transforms T such that R and

T (u) are similar on Ω, where d is the dimension of the image. In this setting,

the image R which we call the reference image is fixed and image T which we

refer to as the template image is deformed. We will first define some basic

concepts in image registration.

1.1 An Image

Throughout this thesis, we will consider d-dimensional images, I, which are

functions with compact support on domain Ω that maps any spatial point

x ∈ Rd to a scalar value I(x) ∈ R. Specifically, if we consider the two

dimensional case (d = 2), then each such point is called a pixel and in the

three dimensional case (d = 3), it is called voxel.

1.2 Distance Measure

A distance measure, sometimes referred to as the image similarity, quantifies

the degree of similarity between two or more images. This measure strongly

depends on the modalities of the images to be registered. For images taken

from the same device, the sum of square differences (SSD) is commonly

used (a formal definition is given in Chapter 3, Section 2.1) . Other, more

sophisticated approaches, like mutual information or normalized gradient

fields, are used in the case of multi-modality registration [80]. We should

notice that we require the distance measure to be symmetric, i.e. the distance

2



from R to T should be the same as the distance from T to R. In general,

there is more than one transformation that minimizes the distance, that is,

the problem is ill-posed. A well-posed problem, as was defined by Jacques

Hadamard in [56], should have the following three properties: 1. A solution

exists, 2. The solution is unique and 3. The solution depends continuously

on the data. A problem that does not satisfy one or more of those properties

is considered as an ill-posed problem. Inverse problems are usually ill-posed.

We should notice, that even if the problem is well-posed, it can still be ill-

conditioned. That is, a small error in the data can result in much larger

errors in the solution.

1.3 Feasible Transformation

The definition of a feasible or reasonable transformation is application depen-

dent. As mentioned before, image registration is an ill-posed problem, and

therefore, more than one solution exists. In order to choose the most suit-

able transformation for the specific application at hand we need to reduce our

solution space. This can be done by introducing constraints to our optimiza-

tion problem. There are mainly two ways to introduce a priori information

or assumptions regarding our problem. The first is done by introducing a

regularization term, by adding an additional term to the objective functional,

which is considered as a soft constraint and the second way is by introducing a

hard constraint to the problem. There are many popular choices for choosing

the regularization term. For example, in some applications, transformations

should not result in a folding of the grid or transformations should be volume

preserving, see for example [54, 92]. In general, we can divide methods for

the registration problem into two approaches, parametric and non-parametric

methods. In parametric registration, the registration transformation is given

by an explicit model that depends on some parameters. In Section 1.3.1 and

3



1.3.2 we will introduce common parametric and non-parametric registration

methods.

1.3.1 Parametric Registration

In parametric registration, the problem is restricted to finding real values for a

small number of parameters. We can represent the problem mathematically

as finding the transformation u : Rd → Rd, which can be expressed as

following

u(x) = Qx+ b

where Q ∈ Rd×d is an orthogonal matrix and b ∈ Rd. The common examples

are rigid, similarity and affine transformations [93, 110]. Rigid or Euclidian

transformations preserves angles and length of line segments and allow only

translations and rotations, see Figure 1.1(b). For two dimensional images, a

Euclidian transformation has three parameters (θ, ti, tj), where θ is the rota-

tion angle and ti, tj are translations in the i and j direction, correspondingly.

In a similarity transformation, besides the translations and rotations, a uni-

form isotropic scaling is also allowed. In this case, the objects can become

smaller or bigger while presenting their original shape, see Figure 1.1(c). An

affine transformations is a more general but still a linear parametric method,

which allows for rotation, translation, scaling and shearing. Affine transfor-

mation preserves parallelism between lines, see Figure 1.1(d).

1.3.2 Non-parametric Registration

Parametric transformations are considered as global mapping models, since

we are interested in parameters that are valid for the entire image. However,

global transformations cannot properly handle images which are deformed

locally. Least square approaches average the local geometrical deformations

over the entire image, which is sometimes not desirable, and moreover, it does

4



(a) Original (b) Euclidian

(c) Similarity (d) Affine

Figure 1.1: Different types of parametric registrations.
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not adequately take into account noise in the images. Information regard-

ing possible models of local geometrical distortion should be incorporated

into the registration framework. In non-parametric registration, the solution

space is reduced by introducing a regularization term S. The regularized non-

parametric registration problem is defined as follows: given two images R, T ,

a distance measure D and a regularization functional, find a displacement

u : Rd → Rd such that it minimizes

D(R, T (u)) + αS(u), α > 0. (1.1)

The parameter α is a regularization parameter that weights the similarity

of the images versus the smoothness of the transformation. Choosing small

α will give more weight to the distance term while the smoothing term will

have little influence on the solution. On the other hand, large α will result

in much smoother solutions. There are many algorithms and methods pro-

posed in the literature for choosing a suitable regularization parameter. For

example methods such as the discrepancy principle [81], generalized cross-

validation (GCV) [49] and L-curve [59, 72] have all been used with varying

degrees of success [78]. Practically, none of the aforementioned methods have

consistently provided successful results when utilized for the image registra-

tion problem. Choosing a regularization parameter for this problem is indeed

a non-trivial task. In practice, ad-hoc methods are commonly exercised for

this purpose.

Choosing the appropriate regularization functional is application depen-

dent. Many smoothers were suggested throughout the years, such as the

diffusive smoother [39], the curvature smoother [40], which were both pro-

posed by Fischer and Modersitzki, and the elastic smoother. In this thesis,

the commonly used elastic registration will be considered.

In elastic registration, which was introduced by Bajcsy et al. [7], the images

are viewed as pieces of a rubber sheet, on which external forces (registration)

6



are stretching the image and internal forces defined by stiffness or smoothness

(and referred to as Lamé constants) are forcing to bring them into alignment

with the minimal amount of bending and stretching. The registration is

achieved by locating the minimum energy state in an iterative fashion. The

elastic regularization is given by the elastic potential function

S(u) :=
1

2

∫
Ω

θ (∇u : ∇u) + (θ + τ)(div u)2 dx. (1.2)

Here (A : B) :=
∑

i,j Ai,jBi,j denotes a matrix inner product, and θ and τ

are the Lamé constants.

The solution of (1.1) is still not unique, and moreover, the transformation

might not be feasible or desirable for some applications. For example, one

may desire to have parts of the image rigid [75, 76, 69, 79, 52] or maintain

a correspondence between so-called landmarks [67, 41, 62]. Nevertheless, an

often fundamental requirement in almost all medical imaging applications

is that volumes do not shrink below some application dependent threshold.

Vanishing volumes are generally not physical in medical imaging and are

thus to be avoided. In [55], a method that bounds volume changes has been

proposed. This is achieved by constraining shrinkage/expansion of each indi-

vidual cell in a discretized formulation of the problem. The approach leads to

a large scale and highly non-linear inequality constrained optimization prob-

lem, where the number of constraints are at the same order as the number

of unknowns.

Similar to [55], in this thesis we constrain the feasibility of a transformation

by

κm(x) ≤ Cvol[u](x) ≤ κM(x) for all x ∈ Ωκ, Cvol[u] := det(I +∇u),

(1.3)

where the functions κm and κM and the subset Ωκ ⊂ Ω are supposed to be

user supplied and appropriately chosen for a particular application.

7



In summary, the desired displacement u is a minimizer of the constrained

optimization problem

min D[u] + α S[u] subject to κm ≤ Cvol[u] ≤ κM . (1.4)

We address this problem in more details in Chapter 3.

2 Optimal Mass Transport

2.1 Monge-Kantorovich Problem

The original optimal transport problem concerns with finding the best way

to move a pile of soil to an excavation, with the least amount of work.

Let Ω0 and ΩT be two diffeomorphic connected subdomains of Rd, and let

T , R be Borel measures on Ω0 and ΩT , each with a strictly positive density

function T (x) ≥ ρ0
low > 0 and R(x) ≥ ρτlow > 0, respectively and assume that∫

Ω0

T (r)dr =

∫
Ω1

R(r)dr = 1.

The problem is concerned with finding a mapping that minimizes the trans-

formation cost function, which represents the physical work required for mass

transport

M(u) =

∫
Ω

T (x)|u(x)|2 dx (1.5)

subject to ∫
u−1(Ω)

T (x) =

∫
Ω

R(x)dx. (1.6)

Equation (1.6) is a weak formulation of the Jacobian equation, where the

determinant term is added due to coordinates change

det(Id +∇u)T (x+ u(x)) = R(x). (1.7)

In equation (1.5) the integrand gives the traveled distance squared, weighted

by the amount of the transported mass. We can view the cost function (1.5)

8



as the total amount of effort required to move a pile of mass from one lo-

cation to another. The L2 cost has been extensively used in many different

applications such as mathematical finance, shape recognition in image pro-

cessing, computer vision, signal processing and functional analysis (see book

[105] and references within).

We can now write our constrained optimization problem for the general Lp

cost function, where 1 ≤ p ≤ 2 as

min M(u) :=

∫
Ω

T (x)|u(x)|p dx (1.8a)

s.t. c(u) = det(Id +∇u)T (x+ u(x))−R(x) = 0, (1.8b)

where u is a C1,α diffeomorphism from Ω0 → Ω1. The constraint c(u) = 0

(the Jacobian equation) is often referred to as the mass preserving (MP)

property.

Even with a simple, quadratic distance function, this is a highly non-linear

equality constrained optimization problem. There is extensive analysis as

for the existence, uniqueness, and properties of the solution (see for example

[1, 32, 105] and the references therein). However, as of today, there are only

a small number of papers that deal with finding the solution of the problem,

and an even smaller number of papers that deal with efficient numerical

solutions of the problem [27, 22, 9, 2, 87, 28]. Generally speaking, numerical

methods for the solution of the problem can be divided into three approaches.

1. The first approach, for the case p = 2, utilizes the property that the

transport map can be written as a gradient of convex potential function

Ψ, i.e.

u(x) = ∇Ψ(x)

substituting this into equation (1.7) results in the Monge-Ampère equa-

tion

(Id +HΨ(x))T (∇Ψ(x)) = R(x),

9



where HΨ(x) is the Hessian of the matrix Ψ. This is a second order

non-linear partial differential equation (PDE).

2. The second approach attempts to tackle the constrained optimization

problem (4.1) directly. This direct numerical approach raises many

numerical challenges, see for example [100].

3. A third approach for the solution of the problem was proposed in the

seminal paper of Benamou and Brenier (BB) [9], which suggested a

fluid mechanic formulation of the problem.

In this thesis we concentrate on this formulation of the problem, introduce

it in Section 2.2 and discuss the numerical solution in Chapter 4.

2.2 Fluid Dynamics Framework for the Monge-

Kantorovich Problem

In this section we summarize the fluid dynamics formulation of the L2 Monge-

Kantorovich framework, as was presented in [9]. Let us affix the time interval

[0, τ ], and consider all possible sufficiently smooth time-dependent density

and velocity field ρ(x, t) > 0, v(x, t) x ∈ Rd, subject to the continuity equa-

tion
∂ρ

∂t
+∇ · (ρv) = 0, (1.9)

for 0 ≤ t ≤ τ and the initial and final conditions

ρ(x, 0) = T (x), ρ(x, τ) = R(x).

Then, we can rewrite the constrained problem as

min
1

τ

∫
Ω

∫ τ

0

ρ(x, t)|v(x, t)|2 dxdt (1.10a)

s.t.
∂ρ

∂t
+∇(ρv) = 0 (1.10b)

ρ(x, 0) = T (x), ρ(x, τ) = R(x). (1.10c)
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These types of problems are referred to as a PDE constrained optimization

problems and their solution was recently addressed in the literature (see for

example, [37, 11, 14] and references within).

While methods from PDE optimization can be used here, there are some

obvious limitations. The main one is that PDE optimization problems typ-

ically assume that it is possible to solve the PDE without the optimization

assuming that the control is known. However, for problem (1.10) this is not

the case. Note that there are no boundary conditions (BC) for ρ in the PDE

and thus one cannot solve uniquely for ρ even if v is known.

3 Inexact Sequential Quadratic Programming

Sequential Quadratic Programming (SQP) is one of the most popular and

robust methods for non-linear constrained optimization problems of the form

min f(x) (1.11a)

s.t. c(x) = 0. (1.11b)

where x ∈ Rd, and both the objective function f : Rn → R and the constraint

c : Rn → Rm are sufficiently smooth. For simplicity, we consider equality

constrained optimization problems, although the method is suitable also for

problems with inequality constraints.

The underlying principle of the method is based on solution of a series of

subproblems designed to minimize a quadratic model of the objective func-

tion, subject to a set of constraints. This approach can be viewed as a natural

extension of the Newton method for constrained optimization problems.

The Lagrangian of the system can be written as

L(x, λ) = f(x) + λ>c(x)

11



From here, 1st order necessary optimality conditions for stationarity are given

by

Lx = g(x) +B(x)>λ = 0

Lλ = c(x) = 0,

where B(x) := ∇c(x) is the Jacobian of the constraints, g(x) := ∇f(x) is the

gradient of the objective function, and λ is a Lagrange multipliers vector.

Using the Newton method on the Karush-Kuhn-Tucker (KKT) conditions

yields a linear system whose solution provides a Newton search direction(
Hk B>k

Bk 0

)(
dk

δk

)
= −

(
gk +B>k λk

ck

)
, (1.12)

where Hk is the Hessian ∇2
xxL(xk, λk) or its symmetric approximation. The

new iterate is updated sequentially as follows

xk+1 = xk + αdk

λk+1 = λk + αδk

where α is obtained through a line search procedure.

Thus, at each SQP iteration, we need to solve the linear system (1.12). The

KKT system is symmetric and indefinite. Typically for PDE - based problems

this system is large-scale and sparse. In cases where the dimensionality and

or density of the problem prohibits the use of direct linear solvers for the

aforementioned system, some Krylov subspace methods may guarantee a

solution within a bounded number of iterations (equal to the dimension of

the system in exact arithmetic). Nevertheless, for large linear systems, such

an upper limit on the number of iterations is often impractical.

Until recently, available theoretical work prompted for strict satisfaction of

the above conditions (1.12), that is, search directions were obtained through
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an exhaustively accurate solution of the linearized system. Due to the com-

putational load associated with such solutions, and the underlying intuition

that exact solutions of the linearized systems may be somewhat redundant,

while the current estimate of the solution is far from the true one, practition-

ers were driven to consider compromising with inexact computation of the

search directions. A family of associated methods are the truncated Newton

scheme [83]. Yet, only very recent work by Byrd et al. [19, 20] has ret-

rospectively substantiated this claim and provided an explicit convergence

proof.

The fundamental question that arises for an inexact SQP approach is the ex-

tent to which inexactness can be allowed? Or more formally and practically,

how can one form inexact search directions that will guarantee convergence

of the overall optimization scheme?

Byrd et al. work introduced one measure for validating this requirement.

Their approach was based on sufficient reduction in a model of an exact

penalty function. Inspired by the notion of employing filter methods as an

alternative to a merit function, as firstly introduced by Leyffer and Fletcher,

in this thesis, we propose the use of a filter-method based measure serving as

a decision-maker in the course of an inexact search direction computation.

Filter methods avoid using a merit function which combines the objective

and constraint violation into single function. Instead, it considers (1.11) as

a bi-objective optimization problem that minimizes f(x) and h(x) := ‖c(x)‖
for some norm. The concept of domination is borrowed from multi-objective

optimization, which defines that xk dominates point xl if and only if f(xk) ≤
f(xl) and h(xk) ≤ h(hl). The filter is defined as a list of pairs (h(xl), f(xl))

such that no pair dominates another pair. An illustration of a typical filter

is presented in Figure 1.2, where the shaded area represents the region which

is dominated by the filter entries. A detailed explanation about the filter is
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Figure 1.2: Filter method - shaded area represent area that is dominated

by the filter entries.
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given in Chapter 5.

4 Contributions of this Thesis

The overall purpose of this thesis is to develop efficient numerical optimiza-

tion methods for large scale PDE-based constrained optimization problems.

In particular, the thesis focuses on the challenging problems of registration

and optimal transport. More specifically, this thesis presents important con-

tributions in each of the following areas:

1. Volume Preserving Image Registration

A PDE constrained optimization formulation for image registration is

considered in this thesis. This formulation involves a highly non-linear

PDE which requires special care when discretized. The discrete prob-

lem is large-scale and requires special numerical tools. In this work,

we solve the problem using the Augmented Lagrangian method, which

results in a symmetric positive definite linear system that needs to be

solved at each iteration. For that purpose, we use a preconditioned con-

jugate gradient approach with a geometric multi-grid preconditioner.

We develop a new relaxation scheme, which is based on Vanka’s method

[103] and black-white relaxation, which is generalized to three dimen-

sional domains.

2. Optimal Mass Transport

We consider the fluid mechanic formulation of the Monge-Kantorovich

problem, proposed by Benamou and Brenier, as presented in equation

(1.10). We reformulated the problem by introducing time-space di-

vergence, where we treat the time as a spatial dimension. The new

formulation resembles non-linear flow in porous media. Such problems

are well posed as long as the objective function is convex, even without
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boundary conditions on the density distribution. We developed robust

and stable discretizations on a staggered grid along with an efficient

optimization algorithm and an efficient solver for the linear system.

We use a Newton-type scheme for the solution of the constrained op-

timization problem. In particular, we consider a sequential quadratic

programming (SQP) method for the solution of the problem, with an

inexact step computation of the linearized system using the GMRES

method. The resulting KKT system is ill-conditioned and the use of

suitable preconditioner is required. We consider a preconditioner based

on a Schur complement. The Schur complement in this case is a Lapla-

cian in space-time with possible jumping coefficients, that depend on

the density distribution. For the solution of the Schur complement

part, we consider the preconditioned conjugate gradient method, with

algebraic multi-grid as a preconditoner, which takes into account non-

smooth coefficients.

3. Inexact Filter Based SQP Method

Inexact SQP methods are very important for large-scale optimization

problems, where the arising linear systems need to be solved using it-

erative linear algebra algorithms, such as generalized minimal residual

(GMRES). In this thesis, we prescribe and characterize a stopping crite-

rion for the iterative linear solver, based on a filter method, such that

the computed step makes sufficient progress towards the solution of

the linearized problem. To guarantee convergence of the original prob-

lem, we incorporate a line search strategy by applying a filter over the

non-linear problem. We extend the filter to three dimensions, where

the third dimension is checking the dual feasibility term. This work

has been embedded successfully within the optimization framework of

the optimal mass transport problem mentioned above. The proposed

framework, only requires mild traditional assumptions regarding the
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problem. Thus, it is applicable to a broad range of constrained opti-

mization problems enabling great versatility and universality of use.

17



Chapter 2

Background for Relevant

Numerical Tools

1 Preface

In this chapter a glossary of relevant numerical tools and terms is introduced.

The review begins by a description of some of the fundamental principles of

non-linear constrained optimization. In this section, first and second order

necessary and sufficient conditions for optimality are elucidated. Further,

three popular numerical optimization algorithms that facilitates these con-

ditions are described: the Sequential Quadratic Programming (SQP) which

is utilized for solving the optimal mass transport problem (Chapter 4), the

Log Barrier approach, which was used in some studies for addressing the

aforementioned problem, and the Augmented Lagrangian (AL), which serves

as the method of choice for volume preserving image registration (Chapter

3). We later briefly review globalization by means of a line search. This

topic, as well as SQP, shall be critically revisited in the inexact SQP chap-

ter (5). The solution of these problems mandates an intermediate solution

of a linear system of equations. We shall therefore proceed with a com-
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prehensive description of stationary and non-stationary methods as well as

multi-grid approaches for the solution of such systems. Fixed-point methods

are typically incorporated as preconditioners or smoothers within multi-grid

formulations. The latter use is introduced in Chapter 3 within a geometric

multi-grid framework for solution of the linear system and in Chapter 4 as

part of an algebraic multi-grid preconditioner. We spend some time in de-

scribing Krylov subspace linear solvers, and in particular, the Generalized

Minimal Residual (GMRES) solver [96, 97]. A modification of this algorithm

for incorporation of a filter, as a termination condition will be presented in

the inexact SQP chapter 5.

2 Constrained Optimization Problem - Defi-

nition

Constrained optimization is defined as minimization (or maximization) of a

function subject to a set of constraints acting on some variables. In this

chapter, we adopt the common notation used in the finite dimensional con-

strained optimization literature. Let x be a vector of variables, f be an

objective function and c be a vector of constraints. First, we should notice

that min f(x) = −max (−f(x)), thus, the two problems are equivalent and

we therefore only consider the minimization problem in this thesis.

A general optimization problem can be written as

min
x∈Rn

f(x)

subject to ci(x) = 0, i ∈ E
ci(x) ≥ 0, i ∈ I

(2.1)

where f : Rn → R is the objective function, c : Rn → Rm are a set of con-

straints, that can either be equality (E) or inequality (I) or both. Any point
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x that satisfies the constraint is said to be feasible, or otherwise, infeasible.

3 Notation

We first introduce important notation that will be used throughout this the-

sis. Let x ∈ Rn be a column vector with xi representing its i-th component.

We further assume that the function f : Rn → R is twice continuously dif-

ferentiable.

Definition 1 The gradient of the objective function is defined as

g(x) = ∇xf(x)

where the i-th component of the vector of the first derivatives ∇xf(x) is

∂f(x)/∂xi. We consider the gradient to be a column vector.

Definition 2 The Hessian of the objective function is defined as

H(x) = ∇xxf(x)

where the [i, j]-th component of the Hessian, is the second derivative

∂2f(x)/∂xi∂xj

. One should notice that the Hessian is a symmetric matrix.

Definition 3 The Jacobian matrix of the constraints is defined as

B(x) = (∇xc(x))>

Definition 4 The active set A(x) at any feasible point x is defined as

A(x) = E ∪ {i ∈ I|ci(x) = 0}

Definition 5 (LICQ) Given the point x and the active set A(x), we say

that the linear independence constraint qualification (LICQ) holds if the set

of active constraint gradients {∇ci(x), i ∈ A(x)} is linearly independent.
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4 Optimality Conditions for Equality Con-

strained Optimization

We can now define the Lagrangian function for the equality constrained op-

timization problem (2.1) with I = ∅.

L(x, λ) = f(x) + λ>c(x),

where λ is a vector of Lagrange multipliers.

Necessary optimality conditions for equality constrained minimization prob-

lem are given below.

Theorem 1 First Order Necessary Conditions (Karush-Kuhn-Tucker con-

ditions or KKT conditions). If x∗ is a local minimizer of f(x) subject to

c(x) = 0 and f and c are continuously differentiable, then as long as LICQ

holds, there exists a vector of Lagrange multipliers λ∗, such that

c(x∗) = 0 (primal feasibility)

g(x∗) +B>(x∗)λ∗ = 0 (dual feasibility)
(2.2)

Theorem 2 Second Order Necessary Conditions. If x∗ is a local minimizer

of f(x) subject to c(x) = 0 and ∇2f and ∇2c are continuous, then as long

as LICQ holds, there exists a vector of Lagrange multipliers λ∗, such that

c(x∗) = 0, g(x∗) +B>(x∗)λ∗ = 0 and

s>H(x∗, λ∗)s ≥ 0, ∀s ∈ N ,

where

N = {s ∈ Rn|B(x∗)s = 0}.

Theorem 3 Second Order Sufficient Conditions. If ∇2f and ∇2c are con-

tinuous and there exists a vector of Lagrange multipliers λ∗, such that c(x∗) =

0, g(x∗) +B>(x∗)λ∗ = 0 and

s>H(x∗, λ∗)s > 0, ∀s ∈ N
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where

N = {s ∈ Rn|B(x∗)s = 0},

then x∗ is a strict local minimizer of f(x) subject to c(x) = 0.

5 Optimality Conditions for Inequality Con-

strained Optimization

Suppose x∗ is a minimizer of the inequality constrained optimization problem

(2.1) with E = ∅.

Theorem 4 First Order Necessary Conditions (KKT conditions). If x∗ is

a local minimizer of f(x) subject to c(x) ≥ 0 and f and c are continuously

differentiable, then as long as LICQ holds, there exists a vector of Lagrange

multipliers λ∗, such that

c(x∗) ≥ 0 (primal feasibility)

g(x∗) +B>(x∗)λ∗ = 0 (dual feasibility)

c(x∗)� λ∗ = 0 (complementary slackness)

λ∗ ≥ 0

(2.3)

where � denotes the Hadamard (or Schur) product.

These conditions are often referred to as the KKT conditions.

Theorem 5 Second Order Necessary Conditions. If x∗ is a local minimizer

of f(x) subject to c(x) ≥ 0 and ∇2f and ∇2c are continuous, then as long

as LICQ holds, there exists a vector of Lagrange multipliers λ∗, such that

primal and dual feasibility and slackness hold, together with

s>H(x∗, λ∗)s ≥ 0, ∀s ∈ N+

where

s ∈ N+ ⇔

{
∇ci(x∗)>s = 0 if ci(x

∗) = 0 & λ∗i > 0

∇ci(x∗)>s ≥ 0 if ci(x
∗) = 0 & λ∗i = 0
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Theorem 6 Second Order Sufficient Conditions. If ∇2f and ∇2c are con-

tinuous and there exists a vector of Lagrange multipliers λ∗, such that c(x∗) =

0, g(x∗) +B>(x∗)λ∗ = 0 and

s>H(x∗, λ∗)s > 0, ∀s ∈ N+

where

s ∈ N+ ⇔

{
∇ci(x∗)>s = 0 if ci(x

∗) = 0 & λ∗i > 0

∇ci(x∗)>s ≥ 0 if ci(x
∗) = 0 & λ∗i = 0

then x∗ is a strict local minimizer of f(x) subject to c(x) ≥ 0.

The interested reader may refer to [86] and reference therein.

6 Sequential Quadratic Programming

The basic idea of sequential quadratic programming (SQP) is analogous to

Newton’s method for unconstrained optimization, where we apply a Newton

step to the KKT optimality conditions. In the Quadratic Programming (QP)

method, we introduce a quadratic model for the objective function and a

linear model of the constraints. In the SQP method, a QP is solved at each

iteration. We consider an equality constrained minimization problem

min
x∈Rn

f(x)

subject to c(x) = 0.
(2.4)

We can now write the first order KKT conditions for the equality constrained

problem (2.4) as a system of n+m equations for n+m unknowns x and λ.

F (x, λ) =

[
g(x) +B(x)>λ

c(x)

]
= 0. (2.5)

The Jacobian of the system (2.5) with respect to x and λ is then[
∇2
xxL(x, λ) B(x)>

B(x) 0

]
. (2.6)

23



To obtain the Newton step, we need to solve the following linear system[
∇2
xxL(x, λ) B(x)>

B(x) 0

][
dk

δk

]
= −

[
g(x) +B(x)>λ

c(x)

]
(2.7)

and update the iterate (xk, λk)[
xk+1

λk+1

]
=

[
xk

λk

]
+

[
dk

δk

]
. (2.8)

If the KKT matrix (2.6) is non-singular, the Newton iteration is well de-

fined. This system is not singular if the following assumptions hold

Assumptions 1

• (A1) The constraint Jacobian matrix B(x) has full row rank (LICQ).

• (A2) The matrix ∇2
xxL(x, λ) is bounded and second order sufficient, i.e.

s>∇2
xxL(x, λ)s ≥ k‖s‖2 , ∀s 6= 0 with B(x)s = 0

Under these assumptions, Newton’s iteration is quadratically convergent,

given that the starting point is sufficiently close to x∗.

7 Line Search

Line search methods decide how far we need to traverse along a descent

direction dk and δk. The iteration update is then given by[
xk+1

λk+1

]
=

[
xk

λk

]
+ αk

[
dk

δk

]
. (2.9)

where αk is a positive scalar, namely the step length. The optimal choice of α

will be such that minimizes the merit function φ(xk+αdk) (for unconstrained
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case, that is the objective function itself). However, in general this procedure

is prohibitively expensive computationally, since it requires too many func-

tion evaluations. In practice, an inexact line search is often preformed, such

that sufficient reduction in the function’s value is obtained. This is typically

done by trying out a sequence of values for α and accepting the value for

which certain conditions are satisfied. Different line search termination cri-

teria can be considered. The simplest one requires that φ(xk +αdk) < φ(xk),

but this requirement is not sufficient to guarantee convergence to x∗. An-

other popular choice is the sufficient decrease or the Armijo condition, which

requires that

φ(xk + αdk) ≤ φ(xk) + c1α∇φ>k dk, 0 < c1 < 1 (2.10)

where in practice, c1 = 10−4. Nevertheless, this condition can be satisfied for

any small value of α, which may lead to slow convergence. For that purpose,

it is advisable to introduce another condition regarding the curvature

∇φ(xk + αdk)
> ≥ c2∇φ>k dk, c1 < c2 < 1. (2.11)

These two conditions ((2.10) and (2.11)) collectively are known as the Wolfe

conditions. Other conditions also exist, but they will not be discussed in this

thesis. A common choice of a merit function is the following l1 function

φ(xk, λk) = f(xk) + γ‖c(xk)‖1

where γ is typically chosen to be 1/‖λk‖∞. An alternative to the line search

procedure for globalization is the family of trust region methods [26]. The

underlying principal is to define a region in which a linear or a quadratic

model is regarded as trustworthy. A search point is accepted whenever a

reasonable match between the predicted reduction and the actual reduction

is satisfied. This measure also steers the magnitude of the trusted region:

increased for a good match, sustained for a reasonable match and decreased

for a poor one.
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8 Log-Barrier Method

The log-barrier was first introduced by Frisch [48] in 1955. This methods

aims at solving an inequality constrained optimization problem, in the form

min
x∈Rn

f(x)

subject to c(x) ≥ 0.
(2.12)

The log-barrier function is defined as

P(x, µ) = f(x)− µ
∑
i∈I

log ci(x), µ > 0 (2.13)

Under certain conditions, the minimizer of (2.13) approaches x∗ as µ ap-

proaches 0. In principal, this problem can be solved by means of uncon-

strained optimization. This method has several drawbacks. One important

drawback of this method versus the SQP method is that the function (2.13)

become increasingly non-linear as µ is reduced. In addition, the initial start-

ing point has to be feasible, which is a non-trivial requirement in many cases.

Moreover, this method results in an ill-conditioned Hessian, as µ approaches

0.

9 Augmented Lagrangian Method

The augmented Lagrangian method is categorized as a penalty method, as a

penalty term is added to the Lagrangian function. Let us consider an equality

constrained optimization problem, as in (2.4). The augmented Lagrangian

is then defined as follows

L(x, λ, µ) = f(x)− λ>c(x) +
µ

2
‖c(x)‖2 (2.14)

The augmented Lagrangian differs from the standard Lagrangian by the

rightmost squared term. The KKT condition mandate that ∇xL(x∗, λ∗) = 0
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and c(x∗) = 0, therefore, the augmented Lagrangian and the standard La-

grangian coincide at the minimum for any µ. At some non-critical point, the

optimality conditions are

∇xL(x, λ, µ) = g(x)−B(x)>λ+ µB(x)>c(x) = 0.

From here, at the optimal solution, we obtain that λ∗ = λ − µc(x). This

formula suggests a way to update the Lagrange multiplier at each iteration

λk+1
i = λki − µkci(xk), (2.15)

where k denotes the iteration index and i denotes a component index of a

vector. Minimization of the augmented Lagrangian results in an addition of

a stabilization term to the (1, 1) block of the KKT system, where ∇2f(x) is

replaced by ∇2f(x) + µB(x)>B(x).

It is possible to extend the augmented Lagrangian method to inequality

constrained optimization by introducing slack parameters. We can rewrite

the inequality constraint ci(x) ≥ 0, i ∈ I as

ci(x)− si = 0, si ≥ 0.

It is now possible to recast the inequality constrained optimization problem

as an equality constrained problem plus a set of non-negativity constraints.

min
x,s

f(x)

subject to ci(x) = 0, i ∈ E
ci(x)− si = 0, i ∈ I
s ≥ 0

(2.16)

This optimization problem can be solved efficiently by using the gradient

projection method, for a fixed λ and µ. This approach was successfully

utilized in the LANCELOT package [25].
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10 Stationary Linear Solvers

Stationary iterative methods aim at solving the linear system of equations

Ax = b, (2.17)

where the update iteration can be expressed in the following form

xk = Bxk−1 + c.

Note that both B and c do not depend on the iteration count k. In this

section we discuss two stationary methods: Jacobi and Gauss-Seidel.

10.1 Jacobi

If we decompose our matrix A into three matrices: D, −L and −U , where

D is the diagonal, −U is the strictly upper triangular part, and −L is the

strictly lower triangular part of A, then we can write

(D − U − L)x = b

which can be used to define a fixed point iteration of the form

xk = D−1(U + L)xk−1 +D−1b.

We should notice, that since D is a diagonal matrix, its inverse can be com-

puted easily assuming positive positive definiteness of matrix A. The method

will always converge if the matrix A is strictly diagonally dominant. A sec-

ond convergence condition is when the spectral radius of the iteration matrix

ρ(D−1(U + L)) < 1.

10.2 Gauss - Seidel

Considering again the linear system in (2.17), as before we can decompose

the matrix A into three matrices D, −L and −U as before. The Gauss-Seidel
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iteration is therefore as following

xk = (D − L)−1(Uxk−1 + b).

Though it can be applied to any matrix with non-zero elements on the di-

agonals, convergence is only guaranteed if the matrix is either diagonally

dominant, or symmetric and positive definite. For many cases the conver-

gence of the Gauss-Seidel method is faster than the Jacobi method. Others

stationary methods also exist, such as successive over relaxation (SOR), sym-

metric successive over relaxation (SSOR) and weighted Jacobi. For further

reading please refer to [104, 57, 109].

11 Non-stationary Iterative Methods - Krylov

Subspace Methods

In this section, we introduce some of Krylov subspace methods [96] for the

solution of the linear system of equations (2.17). Let x0 be the initial solution

guess, we can define the initial residual as

r0 = b− Ax0.

When considering Krylov subspace methods, the kth iterate satisfies

xk ∈ x0 +Kk(A, r0), k = 1, 2, . . .

where

Kk(A, r0) := span{r0, Ar0, . . . , A
k−1r0}

is kth Krylov subspace, spanned by an A-orthogonal basis. Two vectors

vi, vj are defined to be A-orthogonal if v>i Avj = 0, i 6= j. The Krylov

subspace family of solvers are among the most effective and efficient for large

and sparse systems of equations. These methods are highly economical with
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respect to memory. Most of these methods employ the Lanczos method for

orthogonalization, which for symmetric matrices can generate subsequent

search directions, using only a three-term vector occurrence. Moreover, an

explicit formulation of the matrix A is not compulsory, as long as some

mechanism that provides the matrix-vector product exists.

11.1 Conjugate Directions

Solving a linear system of equations (2.17), where A ∈ Rn×n is symmetric

positive definite (SPD), is equivalent to minimization of a convex quadratic

form function

f(x) =
1

2
x>Ax− b>x+ c (2.18)

since at the minimum, we obtain

∂f(x)

∂x
= Ax− b = 0⇐⇒ Ax = b.

For linear systems, the gradient of the minimized function is equal to the

residual error r(x)

r(x) = Ax− b = ∇f(x).

The general iterative step is given by

xk+1 = xk + αkpk (2.19)

By substitution of (2.19) into (2.18) we obtain the minimized function at the

{k + 1}-th iteration

f(xk+1) =
1

2
(xk + αkpk)

>A(xk + αkpk)− b>(xk + αkpk) + c

The one-dimensional step-size αk, a minimizer of this quadratic function

along xk + αkpk, can be found by differentiation with respect to αk

∂f(xk+1)

∂αk
= (Axk − b)>pk + αkp

>
k Apk = r>k pk + αkp

>
k Apk = 0
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therefore, we obtain

αk = − r>k pk
p>k Apk

.

A set of A-conjugate vectors are linearly independent, hence, once conjugate

direction (p0, p1, . . . , pn) has been selected as a search direction at each iter-

ation, f would be minimized within, at most n steps [86]. This important

property can be proved by expressing the error term as a linear combination

of the search directions

e0 = x0 − x =
n−1∑
i=0

βipi

where the βi values can be determined by pre-multiplication of the error term

by p>k A

p>k Ae0 =
n−1∑
i=0

βip
>
k Api = βkp

>
k Apk.

This leads to

βk =
p>k Ae0

p>k Apk
=
p>k A(e0 +

∑k−1
i=0 αipi)

p>k Apk
=
p>k Aek
p>k Apk

.

Since Aek = rk, it is follows that

βk =
p>k rk
p>k Apk

= −αk.

From here, it is apparent that the process of constructing the solution x

component-wise, is equivalent to the process of eliminating the error term

component by component

ek = e0 +
k−1∑
i=0

αipi =
n−1∑
i=0

βipi −
k−1∑
i=0

βipi =
n−1∑
i=k

βipi

After n iterations, all the components are deducted, and en = 0. The main

flaw of this method is that construction of any new search direction via a
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conjugate Gram-Schmidt process requires retainment of all previous search

directions (as is the case for Arnoldi methods, defined on page 34). Fur-

thermore, this approach requires O(n3) operations for generation of the full

set.

11.2 Conjugate Gradient (CG)

The underlying idea of Conjugate Gradients is almost similar to the Con-

jugate Directions method, only that now, the search directions are con-

structed by conjugation of the residuals. The use of the residual is, in some

sense, inspired from the Steepest Descent method, and motivated by the

fact that the residual is orthogonal to the previous search direction. There-

fore, the first search direction is chosen to be the steepest descent direction

−∇f(xk) = −rk.
Since the construction of any new search direction does not require ex-

plicit elimination of conjugated components from previous search directions,

the typical runtime complexity per iteration of this algorithm is reduced to

O(nnz(A)), where nnz(A) stands for the number of non-zero entries in the

matrix A. The convergence is determined by the spectrum of the eigenvalues,

with the following relation for the relative error

‖ek‖A
‖eo‖A

≤ min
qk

max
1≤i≤n

|qk(λi)|

where qk is polynomial of degree k satisfying qk(0) = 1 and λi, 1 ≤ i ≤ n

stands for the set of eigenvalues of A ∈ Rn×n . The number of required

iterations for reduction of the error norm by a factor of ε is given by

k ≤
⌈√

κ

2
ln

1

ε

⌉
where κ is the condition number. It is therefore evident that the performance

of the conjugate gradient algorithm can be improved by application of a
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suitable preconditioner, further discussion on that regard is given in Chapters

3 and 4.

11.3 Generalized Minimal Residual Method (GMRES)

The Generalised Minimal Residual method (GMRES) [97] is an extension

of the Minimal Residual method (MinRes), which is only applicable to sym-

metric systems, to unsymmetric systems. At iteration k an approximation

xk of the Krylov subspace is generated by the vector c

Kk(A, c) = span{c, Ac, . . . , Ak−1c}

where typically c = b. This method solves the least square problem

min
z∈Kk(A,b)

‖b− Az‖

by constructing an orthonormal basis V = {v1, v2, . . . , vk} for Kk(A, c) us-

ing Arnoldi’s method. Starting with v1 = b/‖b‖ the basis for Kk+1(A, b) is

constructed recusivly

vk+1 =
ˆvk+1

‖ ˆvk+1‖
,

where

vk+1 = Avk +
k∑
i=1

(v>i Avk)vi.

This then leads to the following decomposition

AVk = Vk+1Lk,

where Lk ∈ R(k+1)×k is an upper Hessenberg matrix. The vector z can be

represented now as z = Vkw for some w, and therefore

Az = Vk+1Lkw

and

b = ‖b‖Vk+1e1
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where e1 denotes the first column of the identity matrix. The least squares

problem is then reduced to

min
wk

‖(‖b‖)e1 − Lkwk‖

zk = Vkwk

It can be observed that in order to generate the next basis vector, A is only

accessed in the form of Avk. The major drawback of the GMRES method is

that the computational load and storage required per iteration rises linearly

with the iteration count. The customary way to overcome this limitation is by

restarting the iteration periodically. After a predefined number of iterations

krestart, the accumulated data is cleared and the intermediate results are used

as the initial data for the next krestart iterations. This procedure is repeated

until convergence is achieved. The difficulty is in choosing an appropriate

value for krestart. If krestart is too small, GMRES may converge slowly, or fail

to converge entirely. A value of krestart that is larger than necessary involves

excessive work and storage. Unfortunately, there are no general, definite

rules for the choice of krestart.

Algorithm 1: Arnoldi Method

Input: A, q1 such that ‖q1‖ = 1

Output: q1, q2, q3, . . .

for j = 1, 2, . . . do
q̂k+1 ← Aqk

for i = 1, 2, . . . , j do

hij ← q̂>j+1qi

q̂j+1 ← q̂j+1 − hijqi
hj+1,j ← ‖q̂j+1‖
qj+1 ← q̂j+1/hj+1,j
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Algorithm 2: GMRES Algorithm

Input: A, b, x0

Output: xk

set r0 ← b− Ax0

set q1 ← r0/‖r0‖
for j = 1, 2, . . . do

Compute qk+1 and hi,k, i = 1, 2, . . . , k + 1 using Arnoldi method

Solve the least square problem miny ‖βe1 − Ak+1,ky‖ to find yk,

where β = ‖r0‖
Set xk ← x0 +Qkyk where Qk ∈ Rn×k has qi as columns

The above algorithm will be revisited and modified in Chapter 5 to accom-

modate inexact step computation within the SQP framework. Despite the

popularity of the GMRES solver for solution of large-scale non-symmetric

linear systems, its reliance on long recurrences, often shadows its overall

appeal. As an alternative, a set of short recurrence Krylov space solvers

exists. To name some, restarted GMRES (discussed earlier in this section),

bi-conjugated gradient (Bi-CG) and stabilized bi-conjugated gradients (Bi-

CGSTAB). These methods will not be discussed here, the reader should refer

for further reading [102]. Studies show that each of these algorithms may

outperform the others for a given system. Therefore, there are no defini-

tive guidelines for favoring one upon the other. Nevertheless, typically much

greater improvement can be achieved by an appropriate choice of a precon-

ditioner.

12 Multi-grid

Multi-grid methods are designed to solve systems with optimal time complex-

ity. Specifically, the number of operations needed to solve a problem scales

linearly with the size of the problem. Although the multi-grid methodol-
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ogy may be applied to linear and non-linear equations, in this thesis we

restrict our attention to the linear case Ax = b. The fundamental principle

of multi-grid is the relationship between relaxation and coarse-grid correc-

tion. When applied to a linear system, a stationary iterative method (e.g.

Jacobi or Gauss-Seidel iteration) rapidly reduces high-frequency or oscilla-

tory errors in the approximate solution. After several applications of the

relaxation procedure the approximate solution consists primarily of low fre-

quency or slow-to-converge error components that are not effectively reduced

by further relaxation. However, when these components are restricted to a

coarser grid they become oscillatory and are damped by relaxation applied

to the coarser problem. The approximate solution on the coarse grid is then

interpolated back to the finer grid to update the fine-grid approximate so-

lution. This procedure is applied recursively to form a hierarchy of grids

until the coarsest problem can be solved exactly. The processes of relaxation

and coarse-grid correction comprise the multi-grid cycle. The efficiency of

the multi-grid cycle depends on the effectiveness of relaxation on oscillatory

error modes and the accuracy with which slow-to-converge error components

are represented on coarser grids. For an algorithmic example of a V-cycle

geometric multi-grid, see algorithm 3 below.
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Algorithm 3: Multi-grid V-cycle algorithm

multi-grid-Vcycle(A, b, x0)

if l = N then
return Solve(Al, bl)

else
xl ← PreSmooth(Al, bl, xl)

rl ← bl − Alxl
bl+1 ← Restrict(rl)

Al+1 ← Restrict(Al)

xl+1 ← 0

xl+1 ← multi-grid-Vcycle(Al+1, bl+1, xl+1)

xl ← xl + Interpolate(xl+1)

xl ← PostSmooth(Al, bl, xl)

return xl

Multi-grid methods can be classified into two types. The geometric multi-

grid method [101] uses a hierarchy of explicitly built meshes. Coarser grids

are determined by a predefined geometric simplification. Restriction and in-

terpolation operators are defined in a manner consistent with the coarsening

of the domain. Often, the coarse level equations correspond to a coarser dis-

cretizations of the initial (continuous) problem. The second group of methods

avoid the geometrical complexities associated with the concurrent handling

of a hierarchy of meshes and builds the multi-grid procedure purely on al-

gebraic concepts. Unlike the geometrical multi-grid, where the hierarchy of

meshes and the prolongation operators are defined from rediscretization, the

algebraic multi-grid (AMG) [95] approach tries to construct the hierarchy of

coarse spaces and the prolongation operators only from matrix data, making

assumptions on the underlying differential equation and its discretization.

While using multi-grid as a solver over classical elliptic PDE problems is

possible, it is most effective as a preconditioner for an iterative solver.
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Chapter 3

Volume Preserving Image

Registration

1 Introduction

Image registration is commonly used in image guided medical applications

such as treatment planing, radiation therapy, surgery planing, and many

more; see, e.g. [58, 108, 78, 35, 98, 77, 34, 73, 43, 42] and references therein.

The goal of image registration is to align two related images by finding a

feasible and plausible transformation. To achieve this goal, mathematical

definitions of the components aligned, feasible, and plausible are required.

Since image registration is an ill-posed and under-determined problem [31,

78], these components are the building blocks of any registration approach.

By choosing them carefully it is possible to dramatically reduce the inherent

non-uniqueness in the problem and obtain reliable results.

Alignment is often quantified by the distance between two images. For

images taken from the same device, the sum of square differences (SSD) is

commonly used [18]. Other, more sophisticated approaches, like mutual in-

formation or normalized gradient fields, are used in the case of multi-modality
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registration; see [80] and references within. In this study, the SSD is cho-

sen as a template for a general distance measure but could be substituted

by any other suitable approach. The definition of feasible and plausible or

reasonable are mostly application dependent. Reasonable transformations

typically have small norm and the choice of an appropriate norm distin-

guishes between different registration techniques. Choosing a criterion for a

reasonable transformation leads to a particular regularization technique. For

example, diffusion [39], elastic [6], and curvature [40] regularizations have all

been used with varying degrees of success [78]. In this study, the commonly

used elastic registration serves as a template for regularization but could

be replaced by any other of the aforementioned regularization operators.

Choosing the set of feasible transformations is also problem dependent. For

example, one may desire to have parts of the image rigid [75, 76, 69, 79, 52]

or maintain a correspondence between so-called landmarks [67, 41, 62]. Nev-

ertheless, an often fundamental requirement in almost all medical imaging

applications is that volumes do not shrink below some application dependent

threshold. Vanishing volumes imply shocks, which are generally non-physical

in medical imaging and therefore should be avoided. In [55], a method that

bounds volume changes has been proposed. That was achieved by constrain-

ing shrinkage/expansion of each individual cell in a discretized formulation of

the problem. The approach led to a large scale highly non-linear inequality

constrained optimization problem, where the number of constraints was at

the same order as the number of unknowns. As the number of unknowns for

practical applications is of the order of millions and even billions, an efficient

numerical scheme becomes mandatory.

The goals of this chapter are as follows. First, the intent is to explore and

develop an efficient optimization technique for the solution of the problem.

In [55], a primal log-barrier (Section 8 in Chapter 2) method has been im-

plemented. Such a method is known to have reliable convergence properties
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but it tends to converge rather slowly [85, 15]. The proposed new approach

is based on an augmented Lagrangian (AL) method; see Section 9, Chapter 2

and [47] and references within for background on the AL method. Second, a

multi-grid method for the linear systems obtained at each iteration of the AL

iteration is developed. This combination of a robust optimization technique

with advanced linear algebra tools leads to a highly effective algorithm that

can tackle large-scale problems, as our numerical results will show.

The chapter is organized as follows. Section 2 presents the mathematical

description of the continuous problem and its associated discretization. Sec-

tion 3 briefly reviews the optimization procedure, the augmented Lagrangian

method, and discusses the adaptation of the algorithm to constrained image

registration. Section 4 presents a multi-grid method for the solution of the

linear system obtained at each step of the optimization course. Section 5

demonstrates the properties of the new approach to clinical data. Finally,

Section 6 summarizes and suggests future research directions.

This study has been published in the Journal of Numerical Linear Algebra

with Applications [53].

2 Mathematical Formulation and Discretiza-

tion

This section states the registration problem as a continuous constrained op-

timization problem and discusses its discretization.

2.1 Continuous Formulation

Let Ω = (0, 1)3 ⊂ R3 be a domain and T,R : Ω → R denote the template

and reference image, respectively. The goal is to compute a displacement

40



u : R3 → R3, such that ideally T (x+u(x)) = R(x) for all x = [x1, x2, x3] ∈ Ω.

More precisely, the distance is measured by the L2-norm (or sum of squared

differences):

D[u] := 1
2
‖T [id + u]−R‖2

L2(Ω) :=
1

2

∫
Ω

(T (x+ u(x))−R(x))2 dx. (3.1)

As outlined in the introduction, D does not have a unique minimizer and the

elastic potential is used for regularization,

S[u] :=
1

2

∫
Ω

θ (∇u : ∇u) + (θ + τ)(div u)2 dx, (3.2)

where (A : B) :=
∑

i,j Ai,jBi,j denotes a matrix inner product, and θ and τ

are the Lamé constants; see [80] for details.

Similar to [55], feasibility of a transformation is constrained by

κm(x) ≤ Cvol[u](x) ≤ κM(x) for all x ∈ Ωκ, Cvol[u] := det(I +∇u),

(3.3)

where the functions κm and κM and the subset Ωκ ⊂ Ω are provided by the

user and are customarily prescribed for a particular application.

In summary, the desired displacement u is a minimizer of the constrained

optimization problem

minD[u] + α S[u] subject to κm ≤ Cvol[u] ≤ κM , (3.4)

where α is a regularization parameter, appropriately chosen to balance the

data-fit and the regularity of the displacement.

Problem (3.4) is a non-trivial constrained optimization problem. The diffi-

culties arise from two sources. First, the constraint is highly non-linear and

involves products of derivatives. For comparison, the well-known Navier-

Stokes equations [36] involve only terms of type uj ∂iu
j, whereas Prob-

lem (3.4) involves complex terms like ∂iu
1 ∂ju

2 ∂ku
3, where i, j, k ∈ {1, 2, 3}.

Second, the size of the discrete 3D optimization problem (3.4) can become
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large. For example, for high resolution images, a proper discretization may

result in millions of unknowns and constraints. As a consequence, no stan-

dard optimization routine can be used and specialized routines are required.

2.2 Discretization

Similar to other optimization problems, which stem from continuous space,

a decision whether to discretize the continuous problem first and then to

optimize or to compute the optimality conditions in functional space and only

then to discretize the problem has to be made. This option is often refered

to as discretize then optimize versus optimize then discretize. Discretize first

then optimize is usually preferable whenever possible, as it leads to simpler

algorithmic treatment of the optimization problem; see [37] for a further

discussion.

The optimization problem (3.4) is discretized using a finite volume ap-

proach. The domain Ω is partitioned into n1×n2×n3 cells of size h1×h2×h3 of

volume h := h1h2h3. This results in a nodal grid of n := (n1+1)(n2+1)(n3+1)

nodal nodes; see Figure 3.1. Full integer vectors i = (i1, i2, i3), ij = 0, ..., nj,

are used for the nodal points and half integers are used for cell centered

points. The displacement is discretized on a nodal grid, where with a lexico-

graphical ordering of the grid points, xi := [x1
i1
, x2

i2
, x3

i3
], xh,k := [xk1, ..., x

k
n] ∈

Rn and uh,k ≈ [uk(x1), ..., uk(xn)] ∈ Rn

xh := [xh,1, xh,2, xh,3] ∈ R3n, and uh := [uh,1, uh,2, uh,3] ∈ R3n.

Similar to other registration algorithms, the images T and R are represented

at cell-centered knots; see [80] for details. Thus, an interpolation operator

Inc is used to represent u on cell-centers. A discretization of D (3.1) based

on this averaging and a midpoint quadrature rule is given by

Dh(uh) := h
2
‖T (Inc (xh + uh))−R(Inc xh)‖2. (3.5)
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The integral of the squared norm of the gradient of the displacement over

a voxel Ωi+ 1
2

is

∫
Ω

i+1
2

(∇u : ∇u) dx =
3∑

j,k=1

∫
Ω

i+1
2

(∂ju
k)2 dx.

Note that
∫

Ω
i+1

2

(∂ju
k)2 dx = h (∂ju

k(xi+ 1
2
))2 + O(h2). Let ej ∈ R3 denote

the jth unit vector. The cell-centered value is approximated by the average

of four finite difference approximations on the edges; see also Figure 3.1:

∂ju
k(xi+ 1

2
) ≈ [∂hj u

h,k]i+ 1
2

:=
1

4

∑
pj=ij , p`∈{i`,i`+1} for `6=j [∂hj u

h,k]p+ 1
2
ej
,

where the second order accurate discrete partial derivative operator ∂hj is

defined by

[∂hj u
h,k]p+ 1

2
ej

:= 1
hj

(uh,kp+ej − u
h,k
p ).

The integral over the domain Ω is obtained by summing the averaged

squares of the finite difference approximations of the derivatives on the edges.

Note that the alternative, i.e. summing the squares of the averaged deriva-

tive approximation yields a non-trivial nullspace and consequently may lead

to instability. In order to find a quadratic form for the discretization, the

following identity is used,

a> [d2
i ]
n
i=1 = a>diag(d) d = diag([aidi]

n
i=1) d = d>diag(a) d = ‖d‖2

a.

Introducing the edge-to-cell-center averaging operators Ae,jc ,

a := [(Ae,1c )>e, (Ae,2c )>e, (Ae,3c )>e], then with e being the vector with all one

entries, the Kronecker-product ⊗ [16], and the discrete gradient (∇h)> :=

I3 ⊗ [(∂h1 )>, (∂h2 )>, (∂h3 )]>, it thus holds that∫
Ω

(∇u : ∇u) dx = h ‖∇huh‖2
a +O(h2).
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Figure 3.1: Left: Voxel Ωi+ 1
2

with cell-center (•) and nodal (�) representa-

tion of uk and approximation of ∂2u
k on edges (N); Right: 2D representation,

nodal points (�), deformed volume (gray), its linear approximation (black

polygon), and the diagonals used to compute its approximated volume (ar-

rows).

The divergence of u is approximated using the same concepts,

div u(xi+ 1
2
) =

3∑
j=1

∂ju
j(xi+ 1

2
) ≈

3∑
j=1

[∂hj u
h,j]i+ 1

2
,

[div u(xi+ 1
2
)]i ≈ divhuh := [Ae,1c ∂h1 ,Ae,2c ∂h2 ,Ae,3c ∂h3 ] uh.

A discretized version of the regularizer is thus given by

Sh(uh) :=
1

2
(uh)>Aregu

h :=
h

2

(
θ‖∇huh‖2

a + (θ + τ)‖divhuh‖2
)
. (3.6)

It remains to discretize the constraint. Note that∫
Ω

i+1
2

Cvol[u](x) dx = h Cvol[u](xi+ 1
2
) +O(h2).

With Ch,vol

i+ 1
2

:= h Cvol[u](xi+ 1
2
) and the cell-centered discretized derivatives

dkj := [Ae,jc ∂hj uh,k]i+ 1
2
, it holds that

Ch,vol

i+ 1
2

= h

∣∣∣∣∣∣∣∣
1 + d1

1 d1
2 d1

3

d2
1 1 + d2

2 d2
3

d3
1 d3

2 1 + d3
3

∣∣∣∣∣∣∣∣ .
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Note that a first order approximation to the determinant is Cvol[εu] ≈ 1 +

ε divu. Thus, it is expected that at least in the first iteration the Jacobian

of the constraint behaves like the divergence operator. This interpretation

plays a key role in the stability analysis of the discretization presented in the

section addressing local Fourier analysis.

3 Optimization

This section describes an optimization approach for the discretized prob-

lem (3.4),

min J(u) := D(u) + α S(u) subject to C(u) ≥ 0, (3.7)

where for ease of presentation the superscript (·)h has been dropped. More-

over, only one of the bound constraints is addressed as the handling of the

upper bound is along the same lines. For ease of presentation, the constraint

has been rephrased: C(u) := Ch,vol(u)− κm.

The goal is to derive a Newton-type scheme. Since the size of this problem is

rather large, employment of inexact solvers for Newton-systems is inevitable.

While inexact Newton type methods are well established for unconstrained

optimization [86, 70], their adaptation to constrained optimization is in its

infancy [19]. Therefore, methods involving unconstrained optimization at

their core are used in this study.

Two such methods as introduced in Chapter 2 are the primal log barrier

method (LB) (Section 8), which was used in [55], and the augmented La-

grangian method (AL) (Section 9), which is practiced in this chapter. The

AL has some well-known advantages over the LB: it tends to converge faster

and to avoid some of the ill-conditioning behavior that is inherited in LB [86];

see also [47] for a recent algorithmic development of AL. As shown in the next

sections, the AL method generates better numerical systems to be solved at
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each iteration and thus allows for more efficient calculation.

3.1 Augmented Lagrangian Method

By introducing a non-negative slack vector s, problem (3.7) is transformed

to

min J(u) := D(u) + αS(u) subject to C(u)− s = 0 and s ≥ 0, (3.8)

which exhibits simpler bound constraints. This enables to handle the inequal-

ity constraints by AL and the slack variable by using an active set method

as described below. Following (2.14), the augmented Lagrangian is given by

L(u, s, p;µ) := J(u)− p>(C(u)− s) +
µ

2
‖C(u)− s‖2.

The AL algorithm divides the problem into a two step decoupled iteration.

In the first step the Lagrange multiplier p and the penalty µ are fixed and

the following is solved (approximately)

minL(u, s; p, µ) subject to s ≥ 0 and p, µ given.

The second step is a point-wise update of p, as in (2.15), and µ:

p← p− µ(C(u)− s) and µ← γµ, (3.9)

where γ > 1 is a moderate constant, e.g. γ = 1.1. The main advantage of

the AL method over a LB method is that the parameter µ is substantially

smaller. As shown next, this has a positive effect on the solution of the linear

system solved at each iteration. Obviously, the computationally challenging

part is the minimization on the Lagrangian, which is described in the next

section.
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3.2 Minimization of the Augmented Lagrangian

Various methods can be used for the minimization of the augmented La-

grangian. Since the slack variables have simple bound constraints, a modified

version of the projected Newton method as suggested in [74] is used. The

method is an active set method and involves two steps. The first step takes a

projected steepest descent direction to identify the active set. In the second

step, an inexact Newton method is used for the non-active set.

Given the initial guesses for u and s, the first stage of a projected Newton

scheme updates the variables by a projected gradient

u← u− t ∇uL and s← P(s− t ∇sL), (3.10)

where t is chosen such that the AL decreases and P is a projection to the

non-negative cone,

P(x) = [max{xi, 0}]ni=1,

∇uL = ∇J +∇C>(µ(C − s)− p), (3.11)

∇sL = p− µ(C − s). (3.12)

Let I denote the set of inactive constraints and A denote the set of ac-

tive constraints. The next stage is to set sA := 0 and to take an inexact

Newton-like step for an update of sI and u. In particular, a Gauss-Newton

approximation to the Hessian of J is used

∇2J ≈ A := ∇2
GND + α∇2S,

where ∇2
GND denotes a Gauss-Newton type approximation to the Hessian

of the distance measure [55]. Note that only the second derivative of the

data fitting component is approximated but the regularization component is

exact. The Gauss-Newton system for the augmented Lagrangian thus reads(
A+ µ∇C>∇C −µ∇C>P>

−µP∇C µI

)(
δu

δsI

)
=

(
∇uL

P∇sL

)
,
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where P is a sub-matrix of the identity matrix such that sI = Ps.

To invert the system δsI is eliminated,

δsI = 1
µ
P∇sL+ P∇Cδu, (3.13)

obtaining the system

H(µ) δu = g, (3.14)

with

H(µ) := A+ µ∇C>(I − PP>)∇C,

g := ∇uL+∇C>P>P∇sL.

Note that I−PP> is a diagonal matrix with zero diagonal entries for the in-

active indices I and ones for the active indices A. The matrix A is symmetric

positive semi-definite with a small null space due to the boundary conditions,

the matrix ∇C>(I−PP>)∇C is also symmetric positive semi-definite. How-

ever, our experience shows that for all practical cases, the resulted matrix

H(µ) is symmetric positive definite.

Algorithm 4 summarizes these steps.

Algorithm 4: AL for constrained image registration: u← ALIR.

for ` = 1, 2, . . . do
Compute the gradients ∇uL (cf. (3.11)) and ∇sL (cf. (3.12)).

Update u and s using (3.10).

Determine the inactive set I and the active set A, such that

sA = 0.

Solve the system (3.14) for δu and compute δsI using (3.13).

Update u← u+ δu and s← s+ δs.

Update the Lagrange multipliers p and the penalty µ using (3.9).

Obviously, the bulk of the work in Algorithm 4 is done in the fourth step,

where the symmetric positive definite system (3.14) has to be solved. The

next section presents a multi-grid method for the solution of this system.
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4 Multi-grid Solver

Each iteration of the AL needs to solve the linear system (3.14). Here, a

conjugate gradient (CG) algorithm with a V-cycle multi-grid [101] as pre-

conditioner is used. This combination of a multi-grid preconditioned CG has

several attractive attributes, including linear complexity and robustness.

For classical multi-grid methods to be efficient, the linear system is required

to have special properties. In particular and as discussed in the next section,

h-ellipticity is required. Multi-grid methods have three main components

which are described subsequently: a smoother, restriction and prolongation

operators, and a coarse grid solver ; see also [101] for details.

4.1 Smoother

For a generic elliptic equation, iterative procedures such as Gauss-Seidel or

Jacobi are typically used. However, for systems of PDE’s, the coupling of

the different components has to be taken into consideration [101].

Since system (3.14) is a tightly coupled system of PDE’s for [δu1, δu2, δu3],

experiments with two different smoothers are performed. First, a simple

block Jacobi smoother coupling the unknowns at each node is used. Thus, a

cycle through all nodes on the computational grid is performed, where on each

node an associated 3-by-3 system is solved. Second, a Vanka type smoother

[103] is used. Here, a cell Ωi+ 1
2

and the eight associated nodes are considered.

This yields systems of 24 unknowns to be solved for each of the cells. A

classical Vanka smoother proceeds in a Gauss-Seidel fashion, i.e. using the

updated values for the computations on a next cell. This sequential nature of

the Vanka smoother is a drawback for parallel algorithms. Thus, we suggest a

new variant of the Vanka smoother. The idea is to use an eight color labeling

of the cells, where cells of one color are not direct neighbors; see Figure 3.2.

A reordering of the unknowns according to these colors yields a linear system
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with uncoupled blocks consisting of 24 unknowns each; an exemplarily plot

of the non-zero elements of the original and reordered Hessian is shown in

Figure 3.2. The reordered sparse Hessian system is solved using a block-

Jacobi iteration. This reordering leads to locally strongly coupled blocks of

unknowns which are relaxed simultaneously. While the Vanka smoother is

roughly 8 times more expensive than the nodal block Jacobi smoother, it

takes more of the coupling into consideration and is hence a more efficient

smoother.

4.2 Prolongation and Restriction Operators

Other components of a multi-grid scheme include the prolongation and re-

striction operators. Here, a full weighted operator [101] is used for restriction

and its adjoint for prolongation.

4.3 Coarse Grid Solver

Similar to many other approaches [10], the coarse grid discretization may

not result in a small linear system. For example, even if the coarsest mesh

consists of only 163 cells, the number of unknowns is already about 15, 000.

Thus, an exact solution of the coarse problem may be too costly. Therefore, a

conjugate gradient method [63] with symmetric Gauss-Seidel preconditioning

is used to compute an approximated solution on the coarsest mesh. However,

it is important to choose a small tolerance for the approximate solution on

the coarsest mesh; here tol = 10−9 is chosen.

4.4 Discretization Properties

This subsection provides a local Fourier analysis (LFA) and an h-ellipticity

analysis of the system (3.14). For ease of presentation, the analysis is for
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Figure 3.2: Top-Left: the eight colors of a mesh. Top-Right: Original

Hessian. Bottom: Zoom-in of reordered block diagonal Hessian.
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spatial dimension of two, assuming h := h1 = h2. To simplify the LFA fur-

ther, it is assumed that I − PP> = I and ∇2
GND = 0, which is a worst case

scenario, as adding a semi-positive definite matrix improves the spectrum.

The discrete operators are locally linearized and by freezing coefficients of

∇C>(I − PP>)∇C, the operator can be considered as having constant co-

efficients. Finally, the operators are assumed to be defined on an infinite

grid.

Introducing the shortcuts ν := hαθ/2 and ξ := hα(θ + η)/2, the discrete

operator under consideration is

H0 = ν∆h + ξdivh
>

divh + µ∇C>∇C,

with

∆h ∼
(

∆ 0

0 ∆

)
, divh

>
divh ∼

(
∂1∂1 ∂1∂2

∂2∂1 ∂2∂2

)
∇C>∇C ∼

(
(α1∂1 + α2∂2)2 (α1∂1 + α2∂2)(α3∂1 + α4∂2)

(α3∂1 + α4∂2)(α1∂1 + α2∂2) (α3∂1 + α4∂2)2

)
,

where αj are constants arising from the linearization.

The stencils for the discrete operators are

∆ ∼

 0 −1 0

−1 4 −1

0 −1 0

 /h2, ∂1∂1 = (∂2∂2)> ∼

−2 4 −2

−4 8 −4

−2 4 −2

 /h2,

∂1∂2 ∼

−1 0 1

0 0 0

1 0 −1

 /h2.

The fundamental quantities in LFA are the grid functions

ϕ(σ, x) = eiσ
>x/h = eiσ1x1/heiσ2x2/h,

where i denotes the imaginary unit, x a spatial position, σ ∈ Σ2 a frequency,

and Σ := [−π, π) the continuous frequency interval, which is partitioned into
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low and high frequencies:

Σlow := [−π
2
, π

2
) and Σhigh := Σ\Σlow.

Appling the discretized operators to ϕ yields the following symbols

F [∆h] = 2− cosσ1 − cosσ2,

F [∂h1∂
h
1 ] = (2− 2 cosσ1)(2 + 2 cosσ2),

F [∂h2∂
h
2 ] = (2 + 2 cosσ1)(2− 2 cosσ2),

F [∂h1∂
h
2 ] = 4 sinσ1 sinσ2.

These intermediates are used to compute the h-ellipticity of H0, which

provides a qualitative criterion for the existence of local smoothers for a

given discrete operator and is thus directly related to the definition of the

smoothing factor; see [101] for details. The h-ellipticity of a discrete operator

H is defined via the Fourier-symbol Ĥ := F [H] of H:

Eh(H) :=
min{|detĤ(σ)| : σ ∈ Σhigh}

max{|detĤ(σ)| : σ ∈ Σ}
.

The h-ellipticity values for H0 are summarized in Table 3.1, where all coef-

ficients and the Lamé constants are set to one, such that all components have

equal weight. The penalty parameter µ varies between h2k, k = 1, 0,−1,−2.

Table 3.1: Numerical h-ellipticity values for different grid sizes.

grid size µ = h2 µ = 1 µ = 1/h2 µ = 1/h4

8× 8 0.26 0.27 0.05 7.8 ·10−4

16× 16 0.26 0.27 0.05 2.0 ·10−4

32× 32 0.26 0.26 0.05 4.9 ·10−5

64× 64 0.26 0.26 0.05 1.2 ·10−5
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Table 3.1 clearly shows that as long as µ maintains moderate values the

discretization is highly h-elliptic and reasonable convergence rates for the

multi-grid solver are to be expected. However, for large values of µ the

h-ellipticity is close to zero and any multi-grid method is expected to be

inefficient. One reason for this problem is related to the null-space of the

linearized constraint, which has a high frequency checkerboard pattern. At

the limit µ → ∞, for which the matrix ∇C>∇C dominates the Hessian,

the h-ellipticity of the system is expected to deteriorate. This comes as no

surprise: similar discretizations of the Navier-Stokes problem suffer from the

very same short-comings; see [101].

To summarize, just as in similar applications, the Hessian is sufficiently

h-elliptic for moderate choices of µ. The use of an AL technique is highly

beneficial from a linear algebra perspective, since µ can be chosen as a mod-

erate constant. Choosing µ = O(1) yields an efficient multi-grid convergence

rate. In contrast, in the log-barrier method very similar linear systems are

to be solved, where now µ→∞ is required and thus, convergence problems

may be anticipated.

5 Numerical Results

In this section we test the performance of our algorithm. To begin with, two

different components are tested. The first test assesses the performance and

behavior of the AL method for a model problem but discretized using differ-

ent mesh sizes and different multi-grid solvers. The second test quantifies the

multi-grid solver and its efficiency for different mesh sizes. The model prob-

lem was chosen to be the registration of two 3D SPECT images of a swine’s

heart at different phases of the cardiac cycle. The first image is taken at

the systolic stage (hereafter the template image) whereas the second image
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is taken at the diastolic stage (reference image), see Figure 3.3. The data

was provided by Tracy Faber from the department of Radiology at Emory

University, as part of a controled experiment aimed to evaluate the heart’s

motion during the cardiac cycle. This problem is particularly challenging

since the motion from systole to diastole is highly non-linear.

For this application, the extent to which the volume of the heart in the

systolic phase is allowed to shrink compared to its diastolic volume is κm =

0.5. This value is based on the physiological properties of the cardiac muscle

[38]. As there is a clear trend in volumetric change (shrinkage from the

diastolic to the systolic stage), the upper bound κM is made inactive and is

thus not specified. As mentioned earlier, this bound can be treated in similar

manner as the lower bound κm, when justified by physiological or physical

considerations.

Optimal performance of an algorithm is measured by means of mesh in-

dependence. This implies that if each iteration is of linear complexity with

respect to the number of unknowns, then the overall algorithm is optimal,

i.e. linear with respect to the problem size.

In the first example, the finest grid is 96 × 96 × 80 and the grid sizes

vary from 24 × 24 × 20 via 48 × 48 × 40 to 96 × 96 × 80. The initial value

for the penalty parameter is µ = 2
h1h2h3

, and it is increased by a factor of

1.1 at each AL iteration. Figure 3.3 presents the transformed template for

grid dimensions of 48 × 48 × 40 and the difference image. The transformed

template visually resembles the reference image to a good extent.

A quantitative evaluation of the difference between the reference and the

template compared to the reference and the transformed template are dis-

played in Figure 3.4 left and right respectively. Table 3.2 records the number

of AL iterations required for convergence over different grid sizes. As can

be seen from this table, the AL algorithm is almost optimal: although the
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Figure 3.3: 2D slices of 3D SPECT images of the heart, during systolic and

diastolic phases. Top left: template image during systolic phase, top right:

reference image during the diastolic phase, bottom: Transformed template

image.
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Figure 3.4: Left: difference between the template and the reference image;

Right: difference between the transformed template and the reference image

number of variables increase by a factor of 8 between different grid sizes, only

a few number of non-linear iterations are needed to achieve convergence.

Table 3.2: Number of AL iterations required for convergence for different

grid sizes.

Grid Size AL iterations

24× 24× 20 10

48× 48× 40 11

96× 96× 80 14

Another interesting feature of the proposed algorithm is the automatic

identification of the active set, the region in which equality for the constraints

holds. Note that if the active set is empty, the unconstrained problem is

solved. Figure 3.5 visualizes the Jacobian of the transformation. As it

turns out, there are quite a few voxels for which the lower bound of the
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volume is attained. These voxels correspond to the active set at the end

of the optimization process. The number of active constraints during the

optimization process is recorded in Table 3.3. Though the active set is rather

small, it is concentrated in the region of interest, i.e. where most of the

deformation occurs. Such an observation can typically be inspected from an

image of the Lagrange multipliers.

Figure 3.5: Volume changes of the discrete transformation (Jacobian).

Finally, the deformed grid is presented in Figure 3.6 and provides an inde-

pendent insight into properties of the transformation. Similar to the Jacobian

as shown in Figure 3.5, a general impression regarding the changes each vol-

ume is undergoing is visible. In addition, these images can provide a valuable

tool to confirm the regularity of a transformation and assure that no fold-

ing or twisting occurs. Note that for most or even all medical applications,

folding or twisting of tissue is considered to be unacceptable.
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Table 3.3: The size of the active set (in voxel and percentage) at each AL

iteration, for grids of different dimensions, using an eight colored Vanka-type

smoother.

AL iteration
Grid 24× 24× 20 Grid 48× 48× 40 Grid 96× 96× 80

(out of 11520) (out of 92160) (out of 737280)

1 166 (1.4%) 3696 (4.0%) 29701 (4.0%)

2 185 (1.6%) 2377 (2.6%) 20359 (2.8%)

3 245 (2.1%) 2782 (3.0%) 23681 (3.2%)

4 296 (2.6%) 2456 (2.7%) 21860 (3.0%)

5 320 (2.8%) 2831 (3.1%) 24255 (3.3%)

6 272 (2.4%) 2465 (2.7%) 20268 (2.7%)

7 312 (2.7%) 2793 (3.0%) 22575 (3.1%)

8 290 (2.5%) 2644 (2.9%) 23539 (3.2%)

9 315 (2.7%) 2767 (3.0%) 23038 (3.1%)

10 286 (2.5%) 2832 (3.1%) 23824 (3.2%)

11 2732 (3.0%) 23840 (3.2%)

12 23593 (3.2%)

13 23876 (3.2%)

14 23881 (3.2%)
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Figure 3.6: 2D slices of the transformation grid (ordered: left to right, top

to bottom), with 2h spacing
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Although the number of AL iterations is almost mesh independent, the

overall algorithm is only optimal if the linear solver has linear complexity.

Thus, the convergence rate of the multi-grid preconditioner is of particular

importance and thus, it is tested during different phases of the optimization

process using two different smoothers: a block nodal Jacobi and a Vanka

smoother. The performance of PCG solver with the multi-grid preconditioner

and the different smoothers is presented in Table 3.4. The performance is

compared for the first iteration (no active set), an iteration in the midst of

the optimization process, and the last iteration of the process. It is important

to note that the emphasis was given to the algorithmic framework and its

scalability, rather than optimizing code efficiency. Thus, iteration count,

which should be platform and coding language independent, where compared.

Table 3.4: Comparison of numbers of PCG iterations required for converge

to the tolerance of 10−3 at 1st, 6th and last iteration of the AL algorithm: dif-

ferent grid sizes, V-cycle multi-grid preconditioner with different smoothers.

eight colored Vanka-type smoother

Grid Size 1st AL iteration 6th AL iteration Last AL iteration

24× 24× 20 4 7 9

48× 48× 40 4 8 10

96× 96× 80 5 11 16

nodal Jacobi smoother

Grid Size 1st AL iteration 6th AL iteration Last AL iteration

24× 24× 20 6 22 25

48× 48× 40 6 24 33

96× 96× 80 7 25 40

Table 3.4 shows that, as expected, classic mesh independence behavior is
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observable for the first iteration, while the mesh independency is mildly de-

teriorated for the final iterations. This latter observation can be explained

as follows. The contribution from the active set in the Hessian has the form

∇C>W∇C, where W is a diagonal matrix with Boolean diagonal entries.

In the above simplified Fourier analysis, freezing coefficients are considered.

Analogously to many other multi-grid methods, convergence deteriorates

when the coefficient matrix W is not smooth or varies substantially [101].

Methods such as operator induced prolongation and restriction are needed in

order to avoid these phenomena and to obtain a perfectly scalable method.

The proposed scheme avoids the use of such prolongations as these techniques

are inheritably more expansive and the deterioration of the proposed scheme

is only mild. In Chapter 4, we consider the case where the coefficient matrix

is not smooth. In this case, algebraic multi-grid method is considered.

6 Summary

A novel and efficient framework for 3D volume constrained image registra-

tion is proposed. The new framework is based on an augmented Lagrangian

formulation of the inverse problem utilizing a multi-grid preconditioned con-

jugate gradients solver for the reduced system. The proposed formulation

included two smoothing strategies. Both strategies rely on local coupling of

the unknowns. These strategies are particularly favorable for parallel im-

plementation, as they entail a block diagonal structure. One may consider

three levels of parallelization of the aforementioned Vanka smoother: each

color designates a block diagonal matrix of the size (grid size (n) / number

of colors (8)), and thereby accommodate the running of 8 parallel matrix in-

versions. Since within each color-based block diagonal sub matrix, one may

further consider an inner division of block diagonal matrices of the size of

24× 24, each of these smaller matrices can be processed in parallel. Lastly,
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for large-parallel systems the combination of the two options can be sought.

Comparisons of the number of outer iterations for two smoothers (eight

colored Vanka and nodal Jacobi) show similar mesh independent behavior.

However, in terms of inner iterations, the eight colored Vanka method turns

out to be substantially more effective. These results are theoretically plausi-

ble, because in the eight colored Vanka smoother the inner nodes are relaxed

eight times, compared with a single relaxation in the nodal Jacobi approach.

Various numerical experiments with SPECT data have been conducted.

As the results for other tests give similar numerical results, these are not

included in the chapter. From an optimization perspective, the augmented

Lagrangian formulation weighs the constraints moderately within the first

few iterations by maintaining the augmentation parameter µ relatively small.

This leaves greater freedom to align the template to the reference image. As

the algorithm advances in terms of iterations, µ increases, which of course

puts more focus on the the volume constraints.

From a medical imaging perspective, the transformed template image closely

resembles the reference, indicating a good correspondence. Moreover, by sat-

isfying the volume change constraints on the transformation a meaningful

solution is generated automatically.
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Chapter 4

Mass Preserving Image

Registration

1 Introduction

The optimal mass transport problem is of cardinal importance in science and

engineering. Applications include econometrics, fluid dynamics, automatic

control, transportation, statistical physics, shape optimization, expert sys-

tems, and meteorology [91, 105]. The problem was first formulated by the

civil engineer Gaspar Monge in 1781, and is concerned with finding an opti-

mal way, in the sense of minimal transportation cost, of moving a pile of soil

from one site to another. Much later the problem was extensively analyzed

by Leonid Kantorovich [68], and is now known as the Monge–Kantorovich

problem.

There are several formulations of the problem [1, 91, 105] of varying de-

grees of generality. We recall here the formulation of the Monge–Kantorovich

problem for smooth densities and domains in a Euclidean space. For more

general measures, see [1]. Let Ω0 and Ω1 be two diffeomorphic connected sub-

domains in Rd, and let T and R be Borel measures [90] on Ω0 and Ω1, each
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with a strictly positive density function T (x) ≥ T 0
low > 0 and R1 ≥ R1

low > 0,

respectively. Assume ∫
Ω0

T (x)dx =

∫
Ω1

R(x)dx,

so that the same total mass is associated with Ω0 and Ω1.

Under some mild assumptions, the Monge-Kantorovich problem may be

expressed as follows:

min M(u) :=
1

p

∫
Ω

T (x)|u(x)|p dx (4.1a)

s.t. c(u) = det(Id +∇u)T (x+ u(x))−R(x) = 0, (4.1b)

where u is a C1,α diffeomorphism from Ω0 → Ω1. The constraint c(u) = 0

(the Jacobian equation) is often referred to as the mass preserving (MP)

property. Here, we consider the classical case of p = 2 as well as 1 ≤ p ≤ 2

and attempt to address the limiting case of p = 1. Note, the constraint in

this problem bares a great resemblance to the one introduced in the volume

preserving image registration chapter (Chapter 3).

Even with a simple, quadratic distance function, the problem (4.1) is re-

garded as a highly non-linear equality constrained optimization problem.

Extensive analysis as to the existence, uniqueness, and properties of the so-

lution is available (see for example [1, 32, 105] and the references therein).

However, while a large body of literature deals with the analysis of the prob-

lem, surprisingly a relatively small number of papers are concerned with

finding solutions for the problem, and even a smaller number of publications

deal with devising efficient numerical solutions for this challenging problem

[2, 9, 22, 27, 28, 100, 87].

Generally speaking, numerical methods for the solution of the problem can

be divided into three approaches. In the first approach, for the case p = 2,

one prescribes the transformation u to honor the property u = ∇Ψ where

Ψ is a concave function and thereby solves the Monge-Ampère equation [29,

65



88]. The second approach attempts to tackle the constrained optimization

problem head-on, for example see [100].

A third approach for the solution of the problem, which serves as a starting

point for this study, was proposed in the seminal paper of Benamou and

Brenier [9]. Their research reconstructs an optimal path from T to R by

solving a convex optimization problem with a linear space-time transport

partial differential equation as a constraint. Their approach is particularly

useful whenever a transportation path is needed. Its disadvantage is that it

increases the dimensionality of the problem by recasting the problem as a

space-time control problem. In the original work of Benamou and Brenier

näıve discretization and an augmented Lagrangian method were practiced for

the solution of the problem. While reproducing the results of the paper we

have observed some stability issues as well as deterioration of the algorithm

for large-scale problems. Nonetheless, the Benamou and Brenier method

replaces a generally non-convex problem with a convex one and further avoids

some other intricacies such as boundary conditions and difficulties when the

density contrasts are large. In fact, for the latter case all algorithms known

to us have failed when the density contrast exceeded a value of 50.

The goal of this study is to develop a numerical solution framework, based

upon the Benamou-Brenier fluid dynamics formulation. We require this algo-

rithm to be fast and efficient, capable of resolving problems comprising large

density contrast, and lastly, we aim at the design of a generic formulation,

for which alternative cost functionals can be readily incorporated, such as in

[94].

The chapter is structured as follows. In Section 2 we reformulate the prob-

lem by following the Benamou and Brenier derivation and present its exten-

sion to more general Lp functionals. In Section 3 we introduce conservative

discretization of the problem. In Section 4 we layout the optimization algo-

rithm and the linear solver used to solve the optimization problem and the
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linear systems that arise. In Section 5 we conduct a few numerical experi-

ments and finally, in Section 6 we summarize the study.

2 Problem Reformulation

Let us consider the time interval t ∈ [0, 1]. The idea of Benamou-Brenier

was to replace the non-convex problem (4.1) with a convex PDE constrained

optimization problem

min

∫ 1

t=0

∫
Ω

ρ(x, t)|v(x, t)|2 dx dt (4.2a)

s.t.
∂ρ

∂t
+ div(ρv) = 0 (4.2b)

ρ(x, 0) = T (x) ρ(x, 1) = R(x) (4.2c)

Here, v(x, t) is the velocity and ρ(x, t) > 0 is the density. This formulation es-

sentially describes the transport evolution of the mass density distribution T

to the distribution R, where minimal energy is invested, while the mass obeys

a mass-preserving PDE. The above problem falls into the PDE constrained

optimization problems category. Generic solutions for this family of prob-

lems were recently presented in the literature (see for example, [11, 14, 37]

and references within). In the context of PDE optimization problems the

density, ρ, is the state and the velocity, v, is the control. One then minimizes

the objective function subject to fulfilment of the PDE constraints. This

formulation is similar to the one solved in [14].

While conventional PDE optimization methods can be used here, there are

some obvious limitations to their use. The main limitation is related to the

underlying assumption that given the controls, v, the PDE can be solved

independently from the optimization problem. For the problem described

in equation (4.2) this is not the case. Note that there are no boundary

conditions (BC) for ρ in the PDE and thus one cannot solve for ρ even if v is
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known. Although it is possible to fabricate boundary conditions (and this has

been done), such boundary conditions can bring disastrous effects upon the

reconstruction. For example, the use of some inflow and outflow BC strongly

biases v, similarly, periodic BCs are non-physical. As we see next, BCs for ρ

are actually not needed in order to solve the problem. In fact, resolving the

boundary conditions is an integral part of the optimization problem. To see

that, we continue and follow the Benamou-Brenier formulation by setting the

momentum m = ρv and replacing equation (4.2) with a convex optimization

problem

min f(m, ρ) =

∫ 1

t=0

∫
Ω

|m(x, t)|2

ρ(x, t)
dx dt (4.3a)

s.t. c(m, ρ) =
∂ρ

∂t
+ div m = 0 (4.3b)

ρ(x, 0) = T ρ(x, 1) = R. (4.3c)

It is interesting to note that the above problem has the same structure as

of the mixed form of non-linear flow in porous media [84]. This becomes ap-

parent by setting w = (m, ρ)> = (m1, . . . ,md, ρ)>, where d is the dimension

of the problem, and rewriting the problem as

min f(w)

s.t. ∇st · w = 0

w(x, 0) = T (x), w(x, 1) = R(x)

where ∇st· is a space-time divergence. If we treat time as a spatial dimension

then the MK problem and non-linear flow in porous media have the exact

same general variational form (see [8, 84]). Furthermore, it is well-known

that such problems are well-posed as long as f is smooth and convex even

in the absence of boundary conditions for wd+1 = ρ. As we shall see later,

the lack of BC for ρ leads to BC for the Lagrange multipliers. To illustrate
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this notion for the simplest case, let f(w) =
∫

Ω
|w|2 dx. For this objective,

a classical result yields the mixed form of the Poisson equation [17]. Thus,

we see that the optimization problem at hand is nothing but a non-linear

Poisson-like equation.

This similarity to the mixed form of flow in porous media motivates our

research here. A large body of literature and highly efficient algorithms have

been developed for such problems (e.g. [66, 82] and many others). It is merely

sensible on our behalf to put this techniques into a good use. Understand-

ing this similarity also helps in developing robust and stable discretization,

in choosing efficient optimization algorithms, as well as indicating efficient

solvers for the linear systems. We address each of these components sepa-

rately in the following sections.

The above formulation allows us to easily consider alternative convex func-

tionals. For example, we may consider the function |v|pρ(x), which lends

itself to the energy functional

|v(x, t)|p

ρ(x, t)
=
|m(x, t)|p

ρ(x, t)p−1
. (4.4)

This functional is strictly convex for 1 < p ≤ 2. Interestingly, for the case

p = 1 we obtain that the energy is reduced to |m|. It is possible to verify

that the optimization problem in this case is not well-posed [32]. This indeed

corresponds to ill-posedness of the original MK problem for the L1 case.

Nonetheless, in our numerical tests we shall investigate the use of a sequence

of p’s that converges to p = 1 as a possible approach to computing the L1

solution, assuming it exists.

3 Discretization

It is important to note that the discretization of optimization problems con-

sisting of differential constraints may not be straightforward. In fact, insta-
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Figure 4.1: A box and the staggered grid in space-time. ρ is discretized

at the beginning and end of each time interval and m is discretized on a

staggered grid in space

bilities may arise if näıve discretization techniques are used. This topic has

been studied extensively for the Stokes’ problem and for flow in porous media

(see for example [17, 101] and references within). To obtain stable discretiza-

tions using finite difference or finite volume, h-ellipticity criterion needs to

be met. For finite element discretization the Ladysenskaja, Babuska, Brezzi

(LBB) conditions need to be fulfilled [17]. Thus, special attention must be

given to maintain stability in such problems.

Here we propose to use a finite volume approach in space-time. For sim-

plicity of the discussion we describe the discretization in 2D and time. The

extension to 3D is straightforward and will be experimented and evaluated in

Section 5. We discretize space-time using n1× n2× n3 rectangular cells. For

simplicity we assume uniform spacing h, yet, this can be easily generalized.

Consider the (i, j, k) box in space time, Ωijk. By integrating the constraint

over Ωijk and using the Gauss theorem along with the midpoint integration

70



rule we obtain

h−3

∫
Ωijk

∂ρ

∂t
+ divmdxdt = h−3

∫
Sijk

(
∂ρ

∂t
+ divm) · n dS =

h−1

(
(m

i+
1
2
,j,k

1 −m
i−1

2
,j,k

1 ) + (m
i,j+

1
2
,k

2 −m
i,j−1

2
,k

2 ) + (ρi,j,k+
1
2 − ρi,j,k−

1
2 )

)
+ O(h2).

This suggests a staggered grid discretization for the variables m1,m2 and ρ.

Indeed, it is well known that a natural compact discretization of the diver-

gence is staggered for problems such as fluid dynamics, mixed formulation of

the Poisson equation and Maxwell’s equations. Thus, we discretize m1 at the

points (i+ 1
2
, j, k), m2 at (i, j+ 1

2
, k) and ρ at (i, j, k+ 1

2
) with i, j, k = 0, . . . n.

It is important to highlight that the use of a non-staggered grid for the dis-

cretization of the divergence may incur instabilities that manifest themselves

due to the null space of the resulting system [101]. Also, note that the stag-

gered discretization does not require boundary conditions for either m or ρ.

This is an innate property of the problem at hand.

Finally, discretizing T and R and defining the vector

q = h−1

(
T>, 0, . . . , 0︸ ︷︷ ︸

n1n2(n3−1)

, R>
)>

we obtain a compact discretization of the constraint

D1m1 +D2m2 +D3ρ = q (4.5)

where Dj are derivative matrices in x, y and t directions.

In order to discretize the objective function we use a combination of the

midpoint and the trapezoidal methods. It is straightforward to verify that

for sufficiently smooth m and ρ we have∫
Ωijk

|m|2

ρ
dx dt = h3 (m

i+
1
2
,j,k

1 )2 + (m
i−1

2
,j,k

1 )2 + (m
i,j+

1
2
,k

2 )2 + (m
i,j−1

2
,k

2 )2

4ρi,j,k−
1
2

+
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h3 (m
i+

1
2
,j,k

1 )2 + (m
i−1

2
,j,k

1 )2 + (m
i,j+

1
2
,k

2 )2 + (m
i,j−1

2
,k

2 )2

4ρi,j,k+
1
2

+O(h2)

We can write the objective in a matrix form as∫
Ω

|m|2

ρ
dx dt = h3

{
A1(m1)2 + A2(m2)2

A+
t ρ

+
A1(m1)2 + A2(m2)2

A−t ρ

}
(4.6)

+O(h2)

where A1, A2 are averaging matrices for the x and y directions and A±t chooses

the appropriate ρ on each side of the space-time cube. In our notation, the

expressions m2 and 1/ρ are applied point-wise. This expression can also be

written as ∫
Ω

|m|2

ρ
dx dt = h3(Asm

2)At(
1

ρ
) +O(h2) (4.7)

where As = [A1, A2] and At are averaging matrices in space and time with

respect to the vectors m = [m1,m2] and ρ.

Note that since we use a staggered grid, averaging is required for evalua-

tion of the objective function, which is defined point-wise. Averaging can

introduce instabilities into the discretization unless performed appropriately.

Here we first square then average and first divide then average. These are

crucial steps in obtaining stable discretization. For example, this guarantees

that f(m, ρ)→∞ as ρ→ 0. This property is particularly important for the

avoidance from obtaining non-physical negative densities.

4 Optimization

In this section we shortly describe the constrained optimization framework

for the discrete problem

min f(m, ρ) = h3(Asm
2)At

(
1

ρ

)
s.t. C(m, ρ) := D

[
m>; ρ>

]> − q = 0
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We use a Newton-type scheme for the solution of this constrained optimiza-

tion problem. Such methods enjoy the advantage of being mesh independent

[106], that is, the number of iterations needed for convergence are indepen-

dent of the mesh. When such methods are combined with an appropriate

multi-grid solver for the linear system one can obtain linear complexity con-

vergence.

Since we consider large-scale 3D and 4D space-time problems, the use of

inexact Newton solvers is inevitable. In particular, we consider the sequen-

tial quadratic programming (SQP) method for the solution of the problem,

with inexact step computation of the linearized system. We can write the

Lagrangian of the problem

L(m, ρ) = (Asm
2)At

(
1

ρ

)
+ λ>(D

[
m>; ρ>

]> − q)
where λ is a vector of Lagrange multipliers. From here it follows that the

first order necessary conditions are

∇mL = 2MA>s At

(
1

ρ

)
+ (D1, D2)>λ = 0 (4.8a)

∇ρL = −KA>t As(m2) +D>3 λ = 0 (4.8b)

∇λL = D
[
m>; ρ>

]> − q = 0 (4.8c)

where M := diag(m), K := diag( 1
ρ2

).

In principle, this non-linear system of equations for m, ρ and λ can be solved

by using Newton’s method. However, since the mixed second derivative of

the objective function introduces negative terms in the Hessian, a Gauss-

Newton approximation to the Hessian of the objective is therefore sought

[51].

The saddle point system which is solved inexactly at each SQP iteration

can be written as (
Â D>

D 0

)(
δw

δλ

)
= −

(
∇wL
∇λL

)
, (4.9)
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where Â := ∇̂2L is a symmetric positive definite approximation of the Hes-

sian of the objective function

Â =

(
2diag(A>s At(

1
ρ
)) 0

0 2diag(A>t As(m
2))diag( 1

ρ3
)

)
.

The saddle point system is symmetric and indefinite [10]. It is also ill-

conditioned, large and sparse. We shall explore two solution approaches. In

the first approach, we solve the above system inexactly using preconditioned

GMRES [97] to obtain an update for the variables

w ← w + αδw (4.10)

λ ← λ+ αδλ (4.11)

where α is determined by a line search.

Inexactness in the solution of the linear system can be incorporated into

the SQP framework using a similar method to the one proposed in [19].

We determine our stopping criteria for GMRES based on a so-called filter

[46], and terminate the linear iterations whenever the step is accepted by

the filter. Thus, the GMRES solver has two stopping criteria and both have

to be fulfilled in order to stop the iteration. First, the prescribed tolerance

is achieved and second, the solution is accepted by the filter. Only if both

criteria are fulfilled is the iteration stopped; for further details see Chapter

5.

Since the saddle point system (4.9) is ill-conditioned, the use of a suitable

preconditioner is essential. We consider a preconditioner based on the Schur

complement (see [10] and references within)(
Â D>

0 S

)(
δw

δλ

)
= −

(
∇wL

∇λL+DÂ−1∇wL

)
,
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where S = −D>Â−1D is the Schur complement of the system. Using this

preconditioner, preconditioned GMRES iterations converge within three it-

erations in exact arithmetic [10]. The difficulty lies in inverting the Schur

complement.

We should notice that since Â is a diagonal matrix, its inverse can be triv-

ially computed. Moreover, the Schur complement is a generalized Laplacian

in space-time of the form∇st · σ(∇st· )∗ with coefficients σ = diag(Â−1) which

depends only on ρ and m2. Therefore, the Schur complement is suitable for

multi-grid methods. Since we consider models of high density contrast, we

should pursue a multi-grid algorithm that can account for jumping coeffi-

cients. In our algorithm we applied a single V-cycle of a Ruge-Stüben style

algebraic multi-grid algorithm [95] for the solution of the Schur complement

part of the preconditioner.

While the above approach grants optimal complexity in theory it may be

slow in practice. This is due to the large setup time and memory requirements

of algebraic multi-grid methods. A simpler approach that is not optimal but

can converge quickly for smaller mesh sizes is to solve the system (4.9) by

elimination. We first eliminate δw, and obtain a symmetric positive definite

system for δλ

− Sδλ = ∇λL −DÂ−1∇wL (4.12)

which is solved by the conjugated gradients (CG) method with a Symmetric

Gauss-Seidel preconditioner. We then compute the update for w by

δw = −Â−1(D>δλ+∇wL)

and update the variables as in (4.11).

In numerical experiments we have found out that the “break even” point

between the approaches is when the mesh size is roughly 643.
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5 Numerical Experiments

In our numerical experiments we would like to examine two aspects of the

algorithm. Firstly, we would like to test the algorithm for the L2 distance.

Here, we consider the two approaches elucidated above: a combination of

GMRES and multi-grid within the Schur complement preconditioner versus

the solution of the reduced order system by elimination and preconditioned

CG. Secondly, we would like to test the behavior of the algorithm when the

norm of the MK functional, p, is gradually reduced from two to one. Note

that for the L1 norm we have that

f(m, ρ) =

∫
Ω

∫ 1

0

|m| dt dx

and thus the problem is not well-defined [32]. We therefore observe at the

limit p→ 1 of

f(m, ρ) =

∫
Ω

∫ 1

0

|m|p

ρp−1
dt dx

and examine the behavior of the algorithm as we gradually reduce the norm

p to one.

As a set of model problems we considered the 2D images displayed below

in Figure 4.2. For the initial density distribution T an image of four circle

quarters, one at each corner was deployed. The final distribution R was

represented by an image of a circle positioned in the center, where we verified

that the two images have the same total volume, see Figure 4.2.

We first consider grid size of 42 × 42 in space and 42 discretization steps

in time, with density contrast of 10. We shall later increase the grid fineness

to examine the performance of our multi-grid scheme. In Figure 4.3 the

solution for density distributions with contrast 10 and for p = 2 is displayed;

for each time step excluding the initial and final stage, from left to right, top

to bottom.
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Figure 4.2: Left: initial density distribution image T , right: final density

distribution image R

Figure 4.3: Solution for density distribution for p = 2
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Next we to check the optimality of our algorithm with respect to mesh

independence behavior. The overall algorithm is optimal if its iteration count

is independent with respect to the problem size, that is, if each problem is of

linear complexity with respect to the number of unknowns. For this test, we

considered a grid hierarchy; starting from a coarse grid of 16 × 16 × 10 (in

space and time) through a grid of 32×32×20 to a grid of 64×64×40. We set

the tolerance for the outer (SQP) iteration to 10−4, and as mentioned before,

each step was computed inexactly up to a relative residual error tolerance of

10−1.

In Table 4.1 we record the number of SQP iterations required for convergence

on different grid dimensions to the desired tolerance for p = 2. As can be

deduced from the table, the SQP algorithm is almost optimal: although

the number of variables increased by a factor of 23 between the different grid

sizes, the number of SQP iterations required for convergence was altered only

mildly. In order to verify that the overall algorithm is also optimal, we need

Grid Size SQP iterations

16× 16× 10 16

32× 32× 20 13

64× 64× 40 14

Table 4.1: Number of SQP iterations required for convergence on different

grid sizes, for p = 2 and density contrast 10.

to check that the linear solver is of linear complexity. Thus, the convergence

rate of the multi-grid preconditioned linear solver is of particular interest.

The performance of GMRES with a multi-grid preconditioner is presented

in Table 4.2. In this table the inner iteration count is compared for the

first iteration of SQP, an iteration in the midst of the optimization process,
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and the last iteration of the process. Table 4.2 shows a small increment in

Grid Size 1st Midst Last

16× 16× 10 2 3 2

32× 32× 20 2 5 3

64× 64× 40 2 6 7

Table 4.2: Comparison of numbers of preconditioned GMRES iterations re-

quired for convergence to the tolerance of 10−1 at 1st, midst and last iteration

of the SQP algorithm.

the number of iterations when the mesh is refined. Although the number

of iterations is increasing, the increment is still negligible in comparison to

the increase in mesh size. It is interesting to note that the increase in the

number of iterations of the linear solver is not due to a deterioration of the

multi-grid solver. The reason for the increase is that the GMRES solution

for a tolerance of 10−1 was determined to be inappropriate for descent by the

filter. Thus more iterations in the GMRES solver were needed to fulfill the

filter criteria.

In a third experiment we test our algorithm for a higher density contrast.

For that purpose, we consider the 2D images as before, but this time with

a density contrast of 100. Again, our setup involves an hierarchy of models

of increasing grid sizes, starting from 16× 16 in space and 8 in time and up

to 64 × 64 in space and 32 time steps. As before, we set the tolerance for

the outer (SQP) iteration to 10−4, and each step is computed inexactly up

to a relative residual error tolerance of 10−1. In this case, we take the multi-

level approach, where we interpolate the solution from the coarser grid to

finer one, such that the initial guess on the finer grid is closer to the optimal
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solution. In Table 4.3 we record the number of SQP iterations required for

convergence on different grid sizes to the desired tolerance for p = 2.

Grid Size SQP iterations

16× 16× 8 28

32× 32× 16 12

64× 64× 32 14

Table 4.3: Number of SQP iterations required for convergence on different

grid sizes, for p = 2 and density contrast 100.

For this problem, the number of GMRES iterations was consistently two

throughout the optimization process, for all grid sizes. As can be seen, the

algorithm performs well for a large density contrast. No other algorithm

known to us is capable of solving this problem efficiently.

In a fourth experiment, we test our algorithm on 4D problems (3D in space

plus time). Since we do not have an effective 4D algebraic multi-grid code

the linear system is solved by elimination as described in Section 4. Again,

we consider an hierarchy of grids, starting from 16 × 16 × 16 in space and

8 time steps, through 32 × 32 × 32 with 16 times step up to a grid of size

64× 64× 64 in space and 32 time steps. In Table 4.4 we present the number

of SQP iterations required for convergence on different grid dimensions to

the desired tolerance for p = 2. In Table 4.5 we summarize the number

of preconditioned CG iterations required for convergence to a tolerance of

10−4 at different stages of the SQP iterations. The table demonstrates the

mesh independence property of our algorithm even in 4D settings. Since

we use symmetric Gauss-Seidel as a preconditioner our linear solver is not
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Grid Size SQP iterations

16× 16× 16× 8 10

32× 32× 32× 16 11

64× 64× 64× 32 10

Table 4.4: Number of SQP iterations required for convergence on different

grid sizes, for 4D problem, with p = 2 and density contrast 10.

mesh independent. Nonetheless, we are still able to obtain solutions of 4D

problems with a moderate computational effort.

Grid Size 1st Midst Last

16× 16× 16× 8 21 38 32

32× 32× 32× 16 39 86 60

64× 64× 64× 32 71 187 137

Table 4.5: Comparison of numbers of preconditioned CG iterations required

for convergence to a tolerance of 10−4 at the 1st, midst and last iteration of

the SQP algorithm.

Finally, we test the performance of our algorithm when gradual reduction

of the norm p from two to one is imposed. We shall address a 2D problem

in space and time, with grid size 64 × 64 with 32 time steps, and density

contrast 10. We elect to solve the reduced system using preconditioned CG.

Simple continuation is used to obtain a solution with p → 1. We start with

p = 2 and execute a single SQP iteration. We then reduce p and repeat

the process, starting from the previous solution. We use 100 continuation

steps to get from p = 2 to p = 1.01. In Figure 4.4 the convergence of the

primal (equation (4.8c)) and dual feasibility (equations (4.8a) and (4.8b))
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are presented as a function of the norm p. As expected, the norms of the

primal and dual feasibility are reduced as we progress with the continuation

and decrease the p. Although we have used a simple continuation, this was

sufficient in order to obtain an approximation to the L1 problem. More

efficient continuation methods for the problem are not considered in this

study.
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Figure 4.4: Left: Norm of primal feasibility as a function of p, right: Norm

of dual feasibility as a function of p

6 Conclusions and Summary

A novel numerical framework for the 3D and 4D optimal mass transport prob-

lems using the fluid mechanics formulation is proposed. The new framework

treats the time dependency of the PDE as yet another spatial dimension in a

staggered grid discretization. This formulation does not require explicit pre-

scription of boundary conditions for the density distribution. Instead, these

boundary conditions are introduced implicitly as part of our optimization

scheme. In order to account for large density contrast in the models, we have

incorporated an algebraic multi-grid approach to choose a preconditioner for
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the solution of the linearized system. This approach proved to be optimal

with respect to the mesh size. We have also considered a distance function

for the general norm p, where 1 ≤ p ≤ 2. We started our iterations at p = 2

and slowly relaxed the norm until p = 1.01, while conducting only a few

iterations for each p.

From an imaging perspective, the transformation of the initial density dis-

tribution closely resembles the final distribution. This indicates a good cor-

respondence and overall good performance of the proposed algorithm. We

believe that the proposed algorithm can readily be disseminated for a large

range of applications of various objectives and high density contrasts.
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Chapter 5

Filter-Based Inexact SQP

Method

1 Background and Motivation

Sequential Quadratic Programming (see Section 6 in Chapter 2) is regarded

among the most successful and effective constrained optimization methods

practiced to date. Among its virtues, probably the most profound, is its

Newton-like inherited quadratic convergence rate, for exact arithmetic and

small residuals. Moreover, the method is relatively easy to implement (when-

ever 2nd order derivatives are available) and typically performs robustly even

when its mild set of prerequisite assumptions are slightly violated.

As asymptotically effective the method is, in its original form it may often

converge slowly (time-wise), especially for large-scale problems. The main

computational bottle-neck emerges from the redundant computational effort

devoted to an exhaustively accurate solution of the intermediate linearized

KKT system (SQP sub-problem) within each SQP iteration. For medium to

large-scale problems, this operation by-far dominates all other computational

operations, due to the frequent ill-conditioning and dimensions of the KKT
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systems. It is important to note that this attribute has also been inherited

from its unconstrained counterpart approach, the Newton method. Inspired

by solution approaches of the latter for large-scale problems (e.g. truncated

Newton, inexact Newton [83, 30]), accuracy-controlled iterative linear solvers

have been recently incorporated in the form of inexact SQP. In particular,

Krylov-subspace linear solvers such as GMRES [97] are commonly in use.

For the sake of completeness, it is important to highlight at this point,

that inexactness can be introduced in different levels. First, the function or

the constraints can be represented inexactly; this approach is often known

as approximated physics (in the context of PDE based problems), and bears

high level of relevance when evaluation of the exact function (or constraint)

is computationally intensive [3]. Second, derivatives may be given approxi-

mately, for example quasi-Newton methods such as Gauss-Newton or BFGS

[44, 86]. Third, the solution of the sub-problem can be computed inexactly.

Lastly, further degree of inexactness can be introduced in the globalization

process. This is often performed by an inexact line-search or trust region

[99, 26] approach.

While approximated physics is obviously problem dependent, and both

quasi-Newton-like optimization approaches as well as inexact line search

methods have been extensively studied, the notion of the inexact solution

of the sub-problem has been under-researched. Moreover, due to the afore-

mentioned recognized computational burden associated with the solution of

the sub-problem, in this chapter we shall concentrate in that aspect of inex-

actness.

The elegant resolution of this problem by accuracy-controlled iterative lin-

ear solvers offers a trade-off between accuracy of the linearized systems and

computational effort invested. Yet, it also introduces a new problem: while

mild degradation of solution accuracy may yield computational savings, se-

vere degradation is likely to lead to breakdown of the algorithm and con-
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vergence failure. Thus, a central research question would be to devise a

mechanism for the definition of the linear solution tolerance, such that con-

vergence of the inexact SQP algorithm is guaranteed. While for inexact New-

ton methods, definition of such a criteria is concerned merely with retaining

optimality, for the constrained optimization case, one needs to account also

for maintaining feasibility.

A variety of methods for inexact step computation for constrained optimiza-

tion have been proposed recently. Jäger and Sachs [65] described an inexact

reduced SQP method in a Hilbert space. Lalee, Nocedal, and Plantenga [71],

Byrd, Hribar, and Nocedal [21], and Heinkenschloss and Vicente [61] pro-

posed composite step trust-region approaches where the step was computed

as an approximate solution to an SQP sub-problem. Similarly, Walther [107]

provides a composite step method that allows incomplete constraint Jaco-

bian information. The approach used by Byrd, Curtis and Nocedal [19]

approach had some features in common with the algorithms of Biros and

Ghattas [12, 13] Haber and Ascher [50], and Prudencio, Byrd and Cai [89].

They followed a full-space SQP method and perform a line-search to pro-

mote convergence. The importance of their work can mainly be attributed

to the fact that they were the first to present conditions that guarantee global

convergence of inexact SQP steps.

Inspired by the pioneering research of Byrd, Curtis and Nocedal, where full-

space SQP formulation was pursued, we decided to follow the same track.

However, while in their approach a stopping criteria for the iterative linear

solver was based on reduction in a merit function, our approach is based on

the filter-method [46], such that the computed step makes sufficient progress

towards the solution on the linearized problem. To guarantee convergence of

the original problem, we then introduce a line-search by using a filter over

the non-linear problem.

In the next section an introduction to the filter method is brought. We
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then proceed by introducing the inexact SQP formulation, and further we

outline a convergence proof for the proposed formulation. In the next section,

numerical results are presented, and lastly we summarize this study.

Other than the numerical studies presented in this chapter, the proposed

inexact SQP approach was incorporated in Chapter 4 for the solution of the

optimal mass transport problem.

2 Filter Method

The filter method was first introduced by Fletcher in a plenary talk at the

SIAM Optimization Conference in Victoria, 1996; a more comprehensive de-

scription of the method can be found in [45]. The method is an alternative for

the common use of a penalty (merit) function in non-linear programming,

which can exhibit slow convergence for large penalty parameters (denoted

by α in Section 7). The goal was to develop a method which will serve as

a global convergence safeguard while only mildly intervene with Newton’s

method. Instead of combining the objective and the constraint violation

into one function, the filter method views the constrained optimization prob-

lem (2.1), as a bi-objective optimization problem that minimizes f(x) and

h(x) = ‖c(x)‖1. The second objective is more transparent (and perhaps more

important), since we must guarantee that the solution satisfies h(x∗) = 0. A

filter is defined as a list of pairs (h(xl), f(xl)) such that no pair dominates

another pair, where a point xk is defined to dominate a point xl if and only

if f(xk) ≤ f(xl) and h(xk) ≤ h(xl).

For example, a general outline of a trust-region SQP [26] is as follows [45].

At iteration k = 0, we initialize the filter Fk = (U,−1), where U is an initial

upper bound on the constraint violation. We proceed by accepting only steps

that are not dominated by the current filter. For an acceptable point, we set

xk+1 = xk + s, and possibly increase the trust-region radius and update the
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filter by adding the previous point and removing any dominated entries. If,

on the other hand, the step is dominated by the current filter, then we reject

the step, i.e. set xk+1 = xk, reduce the trust-region radius, and proceed to

the next iteration.

In order to ensure convergence several refinements are required:

1. Filter Envelope - To avoid convergence to non-stationary infeasible

limit points where h∗ > 0, we add an envelope around the current

filter. Now, a new iterate is acceptable if, ∀ l ∈ Fk,

hk+1 ≤ βhl or fk+1 ≤ fl − γhk+1,

where 0 < β, γ < 1 are constants. This sloping envelope [23, 24]

provides slightly stronger convergence properties. If an infinite number

of points are added to the filter, and f(x) is bounded below, then the

limit point must be feasible, see Lemma 1 in [23]. In Figure 5.1 a typical

filter is illustrated, where the shaded area shows the region dominated

by the filter entries and the dashed line represents the filter’s envelope.

2. Sufficient Reduction - The filter alone cannot ensure convergence to sta-

tionary points. For an instance, if the sequence satisfies hk+1 ≤ βhk,

then the iterates could converge to an arbitrary feasible point. There-

fore, if the constraint violation becomes small, a sufficient reduction

condition similar to unconstrained optimization is then enforced. Let

us denote the predicted reduction by ∆qk := −∆f>k s − 1
2
s>Hks and

introduce the following switching condition:

if ( ∆qk > 0) then

check fk − fk+1 ≥ σ∆qk,
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Figure 5.1: Filter method - shaded area represent area that is dominated

by the filter entries. All pairs (f(x), h(x)) that are below and to the left of

the dashed line are acceptable to the filter.
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where σ ∈ (0, 1) is a constant.

3. Feasibility Restoration - By reducing the trust-region radius, the QP

may become inconsistent. The inconsistency indicates that the current

point is too far from the feasible set to make meaningful progress to

optimality or that the search direction subproblem is not determined

properly or at least ideally. Hence an SQP-like algorithm that min-

imizes the constraint violation h(x) can be invoked. The restoration

phase is terminated once an acceptable point has been found.

3 Constrained Optimization Framework

We shall focus now on the following equality constrained optimization prob-

lem

min
x

f(x) s.t. c(x) = 0, (5.1)

where the objective function f : Rn → R is convex and the constraints

c : Rn → Rm are sufficiently smooth.

The Lagrangian of the system can be written as

L(x, λ) = f(x) + λ>c(x).

Accordingly, necessary conditions for an optimal solution (1st order condi-

tions - KKT conditions) are brought by

Lx = g(x) +B(x)>λ = 0

Lλ = c(x) = 0,

where B(x) := ∇c(x) is the Jacobian of the constraints, g(x) := ∇f(x) is the

gradient of the objective function, and λ is the Lagrange multipliers vector.
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Using Newton’s method, a KKT system can be constructed. Such a system

needs to be solved at each SQP iteration to obtain a Newton step(
Hk B>k

Bk 0

)(
dk

δk

)
= −

(
gk +B>k λk

ck

)
, (5.2)

where Hk is the Hessian ∇2
xxL(xk, λk) or its symmetric approximation. The

new iterate is updated as follows

xk+1 = xk + αdk

λk+1 = λk + αδk

where α is computed using a line-search.

4 Inexact SQP Framework

A sequential quadratic programming algorithm is used for the solution of

the equality constraint problem (5.1). At each SQP iteration, the linear

system (5.2) needs to be solved. The symmetric KKT system is indefinite and

sparse for most partial differential equations based problems. The solution

of this system is obtained by preconditioned Krylov subspace methods (e.g

preconditioned GMRES [97]), which guarantee that the solution is found

within a bounded number of iterations, as the dimension of the system, in

exact arithmetic. However, for very large linear systems, this upper bound

on the number of iterations is often not practical. In this work, we propose

to solve the linear system inexactly, similarly to [19]. However, rather than

relying on a reduction of a merit function as a stopping criterion to the linear

iterations, we embed a criteria based on the filter method.

Therefore, at each SQP iteration we solve the perturbed system(
Hk B>k

Bk 0

)(
dk

δk

)
= −

(
gk +B>k λk

ck

)
+

(
ρk

rk

)
. (5.3)
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Here, we shall consider a three-dimensional filter based upon primal fea-

sibility, dual feasibility and the objective function. The axes are defined as

follows: the x-axis is hk(x) := ‖c(xk)‖2, the y-axis is pk(x, λ) := ‖g(xk) +

B(xk)
>λk‖2 and the z-axis is f(xk), where f(xk) and g(xk) are the objective

function and its derivative (gradient) at iterate k, and c(xk) and B(xk) are

the constraints and its derivative (Jacobian) at iterate k.

The GMRES step is accepted by the filter only if the new point xk+1 is not

dominated by the current filter. By introducing a filter envelope [23, 24], the

new iterate is acceptable by the filter if, ∀ l ∈ Fk,

hk+1 ≤ βhl

or pk+1 ≤ βpl

or fk+1 ≤ fl − γ(hk+1 + pk+1),

(5.4)
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where 0 < β, γ < 1 are some constants.

Algorithm 5: Inexact SQP with filter

Input: (x0, λ0), τ, ᾱ, k ← 0,F0, 0 < β̂ < β, 0 < σ < 1

Output: (xk, λk)

if h0 > 0 and p0 > 0 then
F0 ← (x0, λ0)

k ← 0

// SQP

while not converged do
form the KKT matrix and the rhs

j ← 0, converged ← FALSE

// GMRES

while not converged do
compute update step (dkj, δkj)

if (ρkj, rkj) satisfies ‖ρkj||2 ≤ β̂pl OR ‖rkj‖2 ≤ β̂hl for ∀l ∈ Fk
then

accept the step (dkj, δkj)

converged ← TRUE

dk ← dkj, δk ← δkj

converged ← FALSE

j ← 0, αj ← 1

// Line Search

while not converged AND αj ≥ ᾱ do

if (xk, λk) + αj(dk, δk) is acceptable by the filter then

if ∆qk(1) > 0 then

if fk − fk+1 ≥ σ∆qk(α) then
accept the step (xk+1, λk+1)← (xk, λk) + αj(dk, δk)

converged ← TRUE

else
accept the step (xk+1, λk+1)← (xk, λk) + αj(dk, δk)

converged ← TRUE

αj+1 ← αj/2

if hk+1 > 0 AND pk+1 > 0 then
Fk+1 ← Fk ∪ (xk+1, λk+1)
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where ∆qk(α) = −αg>k s− α2

2
s>Hks.

5 Numerical Examples

In this section we shall demonstrate the utility of the proposed approach to

the solution of two PDE constrained optimization inversion problems. The

first of which concerns with the famous generalized Laplace PDE, whereas the

latter is the Monge-Kantorovich optimal mass transport problem which was

introduced in Chapter 4. In our numerical tests we shall conduct a compar-

ison between the linear solver iteration count of the proposed methodology

versus the conventional SQP algorithm.

5.1 Generalized Laplace Inverse Problem

We would like to solve the following optimization problem [60] with partial

differential equations as a constraints

min
y,u

1
2
‖y − d‖2 + αR(u)

s.t. A(u)y − q = 0

Here, finite difference discretization is practiced, where u is discretized on

cell centers and y is on the nodes. For simplicity of presentation, we address

the one dimensional case, and thus formulate the problem as

min
y,u

1
2
‖y − d‖2 + α

2
‖Lu‖2

s.t. A(u)y − q = 0
(5.5)

where L is the Laplacian matrix, and the following constraint is imposed

d

dx
eu

d

dx
y − q = 0.
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This problem appears in many applications, among the popular once are

electrical resistivity tomography and hydrology, see [64] and reference therein.

Then we can write the discretized matrix A as

A(u) = D>diag(eu)D

where D is discretized gradient operator (with Neumann boundary condi-

tions).

By employing an inexact Newton-type method, we can write the Lagrangian

L(y, u, λ) =
1

2
‖y − d‖2 +

α

2
‖Lu‖2 + λ>(A(u)y − q).

The necessary optimality conditions (1st order conditions - KKT condi-

tions) are given by

Ly = y − d+ A(u)>λ = 0

Lu = αL>Lu+G>λ = 0

Lλ = A(u)y − q = 0

where G := Ddiag(Dy)diag(eu)

Using Newton’s method, a KKT system can be formed. Specifically, at

each Newton step it is necessary to solve the linear system
I 0 A>

0 αL>L G>

A G 0




δy

δu

δλ

 = −


Ly
Lu
Lλ

 (5.6)

For our numerical tests a 2D problem was addressed. The dimensions of

the grids were 32 × 32, 64 × 64 and 128 × 128, and the solution tolerance

for the outer iteration was prescribed to be 10−4. The solution tolerances for

the inner problem were 10−8 and 10−1 for the exact and inexact SQP (β̂ in

Algorithm 5) respectively. Convergence properties of the SQP method using

regular GMRES linear solver mandates exact step computation. Therefore,
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in our comparison, we benchmark the performance of such conventional SQP

method, that is a small tolerance is prescribed for the GMRES linear solver,

and its performance with those of the proposed filter-based inexact SQP

method.

In Table 5.1 a comparison of the number of linear iterations for exact and

filter-based inexact SQP method is provided.

Table 5.1: Comparison of the number of linear iterations for exact and the

filter-based inexact SQP method for 2D generalized Laplace inverse problem

Grid Size Exact SQP (iters) Inexact SQP (iters)

32× 32 54 29

64× 64 40 24

128× 128 48 27

The results above display a significant reduction in the overall number of

iterations. It is important to note that an arbitrary reduction of the linear

solver tolerance within the conventional SQP scheme to 10−1 results in a line-

search break. This behavior is of course indeed in agreement with the theory,

as convergence is only guaranteed for conventional SQP when an exact step

is computed. That is in agreement with the theory, which requires exact step

calculation.

5.2 Optimal Mass Transport

In this test we have incorporated the proposed filter-based inexact SQP solu-

tion for the Monge-Kantorovich optimal mass transport problem addressed in

Chapter 4. The constraints in this problem are governed by time-dependent

mass preservation PDEs in the fluid dynamics formulation. The only mod-

ification upon the formulation presented in Section 4, is that here, we solve
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equation (4.1) using the proposed filter-based inexact SQP formulation. For

this numerical test, the dimensions of the grids were 16×16×8, 32×32×16

and 64 × 64 × 32 in space and time, density contrast of 10, and solution

tolerance for the outer iteration prescribed to be 10−4. As before, in Table

5.2 we have compared the performance of exact SQP with an inner tolerance

of 10−8 with the filter-based inexact SQP method and an inner tolerance of

10−1

Table 5.2: Comparison of the number of linear iterations for the exact and

the filter-based inexact SQP method for the 3D Monge-Kantorovich problem.

Grid Size Exact SQP (iters) Inexact SQP (iters)

16× 16× 8 33 22

32× 32× 16 61 49

For these problems, similar reduction in the overall number of iterations

can be observed.

5.3 Conclusions

In this section a new inexact SQP method was proposed. The method relies

on the filter method to determine termination of the inner linear solution

process and thereby provides superior convergence speed upon the use of

conventional SQP.

One of the advantages of this new approach is that it can readily replace

any present SQP algorithm, and be used as a plug in. This virtue enables

the methods great dissemination for a broad range of problems.

As highlighted in the introduction (Section 1), addressing inexactness in

the solution of the inner linear system concurs only one of a multitude of

options for imposition of inexactness for non-linear optimization. There is
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still quite a significant breadth in exploring other potential directions related

to different aspects of inexactness, as well as to investigate the interplay

between them.

The author would like to acknowledge at this point Sven Leyffer, Andrew

Conn, Andreas Wächter and Frank Curtis for their invaluable input and

advice in the course of the development and evaluation of the proposed al-

gorithm.
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Chapter 6

Summary and Future Work

In this thesis, numerical techniques for large-scale PDE constrained opti-

mization problems were developed. Specifically, the volume preserving image

registration and the optimal mass transport problems were considered.

The first study is aimed at the incorporation of volume constraints for 3D

image registration. Such constraints play an important role in medical appli-

cations, where the associated volume represents bodily tissues, and thereby

is subject to physical limitations regarding its ability to shrink or expand.

Since the constraint involves a determinant of a differential term, it forms

a highly non-linear inequality. This characteristic poses a great numerical

challenge that requires special care during the discretization process as well

as a tailored optimization scheme. Stable discretization was obtained by dis-

cretization over a staggered grid, which effectively eliminates the need for

long distance differences. By introducing slack parameters the problem was

decomposed into an equality constrained problem along with simple bound

constraints. In order to achieve fast convergence, an augmented Lagrangian

formulation was favored. The resulting KKT system was solved by elimina-

tion and therefore entailed a symmetric positive definite system which was

solved by a preconditioned conjugated gradients algorithm. Local Fourier
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analysis of the system established the appropriateness of multi-grid schemes

as optimal, mesh- independent preconditioners for the problem under hand.

Thus, V - cycle geometric multi-grid incorporating a custom-made Vanka-

type smoother was developed. The algorithm displayed visually viable reg-

istration solutions which were validated to be feasible. Convergence results

reassessed the expected mesh-independent behavior. It is important to note,

that these results were obtained for real data in realistic settings. As the

role of image registration in medical diagnosis is growing rapidly, we hope

that the proposed algorithm will serve practitioners in their routine diagno-

sis work. This study was published in the Numerical Linear Algebra with

Applications journal, 2009 and presented at the SIAM Imaging Science con-

ference, 2010 in Chicago, the Copper Mountain Multi-grid conference, 2009

and as a seminar at the IBM TJ Watson Research Center, 2009.

In the second study the optimal mass transport problem was addressed.

This important problem has applications in econometrics, fluid dynamics,

automatic control, transportation, statistical physics, shape optimization,

expert systems, and meteorology. In this problem the objective was mini-

mization of an energy term, whereas the space-time transport PDEs served

as constraints. The formulation we considered introduce additional arti-

ficial time dimension that increases the dimensionality of the problem on

the one hand. On the other hand, it successfully replaces a generally, non-

convex problem by a convex one, as well as avoids some other complexities

such as boundary conditions and numerical difficulties when densities are

small. Since the time dependency of the PDE was treated as a spatial di-

mension, the resulting formulation resembles flow in porous media. Finite

volume discretization formulations require special care in order to preserve

numerical stability of the solution. Thus, three and four dimensional space-

time staggered grid discretizations were employed. The discretized PDE

constrained optimization was solved by a sequential quadratic programming
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algorithm. Two approaches were considered for the solution of the result-

ing KKT system. In the first approach, the system was solved inexactly

using preconditioned GMRES, where an algebraic multi-grid preconditioner

was facilitated. In the second approach the system was solved by elimina-

tion, resulting in a reduced system which was symmetric positive definite.

This system was then solved by preconditioned conjugated gradients with a

Gauss-Seidel preconditioner. Numerical results seemed plausible and consis-

tent, even for problems with large density contrasts. From the convergence

stand point, again, mesh-independent convergence was achieved. This study

was presented at the Monge-Kantorovich Optimal Transport - Theory and

Applications conference, 2009, the Copper Mountain conference on Iterative

Methods, 2010, the SIAM Imaging Science conference, 2010 and in the SIAM

Annual Meeting 2010.

Lastly, the 3rd study addressed large-scale PDE constrained optimization

from a broader and more general perspective. The common computational

bottleneck for both aforementioned studies, as well as for most PDE con-

strained optimization problems lies in the exhaustively accurate solution of

the linear system, within the overall non-linear solution scheme. Thus, the

overall idea for this study was to prescribe an appropriate stopping crite-

rion for the iterative linear solver, such that an inexact search direction is

computed, while still maintaining convergence of the overall algorithm. Our

stopping criterion is based on the filter method, which simultaneously con-

trols reduction in the objective as well as constraint violation. The proposed

framework has been applied effectively for several test problems, including

the abovementioned optimal mass transport problem. The algorithm re-

quires only mild modification of currently employed Krylov linear solvers,

and therefore can be readily applied to a wide range of applications. This

research work was presented in the Copper Mountain conference on Iterative

Methods, 2010, the SIAM Imaging Science conference, 2010 and in the SIAM
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Annual Meeting 2010.

The fields of numerical and computational methods for simulation-based

optimization and imaging receives growing amount of interest. There are

many unanswered questions as well as important applications that need to

be addressed. For an instance, incorporation of compressive sensing ideas for

PDE constrained optimization. Recent advances in the field of compressive

sensing have not yet been sufficiently disseminated for observation opera-

tors that are PDE based. The utilization of concepts such as sparsity and

spatio-temporal compressive sampling in the PDE context should be further

explored. Another example is large-scale inequality constrained optimiza-

tion. While an extensive body of research has been concentrated in equality

constrained optimization, its inequality counterpart is still under-researched,

despite its utility for a broad range of practical applications.
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