FINAL REPORT

Study Title

GreenScreen HC (GADD45a-GFP) Assay

Test Article

GB67B and GB594

Authors

Kamala Pant, M.S. Shannon Wilson Bruce, M.F.S.

Study Completion Date

03 April 2008

Testing Facility

BioReliance 9630 Medical Center Drive Rockville, MD 20850

BioReliance Study Number

AC13JU-JV.801.BTL

Sponsor

Emory University 1515 Dickey Drive Atlanta, GA 30322

GreenScreen Human Cell Genotoxicity Assay

STUDY INFORMATION

Sponsor:	Emory University 1515 Dickey Drive Atlanta, GA 30322
Authorized Representative:	Gregory Bluemling
Testing Facility:	BioReliance 9630 Medical Center Drive Rockville, Maryland 20850
Storage Conditions:	Refrigerated (2 to 8°C) in the dark with desiccant
Test Article Receipt and Login:	04 March 2008
Study Initiation:	12 March 2008
Experimental Start Date:	12 March 2008
Experimental Completion Date:	20 March 2008
Laboratory Manager	Shannon Wilson Bruce, M.F.S.

Test Article ID	BioReliance Study No.	Test Article	Test Article Purity
		Description	
GB67B	AC13JU.801.BTL	white powder	99%
GB594	AC13JV.801.BTL	white powder	99%
Study Director:	Kamala	Paut	03 Apr 2008
	Kamala Pant, M.S.		Date

BioReliance Study No. AC13JU-JV.801.BTL

EXPERIMENTAL DESIGN AND METHODOLOGY

Assay Description

The assay uses the GFP reporter to show the transcription of GADD45 α gene, an indication of the genotoxic potential of a test article. GADD45 α is a human protein that is involved in many cellular processes: DNA damage and repair, apoptosis, cell cycle control, etc. Following exposure to genotoxic stress, the GADD45 α gene is transcriptionally induced and GFP is produced (Hastwell *et al.*, 2006).

GreenScreen HC assay can only be used to test compounds in the absence of metabolic activation at the present time. Research is underway to develop a GreenScreen HC assay using metabolic activation (Hastwell *et al.*, 2006).

Test System

Two human cell lines, GenM-C01 and GenM-T01 (Gentronix©, Manchester, UK) were used in the assay. The reporter cell line (GenM-T01) consists of TK6 cells transfected by electroporation with an episomally replicating Epstein-Barr virus-based plasmid bearing the upstream promoter region and regulatory gene sequences of the human Growth Arrest and DNA Damage (GADD45 α) gene operatively linked to a human codon optimized green fluorescent protein (GFP) gene (EGFP). The control cell line (GenM-C01) consists of TK6 cells transfected with an identical plasmid except that 4 base pairs have been removed at the start of the EGFP gene, such that a functional GFP protein is not produced. The plasmids are stably maintained in TK6 cells by addition of 200 µg/mL hygromycin B to the cultures.

Experimental Design

The test system was exposed to the test article via a microplate format described by Hastwell *et al.* (2006). The test article was tested at nine serially diluted levels. In the 96-well microplate, rows A, B, C, and D (columns 1-11) were treated with GenM-C01 cell suspension and rows E, F, G, and H (columns 1-11) were treated with GenM-T01 cell suspension. Column 12 was used for diluent, media and test article sample contamination controls. Once all the treatment solutions, positive controls, negative controls, sterility control, blank control (diluent) and the cells have been added to the 96-well microplate, the microplate was covered with a breathable membrane. The microplate was incubated in a humidified, 5% CO₂ incubator set at 37 ± 1 °C. Following is the plate diagram showing the assay details:

Data Collection

The GFP-reporter fluorescence and cell culture absorbance data were collected from the microplates approximately 24 and 48 hours after treatment. In addition, fluorescence polarization data were collected and used only if needed. The fluorescence polarization is performed if the test article is significantly fluorescent and causes interference in both control and test strains. The data were inserted into an Excel spreadsheet template obtained from Gentronix (Manchester, UK). Individual data sheets are given in Appendix I.

Data Analysis

Relative Cell Density Calculation

Green fluorescent protein induction was evidenced by an increase in the fluorescence level of the GreenScreen Test Strain (GenM-T01) as compared to the GreenScreen Control Strain (GenM-C01). In addition, relative cell density was determined. The relative cell density results were calculated as follows:

 $Relative Cell Density = \frac{Absorbance of the Test Well - Absorbance of the Media Blank}{Absorbance of the Respective UC - Absorbance of the Media Blank} \times 100$

where the "Media Blank" is an average reading from the wells filled with diluted assay medium alone (C12 and D12), and a "Respective UC" is an average reading from wells containing the relevant strain exposed to diluent only, i.e. the untreated control.

Fluorescence Induction Calculations

Fluorescence data values are divided by absorbance data to give 'brightness units', the measure of the average GFP induction per cell. These data are then normalized to the untreated control (=1). In order to correct for induced cellular auto-fluorescence and intrinsic test article fluorescence, the brightness value for the GenM-C01 cell line was subtracted from those of GenM-T01 cell line.

Fluorescence data values are divided by absorbance data to give 'brightness units', the measure of the average GFP induction per cell. These data are then normalized to the untreated control (=1). In order to correct for induced cellular auto-fluorescence and intrinsic test article fluorescence, the brightness value for the GenM-C01 cell line was subtracted from those of GenM-T01 cell line.

The "Brightness" values (normalized fluorescence) for both GenM-C01 and GenM-T01 test wells are calculated thus:

Brightness = <u>Fluorescence of the Test Well - Fluorescence of the Media Blank</u> <u>Absorbance of the Test Well - Absorbance of the Media Blank</u>

The relative GFP induction of both GenM-C01 and GenM-T01 test wells (presented in the "Raw Data for Individual Strains" graph) are calculated thus:

Induction = Brightness of the Test Well Average Brightness of GenM - T01 Untreated Control

Where the GenM-T01 untreated control, is the GenM-T01 cell strain exposed to diluent only.

Note: that both strains are normalized to the brightness of the GenM-T01 cell strain to allow comparison of the relative brightness of the two strains.

The induction data for the "Genotoxicity Evaluation" graph, which is used for genotoxicity assessment, is that for GenM-T01 corrected for the brightness of GenM-C01 the control strain. Thus:

Where UC = untreated control.

Evaluation of Test Results

A positive result for genotoxicity is observed when the relative GFP induction ratio is greater than the 1.5 threshold (i.e., greater than 3 times the standard deviation of the background brightness) (Hastwell *et al.*, 2006).

BioReliance Study No. AC13JU-JV.801.BTL

A positive result for cell growth inhibition (cytotoxicity) is observed when relative suspension growth drops below the 80% threshold (Hastwell *et al.*, 2006).

The Lowest Effective Concentration (LEC) is determined for any cytotoxicity and genotoxicity positive result. LEC is defined as the lowest concentration that produced at positive result for either growth inhibition (cytotoxicity) or GFP induction (genotoxicity).

Criteria for a Valid Test

The cell culture density used in the assay should be between $0.7 \ge 10^6$ and $1.2 \ge 10^6$ cells per mL on the day of the assay. If the cell density is not within this range, the cells are not used to perform the assay.

The media contamination check (absorbance ratio between media and blank) at the time of plate readings should indicate a lack of contamination. The fluorescence quality control check (fluorescence ratio between media and blank) at the time of plate readings should give a correct pass/fail determination.

The program gives a pass/fail indication for cytotoxicity determination in cell line GenM-C01 and genotoxicity determination in cell line GenM-T01 (the ratio between the two concentrations of methyl methane sulfonate).

The positive control ratio for both the cell lines should fall within the historical control data range for each time point. The negative control ratio reading should fall within the historical control data range for each time point. Historical control data are given in Appendix II.

Archives

Upon issue of the final report, all raw data for procedures performed at BioReliance will be sent to the sponsor.

Deviations

No known deviations from the protocol or assay-method SOPs occurred during the conduct of the study.

Results

Summarized results are shown in the following tables. Actual data tables are located in Appendix I.

GreenScreen Human Cell Genotoxicity Assay

RESULTS

BioReliance Test Code	АС13ЈИ
Sponsor Test Article ID	GB67B
Maximum test article solublility in Dimethyl Sulfoxide (DMSO)	100 mg/mL
Maximum test article solubility in Sterile Water with 2% DMSO	0.50 mg/mL
Highest concentration of test article tested on microplate	250 μg/mL
Test article concentrations tested on microplate	250, 125, 62.5, 31.25, 15.63, 7.81, 3.91, 1.95, and 0.98 μg/mL
Concentrations of positive control (Methyl Methanesulfonate) tested on microplate	50 and 10 μg/mL
Genotoxicity Results	Not Genotoxic
Lowest Effective Concentration (LEC) to give positive result	Not Applicable
Cytotoxicity Results	Cytotoxic
Lowest Effective Concentration (LEC) to give positive result	_125 μg/mL

BioReliance Study No. AC13JU-JV.801.BTL

GreenScreen Human Cell Genotoxicity Assay

RESULTS

BioReliance Test Code	AC13JV
Sponsor Test Article ID	GB594
Maximum test article solublility in Dimethyl Sulfoxide (DMSO)	100 mg/mL
Maximum test article solubility in Sterile Water with 2% DMSO	2.0 mg/mL (B1), 0.08 mg/mL (B2)
Highest concentration of test article tested on microplate	1000 µg/mL (B1), 40 µg/mL (B2)
Test article concentrations tested on microplate	1000, 500, 250, 125, 62.5, 31.25, 15.63, 7.81, and 3.91 μg/mL (B1) 40, 20, 10, 5.0, 2.5, 1.25, 0.63, 0.31, and 0.16 μg/mL (B2)
Concentrations of positive control (Methyl Methanesulfonate) tested on microplate	50 and 10 μg/mL
Genotoxicity Results (Experiment B2)	Not Genotoxic
Lowest Effective Concentration (LEC) to give positive result	Not Applicable
Cytotoxicity Results (Experiment B2)	Not Cytotoxic
Lowest Effective Concentration (LEC) to give positive result	Not Applicable

BioReliance Study No. AC13JU-JV.801.BTL

Conclusions

Test article GB67B (AC13JU) gave a negative response for gentoxicity and gave a positive response for cytotoxicity (LEC = $125 \ \mu g/mL$) in this assay.

Test article GB594 (AC13JV) gave a positive response for gentoxicity (LEC = 7.81 μ g/mL) and gave a positive response for cytotoxicity (LEC = 7.81 μ g/mL) in the first experiment (B1) of this assay. However, the genotoxic response was seen only at excessively cytotoxic test article concentrations. In order to confirm these findings, the assay was repeated (experiment B2) at lower non cytotoxic test article concentrations.

Test article GB594 (AC13JV) gave a negative response for genotoxicity and cytotoxicity in the second experiment (B2) of this assay. Because the genotoxicity results from the first experiment (B1) were not duplicated in the second experiment (B2) and the genotoxic result was only seen at excessively cytotoxic test article dose concentrations, the test article was determined to be non genotoxic.

These assays met all criteria for a valid assay. Positive and negative controls were within expected ranges.

References

Hastwell PW, Chai LL, Roberts KJ, Webster TW, Harvey JS, Rees RW, Walmsley, RM. (2006). High-specificity and high-sensitivity genotoxicity assessment in a human cell line: validation of the GreenScreen HC GADD45 α -GFP genotoxicity assay. Mutat Res. Sep 5; 607(2):160-75.

Van Gompel J, Woestenborghs F, Beerens D, Mackie C, Cahill PA, Knight AW, Billinton N, Tweats DJ, Walmsley RM. (2005). An assessment of the utility of the yeast GreenScreen assay in pharmaceutical screening. Mutagenesis Nov; 20(6):449-54.

Walsh L, Hastwell PW, Keenan PO, Knight AW, Billinton N, Walmsley RM. (2005). Genetic modification and variations in solvent increase the sensitivity of the yeast RAD54-GFP genotoxicity assay. Mutagenesis Sep; 20(5):317-27.

APPENDIX I

. ,

Individual Data Tables

TEST CONDIT	IONS	Assay ID: AC13JL	J-JV.801.BTL.B1	
Operator:	Shannon Bruce			
Diluent:	2% DMSO / Water	Time: 12:30		
Dilution Regime:	Sample Volume: 75 µl	Read Date: 3/13/08 Time 13:04		
	Culture Volume: 75 µl Serial Dilution Volume: 75 µl	Assay run time:	24.6	
	Dilution Factor: 1/		HOURS	
SAMPLE ID A	ND RESULTS	CYTOTOXICITY	GENOTOXICITY	
1 2% DMSO Diluen	t	Result LEC	Result	LEC
Ref. No.		ug/ml	NEGATIVE	ug/ml
Concentration	ug/ml (Units)			
	<u>E E E E E E E E E E E E E E E E E E E </u>			
2		Result LEC STRONG POSITIVE -	Result NEGATIVE	LEC
Ref. No.		ug/ml		ug/ml
Concentration	ug/ml (Units)			
3 AC13JU		Result LEC	Result NEGATIVE	LEC
Ref. No.	GB67B	ug/m1		ug/ml
Concentration	250 ug/ml (Units)			
	GB594	Result LEC STRONG POSITIVE 15.63 ug/ml	Result POSITIVE	LEC 7.81 ug/ml
Concentration	1000 ug/m1 (Units)	the contract of the spectrum sector of the		
ABSORBANCI	E AND AUTOFLUORESCENCE CH	IECKS		
1 2% DMSO Diluent		Not absorbing	Not auto-fluor	escent
2	0	Not absorbing	Auto-fluores	cent
3 AC13JU		Not absorbing	Not auto-fluor	escent
4 AC13JV		Not absorbing	Not auto-fluor	escent
CONTROLS				
		GENOTOXIC CONTROL		
	CELL DENSITY RESULT		UCTION RESULT	
GenM-C01	HIGH LOW	HIGH GenM-T01 2.75	LOW PASS	
MEDIA CONTAMI			a state of the sta	
Abs. Ratio (Media MEDIA G	a / Blank) = 1.36 LEAR OF CONTAMINATION	Fluor. Ratio (Media / Bla MED)A PASSES	ank) = 100000000000000000000000000000000000	

BioReliance Study No. AC13JU-JV.801.BTL 13

TEST CONDIT Operator: Diluent: Dilution Regime: SAMPLE ID A 1 2% DMSO Diluei Ref. No. Concentration	Shannon Bruce [2% DMSO / Water Sample Volume: Culture Volume: Serial Dilution Volume: Dilution Factor: 2.00	Set up Date:	AC13JU-JV:801.BTL.B 3/12/08 12:30 3/14/08 12:32 48.0 LEC ug/ml	HOURS GENOTOXICITY Result NEGATIVE	LEC
2 Ref. No. Concentration	0 0 0 0 0 0 0 0 0 0 0 0	Result STRONG POSITIVE	LEC 	Result NEGATIVE	LEC
3 AC13JU Ref. No. Concentration	GB67B 250 ug/ml (Units)	Result POSITIVE	LEC 125.00 ug/ml	Result NEGATIVE	LEC
4 AC13JV Ref. No. Concentration	GB594	Result STRONG POSITIVE	LEC 7.81 ug/ml	Result NEGATIVE	LEC -
ARSODRANIC					
1 2% DMSO Diluen	E AND AUTOFLUORESCENCE CF	Not absorbing		Not auto-fluorescer	
3 AC13JU		Not absorbing		Auto-fluorescent	
4 AC13JV		Not absorbing		Not auto-fluorescer	t
Abs. Ratio (Medi	CELL DENSITY RESULT HIGH LOW 35.0 66.3 PASS	GenM-T01	SFP INDUCTION HIGH LOW 2.23 1.43	RESULT PASS 4.52 CE QC	

1.38

BioReliance Study No. AC13JU-JV.801.BTL 16

	TEST CONDITIONS	Assay ID: AC13JV.801.BTL B2	
	Operator: Shannon Bruce	Set up Date: 3/18/08	
	Diluent: 2% DMSO / Water	Time: 10:45	
	Dilution Regime: Sample Volume: 75 µ		
	Culture Volume: 75 µ Serial Dilution Volume: 75 µ Dilution Factor: 1/ 2:00		
	SAMPLE ID AND RESULTS	CYTOTOXICITY GENO	DTOXICITY
	1 2% DMSO Diluent	Result LEC Result NEGATIVE - ug/ml	LEC NEGATIVE - ug/ml
	Ref. No.	~g	ugmin
	Concentrationug/ml (Units)		
	2	Result LEC Result STRONG POSITIVE -	LEC NEGATIVE -
	Ref. No.	ug/mi	ug/ml
	Concentration ug/ml (Units)		
	3	Result LEC Result STRONG POSITIVE -	LEC
	Ref. No.	ug/ml	ug/mi
	Concentration		
	4 AC13JV	Result LEC Result NEGATIVE - ug/ml	LEC NEGATIVE - ug/ml
	Ref. No. GB594	agnin	ughin
	Concentration 40 ug/ml (Units)		
	ABSORBANCE AND AUTOFLUORESCENCE C		-
	12% DWSC Dilden	Not absorbing	Not auto-fluorescent
	2 0	Not absorbing	Not auto-fluorescent
	3	Absorbing	Not auto-fluorescent
	4 AC13JV	Not absorbing	Not auto-fluorescent
1	CONTROLS		
	CYTOTOXIC CONTROLS	GENOTOXIC CONTROLS	
	CELL LINE CELL DENSITY RESULT	CELL LINE GFP INDUCTION RESU	JLT
	HIGH LOW GenM-C01 50.1 81.1 PASS	HIGH LOW GenM-T01 2:69 1:40 2:69 2:00 2:00 2:00 2:00 2:00 2:00 2:00 2:0	55
	MEDIA CONTAMINATION CHECK		
	Abs. Ratio (Media / Blank) = 11.43 MEDIA CLEAR OF CONTAMINATION	Fluor. Ratio (Media / Blank) = MEDIA PASSES FLUORESCENCE QC	H 5.17
1	· · · · · · · · · · · · · · · · · · ·		

CYTOTOXICITY RESULTS

TEST CONDITIONS Operator: Shannon Bruce Diluent: 2% DMSO / Water Dilution Regime: Sample Volume: Culture Volume: 75 μl Serial Dilution Volume: 75 μl Dilution Factor: 2,00	Assay ID: AC13JV.801.BTL.E Set up Date: 3/18/08 Time: 10:45 Read Date: 3/20/08 Time 10:48 Assay run time: 48.1	
SAMPLE ID AND RESULTS	CYTOTOXICITY	GENOTOXICITY
1 2% DMSO Diluent Ref. No. 0 Concentration 0 ug/ml (Units)	Result LEC NEGATIVE - ug/mi	Result LEC NECATIVE - ug/ml
2 0 Ref. No. 0 Concentration 0 ug/ml (Units)	Result LEC STRONG POSITIVE - ug/ml	Result LEC NECATIVE - ug/ml
3 0 Ref. No. 0 Concentration 0 ug/ml (Units)	Result LEC STRONG POSITIVE - ug/ml	Result LEC NEGATIVE - ug/ml
4 AC13JV Ref. No. GB594 Concentration 40 ug/ml (Units)	Result LEC - NEGATIVE - ug/ml	Result LEC NEGATIVE - ug/ml
ABSORBANCE AND AUTOFLUORESCENCE C	HECKS	
1 2% DMSO Diluent	Notabsorbing	Not auto-fluorescent
2	Notabsorbing	Not auto-fluorescent
3	Absorbing	Not auto-fluorescent
4 AC13JV	Not absorbing	Not auto-fluorescent
CONTROLS CYTOTOXIC CONTROLS CELL LINE CELL DENSITY RESULT HIGH LOW GenM-C01 36,7 68,7 PASS MEDIA CONTAMINATION CHECK Abs. Ratio (Media / Blank) = 1.39 MEDIA CLEAR OF GONTAMINATION	GENOTOXIC CONTROLS CELL LINE GFP INDUCTION <i>HIGH LOW</i> GenM-T01 2:19 1:45 Fluor. Ratio (Media / Blank) = MEDIA PASSES FLUORESC	RESULT PASS ENCE QC

APPENDIX II

Historical Control Data

GREENSCREEN CYTOTOXICITY AND GENOTOXICITY ASSAY

	Media Control		MMS HIGH		MMS LOW	
	24 hours	48 hours	24 hours	48 hours	24 hours	48 hours
Mean	5.77	6.09	3.18	3.03	1.70	1.83
Minimum	4.50	4.52	2.05	1.83	1.23	1.18
Maximum	8.51	8.58	27.92	31.18	16.17	19.23

GREENSCREEN TEST STRAIN (T01)

GREENSCREEN CONTROL STRAIN (C01)

	Media Control		MMS HIGH		MMS LOW	
	24 hours	48 hours	24 hours	48 hours	24 hours	48 hours
Mean	1.33	1.35	54.2	36.9	80.8	64.2
Minimum	1.15	1.05	37.9	18.6	56.9	35.0
Maximum	1.49	1.49	66.4	61.8	92.4	84.8

Media control = Media control wells compared to diluent only wells for GFP induction MMS HIGH and MMS LOW = GFP induction of pertinent cell line

MMS = Methyl Methanesulfonate

MMS HIGH = $50 \mu g/mL$

MMS LOW = 10 μ g/mL