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Abstract

Robust Statistical Methods for Handling Missing Data

By

Domonique Watson Hodge

Since the dawn of data collection, researchers have faced the problem of missing

data. There are a multitude of reasons data may be missing. Appropriately dealing

with missing data requires a careful examination of the data to identify the source,

pattern, and missing data mechanism. It is well known that a naive analysis with-

out adequate handling of missing data reduces statistical power, results in loss of

efficiency, and potentially biases parameter estimates which can ultimately lead to

invalid conclusions. Multiple imputation (MI) is one of the most widely used methods

for handling missing data. The key idea of MI is to replace each missing value with

a set of plausible values drawn from their predictive distributions conditional on the

observed data. Multiple imputed data sets are generated to account for uncertainty

of imputing missing values. We review the terminology and current literature on

missing data in Chapter 1.

In Chapter 2, we aim to develop MI methods to handle missing data in the pres-

ence of high-dimensional data where the missing data mechanism is assumed to be

ignorable. Existing (MI) methods implemented in most statistical software are not

applicable or do not perform well in the high-dimensional setting where the number of

predictor is large relative to the sample size. To remedy this issue, we develop an MI

approach that uses dimension reduction techniques. Specifically, our approach uses

sure independent screening (SIS) followed by either sparse principal component anal-

ysis (sPCA) or sufficient dimension reduction regression in constructing imputation

models in the presence of high-dimensional data. Our extensive simulation stud-

ies demonstrate that in the presence of high-dimensional data using SIS followed by



sPCA to perform MI achieves better performance than the other imputation methods

including several existing imputation approaches. We further illustrate our approach

using gene expression data from a prostate cancer study.

In Chapter 3, we develop nonparametric imputation methods to handle non-

ignorable missing data. Most imputation techniques are designed for ignorable miss-

ing data since non-ignorability is an assumption more challenging to handle. Under

non-ignorable missingness, one assumes the nonresponse mechanism depends on un-

observed values, and the outcome model for the variable with missing values and the

nonresponse model must be modeled jointly. Consequently, joint modeling can pro-

duce results that are sensitive to the misspecification of the outcome and nonresponse

models. We propose a nonparametric method for handling non-ignorable missingness

via bootstrap imputation and multiple imputation. The key idea underlying our

proposed approach is to formulate two working models for the outcome and for non-

response, respectively. Using the two working models, we derive predictive scores

which achieves dimension reduction and use the resulting scores coupled with a near-

est neighbor hot deck to multiply impute missing values. Our approach allows users

to incorporate prior knowledge on the working models through the use of weights.

Compared with the existing MI methods, our approach is more robust to misspecifi-

cation of the two models and allows for a natural sensitivity analysis. The proposed

bootstrap imputation approach is shown to outperform several existing multiple im-

putation methods for non-ignorable missing data in simulations. In addition, the

method is illustrated using data from the Georgia Coverdall Acute Stroke Registry.

In Chapter 4, we aim to evaluate diagnostic methods for imputation models as-

suming a non-ignorable missing data mechanism. Most of the existing diagnostic

approaches have been developed assuming the missing data mechanism is ignorable.

As a consequence, they are not directly applicable to our nonparametric imputa-

tion methods for nonignorable imputation methods. To address this issue, we adapt



posterior predictive checking with the posterior predictive p-value as the summary

measure to assess the performance of imputation models under non-ignorable miss-

ingness. In simulations, we correctly and incorrectly specify the imputation models

and determine whether posterior predictive checking is useful in detecting discrepan-

cies in the misspecified imputation model. Our extensive simulations suggest that,

in the settings we evaluated, posterior predictive p-values can be useful in diagnosing

deficiencies in non-ignorable imputation models. We also illustrate this approach us-

ing the Georgia Coverdall Acute Stroke Registry. In Chapter 5, we present potential

future work to extend our methodologies to handle additional problems that arise

from missing data.
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Introduction
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1.1 Missing Data Problem

Missing data are a common problem in data collection. There are many potential

sources of missing data. For instance, in surveys information may be missing due

to nonresponse from subjects because participants may refuse to reveal some private

information or participants may forget to answer certain questions. Some survey

developers may design the study so that some questions are asked of only a subset

of participants. Longitudinal studies may suffer from missing data due to attrition.

Subjects may drop out before the end of the study because they have moved away from

the study location, see no personal benefit in participating, or become decease. In

registry data, clinicians may fail to collect some data on the patient or some questions

may not be applicable to the patient and are skipped. Appropriately dealing with

missing data requires a careful examination of the data to identify the source, pattern,

structure, and missing data mechanism. Understanding these aspects are vital since

the different methods for dealing with missing data make assumptions about the

missingness.

1.2 Missing Data Nomenclature

We can distinguish between patterns of missingness. Some methods to handle miss-

ing data apply to any pattern of missing data while some are restricted to special

missing data patterns. Little and Rubin (2014) describe the missing-data patterns

as univariate, monotone, file matching, latent variable, general, unit nonresponse,

and item nonresponse. Univariate nonresponse occurs when missingness is confined

to a single variable. In practice, missing values often occur in multiple variables.

A monotone missing data pattern is typically associated with a longitudinal study

where participants drop out. The data have a monotone missing pattern when the

event of a particular individual implies that all subsequent variables are also missing.
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The file-matching problem exists when data are combined from two different sources

that capture different data. Latent-variable patterns exist when unobserved, latent

variables are completely missing. Perhaps the most common configuration of miss-

ing values is a general missing data pattern. A general pattern has missing values

randomly dispersed throughout the data. Based on this typology, determinants of

missing data can also be distinguished. For example, unit nonresponse can occur

when a questionnaire is administered and a subset of sampled individuals do not

complete the questionnaire. Unit nonresponse is often divided into three components

to include non-contact, inability to respond, or refusal. Alternatively, item nonre-

sponse occurs when the sample unit does not respond to some items or questions

which ultimately cause missing data. Understanding the missing data patterns is im-

portant because inadequate handling of missing data may lead to biased estimation

and inference.

To understand the mechanisms that lead to missing data, Rubin (1976) created a

taxonomy for missing data which is widely used in the literature and determine the ap-

propriateness of methods to handle its complexities. The missing data mechanism can

be classified as missing completely at random (MCAR), missing at random (MAR),

or missing not at random (MNAR). The most basic assumption about missing data

is to assume the data are MCAR. MCAR is an assumption in which the missingness

of the data is completely independent of both the observed and the missing values.

To introduce these terms, suppose we have complete data Y = (yij) where i = 1, .., n

defines the number of subjects, and j = 1, ..., p defines the p variables. Suppose Y

is subjected to missingness where Yobs is the observed components of Y and Ymis are

the missing components. We let R = Rij be the response matrix which takes values

1 if yij is observed and 0 if yij is missing. In terms of the conditional distribution of

R given Y , if P (R|Y ) = P (R), then the data are MCAR. MAR is a less restrictive

assumption that implies that missingness does not depend on missing components of
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Y but does depend on observed components. That is, P (R|Y ) = P (R|Yobs). If the

data is neither MCAR or MAR then the probability that Y is missing depends on

unobserved values and is missing not at random (MNAR). MNAR informs that the

distribution of the observed values differs from the distribution of the missing values.

From the perspective of surveys, the responders differ from the nonrespondents. The

latter is a more complex situation to handle because missingness actually depends on

values that are not observed. An example to further demonstrate these mechanisms

is by the modeling of weight, Y , as a function of a fully observed variable gender.

Some subjects may have no record of weight and it is important to understand which

mechanism caused the data to be missing. If the data are MCAR, then there is no

particular reason why some subjects revealed their weights and others did not. In

the case of MAR, one gender may be less likely to disclose its weight, that is, the

probability that Y is missing depends on a variable that is completely observed. In

the case of MNAR, heavy or light people may be less likely to disclose their weight.

That is, the probability that Y is missing depends on the unobserved value of Y itself.

The mechanism is important to consider in choosing a missing data approach.

The missing data mechanism can also be referred to as ignorable or nonignorable

(Rubin, 1987). The missing data mechanism is said to be ignorable if the data are

MCAR or MAR and the parameters governing the missing data process are distinct

from parameters to be estimated. Furthermore, if the missing data mechanism is ig-

norable, then there is no need to postulate a model for the missing data mechanism.

A more complicated situation arises when the missing data mechanism is nonignor-

able. Nonignorability occurs when the data mechanism is either MNAR or MAR

and there is no distinction from the parameters. Thus nonignorability requires one

to jointly model the data missing data and the response indicator R. Effective esti-

mation in the presence of nonignorable missing data requires some prior knowledge

about the missing data mechanism. Although there is a distinction between MNAR
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and nonignorability, it is often treated as synonymous in practice. It is also important

to note that the terms MNAR and NMAR (not missing at random) are often used

interchangeably, therefore we adopt this terminology throughout this dissertation.

1.3 Methods to Handle Missing Data

The missing data mechanisms are the basis for understanding the appropriate missing

data methods. In this section we present methods to handle missing data by the three

missing data mechanisms.

1.3.1 Missing Completely at Random Methods

In the case of MCAR data, the subjects in the sample with completely observed

data can be viewed as a random sample of the population of interest. Thus, the

commonly used complete-case (CC) analysis method, which discards subjects with

missing observations, is appropriate and leads to unbiased results. However, there

is a loss of efficiency and decrease in power due to decreased sample size. Another

major drawback of the CC method is that often too many observations are discarded

and there is a substantial loss in efficiency. An alternative approach is available-case

analysis. In an available-case analysis, all cases where the variable of interest is present

are included. Available-case analysis uses all possible information in each analysis.

While available-case analysis retains more of the observed data as compared to CC,

a disadvantage of available-case analysis is that the sample base changes from model

to model and will complicate model selection. Another approach, used primarily in

longitudinal studies, is last observation carried forward (LOCF). For each subject,

missing values in a variable are replaced by the last observed value of the variable.

However, LOCF relies strongly on the assumption that the variable value remains

unchanged after drop-out. It replaces the missing values with a single imputed value
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which does not account for the uncertainty of imputation. When the data are not

MCAR, then the data can not be viewed as a random sample of the population,

therefore, the CC, available-case, and LOCF methods are typically not appropriate.

For this reason, Little (1988b) developed a test to determine whether the data are

MCAR, or not, which uses a global test statistic that utilizes all of the available data.

1.3.2 Missing at Random Methods

MAR is a less restrictive assumption and is often more suitable. Most inference with

missing data have been developed with the assumption that the missingness is at

random. CC analysis can also be unbiased under certain MAR mechanisms. The key

is that misssingness is conditionally independent of the outcome Y (White and Carlin,

2010). Nevertheless, CC methods generally are not applicable under the assumption

of a MAR mechanism. It is also important to understand the dimension of the MAR

data because this also determines appropriateness of methods to handle missing data.

When data are high-dimensional, for example in gene expression data, the number of

p variables is relatively large or strictly larger than the n samples (p > n or p >> n,

respectively) and traditional missing data methods are not applicable.

1.3.2.1 Techniques for low-dimensional data with missing values assum-

ing MAR

Schafer and Graham (2002) reviewed missing data methods assuming the data are

MAR and the sample size larger than the number of predictors. The authors review

maximum likelihood approaches, expectation-maximization (EM) algorithm, weight-

ing methods, and multiple imputation (MI). Under MAR, likelihood approaches are

commonly used. In the case of an ignorable missing data mechanism, we treat R as a

random variable and specify the full distribution of Y and R where β is the parameter

for the distribution of Y . The β are distinct from the unknown parameter α in the
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distribution of the missing data mechanism. Furthermore, likelihood-based inferences

for β in the full likelihood are the same as the ignorable likelihood

L(β|Yobs) =
∫
f(Yobs, Ymis|β)dYmis which ignores the missing-data mechanism,

since the likelihoods are proportional. Kenward and Molenberghs (1998) determined

that standard errors and confidence intervals under MAR using the likelihood ap-

proach should be based on the observed information matrix instead of the expected

information matrix. If there is no closed form expression for the ML estimates, then

the EM algorithm (Dempster et al., 1977) is generally used. The EM algorithm is a

very general iterative algorithm for maximum likelihood estimation in missing data

problems. The E step of the EM algorithm finds the conditional expectation of the

missing data given the observed data and current estimated parameters, and then

substitutes these expectations for the missing data. The M step of EM determines

the estimated parameters by maximizing the expected complete-data loglikehood.

Apart from ML and EM, inverse probability weighting (IPW) and MI can be used

when the data are MAR. IPW reconstructs the full population by reweighting the

data from subjects who have observed data and deriving these weights from a model

for the probability of missingness. Scharfstein et al. (1999) improve the efficiency

of the IPW estimator and create a doubly robust augmented IPW estimator. An

estimate is doubly robust if it remains consistent when either a model for predicting

the missing probabilities or a model for predicting the missing values is correctly

specified. An alternative approach is imputation. It is applicable to any type of data

and model. It allows for complete-data methods (methods that would be used in the

absence of missing data) to be used independent of the imputation. Single imputation,

for instance, replaces the missing values with means or draws from the predictive

distribution of the missing values. However, single imputation treats the single value

as known which does not fully reflect sampling variability and does not account for

the uncertainty in nonresponse, therefore, MI is a more favorable approach. MI is a
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Bayesian approach which ’fills in’ the missing values with M plausible values (Rubin,

1978) drawn from the posterior predictive distribution of Ymis. Furthermore, if we

assume the data are MAR, that is, f(R|Y, α) = f(R|Yobs, α) where α denotes the set

of parameters associated with the missing data mechanism and we also assume that

the missing data mechanism is ignorable (ignorability implies α and β are distinct)

then it follows that

f(Ymis|Yobs) =

∫
f(Ymis|Yobs, β)f(β|Yobs)dβ (1.1)

where f(β|Yobs) is the observed-data posterior distribution and f(Ymis|Yobs, β) is the

conditional predictive distribution (Schafer, 1999). An imputation for Ymis can be

created by first randomly drawing the unknown parameters from the observed-data

posterior and then proceeding with a random draw of the missing values from the con-

ditional posterior predictive distribution. In order to conduct MI, one must postulate

a statistical model for the conditional predictive distribution and the observed-data

posterior distribution. A total of M random draws from the conditional predictive

distribution create M imputations for the missing values resulting in M completed

data sets. Finally, standard complete-data methods are applied to each M data set

and the resulting estimates are combined to create one inference which can properly

reflect the uncertainty due to nonresponse and validly reflect sampling variability.

1.3.2.2 Techniques for high-dimensional data with missing values assum-

ing MAR

In the case of high-dimensional data (p > n) that is assumed to be MAR, existing

methods do not perform well. Procedures to handle missing data in the presence of a

MAR mechanism with high-dimensional data typically involve imputation. However,

the statistical model for the observed-data posterior distribution needs to be adjusted
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to handle the structure and size of the data. Previous approaches use model trimming

or regularization, coupled with imputation. Stekhoven and Bühlmann (2012) used

a classification technique, namely random forest (RF), to impute missing values in

high-dimensional data. The variable with missing values is treated as the response

variable and other (auxiliary) variables are used for bootstrap aggregation of multiple

regression trees to potentially reduce overfitting. The predictions are combined from

trees to improve accuracy of prediction of the missing values. However, the selec-

tion of tuning parameters such as the number of trees and number of nodes needs

further investigation. Liao et al. (2014) used a K-nearest-neighbor imputation to fill

in missing values. For a missing value, the method seeks its K nearest variables or

subjects and imputes by a weighted average of observed values of the similar neigh-

bors. Although the method was shown to perform well in their simulations where the

performance was evaluated based on comparisons between true and imputed values,

it does not properly propagate the uncertainty in estimating the parameters in the

imputation model and hence it is not proper in the sense of Rubin (1987). Improper

imputation can lead to biased inference in the subsequent analyses.

Zhao and Long (2013a) proposed an MI approach for high-dimensional data based

on regularized regression that does account for the uncertainty in imputation. Specif-

ically, they investigated the use of MI through direct and indirect use of regularized

regression. In the former, regularized regression is used for both variable selection

and parameter estimation for imputation models; in the latter regularized regression

is only used for model trimming. Direct use of regularized regression in MI was shown

to achieve superior performance in the settings considered in their work. They also

proposed an MI method using the Bayesian lasso (Park and Casella, 2008) to estimate

and select important variables in imputation models. However, these methods also

have some limitations and particularly they may not yield good performance when

the true imputation model is large. There only exist a few methods to handle missing
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data in high-dimensions; all of which range in ability to reduce bias, efficiently esti-

mate standard errors, and computational efficiency. There is a need to develop new

methods to handle missingness in high dimensions. This dissertation proposes a new

method to impute missing data by screening for important variables and using linear

combinations constructed by either principal components or sufficient dimension re-

duction regression to build imputation models for multiple imputation. Our methods

do not rely on numerous tuning parameters and properly account for the uncertainty

across imputations.

1.3.3 Missing Not at Random Methods

It is often really difficult to distinguish between a MAR or MNAR missing data

mechanism and no formal test have been developed to distinguish between the two

mechanisms. If questions arise about the missing data mechanism, then the MNAR

assumption may be more appropriate. However, ignoring the missing data mechanism

in the case of MNAR data can result in biased inferences. To remedy this issue, several

approaches to handle MNAR data have been developed and include the use of selec-

tion models, pattern-mixture models, hot deck imputation, and multiple imputation.

To introduce these methods, suppose we have the partition Y = (Yobs, Ymis) and X

which represents a set of covariates that are fully observed. Heckman (1979) proposed

selection models which specify the full-data distribution and require assumptions for

the distribution of the missing values. In selection models, the joint distribution of

Y and the response indicator R are factorized as P (Y,R|X) = P (Y |X)P (R|X, Y ),

where the first factor characterizes the distribution of Y and the second distribution

models the missing data as a function of Y . Another approach to handle MNAR data

uses the methods of Little (1993) who introduced the pattern-mixture models which

stratify the responses by missing data patterns. That is, the nonresponse process is a

mixture model of varying missing data patterns. The pattern-mixture model are fac-
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torized as P (Y,R|X) = P (Y |X,R)P (R|X), where the first distribution characterizes

the distribution of Y in the strata defined by different patterns of missing data and

the second distribution of R models the incidence of the different patterns. An impor-

tant practical problem with pattern-mixture models is that the patterns with missing

data typically have one or more inestimable parameters, as a result, pattern-mixture

models are often underidentified (Little, 1993). Moreover, both approaches are sensi-

tive to model specification, therefore Little and Rubin (2014) recommend sensitivity

analysis be performed by estimating a variety of missing data models rather than to

rely exclusively on one model.

1.3.3.1 Parametric Imputation Techniques for MNAR data

Imputation-based alternatives to model-based methods allow for standard complete-

data methods (methods that would be used in the absence of missing data) and are

often preferred due to its ease of implementation. Imputation methods can be ei-

ther parametric or nonparametric. Glynn et al. (1993) were the first to contribute

to the development of parametric multiple imputation in the context of nonignor-

able missing data. Their approach is applicable when direct information is available

from a complete sample of the nonrespondents which is the ideal situation. They

considered a mixture model which assumes the distribution differs for respondents

and nonrespondents. The authors described the use of multiple imputation in the

estimation of the mean and regression parameters when follow-up data is available

on the nonrespondents. Their method makes use of three types of subjects: respon-

dents, respondents that were once nonrespondents until follow-up data was obtained,

and nonrespondents. The standard approach to estimate the mean is the double-

sampling procedure which is the weighted mean of the original respondents and the

nonrespondents available for follow-up. The weights are equivalent to the proportion

of respondents and the number of nonrespondents before follow-up data is obtained.
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The authors discussed alternatives to the double-sampling procedure that are based

on mixture models assuming a normal distribution with multiple imputation which

are more easily implemented and can handle more complex estimation problems.

The normal imputation method was conducted by drawing samples for the nonre-

spondents from a normal distribution with mean and variance equivalent to the mean

of the followed-up nonrespondents. They showed that asymptotically, the multiple

imputation estimate and the double-sampling estimate of the mean and standard er-

ror are equivalent. The method is shown to perform well in simulation settings for

the mean with varying percents of missing values and different nonresponse models.

Glynn et al. (1993) believed their method is more appealing to users because the mix-

ture model approach does not involve specification of the model for the probability

of nonresponse as compared to selection model based approaches which involve joint

specification of the data model and response model. Nevertheless, in practice it can

be really difficult to obtain complete follow-up information from a random sample of

nonrespondents and selection model based approaches may be favored.

Other methods for multiple imputation with nonignorably missing data include

Carpenter et al. (2007) who also proposed a parametric approach which involves

reweighting to investigate the influence of departures from the ignorable (MAR)

assumption on parameter estimates. The authors presented a simplified clinical

trial data setup supposing the data is composed of n subjects, a single response

Yi, baseline data Xi, and a response indicator Ri denoted 1 if Yi is observed and

0 if Yi is missing for a subject. Then the nonresponse model is logit[P (Ri = 1)] =

α+βI[patient i on active treatment]+γXi+δYi where I is an indicator function, α is

the adjusted log-odds of observing Yi, β is the adjusted change in the log-odds ratio of

observing Yi if the subject is assigned to the active treatment, γ is the adjusted change

in the log-odds ratio of observing Yi for a one-unit change in Xi, and δ is the change in

the log-odds ratio of observing Yi for a one-unit change in the single response Yi. The
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value of δ determines how much missingness depends on Y and if we suppose δ = 0,

then the missing data mechanism is MAR. The δ can be varied for sensitivity analysis.

To avoid the task of jointly fitting a model for the data model and the nonre-

sponse model, a necessity for imputations under nonignorability, Carpenter et al.

(2007) derive weights applied to the estimates obtained from the MAR imputations.

Importance sampling is used to obtain the weights since one can readily sample from

the MAR model as long as the NMAR models estimates are on the same support.

A thorough derivation of weights are given using the importance sampling technique

with the weight defined as

w̃m = exp(

n2∑
i=1

−δY m
i )

wm =
w̃m∑M

m=1 w̃m

where n2 is the number of nonrespondents and δ can be specified depending on the

assumption of MNAR. The MNAR estimator and its associated variance can be com-

puted as

θ̂MNAR =
M∑

m=1

wmθ̂M

VMNAR ≈ ṼW +

(
1 +

1

M

)
ṼB

where θ̂M is the complete data estimates obtain from the MAR imputations, ṼW =∑M
m=1wmσ̂

2
m and ṼB =

∑M
m=1wm(θ̂m − θ̂MNAR)2. The weighting approach is fairly

simple and they argue that it is appealing to analyst because of its ease of implementa-

tion since there is no need to jointly model the data model and the nonresponse model.

Their method requires M ≥ 50 imputations because accuracy of the approximation
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of the MNAR estimate and its corresponding variance improves with increasing num-

ber of imputations. Simulations studies were conducted with δ = 1 and the mean of

Y was computed assuming MCAR, MI assuming MAR, and their new proposed re-

weighting MAR for MNAR imputations. For each increasing number of imputations,

the re-weighting approach outperformed the other methods. However, a drawback of

their approach is that they do not take into account uncertainty regarding the missing

data mechanism and they did not investigate the impact of misspecifying the propen-

sity of missingness δ. Also the the standard errors associated with their method may

generally be underestimated since the degrees of freedom for the t-distribution of the

MAR imputation should be decreased for the NMAR estimator because re-weighting

decreases the effective sample size. A consequence of underestimated standard errors

is confidence intervals which do not have desired coverage rates.

Siddique et al. (2012) developed an imputation procedure that actually incor-

porates missing data mechanism uncertainty by specifying a range of ignorability

assumptions and combining these assumptions into one inference. The I models are

drawn from the distribution of nonignorable (and ignorable) models by multiplying

the ignorable imputed values by a factor of k defined as follows: (nonignorable imputed Yi) =

[(k − 1)× |ignorable imputed Yi|] + ignorable imputed Yi. The ignorable imputed Yi

are generated by regression imputation (Rubin, 1987) and the multiplier k is formed

by multiple draws from a distribution which depends on the ignorability assumptions.

For example, specifying k as Normal (1.5, 0.5) suggest that the imputer believes that

missing values tend to be larger than the observed values thus relying on a non-

ignorability assumption. Then J multiple imputations are made for each of the i

models which results in I × J completed data sets. More specifically, define ψ as the

imputation model which is drawn from the predictive distribution

ψi ∼ p(ψ), where i = 1, ..., I.
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Then j independent imputations conditional on ψi are drawn such that an imputation

for the missing components of Y , known as Ymis is

Y
(i,j)
mis ∼ p(Ymis|Yobs, ψi) where j = 1, ..., J

where Yobs is the observed units of Y . However, the I × J nested multiple impu-

tations are not independent draws from the same posterior predictive distribution

of Ymis, therefore Rubin (1987) combining rules for multiply-imputed data sets were

not applicable. They adopt combining rules for the nested multiple imputations

which generates an overall average of the I × J point estimates, overall average of

the associated variance estimates, the within-model variance, and the between-model

variance. The multiple-model approach of Siddique et al. (2012) is an improvement

over methods that make no assumptions regarding missing data mechanism uncer-

tainty. Although in real world settings it may be impossible to know precisely the

degree of nonignorablity, hence the distribution of k. Our new proposed multiple im-

putation approach alleviates the need to specify unverifiable adjustment parameters

such as k. We propose a sensitivity analysis which allows users to incorporate prior

knowledge on the missing data model and response model through the use of weights.

Our approach allows the use of auxiliary variables that are not part of the analysis

procedure to be incorporated into the response model to decrease bias and increase

efficiency.

Kim and Kim (2012) proposed an imputation method for general purpose esti-

mation based on the parametric fractional imputation for nonignorably missing data.

The methodology involves using a fraction of all observed values defined in the corre-

sponding imputation cell to impute the unobserved values. Similar to the approach

of Carpenter et al. (2007) weights are derived using importance sampling and the

Expectation Maximization (EM) algorithm, but instead of being applied to adjust
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the MAR estimates, it is applied as a fraction of the observed values. Under nonig-

norable missingness, the parameters associated with the outcome model β and the

nonresponse model α must be estimated simultaneously. To find the estimator that

maximizes the observed likelihood Lobs(α, β), which equates to solving the mean score

function for α and β, we set S̄(α, β|α̂(t), β̂(t)) = 0, where t is the t-th iteration in the

EM algorithm and the fractional weights are defined as

wij(t) ∝
f1(y

∗(j)
i |xi, β̂(t)){1− π(xi, y

∗(j)
i ; α̂(t))}

f̂(y
∗(j)
i |xi, Ri = 1)

with
∑M

j=1w
∗
ij(t) = 1 and f̂(y

∗(j)
i |xi, Ri = 1) which is the estimated conditional distri-

bution used to generate the imputed values for Yi,mis. The authors suggest alternatives

for avoiding really large fractional weights by using a different form of imputing val-

ues. Also an easier approach that does not rely on the EM can be implemented if

follow-up data are available. Furthermore, if the number of imputations M is large,

then a calibration weighting technique can be used to calculate the fractional weights.

Variance estimation can be computed for the parametric fractional imputation using

a replication method such as jackknife or bootstrap. Simulation results were shown

to demonstrate that the resulting estimator is very close to the maximum likelihood

estimator. Kim and Kim (2012) believe their approach has an advantage over mul-

tiple imputation. Fractional imputation uses a fraction of all the observed values in

the imputation cell and therefore there is no need to add imputation variability which

can lead to greater efficiency than the multiple imputation estimator. However, it is

difficult to compare the efficiency of MI and parametric fractional imputation because

the variances are defined differently.

Another parametric, sensitivity-free method for imputing nonignorable missing

data is the Random Indicator (RI) method introduced by Jolani (2012). The basic

principal involves generating a pseudo response indicator by drawing random values
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from the model for the missingness and iteratively imputing the incomplete vari-

able. An initial imputation for the incomplete variable Y (0) = (Yobs, Y
(0)
mis) is created

assuming the data are MAR. Suppose data are also available on a fully observed

covariate X, then a pseudo response indicator Ṙ is drawn from a Bernoulli process

Ṙ ∼ Bernoulli(1, π) where π ∼ P (R = 1|X, Y (t)) and t is an iteration. Based on the

assumption of normality, the expectation for the imputation model were presented as

the following set of equations,

E(Y |R = 1) = Xβ − δR(1− Ṙ) (1.2)

E(Y |R = 0) = Xβ − δNR(2− Ṙ) (1.3)

where δR is the adjustment parameter estimated from the observed part of the data

(eq 1.2) and the missing data are imputed using δNR (eq 1.3). The assumption is

δR = δNR and is shown to be equivalent by proofs that rely on the assumption of

normality of Yobs which can be tested. The missing data are predicted for the case

that R = 0 and Ṙ = 1 using Xβ̇ − ˆδNR and for the case that R = 0 and Ṙ = 0 using

Xβ̇ − 2 ˆδNR where β̇ is drawn from its posterior distribution for a given prior for β.

The iterative algorithm runs between the following two steps of predicting Ymis and

Ṙ until convergence. In the last stage of the imputations, an adjustment must be

applied to add the appropriate amount of noise to the predicted imputation values to

account for the missing values that are more likely to be smaller or larger. Although

a novel approach, the RI method was restricted to the assumption that Yobs comes

from a normal distribution and the variance of the responders was equivalent to the

variance of the nonresponders. The method also produced larger standard errors than

the complete-case method which leads to less efficiency.

Sullivan and Andridge (2015) also proposed a parametric approach to mutliply

impute nonignorable missing data through the use of the hot deck. They propose



18

a proxy pattern-mixture hot deck which creates a proxy for all nonrespondents and

bootstrapped respondents by regressing Y on fully observed covariates X. Predicted

values for Y are based on a pattern-mixture model and nonrespondent values are

varied by a sensitivity parameter λ that determines the missingness mechanism. The

values λ are varied as 0 to assume a MAR mechanism, 1 for a weak MNAR mechanism,

and λ =∞ assuming an extreme case of MNAR. The limitations of this method are

that the parameter λ is hard to interpret beyond MAR and MNAR and its not quite

clear that the method can be extended to general missing data patterns because

only the observed cases are bootstrapped in the beginning of the procedure. In a

subsequent paper, the method is extended to account for binary data.

1.3.3.2 Nonparametric Imputation Methods for MNAR data

In addition to the parametric multiple imputation procedure, some nonparametric

methods have been proposed through the use of the approximate Bayesian bootstrap

(ABB) and hot deck. Multiple imputation using the ABB with follow-up data for a

random sample of the nonrespondents was proposed in Glynn et al. (1993). The ABB

was performed by first randomly drawing from the sample of followed-up nonrespon-

dents followed by a random draw from the same sample for the nonrespondents with

no follow-up data. The nonrespondents values were then imputed M times to create

M completed data sets. However, there are serious limitations of this approach con-

sidering it relies on complete data for a random sample of the nonrespondents which

may be very difficult or costly to obtain in practice.

Siddique and Belin (2008) proposed a hot deck method to multiply impute nonig-

norably missing data through the use of the hot deck. The basic principal of hot deck

imputation is to use a respondent’s (donor) observation to impute the missing values

in the nonrespondents (recipients). An ignorable ABB draws the observed cases ran-

domly with replacement from Yobs to create Y ∗obs. As contrasted with the ignorable
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ABB, in the nonignorable ABB the bootstrap observed cases Y ∗obs of Yobs are drawn

with probability of selection proportional to Y c such that yi ∈ Yobs is
yci∑nobs

j=1 ycj
. The

c = {−1, 0, 1, 2, 3} and is chosen depending on the assumption of Ymis. For example, if

one assumes the nonrespondents have larger values than the respondents then c = 3;

likewise, c = −1 if one assumes the nonrespondents have smaller values. The c = 0

implies an ignorable hot deck where imputations for a nonrespondent are randomly

drawn with replacement from the respondent values. Once bootstraps samples are

generated from the observed cases to ensure a ’proper’ imputation (Rubin, 1987), then

a regression of the bootstrap samples on the fully observed variables is performed.

Predicted values are formed for all the nonrespondents ŶNR and for the respondents

ŶR in the bootstrapped sample. A distance-based donor selection procedure was in-

troduced with distances defined as Dk
NR,R = (|ŷNR − ŷR| + δ)k, where δ is a nonzero

offset that is the minimum distance between ŷNR and ŷR. The closeness parameter k

adjusts the probability of selection assigned to the closest donors and as k →∞ then

this procedure reduces to a nearest-neighbor hot deck. If the exponent k = 0, then

it is equivalent to a simple random hot deck. The authors suggested that k = 3 had

the most favorable results with respect to favoring nearby donors. In this method,

covariate information is used to obtain predicted values but is not incorporated in

correction for nonignorability. As a consequence, covariate information is lost. We

propose a more robust, nonparametric MI method that harnesses the power of boot-

strapping and the hot deck but is distinctive from these methods. Our method uses

a model for the data and also incorporates a model for the probability of missingness

by using available covariate information in the data model and the probability of

missingness model.
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1.4 Diagnostic Methods for Missing Data Models

Multiple imputation is a popular method for handling missing data. However, it is

not common in practice to perform diagnostic checks to determine whether the im-

putations formed from an imputation model are plausible. Meng (1994a) suggested

that the imputation model be congenial or general enough to preserve any associ-

ations among variables that may be the target in the subsequent, completed data

analyses. Furthermore, a general imputation model that is close to the true model al-

lows for accommodation of a wide range of statistical models that can be used on the

completed data sets. In order to construct a reasonable, general imputation model, a

major issue is to not exclude any important predictors or relationships (i.e. nonlinear

relationships) among the data. Excluding important features may lead to imputation

models that are not as general than the subsequent analysis and can potentially bias

the results. Diagnostic and model checking of imputation models is a natural way to

determine whether these assumptions hold.

Although diagnostic methods are scarce, diagnostic testing for missing data mod-

els have a long history. One of the first studies for diagnostic for missing values was

introduced by Poirier and Ruud (1983). They introduced a more general case of the

Heckman (1977) selection model to handle missing data in a maximum likelihood

based approach. Violation of either homoscedasticity and lognormality could poten-

tially result in inconsistency of the estimators in those models. To identify departures

from model assumptions, they proposed the use of Lagrange multipliers test. How-

ever, they did not study diagnostic for imputations because it was before (Rubin,

1987) published his pioneering work on MI to handle nonresponse in surveys.

Previous work on imputation diagnostic is limited to the assumption that the data

are missing at random. For instance, Raghunathan and Bondarenko (2007) proposed

the use of propensity scores as a diagnostic tool to check the validity of imputed vales

in MI. They checked the equality of the distributions of the observed and missing
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values conditional on the response propensity score. Wang (2010) extended this

diagnostic approach to include a regression of both the observed and imputed data

as a function of the predicted propensity score and the missingness indicator. With

the extension, Wang (2010) was able to check whether the imputation model used to

generate imputations would preserve the associations among variables in the dataset

by determining if the missingness was completely explained by the response propensity

score.

Several authors have used graphical tools and numerical test such as Kolmogorov-

Smirnov test to assess plausibility of imputations. For example, Abayomi et al. (2008)

examined the empirical density plots, bivariate scatter plots, and residual plots to

identify dramatic differences from the observed and imputed data. Bondarenko and

Raghunathan (2016) made graphical comparisons of the observed and imputed values

conditional on the response propensity to assess the suitability of imputations from

imputation models. Abayomi et al. (2008) and Nguyen et al. (2013) used the KS

test to diagnose problems with imputation models by comparing the empirical dis-

tribution of the observed and imputed data. Abayomi et al. (2008) flagged imputed

variables with statistically significant differences and further examined variables us-

ing graphical techniques. Nguyen et al. (2013) suggested that the imputed variables

required more rigorous evaluation after the KS test is performed. Nguyen examined

the behavior of the KS p-value under various scenarios in simulations, including vary-

ing the amount of missing data, misspecified imputation models, and skewed and

heavy-tailed distributions.

He and Zaslavsky (2012) and Nguyen et al. (2015) used a diagnostic method based

on posterior predictive checking [PPC] (Gelman et al., 1996), namely the posterior

predictive p-value (Meng, 1994b), to determine the adequacy of imputation models by

applying subsequent analyses of interest to both the completed data and their pos-

terior replicates simulated under the imputation model. Large differences between
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the estimates using the completed data and the simulated replicates may suggest

model inadequacy. He and Zaslavsky (2012) and Nguyen et al. (2015) checked impu-

tation models assuming the missing data are MAR. However, principled diagnostic

approaches that can handle the less restrictive assumption of MNAR have not been

investigated in the literature. Motivated by such facts, our primary goal is to evaluate

whether the diagnostic methods of He and Zaslavsky (2012) and Nguyen et al. (2015)

are applicable in the case of MNAR imputation models.

1.5 Motivating examples

Throughout this dissertation, we use two data sets with variables with missing values.

The first data set is from a prostate cancer study. These data are available in the

Gene Expression Omnibus (GEO) database under accession number GDS3289. It

contains 104 samples, including 34 benign epithelium samples and 70 non-benign

samples. Missing values are present for some genomic biomarkers. There are 1894

biomarkers that do not have missing values. However, 18,111 variables have missing

values.

The second data set is from the Georgia Coverdell Acute Stroke Registry. A

detailed description of the registry data set was reported elsewhere (Camp et al.,

2015). The primary goals of the registry are to gain a better understanding of factors

associated with stroke and improve the quality of acute stroke care of patients. There

are over 86322 subjects and over 203 variables of which 135 have missing values with

a general missing data pattern.

1.6 Outline

In this dissertation, we present robust statistical methods for various assumptions

on missing data. In Chapter 2, we develop multiple imputation methods to handle
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missing data in the presence of high-dimensional where data are assumed to be missing

at random. In Chapter 3, we present nonparametric imputation methods to handle

nonignorable missing data by using screening, sparse principal component analysis,

and sufficient dimension reduction techniques. Finally, in Chapter 4 we examine

whether posterior predictive checking is applicable for imputation diagnostics under

nonignorable missingness.
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Chapter 2

Multiple Imputation using

Dimension Reduction Techniques

for High-Dimensional Data
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Abstract

Missing data present challenges in data analysis. Naive analyses such as complete-

case and available-case analysis may introduce bias and loss of efficiency, and produce

unreliable results. Multiple imputation (MI) is one of the most widely used methods

for handling missing data which can be partly attributed to its ease of use. However,

existing MI methods implemented in most statistical software are not applicable to

or do not perform well in high-dimensional settings where the number of predictors

is large relative to the sample size. To remedy this issue, we develop an MI approach

that uses dimension reduction techniques. Specifically, in constructing imputation

models in the presence of high-dimensional data our approach uses sure independent

screening followed by either sparse principal component analysis (sPCA) or suffi-

cient dimension reduction (SDR) techniques. Our simulation studies, conducted for

high-dimensional data, demonstrate that using SIS followed by sPCA to perform MI

achieves better performance than the other imputation methods including several ex-

isting imputation approaches. We apply our approach to analysis of gene expression

data from a prostate cancer study.
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2.1 Introduction

Appropriate handling of missing data requires an understanding of its source and

structure. It is well known that naive analyses such as complete-case and available-

case analysis may introduce bias and loss of efficiency, and produce unreliable results.

Multiple imputation (MI) (Rubin, 1976, 1987) is one of the most widely used methods

which can be partly attributed to its ease of use. The basic idea underlying MI is

to replace missing values M times by ”plausible values” drawn from their posterior

predictive distributions given the observed data. Multiply imputed data sets are

generated to account for sampling variability and uncertainty of imputing missing

values. Then each data set completed by imputation is analyzed using the standard

complete-data methods and the estimates obtain from these analyses are combined

using Rubin’s rule (Rubin, 1987) to create one statistical inference summary. A key

advantage of MI is that the imputation model can be operationally distinct from

the subsequent analyses (target analysis that would be performed in the absence of

missing data). The use of MI has been investigated in various settings and detailed

reviews are provided elsewhere. (Harel and Zhou, 2007; Carpenter and Kenward,

2012)

The Problem

The validity of MI is predicated on several assumptions. First, the missing at random

(MAR) (Little and Rubin, 2014) mechanism is often assumed and implies the miss-

ingness is not associated with the missing values conditional on observed data.(Rubin,

1976) Our current work assumes that the incomplete data are MAR. Second, Meng

(Meng, 1994a) suggested that the imputation model be congenial or general enough to

preserve any associations among variables that may be the target in the imputed data

analyses. Furthermore, a general imputation model that is close to the true model
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allows for accommodation of a wide range of statistical models that can be used on

the imputed data sets. In order to construct a reasonable, general imputation model,

a major issue is to not exclude any important predictors, since excluding important

variables may lead to imputation models that are not as general than the subsequent

analysis and will potentially bias the results. However, in practice it is not feasible to

specify all possible relevant predictors and their interactions in an imputation model.

A more challenging problem arises in the presence of high-dimensional data where the

number of variables is larger than or approximately equal to the sample size. Largely

due to the advancement of technology, the amount of data collected is rapidly in-

creasing which give rise to high-dimensional data. Examples of high-dimensional

data include genomics, proteomics and functional magnetic resonance imaging data.

These data often contain missing values, yet there has been limited work in develop-

ing approaches for handling missing data in the presence of high-dimensional data.

Standard MI approaches implemented in most statistical software perform poorly or

fail in the presence of high-dimensional data.(Zhao and Long, 2013a)

Existing approaches for MI in the Presence of High-Dimensional

Data

Model trimming is essential to construct imputation models in the presence of high-

dimensional data. Stekhoven and Bühlmann (2012) used a classification technique,

namely random forest (RF), to impute missing values in high-dimensional data. The

variable with missing values is treated as the response variable and other (auxiliary)

variables are used for bootstrap aggregation of multiple regression trees to potentially

reduce overfitting. The predictions are combined from trees to improve accuracy of

prediction of the missing values. However, the selection of tuning parameters such

as the number of trees and number of nodes needs further investigation. Liao et al.

(2014) proposed another imputation approach for high-dimensional data which is a
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variation of a K-nearest-neighbor imputation. For a missing value, the method seeks

its K nearest variables (KNN V) or subjects (KNN S) and imputes by a weighted

average of observed values of the similar neighbors. Although the method was shown

to perform well in their simulations where the performance was evaluated based on

comparisons between true and imputed values, it does not properly propagate the

uncertainty in estimating the parameters in the imputation model and hence it is not

proper in the sense of Rubin (Rubin, 1987). Improper imputation can lead to biased

inference in the subsequent analyses.

Zhao and Long (2013a) proposed an MI approach for high-dimensional data based

on regularized regression that does account for the uncertainty in imputation. Specif-

ically, they investigated the use of MI through direct and indirect use of regularized

regression. In the former, regularized regression is used for both variable selection

and parameter estimation for imputation models; in the latter regularized regression

is only used for model trimming. Direct use of regularized regression in MI was shown

to achieve superior performance in the settings considered in their work. They also

proposed an MI method using the Bayesian lasso (Blasso)(Park and Casella, 2008) to

estimate and select important variables in imputation models. However, these meth-

ods also have some limitations and particularly they may not yield good performance

when the true imputation model is large. To tackle this challenge, we consider an

alternative approach to constructing imputation models by incorporating dimension

reduction techniques.

2.1.1 Dimension Reduction Techniques for High-Dimensional

Data

Screening is an effective strategy to deal with high dimensionality. In particular,

sure independent screening (SIS) (Fan and Lv, 2008) is a method which is based on

correlation learning which filters out the features that have weak correlation with



29

the response. Another dimension reduction technique is sparse principal component

analysis (sPCA).(Zou et al., 2006) The commonly used principal component analysis

(PCA) seeks linear combinations of p variables such that the derived components cap-

ture maximum variance. Yet, a drawback of PCA is that the loadings of all p variables

are typically nonzero, which is often hard to interpret. Zou et al. (2006) modified

PCA by using the lasso penalty (sPCA ST) to shrink some loadings to zero, allow-

ing for identification of important features. More recently, other authors proposed

adjustments to sparse principal component analysis. Witten et al. (2009) used penal-

ized matrix decomposition (sPCA PMD), a regularized version of the singular value

decomposition, to create sparse loadings. Lee et al. (2012) proposed two approaches

to modify sPCA by using the lasso (Tibshirani, 1996) (sPCA L) and adaptive lasso

(Zou, 2006) (sPCA AL) penalty terms.

Alternatively, we can use sufficient dimension reduction regression (Weisberg,

2002) (SDR) to find relevant predictors in imputation models. SDR seeks to find

d linearly independent linear combinations such that all the information about the

regression is contained in the d linear combinations and d is typically considerably

less than the number of variables (namely, p). There are several variations of SDR

including sliced inverse regression (SIR) (Li, 1991), sliced average variance estimates

(SAVE) (Dennis Cook, 2000), and principal Hessian directions (PHD) (Li, 1992).

In this paper, we propose a new MI approach that imputes the missing values

by first screening for relevant predictors of a variable with missing values. Using the

screened variables, we further reduce dimensions by applying SDR or sPCA and use

the resulting linear combinations to construct imputation models. The remainder

of this paper is organized as follows. In the next section, we describe the proposed

approach based on SPCA and SDR. In the following section, we perform simulations

to evaluate the performance of the proposed approach in comparison with several

existing approaches including Blasso, DAlasso, KNN S, KNN V, and RF in the pres-
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ence of high-dimensional data. In the fourth section we illustrate the new proposed

approach using genomics data from a prostate cancer study. We conclude with a

discussion in the last section.

2.2 Methodology

To fix ideas, let Y denote a set of p variables observed for a random sample of n

observations. Denote by Yobs the observed components of Y and by Ymis the missing

components of Y . Suppose that Y = (Yobs,Ymis) follows a model π(Y |β) where β

is a set of parameters and the missing data mechanism is missing data at random

(MAR). Under ignorability, the standard imputation framework can be represented

by (2.1)

π(Ymis|Yobs) =

∫
π(Ymis|Yobs,β)π(β|Yobs)dY . (2.1)

Specifically, one can first generate a random draw from the posterior distribution of

β

β(m) ∼ π(β|Yobs),

and then generate a random draw of the missing values from their posterior predictive

distributions

Y
(m)
mis ∼ π(Ymis|Yobs,β

(m)),

where m = 1, ...,M and M is the number of imputed data sets. (Schafer, 1999)

For ease of exposition, we describe our proposed approach in a setting where

only one variable y1 has missing values with the remaining variables {y2, ...,yp} fully
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observed, and all y are continuous variables. Let n1 denote the number of com-

plete cases with all variables observed and n2 the number of incomplete cases with

y1 missing (n = n1 + n2). Define yobs,1 = (y1,1, y2,1, ..., yn1,1)
T as the first n1 ob-

served components of y1 and its complement as Yobs,−1 = (y1,−1,y2,−1, ...,yn1,−1)
T

with yi,−1 = (yi,2, yi,3, ..., yi,p), which together form the set of complete cases. De-

fine ymis,1 = (yn1+1,1, yn1+2,1, ..., yn,1) as the n− n1 missing components of y1 and its

complement as Ymis,−1 = (yn1+1,−1,yn1+2,−1, ...,yn,−1), which together form the set of

incomplete cases. Of note, Ymis,−1 is observed. It follows that the observed data are

(yobs,1,Yobs,−1,Ymis,−1) and the missing data are ymis,1. The imputation model (2.1)

reduces to

π(ymis,1|yobs,1,Yobs,−1,Ymis,−1) =

∫
π(ymis,1|Ymis,−1,β)π(β|yobs,1,Yobs,−1)dβ. (2.2)

To complete the imputation model (2.1), we can posit a regression model with y1 as

the outcome

y1 = δ0 + Yobs,−1δ + ε (2.3)

where ε ∼ N(0, σ2In1) and β = (δ0, δ, σ
2)T . Model (2.3) can be fitted using the

set of complete cases. However, when p � n, standard regression techniques such

as ordinary least squares fail and it is imperative to perform variable selection or

dimension reduction when fitting model (2.3). As demonstrated in our simulations,

when the true model for (2.3) is large, i.e., the number of important predictors in

(2.3) is large relative to n, imputation methods based on regularized regression may

yield unsatisfactory performance.

We propose to use dimension reduction techniques when constructing imputation

models, specifically, applying SIS followed by either sPCA or SDR before fitting model

(2.3). The proposed imputation approach is detailed as follows:
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1. In the first step, SIS is performed using the complete cases to find a subset of v

variables that are predictive of the incomplete variable y1. Let {t1, ..., tv} index

the subset of v variables selected from y2, . . . , yp using SIS, where v < p− 1.

2. In the second step, we achieve further dimension reduction via either sPCA or

SDR, as v can be still large relative to n.

(a) Applying sPCA to the set of v variables selected in the first step and using

all n observations, we obtain

z1 = α1,1yt1 + α1,2yt2 + ...+ α1,vytv

z2 = α2,1yt1 + α2,2yt2 + ...+ α2,vytv

...

zv = αv,1yt1 + αv,2yt2 + ...+ αv,vytv

where the linear combinations z1, z2, ...,zv are the principal components,

and α1,α2, ...,αv are the loading vectors. We select z1, z2, ... , zd in sPCA

by either choosing the first principal component or the first d principal

components that explain at least 60 or 80% of the total variance. It is

important to note that d is typically substantially less than the original

number of variables p and the sample size n.

(b) Alternatively, applying SDR to the set of v variables selected in the first

step, we obtain

z1 = γ1,1yt1 + γ1,2yt2 + ...+ γ1,vytv

z2 = γ2,1yt1 + γ2,2yt2 + ...+ γ2,vytv

...

zd = γd,1yt1 + γd,2yt2 + ...+ γd,vytv
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where y1 is used as the response variable, γ’s are the estimated coefficients

in SDR using the set of complete cases, and d (d < v) is chosen by using

an asymptotic test for PHD and permutation tests for SAVE and SIR

(Weisberg, 2002). The most notable difference between sPCA and SDR is

that SDR uses the variable with missing values, namely y1, as the outcome

to guide dimension reduction.

After obtaining z1, z2, ... , zd via either sPCA or SDR, defineZobs = (z1, z2, ...,zn1)
T

for the complete cases and Zmis = (zn1+1, zn1+2, ...,zn) for the incomplete cases.

Of note, both Zobs and Zmis can be calculated, since they involve only a subset

of y2, . . . , yp.

3. In the third step, we replace Yobs,−1 and Ymis,−1 with Zobs and Zmis respectively

in (2.2) and (2.3) and conduct imputation accordingly. More specifically, using

model (2.3) with yobs,1 as the outcome variable and Zobs as predictors, we ran-

domly draw β̂(m) from its posterior distribution and then impute ymis,1 using

Zmis by drawing randomly from the conditional posterior predictive distribution

π(ymis,1|Zmis, β̂
(m)), where m = 1, . . . ,M for M imputations.

Once the missing data are multiply imputed, subsequent analyses such as multiple

regression or logistic regression are performed for each of the M imputed datasets.

Analysis results are then combined for statistical inference using Rubin’s combining

rule (Rubin, 1987).

2.3 Simulation studies

We conduct simulation studies to evaluate the performance of our proposed approach.

In the second step of our proposed approach, we use either sPCA or SDR. For

sPCA, we consider four variations, namely, sPCA ST (Zou, 2006), sPCA PMD (Wit-

ten et al., 2009), sPCA L (Lee et al., 2012), and sPCA AL (Lee et al., 2012). The
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sPCA ST and sPCA PMD methods are both implemented in R package PMA(Witten

et al., 2013). The sPCA L and sPCA AL methods are both implemented in R code

provided on the authors website.(Lee et al., 2012) For SDR, we consider three vari-

ations, namely, sliced average variance estimates (Dennis Cook, 2000) (SDR SAVE),

sliced inverse regression (Li, 1991) (SDR SIR), and principal Hessian directions (Li,

1992) (SDR PHD). The SDR methods are implemented in the R package dr(Weisberg,

2002). We compare our approach to several existing imputation methods proposed

by Zhao and Long (2013a), Liao et al. (2014), and Stekhoven and Bühlmann (2012).

Zhao and Long (2013a) used Bayesian lasso regression (Blasso) and adaptive lasso

with direct use of regularized regression (DAlasso) to conduct MI in high-dimensional

data. Liao et al. (2014) used variations of k-nearest neighbors, namely, KNN S and

KNN V for imputation of missing values. Stekhoven and Bühlmann (2012) proposed

random forest (RF) for MI. We also include the standard parametric MI procedure

implemented in the R package mice(van Buuren and Groothuis-Oudshoorn, 2011)

with the default method of Bayesian linear regression.

In our simulations we focus on estimating the regression coefficients θ̂ from linear

regression in the presence of missing data. We use θ̂ obtained from the imputed data

sets to compare the performance across different imputation methods. To have a

point of reference for bias and efficiency for estimating θ, we apply a gold standard

(GS) method that estimates θ using the underlying complete data before missing data

are generated. We also perform a complete-case analysis (CC), in which only the set

of complete cases are used in data analysis.

2.3.1 Simulation setup

We vary several factors including the total number of variables (p), the number of

variables in the true imputation model (c), and the correlation among the data (ρ).

Simulations are carried out with 500 Monte Carlo (MC) datasets and the sample
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size is fixed at n = 100 in each MC dataset. Each simulated data set includes

the fully observed outcome variable (w) and the set of predictors and auxiliary

variables Y = (y1,y2, ...,yp) . The variable y1 contains missing values ymis,1 =

(yn1+1,1, yn1+2,1, ..., yn,1). The details of the simulation set-up are as follows:

I. Y−1 = (y2,y3, ...,yp) is generated from a multivariate normal distribution with

mean (0, 0, ..., 0)p−1 and a first-order autoregressive covariance matrix with au-

tocorrelation, denoted by ρ, varying as 0.1, 0.5, or 0.9. We also consider a

block diagonal covariance matrix having main diagonal blocks square matrices

with the off-diagonal blocks as zero matrices. The main diagonal block matrices

are composed of compound symmetric matrices with σ2 = 2 on the diagonals

and σ2ρ on the off-diagonals, where ρ is again varied as 0.1, 0.5, and 0.9. We

consider settings with p = 200 and p = 1000.

II. For each combination of p and ρ, y1 is generated from a normal distribution

such that y1 ∼ N(YTη, 1), where T represents the set of the variables in the true

imputation model with a cardinality of c. Two cases are considered with the

corresponding design matrices YT = (y2,y3,y50,y51), (y2, ...,y51,y100, ...,y149)

for c = 4 and c = 100, respectively. We set η = 1′ × 1,1′ × 0.05 to include the

intercept for c = 4 and c = 100, respectively. The values of η are chosen to

fix the signal-to-noise ratio when generating y1. Of note, c = 100 corresponds

to the case where the size of the true imputation model is large relative to the

sample size.

III. Given Y ,w is generated from a normal distribution w ∼ N(θ0 + θ1y1 + θ2y2 +

θ3y10, σ2 = 3), where all θ = 1.

IV. The response indicator R for y1, which is 1 if y1 is observed and 0 otherwise, is

generated from a logistic model, logit[Pr(R = 1|Y−1,w)] = −1− 0.1y2 + 2y3 −

10w which results in an average of 31% of y1 missing.
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We conduct imputation of ymis,1 using each imputation approach considered. The

subsequent analysis for the imputed data is performed using a linear regression of

w on the imputed y1 and fully observed y2 and y10. For our proposed method

and the existing MI based methods, we use the R package mice to multiply impute

the missing data with its default method of Bayesian linear regression with a ridge

parameter value of 10−5. We also investigate the use of ridge parameter values 10−1

and 10−3. Thirty imputed data sets are generated for each MI method to use in

subsequent analyses. Rubin’s rule (Rubin, 1987) is used to pool the estimates to

obtain θ̂ and their standard errors.

2.3.2 Results

The simulation results are summarized for θ̂1 which is the parameter estimate that

is associated with the incomplete variable y1. Tables 2.1, 2.2, 2.3, and 2.4 present

the mean bias of θ̂1 (Bias), mean standard error of θ̂1 (SE), Monte Carlo standard

deviation of θ̂1 (SD), mean square error of θ̂1 (MSE), and coverage rate of the 95%

confidence interval of θ̂1 (CR). In addition to comparing different methods, we eval-

uate the effect of the dimension of the data (p), the number of variables in the true

imputation model (c), and the correlation among the data Y−1 (ρ). Within each

table, p and ρ are varied while c is fixed. In both Tables 2.1 and 2.2, the covari-

ance structure is an autoregressive matrix. More specifically, c = 4 in Table 2.1 and

c = 100 in Table 2.2. In Table 2.3 and Table 2.4, the covariance structure is a block

diagonal matrix with compound symmetric blocks. We let c = 4 in Table 2.3 and

let c = 100 in Table 2.4. In our proposed approach, we use the R package SIS (Fan

et al., 2014) with the default vanilla method to find a subset of v variables that are

predictive of the incomplete variable y1. In each setting, SIS selects between 10 and

17 variables. SPCA is conducted using four variations and the number of principal

components (PCs) are selected by either choosing the first principal component or
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the first d principal components that explain at least 60 or 80% of the total variance.

We observe superior performance using one principal component.

In comparing the existing methods to our new proposed methods, we observe that

our new proposed method outperforms the existing methods. When the size of the

true imputation model is small (c = 4) relative to n, the Blasso imputation method

of Zhao and Long (2013a) yields modest bias. In contrast, the CC, MI, DAlasso,

KNN and RF methods, in general, yield substantial bias and inadequate CRs. More

importantly, our methods outperform all the existing methods, including Blasso, in

terms of bias, MSE, and coverage rates. Furthermore, as c increases to 100, there is

considerably more pronounced deterioration in the performance of Blasso compared

to our proposed approach. Our proposed method has minimal bias, coverage rates

near the nominal level, and overall superior performance as compared to the existing

methods, irrespective of whether the true imputation model is small or large relative

to n.

Among the two proposed methods, sPCA generally achieves better performance

than SDR. When the size of the true active set in the imputation model is small,

that is, c = 4 (Table 2.1), all sPCA and SDR variations exhibit negligible bias and

coverage near the nominal level. Within SDR methods, SDR SIR tends to achieve

slightly better performance than SDR SAVE and SDR PHD in terms of bias, MSE,

and coverage. When the size of the true active set is large (c = 100), the improved

performance of sPCA compared to SDR is more pronounced when correlation among

the data is small (ρ = 0.1) or moderate (ρ = 0.5). As the number of variables in the

true imputation model increases, the performance of the SDR methods slightly deteri-

orates. While SDR achieves satisfactory performance in terms of bias and MSE when

c is small (c = 4), it exhibits modest bias when c = 100 and the correlation is small

(ρ = 0.1 or ρ = 0.5), whereas the performance of sPCA methods remains satisfactory.

The sPCA methods capture the maximum variance in the data and ultimately yields
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more favorable results. Although, SDR has modest bias for the case when c = 100,

it outperforms the existing methods which exhibit substantial bias. The correlation

among the data appears to have no effect on the performance of SDR. However, when

c = 100, the sPCA methods have improved performance with increasing correlation.

This suggest that when variables are strongly correlated, the sPCA methods pro-

vide sufficient information for imputation even though the variables screened in SIS

may not be identical to the variables in the imputation model. As the dimension

of data increases from p = 200 to p = 1000, the results are comparable for all val-

ues of p, c, and ρ. This result suggest that our methods can accommodate different

size imputation models. In the case of c = 100, both our sPCA and SDR proposed

methods have improved performance when the covariance structure is block diagonal

with compound symmetric blocks (Table 2.4) as compared to the setting where the

covariance matrix is first-order autoregressive (Table 2.2). Although SDR SIR has

superior performance within the SDR methods, it is important to note that among

the sPCA methods, no method is preferred over the other.

Within the existing methods, in the case where c = 4, Blasso has better perfor-

mance in terms of bias, MSE, and coverage rates except in the case p = 200 and

ρ = 0.9. In that exception, DAlasso has better performance. Yet all existing methods

underperform our proposed methods when c = 100. The KNN and RF methods ex-

hibit extreme bias in all scenarios with the exception of KNN S with c = 100, p = 200,

ρ = 0.5, and block diagonal covariance structure. In addition, correlation amongst

the data and the number of predictors also appear to have very little influence on the

results of existing methods. In general, the existing methods do not perform well and

our proposed approach using dimension reduction techniques yield more favorable

results.
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2.4 Data example

We apply the proposed methodology to a prostate cancer study (GEO GDS3289).

The data set contains 104 samples of which 34 are benign epithelium samples and

70 nonbenign samples. There were 1,894 fully observed variables which were all

used for screening in SIS. In this analysis, we are interested in conducting a logistic

regression where we have a binary outcome (y) which is 1 if a sample is benign and 0

otherwise. The goal is to test whether a genomic biomarker VPS36 is associated with

the outcome. However, VPS36 has 51% of its values subjected to missingness. For

illustration purposes, we also include two fully observed biomarkers as predictors in

the logistic regression model. In this analysis, the GS method is not applicable since

we do not the underlying true data. In addition, the mice package used to conduct

MI in R gives error messages, therefore are not included in our results.

In Table 2.5, we present the results of our analysis for estimating the parameter

θ1, that is the regression parameter associated with VPS36. There were 11 variables

screened by SIS for VPS36. The sPCA, SDR, and existing methods give differing

results in terms of estimates and p-value. For example, VPS36 is statistically signif-

icant using the sPCA methods for dimension reduction before MI but not in SDR.

Yet, the direction of the point estimates are the same for all methods except RF.

However, RF had extreme bias in the simulations and may be questionable in this

application. In addition, the magnitude of the estimates for the sPCA methods are

considerably larger but consistent across the four sPCA methods. In contrast, the

parameter estimates and p-values are more variable in the three SDR methods. For

example, the regression coefficients for VPS36 in the SDR method range from 0.517 to

1.260, with p-values of 0.542 and 0.190, respectively. Our simulations show that per-

forming sPCA before MI generally yields minimal bias and adequate coverage rates,

therefore, may be more preferred over the other methods in this application.
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2.5 Discussion

Our work demonstrates the value of dimension reduction techniques in constructing

imputation models in the presence of high-dimensional data, particularly when the

size of the true imputation model is large. In the settings considered, the proposed

methods outperform the existing methods, irregardless of the size of the true impu-

tation model, the number of variables in the data set, and the correlation among

the data. In comparing sPCA and SDR to construct imputation models, the sPCA

method outperformed SDR in terms of bias, MSE, and coverage rate. A data exam-

ple using genomics data from a prostate cancer study is used to further illustrate the

usefulness of our proposed method.

We have considered settings under the MAR assumption where a single variable

has missing values. In practice, more than one variable of interest may have missing

values. Future work can extend our methods to the setting of general missing data

patterns with more than one variable missing. In addition, it is of interest to develop

methods to handle missing data under the assumption of missing not a random in

the presence of high-dimensional data.
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Table 2.1: Simulation results for estimating θ̂1 = 1 in the presence of missing data
based on 500 Monte Carlo data sets where n = 100, c = 4, p = 200 or p = 1000 with
autoregressive covariance matrix with ρ varying as 0.1, 0.5, and 0.9

ρ = 0.1 ρ = 0.5 ρ = 0.9

Method Bias SE SD MSE CR Bias SE SD MSE CR Bias SE SD MSE CR

GS 0.001 0.086 0.088 0.008 0.944 0.000 0.081 0.080 0.006 0.962 -0.003 0.080 0.082 0.007 0.956
CC -0.172 0.103 0.107 0.041 0.610 -0.170 0.099 0.101 0.039 0.582 -0.145 0.099 0.103 0.032 0.696
MI -0.662 0.251 0.108 0.449 0.226 -0.784 0.190 0.089 0.623 0.026 -0.778 0.209 0.085 0.612 0.026

p = 200 sPCA ST -0.026 0.100 0.097 0.010 0.940 -0.030 0.093 0.088 0.009 0.962 -0.015 0.094 0.097 0.010 0.956
sPCA PMD -0.028 0.104 0.100 0.011 0.948 -0.027 0.097 0.091 0.009 0.970 -0.021 0.096 0.099 0.010 0.946
sPCA L -0.031 0.102 0.097 0.010 0.938 -0.035 0.095 0.088 0.009 0.958 -0.018 0.095 0.098 0.010 0.960
sPCA AL -0.030 0.101 0.097 0.010 0.938 -0.033 0.094 0.088 0.009 0.958 -0.016 0.094 0.098 0.010 0.960
SDR SIR -0.028 0.106 0.107 0.012 0.940 -0.028 0.097 0.096 0.010 0.950 -0.031 0.094 0.094 0.010 0.932
SDR SAVE -0.065 0.103 0.093 0.013 0.936 -0.067 0.098 0.088 0.012 0.900 -0.051 0.097 0.090 0.011 0.928
SDR PHD -0.060 0.104 0.097 0.013 0.936 -0.063 0.098 0.089 0.012 0.918 -0.048 0.097 0.091 0.011 0.930
Blasso -0.059 0.113 0.098 0.013 0.944 -0.062 0.103 0.092 0.012 0.946 -0.074 0.100 0.088 0.013 0.908
DAlasso -0.155 0.163 0.099 0.034 0.944 -0.105 0.149 0.102 0.021 0.976 -0.049 0.126 0.094 0.011 0.988
KNN S -0.254 0.150 0.143 0.085 0.640 -0.281 0.146 0.141 0.099 0.524 -0.289 0.142 0.126 0.100 0.468
KNN V -0.313 0.158 0.126 0.114 0.504 -0.375 0.155 0.121 0.155 0.288 -0.444 0.153 0.120 0.211 0.110
RF -0.320 0.176 0.119 0.116 0.624 -0.333 0.172 0.114 0.124 0.560 -0.305 0.160 0.107 0.104 0.560

p =
1000

sPCA ST -0.016 0.100 0.094 0.009 0.970 -0.028 0.095 0.090 0.009 0.970 -0.015 0.093 0.087 0.008 0.958

sPCA PMD -0.020 0.101 0.094 0.009 0.966 -0.031 0.096 0.090 0.009 0.968 -0.017 0.094 0.088 0.008 0.956
sPCA L -0.023 0.102 0.094 0.009 0.964 -0.034 0.096 0.090 0.009 0.968 -0.019 0.094 0.088 0.008 0.956
sPCA AL -0.021 0.101 0.094 0.009 0.968 -0.032 0.096 0.090 0.009 0.966 -0.017 0.094 0.088 0.008 0.954
SDR SIR -0.028 0.097 0.096 0.010 0.950 -0.023 0.102 0.099 0.010 0.944 -0.034 0.097 0.095 0.010 0.932
SDR SAVE -0.067 0.098 0.088 0.012 0.900 -0.065 0.098 0.090 0.012 0.910 -0.046 0.098 0.091 0.010 0.932
SDR PHD -0.063 0.098 0.089 0.012 0.918 -0.061 0.099 0.093 0.012 0.926 -0.043 0.098 0.093 0.011 0.942
Blasso -0.093 0.121 0.120 0.023 0.910 -0.070 0.108 0.091 0.014 0.938 -0.079 0.102 0.096 0.015 0.940
DAlasso -0.277 0.180 0.109 0.089 0.794 -0.250 0.176 0.107 0.074 0.846 -0.176 0.179 0.115 0.044 0.954
KNN S -0.306 0.151 0.141 0.113 0.486 -0.368 0.149 0.134 0.154 0.286 -0.396 0.146 0.136 0.175 0.218
KNN V -0.310 0.156 0.116 0.109 0.518 -0.386 0.155 0.124 0.164 0.274 -0.449 0.154 0.117 0.215 0.112
RF -0.374 0.180 0.124 0.155 0.480 -0.389 0.178 0.115 0.164 0.396 -0.396 0.173 0.117 0.171 0.364

Table 2.1a: Percent of explained variance for estimating θ̂1 = 1 in the presence of

missing data based on 500 Monte Carlo data sets where n = 100, c = 100, p = 200

or p = 1000 with autoregressive covariance matrix with ρ varying as 0.1, 0.5, and 0.9

where k = 1

Method ρ = 0.1 ρ = 0.5 ρ = 0.9

p = 200 sPCA ST 0.464 0.519 0.634

sPCA PMD 0.511 0.554 0.646

p = 1000 sPCA ST 0.463 0.517 0.620

sPCA PMD 0.509 0.552 0.637
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Table 2.1bi: Simulation results for estimating θ̂1 = 1 in the presence of missing data

based on 500 Monte Carlo data sets where n = 100, c = 4, p = 200 or p = 1000 with

autoregressive covariance matrix with ρ varying as 0.1, 0.5, and 0.9, where k chosen

to explain at least 80% of variance and ridge parameter set to 10e−5

ρ = 0.1 ρ = 0.5 ρ = 0.9

Method Bias SE SD MSE CR Bias SE SD MSE CR Bias SE SD MSE CR

GS 0.001 0.086 0.082 0.007 0.962 0.000 0.082 0.082 0.007 0.950 -0.003 0.079 0.083 0.007 0.938

CC -0.176 0.102 0.102 0.042 0.604 -0.167 0.100 0.101 0.038 0.650 -0.145 0.099 0.103 0.032 0.702

MI -0.662 0.251 0.108 0.449 0.226 -0.784 0.190 0.089 0.623 0.026 -0.778 0.209 0.085 0.612 0.026

p = 200 sPCA ST -0.036 0.103 0.095 0.010 0.950 -0.038 0.097 0.093 0.010 0.950 -0.020 0.089 0.091 0.009 0.948

sPCA PMD -0.033 0.103 0.095 0.010 0.960 -0.032 0.097 0.094 0.010 0.954 -0.020 0.090 0.092 0.009 0.950

p = 1000 sPCA ST -0.052 0.116 0.106 0.014 0.958 -0.028 0.101 0.098 0.010 0.952 -0.024 0.089 0.087 0.008 0.944

sPCA PMD -0.045 0.117 0.106 0.013 0.956 -0.020 0.102 0.100 0.010 0.954 -0.024 0.089 0.087 0.008 0.952
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Table 2.1bii: Mean, minimum, and maximum number of k principal components to

estimate θ̂1 = 1 in the presence of missing data based on 500 Monte Carlo data sets

where n = 100, c = 4, p = 200 or p = 1000 with autoregressive covariance matrix with

ρ varying as 0.1, 0.5, and 0.9 where k chosen to explain at least 80% of variance and

ridge parameter set to 10e−5

ρ = 0.1 ρ = 0.5 ρ = 0.9

Method Mean Min Max Mean Min Max Mean Min Max

p = 200 sPCA ST 9.686 7.000 12.000 7.768 5.000 10.000 3.142 1.000 5.000

sPCA PMD 8.170 7.000 10.000 6.716 5.000 9.000 3.018 1.000 5.000

p = 1000 sPCA ST 9.523 7.000 12.000 8.018 5.000 10.000 3.734 2.000 7.000

sPCA PMD 7.974 6.000 9.000 7.294 5.000 10.000 3.524 2.000 6.000
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Table 2.2: Simulation results for estimating θ̂1 = 1 in the presence of missing data
based on 500 Monte Carlo data sets where n = 100, c = 100, p = 200 or p = 1000
with autoregressive covariance matrix with ρ varying as 0.1, 0.5, and 0.9

ρ = 0.1 ρ = 0.5 ρ = 0.9

Method Bias SE SD MSE CR Bias SE SD MSE CR Bias SE SD MSE CR

GS 0.011 0.156 0.158 0.025 0.940 -0.010 0.136 0.139 0.019 0.946 0.001 0.086 0.090 0.008 0.948
CC -0.334 0.168 0.172 0.141 0.518 -0.322 0.150 0.158 0.128 0.414 -0.233 0.112 0.113 0.067 0.484
MI -0.800 0.209 0.094 0.649 0.038 -0.772 0.216 0.089 0.604 0.040 -0.672 0.265 0.099 0.461 0.232

p = 200 sPCA ST -0.098 0.212 0.203 0.050 0.964 -0.067 0.174 0.162 0.031 0.972 -0.013 0.108 0.111 0.013 0.962
sPCA PMD -0.105 0.214 0.204 0.053 0.966 -0.075 0.177 0.164 0.033 0.972 -0.016 0.110 0.112 0.013 0.962
sPCA L -0.111 0.217 0.203 0.053 0.962 -0.085 0.180 0.166 0.035 0.972 -0.022 0.112 0.114 0.013 0.964
sPCA AL -0.108 0.216 0.203 0.053 0.966 -0.079 0.179 0.165 0.034 0.972 -0.017 0.110 0.113 0.013 0.966
SDR SIR -0.311 0.229 0.232 0.151 0.748 -0.242 0.200 0.189 0.094 0.820 -0.062 0.117 0.118 0.018 0.928
SDR SAVE -0.153 0.217 0.209 0.067 0.956 -0.128 0.186 0.162 0.043 0.962 -0.077 0.119 0.108 0.018 0.938
SDR PHD -0.188 0.224 0.218 0.083 0.920 -0.151 0.192 0.171 0.052 0.946 -0.071 0.120 0.112 0.018 0.936
Blasso -0.450 0.238 0.143 0.223 0.580 -0.420 0.219 0.122 0.191 0.546 -0.094 0.129 0.109 0.021 0.928
DAlasso -0.466 0.253 0.146 0.239 0.608 -0.393 0.231 0.130 0.171 0.682 -0.063 0.139 0.116 0.017 0.970
KNN S -0.294 0.222 0.216 0.133 0.750 -0.279 0.205 0.193 0.115 0.738 -0.035 0.154 0.133 0.019 0.958
KNN V -0.289 0.233 0.189 0.119 0.810 -0.310 0.217 0.161 0.122 0.760 -0.277 0.182 0.127 0.093 0.754
RF -0.442 0.250 0.147 0.217 0.664 -0.434 0.232 0.136 0.207 0.566 -0.246 0.182 0.117 0.074 0.836

p =
1000

sPCA ST -0.080 0.210 0.195 0.044 0.982 -0.065 0.175 0.165 0.031 0.978 -0.022 0.108 0.104 0.011 0.964

sPCA PMD -0.085 0.212 0.195 0.045 0.978 -0.070 0.177 0.168 0.033 0.976 -0.025 0.110 0.105 0.012 0.964
sPCA L -0.099 0.217 0.193 0.047 0.974 -0.084 0.182 0.168 0.035 0.980 -0.032 0.112 0.106 0.012 0.964
sPCA AL -0.094 0.215 0.194 0.046 0.974 -0.079 0.180 0.168 0.034 0.980 -0.027 0.110 0.105 0.012 0.964
SDR SIR -0.350 0.229 0.217 0.170 0.688 -0.314 0.209 0.201 0.139 0.702 -0.079 0.124 0.116 0.020 0.930
SDR SAVE -0.135 0.215 0.192 0.055 0.956 -0.122 0.187 0.173 0.045 0.948 -0.078 0.119 0.105 0.017 0.944
SDR PHD -0.183 0.225 0.199 0.073 0.926 -0.158 0.198 0.182 0.058 0.926 -0.076 0.122 0.106 0.017 0.952
Blasso -0.483 0.245 0.141 0.253 0.542 -0.483 0.232 0.131 0.250 0.456 -0.213 0.158 0.102 0.056 0.844
DAlasso -0.447 0.257 0.148 0.222 0.670 -0.408 0.240 0.139 0.185 0.700 -0.167 0.185 0.121 0.042 0.954
KNN S -0.339 0.222 0.204 0.156 0.712 -0.320 0.207 0.195 0.140 0.688 -0.185 0.165 0.142 0.055 0.830
KNN V -0.303 0.231 0.177 0.123 0.812 -0.302 0.217 0.169 0.119 0.770 -0.295 0.181 0.124 0.102 0.664
RF -0.470 0.250 0.136 0.240 0.608 -0.478 0.234 0.141 0.249 0.470 -0.357 0.195 0.111 0.140 0.636

Table 2.3a: Percent of explained variance for estimating θ̂1 = 1 in the presence of

missing data based on 500 Monte Carlo data sets where n = 100, c = 100, p = 200

or p = 1000 with autoregressive covariance matrix with ρ varying as 0.1, 0.5, and 0.9

where k = 1 with ridge parameter set to 0.00001

Method ρ = 0.1 ρ = 0.5 ρ = 0.9

p = 200 sPCA ST 0.309 0.331 0.530

sPCA PMD 0.335 0.354 0.533

p = 1000 sPCA ST 0.308 0.333 0.516

sPCA PMD 0.336 0.358 0.523
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Table 2.3: Simulation results for estimating θ̂1 = 1 in the presence of missing data
based on 500 Monte Carlo data sets where n = 100, c = 4, p = 200 or p = 1000 with
block diagonal matrix with compound symmetric blocks and ρ varying as 0.1, 0.5,
and 0.9

ρ = 0.1 ρ = 0.5 ρ = 0.9

Method Bias SE SD MSE CR Bias SE SD MSE CR Bias SE SD MSE CR

GS -0.004 0.066 0.066 0.004 0.956 0.003 0.061 0.062 0.004 0.942 0.003 0.059 0.058 0.003 0.948
CC -0.129 0.086 0.090 0.025 0.686 -0.105 0.082 0.079 0.017 0.756 -0.090 0.080 0.084 0.015 0.790
MI -0.742 0.205 0.102 0.561 0.070 -0.670 0.248 0.098 0.458 0.182 -0.642 0.278 0.089 0.421 0.326

p = 200 sPCA ST -0.034 0.088 0.084 0.008 0.954 -0.014 0.087 0.081 0.007 0.966 0.002 0.083 0.080 0.006 0.970
sPCA PMD -0.029 0.092 0.086 0.008 0.958 -0.016 0.087 0.079 0.007 0.966 -0.004 0.080 0.078 0.006 0.958
sPCA L -0.037 0.089 0.084 0.008 0.956 -0.015 0.087 0.081 0.007 0.966 -0.003 0.086 0.082 0.007 0.968
sPCA AL -0.036 0.089 0.084 0.008 0.956 -0.014 0.087 0.081 0.007 0.966 0.001 0.084 0.081 0.006 0.972
SDR SIR 0.002 0.081 0.075 0.006 0.972 -0.015 0.074 0.073 0.006 0.954 -0.006 0.082 0.086 0.007 0.956
SDR SAVE -0.059 0.091 0.076 0.009 0.940 -0.043 0.087 0.077 0.008 0.956 -0.073 0.092 0.086 0.013 0.902
SDR PHD -0.052 0.091 0.076 0.009 0.944 -0.041 0.086 0.075 0.007 0.958 -0.066 0.091 0.086 0.012 0.926
Blasso 0.042 0.096 0.089 0.010 0.948 0.040 0.091 0.091 0.010 0.942 0.028 0.091 0.083 0.008 0.968
DAlasso -0.185 0.169 0.098 0.044 0.938 -0.108 0.147 0.096 0.021 0.980 -0.005 0.109 0.080 0.006 0.992
KNN S -0.187 0.137 0.126 0.051 0.742 -0.101 0.127 0.110 0.022 0.908 -0.055 0.119 0.105 0.014 0.952
KNN V -0.256 0.147 0.109 0.077 0.644 -0.307 0.145 0.116 0.108 0.454 -0.375 0.144 0.124 0.156 0.234
RF -0.288 0.163 0.106 0.094 0.666 -0.422 0.148 0.096 0.187 0.126 -0.145 0.128 0.087 0.028 0.896

p =
1000

sPCA ST 0.015 0.082 0.084 0.007 0.946 0.012 0.083 0.084 0.007 0.960 0.019 0.119 0.119 0.015 0.952

sPCA PMD 0.013 0.082 0.083 0.007 0.952 0.003 0.087 0.086 0.007 0.956 -0.002 0.120 0.118 0.014 0.946
sPCA L 0.013 0.083 0.083 0.007 0.946 0.013 0.083 0.084 0.007 0.958 0.015 0.118 0.118 0.014 0.950
sPCA AL 0.014 0.082 0.083 0.007 0.946 0.013 0.083 0.084 0.007 0.958 0.018 0.119 0.119 0.014 0.952
SDR SIR 0.001 0.081 0.083 0.007 0.944 -0.019 0.085 0.086 0.008 0.934 -0.116 0.141 0.157 0.038 0.874
SDR SAVE -0.062 0.087 0.079 0.010 0.924 -0.029 0.087 0.080 0.007 0.948 -0.093 0.118 0.109 0.021 0.898
SDR PHD -0.057 0.087 0.081 0.010 0.934 -0.026 0.087 0.081 0.007 0.954 -0.091 0.120 0.111 0.021 0.904
Blasso 0.031 0.095 0.091 0.009 0.960 -0.118 0.159 0.196 0.052 0.926 -0.735 0.135 0.167 0.567 0.056
DAlasso -0.346 0.171 0.087 0.127 0.506 -0.433 0.168 0.102 0.198 0.200 -0.528 0.182 0.106 0.290 0.098
KNN S -0.242 0.137 0.124 0.074 0.602 -0.359 0.129 0.122 0.143 0.174 -0.819 0.110 0.105 0.681 0.000
KNN V -0.298 0.147 0.112 0.102 0.466 -0.616 0.131 0.118 0.394 0.004 -0.953 0.096 0.092 0.916 0.000
RF -0.356 0.167 0.105 0.138 0.422 -0.235 0.151 0.101 0.065 0.748 -0.719 0.129 0.102 0.528 0.000
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Table 2.3bi: Simulation results for estimating θ̂1 = 1 in the presence of missing data

based on 500 Monte Carlo data sets where n = 100, c = 100, p = 200 or p = 1000 with

autoregressive covariance matrix with ρ varying as 0, 0.5, and 0.9, where k chosen to

explain at least 60% of variance with ridge parameter λ varying as 1e−5, 1e−3, and

1e−1

ρ = 0.1 ρ = 0.5 ρ = 0.9

Method Bias SE SD MSE CR Bias SE SD MSE CR Bias SE SD MSE CR

GS 0.011 0.155 0.154 0.024 0.960 -0.012 0.136 0.138 0.019 0.948 -0.003 0.085 0.084 0.007 0.960

CC -0.315 0.167 0.163 0.126 0.520 -0.329 0.150 0.158 0.133 0.418 -0.235 0.111 0.112 0.068 0.462

MI -0.800 0.209 0.094 0.649 0.038 -0.772 0.216 0.089 0.604 0.040 -0.672 0.265 0.099 0.461 0.232

λ = 1e−5 p = 200 sPCA ST -0.186 0.223 0.209 0.078 0.910 -0.150 0.193 0.186 0.057 0.914 -0.023 0.109 0.103 0.011 0.952

sPCA PMD -0.181 0.223 0.206 0.075 0.910 -0.146 0.193 0.188 0.057 0.918 -0.023 0.109 0.103 0.011 0.952

p = 1000 sPCA ST -0.244 0.235 0.217 0.107 0.884 -0.211 0.208 0.200 0.085 0.884 -0.031 0.111 0.105 0.012 0.966

sPCA PMD -0.243 0.236 0.218 0.106 0.882 -0.201 0.208 0.199 0.080 0.894 -0.030 0.111 0.106 0.012 0.970

λ = 1e−3 p = 200 sPCA ST -0.187 0.223 0.209 0.078 0.910 -0.150 0.193 0.186 0.057 0.914 -0.022 0.109 0.104 0.011 0.952

sPCA PMD -0.181 0.224 0.206 0.075 0.910 -0.147 0.193 0.188 0.057 0.918 -0.023 0.109 0.103 0.011 0.952

p = 1000 sPCA ST -0.244 0.235 0.217 0.106 0.884 -0.211 0.208 0.200 0.084 0.884 -0.031 0.111 0.106 0.012 0.966

sPCA PMD -0.243 0.236 0.218 0.106 0.882 -0.201 0.208 0.198 0.080 0.894 -0.030 0.111 0.106 0.012 0.970

λ = 1e−1 p = 200 sPCA ST -0.213 0.225 0.189 0.081 0.910 -0.180 0.200 0.174 0.063 0.904 -0.027 0.125 0.113 0.013 0.966

sPCA PMD -0.209 0.227 0.189 0.079 0.900 -0.179 0.201 0.176 0.063 0.902 -0.026 0.126 0.114 0.014 0.968

p = 1000 sPCA ST -0.243 0.231 0.191 0.095 0.872 -0.217 0.207 0.179 0.079 0.888 -0.037 0.127 0.116 0.015 0.966

sPCA PMD -0.247 0.233 0.191 0.098 0.884 -0.215 0.209 0.179 0.078 0.896 -0.036 0.128 0.117 0.015 0.964
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Table 2.3bii: Mean, minimum, and maximum number of k principal components to

estimate θ̂1 = 1 in the presence of missing data based on 500 Monte Carlo data sets

where n = 100, q = 100, p = 200 or p = 1000 with autoregressive covariance matrix

with ρ varying as 0.1, 0.5, and 0.9 where k chosen to explain at least 60% of variance

ρ = 0.0 ρ = 0.5 ρ = 0.9

Method Mean Min Max Mean Min Max Mean Min Max

p = 200 ST sPCA 5.960 4.000 8.000 5.174 4.000 7.000 2.000 1.000 3.000

PMD sPCA 5.318 3.000 7.000 4.670 3.000 6.000 1.968 1.000 3.000

p = 1000 ST sPCA 5.896 4.000 7.000 5.400 4.000 7.000 2.162 1.000 3.000

PMD sPCA 5.262 4.000 7.000 4.810 4.000 6.000 2.090 1.000 3.000
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Table 2.3ci: Simulation results for estimating θ̂1 = 1 in the presence of missing data

based on 500 Monte Carlo data sets where n = 100, q = 100, p = 200 or p = 1000 with

autoregressive covariance matrix with ρ varying as 0, 0.5, and 0.9, where k chosen to

explain at least 80% of variance with ridge parameter λ varying as 1e−5, 1e−3, and

1e−1

ρ = 0.1 ρ = 0.5 ρ = 0.9

Method Bias SE SD MSE CR Bias SE SD MSE CR Bias SE SD MSE CR

GS -0.001 0.153 0.151 0.023 0.964 0.002 0.136 0.137 0.019 0.950 -0.001 0.085 0.090 0.008 0.918

CC -0.333 0.165 0.175 0.142 0.498 -0.309 0.151 0.156 0.120 0.470 -0.232 0.111 0.119 0.068 0.458

MI -0.800 0.209 0.094 0.649 0.038 -0.772 0.216 0.089 0.604 0.040 -0.672 0.265 0.099 0.461 0.232

λ = 1e−5 p = 200 sPCA ST -0.269 0.229 0.224 0.122 0.816 -0.189 0.200 0.190 0.072 0.894 -0.021 0.108 0.108 0.012 0.948

sPCA PMD -0.250 0.226 0.224 0.113 0.846 -0.179 0.200 0.188 0.067 0.910 -0.020 0.109 0.108 0.012 0.944

p = 1000 sPCA ST -0.317 0.237 0.225 0.151 0.780 -0.287 0.216 0.208 0.126 0.776 -0.032 0.114 0.104 0.012 0.964

sPCA PMD -0.301 0.237 0.225 0.142 0.790 -0.274 0.215 0.207 0.118 0.806 -0.030 0.114 0.104 0.012 0.970

λ = 1e−3 p = 200 sPCA ST -0.268 0.229 0.224 0.122 0.816 -0.189 0.200 0.189 0.072 0.892 -0.021 0.109 0.108 0.012 0.950

sPCA PMD -0.250 0.226 0.224 0.113 0.846 -0.179 0.200 0.187 0.067 0.910 -0.020 0.109 0.108 0.012 0.946

p = 1000 sPCA ST -0.317 0.237 0.224 0.150 0.780 -0.286 0.216 0.208 0.125 0.774 -0.031 0.114 0.105 0.012 0.964

sPCA PMD -0.301 0.237 0.225 0.141 0.790 -0.273 0.215 0.206 0.117 0.806 -0.030 0.114 0.104 0.012 0.970

λ = 1e−1 p = 200 sPCA ST -0.267 0.226 0.198 0.110 0.836 -0.191 0.200 0.173 0.066 0.904 -0.017 0.120 0.114 0.013 0.956

sPCA PMD -0.258 0.225 0.199 0.106 0.862 -0.194 0.202 0.173 0.067 0.908 -0.018 0.124 0.118 0.014 0.958

p = 1000 sPCA ST -0.282 0.230 0.195 0.118 0.832 -0.258 0.209 0.178 0.098 0.824 -0.033 0.125 0.110 0.013 0.972

sPCA PMD -0.282 0.233 0.193 0.117 0.814 -0.260 0.211 0.179 0.100 0.822 -0.035 0.129 0.112 0.014 0.974
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Table 2.3cii: Mean, minimum, and maximum number of k principal components to

estimate θ̂1 = 1 in the presence of missing data based on 500 Monte Carlo data sets

where n = 100, q = 100, p = 200 or p = 1000 with autoregressive covariance matrix

with ρ varying as 0.1, 0.5, and 0.9 where k chosen to explain at least 80% of variance

ρ = 0.0 ρ = 0.5 ρ = 0.9

Method Mean Min Max Mean Min Max Mean Min Max

p = 200 sPCA ST 11.190 8.000 14.000 10.028 8.000 13.000 4.458 3.000 7.000

sPCA PMD 9.672 8.000 11.000 8.752 7.000 10.000 4.090 3.000 6.000

p = 1000 sPCA ST 11.094 9.000 14.000 10.394 8.000 13.000 4.916 3.000 8.000

sPCA PMD 9.518 8.000 11.000 8.982 7.000 11.000 4.548 3.000 7.000

Table 2.4: Simulation results for estimating θ̂1 = 1 in the presence of missing data
based on 500 Monte Carlo data sets where n = 100, c = 100, p = 200 or p = 1000
with block diagonal matrix with compound symmetric blocks and ρ varying as 0.1,
0.5, and 0.9

ρ = 0.1 ρ = 0.5 ρ = 0.9

Method Bias SE SD MSE CR Bias SE SD MSE CR Bias SE SD MSE CR

GS 0.001 0.107 0.115 0.013 0.954 0.002 0.073 0.074 0.005 0.954 -0.004 0.064 0.063 0.004 0.954
CC -0.227 0.131 0.133 0.069 0.596 -0.150 0.101 0.101 0.033 0.724 -0.115 0.092 0.094 0.022 0.772
MI -0.778 0.192 0.092 0.613 0.026 -0.502 0.301 0.109 0.264 0.770 -0.585 0.300 0.091 0.351 0.564

p = 200 sPCA ST -0.047 0.136 0.130 0.019 0.974 -0.002 0.100 0.097 0.009 0.950 -0.006 0.096 0.095 0.009 0.966
sPCA PMD -0.052 0.138 0.130 0.020 0.968 -0.009 0.102 0.097 0.009 0.950 -0.007 0.097 0.095 0.009 0.964
sPCA L -0.063 0.141 0.132 0.021 0.966 -0.009 0.102 0.098 0.010 0.952 -0.010 0.098 0.095 0.009 0.966
sPCA AL -0.055 0.139 0.130 0.020 0.968 -0.005 0.101 0.098 0.010 0.950 -0.007 0.097 0.095 0.009 0.966
SDR SIR -0.171 0.164 0.147 0.051 0.852 -0.027 0.107 0.106 0.012 0.940 -0.016 0.088 0.098 0.010 0.938
SDR SAVE -0.123 0.151 0.120 0.030 0.942 -0.060 0.107 0.097 0.013 0.928 -0.027 0.094 0.093 0.009 0.954
SDR PHD -0.138 0.157 0.129 0.035 0.924 -0.056 0.109 0.099 0.013 0.940 -0.026 0.093 0.093 0.009 0.952
Blasso -0.251 0.187 0.128 0.079 0.830 -0.020 0.125 0.103 0.011 0.988 0.035 0.101 0.089 0.009 0.966
DAlasso -0.284 0.200 0.123 0.096 0.826 -0.066 0.144 0.107 0.016 0.990 -0.039 0.133 0.097 0.011 0.990
KNN S -0.122 0.174 0.155 0.039 0.930 0.008 0.138 0.117 0.014 0.982 -0.051 0.128 0.112 0.015 0.962
KNN V -0.232 0.191 0.153 0.077 0.806 -0.306 0.169 0.127 0.110 0.596 -0.401 0.157 0.135 0.179 0.248
RF -0.370 0.204 0.130 0.154 0.622 -0.269 0.170 0.099 0.082 0.758 -0.242 0.153 0.102 0.069 0.714

p =
1000

sPCA ST 0.010 0.099 0.106 0.011 0.934 0.055 0.074 0.079 0.009 0.870 0.014 0.102 0.096 0.009 0.954

sPCA PMD 0.004 0.100 0.106 0.011 0.936 0.044 0.076 0.080 0.008 0.906 -0.007 0.102 0.095 0.009 0.974
sPCA L 0.000 0.101 0.106 0.011 0.944 0.053 0.074 0.080 0.009 0.882 0.010 0.102 0.096 0.009 0.956
sPCA AL 0.006 0.100 0.106 0.011 0.934 0.055 0.074 0.080 0.009 0.872 0.013 0.102 0.096 0.009 0.956
SDR SIR -0.068 0.130 0.125 0.020 0.934 0.001 0.084 0.085 0.007 0.936 -0.083 0.121 0.130 0.024 0.898
SDR SAVE -0.076 0.114 0.102 0.016 0.936 -0.024 0.085 0.079 0.007 0.968 -0.095 0.108 0.099 0.019 0.902
SDR PHD -0.075 0.119 0.109 0.017 0.944 -0.020 0.085 0.079 0.007 0.966 -0.095 0.110 0.101 0.019 0.908
Blasso -0.170 0.164 0.104 0.040 0.920 -0.086 0.139 0.146 0.029 0.972 -0.623 0.139 0.218 0.435 0.148
DAlasso -0.192 0.195 0.118 0.051 0.948 -0.209 0.183 0.141 0.063 0.922 -0.476 0.209 0.149 0.249 0.414
KNN S -0.028 0.147 0.129 0.017 0.974 -0.206 0.130 0.114 0.055 0.654 -0.832 0.101 0.103 0.703 0.000
KNN V -0.240 0.172 0.126 0.073 0.778 -0.575 0.140 0.120 0.345 0.004 -0.954 0.091 0.091 0.919 0.000
RF -0.347 0.186 0.109 0.132 0.616 -0.342 0.153 0.097 0.126 0.396 -0.738 0.116 0.092 0.553 0.000
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Table 2.4a: Percent of explained variance for estimating θ̂1 = 1 in the presence of

missing data based on 500 Monte Carlo data sets where n = 100, c = 100, p = 200 or

p = 1000 with block diagonal matrix with compound symmetric blocks and ρ varying

as 0.1, 0.5, and 0.9 where k = 1 with ridge parameter set to 0.00001

Method ρ = 0.1 ρ = 0.5 ρ = 0.9

p = 200 ST sPCA 0.321 0.561 0.701

sPCA PMD 0.331 0.558 0.699

p = 1000 ST sPCA 0.437 0.825 0.972

sPCA PMD 0.440 0.801 0.940
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Table 2.4bi: Simulation results for estimating θ̂1 = 1 in the presence of missing data

based on 500 Monte Carlo data sets where n = 100, c = 100, p = 200 or p = 1000

with block diagonal matrix with compound symmetric blocks and ρ varying as 0.1,

0.5, and 0.9, where k chosen to explain at least 60% of variance with ridge parameter

λ varying as 1e−5, 1e−3, and 1e−1

ρ = 0.1 ρ = 0.5 ρ = 0.9

Method Bias SE SD MSE CR Bias SE SD MSE CR Bias SE SD MSE CR

GS 0.000 0.107 0.108 0.012 0.960 0.002 0.072 0.071 0.005 0.954 -0.005 0.064 0.063 0.004 0.952

CC -0.233 0.131 0.141 0.074 0.566 -0.146 0.100 0.102 0.032 0.700 -0.113 0.092 0.092 0.021 0.784

MI -0.778 0.192 0.092 0.613 0.026 -0.502 0.301 0.109 0.264 0.770 -0.585 0.300 0.091 0.351 0.564

λ = 1e−5 p = 200 sPCA ST -0.117 0.158 0.148 0.036 0.914 0.005 0.097 0.093 0.009 0.974 -0.004 0.094 0.095 0.009 0.962

sPCA PMD -0.115 0.158 0.148 0.035 0.916 0.005 0.097 0.093 0.009 0.974 -0.004 0.094 0.095 0.009 0.962

p = 1000 sPCA ST -0.006 0.117 0.112 0.013 0.962 0.055 0.074 0.079 0.009 0.870 0.014 0.102 0.096 0.009 0.954

sPCA PMD -0.007 0.118 0.111 0.012 0.962 0.055 0.074 0.079 0.009 0.874 0.013 0.102 0.096 0.009 0.958

λ = 1e−3 p = 200 sPCA ST -0.117 0.158 0.148 0.036 0.914 0.005 0.098 0.093 0.009 0.974 -0.003 0.094 0.095 0.009 0.964

sPCA PMD -0.116 0.158 0.148 0.035 0.916 0.006 0.097 0.093 0.009 0.974 -0.004 0.095 0.095 0.009 0.962

p = 1000 sPCA ST -0.006 0.117 0.112 0.013 0.962 0.056 0.074 0.080 0.009 0.870 0.014 0.102 0.096 0.009 0.954

sPCA PMD -0.007 0.118 0.111 0.012 0.962 0.056 0.074 0.080 0.009 0.870 0.014 0.102 0.096 0.009 0.956

λ = 1e−1 p = 200 sPCA ST -0.127 0.163 0.141 0.036 0.910 0.010 0.112 0.101 0.010 0.976 0.000 0.111 0.106 0.011 0.972

sPCA PMD -0.132 0.166 0.143 0.038 0.910 0.011 0.113 0.102 0.010 0.976 -0.001 0.111 0.106 0.011 0.970

p = 1000 sPCA ST -0.006 0.123 0.112 0.013 0.968 0.072 0.091 0.091 0.013 0.892 -0.150 0.131 0.103 0.033 0.856

sPCA PMD -0.012 0.128 0.114 0.013 0.972 0.072 0.091 0.091 0.013 0.892 -0.150 0.131 0.103 0.033 0.854
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Table 2.4bii: Mean, minimum, and maximum number of k principal components to

estimate θ̂1 = 1 in the presence of missing data based on 500 Monte Carlo data

sets where n = 100, c = 100, p = 200 or p = 1000 with block diagonal matrix with

compound symmetric blocks and ρ varying as 0.1, 0.5, and 0.9 where k chosen to

explain at least 60% of variance

ρ = 0.1 ρ = 0.5 ρ = 0.9

Method Mean Min Max Mean Min Max Mean Min Max

p = 200 sPCA ST 5.420 4.000 7.000 1.782 1.000 3.000 1.048 1.000 2.000

sPCA PMD 5.062 4.000 6.000 1.780 1.000 3.000 1.042 1.000 2.000

p = 1000 sPCA ST 3.984 2.000 6.000 1.000 1.000 1.000 1.000 1.000 1.000

sPCA PMD 3.694 2.000 5.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 2.4ci: Simulation results for estimating θ̂1 = 1 in the presence of missing data

based on 500 Monte Carlo data sets where n = 100, c = 100, p = 200 or p = 1000

with block diagonal matrix with compound symmetric blocks and ρ varying as 0.1,

0.5, and 0.9, where k chosen to explain at least 80% of variance with ridge parameter

λ varying as 1e−5, 1e−3, and 1e−1

ρ = 0.1 ρ = 0.5 ρ = 0.9

Method Bias SE SD MSE CR Bias SE SD MSE CR Bias SE SD MSE CR

GS 0.008 0.107 0.105 0.011 0.966 0.001 0.073 0.074 0.005 0.944 0.004 0.065 0.065 0.004 0.950

CC -0.223 0.131 0.133 0.067 0.582 -0.142 0.101 0.109 0.032 0.696 -0.108 0.091 0.096 0.021 0.782

MI -0.778 0.192 0.092 0.613 0.026 -0.502 0.301 0.109 0.264 0.770 -0.585 0.300 0.091 0.351 0.564

λ = 1e−5 p = 200 sPCA ST -0.141 0.162 0.152 0.043 0.898 -0.001 0.101 0.105 0.011 0.954 0.004 0.087 0.085 0.007 0.968

sPCA PMD -0.137 0.162 0.152 0.042 0.910 0.001 0.100 0.104 0.011 0.956 0.005 0.087 0.085 0.007 0.970

p = 1000 sPCA ST -0.051 0.126 0.112 0.015 0.968 0.054 0.075 0.074 0.008 0.904 0.014 0.102 0.096 0.009 0.954

sPCA PMD -0.044 0.125 0.110 0.014 0.968 0.053 0.076 0.075 0.008 0.904 0.013 0.102 0.096 0.009 0.958

λ = 1e−3 p = 200 sPCA ST -0.141 0.162 0.152 0.043 0.898 0.000 0.101 0.104 0.011 0.956 0.005 0.087 0.085 0.007 0.968

sPCA PMD -0.137 0.162 0.151 0.042 0.910 0.001 0.101 0.104 0.011 0.956 0.006 0.087 0.085 0.007 0.970

p = 1000 sPCA ST -0.050 0.126 0.112 0.015 0.968 0.056 0.075 0.074 0.009 0.904 0.014 0.102 0.096 0.009 0.954

sPCA PMD -0.044 0.125 0.110 0.014 0.968 0.054 0.076 0.075 0.009 0.902 0.014 0.102 0.096 0.009 0.956

λ = 1e−1 p = 200 sPCA ST -0.135 0.163 0.141 0.038 0.906 0.017 0.107 0.106 0.011 0.966 0.017 0.101 0.096 0.009 0.966

sPCA PMD -0.145 0.168 0.143 0.041 0.904 0.004 0.113 0.112 0.012 0.968 0.021 0.102 0.097 0.010 0.966

p = 1000 sPCA ST -0.039 0.126 0.107 0.013 0.972 0.071 0.092 0.085 0.012 0.906 -0.150 0.131 0.103 0.033 0.856

sPCA PMD -0.047 0.132 0.110 0.014 0.966 0.067 0.093 0.088 0.012 0.914 -0.150 0.131 0.103 0.033 0.854
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Table 2.4cii: Mean, minimum, and maximum number of k principal components to

estimate θ̂1 = 1 in the presence of missing data based on 500 Monte Carlo data

sets where n = 100, c = 100, p = 200 or p = 1000 with block diagonal matrix with

compound symmetric blocks and ρ varying as 0.1, 0.5, and 0.9 where k chosen to

explain at least 80% of variance

ρ = 0.1 ρ = 0.5 ρ = 0.9

Method Mean Min Max Mean Min Max Mean Min Max

p = 200 sPCA ST 10.384 8.000 13.000 4.924 2.000 10.000 2.004 1.000 3.000

sPCA PMD 9.108 8.000 11.000 4.258 2.000 6.000 2.010 1.000 3.000

p = 1000 sPCA ST 8.988 6.000 12.000 1.210 1.000 3.000 1.000 1.000 1.000

sPCA PMD 7.964 6.000 10.000 1.246 1.000 3.000 1.000 1.000 1.000

Table 2.5: Estimation of the predictor variable θ1 that is associated with the incom-
plete biomarker VPS36 in logistic regression using complete case analysis (CC), four
sparse PCA methods (sPCA), three SDR methods, Bayesian Lasso (Blasso), direct
use of adaptive lasso (DAlasso), and random forest multiple imputation (RF) using
the prostate cancer study

Method Estimate SE p-value
CC 1.336 1.165 0.2515
Blasso 0.226 0.692 0.7463
DAlasso 0.908 0.985 0.3631
RF -2.922 2.002 0.1550
sPCA ST 2.290 0.942 0.0183
sPCA PMD 2.276 0.945 0.0192
sPCA L 2.170 0.925 0.0228
sPCA AL 2.256 0.940 0.0199
SDR SIR 1.260 0.950 0.1898
SDR SAVE 0.864 0.813 0.2928
SDR PHD 0.517 0.842 0.5418
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Chapter 3

Nonparametric Imputation for

Nonignorable Missing Data
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Abstract

Missing data is a very common phenomenon in studies across different disciplines.

Multiply imputing the missing values with several plausible values accounts for the

uncertainty about the underlying true values and is a popular technique due to its

ease of use. However, the vast majority of imputation techniques are designed for an

ignorable missing data mechanism since nonignorability is an assumption more chal-

lenging to handle. Under non-ignorable missingness, one assumes the nonresponse

mechanism depends on unobserved values, and the outcome model for the variable

with missing values and the nonresponse model must be modeled jointly. Conse-

quently, joint modeling can produce results that are sensitive to the failure of the two

working models. We propose a more robust, nonparametric technique to multiply

impute missing data in the presence of non-ignorability by allowing users to choose

optimal weights so the resulting estimator can rely more heavily on the working model

that is more likely to be correctly specified. Using the two working models, we derive

predictive scores to achieve dimension reduction and use the resulting scores coupled

with a nearest neighbor hot deck to multiply impute the missing values. By adopting

the predictive scoring technique, we allow the covariates to be either categorical or

continuous. The new proposed method is shown to outperform several existing mul-

tiple imputation methods for non-ignorable missing data in simulations. In addition,

the method is illustrated using a real data example from the Georgia Coverdell Acute

Stroke Registry.
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3.1 Introduction

The ultimate goal of all analyses is to make valid inference from the data. Yet

missing data often occur which compromise data quality, and more importantly, in-

troduce bias and loss of efficiency which can lead to invalid inference. Rubin (1987)

created a taxonomy for missing data to accommodate its complexity which also de-

termine the appropriateness of analysis methods. Data are missing completely at

random (MCAR) if the probability of an observation being missing does not depend

on observed or unobserved variables. The assumption of missing at random (MAR)

is a less stringent assumption that occurs when the probability of missing data are

related to some other completely measured variable(s) in the model. When neither

MCAR nor MAR hold, then the data are missing not at random (MNAR). Test have

been developed (Little, 1988b) to distinguish between MCAR and MAR, but it is

difficult to distinguish between MAR and MNAR. If questions arise about the source

of missingness, then a more realistic assumption is that the data are MNAR.

In the analysis of missing data, one must also consider whether the missing data

mechanism is ignorable. Ignorability is a standard assumption but it is only appro-

priate when the data is MCAR or MAR and the parameters governing the missing

data process are distinct from parameters to be estimated (Rubin, 1976). Although

ignorability is a convenient assumption, it is usually unrealistic when missingness is

not by design. Suppose, for example, some healthcare professionals are more reluc-

tant to evaluate acuity of stroke patients if they assume the stroke is not severe.

Stroke severity may depend on many characteristics, which may not all be measured

therefore the nonresponse mechanism is not ignorable. Since a non-ignorable miss-

ing data mechanism depends on unobserved data, making inference while accounting

for non-ignorability is typically not trivial. Generally such attempts are complicated

by the need to simultaneously account for the propensity of missingness model and

the outcome model. A common practice is to analyze nonignorable missing data
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through the use of the selection model (Heckman, 1979) and pattern-mixture mod-

els (Little, 1993). Selection and pattern mixture models augment the model for the

complete data with a missing data model. Selection models allow for specification of

the full-data distribution, and therefore require assumptions be made about the data

distribution of the unobserved values. Alternatively, pattern-mixture models stratify

the data by missing data patterns, thus the response process is a mixture of mod-

els of different missing data patterns. However, these methods are computationally

complex and not implemented in most statistical software.

Imputation is a commonly used method for handling missing data due to its ease

of use. Imputation methods include multiple imputation and bootstrap imputation.

Multiple imputation (Rubin, 1987) replaces missing values with multiple ”plausible”

values drawn from the posterior predictive distribution to create M complete data

sets. MI allows for standard completed-data analysis, therefore, has become a popular

technique due to its ease of use. Bootstrap imputation (BI) (Efron, 1994) generates

multiple bootstrap samples from the original unimputed sample with missing values

and fills in the missing data in the bootstrap samples using imputation procedures.

However, there has been limited development of the two latter methods to handle non-

ignorable nonresponse. Despite the popularity and advancement of these methods,

there has been limited development of these methods to handle the case of nonignor-

able nonresponse. Motivated by such facts, we seek to develop an imputation method

to handle missing data that arise from non-ignorable missing data mechanisms.

Although limited imputation methods exist for non-ignorable missingness, there

are some approaches to perform parametric imputation. Glynn et al. (1993) assumed

a random fully observed follow-up sample was available and used pattern-mixture

models assuming a different normal distribution for the respondents, subjects with

observed values, and nonrespondents or subjects with missing values. The nonre-

spondent distribution was assumed to follow the same distribution of the nonrespon-
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dents that were eventually available for follow-up. Carpenter et al. (2007) proposed

a reweighting approach which involved deriving weights using importance sampling

and using the weights to adjust missing at random multiple imputation estimates

to account for non-ignorability. Under the approach, Carpenter et al. (2007) de-

rived an imputation estimate and variance estimator but the variance was underes-

timated. Similarly, Kim and Kim (2012) also adjust for non-ignorability by deriving

importance sampling weights coupled with the Expectation-Maximization (EM) al-

gorithm. However, Kim and Kim (2012) apply a fraction of the original weight of

the nonrespondents such that the sum of the fractional weights from all the matched

respondents is equal to the original weight of the nonrespondents. Alternatively, Sid-

dique et al. (2012) developed an imputation procedure that incorporates missing data

mechanism uncertainty by specifying a range of ignorability assumptions and combin-

ing these assumptions into one inference. Jolani (2012) suggested a random indicator

(RI) method which involves iteratively drawing imputations from the incomplete vari-

able and the response indicator to determine the difference of the adjustment of the

observed values from the unobserved values. A more recent contribution to the de-

velopment of parametric imputation for non-ignorable nonresponse was proposed by

Sullivan and Andridge (2015). Sullivan and Andridge (2015) extended the pattern-

mixture model and the hot deck (PMMHD) to handle non-ignorability by specifying

a sensitivity parameter that determines the missingness mechanism. We compare the

latter methods, namely the RI method and PMMHD, in simulation studies.

Nonparametric imputation methods are far less developed than parametric meth-

ods for non-ignorability. Glynn et al. (1993) first adjust the approximate Bayesian

bootstrap (ABB) to accommodate non-ignorability by randomly drawing with re-

placement from followed-up nonrespondents and then drawing again with replace-

ment from the same sample for the nonrespondents (not in the follow-up). Siddique

and Belin (2008) extend the ABB but instead by using predictive mean matching in a
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hot deck. Bootstrap samples were drawn with probability proportional to a function

of the observed values where the function is chosen by the imputer and dependent on

whether the imputer believes the values are higher or lower for the nonrespondents. A

regression on the bootstrap sample of observed values is used to create predicted val-

ues that are used in a distanced based hot deck. Our new nonparametric MI method

also harnesses the power of bootstrapping and the hot deck but is distinctive from

these methods.

We propose a nonparametric imputation method based on bootstrap imputation

and multiple imputation for non-ignorable nonresponse using an iterative procedure.

Suppose we have an incomplete variable Y that is partitioned Y = (Yobs, Ymis) into

observed values, Yobs, and missing values, Ymis, with a response indicator R that

identifies the pattern of missing data. We define two models, one for predicting

the response indicator R and the other for predicting Ymis. The working model for

the response indicator R includes the incomplete variable Y , hence is non-ignorable.

We use the two models to derive predictive scores that are standardized to stabilize

the imputation. For each subject with missing values, we randomly draw from a

neighborhood of observed values whose predicted scores are close to the predicted

scores for the subjects with missing values as in a nearest neighbor hot deck (Sande,

1982). We iterate between the two models to obtain imputations for Ymis. How-

ever, conducting MI does not ensure the imputation method is ’proper’ in the sense

of yielding valid inferences that reflect variability (Rubin, 1987). In order to yield

proper imputations, a multiple imputation procedure must propagate imputation un-

certainty. To overcome this issue, we also propose a new method that relies on the use

of bootstrap imputation (Efron, 1994). Our methods have several advantages over

the existing parametric techniques for nonignorable nonresponse. Unlike existing ap-

proaches for non-ignorable missing data, our new proposed approach allows a user to

specify weights based on confidence in the outcome model and the nonresponse model
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which ultimately improves efficiency. Furthermore, our approach is more robust to

misspecification because it allows the user to specify weights and does not use the

models directly to impute the missing values, therefore is nonparametric. In addition,

our methods do not rely on follow-up data to be obtained on the unobserved cases,

is more informative in the sense that it does not produce a range of inferences, and

does not rely on specification of a sensitivity parameter that determines the missing-

ness mechanism or adjustment for missingness. In contrast to existing nonparametric

approaches, our methods can alleviate the curse of dimensionality in the presence of

numerous covariates in the two models by the specification of models that allow for

dimension reduction.

The remainder of the chapter is organized as follows. In Section 3.2, we present the

notation and methodology for our new approach. In Section 3.3, we present results of

a simulation study to evaluate our method and compare it to the parametric methods

of Jolani (2012) and Sullivan and Andridge (2015). In Section 3.4, we illustrate the

new proposed method using a real-world data example with stroke registry data. In

Section 3.5, we conclude with a brief discussion.

3.2 Methodology

Let Y denote a single variable with missing values where Yobs denotes the observed

components of Y and Ymis denotes the missing components. We let nobs be the

number of observed cases which is the sample size of Yobs. Similarly, we let nmis be

the number of unobserved cases which is the sample size of Ymis. We also have a

set of fully observed variables denoted X that are predictive of either the variable

with missing values Y or the response indicator of Y . The response indicator for Y ,

denoted R is defined as 1 if Y is observed and 0 if Y is missing. The fully observed

variables X can also be divided into two components, namely Xmis and Xobs, which
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are subjects with missing outcome Y and observed Y , respectively. The collection of

observed data is denoted by O = {Yobs,X, R}.

Our proposed method extends the work of Long et al. (2012) to account for non-

ignorable missingness by incorporating the variable with missing values Y in the

propensity model for the response indicator R. We developed a new imputation

procedure that iteratively imputes Ymis using a nearest neighbor hot deck approach

and fits two working models which include the propensity model for the missing data

mechanism and the data model for Y .

In this section we present two methods for implementing nonparametric imputa-

tion for non-ignorable missing data which include the use of bootstrap imputation

and multiple imputation.

3.2.1 Nonparametric Bootstrap Imputation

Under a non-ignorable missing data mechanism, parameters associated with the

outcome model and the nonresponse model should be estimated simultaneously. In

order to estimate these parameters we adopt the ideas of predictive mean matching

(Little, 1988a) and specify a model for the outcome and response models. We use pre-

dictive mean matching to obtain standardized scores, which are then used to calculate

the distances from donors to recipients. The distance is used to find a neighborhood

that consists of K donors who have the smallest K distance from the recipients as in

K nearest neighbors hot deck imputation (Sande, 1982).

The detailed steps of our bootstrap imputation procedure in the case of a univari-

ate missing data pattern is as follows:

1. Bootstrap: To account for uncertainty in estimating the parameters in the

postulated working models, we first generate a bootstrap sample of the complete

cases and incomplete cases by selecting n samples with replacement. We denote

these bootstrap observed samples as {Y bm
obs ,X

bm
obs}, where bm distinguishes the
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bootstrap sample from the original sample and the subscript m = 1, ...,M is

the number of imputed data sets.

2. Initial values: Start with the initially completed-data Y (0) = {Y (0)
mis, Y

bm
obs }. The

initial values for Ymis is made by a regression of Y bm
obs on Xbm

obs using the first

nobs bootstrapped complete cases. The estimates from the regression of the

bootstrapped complete cases are used to make initial predictions of Ymis denoted

Y
(0)
mis. Other approaches for initializing Y

(0)
mis such as randomly drawing Y

(0)
mis from

Yobs are also appropriate.

3. Working models: Building from the work of Long et al. (2012), we have a

working model for predicting Ymis and for predicting the missing data indicator

R. We define an iteration t where t = 1, 2, ..., T and iteratively impute Ymis by

fitting the two working models and calculating predictive scores.

(i) The first working model is for the outcome Y ,

E(Y (t−1)|X1) = l1(X1;β). (3.1)

In model (1) the function l1 is a specified real-valued, smooth function, X1 is

a set of p1 fully observed predictors, and β1 = (β1, β2, ..., βp1)
T is a vector of

regression coefficients. At iteration t, the model (3.1) is fit using Y (t−1) and

X1 from all n observations. We use linear regression models for continuous Y ,

Poisson loglinear models for count Y , and multinomial logistic regression for Y

with J categories. These models can include as many covariates as possible for

X1.

(ii) We have a second working model for predicting the probability of re-
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sponse,

E(R|X2, Y
(t−1)) = l2(X2, Y

(t−1);α) (3.2)

where l2 is a specified real-valued smooth function, X2 is a set of p2 fully

observed covariates, andα is a vector of regression coefficients. The nonresponse

process depends on the incomplete variable Y , thus the missingness mechanism

is non-ignorable. It is important to note that the adjustment for non-ignorable

missingness is made by including the incomplete variable in the model for the

probability of missingness. Initial values are filled in for the missing values of Y

but are then iteraively imputed to adjust for non-ignorable nonresponse. The

clear distinction from the proposed method and the previous work of Long et al.

(2012) is the inclusion of Y = (Ymis, Yobs) into the model for the missingness

mechanism. In addition, dimension reduction models, such as the lasso or ridge

regression, can be used to fit these models. Dimension reduction techniques

alleviate the curse of dimensionality in the presence of numerous covariates in

the two models.

4. Predictive scores: We obtain estimated predictive scores from the two working

models (1) and (2) by

(P
(t)
1 , P

(t)
2 ) = {l1(X1; β̂

(t)), l2(X2, Y
(t−1); α̂(t))} (3.3)

where α̂(t) and β̂(t) are the estimated coefficients from the outcome model (1)

and the nonresponse model (3.2), respectively. The predictive scores (P1, P2) are

centered and scaled to have mean 0 and variance 1 to stabilize the imputation.

5. Distances: Given P1 and P2, for each subject with missing Y we create an im-

puting set that consists of observed responses from subjects who are similar.
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For each i in the sample of subjects with missing values, the estimated stan-

dardized predictive scores (P
(t)
1 , P

(t)
2 ) are used to define the distance between

subjects i = 1, ..., nmis (nonrespondents) and j = 1, ..., nobs (respondents) as

d(i, j) = {ω1[P
(t)
1 (i)− P (t)

1 (j)]2 + ω2[P
(t)
2 (i)− P (t)

2 (j)]2}(1/2) (3.4)

where ω1 and ω2 are positive weights for the two predictive scores. We let ω1

and ω2 satisfy the condition that ω1+ω2 = 1 and choose the weights by the

amount of confidence an imputer has on the specification of ω1 and ω2, for the

outcome and response models, respectively.

6. Nearest neighbors: For each bootstrapped observation i with missing values,

we find a set of similar observed subjects in the bootstrap sample by using

the distance d(i, j) to define the set of K−nearest neighbors, denoted by RK(i),

that consists of K donors from j = 1, ..., nobs that have the smallest K distances

from observation i. An update for Ymis is created by randomly drawing from

RK(i) with equal probability and we define the tth iteration for Y as Y (t) =

{Y bm
obs , Y

(t)
mis}. The imputation is nonparametric because ultimately we use the

nearest neighbor hot deck to make imputations.

7. We repeat steps 3 through 6 until convergence. The algorithm usually converges

after a few iterations. After the algorithm converges, the last drawn Y
(t)
mis will

be one set of imputed values for Ymis, denoted by Y imp,1,b1
mis where superscript b1

denotes that the missing values were imputed for the bootstrap sample of the

missing values. One complete data set is created by using the bootstrapped nobs

observations and the imputed Y imp,1,b1
mis .

Multiple M bootstrap imputations can be generated by starting from different boot-

strap samples in step 1 to createM complete data sets composed of {Y imp,1,b1
mis , Yobs,X},
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{Y imp,2,b2
mis , Yobs,X}, ...,{Y imp,M,bM

mis , Yobs,X}. Each data set completed by imputation

can be analyzed using the standard complete-data methods.

We use combining rules for bootstrap imputation (Efron, 1994) to get a com-

bined nonparametric bootstrap imputation (NBI) estimate we denote as γ̄NBI =

1
M

∑M
m=1 γ̂m where the variance of γ̄NBI is V̂BI = 1

M−1
∑M

m=1(γ̂m − γ̄NBI)
2.

3.2.2 Nonparametric Multiple Imputation

An alternative approach for imputation is multiple imputation proposed by Rubin

(1976). We incorporate a bootstrap scheme which allows for resampling of only the

observed data and accounts for the variability in estimating the parameters in the

imputation. We create initial values as in step 1 in bootstrap imputation but only

using the bootstrapped observed data. We fit the models (3.1) and (3.2) using the

bootstrapped data. We compute the distance between subject i with missing outcome

and all other subjects that have an observed outcome in the bootstrap sample. The

algorithm continues as in bootstrap imputation but with the key distinction that

the completed data sets are composed of the original observed data (pre-bootstrap)

where {Y imp,1
mis , Yobs,X}, {Y imp,2

mis , Yobs,X},..., {Y imp,M
mis , Yobs,X} are the completed M

data sets. Standard complete data analysis are performed on each imputed data

set. Similarly to bootstrap imputation, we let θ̂m and Wm, m = 1, ...,M be the

estimates and associated variances, respectively, obtained from each M analyses. We

use Rubin’s combining rules (Rubin, 1987) to get a combined nonparametric multiple

imputation (NMI) estimate denoted θ̄NMI = 1
M

∑M
m=1 θ̂m and the total variability

associated with θ̄NMI is TNMI = W̄ + M+1
M

B where W̄ = 1
M

∑M
m=1Wm and B =

1
M−1

∑M
m=1(θ̂m − θ̄M)2 to create one inferential summary.
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3.3 Simulation studies

In this section, we carry out simulation studies to evaluate the performance of

our proposed methods in finite samples. In our simulations, we focus on estimating

the mean in the presence of missing data with non-ignorable nonresponse. We are

also interested in evaluating the impact of incorrect specification of the data and

response models, correlation amongst the data, and the choices of the user-specified

weights (ω1, ω2). For each simulation scenario our goal was to examine the follow-

ing measures: the average relative bias (RB) computed using the ratio of the bias

to the absolute value of the nonzero true value; the standard deviation (SD) of the

resulting estimates; the average standard error (SE); the mean squared error (MSE);

the coverage rates (CR) of 95% Wald confidence intervals. The following methods

are compared: complete-case (CC) analysis which discards subject with missing ob-

servations; a parametric multiple imputation (PMI) method, where Bayesian linear

regression with the fully observed covariates is fit and then used to draw imputa-

tions for each missing observation; the random indicator (RI) method (Jolani, 2012);

the pattern-proxy mixture hot deck (PPMHD) proposed by Sullivan and Andridge

(2015); our proposed nonparametric multiple imputation (NMI) and nonparametric

bootstrap imputation (NBI) method. The PMI and PPMHD methods involve fitting

a regression model for Y , and the RI, NBI, and NMI methods also involve fitting a

regression model for the response indicator R. The models were fit using the method

of maximum likelihood.

3.3.1 Setup

Two set of simulations were carried out with 500 replicates and sample size

n = 400. Five fully observed covariates are generated from the multivariate nor-

mal distribution:
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

X1

X2

X3

X4

X5


∼ MVN





0

0

0

0

0


,



1 ρ ρ2 ρ3 ρ4

ρ 1 ρ ρ2 ρ3

ρ2 ρ 1 ρ ρ2

ρ3 ρ2 ρ 1 ρ

ρ4 ρ3 ρ2 ρ 1




with 3 different correlations, ρ = {−0.5, 0.0, 0.5}. The hypothetical complete outcome

of interest Y was generated from a normal distribution with mean E(Y |X) = 10 +

X1 +X2 +X3 +X4 +X5 and variance of 9 to result in 10 for the true mean of Y . The

outcome Y was subject to missingness with the probability of being missing generated

from a logit model, logit[P (R = 1|X)] = −4X1 + 2X2 + 2X3 + 2X4 − 2X5 − 0.25Y ,

where R is the response indicator which takes the value of 1 if Y is missing and 0

otherwise. The aforementioned model depends on the variable with missing values

Y , hence the missing data mechanism is non-ignorable. Each Monte Carlo data set

includes the variable with missing values Y and the fully observed variables X. In

the first simulation scenario, we estimate the mean of the incomplete variable Y with

both models for the outcome Y and the nonresponse model correctly specified. In

the second scenario, both models are incorrectly specified where the outcome Y was

subject to missingness with the probability of being missing generated from a logit

model, logit[P (R = 1|X)] = −4X1 + 2X2 + 2X3 + 2X4 + 2X5 + 0.2Y and the true

model for the outcome is Y = 8+X1+X2+X3+X4+ε. However, the working model

for the outcome only includes X2, X3, X4 to create a misspecification and the model

for the response includes Y in addition. We also consider misspecification of either

the response or outcome models. The true outcome model remains the same as in

the second scenario. However, in the third scenario the response model is incorrectly

specified with the true response model a logistic regression model logit [P (R = 1)] =

−4X1 + 2X2 + 2X3 + 2X4 + 6X5 + 0.2Y and a misspecification is created by only
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using X1, X2, X3 and Y to fit the model. To misspecify the outcome model in the

last scenario, we exclude X4 from the model.

The NBI and NMI estimate of the mean is shown as NBI(K, ω1, ω2) and NMI(K,

ω1, ω2) where K is the number of nearest neighbors used in the imputation. The

weighting scheme was varied as (ω1, ω2) = (0.2, 0.8), (0.5, 0.5), and (0.8, 0.2). The

specification of (ω1, ω2) provides a natural way to incorporate ones prior beliefs on

the validity of the two working models. In simulations we chose K = 3 neighbors

as recommended by Long et al. (2012). In simulations, Long et al. (2012) show

increasing K beyond 3 leads to larger bias and slightly higher MSEs. We choose

M = 50 bootstrap imputations for NBI, M = 30 multiple imputations for NMI,

and used 100 iterations for each imputation. In the statistical literature, it has been

shown these values of M achieve good performance in finite samples. The mean

estimate using the PPM hot deck is shown as PPMHD(c, λ) where c is the ’closeness’

parameter that determines the closeness of the donor and the recipient in distanced-

based donor selection. The value of λ varies the missing data mechanism. We chose

c = 3 in simulations as suggested in Sullivan and Andridge (2015) and take λ = 0 to

assume MAR, λ = 1 to assume weak MNAR, and λ =∞ to assume a strong MNAR

mechanism.

3.3.2 Results

The simulation results for estimating the mean of the incomplete variable Y in

the presence of non-ignorable nonresponse is presented in Table 3.1 through Table

3.4. The missing probabilities ranged from 32% to 35%. Note that the CC and

PMI estimate of the mean suffered from notable undercoverage in both cases. In

Table 3.1, the models for Y and R were correctly specified. When both models

are correctly specified, the bias was negligible for all estimators except for the RI

estimator. The RI estimator exhibited substantial bias. However, the NBI and NMI
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were least biased with coverage rates closer to the 95% nominal level. While the bias

was negligible for all NBI and NMI estimators, the method lead to an even smaller

bias when a larger weight was assigned to the nonresponse model for R(ω2). As the

weight ω2 increases from 0.2 to 0.8 for the model for R, the bias of the NBI and

NMI estimator decreased slightly. The impact of weights on SE is minimal for our

estimator. The MSE of our proposed methods was lower as compared to the other

methods. Our proposed method and the RI method have coverage near the nominal

95% confidence level. However, we note that coverage rates of the RI estimator can

be misleading in this case, since it usually exhibits large sample variation in addition

to the extreme bias. The NBI usually had slightly better coverage rates and smaller

MSE as compared to our NMI estimator. In both scenarios, the PPMHD has less

bias and better coverage when the closeness parameter is c = 3 and λ = 1 which is

assuming a less extreme case of MNAR. Although the PPMHD had negligible bias,

there was significant undercoverage. A plot of the standard errors for the 500 datasets

showed that the standard errors were generally lower than our methods. However,

large standard errors that were potentially outliers resulted in large estimates of the

average SE. In both simulation scenarios, all methods perform better (in terms of

bias and coverage) when the correlation among the data increases from -0.5 to 0.5.

In Table 3.2, we present the results with both models incorrectly specified. Even

though the models are misspecified, the simulation results show that the NBI estima-

tors of the mean are nearly unbiased when the correlation among the data is 0.0 and

0.5. An advantage of our approach is that the NBI and NMI method is nonparametric

and only uses the predictive scores to evaluate the similarity between subjects, hence

its dependence on the two models is weaker than that of the other methods. All

other methods are either biased or exhibit undercoverage of the confidence interval or

both. The RI method exhibits considerable overcoverage of the 95% confidence level

due to inflated standard errors. In contrast, the PMI and PPMHD methods have
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substantial undercoverage with incorrect specification of both models. Although we

noticed favorable results with the NBI method, using NMI to impute missing values

and estimate the mean shows large bias, larger MSE, and considerable undercover-

age. In Table 3.3 and 3.4, we present results of either the outcome or response model

misspecified. However, our results are only a slight improvement over the existing

methods in terms of bias, MSE, and coverage. When the correlation among the data

is -0.5 and outcome model is misspecified, the RI method fails.

In summary, the proposed NBI estimator and NMI estimators achieve similar or

better performance in all settings compared with other estimators considered in our

simulation studies. Our results suggest that it is more important to correctly specify

the model for the nonresponse R. Thus, it is recommended to choose larger w2 values,

possibly greater than or equal to 0.5, in the absence of prior knowledge on the models.

3.4 Motivating Example

We illustrated the proposed methods using the Georgia Coverdell Acute Stroke

Registry (GCASR) data set. A detailed description of the registry data set was

reported elsewhere (Camp et al., 2015). The primary goal of the GCASR program is to

improve the care of acute stroke patients in the hospital and pre-hospital setting. We

used a sample of 2,115 patients with acute ischemic stroke in which data were collected

from multiple sources, including patient surveys and medical records, between 2007

and 2011. Fully observed variables included age, gender, race, and dichotomous

variables for obesity, diabetes, atrial fibrillation, hypertension, IV TPA, and whether

or not the patient had insurance. Other clinical variables collected for all patients were

cholesterol level, systolic blood pressure, diastolic blood pressure,and the hospital.

While there were many variables with missing values, for illustrating our method we

focus on imputation of the National institute of Health stroke score (NIHSS). The
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NIHSS is a clinical assessment tool to measure stroke severity, predict patient clinical

outcome, and is often used to determine appropriate treatment. Of the 2115 patients,

681 were missing NIHSS (32% missing). Clinicians often believe the assessment is

time-consuming and typically do not calculate the score if they do not believe the

patient might be a candidate for acute treatment with intravenous thrombolytics or

enrollment in investigational protocols (Richardson et al., 2006). Furthermore, these

barriers in implementation of the score created concern for whether or not the data

were nonignorably missing. To account for a potential non-ignorable missing data

mechanism, we applied our new proposed method to estimating the overall mean

NIHSS in the study population.

We imputed the NIHSS using the NMI and NBI approach of Section 3.2 by first

constructing models for the outcome model for the NIHSS (Y ) and for the nonresponse

model (R). For the nonresponse model, in addition to NIHSS, we included all 13

fully observed variables to fit a logistic regression model to predict probability of

missingness. For the outcome model, we used the same covariates in the nonresponse

model to fit a linear regression model. To compute the NMI and NBI estimators with

different weighting schemes, we chose K = 3 nearest neighbor and ω1 and ω2 varied

as 0.2,0.5, and 0.8 as in the simulation studies. In NMI we used M = 30 imputations

and used Rubin’s combining rules to get estimates for the mean NIHSS. Similarly,

we used NBI with M = 50 bootstrap imputations and used rules for combining

bootstrap imputation (Efron, 1994). Additionally, we also presented the results of

the CC, MI assuming MAR, RI, and PPMHD for comparison. For MI, Bayesian

linear regression was used with all 12 covariates as predictors of NIHSS. For RI, all

12 complete covariates were used in the imputation and nonresponse models. For

PPMHD, all 12 variables were used to create a proxy by regressing on NIHSS to

create predicted values for all subjects. We applied the PPMHD with the assumption

of MAR (λ = 0), weak MNAR (λ = 1), strong MNAR (λ = ∞), and chose the
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closeness parameter c = 3 as recommended by Sullivan and Andridge (2015).

Table 3.5 provides estimates of the mean NIHSS of the sample for CC, PMI, RI,

NBI, NMI, and PPMHD along with standard errors (SE), and 95% confidence in-

tervals (CI). All methods except the PPMHD assuming a strong MNAR assumption

(λ = ∞) produce similar point estimate of the mean NIHSS level. The RI method

produced a much higher estimate of SE and a slightly higher estimate of the mean

compared to the other methods which was shown in the simulations. The MI, RI, NBI,

NMI, and PPMHD methods produce slightly higher SEs compared to the CC analy-

sis. As expected, the mean estimate of NIHSS for MI is similar to the estimate using

PPMHD with λ = 1, since both assume a MAR mechanism. The mean estimates

assuming MAR are very close to the estimates obtained from NBI(3, 0.5, 0.5) and

NMI(3, 0.5, 0.5). Thus, it is likely that the missing data mechanism is close to MAR

in this dataset. Larger weights for the predictive scores of the missing probability and

outcome resulted in slightly lower estimates for the mean as compared to the other

weighting schemes. The PPMHD(3,∞) which assumes an extreme MNAR mecha-

nism resulted in much lower mean estimates of NIHSS. However, these differences are

not clinically meaningful since NIHSS can range from 0 to 42. One disadvantage of

the PPMHD compared to the NBI and NMI is the reliance on one set of predictive

means from the mixture models to create imputations. The correlation between the

outcome and predicted means among observed values was ρ = 0.045, which was not

strong making it difficult to find close donors for the unobserved values and explains

the lower value. In contrast, the NBI and NMI methods iterate between the nonre-

sponse model and outcome model rather than relying solely on one set of predictive

means. Our results seem to indicate the models for Y and for the missing probability

are approximately correct. As a result, either NBI(3, 0.5, 0.5) or NBI(3, 0.5, 0.5)

estimates could be chosen as the estimate of the mean NIHSS in our sample.
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3.5 Discussion

A challenging problem in the analysis of missing data concerns how to handle

missing that is missing not at random which results in a non-ignorable missing data

mechanism. In the analysis phase of research, one should never completely rule out

the possibility of non-ignorability, under which modeling of the missing data mech-

anism is essential to provide valid inferences. We have developed a nonparametric

approach that is useful when the missing data is non-ignorable. Compared to PMI,

RI, and PPMHD, our approach is more robust because our proposed weighting scheme

allows for a sensitivity analysis so investigators can incorporate prior beliefs on the

nonresponse and outcome models. Our approach also incorporates a bootstrap step,

which aids in integrating appropriate variability across the imputations. More im-

portantly, we can evaluate the validity of the working models, which in turn enables

investigators to choose an optimal imputation estimator. Furthermore, our proposed

approach can easily be extended to other settings such as regression analysis with

missing data. From simulations studies, we suggest that investigators perform the

sensitivity analysis and set ω2 to a larger value when lacking prior knowledge about

the strength of the models. It is of future interest to extend our methods to studies

with general missing data patterns.



75

Table 3.1: Estimating the mean in the presence of non-ignorable missing data with
both the nonresponse and outcome model correctly specified

Correlation Method RB(%) SD SE MSE CR(%)

ρ = 0.5 CC 4.79 0.183 0.154 0.263 27
PMI 4.16 0.213 0.215 0.219 53
RI 9.53 0.405 0.816 1.071 92

PPMHD(3,1) 3.73 0.252 0.304 0.202 82
PPMHD(3,∞) 4.19 0.219 0.303 0.224 74
NBI(3,0.2, 0.8) 1.43 0.305 0.322 0.140 94
NBI(3,0.5,0.5) 1.67 0.264 0.293 0.127 93
NBI(3,0.8,0.2) 1.98 0.235 0.268 0.123 92
NMI(3,0.2, 0.8) 1.49 0.311 0.308 0.118 90
NMI(3,0.5,0.5) 1.65 0.267 0.278 0.098 89
NMI(3,0.8,0.2) 1.99 0.237 0.252 0.096 90

ρ = 0.0 CC 5.81 0.181 0.153 0.370 14
PMI 4.26 0.218 0.222 0.229 54
RI 10.84 0.454 0.920 1.380 91

PPMHD(3,1) 3.82 0.234 0.307 0.200 80
PPMHD(3,∞) 5.03 0.199 0.266 0.292 51
NBI(3,0.2, 0.8) 1.81 0.327 0.364 0.140 95
NBI(3,0.5,0.5) 2.16 0.284 0.319 0.127 93
NBI(3,0.8,0.2) 2.48 0.247 0.291 0.123 90
NMI(3,0.2, 0.8) 1.87 0.332 0.347 0.145 90
NMI(3,0.5,0.5) 2.14 0.283 0.308 0.126 89
NMI (3,0.8,0.2) 2.49 0.248 0.274 0.124 87

ρ = −0.5 CC 6.35 0.180 0.152 0.435 8
PMI 4.51 0.223 0.220 0.253 50
RI 11.44 0.509 0.951 1.567 91

PPMHD(3,1) 4.45 0.218 0.289 0.246 70
PPMHD(3,∞) 5.77 0.189 0.231 0.368 30
NBI(3,0.2, 0.8) 2.25 0.319 0.367 0.152 94
NBI(3,0.5,0.5) 2.57 0.273 0.326 0.140 93
NBI(3,0.8,0.2) 2.85 0.242 0.291 0.140 88
NMI(3,0.2, 0.8) 2.28 0.322 0.354 0.156 90
NMI(3,0.5,0.5) 2.55 0.278 0.310 0.142 87
NMI(3,0.8,0.2) 2.93 0.244 0.275 0.145 84
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Table 3.2: Estimating the mean in the presence of non-ignorable missing data with
both the nonresponse and outcome model incorrectly specified

Correlation Method RB(%) SD SE MSE CR(%)

ρ = 0.5 (32%) CC -15.255 0.221 0.14 1.538 0
PMI 3.386 0.219 0.175 0.121 69
RI 3.136 0.267 0.576 0.133 99

PPMHD(3,1) 3.507 0.263 0.233 0.147 82
PPMHD(3,∞) 3.621 0.246 0.225 0.144 75
NBI(3,0.2, 0.8) -1.919 0.277 0.272 0.099 94
NBI(3,0.5,0.5) -1.542 0.230 0.224 0.067 94
NBI(3,0.8,0.2) -1.213 0.215 0.213 0.055 90
NMI(3,0.2, 0.8) 3.066 0.238 0.201 0.116 80
NMI(3,0.5,0.5) 4.446 0.264 0.212 0.195 61
NMI(3,0.8,0.2) 3.293 0.276 0.255 0.145 86

ρ = 0.0 CC 2.669 0.128 0.082 0.062 65
PMI 5.02 0.132 0.121 0.178 12
RI 4.462 0.168 0.577 0.155 100

PPMHD(3,1) 6.092 0.134 0.132 0.255 6
PPMHD(3,∞) 7.688 0.162 0.162 0.404 3
NBI(3,0.2, 0.8) 0.99 0.263 0.282 0.079 96
NBI(3,0.5,0.5) 1.30 0.245 0.268 0.077 95
NBI(3,0.8,0.2) 1.70 0.231 0.259 0.082 94
NMI(3,0.2, 0.8) 4.954 0.149 0.164 0.179 32
NMI(3,0.5,0.5) 4.931 0.146 0.16 0.177 3
NMI(3,0.8,0.2) 4.958 0.146 0.158 0.179 3

ρ = −0.5 CC 2.53 0.129 0.082 0.057 67
PMI 4.92 0.124 0.121 0.170 11
RI 4.37 0.163 0.571 0.149 1

PPMHD(3,1) 5.98 0.131 0.132 0.246 6
PPMHD(3,∞) 7.53 0.159 0.162 0.388 4
NBI(3,0.2, 0.8) 4.88 0.142 0.187 0.173 42
NBI(3,0.5,0.5) 4.86 0.139 0.181 0.171 40
NBI(3,0.8,0.2) 4.86 0.137 0.179 0.170 38
NMI(3,0.2, 0.8) 4.90 0.142 0.172 0.174 38
NMI(3,0.5,0.5) 4.91 0.138 0.164 0.173 35
NMI(3,0.8,0.2) 4.93 0.137 0.16 0.174 32
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Table 3.3: Estimating the mean in the presence of non-ignorable missing data with
the response model misspecifed

Correlation Method RB(%) SD SE MSE CR(%)

ρ = 0.5 CC -15.59 0.22 0.14 1.50 0
PMI -1.265 0.177 0.168 0.042 90
RI -1.31 0.237 0.478 0.067 100

PPMHD(3,1) -1.53 0.181 0.176 0.048 89
PPMHD(3,∞) -0.74 0.186 0.179 0.038 94
NBI(3,0.2, 0.8) -6.92 0.374 0.445 0.446 81
NBI(3,0.5,0.5) -5.67 0.308 0.382 0.300 83
NBI(3,0.8,0.2) -4.67 0.271 0.347 0.213 87
NMI(3,0.2,0.8) -2.11 0.269 0.268 0.101 89
NMI(3,0.8,0.2) -1.85 0.229 0.224 0.074 91
NMI(3,0.8, 0.2) -1.61 0.208 0.209 0.060 91

ρ = 0.0 CC -4.14 0.174 0.110 0.140 50
PMI -0.42 0.136 0.135 0.020 94
RI -0.69 0.173 0.464 0.033 100

PPMHD(3,1) -0.22 0.136 0.136 0.019 95
PPMHD(3,∞) 0.22 0.139 0.140 0.020 95
NBI(3,0.2, 0.8) -0.63 0.164 0.206 0.030 98
NBI(3,0.5,0.5) -0.55 0.151 0.186 0.025 98
NBI(3,0.8,0.2) -0.54 0.145 0.179 0.023 98
NMI(3,0.2, 0.8) -0.61 0.168 0.190 0.031 95
NMI(3,0.5,0.5) -0.55 0.152 0.171 0.025 96
NMI(3,0.8,0.2) -0.52 0.147 0.165 0.023 96

ρ = −0.5 CC 2.53 0.129 0.082 0.057 67
PMI -0.25 0.118 0.115 0.014 95
RI 0.10 0.158 0.465 0.025 100

PPMHD(3,1) -0.71 0.119 0.121 0.017 95
PPMHD(3,∞) -1.43 0.128 0.130 0.029 88
NBI(3,0.2, 0.8) -0.38 0.136 0.182 0.019 99
NBI(3,0.5,0.5) -0.23 0.136 0.173 0.019 98
NBI(3,0.8,0.2) -0.24 0.127 0.162 0.016 98
NMI(3,0.2, 0.8) -0.23 0.150 0.167 0.023 97
NMI(3,0.5,0.5) -0.27 0.134 0.155 0.018 96
NMI(3,0.8,0.2) -0.27 0.131 0.152 0.018 97
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Table 3.4: Estimating the mean in the presence of non-ignorable missing data with
the outcome model misspecifed

Correlation Method RB(%) SD SE MSE CR(%)

ρ = 0.5 CC -19.35 0.200 0.135 2.436 0
PMI -3.11 0.209 0.205 0.106 78
RI NA

PPMHD(3,1) -3.02 0.211 0.215 0.103 79
PPMHD(3,∞) -1.51 0.223 0.228 0.064 93
NBI(3,0.2, 0.8) -6.92 0.374 0.445 0.445 81
NBI(3,0.5,0.5) -5.668 0.308 0.382 0.300 83
NBI(3,0.8,0.2) -4.67 0.271 0.347 0.213 87
NMI(3,0.2,0.8) -6.94 0.373 0.419 0.447 71
NMI(3,0.8,0.2) -5.69 0.309 0.354 0.302 74
NMI(3,0.8, 0.2) -4.62 0.276 0.318 0.213 80

ρ = 0.0 CC -7.33 0.152 0.107 0.366 2
PMI -1.82 0.201 0.206 0.061 90
RI -4.98 0.500 0.808 0.405 99

PPMHD(3,1) -0.69 0.218 0.227 0.050 96
PPMHD(3,∞) 0.84 0.249 0.262 0.066 96
NBI(3,0.2, 0.8) -4.22 0.338 0.417 0.228 92
NBI(3,0.5,0.5) -3.70 0.302 0.374 0.178 93
NBI(3,0.8,0.2) -3.16 0.266 0.343 0.135 95
NMI(3,0.2, 0.8) -4.12 0.359 0.379 0.236 83
NMI(3,0.5,0.5) -3.69 0.290 0.339 0.170 88
NMI(3,0.8,0.2) -3.29 0.269 0.31 0.141 86

ρ = −0.5 CC -0.03 0.131 0.083 0.017 0.94
PMI -1.49 0.191 0.190 0.051 91
RI NA

PPMHD(3,1) -2.09 0.234 0.243 0.083 89
PPMHD(3,∞) -2.72 0.299 0.325 0.137 88
NBI(3,0.2, 0.8) -2.07 0.313 0.379 0.126 96
NBI(3,0.5,0.5) -2.16 0.281 0.347 0.109 95
NBI(3,0.8,0.2) -2.19 0.251 0.318 0.094 95
NMI(3,0.2, 0.8) -2.07 0.320 0.356 0.130 94
NMI(3,0.5,0.5) -2.19 0.289 0.325 0.114 93
NMI(3,0.8,0.2) -2.15 0.262 0.297 0.098 94
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Table 3.5: Estimating the mean National Institute of Health Stroke Score

Method Estimate SE 95% CI
CC 7.377 0.187 (7.010, 7.745)
PMI 7.124 0.187 (6.743, 7.505)
RI 7.336 0.913 (5.469, 9.203)

PPMHD(3,1) 6.643 0.193 (6.264, 7.022)
PPMHD(3,∞) 6.878 0.241 (6.405, 7.351)
NBI(3,0.2,0.8) 7.008 0.217 (6.582, 7.434)
NBI(3,0.5,0.5) 7.183 0.229 (6.425, 7.759)
NBI(3,0.8,0.2) 7.002 0.229 (6.553, 7.450)
NMI(3,0.2,0.8) 7.067 0.295 (6.464, 7.669)
NMI(3,0.5,0.5) 7.084 0.201 (6.676, 7.493)
NMI(3,0.8,0.2) 7.018 0.185 (6.642, 7.394)
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Chapter 4

Evaluating Posterior Predictive

Checking For Imputation Models

Under the Missing Not at Random

Assumption
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Abstract

Multiple imputation is a popular method for handling missing data. In multiple im-

putation, missing values are replaced with several ”plausible values” using posterior

predictive draws from imputation models. It is important to create a general imputa-

tion model that is close to the true model because the validity of the completed data

inferences depends on the adequacy of the imputation model. Posterior predictive

checking (PPC) has been recommended as a potential method for checking imputa-

tion models under the assumption of missing at random by simulating ”replicated”

data from the posterior predictive distribution of the model. Although PPC has been

proposed in the literature for missing at random data, no studies (to the best of our

knowledge) have formally evaluated whether PPC is useful for identifying problems

with imputation models under the assumption of missing not at random. The aim

of our study is to evaluate the performance of PPC as an imputation diagnostic un-

der the assumption of missing not at random. Using simulation studies, we examine

whether PPC can reliably identify imputation models that could potentially lead to

biased substantive inference. More specifically, we use PPC p-values as our summary

diagnostic measure, where extreme p-values (i.e. p-values close to 0 or 1) suggest

a misfit between the imputation model and the data. In addition, we use graphical

checks for exploring the behavior of the PPC p-values across simulations. We gener-

ate a gold standard imputation model and deliberately misspecify imputation models

to determine whether PPC is effective in identifying a departure from the true model.

The method is illustrated using a real data example from the Georgia Coverdell Acute

Stroke Registry.
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4.1 Introduction

Multiple imputation (MI) is a popular method for handling missing data which can

be partly attributed to its ease of use (Rubin, 1987). MI replaces missing values

M times with ”plausible values” using posterior predictive draws from imputation

models to create M completed data sets. Standard completed-data analyses can be

used on each data set completed by imputation, and Rubin’s combining rules (Rubin,

1987) are used to create a single inferential summary. In the last few decades, the

general framework and statistical theory for MI have been well developed. However,

checking imputation models is not common in practice, although it is generally an

important part of any statistical procedure. In addition, most imputation diagnostic

methods assume that the data are missing at random [MAR] (Rubin, 1976) which

implies that given the observed data, data are missing independently of unobserved

data. A less restrictive assumption is that the missing observations are related to

values of unobserved data referred to in the literature as missing not at random

(MNAR). To the best of our knowledge, there are no methods developed to handle

MNAR imputation diagnostics.

Meng (1994a) suggested that the imputation model be congenial or general enough

to preserve any associations among variables that may be the target in the subsequent,

completed data analyses. Furthermore, a general imputation model that is close to

the true model allows for accommodation of a wide range of statistical models that

can be used on the completed data sets. In order to construct a reasonable, general

imputation model, a major issue is to not exclude any important predictors or rela-

tionships (i.e. nonlinear relationships) among the data. Excluding important features

may lead to imputation models that are not as general than the subsequent analysis

and can potentially bias the results. Diagnostic and model checking of imputation

models is a natural way to determine whether these assumptions hold.

Although diagnostic methods are scarce, diagnostic testing for missing data mod-
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els have a long history. One of the first studies for diagnostic for missing values was

introduced by Poirier and Ruud (1983). They introduced a more general case of the

Heckman (1977) selection model to handle missing data in a maximum likelihood

based approach. Violation of either homoscedasticity and lognormality could poten-

tially result in inconsistency of the estimators in those models. To identify departures

from model assumptions, they proposed the use of Lagrange multipliers test. How-

ever, they did not study diagnostic for imputations because it was before (Rubin,

1987) published his pioneering work on MI to handle nonresponse in surveys.

Previous work on imputation diagnostic is limited to the assumption that the data

are missing at random. For instance, Raghunathan and Bondarenko (2007) proposed

the use of propensity scores as a diagnostic tool to check the validity of imputed vales

in MI. They checked the equality of the distributions of the observed and missing

values conditional on the response propensity score. Wang (2010) extended this

diagnostic approach to include a regression of both the observed and imputed data

as a function of the predicted propensity score and the missingness indicator. With

the extension, Wang (2010) was able to check whether the imputation model used to

generate imputations would preserve the associations among variables in the dataset

by determining if the missingness was completely explained by the response propensity

score.

Several authors have used graphical tools and numerical test such as Kolmogorov-

Smirnov (KS) test to assess plausibility of imputations. For example, Abayomi et al.

(2008) examined the empirical density plots, bivariate scatter plots, and residual plots

to identify dramatic differences from the observed and imputed data. Bondarenko

and Raghunathan (2016) made graphical comparisons of the observed and imputed

values conditional on the response propensity to assess the suitability of imputations

from imputation models. Abayomi et al. (2008) and Nguyen et al. (2013) used the KS

test to diagnose problems with imputation models by comparing the empirical dis-
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tribution of the observed and imputed data. Abayomi et al. (2008) flagged imputed

variables with statistically significant differences and further examined variables us-

ing graphical techniques. Nguyen et al. (2013) suggested that the imputed variables

required more rigorous evaluation after the KS test is performed. Nguyen examined

the behavior of the KS p-value under various scenarios in simulations, including vary-

ing the amount of missing data, misspecified imputation models, and skewed and

heavy-tailed distributions.

He and Zaslavsky (2012) and Nguyen et al. (2015) used a diagnostic method based

on posterior predictive checking [PPC] (Gelman et al., 1996), namely the posterior

predictive p-value (Meng, 1994b), to determine the adequacy of imputation models by

applying subsequent analyses of interest to both the completed data and their pos-

terior replicates simulated under the imputation model. Large differences between

the estimates using the completed data and the simulated replicates may suggest

model inadequacy. He and Zaslavsky (2012) and Nguyen et al. (2015) checked impu-

tation models assuming the missing data are MAR. However, principled diagnostic

approaches that can handle the less restrictive assumption of MNAR have not been

investigated in the literature. Motivated by such facts, our primary goal is to evaluate

whether the diagnostic methods of He and Zaslavsky (2012) and Nguyen et al. (2015)

are applicable in the case of MNAR imputation models.

The remainder of this paper is organized as follows. In Section 2, we review sev-

eral approaches for multiple imputation developed assuming the data are MNAR.

In Section 3, we review the posterior predictive checking methods of Gelman et al.

(1996) and demonstrate its application to MNAR imputation models. In Section

4, we perform simulations to evaluate the performance of PPC p-values as a sum-

mary diagnostic measure for MNAR imputation models. In Section 5, we apply the

approach to imputation models using the Georgia Coverdell Acute Stroke registry

(GCASR) data. In Section 6, we conclude with a brief discussion of future research
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directions.

4.2 Missing Not at Random Imputation Methods

Suppose data are collected for n samples but some variables in the study are subjected

to missingness. We let Y denote the variable with missing values, R denote the

response indicator which takes values 1 if Y is observed and 0 if Y is missing, and X

denote a set of fully observed auxillary variables that are predictive of either Y or R.

For a given sample we can partition Y into two separate components; the observed

observations of Y are denoted by Yobs and the missing observations are denoted by

Ymis. Further suppose the probability that Y is missing depends upon the missing

value itself, thus the data are MNAR. The development of methods for the analysis

of data under the assumption of MNAR has been an active area of research. In

this paper, methods that incorporate imputation models are of particular interest,

since PPC is only applicable to imputation models. Methods that involve imputation

models to impute MNAR data include the random indicator method (RI, (Jolani,

2012)) and the proxy-pattern mixture hot deck (PPMHD, (Sullivan and Andridge,

2015)). In this section, we briefly review the aforementioned imputation methods for

handling data that are MNAR.

4.2.1 Random Indicator Method

Jolani (2012) proposed drawing a pseudo response indicator from the model for the

missing data mechanism using the selection modeling approach. Under the selection

modeling approach, the joint distribution of R and Y is specified through models for

the marginal distribution of Y and the conditional distribution of R given Y . Jolani

(2012) iteratively drew imputations for the incomplete variable Y and the realiza-

tion of the response indicator R, denoted R∗. Initial values for Ymis are randomly
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drawn from Yobs. Then, a parametric model for the missing data mechanism is fit-

ted, E(R|Y,X) = f1(X, Y ;α), where f1 is a real-valued smooth function, such as the

logit, and α∗ can be drawn from its posterior distribution given the estimated value α̂.

Given α̂, the pseudo random indicator can be drawn from a Bernoulli process where

the probability is P (R = 1|X, Y (t)), Y (t) = (Yobs, Y
imp,m(t)

mis ), and t denotes an iteration

of the algorithm, where M is the number of imputations. In addition, using the ob-

served data, a model for the outcome Y , E(Y |X,R = 1, R∗ = r∗) = Xβ + δ(r∗ − 1),

is fitted where r∗ denotes the value of the pseudo indicator which takes values 0 or

1, β is a vector of regression coefficients, and δ is the adjustment parameter. By

cross-classifying Y by R and R∗, various properties on the distribution of the missing

data are obtained through the adjustment parameter. Given the prior for β, β∗ is

drawn from its posterior distribution. An update for the missing values are created

conditional on the pseudo random indicator R∗, such that when r = 1, we predict

Ymis using Xβ∗− δ̂, and using Xβ∗− 2δ̂ when r = 0. The algorithm is repeated until

convergence and the last values are treated as one imputation for the missing values.

M imputations for Ymis are generated by starting with new initial values for Ymis.

4.2.2 Proxy Pattern Mixture Hot deck

Sullivan and Andridge (2015) proposed an approach to impute MNAR data through

the use of the hot deck. Predicted values for Y are based on a pattern-mixture model

(Little, 1993), where the joint distribution of Y and R are specified as the marginal

distribution of R and the conditional distribution of Y given R. A parametric model,

regressing Y on fully observed covariates X, is used to create predicted means for both

observed values and missing values under varying assumptions of the missing data

mechanism. The sensitvity parameter λ determines the missingness mechanism; the

values λ are varied as 0 to assume a MAR mechanism, 1 for a weak MNAR mechanism,

and λ = ∞ indicating an extreme case of MNAR. For a given assumption on the
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missingness mechanism, the predicted means are used to define distances between

observed values and unobserved values and probabilities of selection proportional to

those distances. An imputation is created by randomly selecting an observed value

for the missing values using the selection probabilities.

4.3 Diagnostic Methods

4.3.1 Posterior Predictive Checking

Our goal is to evaluate whether posterior predictive checking will uncover discrep-

ancies in statistical inferences when aspects of the MNAR imputation model do not

fit the data. Posterior predictive checking compares the observed Y with draws of

replicates denoted Y rep that are drawn from their posterior predictive distribution

of Y = (Yobs, Ymis) using a discrepancy function denoted by Q. The Q is a scalar

function of the data, for example, the mean or median. The posterior predictive

p-value(Meng, 1994b) is a commonly used diagnostic measure in posterior predictive

checking. The posterior predictive p-value is the probability that the replicated data

would be more extreme than the observed data. Meng (1994b) define the posterior

predictive p-vlaue for an imputation model as

pB,com = P (Q(Y rep) ≥ Q(Yobs, Ymis)|Yobs, X) (4.1)

=

∫ ∫
I(Q(Y rep) ≥ Q(Yobs, Ymis)f(Y rep, Ymis|Yobs, X)dY repdYmis (4.2)

where I(.) is the indicator function and the replicated data is Y rep = (Y rep
obs , Y

rep
mis).

For d = 1, ..., D,we use the existing imputation methods for MNAR data intro-

duced in Section 4.2, namely RI and PPMHD, to impute Y imp,d
mis and simulate the

replicated data. We can estimate ppost by simulation as the proportion of D draws
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for which Q(Y rep,d) ≥ Q(Yobs, Y
imp,d
mis ). Hence comparing the realized test quantities

Q(Yobs, Y
imp,d
mis ) with its simulated replicates Q(Y rep,d). The goal of posterior predictive

checking is to assess whether components of the data that do not fit the imputation

model will lead to discrepancies. He and Zaslavsky (2012) showed that extreme p val-

ues, either close to 0 or 1, would suggest there are discrepancies between (Yobs, Y
imp
mis )

and Y rep = (Y rep
obs , Y

rep
mis) that may not be fully explained by chance under MAR. Our

methods are distinctive from He and Zaslavsky (2012), in that our primary objective

is to determine whether this diagnostic approach for imputation models will detect

discrepancies assuming the missing data mechanism is non-ignorable. Under nonig-

norable missingness, one assumes the response mechanism depends on unobserved

values, and the outcome model for the variable with missing values and the response

model must be modeled jointly, thus two models are used to conduct imputation

which differentiates our approach from the previous diagnostic approach of He and

Zaslavsky (2012). If PPC is applicable in this setting, then we expect the posterior

predictive p-value of a correctly specified imputation model to be closer to 0.5 than a

misspecified imputation model. Hence, an incorrect imputation model can be flagged

for further review of the imputation model.

Variance is added to the comparison of Ymis and Y rep
mis since it is generated from the

same imputation model but imputed separately. Adding variance to the comparison

reduces the power. He and Zaslavsky (2012) reduce the variance of the distribution of

the completed data discrepancy and use the posterior predictive p-value corresponding

to this expected completed-data discrepancy, denoted by pB,ecom where

pB,ecom = P (E [Q(Y rep
com)|Y rep

obs , Yobs] ≥ E [Q(Yobs, Ymis)|Y rep
obs , Yobs] |Yobs).
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4.3.2 Discrepancy functions targeted to substantive infer-

ences

The aim in the statistical analysis phase of research is to obtain the substantive anal-

ysis results or the analyses that would be performed in the absence of missing data.

Yet, missing data must be addressed before the substantive analysis can be performed.

He and Zaslavsky (2012) suggested to use discrepancy functions Q that are estimands

of the target analyses in posterior predictive checking instead of using generic sum-

mary measures. Using these targeted estimands connects the model diagnostics with

the analytic objectives. For example, if the scientific objective of the analysis is a

simple linear regression, then a discrepancy function that is an estimand of the anal-

ysis might include the regression coefficients. In simulation, He and Zaslavsky (2012)

use the mean, variance, and regression estimates as discrepancy functions. We were

also interested in examining other estimands such as the t-statistics. They argue that

model diagnostics targeted to statistical inferences may be more appropriate to detect

relevant imputation model deficiencies. We also consider it may be more appropriate

to apply target analyses of interest to both the completed data and their posterior

replicates simulated under the imputation model to detect model discrepancies in the

case of MNAR data.

4.4 Simulations

4.4.1 Goal

We conducted a simulation study in order to assess the performance of posterior pre-

dictive checking to diagnose the adequacy of imputation models in the presence of

nonignorable missingness. In addition to examining the p-values, we also sought to

compare its performance across different imputation methods, proportion of missing-
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ness, and different choices of imputation models and target analyses. We apply RI

(Jolani, 2012) and PPMHD (Sullivan and Andridge, 2015) to construct imputation

models and impute the missing data and simulate replicates. The posterior predic-

tive p-values (Meng, 1994b) and posterior predictive p-value corresponding to the

expected completed-data discrepancy (He and Zaslavsky, 2012) is used as a summary

measure to assess the plausibility of the posited imputation models. We deliberately

misspecify the imputation model to determine whether PPC are effective in identify-

ing imputation model inadequacies. If the imputation model is correctly specified and

the diagnostic measure is appropriate assuming the data are nonignorably missing,

then we expect the posterior predictive p-value to be closer to 0.5 than any alternative

model. Alternatively, if the imputation model is poorly specified, such as through the

omission of important variables, this can lead to biased results and we expect to have

extreme p-values (i.e. close to 0 or 1). Extreme p-values suggest deficiencies in the

imputation model.

4.4.2 Simulation setting

We adopt the simulation set-up of He and Zaslavsky (2012) but to include imputaitons

for nonignorable missingness and additional discrepancy functions. In our simula-

tions, we also consider two variables, a fully observed Y1 and incomplete Y2 with n =

1000. The data generating model is Y1 ∼ Unif(−3, 3), Y2|Y1 ∼ N(1 + Y1 + 0.5Y 2
1 , 1).

We use 300 Monte Carlo datasets in simulation. The following describes the simula-

tion design:

• True Response model : the response model depends on Y2 therefore is missing

not at random with logit[P (Y2 is missing|Y1, Y2)] = β0 + β1Y1 + β2Y2 where

β = (−3.1, 0.5, 0.4) to induce 20% missingess and where β = (1.3, 0.5, 0.4)

induces 80% of missingness on Y2. The probability of response depends on the

variable with missing values, hence the missingness mechanism is nonignorable.
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• Working model for the outcome and response:

a. Correct imputation model: Y2 is specified as a quadratic function of Y1

b. Incorrect imputation model: Y2 is specified as a linear function of Y1

In the latter, we deliberately misspecify the aforementioned response and outcome im-

putation models to determine whether the diagnostic approach will be able to identify

discrepancies in imputation models in the presence of nonignorable missingness.

We use discrepancy functions from completed-data analyses and specify the fol-

lowing discrepany functions Q.

I. Mean of the incomplete variable Y2

II. Variance of the incomplete variable Y2

III. The coefficient estimates and t-statistics for a linear and quadratic regression

of Y2 and Y1.

IV. The coefficient estimates and t-statistics for a linear and quadratic regression

of Y1 and Y2.

We applied the PPMHD using ? = (1,∞) to impute the missing values implying

assuming a weak and strong MNAR missing data mechanism for λ = 1 and λ =∞. In

addition, we impute missing values using the RI method Jolani (2012). We estimate

the completed-data discrepancies pB, com by simulation with D1 = 500. We also

calculate pB, ecom with D2 = 500 and D2 = 20 and the mean and median posterior

predictive p-value of the completed-data and expected completed-data across simu-

lations. Furthermore, we calculate the proportion of times the posterior predictive

p-values are closer to 0.5 for the correctly specified imputation model.
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4.4.3 Simulation Results

Table 4.1, 4.2, 4.7, and 4.8 show the results using the completed-data discrepancy

when data are imputed using RI. Table 4.1 and 4.2 show the results with 20% miss-

ingness rate where Table 4.1 displays the mean of the posterior predictive p-values and

Table 4.2 displays the median. Table 4.7 and 4.8 show the results with 80% missing-

ness rate where Table 4.7 displays the mean of the posterior predictive p-values and

Table 4.8 displays the median. Likewise, Table 4.3, 4.4, 4.9, and 4.10 show the results

using the completed-data discrepancy when data are imputed using the PPMHD with

λ = 1 invoking a weak MNAR imputation. Table 4.3 and 4.4 show the results with

20% missingness rate where Table 4.3 displays the mean of the posterior predictive

p-values and Table 4.4 displays the median. Table 4.9 and 4.10 show the results with

80% missingness rate where Table 4.9 displays the mean of the posterior predictive

p-values and Table 4.10 displays the median. Lastly, Table 4.5, 4.6, 4.11, and 4.12

show the results using the completed-data discrepancy when data are imputed using

the PPMHD with λ = ∞ invoking a strong MNAR imputation. Table 4.5 and 4.6

show the results with 20% missingness rate where Table 4.5 displays the mean of the

posterior predictive p-values and Table 4.6 displays the median. Table 4.11 and 4.12

show the results with 80% missingness rate where Table 4.11 displays the mean of

the posterior predictive p-values and Table 4.12 displays the median. We present the

average of the target analysis statistics using the completed data and their replicates,

namely Q̄(Yobs, Ymis) and Q̄(Y rep
oom).

4.4.3.1 Effect of imputation model and analysis models

When the imputation model is quadratic thus matches the data-generating model, the

completed-data posterior predictive p-value associated with the quadratic imputation

model is generally closer to 0.5. However, there is an exception when the missing data

are imputed using the PPMHD with λ = ∞ and the average percent missing is 80.
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Also across simulations and different methods, the proportion of times the posterior

predictive p-value is closer is 0.5 than the linear imputation model is 0.79. Hence,

PPC may be effective in identifying deficiencies in imputation models.

We use discrepancy functionsQ targeted to analytic inferences including the mean,

variance, linear and quadratic regressions. Diagnostic results for the regression esti-

mates are similar to those of the t-statistics in terms of resulting posterior predictive

p-value. For the quadratic regression of Y2 on Y1 assuming a linear imputation model,

the coefficients and t-estimates for the intercept and quadratic term are very differ-

ent between the completed data and their replicates. As a result, it is evident PPC

may help to identify the curvature that is omitted from the imputation model. The

corresponding pB,com values are also rather extreme suggesting model inadequcy for

the linear impuation model.

4.4.3.2 Effect of imputation method and proportion of missingness

When the percent of missing values is small, or about 20% the posterior predictive

p-values associated with the linear imputation model are generally more extreme. As

a result, there is evidence to suggest the discrepancy is unlikely to be due to chance.

Extreme p-values reflect the implausibility of the imputation model and therefore

suggest examining other models. However, when the percent of missing values is

about 80%, the posterior predictive p-values associated with the linear imputation

model are not as extreme. In addition, the average discrepancies for some of the

target analyses are substantial when the missing data are imputed using PPMHD

assuming λ = ∞, therefore showing its more difficult to recover the distribution of

the incomplete variable Y2 with higher missing rate in this setting.
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4.4.3.3 Effect of mean and median posterior predictive p-values

The mean completed-data posterior predictive p-value and the mean expected completed-

data posterior predictive p-value was computed as in He and Zaslavsky (2012). Addi-

tionally, we calculated the median of the p-values but did not see a considerate differ-

ence between the two summary measures. The results also show using the expected

completed-data discrepancy show similar trends to those using the completed-data

discrepancy.

4.5 Applications to Stroke Registry Data

We present an example that demonstrates the use of PPC p-values for diagnosing dis-

crepancies in non-ignorable nonresponse imputation models. These data were obtain

from the Georgia Coverdell Acute Stroke Registry (GCASR). A detailed description

of the registry data set was reported elsewhere (Camp et al., 2015). The primary

goal of the GCASR program is to improve the care of acute stroke patients in the

hospital and pre-hospital setting. We used a sample of 2,115 patients with acute

ischemic stroke in which data were collected from multiple sources, including patient

surveys and medical records, between 2007 and 2011. These data include fully ob-

served variables age, gender, race, and dichotomous variables for obesity, diabetes,

atrial fibrillation, hypertension, IV tpa, and whether or not the patient had insurance.

Other clinical variables collected for all patients were cholesterol level, systolic blood

pressure, diastolic blood pressure, and hospital. While there were many variables with

missing values, for illustrating the diagnostic method we focus on imputation of the

National institute of Health stroke score (NIHSS). The NIHSS is a clinical assessment

tool to measure stroke severity, predict patient clinical outcome, and is often used to

determine appropriate treatment. Of the 2115 patients, 681 were missing NIHSS (32%

missing). Clinicians often believe the assessment is time-consuming and typically do
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not calculate the score if they do not have reason to believe the patient is a candidate

for acute treatment with intravenous thrombolytics or enrollment in investigational

protocols (Richardson et al., 2006). Furthermore, these barriers in implementation of

the score created concern for whether or not the data were nonignorably missing.

The goal of our application of PPC is to examine the ability to detect imputation

model deficiencies assuming non-ignorable missingness. To account for a potential

non-ignorable missing data mechanism, we applied RI,PPMHD,NBI,and NMI to es-

timating the overall mean NIHSS in the study population. Clinicians believe the

thirteen fully observed variables are potentially predictive of NIHSS or the proba-

bility of missingness, therefore we use all the fully observed variables to impute the

incomplete variable NIHSS. In addition, we investigate imputing NIHSS using only

systolic blood pressure of the patient as a variable in the imputation model. Meng

(1994a) suggested imputation models be general to accommodate a wide range of sta-

tistical analyses that may be conducted using multiply imputed data sets.The former

imputation model is more general, but the latter is much more restrictive and may

not be congenial to completed-data analyses.

We use the mean as the discrepancy function after imputation of NIHSS with

the two imputation methods. In Table 4.13, we present the average discrepancy of

(Yobs, Ymis) and its simulated replicate (Y rep
com). We perform PPC using both completed

data (D = 500) and expected completed-data discrepancies (D = 500 and D2 =

20) by simulation and calculate the associated p-values, pcom and pecom respectively.

We use a general imputation model (correct model) that includes 13 variables to

use for imputation and also a more restrictive imputation model that only includes

one variable systolic blood pressure (misspecified model). Table 4.6 shows that the

magnitude of the average discrepancies is comparable when the RI imputation method

is used to impute the missing values. In addition, we note that both pB,com-values and

pB,ecom-values are close to 0.5 when using the RI method. We examine more extreme



96

p-values closer to 0 or 1 with the incorrectly specified imputation model 1. More

extreme p-values suggest a deficiency in the imputation incorrectly specified model

2. We also applied the PPMHD with the assumption of weak MNAR(λ = 1) and

strong MNAR (λ = ∞) (Sullivan and Andridge, 2015). Alternatively, the posterior

predictive p-value is near one when the imputations are from a correctly specified

imputation models. Both imputation models appear to have some misfit for the data

when imputations are made using PPMHD, yet do not have substantial impact on

the imputation inference. However, in simulations in Chapter 3, we showed improved

performance of NBI and NMI methods as compared the existing methods suggesting

it is more appropriate for the stroke data.

4.6 Discussion

Checking imputation models is not common in practice. Some methods have been

developed to assess the adequacy of imputation models which include graphical diag-

nostics, KS test, and PPC. PPC was shown to be preferable to methods that focus on

the plausibility of imputations, because it checks the fit of the model with respect to

quantities of scientific interest (Nguyen et al., 2015; He and Zaslavsky, 2012) there-

fore we focus on PPC as a model diagnostic approach in this paper. To the best

of our knowledge, there is no studies evaluating diagnostic methods for imputation

assuming the data are MNAR. We wanted to determine whether using posterior pre-

dictive p-values with discrepancy functions linked to the target analysis was effective

in diagnosing the adequacy of MNAR imputation model in supporting specific subse-

quent analyses. Our extensive simulations suggest that, in the settings we evaluated,

posterior predictive p-values can be useful in diagnosing deficiencies in non-ignorable

imputation models.
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Table 4.1: Simulation results for mean completed-data discrepancy with n = 1000,
with 20% of missingness on y2 when the missing values are imputed using the Random
Indicator method. Imputations are made assuming a correctly specified quadratic
relationship of y2 on y1 and an incorrectly specified linear relationship of y2 on y1.
We also present the proportion (Prop) of times the posterior predictive p-value is
closer to 0.5 for the correctly specified imputation model

Linear Imputation Model Quadratic Imputation Model Prop

Analysis Q(Ȳobs, Ymis) Q̄(Y rep
com) pB,com pB,ecom Q(Ȳobs, Ymis) Q̄(Y rep

com) pB,com pB,ecom

Mean of Y2 2.07 1.90 0.67 0.67 2.41 2.35 0.60 1 0.96
Var of Y2 3.59 3.66 0.39 0.35 5.35 5.42 0.42 1 0.73
Linear regression Y1 on Y2
Intercept coefficient -1.11 -1.04 0.33 0.33 -1.28 -1.24 0.40 1 0.98
linear coefficient 0.54 0.55 0.37 0.54 0.53 0.53 0.55 1 0.99
Intercept t-estimate -17.2 -16.8 0.38 0.33 -22.9 -22.5 0.40 1 0.73
linear t-estimate 23.3 24.4 0.36 0.38 31.8 32.0 0.44 1 0.99
Linear regression Y2 on Y1
Intercept coefficient 2.07 1.90 0.67 0.67 2.41 2.34 0.60 1 0.96
linear coefficient 0.65 1.90 0.67 0.36 0.95 0.96 0.42 1 0.96
Intercept t-estimate 42.9 39.74 0.67 0.67 46.7 45.3 0.60 1 0.97
Linear t-estimate 23.3 24.4 0.36 0.38 31.7 31.9 0.43 1 0.99
Quadratic regression Y1 on Y2
Intercept coefficient -1.03 -1.04 0.52 0.50 -1.16 -1.13 0.40 1 0.21
Linear coefficient 0.40 0.55 0.00 0.00 0.38 0.39 0.43 1 1
Quadratic coefficient 0.03 0.00 1.00 1.00 0.02 0.02 0.57 1 1
Intercept t-estimate -14.4 -16.3 0.88 0.90 -18.2 -18.2 0.55 1 1
Linear t-estimate 7.53 14.0 0.00 0.00 8.52 9.00 0.41 1 1
Quadratic t-estimate 2.87 -0.02 1 1 3.70 3.53 0.56 1 1
Quadratic regression Y2 on Y1
Intercept coefficient 1.20 1.90 0.06 0.06 0.97 0.89 0.60 1 1
Linear coefficient 0.65 0.67 0.37 0.37 0.95 0.96 0.42 1 0.70
Quadratic coefficient 0.29 0.00 1 1 0.48 0.48 0.44 1 1
Intercept t-estimate 19.3 26.4 0.10 0.18 20.5 19.0 0.60 1 1
Linear t-estimate 27.2 24.3 0.78 0.98 51.9 52.7 0.41 1 1
Quadratic t-estimate 18.8 0.02 1 1 40.8 41.3 0.42 1 1
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Table 4.2: Simulation results for median completed-data discrepancy with n = 1000,
with 20% of missingness on y2 when the missing values are imputed using the Random
Indicator method. Imputations are made assuming a correctly specified quadratic
relationship of y2 on y1 and an incorrectly specified linear relationship of y2 on y1.
We also present the proportion (Prop) of times the posterior predictive p-value is
closer to 0.5 for the correctly specified imputation model

Linear Imputation Model Quadratic Imputation Model Prop

Analysis Q(Ȳobs, Ymis) Q̄(Y rep
com) pB,com pB,ecom Q(Ȳobs, Ymis) Q̄(Y rep

com) pB,com pB,ecom

Mean of Y2 2.06 1.91 0.67 0.67 2.41 2.34 0.60 1 0.96
Var of Y2 3.59 3.66 0.39 0.35 5.34 5.41 0.41 1 0.73
Linear regression Y1 on Y2
Intercept coefficient -1.11 -1.04 0.33 0.33 -1.28 -1.24 0.40 1 0.98
Linear coefficient 0.54 0.55 0.37 0.54 0.53 0.53 0.56 1 0.99
Intercept t-estimate -17.2 -16.8 0.38 0.33 -22.9 -22.5 0.40 1 0.73
Linear t-estimate 23.3 24.4 0.36 0.38 31.8 32.0 0.43 1 0.99
Linear regression Y2 on Y1
Intercept coefficient 2.06 1.90 0.67 0.67 2.40 2.34 0.60 1 0.96
Linear coefficient 0.65 0.67 0.36 0.36 0.95 0.96 0.42 1 0.96
Intercept t-estimate 42.9 39.8 0.67 0.67 46.5 45.4 0.60 0.43 0.97
Linear t-estimate 23.3 24.4 0.36 0.38 31.9 32.1 0.43 1 0.99
Quadratic regression Y1 on Y2
Intercept coefficient -1.03 -1.05 0.52 0.50 -1.16 -1.13 0.40 1 0.21
Linear coefficient 0.40 0.55 0 0 0.38 0.38 0.43 1 1
Quadratic coefficient 0.03 0.00 1 1 0.02 0.02 0.56 1 1
Intercept t-estimate -14.4 -16.3 0.89 0.91 -18.2 -18.2 0.55 1 1
Linear t-estimate 7.49 14.0 0.00 0.00 8.45 8.99 0.42 1 1
Quadratic t-estimate 2.84 -0.05 1 1 3.70 3.54 0.55 1 1
Quadratic regression Y2 on Y1
Intercept coefficient 1.20 1.90 0.06 0.06 0.97 0.90 0.60 1 1
Linear coefficient 0.65 0.67 0.36 0.36 0.95 0.96 0.42 1 0.70
Quadratic coefficient 0.29 0.00 1 1 0.48 0.48 0.43 1 1
Intercept t-estimate 19.2 26.4 0.10 0.18 20.6 19.0 0.60 1 1
Linear t-estimate 27.2 24.4 0.79 0.98 51.8 52.6 0.41 1 1
Quadratic t-estimate 18.7 0.02 1 1 40.6 41.2 0.42 1 1
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Table 4.3: Simulation results for mean completed-data discrepancy with n = 1000,
with 20% of missingness on y2 when the missing values are imputed using the proxy
pattern mixture hot deck assuming the sensitivity parameter λ = 1 implying a weak
MNAR mechanism. Imputations are made assuming a correctly specified quadratic
relationship of y2 on y1 and an incorrectly specified linear relationship of y2 on y1. We
also present the proportion (Prop) of times the posterior predictive p-value is closer
to 0.5 for the correctly specified imputation model

Linear Imputation Model Quadratic Imputation Model Prop

Analysis Q(Ȳobs, Ymis) Q̄(Y rep
com) pB,com pB,ecom Q(Ȳobs, Ymis) Q̄(Y rep

com) pB,com pB,ecom

Mean of Y2 2.36 2.76 0.00 0.00 2.43 2.48 0.11 0.09 1
Var of Y2 5.31 6.28 0.00 0.00 5.50 5.69 0.17 0.11 1
Linear regression Y1 on Y2
Intercept coefficient -1.11 -1.26 0.99 0.99 -1.25 -1.26 0.55 0.57 1
Linear coefficient 0.47 0.46 0.73 0.60 0.52 0.51 0.77 0.79 0.40
Intercept t-estimate -18.2 -20.8 0.97 0.99 -22.0 -22.0 0.50 0.51 1
Linear t-estimate 25.3 28.0 0.08 0.03 30.6 30.5 0.53 0.52 1
Linear regression Y2 on Y1
Intercept coefficient 2.36 2.77 0.00 0.00 8.72 8.78 0.21 0.18 1
Linear coefficient 0.83 0.95 0.00 0.00 2.32 2.19 0.41 0.42 1
Intercept t-estimate 41.6 46.8 0.00 0.00 45.6 45.8 0.44 0.42 1
Linear t-estimate 25.36 28.0 0.08 0.03 30.7 30.6 0.53 0.52 1
Quadratic regression Y1 on Y2
Intercept coefficient -1.04 -1.23 0.99 1.00 -1.13 -1.12 0.43 0.41 1
Linear coefficient 0.37 0.41 0.28 0.31 0.36 0.33 0.73 0.76 0.44
Quadratic coefficient 0.01 0.01 0.84 0.78 0.02 0.03 0.33 0.29 0.87
Intercept t-estimate -14.8 -17.1 0.94 0.97 -17.44 -17.3 0.44 0.43 1
Linear t-estimate 7.53 8.58 0.23 0.25 8.03 7.46 0.70 0.72 0.65
Quadratic t-estimate 2.13 1.11 0.81 0.76 3.58 4.05 0.31 0.28 0.80
Quadratic regression Y2 on Y1
Intercept coefficient 1.39 2.21 0.00 0.00 1.06 1.10 0.25 0.24 1
Linear coefficient 0.83 0.95 0.01 0.00 0.94 0.95 0.33 0.28 1
Quadratic coefficient 0.32 0.18 1 1 0.46 0.46 0.45 0.43 1
Intercept t-estimate 18.7 26.0 0.00 0.00 19.3 19.6 0.43 0.40 1
Linear t-estimate 29.3 29.5 0.50 0.22 45.2 44.7 0.57 0.58 0.47
Quadratic t-estimate 17.8 9.08 1 1 34.1 33.4 0.60 0.64 1
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Table 4.4: Simulation results for median completed-data discrepancy with n = 1000,
with 20% of missingness on y2 when the missing values are imputed using the proxy
pattern mixture hot deck assuming the sensitivity parameter λ = 1 implying a weak
MNAR mechanism. Imputations are made assuming a correctly specified quadratic
relationship of y2 on y1 and an incorrectly specified linear relationship of y2 on y1. We
also present the proportion (Prop) of times the posterior predictive p-value is closer
to 0.5 for the correctly specified imputation model

Linear Imputation Model Quadratic Imputation Model Prop

Analysis Q(Ȳobs, Ymis) Q̄(Y rep
com) pB,com pB,ecom Q(Ȳobs, Ymis) Q̄(Y rep

com) pB,com pB,ecom

Mean of Y2 2.36 2.77 0.00 0.00 2.42 2.47 0.11 0.08 1
Var of Y2 5.31 6.28 0.00 0.00 5.48 5.68 0.17 0.10 1
Linear regression Y1 on Y2
Intercept -1.11 -1.26 0.99 1 -1.25 -1.26 0.55 0.57 1
Linear coefficient 0.47 0.46 0.74 0.62 0.52 0.51 0.78 0.79 0.40
Intercept t-estimate -18.2 -21.0 0.97 0.99 -22.1 -22.1 0.50 0.50 1
Linear t-estimate 25.5 28.1 0.07 0.02 30.7 30.7 0.53 0.53 1
Linear regression Y2 on Y1
Intercept coefficient 2.36 2.77 0.00 0.00 2.45 2.50 0.13 0.10 1
Linear coefficient 0.83 0.96 0.00 0.00 0.96 0.97 0.36 0.32 1
Intercept t-estimate 41.6 46.7 0.00 0.00 45.6 46.0 0.44 0.42 1
Linear t-estimate 24.5 28.1 0.07 0.02 30.7 30.7 0.52 0.52 1
Quadratic regression Y1 on Y2
Intercept coefficient -1.04 -1.23 0.99 0.99 -1.13 -1.12 0.42 0.40 1
Linear coefficient 0.37 0.41 0.29 0.31 0.36 0.33 0.74 0.76 0.44
Quadratic coefficient 0.01 0.01 0.85 0.79 0.02 0.02 0.32 0.28 0.87
Intercept t-estimate -14.8 -17.1 0.95 0.98 -17.5 -17.3 0.44 0.43 1
Linear t-estimate 7.50 8.54 0.23 0.23 8.01 7.35 0.71 0.73 0.65
Quadratic t-estimate 2.20 1.22 0.81 0.77 3.56 4.03 0.30 0.26 0.80
Quadratic regression Y2 on Y1
Intercept coefficient 1.38 2.20 0.00 0.00 1.06 1.11 0.25 0.24 1
Linear coefficient 0.83 0.96 0.00 0.00 0.94 0.96 0.32 0.27 1
Quadratic coefficient 0.32 0.19 1 1 0.46 0.46 0.44 0.43 1
Intercept t-estimate 18.7 26.1 0.0 0.00 19.3 19.5 0.43 0.40 1
Linear t-estimate 29.3 29.5 0.47 0.19 45.6 45.1 0.57 0.58 0.47
Quadratic t-estimate 17.9 9.20 1 1 34.4 33.7 0.60 0.65 1
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Table 4.5: Simulation results for mean completed-data discrepancy with n = 1000,
with 20% of missingness on y2 when the missing values are imputed using the proxy
pattern mixture hot deck assuming the sensitivity parameter λ =∞ implying a strong
MNAR mechanism. Imputations are made assuming a correctly specified quadratic
relationship of y2 on y1 and an incorrectly specified linear relationship of y2 on y1. We
also present the proportion (Prop) of times the posterior predictive p-value is closer
to 0.5 for the correctly specified imputation model

Linear Imputation Model Quadratic Imputation Model Prop

Analysis Q(Ȳobs, Ymis) Q̄(Y rep
com) pB,com pB,ecom Q(Ȳobs, Ymis) Q̄(Y rep

com) pB,com pB,ecom

Mean of Y2 2.10 2.78 0.00 0.00 2.39 2.50 0.02 0.01 0.96
Var of Y2 4.35 6.10 0.00 0.00 5.40 5.77 0.05 0.02 1
Linear regression Y1 on Y2
Intercept coefficient -0.88 -0.83 0.40 0.30 -1.18 -1.18 0.51 0.51 0.75
Linear coefficient 0.42 0.30 1 1 0.49 0.47 0.93 0.96 1
Intercept t-estimate -13.1 -11.4 0.20 0.14 -20.1 -19.8 0.40 0.38 0.93
Linear t-estimate 18.3 15.2 0.89 0.92 28.0 27.4 0.65 0.67 0.98
Linear regression Y2 on Y1
Intercept coefficient 2.10 2.78 0.00 0.00 2.38 2.49 0.02 0.01 0.01
Linear coefficient 0.60 0.61 0.46 0.45 0.89 0.90 0.32 0.26 0.40
Intercept t-estimate 36.5 39.3 0.06 0.05 43.4 43.6 0.45 0.41 0.99
Linear t-estimate 17.8 14.4 0.91 0.94 28.0 27.4 0.65 0.67 0.96
Quadratic regression Y1 on Y2
Intercept coefficient -0.80 -0.84 0.64 0.61 -1.07 -1.04 0.33 0.27 0.47
Linear coefficient 0.30 0.31 0.45 0.40 0.35 0.29 0.87 0.91 0.03
Quadratic coefficient 0.02 0.00 0.97 1 0.02 0.03 0.21 0.15 0.99
Intercept t-estimate -10.6 -9.84 0.34 0.30 -16.0 -15.4 0.30 0.26 0.47
Linear t-estimate 5.44 5.53 0.50 0.30 7.51 6.28 0.85 0.90 0.03
Quadratic t-estimate 2.24 -0.32 0.97 1 3.22 4.09 0.19 0.13 0.98
Quadratic regression Y2 on Y1
Intercept coefficient 1.48 3.38 0.00 0.00 1.17 1.30 0.06 0.04 1
Linear coefficient 0.60 0.61 0.46 0.45 0.89 0.91 0.32 0.26 0.43
Quadratic coefficient 0.21 -0.20 1 1 0.40 0.40 0.57 0.59 1
Intercept t-estimate 18.2 33.4 0.00 0.00 18.4 19.0 0.32 0.27 1
Linear t-estimate 19.3 15.6 0.94 0.98 36.7 34.9 0.74 0.79 0.99
Quadratic t-estimate 10.4 -7.92 1 1 25.8 23.8 0.79 0.87 1
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Table 4.6: Simulation results for median completed-data discrepancy with n = 1000,
with 20% of missingness on y2 when the missing values are imputed using the proxy
pattern mixture hot deck assuming the sensitivity parameter λ =∞ implying a strong
MNAR mechanism. Imputations are made assuming a correctly specified quadratic
relationship of y2 on y1 and an incorrectly specified linear relationship of y2 on y1. We
also present the proportion (Prop) of times the posterior predictive p-value is closer
to 0.5 for the correctly specified imputation model

Linear Imputation Model Quadratic Imputation Model Prop

Analysis Q(Ȳobs, Ymis) Q̄(Y rep
com) pB,com pB,ecom Q(Ȳobs, Ymis) Q̄(Y rep

com) pB,com pB,ecom

Mean of Y2 2.10 2.88 0.00 0.00 2.38 2.50 0.01 0.00 0.96
Var of Y2 4.33 6.09 0.00 0.00 5.40 5.78 0.04 0.01 1
Linear regression Y1 on Y2
Intercept coefficient -0.88 -0.84 0.41 0.29 -1.18 -1.18 0.51 0.50 0.75
Linear coefficient 0.42 0.30 1 1 0.50 0.48 0.93 0.96 1
Intercept t-estimate -13.1 -11.6 0.18 0.11 -20.3 -19.9 0.39 0.37 0.93
Linear t-estimate 18.4 15.2 0.92 0.95 28.2 27.7 0.66 0.69 0.98
Linear regression Y2 on Y1
Intercept coefficient 2.10 2.78 0.00 0.00 2.38 2.49 0.02 0.01 0.98
Linear coefficient 0.60 0.61 0.45 0.46 0.89 0.91 0.32 0.25 0.40
Intercept t-estimate 36.5 38.8 0.03 0.02 43.5 43.7 0.44 0.40 0.99
Linear t-estimate 17.6 14.0 0.95 0.97 28.2 27.7 0.66 0.69 0.96
Quadratic regression Y1 on Y2
Intercept coefficient -0.80 -0.85 0.65 0.63 -1.07 -1.04 0.32 0.27 0.47
Linear coefficient 0.30 0.31 0.45 0.39 0.35 0.29 0.88 0.93 0.03
Quadratic coefficient 0.02 0.00 0.98 1 0.02 0.03 0.21 0.14 0.99
Intercept t-estimate -10.6 -9.80 0.31 0.26 -16.1 -15.4 0.30 0.25 0.47
Linear t-estimate 5.46 5.42 0.50 0.44 7.44 6.26 0.86 0.91 0.03
Quadratic t-estimate 2.34 -0.22 0.98 0.44 3.28 4.07 0.18 0.12 0.98
Quadratic regression Y2 on Y1
Intercept coefficient 1.48 3.38 0.00 0.00 1.17 1.30 0.05 0.03 1
Linear coefficient 0.60 0.61 0.44 0.43 0.89 0.91 0.32 0.25 0.43
Quadratic coefficient 0.21 -0.20 1 1 0.40 0.40 0.57 0.58 1
Intercept t-estimate 18.2 33.4 0.00 0.00 18.4 18.9 0.31 0.26 1
Linear t-estimate 19.4 15.8 0.95 0.99 36.4 34.6 0.75 0.83 0.99
Quadratic t-estimate 10.4 -7.85 1 1 25.2 23.5 0.79 0.88 1



103

Table 4.7: Simulation results for mean completed-data discrepancy with n = 1000,
with 80% of missingness on y2 when the missing values are imputed using the Random
Indicator method. Imputations are made assuming a correctly specified quadratic
relationship of y2 on y1 and an incorrectly specified linear relationship of y2 on y1.
We also present the proportion (Prop) of times the posterior predictive p-value is
closer to 0.5 for the correctly specified imputation model

Linear Imputation Model Quadratic Imputation Model Prop

Analysis Q(Ȳobs, Ymis) Q̄(Y rep
com) pB,com pB,ecom Q(Ȳobs, Ymis) Q̄(Y rep

com) pB,com pB,ecom

Mean of Y2 0.37 0.25 0.81 0.83 2.16 2.15 0.51 1 1
Var of Y2 1.72 1.60 0.73 0.70 5.69 5.64 0.52 1 1
Linear regression Y1 on Y2
Intercept coefficient -0.06 -0.02 0.45 0.51 -1.13 -1.13 0.48 1 0.84
linear coefficient 0.02 0.12 0.20 0.17 0.52 0.53 0.36 1 0.99
Intercept t-estimate -0.89 -0.22 0.45 0.53 -21.0 -20.8 0.42 1 0.61
linear t-estimate 0.37 2.99 0.20 0.18 31.6 32.1 0.47 1 1
Linear regression Y2 on Y1
Intercept coefficient 0.37 0.25 0.81 0.83 2.16 2.15 0.51 1 1
linear coefficient 0.01 0.06 0.20 0.18 0.97 0.97 0.49 1 1
Intercept t-estimate 9.75 6.23 0.81 0.83 40.8 41.4 0.51 1 1
linear t-estimate 0.54 3.20 0.19 0.17 31.5 31.9 0.47 1 1
Quadratic regression Y1 on Y2
Intercept coefficient -0.03 0.00 0.41 0.41 -1.04 -1.04 0.40 1 0.66
Linear coefficient -0.02 0.09 0.16 0.11 0.37 .38 0.42 1 1
Quadratic coefficient -0.01 -0.01 0.53 0.69 0.03 0.02 0.57 1 0.56
Intercept t-estimate -0.44 -0.00 0.40 0.41 17.84 -17.04 0.35 1 0.47
Linear t-estimate -0.09 2.52 0.14 0.11 9.54 10.01 0.46 1 1
Quadratic t-estimate -0.62 -0.48 0.50 0.68 3.84 3.45 0.61 1 0.40
Quadratic regression Y2 on Y1
Intercept coefficient 0.27 0.24 0.60 0.61 0.66 0.67 0.51 1 0.90
Linear coefficient 0.01 0.06 0.20 0.18 0.96 0.96 0.49 1 1
Quadratic coefficient 0.03 0.00 0.92 1.00 0.49 0.49 0.50 1 1
Intercept t-estimate 4.78 3.94 0.59 0.63 14.2 14.6 0.51 0.90
Linear t-estimate 0.53 3.20 0.20 0.17 53.3 55.3 0.38 1 1
Quadratic t-estimate 2.31 0.29 0.92 0.99 42.2 43.8 0.31 1 1
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Table 4.8: Simulation results for median completed-data discrepancy with n = 1000,
with 80% of missingness on y2 when the missing values are imputed using the Random
indicator method. Imputations are made assuming a correctly specified quadratic
relationship of y2 on y1 and an incorrectly specified linear relationship of y2 on y1.
We also present the proportion (Prop) of times the posterior predictive p-value is
closer to 0.5 for the correctly specified imputation model

Linear Imputation Model Quadratic Imputation Model Prop

Analysis Q(Ȳobs, Ymis) Q̄(Y rep
com) pB,com pB,ecom Q(Ȳobs, Ymis) Q̄(Y rep

com) pB,com pB,ecom

Mean of Y2 0.37 0.26 0.82 0.83 2.16 2.15 0.51 1 1
Var of Y2 1.73 1.59 0.74 0.71 5.61 5.55 0.52 1 1
Linear regression Y1 on Y2
Intercept coefficient -0.05 -0.01 0.44 0.53 -1.12 -1.14 0.49 1 0.84
Linear coefficient 0.03 0.15 0.19 0.17 0.52 0.53 0.35 1 0.99
Intercept t-estimate -0.76 -0.01 0.44 0.54 -20.9 -20.8 0.42 1 0.61
Linear t-estimate 0.63 3.35 0.20 0.17 31.7 32.1 0.47 1 1
Linear regression Y2 on Y1
Intercept coefficient 0.38 0.26 0.81 0.83 2.15 2.15 0.51 1 1
Linear coefficient 0.01 0.06 0.20 0.17 0.97 0.97 0.50 1 1
Intercept t-estimate 9.85 6.52 0.82 0.83 40.7 41.4 0.51 1 1
Linear t-estimate 0.83 3.50 0.19 0.17 31.6 31.9 0.47 1 1
Quadratic regression Y1 on Y2
Intercept coefficient -0.02 0.02 0.38 0.39 -1.04 -1.03 0.40 1 0.66
Linear coefficient 0.00 0.12 0.14 0.09 0.37 0.38 0.41 1 1
Quadratic coefficient -0.01 -0.01 0.53 0.73 0.02 0.02 0.58 1 0.56
Intercept t-estimate -0.32 0.3 0.38 0.39 -17.7 -16.9 0.34 1 0.47
Linear t-estimate 0.15 2.78 0.13 0.10 9.6 10.0 0.47 1 1
Quadratic t-estimate -0.59 -0.48 0.51 0.70 3.80 3.46 0.61 1 0.40
Quadratic regression Y2 on Y1
Intercept coefficient 0.27 0.24 0.60 0.62 0.67 0.67 0.51 1 0.90
Linear coefficient 0.01 0.06 0.20 0.17 0.95 0.96 0.50 1 1
Quadratic coefficient 0.03 0.00 0.92 1.00 0.49 0.49 0.50 1 1
Intercept t-estimate 4.79 4.07 0.60 0.63 14.3 14.52 0.50 1 0.90
Linear t-estimate 0.82 3.51 0.19 0.17 52.7 54.8 0.38 1 1
Quadratic t-estimate 2.31 0.28 0.93 1 42.0 43.5 0.31 1 1
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Table 4.9: Simulation results for mean completed-data discrepancy with n = 1000,
with 80% of missingness on y2 when the missing values are imputed using the proxy
pattern mixture hot deck assuming the sensitivity parameter λ = 1 implying a weak
MNAR mechanism. Imputations are made assuming a correctly specified quadratic
relationship of y2 on y1 and an incorrectly specified linear relationship of y2 on y1. We
also present the proportion (Prop) of times the posterior predictive p-value is closer
to 0.5 for the correctly specified imputation model

Linear Imputation Model Quadratic Imputation Model Prop

Analysis Q(Ȳobs, Ymis) Q̄(Y rep
com) pB,com pB,ecom Q(Ȳobs, Ymis) Q̄(Y rep

com) pB,com pB,ecom

Mean of Y2 1.08 1.13 0.24 0.14 1.28 1.29 0.44 0.37 0.98
Var of Y2 2.09 2.20 0.30 0.22 2.51 2.51 0.48 0.46 0.91
Linear regression Y1 on Y2
Intercept coefficient 0.05 0.09 0.25 0.13 -0.28 -0.25 0.34 0.16 0.80
Linear coefficient 0.02 0.12 0.20 0.17 0.20 0.18 0.68 0.84 0.67
Intercept t-estimate 0.76 1.29 0.5 0.13 -4.39 -4.06 0.33 0.16 0.78
Linear t-estimate -1.37 -2.22 0.74 0.87 6.78 6.25 .68 0.84 0.74
Linear regression Y2 on Y1
Intercept coefficient 1.07 1.12 0.25 0.14 1.29 1.30 0.45 0.38 0.98
Linear coefficient -0.03 -0.06 0.75 0.88 0.20 0.19 0.67 0.83 0.77
Intercept t-estimate 0.76 1.29 0.25 0.13 27.1 27.1 0.48 0.45 0.98
Linear t-estimate -1.37 -2.22 0.74 0.88 6.24 5.76 0.66 0.80 0.76
Quadratic regression Y1 on Y2
Intercept coefficient 0.05 0.09 0.26 0.13 -0.24 -0.22 0.34 0.50 0.79
Linear coefficient -0.07 -0.05 0.44 0.39 0.01 0.01 0.50 0.50 0.64
Quadratic coefficient 0.00 -0.02 0.73 0.89 0.05 0.04 0.59 0.73 0.84
Intercept t-estimate 0.81 1.33 0.26 0.13 -3.68 -3.31 0.33 0.18 0.75
Linear t-estimate -1.05 -0.81 0.43 0.38 0.25 0.25 050 0.50 0.64
Quadratic t-estimate 0.23 -0.59 0.73 0.89 3.40 3.06 0.60 0.73 0.85
Quadratic regression Y2 on Y1
Intercept coefficient 1.08 1.22 0.09 0.01 1.00 1.00 0.51 0.51 1
Linear coefficient -0.03 -0.06 0.75 0.88 0.20 0.19 0.67 0.83 0.80
Quadratic coefficient 0.00 -0.03 0.91 1.00 0.10 0.10 0.44 0.40 1
Intercept t-estimate 15.8 17.6 0.12 0.01 14.5 14.4 0.52 0.53 1
Linear t-estimate -1.36 -2.20 0.74 0.88 7.10 6.54 0.67 0.84 0.77
Quadratic t-estimate 0.53 -1.30 0.91 0.99 5.46 5.59 0.45 0.40 1
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Table 4.10: Simulation results for median completed-data discrepancy with n = 1000,
with 80% of missingness on y2 when the missing values are imputed using the proxy
pattern mixture hot deck assuming the sensitivity parameter λ = 1 implying a weak
MNAR mechanism. Imputations are made assuming a correctly specified quadratic
relationship of y2 on y1 and an incorrectly specified linear relationship of y2 on y1. We
also present the proportion (Prop) of times the posterior predictive p-value is closer
to 0.5 for the correctly specified imputation model

Linear Imputation Model Quadratic Imputation Model Prop

Analysis Q(Ȳobs, Ymis) Q̄(Y rep
com) pB,com pB,ecom Q(Ȳobs, Ymis) Q̄(Y rep

com) pB,com pB,ecom

Mean of Y2 1.05 1.09 0.25 0.14 1.27 1.28 0.44 0.37 0.98
Var of Y2 1.94 2.02 0.29 0.21 2.40 2.40 0.48 0.47 0.91
Linear regression Y1 on Y2
Intercept 0.05 0.09 0.24 0.11 -0.27 -0.24 0.34 0.15 0.80
Linear coefficient -0.06 -0.09 0.74 0.90 0.20 0.18 0.68 0.85 0.67
Intercept t-estimate 0.82 1.34 0.24 0.10 -4.40 -4.05 0.33 0.84 0.78
Linear t-estimate -1.51 -2.36 0.76 0.90 6.78 6.25 0.68 0.84 0.74
Linear regression Y2 on Y1
Intercept coefficient 1.05 1.08 0.26 0.15 1.28 1.29 0.45 0.38 0.98
Linear coefficient -0.04 -0.06 0.76 0.90 0.18 0.17 0.67 0.84 0.77
Intercept t-estimate 24.4 24.9 0.34 0.88 27.7 27.9 0.47 0.43 0.98
Linear t-estimate -1.40 -2.26 0.74 0.88 6.74 6.41 0.67 0.82 0.76
Quadratic regression Y1 on Y2
Intercept coefficient 0.05 0.10 0.26 0.11 -0.24 -0.21 0.34 0.16 0.79
Linear coefficient -0.06 -0.05 0.44 0.37 0.01 0.01 0.51 0.50 0.64
Quadratic coefficient 0.00 -0.02 0.73 0.93 0.05 0.04 0.59 0.75 0.84
Intercept t-estimate 0.83 1.38 0.26 0.11 -3.60 -3.23 0.33 0.17 0.75
Linear t-estimate -1.03 -0.80 0.43 0.11 0.15 0.17 0.50 0.51 0.64
Quadratic t-estimate 0.15 -0.72 0.74 0.93 3.73 3.39 0.60 0.74 0.85
Quadratic regression Y2 on Y1
Intercept coefficient 1.00 1.11 0.09 0.00 0.99 0.99 0.51 0.51 1
Linear coefficient -0.04 -0.06 0.77 0.90 0.18 0.17 0.67 0.84 0.80
Quadratic coefficient 0.02 -0.01 0.91 1.00 0.08 0.08 0.44 0.38 1
Intercept t-estimate 15.4 17.1 0.11 0.01 14.4 14.4 0.52 0.53 1
Linear t-estimate -1.49 -2.36 0.75 0.90 6.95 6.51 0.67 0.85 0.77
Quadratic t-estimate 1.15 -0.55 0.91 0.99 4.90 5.10 0.45 0.39 1



107

Table 4.11: Simulation results for mean completed-data discrepancy with n = 1000,
with 80% of missingness on y2 when the missing values are imputed using the proxy
pattern mixture hot deck assuming the sensitivity parameter λ =∞ implying a strong
MNAR mechanism. Imputations are made assuming a correctly specified quadratic
relationship of y2 on y1 and an incorrectly specified linear relationship of y2 on y1. We
also present the proportion (Prop) of times the posterior predictive p-value is closer
to 0.5 for the correctly specified imputation model

Linear Imputation Model Quadratic Imputation Model Prop

Analysis Q(Ȳobs, Ymis) Q̄(Y rep
com) pB,com pB,ecom Q(Ȳobs, Ymis) Q̄(Y rep

com) pB,com pB,ecom

Mean of Y2 0.96 0.98 0.41 0.36 1.23 1.25 0.33 0.19 0.23
Var of Y2 1.72 1.77 0.44 0.42 2.43 2.47 0.38 0.28 0.25
Linear regression Y1 on Y2
Intercept coefficient 0.02 0.04 0.37 0.31 -0.14 -0.10 0.24 0.09 0.19
Linear coefficient -0.02 -0.04 0.63 0.70 0.09 0.06 0.79 0.91 0.15
Intercept t-estimate 0.32 0.63 0.37 0.31 -2.09 -1.52 0.24 0.09 0.17
Linear t-estimate -0.63 -1.13 0.63 0.70 3.24 2.33 0.77 0.91 0.15
Linear regression Y2 on Y1
Intercept coefficient 0.96 0.97 0.41 0.36 1.24 1.26 0.33 0.20 0.25
Linear coefficient -0.01 -0.03 0.63 0.70 0.11 0.08 0.77 0.91 0.18
Intercept t-estimate 23.4 23.6 0.44 0.41 26.0 26.2 0.42 0.32 0.35
Linear t-estimate -0.60 -1.06 0.62 0.68 3.23 2.33 0.77 0.91 0.21
Quadratic regression Y1 on Y2
Intercept coefficient 0.02 0.04 0.36 0.27 -0.11 -0.07 0.24 0.09 0.86
Linear coefficient -0.04 -0.01 0.37 0.22 -0.02 -0.01 0.47 0.46 0.17
Quadratic coefficient 0.01 -0.01 0.75 0.91 0.02 0.01 0.68 0.82 0.76
Intercept t-estimate 0.27 0.59 0.36 0.27 -1.56 -0.97 0.24 0.09 0.16
Linear t-estimate -0.66 -0.17 0.36 0.22 -0.25 -0.16 0.48 0.46 0.76
Quadratic t-estimate 0.39 -0.56 0.75 0.91 1.97 1.30 0.68 0.81 0.62
Quadratic regression Y2 on Y1
Intercept coefficient 0.87 0.96 0.15 0.01 1.04 1.06 0.43 0.36 0.35
Linear coefficient -0.02 -0.03 0.63 0.70 0.11 0.08 0.76 0.91 1
Quadratic coefficient 0.03 0.00 0.88 0.99 0.07 0.07 0.44 0.39 0.20
Intercept t-estimate 14.2 15.5 0.17 0.02 14.9 14.9 0.48 0.45 1
Linear t-estimate -0.62 -1.13 0.63 0.70 3.30 2.39 0.77 0.91 0.16
Quadratic t-estimate 1.96 0.30 0.88 0.99 3.67 3.81 0.45 0.40 1
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Table 4.12: Simulation results for median completed-data discrepancy with n = 1000,
with 80% of missingness on y2 when the missing values are imputed using the proxy
pattern mixture hot deck assuming the sensitivity parameter λ =∞ implying a strong
MNAR mechanism. Imputations are made assuming a correctly specified quadratic
relationship of y2 on y1 and an incorrectly specified linear relationship of y2 on y1. We
also present the proportion (Prop) of times the posterior predictive p-value is closer
to 0.5 for the correctly specified imputation model

Linear Imputation Model Quadratic Imputation Model Prop

Analysis Q(Ȳobs, Ymis) Q̄(Y rep
com) pB,com pB,ecom Q(Ȳobs, Ymis) Q̄(Y rep

com) pB,com pB,ecom

Mean of Y2 0.94 0.96 0.44 0.38 1.22 1.23 0.32 0.16 0.23
Var of Y2 1.66 1.68 0.46 0.44 2.29 2.36 0.38 0.24 0.25
Linear regression Y1 on Y2
Intercept coefficient 0.02 0.04 0.38 0.28 -0.13 -0.09 0.24 0.06 0.19
Linear coefficient -0.02 -0.04 0.61 0.72 0.09 0.06 0.79 0.94 0.15
Intercept t-estimate 0.33 0.64 0.38 0.28 -1.81 -1.22 0.23 0.06 0.17
Linear t-estimate -0.55 -0.91 0.62 0.73 2.86 1.94 0.78 0.94 0.15
Linear regression Y2 on Y1
Intercept coefficient 0.94 0.96 0.44 0.38 1.22 1.25 0.33 0.18 0.25
Linear coefficient -0.01 -0.02 0.62 0.73 0.08 0.06 0.77 0.94 0.18
Intercept t-estimate 23.6 23.8 0.45 0.43 26.1 26.4 0.42 0.31 0.35
Linear t-estimate -0.59 -0.82 0.58 0.65 2.87 1.94 0.78 0.94 0.21
Quadratic regression Y1 on Y2
Intercept coefficient 0.02 0.01 0.38 0.25 -0.10 -0.06 0.23 0.07 0.86
Linear coefficient -0.04 -0.01 0.36 0.20 -0.02 -0.01 0.48 0.45 0.17
Quadratic coefficient 0.10 -0.01 0.76 0.96 0.03 0.02 0.67 0.86 0.76
Intercept t-estimate 0.229 0.60 0.38 0.25 -1.45 -0.82 0.23 0.07 0.16
Linear t-estimate -0.65 -0.13 0.36 0.20 -0.23 -0.11 0.48 0.46 0.76
Quadratic t-estimate 0.39 -0.52 0.76 0.97 2.19 1.56 0.67 0.86 0.62
Quadratic regression Y2 on Y1
Intercept coefficient 0.86 0.94 0.15 0.01 1.04 1.05 0.43 0.36 0.35
Linear coefficient -0.01 -0.02 0.62 0.72 0.08 0.06 0.77 0.94 1
Quadratic coefficient 0.03 0.01 0.89 1.00 0.06 0.07 0.42 0.35 0.20
Intercept t-estimate 14.24 15.5 0.16 0.01 14.7 14.8 0.48 0.45 1
Linear t-estimate -0.55 -0.93 0.62 0.72 2.82 1.93 0.78 0.94 0.16
Quadratic t-estimate 2.05 0.36 0.89 0.99 3.49 3.63 0.44 0.37 1

Table 4.13: Diagnostic results for the mean National Institute of Health Stroke Score
under the imputation models for the GCASR registry data

Correct Model Misspecified Model
Method Q(Ȳobs, Ymis) Q̄(Y rep

com) pB,com Q(Ȳobs, Ymis) Q̄(Y rep
com) pB,com

RI 6.71 6.71 0.50 7.04 6.93 1
PPMHD(1) 6.91 6.37 1 7.37 7.51 0.36
PPMHD(∞) 6.59 4.90 0.99 7.37 7.33 0.70

NBI(3,0.2,0.8) 7.20 7.24 0.56 7.21 7.30 0.34
NBI(3,0.5,0.5) 6.92 6.98 0.53 7.46 7.35 0.92
NBI(3,0.8,0.2) 6.99 7.06 0.55 7.54 7.48 0.74
NMI(3,0.2,0.8) 7.04 6.96 0.68 7.49 7.49 0.51
NMI(3,0.5,0.5) 7.06 6.99 0.79 7.43 7.71 0
NMI(3,0.8,0.2) 7.09 6.97 0.86 7.51 7.96 0
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Chapter 5

Future Work
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There are numerous extensions that can arise from this dissertation. As described

in Chapter 2, we perform multiple imputation (MI) using dimension reduction tech-

niques for high-dimensional to impute one variable with missing data. Also in Chapter

3, we handle non-ignorable missingness by using a nonparametric imputation method

that harnesses the power of bootstrap imputation and multiple imputation. We use

our nonparametric imputation method to impute a single variable with missing data.

However, in practice there are often multiple variables with missing data with a gen-

eral missing data pattern. Although methods for general missing data patterns have

been suggested (Deng et al., 2016; Zhao and Long, 2013b), its theoretical proper-

ties are not well-established. Future development to extend imputation methods to

handle general missing data patterns with more rigorous theoretical justification is

beneficial.

Some other extensions of this dissertation pertain to nonparametric imputation.

In Chapter 3, we describe a nonparametric method for handling non-ignorable missing

data. Thus far, we focus on estimation of the mean. A useful extensions would be to

include regression estimation in the subsequent analysis. With regression estimation,

we could focus on potential bias and the nominal coverage for parameter estimates.

In Chapter 4, we evaluate posterior predictive checking for diagnosing problems

with imputation models assuming non-ignorable nonresponse. We consider continu-

ous data with missing values in simulations. The next obvious step is to determine the

appropriateness of diagnostics for identifying discrepancies in imputation when the

data are binary or categorical. In addition, when a single variable has missing values,

application of posterior predictive checking is straightforward. The more complex

case is when there are multiple variables with missing values. A logical extension

is to develop a diagnostic method for imputation models for general missing data

patterns.
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