
Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for an
advanced degree from Emory University, I hereby grant to Emory University and its agents
the non-exclusive license to archive, make accessible, and display my thesis or dissertation
in whole or in part in all forms of media, now or hereafter known, including display on the
world wide web. I understand that I may select some access restrictions as part of the online
submission of this thesis or dissertation. I retain all ownership rights to the copyright of
the thesis or dissertation. I also retain the right to use in future works (such as articles or
books) all or part of this thesis or dissertation.

Signature:

Cyra Christina Mehta Date



Centralization in Small Graphs

By

Cyra Christina Mehta

Doctor of Philosophy

Biostatistics

Vicki Stover Hertzberg, Ph.D.
Adviser

Michael Haber, Ph.D.
Committee Member

Andrew Hill, Ph.D.
Committee Member

Lance A. Waller, Ph.D.
Committee Member

Howie Weiss, Ph.D.
Committee Member

Accepted:

Lisa A. Tedesco, Ph.D.
Dean of the James T. Laney School of Graduate Studies

Date



Centralization in Small Graphs

By

Cyra Christina Mehta
M.S., Emory University, 2013

M.S.P.H., Emory University 2004
B.A., Emory University, 2000

Adviser: Vicki Stover Hertzberg, Ph.D.

An Abstract of
A dissertation submitted to the Faculty of the

James T. Laney School of Graduate Studies of Emory University
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in Biostatistics

2014



Abstract

Centralization in Small Graphs

By Cyra Christina Mehta

Network science provides a new and valuable set of techniques for investigating problems
by providing a different perspective. One important network characteristic is centraliza-
tion, which is a quantification of how much one node dominates the network according
to a particular measure of node influence. Centralization is a graph-level measure and
can be calculated for closeness, betweenness, and degree. This research investigated the
range of centralization values obtained by common graph generating methods, properties
of centralization, and whether centralization is associated with disease spread.

The first study examined the centralization values and graph structures produced by Erdös-
Rènyi Gnm random graphs, Barabási-Albert preferential attachment graphs, small world
graphs, and two node preferential attachment graphs as well as Star Start, a new graph
generating method that produces graphs across the full theoretical range of centralization
values. Erdös-Rényi random graphs produce low to moderately centralized graphs and small
world graphs are only low to moderately centralized. Barabási-Albert preferential attach-
ment graphs can be highly centralized but do not produce a variety of graph structures.
Two node type preferential attachment and Star Start produce most of the full range of
centralization values with a broad range of structures.

Using the Star Start program, the second study explored the properties of centralization,
including prediction based on average or maximum node centrality. Correlation between
centralization measures decreases as graph order increases. Models predicting centralization
based on maximum centrality perform reasonably well, especially when the maximum cen-
trality value ≤ 0.6. Models based on average centrality fit poorly after the average increases
past the average centrality of a star graph.

Lastly, the association between centralization and epidemiologic endpoints using a Susceptible-
Infected-Recovered (SIR) compartment model of disease spread was examined. As degree
or betweenness centralization increases the peak number of infected nodes increases, time
until the peak decreases, and the final cumulative number of infected nodes also increases.
Closeness centralization does not have as strong of a relationship and should only be con-
sidered for connected networks. The results also confirm that infecting the most central
node first produces a more severe epidemic than randomly selecting a node.
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for Erdös-Rènyi and Star Start graphs for graph of order 5 to 7 nodes. . . . 66

4.6 Contour plot illustrating the distribution of degree centralization values for
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Rènyi random graphs (ER), Barabási-Albert preferential attachment (BA), small

world (SW), two node type preferential attachment (Pref), and Star Start (Star))

for graphs of order 5-20 nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 Scatter plot of maximum betweenness centrality and betweenness centralization

values obtained for all graph methods (Erdös-Rènyi random graphs (ER), Barabási-
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Chapter 1

Introduction

1.1 Introduction

There are many definitions of a network, but a simple one is that a network is any group

of items or people that can be connected by a common attribute or activity. A more tech-

nical definition is “a collection of points joined together in pairs by lines.”[1] Networks

include everything from the internet to the electric power grid to communication networks.

Networks can be classified into four broad categories: technological (such as the internet,

transportation/highway, or electric power grid), social (such as friendship or sexual part-

ner), information (such as scientific citation or email), and biological (such as neural or

metabolic).[1] This paper will utilize the framework of a communication network between

people for ease of description, but the ideas can be generalized to any network.

It is accepted that the behavior of individuals cannot be easily understood without also

considering the context of their surroundings and personal attributes. According to Va-

lente, “Relationships influence a person’s behavior above and beyond the influence of his or

her individual attributes.”[2] Indeed, traditional analytic methods include ways to investi-

gate and control for the influence of covariates on the outcome. A critical assumption in

traditional statistical analysis is independence between subjects. However, in networks the

structure of the network, meaning the relationships between people, is important and must
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be considered. The field of network science tries to answer questions about the behavior of

one individual embedded in a group of others based on their location in the network. In

other words, “Network analysis, thus, provides public health with a new way of framing

and answering important health questions.”[3] The methods of network science have been

and are currently still being developed to adequately incorporate the structure of a network

into an analysis and many questions need to be explored.

Given how useful network science can be in the investigation of the relationships between

individuals, it is not surprising that network analysis techniques have been used by public

health researchers. A recent review article suggests that researchers interested in three

categories of public health networks use network analysis: transmission networks (either

disease or information), social networks, and organizational networks.[3]

1.2 Definitions

For this paper a particular network will be called a graph, nodes are the points in the graph

and edges connect the nodes. The number of edges in a graph, m, is called the graph’s size

while the number of nodes in a graph, n, is called the graph’s order. The set of all nodes of

a graph g is V (g) while the set of all edges is E(g). A path is the sequence of edges between

two nodes. The geodesic is the shortest path between two nodes, where distance is defined

as the count of number of edges. Note that a geodesic need not be unique so there may

be multiple geodesics between two nodes and these geodesics may or may not contain some

of the same nodes. In the communication network framework, nodes are individuals and

edges are communication lines. See Figure 1.1 for an example graph, a star graph of order

5.

A graph is connected if there is a path between each node in the graph and disconnected

otherwise. A component is an isolated subgraph which has a path between all nodes in

the subgraph. For example, a graph with one disconnected node has two components, a

one-node component and another component where the remaining nodes are connected. A

community or cluster is a densely connected group of nodes within a large, sparse network.
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Figure 1.1: An example graph, a star graph with 5 nodes

A clique is the largest group of nodes in a graph that are fully connected with each other.

A related idea is k-core which is the largest group of nodes that are connected to at least k

others.

A digraph is a directed graph, where the edges are directed from one node to another.

Otherwise, edges are undirected or bi-directional. Self-loops are edges that start and end

with the same node. Graphs with multiedges have more than one edge between nodes and

are called multigraphs. Edges can have weights assigned to reflect their value or strength.

Graph density is the number of edges in the graph over the total number of edges that are

possible. A graph is simple if there is only one edge connecting nodes (multiple or weighted

edges and self-loops are not allowed).

An adjacency matrix, A, of a simple graph with n nodes, where the nodes are labeled from

1 to n, is an n by n matrix that contains a 1 in cell Aij is there is an edge between nodes

ni and nj and a zero otherwise. In an undirected graph the adjacency matrix is symmetric

and can be asymmetric for a directed graph. The spectral radius, ρ, of a graph is the largest

nontrivial eigenvalue of the adjacency matrix.[4] The adjacency matrix can be modified to

include self-loops, weighted or multiedge graphs, and directed graphs. The Laplacian of a

graph is the matrix L = D − A where D is the diagonal matrix of node degrees and A is

the adjacency matrix.

In a static graph the number of nodes and contacts between nodes do not change while a
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dynamic graph has properties that change over time, such as the number of nodes or edges

or the relationship between nodes. A bipartite or affiliation graph, has nodes in two distinct

groups and edges link the two groups. An example of a bipartite graph is club membership,

with one set of nodes comprising the individuals and the other set of nodes comprising the

possible clubs and edges linking individuals to the clubs they are members of.

Regular graphs are comprised of nodes with the same degree. Examples of a regular graph

are lattice, ring, and complete graphs. Graph isomorphisms refer to graphs that have the

same structure although the edges creating the graph are different. An example of this is a

star graph with n nodes. Each of the n nodes can be the center of the star graph so there

are n isomorphisms.

In many situations, the number and strength of relationships between people is unrelated

to their physical proximity to each other. Network analysis is ideally suited to allow an

examination of these relationships because networks do not necessarily represent the actual

physical location and distance between nodes. However, in spatial networks the nodes of

the graph are located in space and distance between nodes influences possible connections

between nodes. In these networks, the probability of an edge connecting two nodes is based

on the Euclidean distance between the nodes. This representation is not typical and will

not be discussed further.

1.3 Measures

Network science is distinguished by the attention given to the location of nodes in the

network. Various network properties, either at the individual-level, sub-group-level, or

network-level, describe networks and all are based in some way on network position.[3]

Centrality is an individual/node-level property of graphs and describes how central each

node is in the graph, where central can be defined in various ways. According to Brandes,

“it is important to know the relative structural prominence of nodes or links to identify

key elements in the network.”[5] As described by Freeman, there are three basic measures

of centrality: closeness, betweenness, and degree.[6] In order to compare graphs of differ-
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ence orders, all three of these measures can be standardized by the maximum theoretical

value obtained to create a relative measure. Since centrality is a node-level measure, it is

calculated for each node in a graph.

On the other hand, centralization considers the effect each node has on the entire graph.

Centralization is a global/graph-level property and describes how strongly one particu-

lar node influences the rest of the graph. As such, Høivik and Gleditsch stated that “A

centralization parameter should ... be a measure of the dispersion in the set of [node] cen-

tralities.”[7] Similarly, Freeman states that a measure of graph centralization should “index

the tendency of a single point to be more central than all other points in the network.”[6] He

suggests that centralization should use the differences between the most highly centralized

node in the graph and the remaining nodes in the graph. The result should be standardized

by dividing by the maximum possible centralization value. Because centralization is based

on all of the node centralities (which are based on location of a node in the graph), it is

directly related to the structure of the graph. The concepts of closeness, betweenness, and

degree have been extended to centralization by Freeman.[6] Centralization is a graph-level

property and is calculated once for each graph.

It has been shown that the maximum centrality value for closeness, betweenness, and degree

is obtained by the center node in a star graph (see Figure 1.1 for a star graph example).[6]

It has also been shown that the highest centralization value for closeness, betweenness, and

degree are obtained by a star graph.[6, 8]. It should be noted that the definitions of relative

centrality and centralization discussed below are designed for static graphs and are not

applicable to (non-projected) bipartite graphs or dynamic graphs. However, the theoretical

maximum for closeness, betweenness, and degree for each node type in bipartite graphs has

been determined.[8, 9] In this way, Freeman’s measures can be extended to both node types

in bipartite graphs although that is not considered in this research. Freeman thoroughly

reviews the historical precedents for these three measures in his 1978 paper so it is not

discussed here.[6]
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1.3.1 Closeness Centrality

One measure of the centrality of a node in a graph is closeness. Intuitively, closeness between

two nodes is simply a count of how many edges connect one particular node to another node

in the graph. In this light, the closest distance between any two nodes in a graph is one,

which corresponds to the edge between two adjacent nodes. Large closeness values would

be obtained by the two end nodes in a line graph. Since nodes can form edges with more

than one other node in a graph, closeness centrality for a particular node is simply the

average of all the pair-wise edge counts. Because multiple paths can connect pairs of nodes,

the geodesic is chosen for the closeness calculation. By definition, closeness centrality can

only be computed for a connected graph (where each node is connected by at least one

edge).

Let d(ni, nj) be the number of edges in the geodesic between node ni and node nj . By

convention, if node ni and node nj are not connected by any edges (meaning they are in

different components of the graph), then d(ni, nj) = ∞. However, a common substitution

for d(ni, nj) when nodes ni and nj are disconnected is n.[10, 11] This value is greater

than the maximum possible value of n − 1, which occurs if the nodes are separated by

the maximum possible number of edges. Another solution is to calculate geodesics, and

closeness centrality, separately for each component of a disconnected graph. Of course, the

number of edges between node ni and itself is 0, so d(ni, ni) = 0.

Then the relative closeness centrality (called closeness centrality from here forward) of

node ni in an unweighted connected graph is defined as C ′c (ni) =
[∑n

j=1 d(ni,nj)

n−1

]−1
=

n−1∑n
j=1 d(ni,nj)

. Note that closeness centrality is the inverse of the average number of edges

between node ni and all of the other nodes in the graph. Freeman shows that the maximum

closeness centrality measure is obtained by the central node in a star graph, which is adjacent

to every node in the graph.[6] Thus, another interpretation for closeness centrality is the

inverse of the ratio by which node ni is more than one edge away from each of the other

nodes.[6]

Closeness centrality is a global measure of node centrality since it is based on geodesics.[12]
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Closeness centrality is within the “reachability” class of centrality measures because only

nodes in connected graphs can “reach” each other (i.e., are connected).[10] In a communica-

tion network, closeness centrality is a measure of information source independence/access or

efficiency of information spread. So people with high closeness centrality can avoid the infor-

mation control of any particular person by simply getting information from another nearby

person they communicate with. Also, if viewed in terms of information dissemination, a

person with high closeness centrality can quickly spread information through the entire

network with the smallest number of people relaying the message.[6, 1] Closeness centrality

could also be interpreted as the expected arrival time of information or something that flows

through the network. In this way, nodes with high relative closeness receive the informa-

tion earlier.[13] Borgatti suggests that closeness centrality can be used to model transfer,

such as package delivery.[13] Relative closeness centrality was described by Beauchamp in

1965.[14]

A limitation of closeness centrality is that the distribution of values can be limited, especially

as graph order increases. The reason is that closeness centrality is based on geodesics and

generally, the length of geodesics only increases logarithmically with increasing order of

the network. Consequently, the difference between some of the closeness centrality values

obtained for nodes in a large graph can be very small.[1] Another limitation is that relative

closeness centrality is only defined for connected graphs, although modifications (see the

commonly used imputation described above) allow it to be calculated for disconnected

graphs as well. Another limitation is that computing all of the geodesics of a network is

computationally intense, especially as network order increases.

A version of closeness centrality, point index centrality, is described in the 1963 book Ap-

plications of Graph Theory to Group Structure. In this interpretation, closeness centrality

of a node is the sum of all the geodesics of the graph divided by sum of the geodesics for

that node. It is not defined for graphs with disconnected nodes.[15]
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1.3.2 Closeness Centralization

Using Freeman’s definition of centralization described above, the equation for relative

closeness centralization for graph g (called closeness centralization from here forward) is:

Cc(g) =
∑n

i=1 [C
′
c(n∗)−C′c(ni)]

(n2−3n+2)�(2n−3)

, where C ′c (n∗) is the maximum closeness centrality of the

observed graph. For closeness centralization, the range of possible values is 0 (a complete

graph, a ring graph, or any other graph where all nodes are equivalent) to 1 (a star graph,

which has one node that is much more central and all other nodes are all equivalent).

A version of closeness centralization, called index of centrality is described by Flament.[15]

Index of centrality is computed as the sum of the point index centrality of all of the nodes.

It is shown that the minimum index of centrality is obtained by graphs where all nodes are

equal. The index of centrality is described as measuring the degree of disparity between

the points of a graph.[15] Another version of centralization is average closeness centrality,

which is the average of all of the node relative centralities for the graph.[14]

1.3.3 Betweenness Centrality

Another measure of centrality of a node is betweenness. Any nodes on the geodesic connect-

ing two nodes are said to be between them. Recall that geodesics are not unique and so there

may be multiple geodesics that connect a pair of nodes. Betweenness centrality measures

how often a node is between other nodes on those geodesics. Betweenness centrality of node

nk is defined as: CB (nk) =
n∑
i

n∑
<j
bij (nk) where bij (nk) =

gij(nk)
gij

is the number of geodesics

connecting ni and nj that contain nk and gij is the total number of geodesics connecting

ni and nj . Thus, bij(nk) is a proportion. If ni and nj are in different components, then

gij = 0 and gij(nk)=0, and define bij(nk)=0. Additionally, if nk is in a different component

than nodes ni and nj , then gij(nk) = 0.

It has been shown that the center node in a star graph achieves the maximum possible value

of betweenness for a graph with n nodes: n2−3n+2
2 .[16] Then, relative betweenness centrality

(called from here forward betweenness centrality) is defined as: C ′B (nk) = 2∗CB(nk)
n2−3n+2

. Be-

tweenness centrality values range from 0 (disconnected node, peripheral node, or maximally
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connected node in a graph) to 1 (center node in star graph). An alternative standardization

for betweenness centrality is to divide by n2, the total number of node pairs in the net-

work.[1] Unlike closeness centrality, betweenness centrality can be computed on connected

and disconnected networks with no difficulty.

Betweenness centrality of a node has been shown to be equal to the cutting number of the

node plus the betweenness contribution due to being a bridge.[8] The cutting number of node

ni is the number of unique node pairs for which all paths between the nodes include node

ni.[8] A bridge is an edge whose removal disconnects the graph.[12] When nodes with high

betweenness centrality are removed, the distance between the remaining nodes increases.[17]

The betweenness centrality of the center node of a star graph has been shown to decrease

by adding edges to the graph.[18] Any node that acts a bridge between two or more groups

of nodes will have high betweenness, even if has low degree and it’s immediate neighbors

have a low degrees.[1] Betweenness centrality can also be extended to directed networks.[1]

The bounds of betweenness centrality for a graph are determined by the eigenvalues of the

Laplacian matrix of the graph.[19]

Like closeness centrality, betweenness centrality is a global measure since it is based on

geodesics.[12] Since it uses geodesics, betweenness centrality is classified as a shortest paths

centrality measure.[10] In terms of communication networks, nodes that are between other

nodes can distort or control information transfer and so are important for transmission.[6]

Betweenness is a measure of the volume of information flowing through a given node from

each node to every other node in the network.[13] Removal of nodes with high betweenness

from the network can cause a large disruption in transmission of information in the net-

work.[1] When information does not travel along geodesics or the amount of information

transmitted between node pairs is unequal, betweenness centrality is not appropriate, al-

though it may provide an approximation of information control.[1] Borgatti suggests that

like closeness centrality, betweenness centrality can be used to model transfer, such as pack-

age delivery.[13]

Also like closeness centrality, a limitation of betweenness centrality is that it requires com-

puting all of the geodesics of a network. As a result, it is computationally intense, especially

10



as network order increases.

1.3.4 Betweenness Centralization

Relative betweenness centralization of graph g (betweenness centralization) is calculated as:

CB(g) =

n∑
i=1

[C′B(n∗)−C′B(ni)]

n−1 where C ′B (n∗) is the maximum betweenness centrality of the

observed graph. Like closeness centralization, the range of possible values for betweenness

centralization is 0 (a complete graph, a ring graph, or any graph where all nodes are equiv-

alent) to 1 (a star graph, which has only one node that is between all of the others).

1.3.5 Degree Centrality

The last measure of centrality described by Freeman is degree.[6] The number of edges

connected to node ni is the degree of the node, ki. An equivalent definition of degree of

node uses the graph’s adjacency matrix instead: ki =
∑n

j=1Aij . Equivalently, degree is a

count of the number of paths of length one from a given node.[13] Sometimes degree is also

called the connectivity of a node. Degree distribution is the distribution of values for degree

for all nodes in the network.

Degree centrality is defined as: CD (nk) =
∑n

i=1 a (ni, nk) and relative degree centrality

(degree centrality) is defined as: C ′D (nk) =
∑n

i=1 a(ni,nk)
n−1 where

a(ni, nk) =


1, iff edge between ni and nk

0, otherwise

Thus, the numerator of the degree centrality equation is simply the degree count for each

node. The maximum possible degree in a graph with n nodes is n−1. The range for degree

centrality is 0 (disconnected node) to 1 (maximally connected node). Degree centrality is

computed the same way for connected and disconnected graphs.

Degree centrality is a local measure since it is based on the immediate contacts of a node.[12]

Degree centrality measures how active a node is in the network, meaning how many other
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nodes with which it is in direct contact. Since it counts the direct neighbors of a node,

degree centrality is also a measure of immediate influence between nodes.[13] Nodes with

small degree are more removed from the graph than nodes with larger degree. Like closeness

centrality, degree centrality is within the “reachability” class of centrality measures since

it directly counts the “reach”, or connections, of a node.[10] In terms of communication

networks, degree centrality describes the potential communication activity of a node or the

number of direct contacts. Borgatti suggests that degree centrality can be used to model

money exchange and infections.[13] Degree centrality was first described by Nieminen in

1974.[20]

Degree centrality is a count of all edges connected to a node, thereby assuming an undirected

network. In the case of a directed network, in-degree and out-degree are used instead. In-

degree is a count of the number of edges leading to a node while out-degree is the number

of edges leaving a node.

1.3.6 Degree centralization

Relative degree centralization of graph g (degree centralization) is calculated as:

CD(g) =

n∑
i=1

[CD(n∗)−CD(ni)]

n2−3n+2
where CD (n∗) is the maximum degree centrality of the observed

graph. Again, the range of possible values is 0 to 1. The exact bounds of degree centraliza-

tion by graph density and graph order has been examined.[21] Degree centralization is also

called connectivity centralization.

1.4 Conclusion

Network science provides a new framework to examine important topics in public health.

However, in order to make use of network science concepts and applications, network ter-

minology and measures must be defined. The goal of this chapter has been to describe

the required network vocabulary along with the centrality and centralization measures that

will be used throughout this dissertation. Although there are limitations to the Freeman
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measures of closeness, betweenness, and degree centrality, they are still widely used in

the literature and are often the gold standard to which new centrality measures are com-

pared.

13



Chapter 2

Literature Review

2.1 Introduction

Much research has been conducted on the idea of centrality in networks with topics ranging

from the development of new measures, computational algorithms to expeditiously compute

geodesics, and problems in the application of centrality to sampled networks. Additional

research has produced network generating methods designed to generate graphs with par-

ticular properties. Unfortunately, very little literature has been published on centralization.

The following is a very brief literature review around the ideas of centrality and centraliza-

tion, with a special focus on the Freeman version of these measures. Refer to Chapter 1 for

definitions of graph terms and an explanation of the Freeman centrality and centralization

measures.

2.2 Relative Centrality/Centralization Properties

According to Dwyer, “centrality analysis determines the importance of vertices in a network

based on their connectivity within the network structure.”[22] As described in the previous

chapter, closeness, betweenness, and degree centrality, although all node-level measures,

describe different attributes of the same network. The relationship between these measures
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has been investigated along with how they are influenced by sampling error.

Relative Centrality Properties Valente et al. examine the correlation between nine

centrality measures (symmetrized degree, in-degree, out-degree, symmetrized betweenness,

betweenness, symmetrized closeness, closeness-in, closeness-out, and eigenvector centrality)

collected from seven studies with 58 networks. They calculated the average correlation,

standard deviation, and range across centrality measures. The study found for the undi-

rected measures a very strong correlation between degree centrality and eigenvector central-

ity (r = 0.92), a moderately strong correlation between degree centrality and betweenness

centrality (r = 0.71), between degree centrality and closeness centrality (r = 0.66), between

betweenness centrality and eigenvector centrality (r = 0.64), and between closeness cen-

trality and eigenvector centrality (r = 0.64). They also found a weak correlation between

closeness centrality and betweenness centrality (r = 0.37).[23]

A study of the correlation between degree and betweenness centrality found a strong positive

correlation when the network had a scale-free degree distribution (a small number of nodes

with very large degree and many nodes with small degree) and was much weaker in other

types of networks.[24] In fact, it has been shown that there is a positive correlation between

degree centrality and betweenness centrality on real social networks.[25] The betweenness

centrality of a node is related to its degree and the exponent of the power law degree

distribution in Barabási-Albert Preferential Attachment graphs.[26] Generally, for scale-

free graphs the betweenness centrality distribution follows a power law.[26]

Relative Centralization Properties Nakao describes the distribution of relative cen-

tralization values in small, connected networks (5-8 nodes).[27] Also described in the paper

is the maximum centralization value obtained when the number of edges is set and the cor-

relation between centralization pairs. Another paper uses simulation to produce a null dis-

tribution for betweenness and degree centralization conditional on graph density.[28]
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Sampling Networks When trying to capture the structure of a real network, sampling

becomes an important issue. Costenbader and Valente use network data collected from eight

different studies (creating 59 networks) to determine the correlation between 11 different

centrality measures (in-degree, out-degree, degree symmetrized, betweenness directed, be-

tweenness symmetrized, closeness directed, closeness symmetrized, first eigenvector/simple

eigenvector, eigenvector centrality, radiality, and integration) obtained from the full network

and a sampled network using sampling percentages of 10% to 80% by 10% increments.

Results show that correlation decreases as the sampling proportion decreases. In-degree

retained the greatest correlation while the remaining measures declined fairly steeply and

eigenvector centrality was wave-like.[29]

An examination of the robustness of closeness, betweenness, degree, and eigenvector central-

ity to different types of sampling error (such as node removal, node addition, edge addition,

or edge deletion) using random graphs of different orders and density found that the mea-

sures behave similarly in accuracy (as measured by proportion of nodes ranked similarly

between original network and the sampled networks). The authors also found that node

errors reduced accuracy less than edge errors and that for all measures the percentage of

errors increased as the accuracy decreased.[30] A related study extended the investigation

of the robustness of those centrality measures to clique, core/periphery, and preferential at-

tachment networks and found the results varied by network type.[31] Core/periphery graphs

were very sensitive to edge removal and node addition, clique graphs were sensitive to node

and edge addition, preferential attachment graphs were the least sensitive to all types of

error. The reliability of directed versions of closeness, betweenness, degree, and flow be-

tweenness (a measure of the maximum possible flow over all paths between a node pair-

see Section 2.3 Other Centrality Measures) was evaluating using a study of social support

of high school students. The students were surveyed three times in short succession about

their relationships and the correlation between responses for each measure calculated. In-

measures had a higher correlation than out-measures with degree and closeness performing

very well and betweenness and flow betweenness performing more poorly.[32]
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2.3 Other Centrality Measures

This research focuses on Freeman’s relative centrality measures but many other centrality

measures have been described in the literature. In fact, some of the other centrality measures

are even based on the Freeman measures of centrality. For example, relative closeness

centrality has been used as basis for other measures, such as bridging.[12] Interestingly,

Valente and Fujimoto also use a star graph to standardize their measure of bridging.[12]

A modified degree centrality, called local centrality, considers the nearest and next-nearest

neighbors of a given node.[33] In order to find the nodes that are the best performers overall,

all-around nodes have been defined as nodes that have high centrality for betweenness,

degree, and k-core.[25]

Using the process model of social influence, Friedkin developed three new centrality mea-

sures: total effects centrality, immediate effects centrality, and meditative effects central-

ity.[34] Combine Centrality Actor Ranking (CCR) is the sum of the (non-relative) degree,

betweenness, and closeness centralities for a particular node. This was used in identifying

leaders in a terrorist network.[35] Gil Schmidt power centrality index is a weighted sum

of the k-th neighbors of a node.[36] The Gil Schmidt power centrality index was devel-

oped to find important political actors in Mexico.[36] Second order centrality is based on

the standard deviation of sum of the lengths of time until a specified node is encountered

on a random walk through the network.[37] Second order centrality can be calculated dis-

tributively, thus saving computing time for large networks. Subgraph centrality measures

node participation in subgraphs of the main graph by weighting the number of closed walks

starting and ending at the same node by the length of the walk.[38] Control centrality in

directed weighted networks describes the control of each node in the network based on the

generic rank of a controllability matrix.[39] Eccentricity is the longest geodesic between

node ni and any of the other nodes in the network. In other words, the eccentricity of ni is

max d(ni, nj), ∀j ∈ V (g).[10]

Measures of centrality that use current flow, where information travels through all paths

in the network instead of just the shortests paths, include flow betweenness and flow close-
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ness.[5] Flow betweenness calculates the maximum possible flow, overall all possible path

choices, between nodes.[1] Unlike flow betweenness, random walk betweenness incorpo-

rates absorbing random walks between node pairs so it includes all possible paths, not

just the paths that produce maximum flow of information.[40, 1] This modification rep-

resents no prior knowledge of the shortest paths to send information from one node to

another. A slight modification of random walk betweenness, allows nodes to be repeated on

the walk.[41] Information centrality calculates all possible paths between node pairs (not

just the geodesics).[42] It has been shown that flow closeness is the same as information

centrality.[5]

The efficiency of information flow between nodes ni and nj is εij = 1
d(ij) . Then, the local

efficiency of node ni, also called point closeness, is E(ni) = 1
n

∑
j 6=i

1
d(ij) .[43, 44] Local

efficiency has been used to describe fault tolerance of a network, or how robust the network

is in terms of information flow when node ni is removed. It is also a relative measure so can

be compared between graphs of different orders. Efficiency is related to closeness centrality

by inverting the geodesic between all node pairs. Another alternative definition of closeness

of node ni is defined as C(ni) =
∑

j 6=i
1

2d(ij)
.[44] Let dk(ij) be the geodesic between nodes

ni and nj when node nk and all of its links are deleted. Then residual closeness of node

nk is defined as C(nk) =
∑

i

∑
j 6=i

1
2dk(ij) .[44] Residual closeness can be interpreted as a

measure of robustness of a network. Formulas for residual closeness values for star, wheel,

and complete graphs have been determined.[45]

The centrality measures previously discussed are node-level measures. Edge-level centrali-

ties can also be calculated. An example of an edge centrality is amongness centrality. It is

calculated in a weighted, directed graph and is based on a function of the edge weights.[46]

Edge betweenness has also been defined.[19]

2.3.1 Eigenvector Centrality

In addition to closeness, betweenness, and degree, eigenvector is another commonly used

centrality measure. Eigenvector centrality is the principal eigenvector of a undirected con-
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nected graph.[47] Let A be the adjacency matrix of graph g and λ be the first eigenvalue.

Then λx = Ax. So, xi = λ−1
∑

j Aijxj . This means that the eigenvector centrality of a node

is proportional to the sum of the centralities of the nodes that it is connected to. As such

it can be considered as a popularity measure describing how connected a node is to other

well-connected nodes. Thus, it is a measure of node influence because it incorporates not

only the direct contacts of a node but also the contacts of those contacts and the contacts of

those contacts and so on. Another interpretation of eigenvector centrality is a summary of

the number of walks of any length, weighted inversely by walk length, from a given node.[13]

A node may have high eigenvector centrality if it is has a high degree or is connected to

neighbors with a high degree or both.[1] If a graph has several components, eigenvector

centrality must be calculated for each component separately.[47, 48] Eigenvector centrality

is always non-negative.[1] Ruhnau proved when normalizing the eigenvector with its Eu-

clidean norm, the maximum value is obtained only by the center node in a star graph.[49]

Bonacich extended eigenvector centrality to bipartite graphs and a later correction adjusts

this score by the group size.[50, 51] Bonacich also created a similar measure called power or

beta centrality that can be used for both power and bargaining relationships.[52] Two sepa-

rate measures developed by Bonacich and Lloyd provide eigenvector centrality for directed

networks.[53]

2.4 Other Centralization Measures

Again, this research focuses on Freeman’s centralization measures but several others have

been described and examined in the literature. For example, Tallberg looked at centraliza-

tion measures such as maximum centrality minus average centrality, variance of centrality

measures, and maximum centrality. These measures were not standardized by maximum

theoretical value.[54] Others have considered average betweenness and maximum between-

ness for betweenness centralization.[19, 55] Centralization has also been considered for the

Gil Schmidt power centrality index and is defined similarly to the Freeman centralization

measures.[56] Interestingly, like the Freeman relative centralization measures, the maximum
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Gil Schmidt power index centralization is proved to be obtained by a star graph.

In-degree and out-degree variance were used as centralization measures in an analysis of

a version of a trust game with a variable incentive for sellers to abuse a buyer’s trust.[57]

A measure utilizing the variance in degree centrality was also developed as an “index of

heterogeneity” for graphs.[58] A global measure of the efficiency of information flow in a

graph is defined as E(g) = 1
n(n−1)

∑
i 6=j∈g

1
d(ij) [43] Global efficiency is normalized to produce

a value between 0 and 1. Based on the alternative definition of closeness of node ni, where

closeness is defined as C(ni) =
∑

j 6=i
1

2d(ij)
, a global measure of closeness for graph g can

be calculated: C =
∑

iC(ni).[44] Using residual closeness, vertex residual closeness is

R = minkCk. Vertex residual closeness can be normalized by dividing by the original graph

closeness C.

2.5 Networks in Public Health

Network analysis in public health is becoming more common. It is not surprising given how

useful network science can be in the investigation of the relationships between individuals,

an important factor in many public health issues. A recent review article suggests that

researchers interested in three categories of public health networks use network analysis:

transmission networks (either information or disease), social networks, and organizational

networks.[3] For example, smoking behavior in a large network was examined by Christakis

and Fowler.[59] Network analysis was used to examine an outbreak of gonorrhea in Canada

and to describe the structure of an adolescent sexual network.[60, 61] Another study ex-

amined the spread of hospital-associated infections to patients by healthcare workers.[62]

At an organizational level, the structure of state tobacco control networks was investi-

gated.[63]

Network analysis methods have been applied to further examine real-life networks on infec-

tious diseases. A study investigating the sexual network of adolescents found the structure

of the network important in how disease was transmitted.[61] For example, network analy-

sis of a gonorrhea outbreak in Canada suggested that important individuals in propagating
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the disease could be identified by information centrality.[60] Network analysis has been used

to evaluate the Severe Acute Respiratory Syndrome (SARS) outbreak and possible public

health interventions.[64, 65]

Within the studies that use network methods, a wide variety of network measures were

reported. In the Canadian gonorrhea outbreak, network density, degree centrality (not

relative degree centrality), betweenness centrality (not relative betweenness centrality), in-

formation centrality, and 2-core membership were reported.[60] The study of the sexual

network of adolescents utilized Bonacich power centrality.[61]

Relative Centrality in Real Networks Relative betweenness centrality was used as a

measure of contact frequency in an analysis of state tobacco control networks.[63] Degree,

closeness, eccentricity, eigenvector, betweenness, random walk betweenness, and second

order centrality were compared in the largest connected component of the jazz players col-

laboration network. The authors found that the top ten nodes for all measures excepting

eccentricity generally agreed. They also stated that closeness and degree centrality pro-

duce a stronger correlation and eccentricity results are dissimilar to second order centrality

results.[66]

Relative Centralization in Real Networks Centralization is reported for the Pad-

gett’s Florentine Families network of marital relations.[56] Freeman’s degree and between-

ness centralization measures were used to help identify linking-pin organizations among

a group of organizations involved in providing assistance during natural disasters.[67] Be-

tweenness centralization was used to describe the network of organizations that responded

to the 1989 Exxon Valdez oil spill.[68] Betweenness centralization was used to compare state

tobacco control programs.[63]
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2.6 Network Programs

Programs that Produce Relative Centrality/Centralization Pajek computes close-

ness, betweenness, and degree centralization as well as the centrality measures for closeness,

betweenness, and degree.[69] Freeman’s measures are used to compute closeness, between-

ness, and degree centralization. Note that closeness centrality in Pajek is only computed

for that fraction of nodes that are connected in network. In this case, a modified closeness

centrality for connected nodes is reported: weight the sum of the geodesics for each node by

the percentage of nodes that are connected. Disconnected nodes are defined to have a close-

ness centrality of 0. Closeness centralization is not calculated in the case of disconnected

nodes.[70]

UCINET computes Freeman’s relative closeness, betweenness, and degree centrality and

centralization measures along with some variations of them.[71]. Note that UCINET only

calculates closeness for connected graphs. The igraph package in R computes relative close-

ness, betweenness, and degree centrality and centralization for all graphs (connected or oth-

erwise), although there are some errors in the calculations.[72, 73] Note that igraph uses a

simple imputation of 1
n for the average path length of a disconnected node.[10, 11] This value

is then used in the closeness calculations for disconnected graphs. Gephi, a free network

analysis and graphing program, computes relative closeness and betweenness centrality but

not relative degree centrality or any relative centralization measures.[74] NodeXL, another

popular free network analysis program, also does not compute any relative centralization

measures.[75]

Algorithms for Centrality In order to calculate closeness centrality and betweenness

centrality, the geodesic between all pairs of node in a graph must be calculated (the all-pairs

shortest-paths, or APSP, problem). This is a computationally intensive problem, especially

for large networks. The original algorithm for calculating all the geodesics of a network

of any density requires O(n3) computation time.[76, 33] When the network is sparse, an

alternative algorithm only requires O(n2logn + nm) computation time.[77, 78, 33] Lastly,
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Brandes created an even faster algorithm for betweenness centrality that is implemented in

the igraph package.[79] For sparse networks, it requires O(nm) computation time.[33, 79]

In all of these calculations, n is the number of nodes and m is the number of edges.

There are other algorithms that are also optimized for sparse networks.[80] Kanchi and

Vineyard describe a distributed algorithm to solve the APSP problem by partitioning the

network.[81] Yet another study developed a method to compute centrality using Graphical

Processing Units instead of the traditional Central Processing Unit (CPU) method for faster

computation.[82] Brandes also developed a method to estimate closeness and betweenness

for very large networks based on randomly sampling nodes in the graph.[83]

In a completely different approach to the APSP problem, modifications to the centrality

measures themselves have been considered. Many different changes to the centrality al-

gorithms, each with different attributes and failings, have been proposed as solutions and

work continues to be done in this area. For example, there is an algorithm that ranks the

top closeness centrality values for large networks that is faster than programs that actu-

ally obtain the values.[84] Another method approximates closeness centrality for very large

networks that is also faster than programs that actually obtain the values.[85]

Visualizing Networks GEOMI (Geometry for Maximum Insight) program provides a

way to visualize all of the centrality values for a network up to 100 nodes, although the

software seems to have been replaced by a visualization program designed for gene expression

data.[22] Additionally, all of the commonly used network programs described above (Pajek,

UCINET, igraph, etc.) provide simple visualization tools.[69, 75, 72, 74, 71] Gephi is a

particularly nice graph visualization tool.[74]

2.7 Generating Networks

Many different algorithms have been developed to generate networks with specific struc-

tures. Popular models include small world models, which generate networks with short

path lengths and high clustering and Barabàsi-Albert preferential attachment models which
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generate networks with a power-law degree distribution. Many of the network software pro-

grams discussed earlier implement versions of these algorithms.

Erdös-Rènyi Random Graphs Erdös-Rènyi methods to produce random graphs are

the classic way to create graphs that do not emphasize any particular structure.[86] In the

Gnm version of the Erdös-Rènyi random graph, a specified number of edges are randomly

added to a network of a particular order. More specifically, m edges are drawn uniformly

randomly from the set of all possible edges and added to an empty graph.

Barabási-Albert Preferential Attachment The Barabási-Albert (BA) preferential at-

tachment model is a common method of generating networks with a power law degree dis-

tribution.[87, 88] Preferential attachment models attempt to reproduce the “rich get richer”

phenomenon observed in many systems. Examples of networks with a power law degree

distribution are collaborations between movie actors, the world wide web, and scientific ci-

tations.[87, 88] Graphs with a power law degree distribution have a small number of nodes

with very large degree and many nodes with small degree and so are also called scale free.

In the BA model, new nodes are added to a graph and the links from the new nodes prefer-

entially bond to the established nodes with the most connections. Modifications to the BA

preferential attachment model include allowing new links to form between any nodes (new

or established) in the network.[89]

Small World Graphs Small world graphs are designed so that the clustering coefficient

(equal to the observed number of triangles over number of triples in the graph) is high

while the average path length is simultaneously low. In general, the mean geodesic of a

small world graph increases as the log of the graph’s order increases.[1] In this method, a

circular lattice graph where k neighbors are linked by edges is systematically rewired with

probability p of an edge forming between two nodes.[90]

Two Node Type Preferential Attachment Heterogeneity in preference for forming

edges between nodes of different types is used to understand the importance of node com-
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munities in a larger network and is the basis for homophily, or the idea that similar nodes

will link to each other.[91] In this method, nodes are randomly divided into a set number

of types that link to each other with different probabilities. Most versions of node type

preferential attachment add nodes and edges over time.[92, 93, 91]

Other Methods SpecNet is a network generating program that uses a spatial network

algorithm to create networks that exhibit certain properties. Based on network order (num-

ber of nodes) and mean degree, SpecNet can generate networks with specific assortativity,

clustering, and/or fragmentation. Importantly, this program does allow for disconnected

nodes.[94]

2.8 Conclusion

The network science published literature is too vast to consider without selecting a subset

of interest. This has been a very brief review of the network literature focusing on the

idea of centrality and centralization. One rapidly expanding area of research not previously

discussed is dynamic networks. Common methods of handling dynamic graphs involve

condensing the information into one static graph and applying traditional network methods.

More recently, centrality has been re-defined for dynamic graphs.[95]
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Part II

Topic 1
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Chapter 3

Centralization in Various Graph

Generating Methods

3.1 Introduction

Centralization is a measure of how important one node is compared to all of the other nodes

in a network. Unlike centrality, which is a node-level measure, centralization is a graph-level

measure and so is measured once for each network. According to Freeman, centralization

should “index the tendency of a single point to be more central than all other points in the

network.”[6] This measure could be useful for public health applications because it might

indicate how susceptible the network is to interventions that are implemented at the most

important node. Indeed, previous research using a network application of the Diffusion of

Innovations theory has shown that the centrality of adopters influences how information

moves through the network.[3] In communities, “opinion leaders are people who influence

the opinions, attitudes, beliefs, motivations, and behaviors of others.”[96] The most central

node in a very centralized network could be an opinion leader whose recommendations are

very influential to the followers in the network. However, very little work has been done

investigating the basic properties of centralization so these areas must first be explored

before applied research can be conducted.
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Currently, no research describes the centralization values produced by common network

generating methods. As a result it is unclear which graph generating method should be

employed in order to investigate the properties of centralization. Therefore, the primary goal

of this paper is to describe the full range of centralization values produced by the common

network generating methods in Erdös-Rènyi random graphs, Barabási-Albert preferential

attachment graphs, small world graphs, and two node type preferential attachment graphs

as well as a new method call Star Start. Due to computational limitations, small networks

of 5-20 nodes will be investigated. Additional goals of this research are to determine the

frequency with which centralization values are obtained and the range of graph structures

that produce the centralization values for each method. Note that this study does not

attempt to characterize the distribution of centralization values for each graph generating

method as the distributions are likely different. Instead, this study aims to describe the

coverage of centralization values by each method.

3.1.1 Measures

For this paper we will call a particular network a graph, nodes are the points in the graph

and edges connect the nodes. The number of edges in a graph is called the graph’s size

while the number of nodes in a graph is called the graph’s order. A path is the sequence

of edges between two nodes. The geodesic is the shortest path between two nodes, where

distance is defined as the count of number of edges.

A graph is connected if there is a path between each node in the graph and disconnected

otherwise. Graph isomorphisms refer to graphs that have the same structure although the

edges creating the graph are different. A graph is simple if there is only one edge connecting

nodes (multiple or weighted edges are not allowed). A digraph is a directed graph, where

the edges are directed from one node to another. Otherwise, edges are undirected. Self-loops

are edges that start and end with the same node.

This paper uses the relative centrality and centralization measures for closeness, between-

ness, and degree originally described by Freeman to facilitate comparisons between graphs of
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different orders.[6] Relative measures are obtained by taking the observed value for a partic-

ular graph and dividing by the theoretical maximum value for that measure. Using relative

measures, the range of possible values for both centrality and centralization fall between

zero and one. For closeness, betweenness, and degree centrality, the theoretical maximum

has been proven to be achieved by the center node of a star graph.[6] For closeness, between-

ness, and degree centralization the theoretical maximum has been proven to be achieved by

the star graph.[6, 8] A brief description of each of these measures is shown below. These

measures as defined below apply to simple, undirected, and unweighted graphs.

Closeness Intuitively, closeness between two nodes is simply a count of how many edges

connect one particular node to another node in the graph. In this light, the closest distance

between any two nodes in a graph is one, which corresponds to the edge between two

adjacent nodes. Let d(ni, nj) be the number of edges in the geodesic between node ni

and node nj . By convention, if node ni and node nj are not connected by any edges, then

d (ni, nj) =∞. Of course, the number of edges between node ni and itself is 0, so d(ni, ni) =

0. Then the relative closeness centrality (called closeness centrality from here forward) of

node ni (in a connected graph) is defined as C ′c (ni) =
[∑n

j=1 d(ni,nj)

n−1

]−1
= n−1∑n

j=1 d(ni,nj)
.

By definition, closeness centrality can only be computed for a connected graph (where each

node is connected by at least one edge). However, igraph package in R substitutes n for

∞ in the case of disconnected nodes so all nodes have closeness centrality values.[10, 11]

Consequently, for this paper closeness centrality is computed for all graphs, connected or

disconnected.

Relative closeness centralization (called closeness centralization from here forward) is: Cc =∑n
i=1 [C

′
c(n∗)−C′c(ni)]

(n2−3n+2)�(2n−3)

, where C ′c (n∗) is the maximum closeness centrality of the observed

graph. Given this formula, it is clear that a centralization of 0 is obtained by a graph where

all nodes are equal (ex: ring, empty, or complete graph).

Betweenness Any nodes on the geodesic connecting two nodes are said to be between

them. Betweenness centrality measures how often a node is between other nodes. CB (nk) =
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n∑
i

n∑
<j
bij (nk) where bij (nk) =

gij(nk)
gij

is the number of geodesics connecting ni and nj

that contain nk and gij is the total number of geodesics connecting ni and nj . Since the

center point in a star graph obtains the maximum value, relative betweenness centrality

(betweenness centrality) is defined as: C ′B (nk) = 2∗CB(nk)
n2−3n+2

.

Relative betweenness centralization (betweenness centralization) is calculated as: CB =
n∑

i=1
[C′B(n∗)−C′B(ni)]

n−1 where C ′B (n∗) is the maximum betweenness centrality of the observed

graph.

Degree The number of edges connected to node ni is the degree, ki, of the node. Degree

centrality is defined as: CD (nk) =
∑n

i=1 a (ni, nk) and relative degree centrality (degree

centrality) is defined as: C ′D (nk) =
∑n

i=1 a(ni,nk)
n−1 where

a(ni, nk) =


1, iff edge between ni and nk

0, otherwise

Relative degree centralization (degree centralization) is calculated as:

CD =

n∑
i=1

[CD(n∗)−CD(ni)]

n2−3n+2
where CD (n∗) is the maximum degree centrality of the observed

graph.

3.2 Methods

3.2.1 Erdös-Rènyi Random Graphs

Erdös-Rènyi methods to produce random graphs are the classic way to create graphs that

do not emphasize any particular structure.[86] In the Gnm version of the Erdös-Rènyi

random graph, a specified number of edges are randomly added to a network of a particular

order. More specifically, m edges are drawn uniformly randomly from the set of all possible

edges and added to an empty graph. Thus, the Erdös-Rènyi Gnm method produces the

distribution of all possible graphs with m edges selected at random. However, the goal
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of this research is to determine the range of centralization values possible for a particular

network generating method, so centralization was measured as edges were incrementally

added. The number of edges added to the network ran from zero (creating an empty graph)

to n(n−1)
2 (creating a complete graph), incrementing by one edge. For each graph order, 500

repetitions were made for each number of edges that were randomly added and all three

centrality and centralization measures calculated for each graph produced. Note that Gnm

graphs are not required to be connected.

3.2.2 Barabási-Albert Preferential Attachment

The Barabási-Albert preferential attachment model is a common method of generating

networks with a power law degree distribution.[87, 88] Examples of networks with a power

law degree distribution are collaborations between movie actors, the world wide web, and

scientific citations.[87, 88] Graphs produced by this method have a small number of nodes

with very large degree and many nodes with small degree and so are also called scale

free.

In the version investigated here, the graph starts with one node and then at each time

step one node is added and one edge is added to the graph. To form the new edge, the

new node chooses an old node (already in the graph) randomly based on its degree and

forms one edge with it. By design, the probability that established node ni is chosen is

proportional to its degree plus a constant: P(ni chosen) = k∗αi + a, where k∗i is the number

of connections ni has received (e.g., k− 1), α is the power of preferential attachment, and a

is the attractiveness of nodes with no edges. The process of adding one node and one edge

is repeated until the order of the graph reaches the specified number of nodes. As a result,

Barabási-Albert preferential attachment networks are dynamically generated.

The powers of preferential attachment investigated included 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,

0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100. The constant

added to the degree of a node followed the same range and every combination of constant

and power was tested. Measurements were calculated for each graph and 500 graphs were
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produced for each combination of constant and power and all three measures of centrality

and centralization calculated. Note that this method produces only connected graphs since

each new node is immediately linked to an old node.

3.2.3 Small World Graphs

Small world graphs are designed so that the clustering coefficient (equal to the observed

number of triangles over number of triples in the graph, where a triangle is 3 nodes connected

to each other to form a ring while a triple is simply three nodes that form a component

together) is high while the average path length is simultaneously low. In general, the mean

geodesic of a small world graph increases as the log of the graph’s order increases.[1] In this

method, a circular lattice graph where k neighbors are linked by edges is systematically

rewired with probability p of an edge forming between two nodes.[90] The value of p ranged

from 0 to 1 in increments of 0.01 and the size of the neighborhood (k) varied from 0 to

n, the entire network. For each combination of values, 500 graphs were calculated and the

three measures of centrality and centralization calculated. Note that small world graphs

are not required to be connected.

3.2.4 Two Node Type Preferential Attachment

Heterogeneity in preference for forming edges between nodes of different types is used to

understand the importance of node communities in a larger network and is the basis for

homophily, or the idea that similar nodes will link to each other.[91] In this method, nodes

are randomly divided into a set number of types that link to each other with different

probabilities. This paper investigated an equal probability of being either of two node

types. The probability of a link forming between two nodes of the same type was p1 and

the probability of two nodes of different types forming a link was p2. Both p1 and p2 ranged

from 0 to 1 in increments of 0.01 and all combinations of p1 and p2 were tried. For each

combination of values, 500 graphs were produced and the three measures of centrality and

centralization calculated. Note that two node type preferential attachment graphs are not
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required to be connected. Unlike the static version used here, most versions of node type

preferential attachment add nodes and edges over time.[92, 93, 91]

3.2.5 Star Start

This method starts with a star graph, g, with n nodes and then edges were randomly added

or deleted from the graph with equal probability until g was complete (i.e., contained the

maximum possible number of edges: |E (g)| = n(n−1)
2 ) or empty (contained no edges linking

any nodes: |E (g)| = 0). Thus, in order to complete an iteration, either a minimum of

n− 1 edges must be removed from the star graph to create an empty graph or a minimum

of (n− 1) (n− 2)/2 edges must be added to the star graph to create a complete graph.

All three measures of centrality and centralization were taken for each update of g. This

process was repeated 500 times (iterations), each time starting with a star graph with n

vertices and continuing until the graph was complete or empty.

Note that for all of the methods, graphs were undirected and multiple edges and self-loops

were not allowed. Graph order ranged from 5 to 20 nodes in increments of one node.

All graphs were generated in R version 2.15.1 with the igraph package version 0.6-2.[73,

72]

3.3 Comparisons

In order to compare the different graph generating methods, centralization values were

binned into 101 bins from 0 to 1 in increments of 0.01. Bar charts plotted the presence

or absence of values in a particular centralization bin for each method for closeness, be-

tweenness, and degree. Since each of the graph generating methods produced a variable

number of graphs with a particular centralization value and primary concern rests with

finding what centralization values are commonly produced by these programs rather than

the exact number of graphs, ranks were used to compare the relative frequency of graphs

in each centralization bin for each method. The exact numbers of graphs that fall into a
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particular centralization bin can be modified by finding the right combination of parameters

and so the frequency distribution is not used. Centralization bins were ranked by number of

graphs such that larger numbers of graphs have larger ranks and then the ranks were scaled

to between 0 and 1 to create a relative rank. Relative rank was used so that the ranks could

be plotted on the same scale for all graph orders. Since graphs with different structures may

have the same centralization value, scatter plots of maximum centrality and centralization

were plotted for each method as a means of illustrating the range of graphs that fall into

a particular centralization bin. In these plots, opacity of the points reflects the number

of maximum centrality values that fell into a particular centralization bin with darker col-

ors meaning larger numbers of graphs. Comparisons were performed for each graph order

between 5 and 20 nodes and results summarized by graph order. All computations were

performed in R version 2.15.1 with the igraph package version 0.6-2.[73, 72]

3.4 Results

3.4.1 Closeness

Centralization Values Obtained Movie 3.1 describes the range of centralization values

produced by each of these methods for each graph order for closeness centralization. As

shown in the movie, Erdös-Rènyi random graphs (ER) and small world graphs (SW) fail

to produce graphs with high levels of closeness centralization except at very small graph

orders (five or six nodes). However, over the range of graph orders examined, these graph

methods do produce all centralization values between 0 and 0.6 (moderate centralization).

On the other hand, Barabási-Albert (BA) preferential attachment graphs do not produce

low centralization graphs but do produce graphs with the full range of centralization values

from about 0.2 to 0.6. Additionally, the BA method does produce graphs with moderate to

high centralization although the range is limited. Lastly, two node type preferential attach-

ment (Pref) and Star Start (Star) produce graphs that cover most of the full theoretical

range, with only a few small gaps at higher centralization levels as the graph order increases.

Star Start produces a few more unique highly centralized values than the two node type
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preferential attachment model. A comparison of just these two methods is shown in the

Appendix as Movie 3.10.

Rank of Centralization Values Movie 3.2 describes the rank of centralization values

produced by each of these methods for each graph order for closeness centralization. As

shown in the movie, as graph order increases, a bell-shaped pattern emerges regarding

frequency of values obtained for closeness. Most of the methods demonstrate a peak at

very low centralization levels (around 0.2). Barabási-Albert preferential attachment models

have a slightly higher peak centralization level (around at 0.4). Barabási-Albert preferen-

tial attachment models also have high ranks for centralization values between 0.8 and 1,

indicating that many of the graphs generated fall into those bins. Star Start has moderate

ranks for centralization values between 0.8 and 1 and the other methods all have very low

ranks.

Range of Graph Structures Movie 3.3 further describes the distribution of closeness

centralization values by plotting them against the maximum closeness centrality value for

each method. As shown in the movie, two node type preferential attachment and Star

Start have the greatest range of maximum centrality values for a particular centralization

bin while the range for Barabási-Albert preferential attachment models is very restricted.

However, as graph order increases there are larger gaps in the maximum centrality values

at very high centralization levels, especially for Star Start. At low centralization levels,

Erdös-Rènyi random graphs and small world graphs also have a broad range of maximum

centrality values which continues to moderate centralization levels for Erdös-Rènyi random

graphs.

3.4.2 Betweenness

Centralization Values Obtained Movie 3.4 describes the range of centralization values

produced by each of the graph generating methods examined for each graph order for

betweenness centralization. Erdös-Rènyi random graphs and small world graphs produce all
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centralization values between 0 and 0.6 (moderate centralization). Again, Barabási-Albert

preferential attachment graphs do not produce low centralization graphs but do produce

graphs with the full range of centralization values from about 0.2 to 0.6. Unlike for closeness,

the Barabási-Albert preferential attachment method does produce graphs with moderate

to high centralization with increasing coverage as graph order increases. Again, two node

type preferential attachment and Star Start produce graphs that cover most of the full

theoretical range, with Star Start producing slightly more unique highly centralized values.

A comparison of just these two methods is shown in the Appendix as Movie 3.11.

Rank of Centralization Values Movie 3.5 describes the rank of centralization values

produced by each of these methods for each graph order for betweenness centralization.

As shown in the movie, as graph order increases, a completely different pattern emerges

regarding frequency of values obtained for betweenness. Most of the methods demonstrate

a rank peak at 0 (completely decentralized) and rank decreases linearly as centralization

increases. Barabási-Albert preferential attachment models are a notable exception, still

following a bell-shaped curve that then curves upward to have high ranks for centralization

values between 0.8 and 1. Again, Star Start has moderate ranks for centralization values

between 0.8 and 1 and the other methods all have very low ranks.

Range of Graph Structures Movie 3.6 further describes the distribution of betweenness

centralization values by plotting them against the maximum betweenness centrality value

for each method. As shown in the movie, most of the methods display a similar range of

maximum centrality values for the centralization bins that are obtained. Star Start and

Barabási-Albert preferential attachment have the greatest range of maximum centrality

values for very high centralization levels even as graph order increases. On the other hand,

the maximum centrality range for two node type preferential attachment becomes very

restricted as graph order increases. Small world graphs have a slightly wider range of

values than Erdös-Rènyi random graphs at low to moderate centralization levels.
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3.4.3 Degree

Centralization Values Obtained Movie 3.7 describes the range of centralization values

produced by each of the graph generating methods examined for each graph order for degree

centralization. As for closeness Erdös-Rènyi random graphs produce all centralization values

at the smallest graph order (five nodes) and this range decreases as the graph order increases

ending with a range between 0 and 0.6 (moderate centralization). Small world graphs

produce graphs with centralization values between 0 and 0.6 but the range of unique values

is very sparse. Barabási-Albert preferential attachment graphs do not produce very low

centralization graphs but do produce highly centralized graphs. Similar to the results for

closeness and betweenness, two node type preferential attachment and Star Start produce

graphs that cover most of the full theoretical range, with Star Start producing slightly more

unique highly centralized values. A comparison of just these two methods is shown in the

Appendix as Movie 3.12.

Rank of Centralization Values Movie 3.8 describes the rank of centralization values

produced by each of these methods for each graph order for degree centralization. As shown

in the movie, as graph order increases, a bell-shaped pattern similar to that seen for closeness

emerges regarding frequency of values obtained for degree. All of the methods demonstrate

a peak at very low centralization levels (around 0.2). Unlike for closeness, Barabási-Albert

preferential attachment models also have high ranks for centralization values between 0.8

and 1, but the number of bins with ranked values is small. Again, Star Start has moderate

ranks for centralization values between 0.8 and 1 and the other methods all have very low

ranks.

Range of Graph Structures Movie 3.9 further describes the distribution of degree

centralization values by plotting them against the maximum degree centrality value for

each method. As shown in the movie, two node type preferential attachment and Star Start

have the greatest range of maximum centrality values for a particular centralization bin

although both drop off significantly at high levels of centralization. The range for Barabási-
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Albert preferential attachment models is very narrow. At low to moderate centralization

levels, Erdös-Rènyi random graphs and small world graphs also have a broad range of

maximum centrality values, although the small world graphs show some gaps between the

maximum centrality values. Interestingly, there is a regular pattern between maximum

centrality value and centralization value for small world graphs that is likely related to

graph structure.

3.5 Discussion

Based on the results of these simulations, two node type preferential attachment and Star

Start produce most of the full range of centralization values for all three measures of central-

ization that were studied. At high centralization levels for betweenness, Barabási-Albert

preferential attachment, two node type preferential attachment, and Star Start produce

a broad range of centralization values. However, Barabási-Albert preferential attachment

produces fewer unique graphs with high centralization values for closeness, and even less

well for degree. On the other hand, two node type preferential attachment and Star Start

consistently produce a broad range of unique values at these high centralization levels, al-

though it should be noted that performance does deteriorate as graph order approached 20

nodes.

Erdös-Rényi random graphs fail to produce highly centralized graphs as graph order in-

creases beyond very small orders. This result is unsurprising given that highly centralized

graphs are very rare in the full set of all possible random graphs. If nodes in a graph are

labeled, then each graph can be uniquely identified. Then the sum of all possible graphs

is: ∑n(n−1)
2

x=0

n(n−1)
2

x

 = 2
n(n−1)

2 .

Since the number of edges in a star graph is n− 1, the number of graphs with n− 1 edges

is

n(n−1)
2

n− 1

 with only n of those graphs being star graphs (a star graph structure can be
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produced n times, once with each node as the center of the star). As the number of nodes

increases, the fraction of graphs with n− 1 edges in a star formation gets smaller.

Also unsurprising is the high rank of centralized graphs produced by the Barabási-Albert

preferential attachment model. In this model, many nodes have few edges and a few nodes

have lots of edges since the distribution of degree typically follows a power law. This

means that although most Barabási-Albert preferential attachment graphs have one node

that dominates, this generating method is much less likely to produce graphs with multiple

nodes that have the maximum centrality thereby producing the full range of unique graphs

that are highly centralized.

It is interesting to note that for all the graph generating methods, low centralization graphs

are the most common. The structures that create highly centralized graphs, such as star

graphs or star graphs with additional edges, have a low probability of occurring while there

are many structures that produce low to moderate centralization.

3.5.1 Limitations

Due to computing limitations, this study evaluated graphs of small order (up to 20 nodes).

However, the graph orders investigated correspond to small-group settings- an important

environment for social network research. Additionally, due to the large numbers of graphs

produced it was not feasible to compute the number of unique graphs produced by each

method in a particular centralization bin. The number of unique maximum centrality

values was used as a proxy for this, although clearly this is an underestimate. Also, this is a

simulation study; although large numbers of graphs were generated it is possible that, if the

study were repeated, slightly different results could be obtained. However, it seems unlikely

that the conclusions would be be significantly different. Additionally, although there are a

wide variety of graph generating methods, this study only focused on the most commonly

utilized ones for analysis.
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3.5.2 Future Directions

Since a method of generating graphs that span the range of centralization values for close-

ness, betweenness, and degree centralization has been found, future research can investigate

the properties of centralization as graph order increases. At a descriptive level, the rela-

tionship between these three measures could be calculated as well as their relationship with

the maximum centrality value. Since the calculation of centralization requires knowledge

of the centrality for each node in the network, predicting centralization based on one or a

few nodes could be useful for incompletely known networks.

3.6 Conclusion

Erdös-Rényi random graphs produce mostly low to moderately centralized graphs with a

good range of graph structures. Graphs with high centralization values are unlikely to be

generated by the algorithm. Similarly, the small world graph method produces graphs are

only low to moderately centralized but does produce a range of graph structures. Barabási-

Albert preferential attachment graphs can be highly centralized but do not produce a variety

of graph structures with the same centralization value. Two node type preferential attach-

ment and Star Start produce most of the full range of centralization values with a broad

range of maximum centrality values. With the exception of the Barabási-Albert preferential

attachment method, all of the graph generating methods examined produce the majority

of graphs in the low to moderate centralization level, suggesting that those values are most

easily generated and high centralization values are very uncommon.

3.7 Movies

3.7.1 Closeness

Movie 3.1. Closeness centralization values obtained for all graph generating methods (Erdös-

Rènyi random graphs(ER), Barabási-Albert preferential attachment (BA), small world
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(SW), two node type preferential attachment (Pref), and Star Start (Star)) for graphs

of order 5-20 nodes.

(Loading Video...)

Movie 3.2. Rank of closeness centralization values obtained for all graph generating methods

(Erdös-Rènyi random graphs (ER), Barabási-Albert preferential attachment (BA), small

world (SW), two node type preferential attachment (Pref), and Star Start (Star)) for graphs

of order 5-20 nodes.

(Loading Video...)

Movie 3.3. Scatter plot of maximum closeness centrality and closeness centralization values

obtained for all graph generating methods (Erdös-Rènyi random graphs (ER), Barabási-

Albert preferential attachment (BA), small world (SW), two node type preferential attach-

ment (Pref), and Star Start (Star)) for graphs of order 5-20 nodes.
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(Loading Video...)

3.7.2 Betweenness

Movie 3.4. Betweenness centralization values obtained for all graph methods (Erdös-Rènyi

random graphs (ER), Barabási-Albert preferential attachment (BA), small world (SW), two

node type preferential attachment (Pref), and Star Start (Star)) for graphs of order 5-20

nodes.

(Loading Video...)

Movie 3.5. Rank of betweenness centralization values obtained for all graph methods (Erdös-

Rènyi random graphs (ER), Barabási-Albert preferential attachment (BA), small world

(SW), two node type preferential attachment (Pref), and Star Start (Star)) for graphs of

order 5-20 nodes.
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Media File (video/quicktime)


AllBarSepBetweenness.mov
Media File (video/quicktime)



(Loading Video...)

Movie 3.6. Scatter plot of maximum betweenness centrality and betweenness centralization

values obtained for all graph methods (Erdös-Rènyi random graphs (ER), Barabási-Albert

preferential attachment (BA), small world (SW), two node type preferential attachment

(Pref), and Star Start (Star)) for graphs of order 5-20 nodes.

(Loading Video...)

3.7.3 Degree

Movie 3.7. Degree centralization values obtained for all graph methods (Erdös-Rènyi ran-

dom graphs (ER), Barabási-Albert preferential attachment (BA), small world (SW), two

node type preferential attachment (Pref), and Star Start (Star)) for graphs of order 5-20

nodes.
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(Loading Video...)

Movie 3.8. Rank of degree centralization values obtained for all graph methods (Erdös-

Rènyi random graphs (ER), Barabási-Albert preferential attachment (BA), small world

(SW), two node type preferential attachment (Pref), and Star Start (Star)) for graphs of

order 5-20 nodes.

(Loading Video...)

Movie 3.9. Scatter plot of maximum degree centrality and degree centralization values

obtained for all graph methods (Erdös-Rènyi random graphs (ER), Barabási-Albert prefer-

ential attachment (BA), small world (SW), two node type preferential attachment (Pref),

and Star Start (Star)) for graphs of order 5-20 nodes.
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(Loading Video...)

3.8 Appendix

3.8.1 Movies

Movie 3.10. Closeness centralization values obtained for two node type preferential attach-

ment (Pref) and Star Start (Star) methods for graphs of order 5-20 nodes.

(Loading Video...)

Movie 3.11. Betweenness centralization values obtained for two node type preferential

attachment (Pref) and Star Start (Star) methods for graphs of order 5-20 nodes.
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(Loading Video...)

Movie 3.12. Degree centralization values obtained for two node type preferential attachment

(Pref) and Star Start (Star) methods for graphs of order 5-20 nodes.

(Loading Video...)
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Part III

Topic 2
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Chapter 4

Various Properties of

Centralization in Small Graphs

4.1 Introduction

Centralization is a measure of how important one node is compared to all of the other

nodes in a network. Centrality is a measure of how central/important a node is based on

it’s location in the graph. Unlike centrality, which is a node-level measure, centralization is a

graph-level measure. Centralization relies on all of the node-level centrality information and

as such is directly related to the overall structure of the graph. Previous work describes the

centralization values produced by the common network generating methods and found that

two node type preferential attachment and a new method called Star Start created graphs

with the full range of centralization values for closeness, betweenness, and degree.[97] The

goal of this paper is to further examine the properties of and the relationship between these

centralization measures using graphs generating by the Star Start method.

Of all of the graph generating methods considered, only the Gnm version of the Erdös-Rènyi

random graph allows the calculation of the probability of obtaining labeled, undirected, and

simple graphs with particular structures. To review, for a Gnm Erdös-Rènyi random graph,

a specified number of edges are randomly added to a network of a particular order. More
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specifically, m edges are drawn uniformly randomly from the set of all possible edges and

added to the graph. In other words, Gnm random graphs are chosen uniformly at random

from the collection of all graphs which have n nodes and m edges. Note that the range of

edges for a graph is 0, an empty graph, to n(n−1)
2 , a complete graph. The sum of all possible

graphs with (labeled edges) is:

∑n(n−1)
2

m=0

n(n−1)
2

m

 = 2
n(n−1)

2

[98] Figure 4.1 describes the total number of Erdös-Rènyi Gnm random graphs for graphs

of order 5-8.

From information about the total number of graphs, it is possible to calculate the prob-

ability of obtaining a graph with a specified order and size (number of edges and nodes,

respectively). Note that due to symmetry of a particular labeled graph structure, multi-

ple graphs can have the same structure although with different node labels, called graph

isomorphism. Isomorphic graphs have identical structure/topology but with different node

labels. Clearly, if two graphs have the same structure then their node centrality and cen-

tralization values will be identical. The number of different isomorphic classes, or possible

different symmetries, of a graph with a given order is determined by Pólya’s Enumeration

Theorem.[98]. Unfortunately, this enumeration does not provide information on the number

of graphs within each class. Aspects of graph isomorphism such as counting all possible

isomorphisms of one structure or determining if two graphs are isomorphic have been much

studied but with few general results. In fact, determining the complexity of the graph

isomorphism problem is even difficult.[99, 100]

The number of graphs with a particular structure is needed to precisely compute the proba-

bility of obtaining that graph. This tally would also be used to determine the probability of

obtaining a centralization value based on that graph structure. For graphs with particularly

well-studied structures, such as rooted graphs or directed graphs, it is possible to calculate

the theoretical number of graphs within specific isomorphic classes.[98] Progress has been

made calculating the number of isomorphisms of a particular graph using various computer
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programs, such as nauty.[101] Thus, either theoretical or computational methods only allow

the enumeration of the number of graphs with one graph structure. Unfortunately, neither

of these methods allows the direct listing of all possible Erdös-Rènyi Gnm random graphs

of a particular order. As a result, there is no simple solution for directly finding the com-

plete distribution of graph structures for a given graph order, either computationally or

theoretically, although you can sample from it.

In theory, the set of all Gnm Erdös-Rènyi random graphs for a particular graph order

provides the true distribution of graph structures in random graphs of that order since

the probability of obtaining any one structure can be calculated. In this way, the same

set of all Gnm Erdös-Rènyi random graphs of a particular graph order also provides the

true distribution of centralization values for random graphs. During a discussion of graph

structures, it is important to note that widely different graph structures can produce the

same centralization value. For example, a centralization value of 0 is obtained by any

graph where all of the nodes are equivalent, such as empty, ring, or fully connected graphs.

Excluding this example, the exact relationship mapping all possible graph structures to their

particular centralization value has not been investigated. Given the difficulty in determining

the complete distribution of graph structures and the unknown relationship between number

of different structures that produce the same centralization value, this study will use a

sampling method to determine the distribution of centralization values for Erdös-Rènyi

Gnm random graphs

When considering centralization, a star graph has the maximum possible centralization value

for closeness, betweenness, and degree centralization (see Measures section below). Using

the above formula, the probability of randomly obtaining star graph can be computed as:

n

2
n(n−1)

2

. The numerator is n and not one because a star graph has n isomorphisms since

each of the n nodes could be the center node of the star. Note that rotating the peripheral

nodes does not produce an isomorphic graph because the adjacency matrix is the same for

both the rotated graph and the original graph. Clearly, as the number of nodes increases

even minimally, the fraction of graphs with n − 1 edges in a star formation goes to zero

fairly rapidly. For example, the probability of randomly obtaining a five node star graph
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is 0.004882812 and decreases substantially to 2.842171e−13 for a 10 node star graph. Even

if attention is focused on producing random graphs with n − 1 edges instead of the entire

set of random graphs for a particular graph order, the number of graphs with n − 1 edges

is

n(n−1)
2

n− 1

 with only n of those graphs being star graphs. This fraction also goes to zero

as graph order increases to even moderate levels. For example, the probability of obtaining

a five node star graph in the set of graphs with n− 1 edges is 0.02380952 and decreases to

1.12846e−8 for a 10 node star graph.

In order to make any inferences about closeness, betweenness, and degree centralization

and their various properties, the true distribution of centralization values must be obtained.

As discussed earlier, no simple solution exists for finding the exact distribution of graph

structures, and therefore the exact distribution of centralization values. As such, this study

employs a sampling method to try to ensure that the full range of centralization values is

obtained. However, as illustrated above with the example of the star graph, some graph

forms are very rare and have a very low probability of being randomly obtained. One way

around this is to produce a large number of graphs in order to increase the probability

of obtaining these rare graph structures. The probability of randomly obtaining a non-

star graph when the number of edges is set to n − 1 is 1 − n
n(n−1)

2

n− 1


. Thus, when the

number of iterations is increased from one to x, the probability of obtaining a star graph is

1−
(

1− n
n(n−1)

2

n− 1



)x
. This means that an extremely large number of random graphs must

be generated to increase the probability of randomly producing graphs of even moderate

orders with highly centralized forms. For example, the probability of randomly obtaining

a 10 node star graph in one interaction is 1.12846e−8. In order to have this probability

approach one, over 600 million graphs are required. See Figure 4.2 for the probability of a

star graph for smaller graph orders. As a result, a Monte Carlo approach to generating the

distribution of centralization values using Erdös-Rènyi Gnm random graphs is not feasible

since it would require generating a very, very large number of graphs even if the number

51



of edges is set. This is highly inefficient and not conducive to a study that examines the

properties of centralization. An alternative method is to use the previously described Star

Start method as a means of creating a pseudo-random sample of possible graph forms. The

idea behind Star Start is that each iteration from star graph to complete or empty graph is

a pseudo-random sample of the full range of centralization values that are possible (pseudo-

random because the end-points are fixed). Importantly, this sample reflects the underlying

distribution of centralization values because the graph forms are randomly obtained by

adding or deleting edges. Then the sample average across the iterations for various statistics

can be computed. For this analysis the starting graph, the star graph, is dropped since it

artificially inflates the number of graphs with the highest possible centralization value.

4.1.1 Measures

For this paper we will call a particular network a graph, nodes are the points in the graph

and edges connect the nodes. The number of edges in a graph is called the graph’s size

while the number of nodes in a graph is called the graph’s order. A path is the sequence

of edges between two nodes. The geodesic is the shortest path between two nodes, where

distance is defined as the count of number of edges. A graph is connected if there is a path

between each node in the graph and disconnected otherwise. Graph isomorphisms refer to

graphs that have the same structure although the edges creating the graph are different. A

graph is simple if there is only one edge connecting nodes (multiple or weighted edges are

not allowed). A digraph is a directed graph, where the edges are directed from one node to

another. Otherwise, edges are undirected. Self-loops are edges that start and end with the

same node.

This paper uses the relative centrality and centralization measures for closeness, between-

ness, and degree to facilitate comparisons between graphs of different orders. All of these

measures were described by Freeman in his much referenced 1978 paper.[6] Relative mea-

sures are obtained by taking the observed value and dividing by the theoretical maximum

value for that measure. Using relative measures, the range of possible values falls between

zero and one. For closeness, betweenness, and degree centrality, the theoretical maximum
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has been proven to be achieved by the center node of a star graph.[6] For closeness, between-

ness, and degree centralization the theoretical maximum has been proven to be achieved

by the star graph.[6, 8] Although the highest possible relative centralization is given by a

star graph, centralization values ≥ 0.8 can be obtained by adding a small number of edges

to a star graph such that there are multiple nodes with the highest possible centrality and

many more nodes with the lowest possible centrality.

Closeness Let d(ni, nk) be the number of edges in the geodesic between node ni and node

nj . By convention, if node ni and node nj are not connected by any edges, then d (ni, nj) =

∞. Of course, the number of edges between node ni and itself is 0, so d(ni, ni) = 0. Then the

relative closeness centrality (called closeness centrality from here forward) of node ni(in an

unweighted connected graph) is defined as C ′c (ni) =
[∑n

j=1 d(ni,nj)

n−1

]−1
= n−1∑n

j=1 d(ni,nj)
.[6] In

his 1978 paper, Freeman shows that the maximum closeness centrality measure is obtained

by the central node in a star graph. By definition, closeness centrality can only be computed

for a connected graph (where each node is connected by at least one edge). However,

igraph substitutes n for∞ in the case of disconnected nodes.[10, 11] Consequently, closeness

centrality can be computed for all graphs, connected or disconnected.

Relative closeness centralization (called closeness centralization from here forward) is: Cc =∑n
i=1 [C

′
c(n∗)−C′c(ni)]

(n2−3n+2)�(2n−3)

, where C ′c (n∗) is the maximum closeness centrality of the observed

graph. Given this formula, it is clear that a centralization of 0 is obtained by a graph where

all nodes are equal (such as a ring graph, an empty graph, or a complete graph).

Betweenness Any nodes on the geodesic connecting two nodes are said to be between

them. Betweenness centrality measures how often a node is between other nodes. CB (nk) =
n∑
i

n∑
<j
bij (nk) where bij (nk) =

gij(nk)
gij

is the number of geodesic connecting niand nj that

contain nk and gij is the total number of geodesics connecting ni and nj . Using the center

point in a star graph as the reference, relative betweenness centrality (betweenness central-

ity) is defined as:C ′B (nk) = 2∗CB(nk)
n2−3n+2

.

Relative betweenness centralization (betweenness centralization) is calculated as: CB =
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n∑
i=1

[C′B(n∗)−C′B(ni)]

n−1 where C ′B (n∗) is the maximum betweenness centrality of the observed

graph.

Degree The number of edges connected to a node is the degree of the node. Degree

centrality is defined as: CD (nk) =
∑n

i=1 a (ni, nk) and relative degree centrality (called

degree centrality from here forward)is defined as:

C ′D (nk) =
∑n

i=1 a(ni,nk)
n−1 where

a(ni, nk) =


1, iff edge between ni and nk

0, otherwise

Relative degree centralization (degree centralization) is calculated as:

CD =

n∑
i=1

[CD(n∗)−CD(ni)]

n2−3n+2
where CD (n∗) is the maximum degree centrality of the observed

graph.

4.2 Methods

4.2.1 Graph Generating Methods

Erdös-Rènyi Random Graphs In the Gnm version of the Erdös-Rènyi random graph,

a specified number of edges are randomly added to a network of a particular order. More

specifically, m edges are drawn uniformly randomly from the set of all possible edges and

added to the graph. Since the goal of this research is to determine the range of centralization

values possible for a particular network generating method, centralization was measured as

edges were incrementally added. The number of edges of the network ran from |E (g)| = 0

(creating an empty graph with no edges linking any nodes) to |E (g)| = n(n−1)
2 (creating a

complete graph with the maximum possible number of edges), incrementing by one edge.

Graphs were undirected and multiple edges between two nodes and self-loops were not

allowed. Unfortunately, as noted above in the Introduction, there is no simple way to find
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the distribution of Gnm Erdös-Rènyi random graphs for a particular order. Consequently,

this paper will utilize a method that generates equal numbers of Gnm Erdös-Rènyi random

graphs for each edge set of a given size. For each graph order, the number of repetitions

(randomly obtained graphs) required to obtain a star graph with probability 0.999 when

the number of edges was set to n− 1 was computed and used as the number of repetitions

for that graph order. All three centrality and centralization measures were calculated for

each graph produced. Note that Gnm graphs are not required to be connected. Due to

computing restrictions, only graphs with 5-7 nodes were constructed.

Star Start The method starts with a star graph, g, with n nodes and then edges were

randomly added or deleted (with equal probability) from the graph until g was complete or

empty. Thus, in order to complete an iteration, either a minimum of n − 1 edges must be

removed from the star graph to create an empty graph or a minimum of (n− 1) (n− 2)/2

edges must be added to the star graph to create a complete graph. Loops and duplicate

edges were not allowed. All three measures of centrality and centralization were taken for

each update of g. This process was repeated 500 times (iterations), each time starting with

a star graph with n vertices and continuing until the graph was complete or empty.

4.2.2 Comparison of Distributions

In order to compare graphs of different orders, centralization values were binned into 101

bins from 0 to 1 in increments of 0.01. Since the first graph of the Star Start method is fixed

as a star graph, it is dropped from the analysis for all iterations. Considering each Star

Start iteration as a sample of the possible graph centralization values, the average number

of graphs in a centralization bin is used for all calculations. A Kolmogorov-Smirnov test was

used to compare the distribution of centralization values for the Erdös-Rènyi and Star Start

methods of generating graphs for each of closeness, betweenness, and degree centralization.

Visual inspection of the distributions was conducted by plotting a contour plot of the

centralization values side-by-side.
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4.2.3 Centralization Associations

As in the comparison of distributions, centralization values were binned into 101 bins from

0 to 1 in increments of 0.01. Since the first graph of the Star Start method is fixed as a star

graph, it is dropped from the analysis for all iterations. A histogram was used to describe

the distribution of centralization values for closeness, betweenness, and degree centraliza-

tion. For the histogram, the proportion of graphs that fell into each centralization bin was

computed for each iteration (proportion and not absolute number was used to control for

the variable number of graphs in each iteration). Then the average of these 500 values was

taken for each centralization bin and plotted in the histogram. A three-dimensional scatter

plot was used to visualize the closeness, betweenness, and degree centralization values for

each graph obtained for this study. To ease interpretation of the three dimensional plots,

the coloring of the points in the plot is done such that lighter colors are closer to the front

of the graph and darker colors are farther away. To better understand the graph structures

that produced the shape of the scatter plot, centralization values were dichotomized into

two groups: centralization < 0.4 and centralization ≥ 0.4 for closeness, betweenness, and

degree centralization. Note that the 0.4 cut-off represents moderate centralization and is

arbitrarily chosen for illustrative purposes. The scatter plot was re-colored to emphasize

placement of graphs into specific three-way categories. Pearson product-moment correlation

was used to calculate linear association between two measures for each of the 500 iterations

and then the average taken.

Linear regression with both one and two of the centralization measures as predictors and

another as the dependent variable were also performed for each centralization measure and

each of the 500 iterations. The average coefficients and R2 value were taken across all of

the iterations. Average R2 was used to compare models of the same order. For the models

with only one predictor, the regression line was plotted against the minimum, mean, and

maximum centralization values. For the multiple linear models, the regression plane was

plotted against the centralization values. For both plots the opacity of the points reflects

the number of graphs that fell into a particular centralization bin. Darker points have

larger numbers of graphs and lighter points have fewer numbers of graphs. Additional linear
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models considered average centrality and maximum centrality as predictors of centralization.

The same methods were used as described above for centralization as the predictor.

Analyses were performed for each graph order between 5 and 20 nodes and results sum-

marized by graph order. All computations were performed in R version 2.15.1 with the

igraph package version 0.6.2.[73, 72] Significance was set at α < 0.05 and all tests were

two-sided.

4.3 Results

4.3.1 Comparison of Distributions

Figure 4.3 describes the results of the Kolmogorov-Smirnov tests comparing the distribution

of centralization values between Erdös-Rènyi and Star Start methods of generating graphs

for closeness, betweenness, and degree centralization. There is no significant difference be-

tween the distribution of the centralization values for the two methods. Figure 4.4 compares

the actual distribution of centralization values for Erdös-Rènyi and Star Start graphs for

graph of order 5 to 7 nodes for closeness centralization using a contour plot. The colors of

the plot (pink to blue) reflect a fewer relative numbers of graphs that fell into a particular

centralization bin. Figures 4.5 and 4.6 illustrate the same comparison for betweenness and

degree centralization, respectively.

4.3.2 Centralization Associations

Figures 4.7, 4.8, and 4.9 describe the distribution of centralization values for closeness, be-

tweenness, and degree using a contour plot. Figure 4.10 provides the 5th percentile and 95th

percentile of the distribution for each of the measures by each graph order analyzed.

Movie 4.1 illustrates the scatter plot of closeness, betweenness, and degree centralization

for each graph order. As shown in the Movie, as graph order increases the scatter plot

has several noticeable projections or “fingers”. Movie 4.2 provides a closer examination of
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graph structure in the fingers of the scatter plot for graphs of order 5-8 nodes. As shown in

the movie, each finger on the left-side of the plot contains graphs with a specific number of

disconnected nodes. The main finger on the right-side of the scatter plot contains graphs

with high closeness, betweenness, and degree centralization. The base of the main finger

predominantly contains graphs where either betweenness is low and closeness and degree

centralization are high or degree is low and closeness and betweenness are high. There are

also a few connected graphs where closeness is low but betweenness and degree centralization

are high.

In order to more clearly see the relationship between each pair of centralization measures,

Movies 4.14-4.16 in the Appendix provide the scatter plot of values for each pairwise com-

bination for each graph order as well as the corresponding Pearson correlation coefficient.

Linear and quadratic models using one centralization measure as the dependent variable

and another as the independent variable did not fit the data well and are not reported

in this paper. A better, but still poor fit for most of the models, is a linear model fit to

the dependent centralization measure restricted to be ≥ 0.6. Movies 4.3 and 4.4 describe

the two models that fit reasonably well using the restricted centralization measure as the

outcome (the other more poorly fitting models are not shown). Additional models with one

centralization measure as the dependent variable and the remaining two as the independent

variables were investigated and are shown in Movies 4.5-4.7.

Next, a linear model with maximum centrality as the predictor and the corresponding cen-

tralization measure as the outcome was considered. Linear, quadratic, and cubic terms for

maximum centrality were evaluated. The results were similar but the model with quadratic

maximum centrality fit slightly better than the others. Movies 4.8-4.10 describe the mini-

mum, mean, and maximum maximum centrality value for each centralization bin and the

regression line for each graph order. Movies 4.17-4.19 in the Appendix illustrate the scatter

plot of maximum centrality and centralization with the corresponding Pearson correlation

coefficient for graphs of each order for closeness, betweenness, and degree. As before, opac-

ity of the points reflects the number of graphs that fell into a particular centralization

bin.
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Finally, a linear model with average centrality as the predictor and the corresponding cen-

tralization measure as the outcome was considered. Linear, quadratic, and cubic terms for

maximum centrality were evaluated. As with the model using maximum centrality as the

predictor, the results were similar but the model with quadratic maximum centrality fit

slightly better than the others. Movies 4.11-4.13 describe the minimum, mean, and max-

imum average centrality value for each centralization bin and the regression line for each

graph order. Movies 4.20-4.22 in the Appendix illustrate the scatter plot of average central-

ity and centralization with the corresponding Pearson correlation coefficient for graphs of

each order for closeness, betweenness, and degree. As before, opacity of the points reflects

the number of graphs that fell into a particular centralization bin.

4.4 Discussion

The graphs produced by the Start Start method, except the starting graph, can be con-

sidered a pseudo-random sample of the range of centralization values. Analyses suggest

that the Star Start method provides a relatively more efficient mechanism of generating

highly centralized graphs than the ER method while still following the same distribution of

centralization values for closeness and degree. Betweenness results suggest some differences

between the distributions but these could possibly be addressed by modifications to the

Star Start program or by running more iterations of the program. Admittedly, Star Start

and ER have different goals; the Star Start program generates graphs to produce a range of

centralization values while ER method generates graphs with uniform probability for each

(labeled) structure. As such, the Star Start program can only approximate the distribution

of centralization values, not the distribution of graph structures.

The Star Start program can be considered to generate a null distribution for comparing

centralization values from real-life networks.As shown in Figure 4.10 and in Figures 4.7, 4.8,

and 4.9 graphs with high centralization values, centralization > 0.80, are rare at all graph

orders. As graph order increases, the 95th percentile continues to decrease until graphs with

centralization values > 0.6, a moderate cutoff value, are very rare. This downward trend
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suggests that for larger graph orders than those studied here, having at least a moderate

centralization value is unusual.

Unfortunately, for validation purposes, only Star Start graphs with very small order could

be compared to Erdös-Rènyi Gnm random graphs due to computing limitations. However,

the lack of apparent differences in the distributions as order increased slightly suggests

that the findings should be true for the orders considered in this analysis. The Star Start

method appears to work less well for betweenness centralization as network order increases,

although no significant differences were found using the Kolmogorov-Smirnov test. The

problem appears to be with higher than expected numbers of graphs with moderate to high

centralization levels. Examination of the histogram for closeness and degree also show an

increased number of graphs in high centralization bins, although to a lesser extent. It is

unclear why this problem only appears for betweenness and not for closeness or degree cen-

tralization, although the distribution for betweenness centralization is more skewed towards

zero than the others. As a possible explanation for these findings, the number of graphs

generated for the Erdös-Rènyi Gnm graphs as the true distribution of centralization values

was designed to produce at least one star graph with high probability, and not necessarily

to produce all of the possible graph structures with high probability. Thus, it is possible

that highly centralized graphs (centralization between 0.8 and 1) were not obtained at a

level representative of their probability. Alternatively, the Star Start program may over-

emphasize higher centralization graphs since by design all graphs move from a centralization

of 1 to 0.

It should also be noted that the average of the Star Start program could only be compared

to a sample of Erdös-Rènyi Gnm random graphs rather than the entire distribution. As

discussed in the Introduction, there is no simple way to produce the complete Erdös-Rènyi

Gnm random graph distribution for a graph of a particular order. However, the sampling

method utilized in this paper ensured that the full range of centralization values was ob-

tained. A sampling scheme that reflected the proportional number of graphs for each graph

order (rather than a uniform number of graphs generated for each graph order) was also

considered and the distributional results were similar.
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Even though the average of the Star Star iterations may over-emphasize higher centralized

graphs, as shown in Movie 4.1, all combinations of centralization ≥ 0.6 are obtained. In-

terestingly, there are noticeable gaps in combinations above this level producing fingers in

the scatter plot. Also, as graph order increases, there are a broad range of graphs with low

closeness but high degree and betweenness centralization and fewer graphs with high values

for all three centralization measures. This can be seen on the scatter plot as the main body

of points splits into several different fingers with one main fork for graphs with low closeness

centralization but high degree and betweenness centralization and another fork for graphs

with high values for all three centralization measures. The fingers on the left-side of the plot

(those graphs with low closeness but high betweenness and degree centralization) are dis-

connected graphs. The important feature of these scatter plots is that each finger contains a

specific number of disconnected nodes. The placement of these fingers away from the main

fork of the graph on the right-hand side of the plot is likely due to the imputation method

used for calculating closeness centrality in disconnected graphs. An interesting study would

be to see if different imputation methods for closeness centrality in disconnected graphs

affect the placement of the fingers.

For all three pairwise comparisons of centralization measures, the correlation decreases from

a strong correlation to a moderate correlation as graph order increases. Although a Pearson

correlation is reported, a Spearman correlation also produced similar results. These results

are consistent with the scatter plots which demonstrates a very broad range of values at

low to moderate centralization levels as graph order increases. The more narrow range at

higher centralization levels led to the restricted model, but most of the models attempted did

not fit the data very well. However, the models predicting restricted degree centralization

based on betweenness centralization and restricted closeness centralization predicted by

degree centralization fit the data reasonably well. Furthermore, the regression equation for

predicting restricted closeness centralization by degree centralization did not change very

much as the order of the graph increased suggesting that this relationship might hold for

larger orders as well. Unfortunately, the regression equation for predicting restricted degree

centralization by betweenness centralization changed as graph order increased, although
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some extrapolations might be made for larger graph orders since the changes followed a

general trend.

The models with two centralization measures as predictors also fit reasonably well, although

R2 decreased as order increased. Interestingly, R2 decreased or stayed the same for all but

two of the models with one centralization measure predictor. In those two models, both

involving betweenness and degree centralization, it increased as order increased.

The models with maximum centrality as the predictor fit fairly well, especially when the

maximum centrality values was ≤ 0.6. For all three centralization measures, a quadratic

model fit best. The coefficients for all of the models stayed relatively constant suggesting

that these models may be true for larger graph orders as well. The model for betweenness

centralization fit particularly well, likely due to the much more restricted range of cen-

tralization values corresponding to a particular maximum centrality value. For maximum

centrality values > 0.6, the models overestimated the mean centralization value for closeness

and degree.

Surprisingly, the models with average centrality as the predictor do not fit as well as models

based on maximum centrality even though they are based on more information. Again, for

all three centralization measures, a quadratic model fit best, although none of the models

fit particularly well, especially after average centrality increased past the average centrality

of a star graph.

Uses The main goal for these prediction models is provide a simple model for applied

network researchers to calculate centralization given some limited information about their

network. Centralization is not calculated by many of the network software programs com-

monly used by applied network researchers, such as Gephi and NodeXL.[74, 75] Models

that predict centralization based on the information reported by these programs, such as

the one maximum centrality value or average centrality, will be useful for applied network

researchers utilizing programs that only provide limited centrality information. With this

in mind, more complicated statistical models were not attempted as the goal is provide a

reasonable estimate of centralization with minimal information.
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Limitations Since it is not computationally feasible to generate the exact Erdös-Rènyi

Gnm random graph distribution for a particular graph order, this study uses a sampling

method whereby equal numbers of graphs are generated for each edge set of a given size.

However, as noted in the introduction, the number of graphs possible for a given edge size,

m, (m ∈ [0, n(n−1)2 ]), is

n(n−1)
2

m

 which is clearly not uniform. However, since centralization

is directly related to graph structure, not number of edges, it is not clear that this sampling

scheme is biased.

This is a simulation study and as such results may change if the Erdös-Rènyi Gnm and

Star Start programs were run again to generate new graphs for analysis. A preliminary

investigation into this matter for graphs with 5 nodes has shown that the numbers of

graphs generated in a particular centralization vary only slightly (less than 10% between

different runs of the programs). Consequently, centralization bins from graphs that are

very rarely obtained (number of graphs < 20) may or may not be present for an analysis.

However, since very large numbers of graphs are generated by both programs it is unlikely

that the set of new graphs would change the findings significantly. It should be noted that

five hundred iterations were chosen for the Star Start program as generating enough graphs

to approximate Erdös-Rènyi Gnm random graphs while still being computationally feasible

for the larger graph orders investigated. A preliminary investigation has shown that the

proportion of graphs that fall into a particular centralization bin is different by 0.01 even

after 500 iterations for graphs of order 5-13 nodes.

Also, due to computing limitations the results are for small graph orders. However, cen-

tralization as a measure for public health networks seems most applicable to small group

settings. Lastly, the association and prediction models were generated based on the distri-

bution of centralization in random graphs, not the true distribution of centralization values

in real-life networks. Unfortunately, the true distribution of centralization values in real-life

networks is unknown so the best alternative is to evaluate centralization in networks whose

properties are known.

63



Future Directions Future areas of research include investigating these relationships in

larger graph orders, considering other centrality/centralization measures, and prediction

models based on slightly more information (such as the top x percent of nodes). Of partic-

ular interest is simulating infections or information transfer across graphs with a range of

centralizations. The results of such a study could be useful for public interventions applied

to small group settings.

4.5 Conclusion

The average distribution of centralization values across 500 iterations of the Star Start

program approximates the true distribution of centralization. As a result, some inference

about centralization properties can be drawn using the Star Start data. Since the correla-

tion decreases as graph order increases, it is unlikely that knowledge of one centralization

measure will help researchers predict what a different centralization measure might be for

the same network except in two very specific circumstances. Unfortunately, this means that

each measure of centralization would need to be calculated on a network. Models predicting

centralization based on maximum centrality perform reasonably well, especially when the

maximum centrality value is ≤ 0.6. Models based on average centrality fit poorly after the

average increases past the average centrality of a star graph.

4.6 Figures, Movies

Figure 4.1: Total number of Erdös-Rènyi Gnm random graphs by graph order
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Figure 4.2: Probability of randomly obtaining a star graph

4.6.1 Comparison of Distributions

Figure 4.3: Kolmogorov-Smirnov tests for distribution of Erdös-Rènyi random graphs and
Star Start graphs

Figure 4.4: Contour plot illustrating the distribution of closeness centralization values for
Erdös-Rènyi and Star Start graphs for graph of order 5 to 7 nodes.
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Figure 4.5: Contour plot illustrating the distribution of betweenness centralization values
for Erdös-Rènyi and Star Start graphs for graph of order 5 to 7 nodes.

Figure 4.6: Contour plot illustrating the distribution of degree centralization values for
Erdös-Rènyi and Star Start graphs for graph of order 5 to 7 nodes.

4.6.2 Centralization Associations
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Figure 4.7: Distribution of closeness centralization values for graph of order 5 to 20 nodes.

Figure 4.8: Distribution of betweenness centralization values for graph of order 5 to 20
nodes.

Figure 4.9: Distribution of degree centralization values for graph of order 5 to 20 nodes.
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Figure 4.10: 5th and 95th percentiles of centralization distributions for graphs of order 5 to
20 nodes

68



Movie 4.1. Scatter plot of closeness, betweenness, and degree centralization values obtained

for graphs of order 5-20 nodes.

(Loading Video...)

Movie 4.2. Examination of fingers in scatter plot of closeness, betweenness, and degree

centralization values obtained for graphs of order 5-8 nodes.

(Loading Video...)

Movie 4.3. Regression line for restricted closeness centralization predicted by degree cen-

tralization values for graphs of order 5-20 nodes.
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(Loading Video...)

Movie 4.4. Regression line for restricted degree centralization predicted by betweenness

centralization values for graphs of order 5-20 nodes.

(Loading Video...)

Movie 4.5. Regression plane for closeness centralization predicted by betweenness and degree

centralization values for graphs of order 5-20 nodes.
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(Loading Video...)

Movie 4.6. Regression plane for betweenness centralization predicted by closeness and degree

centralization values for graphs of order 5-20 nodes.

(Loading Video...)

Movie 4.7. Regression plane for degree centralization predicted by closeness and betweenness

centralization values for graphs of order 5-20 nodes.
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(Loading Video...)

Movie 4.8. Regression line for closeness centralization predicted by maximum closeness

centrality for graphs of order 5-20 nodes.

(Loading Video...)

Movie 4.9. Regression line for betweenness centralization predicted by maximum between-

ness centrality for graphs of order 5-20 nodes.
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(Loading Video...)

Movie 4.10. Regression line for degree centralization predicted by maximum degree central-

ization for graphs of order 5-20 nodes.

(Loading Video...)

Movie 4.11. Regression line for closeness centralization predicted by average closeness cen-

trality for graphs of order 5-20 nodes.
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FlipStarTrimPredLineCationBetween.mov
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FlipStarTrimPredLineCationDegree.mov
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(Loading Video...)

Movie 4.12. Regression line for betweenness centralization predicted by average betweenness

centrality for graphs of order 5-20 nodes.

(Loading Video...)

Movie 4.13. Regression line for degree centralization predicted by average degree central-

ization for graphs of order 5-20 nodes.

(Loading Video...)
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4.7 Appendix

4.7.1 Movies

Movie 4.14. Scatter plot of closeness and betweenness centralization values obtained for

graphs of order 5-20 nodes.

(Loading Video...)

Movie 4.15. Scatter plot of closeness and degree centralization values obtained for graphs

of order 5-20 nodes.

(Loading Video...)

Movie 4.16. Scatter plot of betweenness and degree centralization values obtained for graphs

of order 5-20 nodes.
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Media File (video/quicktime)
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(Loading Video...)

Movie 4.17. Scatter plot of maximum closeness centrality and closeness centralization values

obtained for graphs of order 5-20 nodes.

(Loading Video...)

Movie 4.18. Scatter plot of maximum betweenness centrality and betweenness centralization

values obtained for graphs of order 5-20 nodes.
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(Loading Video...)

Movie 4.19. Scatter plot of maximum degree centrality and degree centralization values

obtained for graphs of order 5-20 nodes.

(Loading Video...)

Movie 4.20. Scatter plot of average closeness centrality and closeness centralization values

obtained for graphs of order 5-20 nodes.
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(Loading Video...)

Movie 4.21. Scatter plot of average betweenness centrality and betweenness centralization

values obtained for graphs of order 5-20 nodes.

(Loading Video...)

Movie 4.22. Scatter plot of average degree centrality and degree centralization values ob-

tained for graphs of order 5-20 nodes.

(Loading Video...)
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Part IV

Topic 3
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Chapter 5

Centralization in Disease Spread

5.1 Introduction

A common model for the spread of an infectious disease is the S−I−R compartment model

of disease transmission. In this model, individuals move from Susceptible (S) category to

Infected (I) category to Recovered/Removed (R) category over time based on probabilities

of infection transmission and recovery. Categories are mutually exclusive and exhaustive.

An individual who is susceptible does not currently have the disease and is also not immune

to becoming infected. An individual who is infected currently has the disease and can spread

it to any susceptibles. An individual who is recovered has already had the infection and is

currently immune to the disease and no longer able to spread the infection. The outcome

of the SIR model at each time point is the number of individuals in each category.

In order to implement a SIR model, several starting values are needed: total population

size, N , initial number of susceptible individuals, S, initial number of infectious individ-

uals, I, and initial number of recovered individuals, R (where N = S + I + R). Since

individuals move from infected to recovered with no possibility of becoming reinfected,

the basic SIR model is best suited for diseases that confer immunity (or death) after in-

fection. Thus, SIR models are most appropriate for influenza-type illnesses or childhood

diseases like measles. Of course, compartment models of infectious disease transmission can
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vary according the characteristics of the infectious disease being modeled. Thus, there are

SIS models (Susceptible-Infectious-Susceptible) and SLIR (Susceptible-Latent-Infectious-

Recovered) models and others as well. SIS models are appropriate for diseases where no

immunity from future infection is gained from current infection, e.g. the common cold.

Common parameters of compartment models include β, the rate at which susceptible indi-

viduals become infected (also called the infection rate), κ the rate of contact, and γ, the

rate of recovery from infection.[102, 103, 104] If the population is closed, or static, then the

total population size does not change and compartment change is strictly based on β, κ,

and γ. However, if the population is open, or dynamic, then the total population size is

allowed to change over time aside from the epidemic parameters. Births, deaths, immigra-

tion, and emigration can change the total number of individuals over time. Note that the

rate of infection and recovery are properties of the infectious disease but can vary due to

population behaviors.[1, 104]

Much research on disease spread in populations is based on a set of differential mean-field,

or mass-action, equations that represent the movement between disease compartments over

time:

ds

dt
= −βκsi

di

dt
= βκsi− γi

dr

dt
= γi

r = 1− (s+ i)

In these equations, s, i, and r are now the proportions of the population in those categories:

s = S
N , i = I

N , and r = R
N . Using the equations above and assuming all contacts are equally

likely, the change in number of infectious individuals is related to the size of the susceptible

group, the size of the infectious group, number of contacts, and parameters of the infection.

Individuals leave the susceptible group at the rate they become infected and individuals
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leave the infectious group at the rate they recover. These equations are deterministic in

that the progress of the epidemic is completely determined by the disease parameters.

Compartment models can be used to predict the maximum and cumulative incidence and

to test mitigation strategies.[105] Also, given the number of infected individuals in an actual

epidemic, it is possible to estimate the probability of transmission using these models.

Traditionally, mean-field models assume random mixing of the population, whereby each

person is equally likely to form a contact with another in the population at each time point.

Contacts are considered at the population level without regard to which individuals actually

have contact with each other. If all contacts are random, the proportion of susceptibles that

become infected is directly related to the proportions of infected and susceptible individuals

in the population. In real populations, individuals are not equally likely to form a contact

with any other individual in the population. Contacts in real networks are decidedly non-

random and with some individuals having many more contacts than others. Modifications

include classifying subgroups which can have different probabilities of contacts within and

between subgroups.[106] Given γ, these equations can be modified to produce an effective β

that includes non-uniform mixing.[107] However, even this correction does not adequately

represent the connections between individuals in real communities. Another assumption is

that the population, N , is very, very large.[4] This assumption becomes untenable when

examining disease transmission in small groups like classrooms.

5.1.1 Disease Spread in Networks

In order to more completely examine the possible routes of infection spread in a community,

the SIR model of disease spread has been applied to networks, creating a field called network

epidemiology. Networks that examine transmission of disease have been called risk-potential

networks.[108]. Using networks it is possible to more particularly take into consideration

the location and contacts of individuals within a community during an epidemic. In this

framework, the SIR process is local compared to the global process in mean-field equations.

Unlike in population-based models where all susceptibles in a population risk infection from

the infectious individuals, only those susceptibles with a direct tie to an infectious individ-
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ual are at-risk for infection. This replaces the random-mixing assumption because each

individual has defined contacts through which they can transmit or receive infection.[102]

This also allows for an examination of the effect of network position in epidemic outcomes

(see Centrality section below). Networks also allow for the examination of disease spread

in finite populations, a more realistic assumption for many situations. A network model

of disease transmission also allows the infection begin simultaneously in different parts of

the network compared to a traditional model which does not incorporate location.[103]

While population-based SIR models can be used to identify the course of an outbreak or

epidemic, networks can illustrate the underlying transmission structure of the outbreak.[3]

The network approach to studying disease transmission is especially useful for infections

with a low prevalence or for local outbreaks of disease.[109] Unsurprisingly, the predictions

between mean-field models and networks models have been shown to be very different.[110,

111]

In the network SIR model, the definition of and movement between disease compartments

(S, I, R) are the same as in population-based models but the process of compartment change

is slightly different. Now the infection rate, β is the rate per unit time that the infection will

be transmitted from one infected individual to a susceptible individual through their contact

(edge). Thus, β is now conditional on contact between a susceptible and an infectious

individual. The rate per unit time for which the infected individual remains infected is

γ.[1] SIR epidemics that occur in a closed network eventually end with extinction of the

infection because the number of susceptible nodes is finite.[112] The corresponding network

for a mean-field model is a regular network where all nodes have the same number and

structure of connections. Then, “the dynamics of infection depend only upon how many

nodes are infected rather than which particular nodes are infected.”[111]

Real Disease Networks Network analysis methods have been applied to further exam-

ine known disease outbreaks in real networks using SIR and related compartment mod-

els.[113, 25, 114] One subject area where network research is popular is in the study of

sexually transmitted infections. Sexual contact networks are often determined for public
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health interventions and so easily lend themselves to network analysis. For example, net-

work analysis of a gonorrhea outbreak in Canada suggested that important individuals in

propagating the disease could be identified by information centrality.[60] A study inves-

tigating the sexual network of adolescents found the structure of the network associated

with disease transmission.[61] A network study of HIV-positive individuals in Chicago, IL

suggested that bridging between groups influenced disease transmission.[41] Another study

of chlamydia and gonorrhea in Canada examined component size and structure over two

time periods and found the distribution of component size to be similar but the actual size

and structures to be different.[115]

Alternatively, network analysis methods have been used to simulate potential disease out-

breaks in real networks. Complicated network models for disease simulation that incorporate

household and community contacts across an entire city have been explored in the EpiSims

and EpiSemdemics programs.[116, 117, 118] The EpiSims model was used to determine the

best public health strategy (such as targeted/limited/mass vaccination, quarantine, closing

of malls/schools/churches, etc.) for mitigating infectious disease spread in an urban area.

EpiSims utilizes census, land-use, and transportation data for contacts and disease state

transition is probabilistic for each individual in the model. The EpiSims simulations are

conducted instead of a differential equations approach. EpiSemdemics is a similar model

but can be implemented on a larger scale, like a state or region.[118] Another similar model

utilizing census and transportation data for contacts evaluated vaccination strategies for

the city of Toronto, Canada.[119] Similarly, the effect of the airline transportation network

has been shown to be important for international disease transmission.[120]

Centrality Node centrality is important for disease spread. Studies have shown that the

largest number of cumulatively infected nodes occurs when the most central node, according

to a variety of different measures, is infected first. For example, this exact result was found

in a study of the all-around centrality measure (a combination of betweenness, degree, and

k-core centrality) in both the Enron email network and the high energy physics commu-

nity. In the Enron network, infecting the node with the highest degree centrality produces
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more cumulatively infected nodes than randomly infecting any node, although less than

infecting the all-around node. Similarly, in the high energy physics network, infecting the

node with the highest betweenness centrality produces more cumulatively infected nodes

than randomly infecting any node, although less than infecting the node with the highest

degree centrality (which is the all-around node in this network).[25] Unfortunately, there

are no measures of uncertainty or significance with this analysis. The correlation between

the cumulative number of infected nodes at 10 days and closeness, betweenness, degree, and

local centrality was examined for blogs on MSN Spaces, router-level topology of the inter-

net, and network science co-authorship. Interestingly, the relationship between cumulative

number of infected nodes at 10 days and centrality depends on the type of network. Us-

ing a scatter plot, closeness and local centrality have a positive correlation for MSN blogs,

netscience co-authorship, and email network but not for blogs. In contrast, degree and

betweenness centrality are not correlated with the cumulative number of infected nodes.[33]

In opinion networks, beginning the epidemic in nodes highly ranked by LeaderRank cen-

trality measure produces an epidemic that cumulatively infected more nodes than if the

epidemic began with nodes highly ranked by PageRank.[121] Random walk betweenness,

betweenness, farness (the inverse of closeness), and degree centrality have also been shown

to be associated with time to infection and risk of infection in small world and random

networks.[122] Hubs, or nodes with very high degree relative to the rest of the network, are

important for transmission and network resilience.[1]

Nodes with high core index values in the network, as defined by the k-shell decomposition

method, produce an epidemic that cumulatively infected more nodes compared to nodes of

the same degree but with lower core index values.[113, 123] Core index value is related to

the density of connections around a node, suggesting that in addition to position within

the network, the actual network structure could be important in disease transmission. Ad-

ditional relevant literature includes identifying nodes that might be extremely important

in spreading disease in the network.[114, 25, 113]. Other research has developed a net-

work method to estimate the number of infected individuals in an epidemic based on an

important, or superspreader, node.[114]
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The practical importance of centrality in disease spread is clearly illustrated by a study that

monitored the outbreak of H1N1 influenza among Harvard undergraduate students.[124]

The authors randomly selected students to be in the study and then asked the randomly

selected students to nominate a friend to be in the study as well. The authors found that

the nominated students were more central in the Harvard undergraduate student network

and also experienced flu earlier than the randomly selected students. The results of this

study suggest that centrality is not only theoretically important for disease spread, but also

important in real world situations where it could provide a method of early detection in

networks. This study also highlights that understanding network properties can provide

new insights into epidemic behavior in populations.

Although it has been stated that “the initial spread and long-term behavior of any infectious

disease are determined by both its epidemiological characteristics and the graph theoretical

properties of the network”, no research has been conducted on disease spread and central-

ization[125] Recall that network epidemiology examines the importance of contacts between

and the location of individuals in a network on an epidemic process. Centralization, which

is a global measure of how much one node dominates a network, is defined by the structure

of the network and so could be very important for disease spread. The goal of this study is

to statistically evaluate disease spread in the context of network centralization. Addition-

ally, the current study will improve upon previous research by utilizing statistical methods

to determine the effect of initially infecting a randomly selected node or the most central

node. The relationship between different centrality/centralization measures and important

epidemiologic endpoints will be also be investigated.

Simulations Indeed, much research has been conducted simulating disease spread in net-

works of different types, including random networks, lattice or regular networks, small world

networks, and preferential attachment networks.[126, 102, 122, 103, 127, 128, 129, 112, 90,

110, 111]. Mathematical models of disease spread have been evaluated in random graph

models.[130, 111] SIS models have been investigated in networks where the importance

of contacts between nodes and directional contact is allowed to vary by creating directed
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edge weights.[131] The effect of mixing in a regular network has been examined and it has

been shown that the network must have a large amount of mixing to produce results similar

to those obtained by differential mean-field equations.[107] Some work has examined SIR

models in regular networks with varying amounts of mixing.[107] Simulations of the SARS

outbreak on a variety of network models, including small-world type networks, random net-

works, and networks with a truncated power law degree distribution were conducted.[64,

65]

Parasite models have also been examined in lattice networks with particular emphasis on

the relationship between connectivity of the network and parasite virulence.[110] Network

analysis has also been used to examine transmission of an economic crisis between countries

that are economically linked through international companies and trade relations.[123] Ad-

ditionally, network analysis methods suggest that computer viruses can continue to circulate

at low levels indefinitely.[128, 129] The effect of the airline transportation network has been

shown to be important for international disease transmission.[120] The SIR model has even

been modified to simulate rumor spreading in networks.[132]

Disease spread using SIR models has also been simulated in real networks, such as the

Enron email network, high energy physics citation network, network science co-authorship,

blogs on MSN Spaces, router-level topology of the internet, various email networks, and

the delicious.com website.[25, 33, 121, 113] When simulating a disease spread process on

a real network, often many simulations are done varying which and how many node(s)

is/are infected first. In the case of the Enron email system and high energy physics citation

network, 1,000 simulations were conducted for each type of simulation (random or most

central node infected first).[25] Often, 100 simulations were conducted for each network.[33,

133] In a study of the spread on an economic crisis 50 simulations were conducted.[123] In

these cases, the average over the simulations is used.[25, 33, 123, 133] Often these simulations

are to demonstrate the effectiveness of a new centrality measure.

Of course, critical parameters in stochastically simulating a SIR process on a network are

the probabilities of transmission and recovery. Unfortunately, this information is difficult

to obtain in a network setting as it requires knowledge of the disease at an individual
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level instead of the population level. In one small world and percolation theory study the

probability of transmission investigated was quite high, ranging from 0.4 to 0.6 (since an

SIS model was used no recovery probability was used).[127] For SIS simulations on a

network of Oregon router views, β = 0.14 and γ was 0.08 or 0.24.[112] Parameter values for

SIS simulations in Barabási-Albert Preferential Attachment models were β equal to 0.125,

0.15, 0.175 and γ = 0.8.[112] Parameter values for SIS simulations in Erdös-Rènyi random

graphs were β = 0.2 and γ equal to 0.24,0.48, 0.72.[112] Another SIR study in Erdös-Rènyi

random graphs, Barabási-Albert Preferential Attachment graphs, a high school interaction

network, and the network of contacts in Portland, OR used β = 0.1 and γ = 0.2.[133]

Another simulation study for SIR and SIS models of sexually-transmitted disease spread

investigated the ratio of transmission probability to recovery probability between 0.0 and

0.6.[125] A simulation study for computer viruses in continuous time following an SIS

model used transmission rates of 0.065 and 0.1.[128] Another continuous time study used

probability of transmission in an SIR model of disease spread in small world and random

networks of 0.00375, 0.0075, and 0.015.[122] In an SIR simulation on the Enron email

network β = 0.01 and γ = 0.3.[25] An SIR simulation of infection the delicious.com network

used 0.5 as the probability of transmission for one randomly chosen contact of an infected

node and probability of recovery related to the degree of the network.[121] Other studies

have deliberately used small probabilities of transmission (β = 0.01− 0.08) to limit the size

of the epidemic.[113]

Mathematical Description of Network Transmission Theory A mathematical frame-

work for the progress of epidemics in populations can be described using ordinary differential

equations or Markov chain theory. As described above, these methods require important

assumptions such as a very large population, random mixing, and equal probability of con-

tacts between individuals. Network analysis allows an examination of disease spread in

populations where there are a finite number of people and the number and type of contacts

varies for each individual. Due to the uniqueness of each individual in the network, ordi-

nary differential equations cannot be applied to networks when there is no uniform structure

across the network. Markov chain theory has been successfully applied to networks.[126,
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130, 134, 105] Early uses of Markov chain theory in networks considered Erdös-Rènyi Gnp

random graphs to be a Reed-Frost chain-binomial process.[126, 130] Infection in this model

corresponds to the probability of randomly adding an edge between an infected node and

any of the susceptibles in the network. Using a random graph framework, the number of

nodes in the largest component can be calculated which could be interpreted as the size of

the epidemic. Unfortunately, this approach is limited to random graphs which limits exam-

ination of network properties like centralization (see [97]). An exact Markov chain model

for any network of n nodes would have 2n (SI model) or 3n (SIR model) states, making

computation impossible for large graph orders. More recently, N-intertwined Markov chain

models have been suggested that reduce the number of possible states of the chain.[134, 105]

Although Markov chain theory can describe epidemics in networks, it is not a reasonable

method to investigate the association between network properties and disease spread due

to the intense computing requirements.

An alternative approach is to stochastically simulate epidemics on networks and derive

results based on the findings. This approach has been commonly employed for research

investigating the influence of node-level properties on disease spread (see [25, 121, 33, 113]

and others).

5.1.2 Epidemic Threshold

In infectious disease epidemiology, the basic reproductive number or basic reproduction ratio,

R0, is traditionally defined as the average number of secondary infections produced when one

infected individual is introduced into a host population where everyone is susceptible.[135]

However, R0 has many different definitions with subtle distinctions between them. The

basic reproductive number has also been defined as:

1. The expected number of new cases generated by a typical infectious individual in a

large, susceptible population[136]

2. The number of people in a susceptible population that are directly infected by the

introduction of a single infective[116]
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3. The average number of individuals directly infected by an infectious case during his or

her entire infectious period, when he or she enters a totally susceptible population[104]

4. The expected number of new infectious hosts that one infectious host will produce

during his or her infectious period in a large population that is completely suscepti-

ble[137]

5. The average number of secondary infected individuals when a single individual is

infected individually.[105]

All of these definitions assume a large, homogeneously mixing susceptible population. In

an epidemic setting, R0 is calculated by contact tracing of infectious contacts. All contacts

of the initially infected individuals are followed and then tested to determine if the contacts

secondarily contracted the infection. R0 is then directly calculated by averaging the number

of new infected cases produced by all of the initially infected individuals whose contacts

were traced.[138] Using mean-field equations, where β and γ are known, can determine that

R0 = β
γ .

It has been noted that “R0 is a convolution of transmission rate and contact patterns”.[116]

More specifically, the basic reproductive number depends on the probability of transmis-

sion from one infectious individual to a susceptible individual, the frequency of contacts,

the duration of infectivity in an infectious individual, and the proportion of immune indi-

viduals in the population.[104] As a result, “the concept of R0 finds its greatest use in the

description of diseases that are spread broadly among individuals meeting more or less at

random.”[104]

Commonly R0 is used as a threshold criterion where a R0 < 1 produces a small epidemic

that will eventually die out and R0 > 1 produces a much bigger epidemic where a large

portion of the population becomes infected.[136, 104, 137] When R0 < 1, on average each

infected individual infects less than one individual causing the epidemic to die out. On

the other hand, when R0 > 1 on average each infected individual infects more than one

individual and the epidemic increases in size. Thus, R0 can be considered an epidemic

threshold and the terms are often used interchangeably. Using the traditional definition of
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R0 in a network setting, R0 = 〈k〉 βγ , where 〈k〉 is the average degree of the network.[105]

Of course, many different network structures with very different degree distributions can

have the same average degree so the direct application of R0 to networks is of limited

utility.

As a result, in networks R0 is replaced by the concept of epidemic threshold, τ , which is

compared to the spectral radius of the network. The spectral radius of a network is the first

eigenvalue, λ, of the network’s adjacency matrix. In a non-network setting, the spectral

radius can be computed on the disease transmission matrix.[139]. Recall that spectral

radius can only be computed for a connected network. Nold suggested that similar to R0,

if the spectral radius > 1 then the infection can persistent in the population.[139] However,

more recent results suggest that for SIS models τ = γ
β and λ < β

γ produce an epidemic

and λ > β
γ produces an infection that dies out at least exponentially over time regardless

of the number of nodes initially infected.[140, 112] This threshold has been confirmed by

other researchers.[134, 105, 141] It has been shown that in preferential attachment the

spectral radii of the networks are so small that infections can persist even at low levels of

transmission.[128, 129] The expected number of infected nodes in an SIR model is β λγ .[112]

Thus, the size of an epidemic is a property of both the disease parameters (β and γ) and

the spectral radius of the graph. Importantly, the epidemic threshold τ is directly based on

network structure, so is applicable to any undirected graph. Rigorous proofs for star graphs

with n nodes confirm that an SIS epidemic dies out when τ =
√
n ≤ β

γ and continues

otherwise.[142]

5.2 Methods

5.2.1 Graph Generation

A modified version of the Star Start program is used to generate the networks for the SIR

simulation.[97] The original Star Start method starts with a star graph, g, with n nodes and

then edges were randomly added or deleted (with equal probability) from the graph until g
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was complete or empty. Loops and duplicate edges were not allowed. The modified version of

Star Start restricts the number of graphs produced for each iteration to a maximum possible

number of 3*n. Increasing the probability of adding an edge to 0.54 makes it slightly more

likely that graphs with higher centralization levels are produced. These changes attempt to

overcome two of the most important limitations of the Star Start program: length of time to

iteration completion and the limited numbers of graphs produced with high centralization

levels. Recall that the Star Start program does not have a restriction to only produce

connected graphs. Consequently, a graph generated by the Star Start program may have

more than one component, such as a disconnected node. A number of measures are collected

for each network: density, number of components/clusters, number of nodes in the largest

component, as well as closeness, betweenness, degree centrality and centralization. The

largest component is identified for analysis and spectral value obtained. The Star Start

graph generating method is repeated 500 times to ensure a range of graph structures and

centralization values for analysis. Relative centrality and centralization measures are used

to aid comparisons between different graph orders.[6] A brief description of the measures is

below. Note that centralization and centrality are calculated on the full network.

Closeness Let d(ni, nj) be the number of edges in the geodesic between node ni and node

nj . By convention, if node ni and node nj are not connected by any edges, then d (ni, nj) =

∞. Of course, the number of edges between node ni and itself is 0, so d(ni, ni) = 0.

Then the relative closeness centrality (called closeness centrality from here forward) of

node ni (in a connected graph) is defined as C ′c (ni) =
[∑n

j=1 d(ni,nj)

n−1

]−1
= n−1∑n

j=1 d(ni,nj)
.

By definition, closeness centrality can only be computed for a connected graph (where each

node is connected by at least one edge). However, igraph package in R substitutes n for

∞ in the case of disconnected nodes so all nodes have closeness centrality values.[10, 11]

Consequently, for this paper closeness centrality is computed for all graphs, connected or

disconnected.

Relative closeness centralization (called closeness centralization from here forward) is: Cc =∑n
i=1 [C

′
c(n∗)−C′c(ni)]

(n2−3n+2)�(2n−3)

, where C ′c (n∗) is the maximum closeness centrality of the observed
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graph.

Betweenness Any nodes on the geodesic connecting two nodes are said to be between

them. Betweenness centrality measures how often a node is between other nodes. CB (nk) =
n∑
i

n∑
<j
bij (nk) where bij (nk) =

gij(nk)
gij

is the number of geodesics connecting ni and nj

that contain nk and gij is the total number of geodesics connecting ni and nj . Since the

center point in a star graph obtains the maximum value, relative betweenness centrality

(betweenness centrality) is defined as: C ′B (nk) = 2∗CB(nk)
n2−3n+2

.

Relative betweenness centralization (betweenness centralization) is calculated as: CB =
n∑

i=1
[C′B(n∗)−C′B(ni)]

n−1 where C ′B (n∗) is the maximum betweenness centrality of the observed

graph.

Degree The number of edges connected to node i is the degree of the node, ki. Relative

degree centrality is simply the degree count for each node standardized by the maximum

possible degree in a graph with n nodes, n− 1.[6] More formerly, relative degree centrality

(degree centrality) is defined as: C ′D (nk) =
∑n

i=1 a(ni,nk)
n−1 where

a(ni, nk) =


1, iff edge between ni and nk

0, otherwise

The range for relative degree centrality is 0 (disconnected node) to 1 (maximally con-

nected node). Degree centrality is computed the same way for connected and disconnected

graphs.

Relative degree centralization (degree centralization) is calculated as:

CD =

n∑
i=1

[CD(n∗)−CD(ni)]

n2−3n+2
where CD (n∗) is the maximum degree centrality of the observed

graph. The range of possible values is 0 to 1.
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5.2.2 SIR Simulation

In a network setting, population size is now the number of nodes. Birth and death rates,

which would change the number of nodes in the network, will not be considered in order

to keep the network static. As a result, the model will only examine a closed population

of individuals. Since the centrality/centralization measures of interest are not defined for

dynamic networks, contacts between nodes will be kept constant. Infection can be trans-

mitted to the immediate neighbors, or those nodes connected by an edge, of an infected

node. Networks will be undirected thus assuming that contacts, and therefore infection

transmission, can occur in any direction. Contacts will be unweighted, so all contacts are

equally important for disease transmission. No restriction on connectedness in the network

will be assumed so in some networks the infection may not be able to spread to every node

if there are disconnected nodes. The time period will be considered one day.

The method implemented follows a simple SIR network model for disease spread, where the

probability of transmission and recovery are stochastic and computed for each node at each

time point.[103, 143] The SIR model is implemented in the full network as follows. All nodes

are initially susceptible and one node is selected (either randomly or because it is the most

central in the network) to become infected. Most central nodes are determined by finding

the node(s) with largest value of the measure of interest (either closeness, betweenness,

or degree). In the case of ties, one node is randomly selected from the group of nodes

with the same maximum centrality value. From the initially infected node, the neighboring

nodes at risk of infection are determined. Nodes are infectious at the next time period after

being infected. At the next time period, a random number ri is chosen from the uniform

distribution for each at risk node ni and used to represent the probability of transmission of

infection from the infected node to each at risk susceptible node. If ri ≤ β, the probability

of transmission, then ni becomes infected. Transmission from multiple infected contacts is

assumed to be independent so that susceptible node ni with links to ki infected nodes is at

risk of infection from each infected node for a total probability of infection of 1− (1− β)ki .

In the subsequent time periods after the time of initial infection, a random number si is

chosen from the uniform distribution for each infected node. If si ≤ γ, the probability
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of recovery, then node ni recovers from infection and becomes immune. Otherwise, ni

remains infected and able to transmit the infection to neighboring at risk nodes. Thus,

node transition from susceptible to infected and from infected to recovered is probabilistic.

The simulation continues until there are no new infected nodes and all infected nodes have

recovered. All nodes have the potential to move from susceptible to infected to recovered

and once recovered they are immune from infection. For each network one simulation is

conducted where a random node is infected first. Then, one simulation where the most

central node is infected first is conducted for each type of centrality examined: closeness,

betweenness, and degree. In the interest of computational efficiency, if a node is a maximum

on more than one centrality measure, the simulation results are copied.

Disease spread in connected networks is considered by examining the largest component

of each full network. In this case, the most central node simulations begin from the most

central node in the largest component. In the random node case, a random node is selected

and if it is in the largest component, the results are the same as for the full network. If the

random node selected is not in the largest component, no results are reported.

The SIR process described above is implemented 100 times on each network generated

by the modified Star Start program. Thus, when the most central node for a particular

measure is selected, 100 SIR simulations are conducted starting from that most central

node. For the random node first simulations, a random node is selected and then the SIR

simulation conducted. Thus, unlike in the most central node simulations, in the random

node simulations the infection is not required to start at the same node. Note that since each

simulation ends when no new nodes become infected, the length of time for each simulation

is variable.

Total number of nodes infected (current and newly infected) and cumulative number of

nodes infected are recorded at each time point of the simulation for both the full network and

the largest component. The total number of time periods from the start of the infection until

completion is also recorded. These outcomes are recorded for the random node simulations

and for the central node simulations for each type of centrality.
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5.2.3 Analysis

Although the number of currently infected nodes and the number of cumulatively infected

nodes is collected for each day of a simulation, this study focuses on five outcomes that

are epidemiologically important: epidemic duration, number infected at the peak of the

epidemic, day of the peak (as measured from the start of the simulation), final cumulative

number of infected nodes, and the day that the final cumulative number of nodes infected

is reached (again, as measured from the start of the simulation). The analysis will focus on

these endpoints instead of considering the incidence and cumulative incidence over the entire

course of the epidemic. Additionally, this analysis will only consider the largest component

of the graphs generated by Star Start so the epidemic threshold can be included in the

analysis. Spectral radius of the largest component is calculated and compared to epidemic

threshold to determine if it is above or below. In addition, the relationship between close-

ness centralization and the endpoints is investigated using only connected graphs, thereby

removing the effect of imputation from the analysis. Note that for connected graphs the

largest component of the graph is the same as the full network.

Since 100 SIR simulations were conducted on each graph generated and thousands of graphs

were generated by the modified Star Start program, the data were summarized by graph for

analysis. For each graph g and outcome of interest x, the average of the outcome was taken

across all 100 simulations: g(x) = 1
100

∑100
i=1 g(xi). The new unit of analysis is summarized

graph information g(x̄), where x is epidemic duration, peak number infected, day of peak,

final cumulative number infected, or day when no new nodes were infected.

To aid description of the effect of centralization, centralization was categorized by quartile

into low, low-moderate, moderate-high, and high categories. Graphs were categorized by

centralization quartile, largest component order, and whether they were above or below the

epidemic threshold. The average of the summarized graph information was calculated for

each category and outcome x: x̄c = 1
nc

∑nc
i=1 gc(xi), where nc is the number of graphs in

each category and gc,i(x) is the summarized graph information for graph i in category c. In

addition, the standard deviation was calculated for each category. Results were analyzed
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separately by type of node infected first (random or most central).

To further provide insight into the association of centralization with the epidemic process,

the daily mean total or cumulative number of infected nodes and 95% confidence interval

were plotted by centralization quartile and epidemic threshold for each graph order. Calcu-

lation of the daily mean and confidence interval were conducted as described above. Results

were analyzed separately by type of node infected first (random or most central). Plots by

centralization quartile compare the effect of type of node infected first.

To determine the relationship between the peak and final cumulative number of nodes in-

fected and centralization for all the graph orders examined, two linear regression models

were constructed. Each outcome was the dependent variable and the independent variables

were degree centralization (continuous), most central node infected first/random node in-

fected first (reference: random node infected first), order of the largest component, and a

centralization and most central node infected first interaction term. Because the full net-

work is not being used for this analysis, the order of the largest component was included

in the model to control for the varying number of nodes in each graph. The centralization

interaction term was added to incorporate any additional effect of centralization when the

most central node is infected first. Graphs below the epidemic threshold were excluded from

this analysis due to their small numbers. As with the descriptive analyses, the summarized

graph information was used for this analysis. Model fit was assessed through diagnostic

plots and estimated model parameters and R-squared reported. A similar analysis was con-

ducted for the epidemiologic endpoints involving time (epidemic duration, peak day, day of

last new infection) using a Cox proportional hazards model.

All analyses were conducted using R version 3.0.1.[73]. Graph generation and central-

ity/centralization measures were computed using the igraph package.[72]
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5.3 Results

Graphs of order 5 to 40 nodes were generated for analysis. Analysis was conducted on each

graph order separately. For all SIR simulations, β = 0.3 and γ = 0.2 with a corresponding

epidemic threshold of 0.2
0.3 = 0.667. Since the network is unweighted, a κ=1 is assumed.

Degree centralization is the primary measure of interest because number of contacts is im-

portant for the spread of many diseases. However, the results for closeness and betweenness

are also reported. The largest component of the network is used for analysis in order to

incorporate the idea of epidemic threshold.

5.3.1 Degree Centralization

The number of graphs in each degree centralization quartile as well as the total number of

graphs generated is shown in Figure 5.1. The figure also describes the number of graphs

above and below the epidemic threshold. The modified Star Start program produces very

few graphs below the epidemic threshold, especially as graph order increases. As graph order

increases, almost all of the graphs below the epidemic threshold are in the low centralization

quartile. No graphs below the epidemic threshold are produced when the graph order is

40. Movie 5.1 illustrates the actual distribution of degree centralization values by graph

order, regardless of epidemic threshold. The majority of graphs generated are moderately

centralized, with relatively fewer lowly centralized graphs as graph order increases.

Movie 5.2 plots the daily average total number of infected nodes in the largest component

by degree centralization quartile and epidemic threshold for a random node infected first.

Movie 5.3 plots the daily average total number of infected nodes in the largest component by

degree centralization quartile and epidemic threshold for the most central node infected first.

Movie 5.4 plots the daily average total number of infected nodes in the largest component

by type of node infected first and epidemic threshold within a degree centralization quartile.

Similarly, Movies 5.5-5.7 plot the daily average cumulative number of infected nodes in the

largest component by degree centralization quartile and epidemic threshold for a random

node infected first, for the most central node infected first, and then by type of node
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infected first and epidemic threshold within a degree centralization quartile. In all the

movies, graphs below the epidemic threshold have much shorter epidemics with many fewer

nodes infected and there is no effect of centralization quartile. As shown in Movies 5.2

and 5.3, there are very clear differences in the incidence curve by centralization quartile,

regardless of which node is infected first. The incidence curve has a higher peak and reaches

the peak earlier as centralization quartile increases. The separation between the incidence

curves increases as graph order increases when the most central node is infected first while

it remains constant when a random node is infected first. However, for graphs with 5 nodes

the effect of centralization is small.

Epidemic Duration Table 5.1 describes the average epidemic duration for graphs that

are above the epidemic threshold. As shown in Table 5.1, the duration of the epidemic

lengthens as graph order increases and the epidemic is also longer when the most central

node is infected first compared to a random node infected first. Epidemic duration is the

longest for graphs with low-moderate centralization and the shortest for graphs with high

centralization levels. There is no difference in epidemic duration by type of node infected

first for graphs below the epidemic threshold. In both cases, the epidemic duration is around

6 days (5.99 days (standard deviation (SD) 1.07) for random node and 5.97 days (SD 0.45)

for most central node infected first. The epidemic duration is much shorter for graphs

below the epidemic threshold. As shown in Table 5.2, all of the variables considered in the

linear regression model are significantly associated (p<0.0001) with epidemic duration. As

centralization increases, epidemic duration decreases although this effect is mitigated when

the most central node is infected first. The adjusted R-squared of the model is 0.7254.

Peak Number Infected Table 5.3 describes the peak number of infected nodes for graphs

that are above the epidemic threshold. As shown in Table 5.3, the peak number of infected

nodes increases as centralization quartile increases, regardless of which node is infected

first. For any graph order and centralization quartile, more nodes are infected at the peak

when the most central node is infected first. As graph order increases, the peak number

of infected nodes also increases. There is no difference in peak number infected by type

99



of node infected first for graphs below the epidemic threshold. In both cases, the peak

number infected is 1 (SD 0), which is just the initially infected node. The peak number

infected is much smaller for graphs below the epidemic threshold. As shown in Table 5.4,

all of the variables in the linear regression model are significantly associated (p<0.0001)

with number of nodes infected at the peak of the epidemic. After adjusting for order of the

largest component, as centralization increases the peak number of infected nodes increases

and this increase is even greater if the most central node is infected first. The adjusted

R-squared of the model is 0.8893.

Peak Day Table 5.5 describes the average day of the peak number of infected nodes for

graphs that are above the epidemic threshold. As shown in Table 5.5, the day of the peak

occurs earlier as centralization quartile increases regardless of which node is infected first.

When the most central node is infected first, the day of the peak occurs earlier than if a

random node is infected first. As graph order increases, the day of the peak occurs later.

There is no difference in the day of the peak number infected by type of node infected first

for graphs below the epidemic threshold. In both cases, the day the peak number infected

nodes occurs is day 2 of the epidemic (SD 0), which is the day the first node becomes

infected. The day of the peak number infected occurs much earlier for graphs below the

epidemic threshold. As shown in Table 5.6, all of the variables in the linear regression

model are significantly associated (p<0.0001) with the day of the peak number of infected

nodes. As centralization increases, the day of the peak decreases and this decrease is even

greater if the most central node is infected first. The adjusted R-squared of the model is

0.6570.

Cumulative Number Infected Table 5.7 describes the average final cumulative number

of infected nodes for graphs that are above the epidemic threshold, respectively. As shown

in Table 5.7, regardless of which node is infected first there is a slight trend where the

final cumulative number of infected nodes increases as centralization increases from low to

moderate-high and then decreases when centralization is at high levels. Although it should

be noted that graphs with centralization values above the bottom quartile have about the
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same number of cumulatively infected nodes while graphs in the lowest quartile have many

fewer cumulatively infected nodes. At all centralization levels and graph orders, infecting the

most central node first produces a larger cumulative number of infected nodes than when a

random node is infected first. Final cumulative number of infected nodes increases as largest

component order increases. There is no difference in final cumulative number infected by

type of node infected first for graphs below the epidemic threshold. In both cases, the final

cumulative number infected nodes is 1 (SD 0) which is just the initially infected node. The

final cumulative number of infected nodes for graphs below the epidemic threshold is much

smaller than for graphs above the epidemic threshold. As shown in Table 5.8, all of the

variables in the linear regression model are significantly associated (p<0.0001) with final

cumulative number of infected nodes. The adjusted R-squared of the model is 0.8790. The

cumulative number of infected nodes is much larger when the most central node is infected

first.

Day Final Number Infected Table 5.9 describes the day that the final cumulative

number of infected nodes was reached for graphs that are above the epidemic threshold. As

shown in Table 5.9, number of days until the last new node is infected decreases substantially

as centralization increases when the most central node is infected first. A similar pattern

is true when a random node is infected first, although the effect is not as large between

quartiles. The length of time until the last new node is infected increases as graph order

increases. There is no difference in day final cumulative number of infected nodes is reached

by type of node infected first for graphs below the epidemic threshold. In both cases, the day

the peak number infected nodes occurs is day 2 of the epidemic (SD 0), which is the day the

first node becomes infected. The day of the final cumulative number infected occurs much

earlier for graphs below the epidemic threshold. As shown in Table 5.10, all of the variables

in the Cox proportional hazard model are significantly associated (p<0.0001) with day that

the final number of cumulative infected nodes was reached. The risk of reaching the day of

the last new node infected earlier is much greater as centralization increases.
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5.3.2 Closeness

In order to carefully evaluate the relationship between closeness centralization and the epi-

demiologic endpoints, the following results are for graphs that are connected. The number

of graphs in each closeness centralization quartile as well as the total number of graphs gen-

erated is shown in Figure 5.2. All connected graphs were above the epidemic threshold. The

number of connected graphs in the low centralization quartile is initially low and continues

to decrease as graph order increases. Only one graph with 40 nodes was connected and

also in the low closeness centralization quartile. A similar decrease, although not as severe,

is seen for low-moderate and moderate-high quartiles. Movie 5.8 plots the distribution of

closeness centralization values by connected graph order. As shown in the movie, very few

graphs have low or low-moderate centralization and the vast majority of the graphs are very

highly centralized.

Movie 5.9 plots the daily average total number of infected nodes for each connected graph

order and closeness centralization quartile and epidemic threshold for a random node in-

fected first. Movie 5.10 plots the daily average total number of infected nodes for each

connected graph order by closeness centralization quartile and epidemic threshold for the

most central node infected first. Movie 5.11 plots the daily average total number of infected

nodes for each connected graph order by type of node infected first and epidemic threshold

within a closeness centralization quartile. Similarly, Movies 5.12-5.14 plot the daily average

cumulative number of infected nodes for each connected graph order by closeness centraliza-

tion quartile and epidemic threshold for a random node infected first, for the most central

node infected first, and then by type of node infected first and epidemic threshold within

a closeness centralization quartile. As shown in Movies 5.9 and 5.10, the incidence curves

overlap for the top three quartiles and the curve for the low quartile is much smaller than

the others, regardless of which node is infected first. As shown in Movie 5.11, the incidence

curve has a higher peak and reaches the peak earlier when the most central node is infected

first. The same pattern is seen in the cumulative incidence curves.
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Epidemic Duration Table 5.11 describes the average epidemic duration for graphs that

are above the epidemic threshold. When the most central node is infected first, the duration

of the epidemic shortens as centralization increases. On the other hand, when a random

node is infected first epidemic duration is about the same for the bottom three quartiles

and then decreases when the centralization is high. Epidemic duration increases as graph

order increases and is also longer when the most central node is infected first. As shown

in Table 5.12, all of the variables considered in the Cox proportional hazard model are

significantly associated (p<0.0001) with epidemic duration. As centralization increases,

epidemic duration decreases although this effect is mitigated when the most central node is

infected first.

Peak Number Infected Table 5.13 describes the peak number of infected nodes for

graphs that are above the epidemic threshold. As shown in Table 5.13, when the most central

node is infected first the peak number of infected nodes increases as closeness centralization

quartile increases. When a random node is infected first, the peak number of infected nodes

does increase as centralization increases from low to moderate-high and then decreases

when centralization is high. As graph order increases, the peak number of infected nodes

also increases. As shown in Table 5.14, all of the variables in the linear regression model

are significantly associated (p<0.0001) with number of nodes infected at the peak of the

epidemic. If the most central node is infected first, the peak number of infected nodes

increases as centralization increases. If a random node is infected first, the peak number

of infected nodes actually decreases as centralization increases. The adjusted R-squared of

the model is 0.9272.

Peak Day Table 5.15 describes the average day of the peak number of infected nodes

for graphs that are above the epidemic threshold. As shown in Table 5.15, the day of

the peak occurs slightly earlier when the most central node is infected first, regardless

of centralization quartile and largest component order. For both random node and most

central node, the day of the peak occurs earlier as centralization increases. As connected

graph order increases, the day of the peak occurs later. Parameter estimates and hazard
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ratios produced by a Cox proportional hazard model of peak day are shown in Table 5.16.

As shown in the table, increasing centralization increases the risk of earlier time to peak

number of infected nodes especially when then most central node is infected first.

Cumulative Number Infected Table 5.17 describes the average final cumulative num-

ber of infected nodes for graphs that are above the epidemic threshold. As shown in Table

5.17, when the most central node is infected first the final cumulative number of infected

nodes increases as centralization quartile increases from low to moderate-high although

there is only a very small difference between low-moderate and moderate-high quartiles.

Interestingly, graphs in the highest closeness centralization quartile have about the same

number of nodes infected as graphs in the low quartile. A similar pattern is produced when

a random node is infected first. At all centralization levels and graph orders, infecting the

most central node first produces a larger cumulative number of infected nodes than when a

random node is infected first. Final cumulative number of infected nodes increases as con-

nected graph order increases regardless of centralization level or which node was infected

first. As shown in Table 5.18, all of the variables in the linear regression model are signifi-

cantly associated (p<0.0001) with final cumulative number of infected nodes. The adjusted

R-squared of the model is 0.9247. The final cumulative number of nodes infected sharply

decreases as centralization increases when a random node is infected first.

Day Final Number Infected Table 5.19 describes the day that the final cumulative

number of infected nodes was reached for graphs that are above the epidemic threshold.

As shown in Table 5.19, the day of the last new infection occurs earlier as centralization

quartile increases, regardless of which node is infected first. There is a very large difference

in the day that the final new node is infected between high closeness centralization quartile

and all of the other quartiles. The day when no new nodes are infected increases slightly as

graph order increases. There is very little difference between random and most central node

infected first. As shown in Table 5.20, all of the variables in the Cox proportional hazard

model are significantly associated (p<0.0001) with day of last new infection. The risk of

reaching the day of the last new infection earlier increases substantially as centralization
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increases, especially when the most central node is infected first.

5.3.3 Betweenness Centralization

The number of graphs in each betweenness centralization quartile and the total number

of graphs generated are shown in Figure 5.3. The figure also describes the number of

graphs above and below the epidemic threshold. Again, the modified Star Start program

produces very few graphs below the epidemic threshold, especially as graph order increases.

As graph order increases, almost all of the graphs below the epidemic threshold are in the

low centralization quartile. No graphs below the epidemic threshold are produced when the

graph order is 40. Movie 5.15 illustrates the actual distribution of betweenness centralization

values by graph order, regardless of epidemic threshold. The majority of graphs generated

are in the low-moderate and moderate-high centralization quartiles, with relatively fewer

low centralization quartile graphs as graph order increases.

Movie 5.16 plots the daily average total number of infected nodes in the largest component

by betweenness centralization quartile and epidemic threshold for a random node infected

first. Movie 5.17 plots the daily average total number of infected nodes in the largest

component by betweenness centralization quartile and epidemic threshold for the most

central node infected first. Movie 5.18 plots the daily average total number of infected

nodes in the largest component by type of node infected first and epidemic threshold within

a betweenness centralization quartile. Similarly, movies 5.19-5.21 plot the daily average

cumulative number of infected nodes in the largest component by betweenness centralization

quartile and epidemic threshold for a random node infected first, for the most central node

infected first, and then by type of node infected first and epidemic threshold within a

betweenness centralization quartile. In all the movies, graphs below the epidemic threshold

have much shorter epidemics with many fewer nodes infected and there is no effect of

centralization quartile. As shown in Movies 5.16 and 5.17, there are very clear differences

in the incidence curve between centralization quartiles, regardless of which node is infected

first. The incidence curve has a higher peak and reaches the peak earlier as centralization

quartile increases. The separation between the incidence curves increases as graph order
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increases when the most central node is infected first while it remains constant when a

random node is infected first. However, for graphs with 5 nodes the effect of centralization

is small.

Epidemic Duration Table 5.21 describes the average epidemic duration for graphs that

are above the epidemic threshold. As shown in Table 5.21, the duration of the epidemic

is similar regardless of centralization quartile for graph orders less than 30. For graphs

with at least 30 nodes, epidemic duration shortens as betweenness centralization quartile

increases. When the most central node is infected first, the epidemic duration is longer for

any graph order. As with degree centralization, there is no difference in epidemic duration

by type of node infected first. In both cases, the epidemic duration is around 6 days (5.99

days (SD 1.07) for random node and 5.97 days (SD 0.45) for most central node infected

first. The epidemic duration is much shorter for graphs below the epidemic threshold. As

shown in Table 5.22, all of the variables considered in the Cox proportional hazards model

are significantly associated (p<0.0001) with epidemic duration. As centralization increases,

epidemic duration decreases although this effect is mitigated when the most central node is

infected first.

Peak Number Infected Table 5.23 describes the peak number of infected nodes for

graphs that are above the epidemic threshold. As shown in Table 5.23, the peak number of

infected nodes increases significantly as centralization quartile increases and more nodes are

infected at the peak when the most central node is infected first. As graph order increases,

the peak number of infected nodes also increases. There is no difference in peak number

infected by type of node infected first for graphs below the epidemic threshold. In both

cases, the peak number infected is 1 (SD 0), which is just the initially infected node. The

peak number infected is much smaller for graphs below the epidemic threshold. As shown

in Table 5.24, all of the variables in the linear regression model are significantly associated

(p<0.0001) with number of nodes infected at the peak of the epidemic. Specifically, the

peak number of infected nodes increases as centralization increases and is even greater when

the most central node is infected first. The adjusted R-squared of the model is 0.8652.
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Peak Day Table 5.25 describes the average day of the peak number of infected nodes for

graphs that are above the epidemic threshold. As shown in Table 5.25, the day of the peak

occurs earlier as centralization quartile increases regardless of which node is infected first.

Although the day of the peak occurs even earlier if the most central node is infected first.

As graph order increases, the day of the peak occurs later. There is no difference in day

peak number infected by type of node infected first for graphs below the epidemic threshold.

In both cases, the day the peak number infected nodes occurs is day 2 of the epidemic (SD

0), which is the day the first node becomes infected. The day of the peak number infected

occurs much earlier for graphs below the epidemic threshold. As shown in Table 5.26, all of

the variables in the Cox proportional hazards model are significantly associated (p<0.0001)

with the day of the peak number of infected nodes. The day of the peak occurs earlier if

the most central node is infected and also when centralization increases.

Cumulative Number Infected Table 5.27 describes the average final cumulative num-

ber of infected nodes for graphs that are above the epidemic threshold. As shown in Table

5.27, when a random node is infected first many fewer nodes are infected cumulatively

compared to when the most central node is infected first. Graphs with centralization val-

ues above the bottom three quartiles have about the same number of cumulatively infected

nodes which is greater than the number of infected nodes for graphs in the highest centraliza-

tion quartile. Final cumulative number of infected nodes increases as graph order increases.

There is no difference in final cumulative number infected by type of node infected first for

graphs below the epidemic threshold. In both cases, the final cumulative number infected

nodes is 1 (SD 0) which is just the initially infected node. The final cumulative number

of infected nodes for graphs below the epidemic threshold is much smaller than for graphs

above the epidemic threshold. As shown in Table 5.28, all of the variables in the linear

regression model are significantly associated (p<0.0001) with final cumulative number of

infected nodes. The cumulative number of infected nodes is much larger when the most

central node is infected first. The adjusted R-squared for the model is 0.8821.
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Day Final Number Infected Table 5.29 describes the day that the final cumulative

number of infected nodes was reached for graphs that are above the epidemic threshold.

As shown in Table 5.29, number of days until the last new node is infected decreases as

centralization increases regardless of which node is infected first. The day of the last new

infection occurs slightly later if the most central node is infected but otherwise there is

little difference between the two groups. The day when no new nodes are infected increases

slightly as graph order increases. For all graph orders and starting the infection at either

the random node or the most central node, the day the last node became infected is much

earlier in graphs below the epidemic threshold. There is no difference in day final cumulative

number of infected nodes is reached by type of node infected first for graphs below the

epidemic threshold. In both cases, the day the peak number infected nodes occurs is day

2 of the epidemic (SD 0), which is the day the first node becomes infected. The day of

the final cumulative number infected occurs much earlier for graphs below the epidemic

threshold. As shown in Table 5.30, all of the variables in the Cox proportional hazard

model are significantly associated (p<0.0001) with day that the final number of cumulative

infected nodes was reached. The risk of reaching the day of the last new infection earlier

increases as centralization increases.

5.4 Discussion

The modifications to the Star Start program successfully produced a large number of graphs

across the full centralization range for all three centralization measures for all graph orders

analyzed. For all three measures the distribution of centralization values is not uniform, al-

though most centralization bins contain at least a small number of graphs. The distributions

are increasingly skewed as graph order increases suggesting that further modifications to

the Star Start program may be necessary to produce a more uniform distribution of the full

range of centralization values for large graph orders. The form of the modifications to the

Star Start program for this analysis were empirically derived based on preliminary results

with the goal of producing graphs with the full range of centralization values for all three
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centralization measures simultaneously. The success of the current results suggest that the

distributional limitations observed can be further overcome by continuing to slightly change

the probability of adding an edge and also by allowing the program to run slightly longer

before completing an iteration. In the current analysis, the fact that most of the graph

orders investigated met the graph generating limit instead of reaching a complete or empty

graph suggests that the graph limit should be increased. Adjusting the modifications to

Star Start to produce graphs across the full range for one centralization measure (instead

of all three) would also improve performance.

Unfortunately, the modified Star Start program does not produce graphs across a range

of spectral radii. As described in Figures 5.1-3, the program does not produce very many

graphs below the epidemic threshold for the disease parameters chosen for this study. It

is clear from the figures that graphs below the epidemic threshold are almost exclusively

in the low centralization quartile. All graphs below the epidemic threshold had a spectral

radius of zero. Preliminary analyses suggest that the majority of these graphs are lone

nodes. A graph with order > 1 and zero spectral radius occurs when two nodes that are not

mutually connected are themselves connected to the same set of nodes.[144] The distribution

of spectral radius values by graph order for graphs above the epidemic threshold is shown in

Figure 5.4. The median spectral radius value increases as graph order increases suggesting

that the Star Start program is very unlikely to produce graphs below the epidemic threshold

for large graph orders. Also, it is known that the minimum and maximum possible spectral

radii for a graph are related to the number of nodes of the graph.[145] In fact, the maximum

possible value for the spectral radius of a graph is n− 1.[144]

In addition, the program does not generate many connected graphs, especially in the lower

closeness centralization quartiles. In part this result is expected since connected graphs

are a subset of all possible graphs and the Star Start program was designed to efficiently

produce a sample of graph structures with the full range of centralization values. Graphs

with more than one component have necessarily lower centralization levels so connected

graphs should generally have higher centralization levels than disconnected graphs.

For graphs above the epidemic threshold, all of the outcomes investigated (epidemic dura-

109



tion, peak number infected, day of peak number of infected nodes, final cumulative number

of infected nodes, and day final cumulative number of infected nodes is reached) are signifi-

cantly associated with betweenness, closeness, and degree centralization after adjusting for

number of nodes in the largest component. Due to the very large sample size in this study,

statistical significance should be considered jointly with clinical significance and meaningful

trends in the data. In this regard, peak number of infected nodes, day of the peak num-

ber of infected nodes, and cumulative number of infected nodes have a clear relationship

with centralization. Peak number infected and final cumulative number infected increase as

centralization increases for betweenness and degree centralization. Meanwhile, day of peak

occurs earlier as betweenness and degree centralization increases. Furthermore, if the most

central node is infected first the effect of centralization is even greater. Based on the study

results, the effect of centralization starts at about 10 nodes and seems to increase as graph

order increases. The effect of centralization on disease spread in graphs with 5 nodes is small

although this is probably due to the very limited size of the graph. Unsurprisingly, another

strong factor is order of the largest component, which effectively limits the maximum size

of the epidemic.

There does not seem to be a relationship between epidemic duration and day final new

node infected and degree or betweenness centralization. Instead, graph order is the most

important predictor for these endpoints. This finding seems reasonable as these endpoints

are more strongly related to the disease parameters (β, probability of transmission and γ,

probability of recovery) than the network structure.

Although other research has shown that more nodes become cumulatively infected when

the most central node is infected first[25, 113, 123], this study is the first to examine the

issue with statistical rigor. This study confirms that when a most central node is infected

first, more nodes are infected at the peak and at the end of the epidemic compared to when

a random node is infected first. In addition, this effect also depends on the centralization

level of the network.

The relationship of closeness centralization with the epidemiologic endpoints was inconsis-

tent and very different compared to betweenness and degree centralization. For example,
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final cumulative number of infected nodes does not have a clear relationship with centraliza-

tion but day of last new infection does. In connected graphs there was a linear relationship

between closeness centralization and number infected at peak when the most central node

was infected first but no relationship when a random node was infected first. A possible

explanation for these results is that closeness is not an appropriate measure for disease

spread and is capturing some other process. Indeed, a study by Borgatti investigating the

flow of information in a network suggests that closeness is not a good measure for an in-

fectious process.[13] The findings could also be related to the fact that the modified Star

Start program produced many more low and low-moderate centralized graphs for closeness.

Future research should more thoroughly examine the relationship between these important

epidemiologic endpoints and closeness centralization.

Further analysis of the relationship between closeness centralization on all graphs (connected

and disconnected) and the epidemiologic endpoints is described in the Appendix. The effect

of the imputation can be seen by comparing the lower centralization quartiles of the tables

in the Appendix to the tables in the Results section. The effect of closeness centralization

is less clear when all graphs are considered. An analysis of only connected graphs for

betweenness and degree centralization did not appreciably change the results.

This study provides further support for the idea that behavior of epidemics on networks can

be described by an epidemic threshold that is based on the spectral radius of the network.

For any graph order, there were many fewer infected nodes at the peak, a much shorter

epidemic duration, and an earlier day of the peak compared to graphs above the epidemic

threshold. These results suggest that the epidemic is not sustained when the spectral radius

of the graph is below the epidemic threshold, regardless of the centralization of the network.

Interestingly, differences on the outcomes were found whether the most central or random

node is infected first as graph order increased. Specifically, results were independent of graph

order when the most central node was infected but not when a random node was infected

first. However, these results should be further investigated due to the small numbers of

graphs below the epidemic threshold generated by the Star Start program.

In order to incorporate the idea of epidemic threshold, only the largest component of each
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network generated by the modified Star Start program was used for this analysis. Results

are similar between the full network and largest component when the most central node is

infected first (not shown). This is because the most central node in the network is located in

the largest component of the network. On the other hand, when a random node is infected

first the results vary by whether or not the randomly chosen node is in the largest component

of the network. If the node is in a small component with few nodes, then the epidemic is

necessarily limited. If the randomly chosen node is located in the largest component, then

the size of the epidemic is related to the spectral radius and epidemic threshold. Due to

the confounding of component size and epidemic threshold, full network analysis when a

random node was infected first was not pursued.

Other Disease Parameters In order to determine the sensitivity of the simulation to

the disease parameters, more extreme β values were tested. As described in the Methods

section, 500 iterations of the same modified Star Start program were used to generate 30

node networks. Similarly, 100 SIR simulations were conducted on each graph with the

probability of recovery unchanged (γ = 0.2) and the probability of transmission (β) set at

0.7, 0.8, or 0.9. Plots of the incidence curves and cumulative incidence curves by degree

centralization quartile and probability of transmission can be seen in Movies 5.29-5.34 in

the Appendix. As shown in the movies, increasing the probability of transmission narrows

the size of the incidence curve and also shifts the curve earlier in the epidemic. Importantly,

whether the β value is set to be a more realistic 0.3 or a very unlikely 0.9, the same effect of

centralization is observed whereby the peak is earlier and higher as centralization increases.

The effect of infecting the most central node first is also the same. These results suggest

that centralization of a network is important regardless of the disease parameters that are

chosen.

Other Analytic Approaches The extremely large numbers of graphs generated (see

Figures 5.1, 5.2, and 5.3) combined with 100 SIR simulations per graph produced a lot of

data that was challenging to analyze. In contrast, other research examining disease spread

in networks using simulations perform multiple simulations on only one network.[117] Each
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simulation is independent on the graph that it is run on so the simulations are conditionally

independent by graph. For example, for a 5 node network 6,474 graphs were generated by

the modified Star Start program. One hundred SIR simulations were conducted on each of

these 6,474 graphs. The outcome of each simulation was the total (or cumulative) number

of infected nodes for each day of the simulation, thus the outcome is longitudinal. The

optimal analytic solution would be a model that controlled for variability in the outcome

within a graph and the variability between graphs with different centralization values for a

longitudinally measured outcome.

Several attempts were made to incorporate the likely correlation between SIR simulations

on the same graph. First, for the 5 node networks a simple generalized estimating equations

(GEE) model with total number of infected nodes predicted by closeness centralization

quartile and time was implemented using a Poisson distribution and a log link with 6,474

clusters. Centralization quartile was treated as a categorical variable with low centralization

as the referent group. GEE analysis was conducted using the geepack package in R.[146,

147, 148] An exchangeable correlation matrix was assumed. Unfortunately, this model took

one week to produce results on the high performance computing cluster. Consequently, this

analytic approach was abandoned as too time-consuming. However, it should be noted that

in this model, closeness centralization quartile was strongly associated with total number

of infected nodes (p < 0.0001). Results from this model are shown in Figure 5.6.

Next, a GEE analysis with a gamma variance distribution and inverse link was conducted to

determine if closeness centralization quartile was significantly associated with mean number

of infected nodes over time using the summarized graph data. An exchangeable correla-

tion matrix was assumed and each summarized graph is considered a unique observation.

Centralization quartile was treated as a categorical variable with low centralization as the

referent group. Since the domain of the gamma distribution requires real numbers greater

than zero, an average of zero infections (on the first day of the simulation) was very slightly

increased to 0.001 infections for this analysis. Separate models were fit for random node

infected first and most central node infected first. A comparison of the parameter estimates

between the Poisson model clustered by graph and the gamma model with aggregated graph
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information is shown in Figure 5.6. As seen in the table, magnitude and direction of the

effect of centralization quartile is the same between the models. Unfortunately, this analysis

was limited to graphs of order 5-15 nodes due to computing limitations. Results from this

attempt are shown in Figure 5.7.

Limitations Some limitations are due to the use of Freeman relative centrality/centralization

measures. For example, these measures are not defined for weighted or dynamic networks.

Unfortunately, an unweighted network will only capture whether or not any connection

between two nodes (people) exists, not the exact duration of contact (which would pro-

vide a precise measure of exposure of susceptible contacts to infectious contacts). As a

result, the probability of transmission is uniform across all contacts. For some infectious

diseases, this limitation could be important if the probability of transmitting the infection

is directly related to amount of contact. A modification to the current model, assuming

that greater contact means a correspondingly greater probability of infection, is to vary the

probability of transmission between pairs nodes to reflect the combined effect of contact

and transmission.[6]

Similarly, the networks used for the SIR simulations are static and as such do not add or

remove nodes or edges. Addition and deletion of nodes in the network could be used to

more closely emulate real populations where there are births, deaths, immigration, and em-

igration. In the context of an SIR epidemic, a static population is a reasonable assumption

because it is unlikely that the size of the population would change substantially over the sev-

eral week period of the epidemic. Addition and deletion of edges reflects changing contact

patterns, which could be important if contacts change more quickly than the infection is

transmitted. Some research on dynamic networks suggests that adding more edges increases

the number of nodes infected at the peak and also moves the peak earlier.[133]

Another limitation due to the measures themselves is that closeness and betweenness utilize

shortest paths in their computation and as such assume that the contagion only spreads

through the most direct route in the network. As a result, the networks generated by

the Star Start program may not be appropriate for some types of disease transmission.
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Previous research has suggested that sexually transmitted infections are more suited to

tree-like networks which are unlikely to be generated by the Star Start program.[61]

Another assumption is that disease can be transmitted between any two nodes with contact

(that have an edge between them). This would not be true if behavioral modifications

were in place (wearing a mask, vaccination, condom usage, etc.) that allowed contact

between individuals but did not allow disease transmission. The current method does not

allow for disconnected nodes because only the largest component of the network is used for

the SIR simulation. A disconnected node means that a person with no contacts can not

become infected by anyone and they also cannot infect others in the network. This is a

reasonable assumption since it is likely that at least some small portion of individuals in

a community will have little to no contact with others during an epidemic. Unfortunately,

the epidemic threshold cannot be computed on disconnected networks and so the analysis

excluded disconnected nodes and small components.

Other limitations are due to the intense computational requirements of the simulations.

The large number of simulations per graph produced extremely large files and required

several weeks to compute as graph order increased. For example, simulations for a 40

node graph took three weeks with resulting file sizes of about 1 GB each. Unfortunately,

computer memory restrictions did not allow for the saving of infection path information,

which would have enabled direct R0 calculations based on the secondary case ascertainment

definition.

Future Directions Future directions include simulating SIS and SIRS processes in

small centralized networks to determine if the results are similar to those observed for SIR.

If only one graph order is considered, then the influence of weighted contacts on the results

could be investigated. Of course, performing the same analysis for larger networks should

be considered if the computational limitations can be overcome.
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5.5 Conclusion

Centralization is significantly associated with epidemic severity for all of the graph orders

considered. Specifically, as degree or betweenness centralization increases the peak number

of infected nodes increases, time until the peak decreases, and the final cumulative number

of infected nodes also increases. Closeness centralization does not have as strong of a

relationship and should only be considered for connected networks.

5.6 Figures, Movies, Tables

5.6.1 Degree Centralization

Figure 5.1: Number of graphs generated by degree centralization category

Movie 5.1. Distribution of degree centralization values produced by the modified Star Start

program for graphs of order 5-40 nodes.
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(Loading Video...)

Movie 5.2. Daily average total number of infected nodes in the largest component by degree

centralization quartile with random node infected first for graphs of order 5-40, probability

of transmission 0.3 and probability of recovery 0.2.

(Loading Video...)

Movie 5.3. Daily average total number of infected nodes in the largest component by

degree centralization quartile with most central node infected first for graphs of order 5-40,

probability of transmission 0.3 and probability of recovery 0.2.
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(Loading Video...)

Movie 5.4. Daily average total number of infected nodes in the largest component by degree

centralization quartile and type of node infected first for graphs of order 5-40, probability

of transmission 0.3 and probability of recovery 0.2.

(Loading Video...)

Movie 5.5. Daily average cumulative number of infected nodes in the largest component

by degree centralization quartile with random node infected first for graphs of order 5-40,

probability of transmission 0.3 and probability of recovery 0.2.
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(Loading Video...)

Movie 5.6. Daily average cumulative number of infected nodes in the largest component by

degree centralization quartile with most central node infected first for graphs of order 5-40,

probability of transmission 0.3 and probability of recovery 0.2.

(Loading Video...)

Movie 5.7. Daily average cumulative number of infected nodes in the largest component

by degree centralization quartile and type of node infected first for graphs of order 5-40,

probability of transmission 0.3 and probability of recovery 0.2.
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(Loading Video...)
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Table 5.1: Average epidemic duration by degree centralization quartile and largest compo-
nent order for graphs above the epidemic threshold

Degree Centralization

Epidemic Duration
Graphs Above Epidemic Threshold

Order Cent Quartile n
Random First Most Central First
Mean SD Mean SD

5

Low 1605 11.39 1.60 11.78 1.16
Low-Mod 1725 11.87 1.07 12.22 0.83
Mod-High 753 11.36 0.98 11.88 0.77

High 1016 10.90 0.80 11.58 0.67

10

Low 1386 14.06 1.87 15.10 1.43
Low-Mod 2646 14.85 1.48 15.85 1.04
Mod-High 1386 14.65 1.42 15.67 0.94

High 1645 13.35 1.09 14.92 0.76

15

Low 1240 15.87 2.06 17.50 1.51
Low-Mod 3354 16.43 1.78 18.07 1.16
Mod-High 2117 16.04 1.56 17.68 1.02

High 2041 14.74 1.24 16.83 0.80

20

Low 1346 17.07 2.07 19.32 1.61
Low-Mod 3930 17.48 1.83 19.63 1.15
Mod-High 2515 16.97 1.72 19.05 1.04

High 1884 15.46 1.21 18.02 0.74

25

Low 1086 18.01 2.09 20.87 1.52
Low-Mod 4092 18.37 1.91 20.89 1.18
Mod-High 3066 17.56 1.61 20.05 0.99

High 2294 16.19 1.35 19.05 0.79

30

Low 808 19.36 2.07 22.42 1.53
Low-Mod 4272 19.33 1.90 22.11 1.14
Mod-High 3629 18.24 1.67 20.99 1.02

High 2527 16.73 1.29 19.88 0.75

35

Low 463 20.55 2.13 23.95 1.39
Low-Mod 3302 20.63 1.74 23.46 1.01
Mod-High 2747 19.15 1.64 21.97 0.97

High 3008 17.24 1.34 20.61 0.76

40

Low 11 24.26 1.22 26.80 0.81
Low-Mod 415 22.58 1.37 24.90 0.79
Mod-High 195 21.59 1.66 23.83 0.93

High 1390 17.26 1.21 20.96 0.72
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Table 5.2: Parameter estimates from Cox proportional hazards model for epidemic duration
for graphs above the epidemic threshold

Degree Centralization

Epidemic Duration
Graphs Above Epidemic Threshold

Parameter Coefficient SE HR p-value
Centralization 2.7819 0.0100 16.1493 < 0.0001

Most Central Node First (ref: Random) -1.0234 0.0075 0.3594 < 0.0001
Order of Largest Component -0.1718 0.0002 0.8421 < 0.0001

Centralization*Most Central Node First -0.4366 0.0131 0.6463 < 0.0001
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Table 5.3: Average peak number of infected nodes by degree centralization quartile and
largest component order for graphs above the epidemic threshold

Degree Centralization

Peak Number Infected
Graphs Above Epidemic Threshold

Order Cent Quartile n
Random First Most Central First
Mean SD Mean SD

5

Low 1605 2.74 0.57 2.91 0.48
Low-Mod 1725 2.93 0.38 3.17 0.31
Mod-High 753 2.71 0.31 3.01 0.28

High 1016 2.60 0.16 3.00 0.14

10

Low 1386 3.83 0.93 4.41 0.83
Low-Mod 2646 4.50 0.83 5.22 0.70
Mod-High 1386 4.63 0.72 5.49 0.57

High 1645 4.30 0.40 5.41 0.30

15

Low 1240 4.76 1.13 5.82 1.07
Low-Mod 3354 5.68 1.04 7.00 0.87
Mod-High 2117 6.11 0.84 7.62 0.66

High 2041 5.95 0.54 7.76 0.39

20

Low 1346 5.55 1.29 7.09 1.30
Low-Mod 3930 6.84 1.26 8.74 1.08
Mod-High 2515 7.60 1.05 9.74 0.78

High 1884 7.54 0.63 10.06 0.41

25

Low 1086 6.26 1.40 8.29 1.41
Low-Mod 4092 7.92 1.53 10.38 1.33
Mod-High 3066 8.97 1.08 11.77 0.82

High 2294 9.22 0.86 12.44 0.55

30

Low 808 7.38 1.63 9.76 1.59
Low-Mod 4272 9.16 1.59 12.12 1.36
Mod-High 3629 10.38 1.21 13.78 0.93

High 2527 10.77 0.90 14.68 0.56

35

Low 463 8.51 1.81 11.47 1.86
Low-Mod 3302 10.75 1.78 14.11 1.52
Mod-High 2747 11.90 1.36 15.76 1.03

High 3008 12.33 1.04 16.93 0.62

40

Low 11 10.93 0.71 13.69 0.65
Low-Mod 415 14.09 2.19 17.56 1.92
Mod-High 195 15.01 2.02 18.88 1.51

High 1390 13.85 1.01 19.28 0.56
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Table 5.4: Parameter estimates from linear regression model for peak number of infected
nodes for graphs above the epidemic threshold

Degree Centralization

Peak Number of Infected Nodes
Graphs Above Epidemic Threshold

Parameter Estimate SE p-value
Intercept -1.3579 0.0071 < 0.0001

Centralization 2.6966 0.0105 < 0.0001
Most Central Node First (ref: Random) 1.2323 0.0084 < 0.0001

Order of Largest Component 0.3360 0.0002 < 0.0001
Centralization*Most Central Node First 2.4915 0.0147 < 0.0001
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Table 5.5: Average day of peak number of infected nodes by degree centralization quartile
and largest component order for graphs above the epidemic threshold

Degree Centralization

Day Peak Number Infected
Graphs Above Epidemic Threshold

Order Cent Quartile n
Random First Most Central First
Mean SD Mean SD

5

Low 1605 4.51 0.48 4.38 0.33
Low-Mod 1725 4.62 0.27 4.35 0.24
Mod-High 753 4.58 0.25 4.17 0.19

High 1016 4.45 0.26 3.94 0.19

10

Low 1386 5.74 0.61 5.42 0.52
Low-Mod 2646 5.80 0.41 5.27 0.38
Mod-High 1386 5.61 0.39 4.88 0.32

High 1645 5.10 0.34 4.38 0.21

15

Low 1240 6.50 0.72 6.06 0.64
Low-Mod 3354 6.40 0.61 5.68 0.53
Mod-High 2117 5.96 0.54 5.08 0.42

High 2041 5.36 0.41 4.55 0.23

20

Low 1346 7.02 0.76 6.54 0.68
Low-Mod 3930 6.71 0.66 5.85 0.57
Mod-High 2515 6.11 0.60 5.14 0.45

High 1884 5.36 0.38 4.57 0.20

25

Low 1086 7.41 0.81 6.90 0.67
Low-Mod 4092 6.96 0.71 6.01 0.58
Mod-High 3066 6.13 0.58 5.12 0.41

High 2294 5.42 0.40 4.60 0.20

30

Low 808 7.92 0.82 7.34 0.74
Low-Mod 4272 7.23 0.74 6.20 0.61
Mod-High 3629 6.23 0.60 5.17 0.41

High 2527 5.45 0.37 4.62 0.16

35

Low 463 8.37 0.83 7.75 0.68
Low-Mod 3302 7.62 0.66 6.52 0.54
Mod-High 2747 6.44 0.58 5.31 0.39

High 3008 5.48 0.37 4.64 0.16

40

Low 11 9.87 0.43 8.77 0.42
Low-Mod 415 8.11 0.53 6.89 0.49
Mod-High 195 7.24 0.53 5.96 0.38

High 1390 5.38 0.32 4.61 0.14
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Table 5.6: Parameter estimates from Cox proportional hazards model for day peak number
infected for graphs above the epidemic threshold

Degree Centralization

Day Peak Number Infected
Graphs Above Epidemic Threshold

Parameter Coefficient SE HR p-value
Centralization 4.9663 0.0109 143.4992 < 0.0001

Most Central Node First (ref: Random) 0.4866 0.0077 1.6268 < 0.0001
Order of Largest Component -0.0874 0.0002 0.9163 < 0.0001

Centralization*Most Central Node First 2.6559 0.0140 14.2379 < 0.0001
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Table 5.7: Average final cumulative number infected nodes by degree centralization quartile
and largest component order for graphs above the epidemic threshold

Degree Centralization

Final Cumulative Number Infected
Graphs Above Epidemic Threshold

Order Cent Quartile n
Random First Most Central First
Mean SD Mean SD

5

Low 1605 3.61 0.78 3.83 0.63
Low-Mod 1725 3.89 0.50 4.14 0.39
Mod-High 753 3.58 0.42 3.91 0.35

High 1016 3.35 0.23 3.81 0.17

10

Low 1386 5.95 1.48 6.81 1.28
Low-Mod 2646 6.87 1.23 7.83 0.97
Mod-High 1386 6.87 1.10 7.95 0.81

High 1645 6.02 0.65 7.44 0.45

15

Low 1240 8.16 2.02 9.84 1.81
Low-Mod 3354 9.36 1.78 11.30 1.38
Mod-High 2117 9.47 1.45 11.56 1.07

High 2041 8.60 0.96 11.04 0.67

20

Low 1346 10.12 2.47 12.77 2.35
Low-Mod 3930 11.71 2.21 14.70 1.73
Mod-High 2515 12.03 1.90 15.15 1.37

High 1884 10.92 1.11 14.42 0.75

25

Low 1086 11.97 2.81 15.73 2.65
Low-Mod 4092 14.02 2.74 18.07 2.17
Mod-High 3066 14.35 1.96 18.56 1.42

High 2294 13.48 1.54 17.99 1.07

30

Low 808 14.73 3.28 19.36 3.03
Low-Mod 4272 16.70 2.97 21.80 2.32
Mod-High 3629 16.90 2.26 22.15 1.64

High 2527 15.83 1.56 21.42 1.06

35

Low 463 17.63 3.73 23.48 3.48
Low-Mod 3302 20.23 3.17 26.24 2.43
Mod-High 2747 19.88 2.49 26.04 1.76

High 3008 18.28 1.82 24.92 1.19

40

Low 11 24.88 1.40 30.81 0.95
Low-Mod 415 26.73 3.33 32.97 2.33
Mod-High 195 26.52 3.65 32.89 2.65

High 1390 20.22 1.74 27.98 1.16
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Table 5.8: Parameter estimates from linear regression model for final cumulative number
of infected nodes for graphs above the epidemic threshold

Degree Centralization

Final Cumulative Number of Infected Nodes
Graphs Above Epidemic Threshold

Parameter Estimate SE p-value
Intercept -1.4454 0.0126 < 0.0001

Centralization -0.6488 0.0187 < 0.0001
Most Central Node First (ref: Random) 2.6141 0.0150 < 0.0001

Order of Largest Component 0.6347 0.0004 < 0.0001
Centralization*Most Central Node First 2.6100 0.0261 < 0.0001
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Table 5.9: Average day final cumulative number of nodes infected by degree centralization
quartile and largest component order for graphs above the epidemic threshold

Degree Centralization

Day Final Cumulative Number Infected
Graphs Above Epidemic Threshold

Order Cent Quartile n
Random First Most Central First
Mean SD Mean SD

5

Low 1605 5.68 0.72 5.65 0.52
Low-Mod 1725 5.83 0.38 5.62 0.32
Mod-High 753 5.75 0.33 5.45 0.23

High 1016 5.42 0.35 5.05 0.26

10

Low 1386 7.86 0.94 7.95 0.79
Low-Mod 2646 7.86 0.66 7.76 0.59
Mod-High 1386 7.48 0.65 7.18 0.55

High 1645 6.46 0.59 6.15 0.50

15

Low 1240 9.28 1.17 9.60 0.96
Low-Mod 3354 9.08 0.99 9.15 0.84
Mod-High 2117 8.30 0.98 8.13 0.88

High 2041 7.00 0.83 6.77 0.75

20

Low 1346 10.29 1.24 10.95 1.04
Low-Mod 3930 9.86 1.09 10.12 0.94
Mod-High 2515 8.81 1.12 8.76 0.99

High 1884 7.05 0.85 6.88 0.81

25

Low 1086 11.09 1.36 12.05 1.05
Low-Mod 4092 10.55 1.19 10.97 1.01
Mod-High 3066 9.12 1.10 9.21 0.99

High 2294 7.25 0.94 7.14 0.88

30

Low 808 12.07 1.35 13.18 1.09
Low-Mod 4272 11.28 1.23 11.84 1.01
Mod-High 3629 9.58 1.19 9.78 1.06

High 2527 7.43 0.95 7.38 0.93

35

Low 463 13.02 1.38 14.36 1.06
Low-Mod 3302 12.21 1.11 12.83 0.92
Mod-High 2747 10.28 1.15 10.57 1.01

High 3008 7.64 1.02 7.67 1.03

40

Low 11 16.07 0.94 16.68 0.75
Low-Mod 415 13.20 0.85 13.50 0.97
Mod-High 195 11.90 0.87 11.97 0.65

High 1390 7.13 0.87 7.07 0.91
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Table 5.10: Parameter estimates from Cox proportional hazards model for day peak number
infected for graphs above the epidemic threshold

Degree Centralization

Day Final Cumulative Number Infected
Graphs Above Epidemic Threshold

Parameter Coefficient SE HR p-value
Centralization 5.6106 0.0112 273.3060 < 0.0001

Most Central Node First (ref: Random) -0.6181 0.0074 0.5390 < 0.0001
Order of Largest Component -0.1532 0.0002 0.8579 < 0.0001

Centralization*Most Central Node First 1.0966 0.0132 2.9939 < 0.0001
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5.6.2 Closeness Centralization

Figure 5.2: Number of graphs generated by closeness centralization category

Movie 5.8. Distribution of closeness centralization values produced by the modified Star

Start program for connected graphs of order 5-40 nodes.

(Loading Video...)

Movie 5.9. Daily average total number of infected nodes by closeness centralization quartile

with random node infected first for connected graphs of order 5-40, probability of transmis-

sion 0.3 and probability of recovery 0.2.
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ConnectStarHistCentClose.mov
Media File (video/quicktime)



(Loading Video...)

Movie 5.10. Daily average total number of infected nodes by closeness centralization quartile

with most central node infected first for connected graphs of order 5-40, probability of

transmission 0.3 and probability of recovery 0.2.

(Loading Video...)

Movie 5.11. Daily average total number of infected nodes by closeness centralization quartile

and type of node infected first for connected graphs of order 5-40, probability of transmission

0.3 and probability of recovery 0.2.
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ConnectCentvsClustInfThreshRanClose30_20.mov
Media File (video/quicktime)


ConnectCentvsClustInfThreshCentClose30_20.mov
Media File (video/quicktime)



(Loading Video...)

Movie 5.12. Daily average cumulative number of infected nodes by closeness centralization

quartile with random node infected first for connected graphs of order 5-40, probability of

transmission 0.3 and probability of recovery 0.2.

(Loading Video...)

Movie 5.13. Daily average cumulative number of infected nodes by closeness centralization

quartile with most central node infected first for connected graphs of order 5-40, probability

of transmission 0.3 and probability of recovery 0.2.
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ConnectCentvsClustInfThreshClose30_20.mov
Media File (video/quicktime)


ConnectCentvsCumClustInfThreshRanClose30_20.mov
Media File (video/quicktime)



(Loading Video...)

Movie 5.14. Daily average cumulative number of infected nodes by closeness centralization

quartile and type of node infected first for connected graphs of order 5-40, probability of

transmission 0.3 and probability of recovery 0.2.

(Loading Video...)
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ConnectCentvsCumClustInfThreshCentClose30_20.mov
Media File (video/quicktime)


ConnectCentvsCumClustInfThreshClose30_20.mov
Media File (video/quicktime)



Table 5.11: Average epidemic duration by closeness centralization quartile for connected
graphs above the epidemic threshold

Closeness Centralization

Epidemic Duration
Connected Graphs Above Epidemic Threshold

Order Cent Quartile n
Random First Most Central First
Mean SD Mean SD

5

Low 628 12.55 0.77 12.65 0.72
Low-Mod 1190 11.77 1.07 12.11 0.91
Mod-High 963 11.59 1.10 12.01 0.86

High 1469 11.21 0.90 11.79 0.71

10

Low 232 15.79 1.40 16.19 1.17
Low-Mod 2031 15.18 1.35 16.01 1.05
Mod-High 1435 14.90 1.34 15.88 0.91

High 1859 13.53 1.21 15.03 0.82

15

Low 142 17.23 1.63 18.31 1.43
Low-Mod 1791 17.37 1.46 18.66 1.00
Mod-High 1534 16.72 1.44 18.17 0.93

High 2163 14.83 1.29 16.90 0.85

20

Low 97 18.58 1.65 20.38 1.45
Low-Mod 1299 18.78 1.47 20.53 0.96
Mod-High 1176 18.36 1.47 19.96 0.85

High 1788 15.49 1.23 18.04 0.76

25

Low 33 19.97 1.59 21.87 1.37
Low-Mod 724 20.03 1.65 21.95 1.01
Mod-High 792 19.38 1.51 21.29 0.90

High 1758 16.18 1.42 19.05 0.84

30

Low 42 21.08 1.84 23.30 1.36
Low-Mod 621 20.92 1.74 23.14 1.03
Mod-High 656 20.00 1.66 22.21 0.97

High 1464 16.54 1.25 19.77 0.77

35

Low 1 20.96 NA 26.83 NA
Low-Mod 455 21.66 1.45 24.20 0.84
Mod-High 547 21.03 1.61 23.19 0.98

High 1477 16.91 1.25 20.41 0.73

40

Low 4 22.23 0.92 26.05 0.13
Low-Mod 282 22.55 1.42 25.09 0.87
Mod-High 332 22.10 1.64 24.18 0.93

High 1393 17.26 1.22 20.96 0.73
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Table 5.12: Parameter estimates from Cox proportional hazards model for epidemic dura-
tion for connected graphs above the epidemic threshold

Closeness Centralization

Epidemic Duration
Connected Graphs Above Epidemic Threshold

Parameter Coefficient SE HR p-value
Centralization 4.0244 0.0285 55.9457 < 0.0001

Most Central Node First (ref: Random) -0.3434 0.0256 0.7094 < 0.0001
Order of Largest Component -0.1859 0.0008 0.8303 < 0.0001

Centralization*Most Central Node First -0.9983 0.0356 0.3685 < 0.0001
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Table 5.13: Average peak number infected by closeness centralization quartile for connected
graphs above the epidemic threshold

Closeness Centralization

Peak Number Infected
Connected Graphs Above Epidemic Threshold

Order Cent Quartile n
Random First Most Central First
Mean SD Mean SD

5

Low 628 3.29 0.32 3.35 0.29
Low-Mod 1190 2.87 0.42 3.07 0.38
Mod-High 963 2.79 0.38 3.05 0.33

High 1469 2.70 0.21 3.07 0.17

10

Low 232 4.90 1.00 5.25 0.93
Low-Mod 2031 4.58 0.85 5.21 0.76
Mod-High 1435 4.66 0.76 5.47 0.62

High 1859 4.36 0.46 5.44 0.34

15

Low 142 5.55 1.23 6.34 1.16
Low-Mod 1791 6.09 1.07 7.20 0.96
Mod-High 1534 6.21 0.94 7.58 0.77

High 2163 5.98 0.56 7.77 0.41

20

Low 97 6.24 1.27 7.51 1.26
Low-Mod 1299 7.51 1.36 9.14 1.22
Mod-High 1176 8.10 1.18 9.94 0.94

High 1788 7.52 0.62 10.03 0.42

25

Low 33 6.88 0.81 8.66 0.75
Low-Mod 724 8.84 1.82 10.90 1.61
Mod-High 792 9.63 1.33 12.02 1.08

High 1758 9.21 0.91 12.43 0.60

30

Low 42 9.05 2.79 10.90 2.58
Low-Mod 621 10.20 1.94 12.72 1.70
Mod-High 656 10.86 1.42 13.78 1.11

High 1464 10.71 0.85 14.70 0.53

35

Low 1 8.71 NA 11.09 NA
Low-Mod 455 11.38 1.86 14.45 1.59
Mod-High 547 12.47 1.47 15.78 1.17

High 1477 12.25 0.95 16.96 0.54

40

Low 4 10.85 0.56 13.82 0.42
Low-Mod 282 13.38 2.13 16.84 1.90
Mod-High 332 15.16 1.91 18.86 1.45

High 1393 13.85 1.01 19.27 0.56
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Table 5.14: Parameter estimates from linear regression model for peak number of infected
nodes for connected graphs above the epidemic threshold

Closeness Centralization

Peak Number Infected
Connected Graphs Above Epidemic Threshold

Parameter Estimate SE p-value
Intercept 0.7122 0.0190 < 0.0001

Centralization -0.7069 0.0255 < 0.0001
Most Central Node First (ref: Random) -0.0013 0.0258 0.9604

Order of Largest Component 0.3714 0.0005 < 0.0001
Centralization*Most Central Node First 2.9493 0.0353 < 0.0001
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Table 5.15: Average day peak number infected by closeness centralization quartile for con-
nected graphs above the epidemic threshold

Closeness Centralization

Day Peak Number Infected
Connected Graphs Above Epidemic Threshold

Order Cent Quartile n
Random First Most Central First
Mean SD Mean SD

5

Low 628 4.67 0.24 4.59 0.22
Low-Mod 1190 4.62 0.24 4.44 0.20
Mod-High 963 4.60 0.25 4.28 0.24

High 1469 4.51 0.26 4.03 0.23

10

Low 232 6.09 0.39 5.90 0.33
Low-Mod 2031 5.92 0.37 5.50 0.32
Mod-High 1435 5.74 0.35 5.06 0.28

High 1859 5.16 0.38 4.43 0.25

15

Low 142 6.94 0.52 6.63 0.48
Low-Mod 1791 6.75 0.46 6.13 0.40
Mod-High 1534 6.31 0.45 5.43 0.36

High 2163 5.39 0.43 4.59 0.26

20

Low 97 7.61 0.57 7.27 0.54
Low-Mod 1299 7.23 0.53 6.49 0.49
Mod-High 1176 6.71 0.48 5.69 0.37

High 1788 5.38 0.40 4.58 0.22

25

Low 33 8.33 0.61 7.96 0.68
Low-Mod 724 7.67 0.59 6.75 0.52
Mod-High 792 6.96 0.53 5.88 0.43

High 1758 5.42 0.43 4.61 0.23

30

Low 42 8.48 0.51 8.16 0.55
Low-Mod 621 7.92 0.62 6.91 0.60
Mod-High 656 7.09 0.60 5.90 0.46

High 1464 5.38 0.37 4.60 0.17

35

Low 1 8.15 NA 8.06 NA
Low-Mod 455 8.10 0.54 7.06 0.48
Mod-High 547 7.36 0.62 6.11 0.50

High 1477 5.38 0.35 4.60 0.16

40

Low 4 8.76 0.31 7.99 0.35
Low-Mod 282 8.29 0.63 7.12 0.57
Mod-High 332 7.50 0.57 6.21 0.44

High 1393 5.38 0.32 4.61 0.15

139



Table 5.16: Parameter estimates from Cox proportional hazards model for day peak number
infected for connected graphs above the epidemic threshold

Closeness Centralization

Day Peak Number Infected
Connected Graphs Above Epidemic Threshold

Parameter Coefficient SE HR p-value
Centralization 5.2914 0.0330 198.6206 < 0.0001

Most Central Node First (ref: Random) 0.4805 0.0274 1.6169 < 0.0001
Order of Largest Component -0.0960 0.0006 0.9084 < 0.0001

Centralization*Most Central Node First 1.9259 0.0387 6.8611 < 0.0001
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Table 5.17: Average final cumulative number infected by closeness centralization quartile
for connected graphs above the epidemic threshold

Closeness Centralization

Final Cumulative Number Infected
Connected Graphs Above Epidemic Threshold

Order Cent Quartile n
Random First Most Central First
Mean SD Mean SD

5

Low 628 4.35 0.32 4.42 0.27
Low-Mod 1190 3.83 0.54 4.04 0.47
Mod-High 963 3.70 0.53 3.99 0.43

High 1469 3.52 0.32 3.93 0.23

10

Low 232 7.65 1.36 8.11 1.20
Low-Mod 2031 7.09 1.20 7.91 1.01
Mod-High 1435 7.02 1.11 8.04 0.84

High 1859 6.15 0.77 7.52 0.53

15

Low 142 9.68 1.98 10.94 1.82
Low-Mod 1791 10.27 1.67 11.90 1.37
Mod-High 1534 9.98 1.50 11.89 1.14

High 2163 8.68 1.02 11.09 0.73

20

Low 97 11.77 2.31 14.02 2.26
Low-Mod 1299 13.29 2.13 15.86 1.71
Mod-High 1176 13.48 1.88 16.19 1.36

High 1788 10.92 1.12 14.42 0.77

25

Low 33 13.94 1.77 17.12 1.79
Low-Mod 724 16.27 2.93 19.70 2.33
Mod-High 792 16.49 2.23 20.19 1.66

High 1758 13.46 1.67 17.99 1.19

30

Low 42 18.14 4.54 21.69 4.03
Low-Mod 621 19.28 3.34 23.73 2.63
Mod-High 656 19.08 2.62 23.79 1.94

High 1464 15.62 1.53 21.28 1.08

35

Low 1 19.09 NA 25.95 NA
Low-Mod 455 21.97 2.95 27.60 2.15
Mod-High 547 22.38 2.69 27.89 2.01

High 1477 17.89 1.66 24.61 1.09

40

Low 4 22.87 0.99 29.91 0.48
Low-Mod 282 25.97 3.35 32.36 2.36
Mod-High 332 27.25 3.38 33.43 2.37

High 1393 20.23 1.75 27.98 1.17
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Table 5.18: Parameter estimates from linear regression model for final cumulative number
of infected nodes for connected graphs above the epidemic threshold

Closeness Centralization

Final Cumulative Number Infected
Connected Graphs Above Epidemic Threshold

Parameter Estimate SE p-value
Intercept 2.6783 0.0321 < 0.0001

Centralization -5.2036 0.0431 < 0.0001
Most Central Node First (ref: Random) 0.4136 0.0436 < 0.0001

Order of Largest Component 0.6498 0.0008 < 0.0001
Centralization*Most Central Node First 3.7002 0.0597 < 0.0001
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Table 5.19: Average day final cumulative number infected by closeness centralization quar-
tile for connected graphs above the epidemic threshold

Closeness Centralization

Day Final Cumulative Number Infected
Connected Graphs Above Epidemic Threshold

Order Cent Quartile n
Random First Most Central First
Mean SD Mean SD

5

Low 628 5.82 0.45 5.77 0.45
Low-Mod 1190 5.87 0.33 5.76 0.28
Mod-High 963 5.81 0.33 5.57 0.28

High 1469 5.56 0.39 5.18 0.32

10

Low 232 8.38 0.64 8.35 0.66
Low-Mod 2031 8.10 0.57 8.02 0.50
Mod-High 1435 7.74 0.54 7.47 0.45

High 1859 6.58 0.67 6.26 0.58

15

Low 142 10.03 0.87 10.24 0.78
Low-Mod 1791 9.67 0.71 9.68 0.60
Mod-High 1534 8.95 0.73 8.80 0.56

High 2163 7.08 0.88 6.85 0.81

20

Low 97 11.34 0.85 11.93 0.74
Low-Mod 1299 10.72 0.83 10.93 0.74
Mod-High 1176 9.91 0.78 9.78 0.65

High 1788 7.09 0.90 6.93 0.87

25

Low 33 12.51 1.03 13.08 0.99
Low-Mod 724 11.65 0.96 11.90 0.85
Mod-High 792 10.61 0.86 10.61 0.70

High 1758 7.22 1.03 7.09 0.97

30

Low 42 12.95 0.83 13.89 0.97
Low-Mod 621 12.32 0.99 12.68 0.84
Mod-High 656 11.18 1.01 11.31 0.77

High 1464 7.14 0.95 7.04 0.94

35

Low 1 13.63 NA 17.04 NA
Low-Mod 455 12.90 0.93 13.47 0.90
Mod-High 547 11.89 1.02 12.00 0.85

High 1477 7.16 0.93 7.11 0.94

40

Low 4 14.09 0.83 15.99 0.16
Low-Mod 282 13.47 1.00 13.94 1.03
Mod-High 332 12.31 0.94 12.33 0.75

High 1393 7.14 0.89 7.07 0.93

143



Table 5.20: Parameter estimates from Cox proportional hazards model for day final cumu-
lative number infected for connected graphs above the epidemic threshold

Closeness Centralization

Day Final Cumulative Number Infected
Connected Graphs Above Epidemic Threshold

Parameter Coefficient SE HR p-value
Centralization 5.2424 0.0317 189.1300 < 0.0001

Most Central Node First (ref: Random) -0.3494 0.0256 0.7051 < 0.0001
Order of Largest Component -0.1323 0.0007 0.8761 < 0.0001

Centralization*Most Central Node First 0.7635 0.0357 2.1458 < 0.0001
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5.6.3 Betweenness Centralization

Figure 5.3: Number of graphs generated by betweenness centralization category

Movie 5.15. Distribution of betweenness centralization values produced by the modified

Star Start program for graphs of order 5-40 nodes.

(Loading Video...)

Movie 5.16. Daily average total number of infected nodes in the largest component by

betweenness centralization quartile with random node infected first for graphs of order

5-40, probability of transmission 0.3 and probability of recovery 0.2.
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OneStarHistCentBetween.mov
Media File (video/quicktime)



(Loading Video...)

Movie 5.17. Daily average total number of infected nodes in the largest component by

betweenness centralization quartile with most central node infected first for graphs of order

5-40, probability of transmission 0.3 and probability of recovery 0.2.

(Loading Video...)

Movie 5.18. Daily average total number of infected nodes in the largest component by

betweenness centralization quartile and type of node infected first for graphs of order 5-40,

probability of transmission 0.3 and probability of recovery 0.2.
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NoCentvsClustInfThreshRanBetween30_20.mov
Media File (video/quicktime)


NoCentvsClustInfThreshCentBetween30_20.mov
Media File (video/quicktime)



(Loading Video...)

Movie 5.19. Daily average cumulative number of infected nodes in the largest component

by betweenness centralization quartile with random node infected first for graphs of order

5-40, probability of transmission 0.3 and probability of recovery 0.2.

(Loading Video...)

Movie 5.20. Daily average cumulative number of infected nodes in the largest component

by betweenness centralization quartile with most central node infected first for graphs of

order 5-40, probability of transmission 0.3 and probability of recovery 0.2.
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NoCentvsClustInfThreshBetween30_20.mov
Media File (video/quicktime)


NoCentvsCumClustInfThreshRanBetween30_20.mov
Media File (video/quicktime)



(Loading Video...)

Movie 5.21. Daily average cumulative number of infected nodes in the largest component

by betweenness centralization quartile and type of node infected first for graphs of order

5-40, probability of transmission 0.3 and probability of recovery 0.2.

(Loading Video...)
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NoCentvsCumClustInfThreshCentBetween30_20.mov
Media File (video/quicktime)


NoCentvsCumClustInfThreshBetween30_20.mov
Media File (video/quicktime)



Table 5.21: Average epidemic duration by betweenness centralization quartile and largest
component order for graphs above the epidemic threshold

Betweenness Centralization

Epidemic Duration
Graphs Above Epidemic Threshold

Order Cent Quartile n
Random First Most Central First
Mean SD Mean SD

5

Low 1999 11.66 1.57 12.09 1.10
Low-Mod 1147 11.67 1.02 11.97 0.84
Mod-High 937 11.32 0.94 11.84 0.76

High 1016 10.90 0.80 11.58 0.67

10

Low 1630 14.46 1.98 15.44 1.44
Low-Mod 2376 14.85 1.47 15.78 1.07
Mod-High 1217 14.52 1.22 15.60 0.91

High 1840 13.33 1.05 14.89 0.72

15

Low 1263 16.08 2.15 17.68 1.46
Low-Mod 3385 16.27 1.80 17.89 1.20
Mod-High 1616 16.32 1.51 17.92 1.02

High 2488 14.89 1.27 16.94 0.83

20

Low 922 17.20 2.08 19.37 1.53
Low-Mod 3834 17.38 1.89 19.53 1.23
Mod-High 2812 17.01 1.76 19.14 1.11

High 2107 15.73 1.38 18.21 0.87

25

Low 416 18.36 2.15 21.00 1.55
Low-Mod 4153 18.07 1.98 20.69 1.29
Mod-High 3916 17.68 1.75 20.17 1.13

High 2053 16.47 1.56 19.27 1.01

30

Low 162 20.56 1.96 23.13 1.57
Low-Mod 3308 19.28 1.97 22.14 1.25
Mod-High 5928 18.26 1.81 21.07 1.20

High 1838 17.05 1.66 20.15 1.09

35

Low 74 22.21 1.62 24.86 1.09
Low-Mod 1219 21.06 1.75 23.99 1.01
Mod-High 6183 19.30 1.89 22.23 1.29

High 2044 17.34 1.71 20.72 1.07

40

Low 0 NA NA NA NA
Low-Mod 37 23.12 1.33 25.67 0.97
Mod-High 474 22.61 1.33 24.78 0.80

High 1500 17.51 1.52 21.14 0.98
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Table 5.22: Parameter estimates from Cox proportional hazards model for epidemic dura-
tion for graphs above the epidemic threshold

Betweenness Centralization

Epidemic Duration
Graphs Above Epidemic Threshold

Parameter Coefficient SE HR p-value
Centralization 2.7125 0.0106 15.0663 < 0.0001

Most Central Node First (ref: Random) -0.7890 0.0083 0.4543 < 0.0001
Order of Largest Component -0.1820 0.0003 0.8336 < 0.0001

Centralization*Most Central Node First -0.7782 0.0143 0.4592 < 0.0001

Figure 5.4: Spectral radius of graphs above the epidemic threshold by graph order
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Table 5.23: Average day of peak number of infected nodes by betweenness centralization
quartile and largest component order for graphs above the epidemic threshold

Betweenness Centralization

Peak Number Infected
Graphs Above Epidemic Threshold

Order Cent Quartile
Random First Most Central First
Mean SD Mean SD

5

Low 2.90 0.57 3.10 0.45
Low-Mod 2.78 0.34 3.00 0.33
Mod-High 2.67 0.29 2.98 0.27

High 2.60 0.16 3.00 0.14

10

Low 4.26 1.12 4.87 1.00
Low-Mod 4.50 0.81 5.21 0.75
Mod-High 4.35 0.68 5.18 0.65

High 4.23 0.38 5.33 0.32

15

Low 5.19 1.29 6.33 1.19
Low-Mod 5.69 1.12 7.01 1.02
Mod-High 5.92 0.87 7.34 0.81

High 5.89 0.57 7.66 0.48

20

Low 5.89 1.41 7.50 1.47
Low-Mod 6.73 1.44 8.59 1.35
Mod-High 7.35 1.09 9.45 0.94

High 7.46 0.70 9.92 0.57

25

Low 6.47 1.62 8.38 1.65
Low-Mod 7.77 1.65 10.23 1.62
Mod-High 8.74 1.30 11.49 1.20

High 9.11 0.88 12.25 0.70

30

Low 8.19 2.02 10.18 2.04
Low-Mod 8.81 1.80 11.68 1.75
Mod-High 10.13 1.41 13.50 1.32

High 10.57 1.01 14.39 0.93

35

Low 9.57 1.66 11.98 1.96
Low-Mod 10.17 2.10 13.27 2.04
Mod-High 11.52 1.70 15.34 1.63

High 12.16 0.99 16.74 0.84

40

Low NA NA NA NA
Low-Mod 13.67 2.59 16.72 2.61
Mod-High 14.57 2.26 18.06 2.02

High 13.82 1.06 19.16 0.75
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Table 5.24: Parameter estimates from linear regression model for peak number of infected
nodes for graphs above the epidemic threshold

Betweenness Centralization

Peak Number of Infected Nodes
Graphs Above Epidemic Threshold

Parameter Estimate SE p-value
Intercept -0.4946 0.0079 < 0.0001

Centralization 1.5727 0.0129 < 0.0001
Most Central Node First (ref: Random) 0.7065 0.0101 < 0.0001

Order of Largest Component 0.3230 0.0002 < 0.0001
Centralization*Most Central Node First 3.3413 0.0171 < 0.0001
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Table 5.25: Average day of peak number of infected nodes by betweenness centralization
quartile and largest component order for graphs above the epidemic threshold

Betweenness Centralization

Day Peak Number Infected
Graphs Above Epidemic Threshold

Order Cent Quartile n
Random First Most Central First
Mean SD Mean SD

5

Low 1999 4.53 0.46 4.36 0.34
Low-Mod 1147 4.64 0.25 4.39 0.19
Mod-High 937 4.58 0.25 4.19 0.19

High 1016 4.45 0.26 3.94 0.19

10

Low 1630 5.72 0.57 5.36 0.53
Low-Mod 2376 5.79 0.45 5.28 0.46
Mod-High 1217 5.71 0.34 5.04 0.26

High 1840 5.12 0.34 4.41 0.22

15

Low 1263 6.43 0.74 5.92 0.70
Low-Mod 3385 6.30 0.64 5.60 0.64
Mod-High 1616 6.22 0.59 5.39 0.50

High 2488 5.45 0.45 4.64 0.29

20

Low 922 6.93 0.77 6.45 0.80
Low-Mod 3834 6.71 0.72 5.91 0.68
Mod-High 2812 6.24 0.71 5.30 0.60

High 2107 5.52 0.52 4.69 0.35

25

Low 416 7.54 0.80 7.19 0.68
Low-Mod 4153 6.86 0.84 5.99 0.79
Mod-High 3916 6.29 0.76 5.31 0.63

High 2053 5.58 0.59 4.74 0.39

30

Low 162 8.38 0.76 8.00 0.57
Low-Mod 3308 7.34 0.83 6.41 0.78
Mod-High 5928 6.35 0.81 5.32 0.66

High 1838 5.66 0.69 4.80 0.47

35

Low 74 9.07 0.65 8.68 0.69
Low-Mod 1219 8.12 0.65 7.20 0.55
Mod-High 6183 6.66 0.90 5.59 0.76

High 2044 5.60 0.68 4.76 0.45

40

Low 0 NA NA NA NA
Low-Mod 37 8.70 0.76 7.71 0.77
Mod-High 474 8.00 0.56 6.75 0.52

High 1500 5.50 0.54 4.70 0.35
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Table 5.26: Parameter estimates from Cox proportional hazards model for day peak number
infected for graphs above the epidemic threshold

Betweenness Centralization

Day Peak Number Infected
Graphs Above Epidemic Threshold

Parameter Coefficient SE HR p-value
Centralization 3.5649 0.0110 35.3362 < 0.0001

Most Central Node First (ref: Random) 0.2287 0.0085 1.2570 < 0.0001
Order of Largest Component -0.1007 0.0002 0.9042 < 0.0001

Centralization*Most Central Node First 2.0292 0.0147 7.6082 < 0.0001
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Table 5.27: Average final cumulative number infected nodes by betweenness centralization
quartile and largest component order for graphs above the epidemic threshold

Betweenness Centralization

Final Cumulative Number Infected
Graphs Above Epidemic Threshold

Order Cent Quartile n
Random First Most Central First
Mean SD Mean SD

5

Low 1999 3.80 0.78 4.05 0.60
Low-Mod 1147 3.73 0.45 3.96 0.40
Mod-High 937 3.54 0.39 3.88 0.33

High 1016 3.35 0.23 3.81 0.17

10

Low 1630 6.49 1.69 7.34 1.43
Low-Mod 2376 6.87 1.20 7.79 0.99
Mod-High 1217 6.58 0.98 7.65 0.83

High 1840 5.96 0.60 7.37 0.43

15

Low 1263 8.71 2.21 10.44 1.87
Low-Mod 3385 9.26 1.84 11.18 1.50
Mod-High 1616 9.47 1.41 11.49 1.12

High 2488 8.63 0.97 11.03 0.71

20

Low 922 10.55 2.54 13.25 2.38
Low-Mod 3834 11.53 2.40 14.46 2.01
Mod-High 2812 11.84 1.89 14.95 1.41

High 2107 11.04 1.23 14.48 0.86

25

Low 416 12.45 3.06 15.95 2.91
Low-Mod 4153 13.62 2.79 17.66 2.34
Mod-High 3916 14.21 2.16 18.39 1.65

High 2053 13.59 1.63 18.07 1.17

30

Low 162 16.66 3.67 20.62 3.61
Low-Mod 3308 16.27 3.17 21.32 2.67
Mod-High 5928 16.66 2.36 21.91 1.76

High 1838 15.96 1.85 21.51 1.34

35

Low 74 20.38 2.96 25.22 3.30
Low-Mod 1219 20.05 3.58 25.87 3.13
Mod-High 6183 19.63 2.75 25.83 2.03

High 2044 18.24 2.00 24.88 1.34

40

Low 0 NA NA NA NA
Low-Mod 37 27.00 3.24 33.09 2.41
Mod-High 474 27.25 3.27 33.39 2.28

High 1500 20.48 2.05 28.18 1.43
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Table 5.28: Parameter estimates from linear regression model for final cumulative number
of infected nodes for graphs above the epidemic threshold

Betweenness Centralization

Final Cumulative Number of Infected Nodes
Graphs Above Epidemic Threshold

Parameter Estimate SE p-value
Intercept -0.7102 0.0126 < 0.0001

Centralization -2.0482 0.0205 < 0.0001
Most Central Node First (ref: Random) 1.5467 0.0161 < 0.0001

Order of Largest Component 0.6367 0.0004 < 0.0001
Centralization*Most Central Node First 4.4339 0.0273 < 0.0001
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Table 5.29: Average day final cumulative number of nodes infected by betweenness central-
ization quartile and largest component order for graphs above the epidemic threshold

Betweenness Centralization

Day Final Cumulative Number Infected
Graphs Above Epidemic Threshold

Order Cent Quartile n
Random First Most Central First
Mean SD Mean SD

5

Low 1999 5.64 0.66 5.57 0.48
Low-Mod 1147 5.94 0.33 5.72 0.28
Mod-High 937 5.78 0.33 5.49 0.25

High 1016 5.42 0.35 5.05 0.26

10

Low 1630 7.75 0.90 7.75 0.74
Low-Mod 2376 7.86 0.74 7.70 0.71
Mod-High 1217 7.72 0.51 7.49 0.41

High 1840 6.52 0.61 6.23 0.55

15

Low 1263 9.14 1.22 9.35 0.99
Low-Mod 3385 8.90 1.07 8.93 0.98
Mod-High 1616 8.76 1.08 8.66 1.04

High 2488 7.22 0.93 7.03 0.89

20

Low 922 10.17 1.26 10.73 1.06
Low-Mod 3834 9.83 1.20 10.11 1.10
Mod-High 2812 9.01 1.28 9.04 1.23

High 2107 7.42 1.18 7.28 1.18

25

Low 416 11.32 1.34 12.23 0.98
Low-Mod 4153 10.32 1.43 10.80 1.41
Mod-High 3916 9.34 1.44 9.48 1.43

High 2053 7.63 1.40 7.54 1.43

30

Low 162 12.84 1.23 13.83 0.94
Low-Mod 3308 11.38 1.33 12.06 1.21
Mod-High 5928 9.67 1.58 9.92 1.62

High 1838 7.84 1.69 7.83 1.80

35

Low 74 14.19 1.05 15.19 0.80
Low-Mod 1219 12.87 1.07 13.73 0.91
Mod-High 6183 10.51 1.71 10.90 1.77

High 2044 7.73 1.72 7.73 1.78

40

Low 0 NA NA NA NA
Low-Mod 37 13.94 1.35 14.50 1.63
Mod-High 474 13.05 0.90 13.23 1.05

High 1500 7.46 1.45 7.42 1.56
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Table 5.30: Parameter estimates from Cox proportional hazards model for day last new
node infected for graphs above the epidemic threshold

Betweenness Centralization

Day Final Cumulative Number Infected
Graphs Above Epidemic Threshold

Parameter Coefficient SE HR p-value
Centralization 3.9507 0.0112 51.9704 < 0.0001

Most Central Node First (ref: Random) -0.4414 0.0087 0.6431 < 0.0001
Order of Largest Component -0.1530 0.0002 0.8581 < 0.0001

Centralization*Most Central Node First 0.6075 0.0150 1.8358 < 0.0001
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5.7 Appendix

5.7.1 Closeness

The results of the analysis of closeness centralization on all the network generated (connected

and disconnected) are described in this section. The number of graphs in each closeness

centralization quartile as well as the total number of graphs generated is shown in Figure 5.5.

The figure also describes the number of graphs above and below the epidemic threshold.

Again, the modified Star Start program produces very few graphs below the epidemic

threshold, especially as graph order increases. Almost all the graphs below the epidemic

threshold are in the low centralization quartile. No graphs below the epidemic threshold

are produced when the graph order is 40. Movie 5.22 illustrates the actual distribution

of closeness centralization values by graph order, regardless of epidemic threshold. The

majority of graphs generated are lowly centralized, with relatively fewer higher centralized

graphs as graph order increases.

Movie 5.23 plots the daily average total number of infected nodes in the largest component

by closeness centralization quartile and epidemic threshold for a random node infected

first. Movie 5.24 plots the daily average total number of infected nodes in the largest

component by closeness centralization quartile and epidemic threshold for the most central

node infected first. Movie 5.25 plots the daily average total number of infected nodes in the

largest component by type of node infected first and epidemic threshold within a closeness

centralization quartile. Similarly, Movies 5.26-5.28 plot the daily average cumulative number

of infected nodes in the largest component by closeness centralization quartile and epidemic

threshold for a random node infected first, for the most central node infected first, and

then by type of node infected first and epidemic threshold within a closeness centralization

quartile. As seen with degree centralization, graphs below the epidemic threshold have much

shorter epidemics with many fewer nodes infected and there is no effect of centralization

quartile. As shown in Movies 5.23 and 5.24, there is a very clear difference in the incidence

curve between the low centralization quartile and the other quartiles, regardless of which

node is infected first. The differences between the upper three quartiles are harder to
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distinguish although a little clearer when a random node is infected first. The incidence

curve has a higher peak and reaches the peak earlier as centralization quartile increases

from low to moderate-high.

Epidemic Duration Table 5.31 describes the average epidemic duration for graphs that

are above the epidemic threshold. As shown in Table 5.31, the duration of the epidemic

lengthens as graph order increases and the epidemic is also longer when the most central

node is infected first compared to a random node infected first. Epidemic duration also

decreases as centralization increases from low-moderate to high levels. The results for

graphs below the epidemic threshold are the same as described for degree and betweenness

centralization. As shown in Table 5.32, all of the variables considered in the linear regression

model are significantly associated (p<0.0001) with epidemic duration. As centralization

increases, epidemic duration decreases although this effect is mitigated when the most

central node is infected first. The adjusted R-squared for the model is 0.6802.

Peak Number Infected Table 5.33 describes the peak number of infected nodes for

graphs that are above the epidemic threshold. As shown in Table 5.33, the peak number

of infected nodes increases as closeness centralization quartile increases when the most

central node is infected first. When a random node is infected first, the peak number

of infected nodes does increase as centralization increases from low to moderate-high and

then decreases when centralization is high. As graph order increases, the peak number

of infected nodes also increases. The results for graphs below the epidemic threshold are

the same as described for degree and betweenness centralization. As shown in Table 5.34,

all of the variables in the linear regression model are significantly associated (p<0.0001)

with number of nodes infected at the peak of the epidemic. Specifically, as centralization

increases the peak number of infected nodes increases. The peak number of infected nodes

is also larger if the most central node is infected first. The adjusted R-squared of the model

is 0.8389.
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Peak Day Table 5.35 describes the average day of the peak number of infected nodes

for graphs that are above the epidemic threshold. As shown in Table 5.35, the day of the

peak occurs earlier when the most central node is infected first, regardless of centralization

quartile and largest component order. For both random node and most central node, the

day of the peak occurs later as centralization increases from low to low-moderate levels and

then changes to come earlier as centralization increases to high levels. As largest component

order increases, the day of the peak occurs later. The results for graphs below the epidemic

threshold are the same as described for degree and betweenness centralization. Parameter

estimates and hazard ratios produced by a Cox proportional hazard model of peak day are

shown in Table 5.36. As shown in the table, increasing centralization increases the risk of

earlier time to peak number of infected nodes.

Cumulative Number Infected Table 5.37 describes the average final cumulative num-

ber of infected nodes for graphs that are above the epidemic threshold. As shown in Table

5.37, when the most central node is infected first the final cumulative number of infected

nodes increases as centralization quartile increases from low to moderate-high although

there is only a very small difference between low-moderate and moderate-high quartiles.

Interestingly, graphs in the highest closeness centralization quartile have a smaller num-

ber of nodes infected than the graphs in the low-moderate quartile. A similar pattern is

produced when a random node is infected first, although the difference between low and

low-moderate quartiles is much larger. At all centralization levels and graph orders, in-

fecting the most central node first produces a larger cumulative number of infected nodes

than when a random node is infected first. Final cumulative number of infected nodes

increases as largest component order increases regardless of centralization level or which

node was infected first. The results for graphs below the epidemic threshold are the same

as described for degree and betweenness centralization. As shown in Table 5.38, all of the

variables in the linear regression model are significantly associated (p<0.0001) with final

cumulative number of infected nodes. The adjusted R-squared of the model is 0.8778. The

final cumulative number of nodes infected is much larger when the most central node is

infected first.
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Day Final Number Infected Table 5.39 describes the day that the final cumulative

number of infected nodes was reached for graphs that are above the epidemic threshold. As

shown in Table 5.39, the day of the last new infection occurs later as centralization quartile

increases from low to low-moderate and the occurs earlier as centralization increases to

high levels, regardless of which node is infected first. There is a very large difference in

the day that the final new node is infected between high closeness centralization quartile

and all of the other quartiles. The day when no new nodes are infected increases slightly as

graph order increases. There is very little difference between random and most central node

infected first. The results for graphs below the epidemic threshold are the same as described

for degree and betweenness centralization. As shown in Table 5.40, all of the variables in

the Cox proportional hazard model are significantly associated (p<0.0001) with day of last

new infection. As centralization increases, the risk of a shorter time to day of last new

infection increases.

5.7.2 Figures, Movies, Tables

Closeness

Figure 5.5: Number of graphs generated by closeness centralization category

Movie 5.22. Distribution of closeness centralization values produced by the modified Star

Start program for graphs of order 5-40 nodes.
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(Loading Video...)

Movie 5.23. Daily average total number of infected nodes in the largest component by

closeness centralization quartile with random node infected first for graphs of order 5-40,

probability of transmission 0.3 and probability of recovery 0.2.

(Loading Video...)

Movie 5.24. Daily average total number of infected nodes in the largest component by

closeness centralization quartile with most central node infected first for graphs of order

5-40, probability of transmission 0.3 and probability of recovery 0.2.
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(Loading Video...)

Movie 5.25. Daily average total number of infected nodes in the largest component by

closeness centralization quartile and type of node infected first for graphs of order 5-40,

probability of transmission 0.3 and probability of recovery 0.2.

(Loading Video...)

Movie 5.26. Daily average cumulative number of infected nodes in the largest component

by closeness centralization quartile with random node infected first for graphs of order 5-40,

probability of transmission 0.3 and probability of recovery 0.2.
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(Loading Video...)

Movie 5.27. Daily average cumulative number of infected nodes in the largest component

by closeness centralization quartile with most central node infected first for graphs of order

5-40, probability of transmission 0.3 and probability of recovery 0.2.

(Loading Video...)

Movie 5.28. Daily average cumulative number of infected nodes in the largest component

by closeness centralization quartile and type of node infected first for graphs of order 5-40,

probability of transmission 0.3 and probability of recovery 0.2.
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(Loading Video...)
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Table 5.31: Average epidemic duration by closeness centralization quartile and largest com-
ponent order for graphs above the epidemic threshold

Closeness Centralization

Epidemic Duration
Graphs Above Epidemic Threshold

Order Cent Quartile n
Random First Most Central First
Mean SD Mean SD

5

Low 1477 11.34 1.67 11.83 1.13
Low-Mod 1190 11.77 1.07 12.11 0.91
Mod-High 963 11.59 1.10 12.01 0.86

High 1469 11.21 0.90 11.79 0.71

10

Low 1738 13.61 1.68 14.88 1.20
Low-Mod 2031 15.18 1.35 16.01 1.05
Mod-High 1435 14.90 1.34 15.88 0.91

High 1859 13.53 1.21 15.03 0.82

15

Low 3264 15.31 1.63 17.20 1.08
Low-Mod 1791 17.37 1.46 18.66 1.00
Mod-High 1534 16.72 1.44 18.17 0.93

High 2163 14.83 1.29 16.90 0.85

20

Low 5412 16.59 1.67 18.95 1.13
Low-Mod 1299 18.78 1.47 20.53 0.96
Mod-High 1176 18.36 1.47 19.96 0.85

High 1788 15.49 1.23 18.04 0.76

25

Low 7264 17.54 1.72 20.24 1.17
Low-Mod 724 20.03 1.65 21.95 1.01
Mod-High 792 19.38 1.51 21.29 0.90

High 1758 16.18 1.42 19.05 0.84

30

Low 8495 18.41 1.82 21.31 1.26
Low-Mod 621 20.92 1.74 23.14 1.03
Mod-High 656 20.00 1.66 22.21 0.97

High 1464 16.54 1.25 19.77 0.77

35

Low 7041 19.28 1.96 22.30 1.41
Low-Mod 455 21.66 1.45 24.20 0.84
Mod-High 547 21.03 1.61 23.19 0.98

High 1477 16.91 1.25 20.41 0.73

40

Low 4 22.23 0.92 26.05 0.13
Low-Mod 282 22.55 1.42 25.09 0.87
Mod-High 332 22.10 1.64 24.18 0.93

High 1393 17.26 1.22 20.96 0.73

167



Table 5.32: Parameter estimates from Cox proportional hazards model for epidemic dura-
tion for graphs above the epidemic threshold

Closeness Centralization

Epidemic Duration
Graphs Above Epidemic Threshold

Parameter Coefficient SE HR p-value
Centralization 0.0880 0.0113 1.0920 < 0.0001

Most Central Node First (ref: Random) -1.1855 0.0040 0.3056 < 0.0001
Order of Largest Component -0.1498 0.0002 0.8609 < 0.0001

Centralization*Most Central Node First 0.5288 0.0150 1.6969 < 0.0001
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Table 5.33: Average day of peak number of infected nodes by closeness centralization quar-
tile and largest component order for graphs above the epidemic threshold

Closeness Centralization

Peak Number Infected
Graphs Above Epidemic Threshold

Order Cent Quartile n
Random First Most Central First
Mean SD Mean SD

5

Low 1477 2.74 0.58 2.97 0.45
Low-Mod 1190 2.87 0.42 3.07 0.38
Mod-High 963 2.79 0.38 3.05 0.33

High 1469 2.70 0.21 3.07 0.17

10

Low 1738 3.80 0.79 4.57 0.75
Low-Mod 2031 4.58 0.85 5.21 0.76
Mod-High 1435 4.66 0.76 5.47 0.62

High 1859 4.36 0.46 5.44 0.34

15

Low 3264 5.11 0.93 6.54 1.00
Low-Mod 1791 6.09 1.07 7.20 0.96
Mod-High 1534 6.21 0.94 7.58 0.77

High 2163 5.98 0.56 7.77 0.41

20

Low 5412 6.45 1.20 8.48 1.31
Low-Mod 1299 7.51 1.36 9.14 1.22
Mod-High 1176 8.10 1.18 9.94 0.94

High 1788 7.52 0.62 10.03 0.42

25

Low 7264 7.94 1.49 10.58 1.61
Low-Mod 724 8.84 1.82 10.90 1.61
Mod-High 792 9.63 1.33 12.02 1.08

High 1758 9.21 0.91 12.43 0.60

30

Low 8495 9.51 1.65 12.76 1.77
Low-Mod 621 10.20 1.94 12.72 1.70
Mod-High 656 10.86 1.42 13.78 1.11

High 1464 10.71 0.85 14.70 0.53

35

Low 7041 11.24 1.80 15.04 1.91
Low-Mod 455 11.38 1.86 14.45 1.59
Mod-High 547 12.47 1.47 15.78 1.17

High 1477 12.25 0.95 16.96 0.54

40

Low 4 10.85 0.56 13.82 0.42
Low-Mod 282 13.38 2.13 16.84 1.90
Mod-High 332 15.16 1.91 18.86 1.45

High 1393 13.85 1.01 19.27 0.56
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Table 5.34: Parameter estimates from linear regression model for peak number of infected
nodes for graphs above the epidemic threshold

Closeness Centralization

Peak Number of Infected Nodes
Graphs Above Epidemic Threshold

Parameter Estimate SE p-value
Intercept -1.0234 0.0071 < 0.0001

Centralization 2.0336 0.0138 < 0.0001
Most Central Node First (ref: Random) 2.5799 0.0055 < 0.0001

Order of Largest Component 0.3655 0.0002 < 0.0001
Centralization*Most Central Node First -0.2068 0.0195 < 0.0001
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Table 5.35: Average day of peak number of infected nodes by closeness centralization quar-
tile and largest component order for graphs above the epidemic threshold

Closeness Centralization

Day Peak Number Infected
Graphs Above Epidemic Threshold

Order Cent Quartile n
Random First Most Central First
Mean SD Mean SD

5

Low 1477 4.48 0.51 4.32 0.36
Low-Mod 1190 4.62 0.24 4.44 0.20
Mod-High 963 4.60 0.25 4.28 0.24

High 1469 4.51 0.26 4.03 0.23

10

Low 1738 5.52 0.58 5.09 0.56
Low-Mod 2031 5.92 0.37 5.50 0.32
Mod-High 1435 5.74 0.35 5.06 0.28

High 1859 5.16 0.38 4.43 0.25

15

Low 3264 6.02 0.68 5.35 0.67
Low-Mod 1791 6.75 0.46 6.13 0.40
Mod-High 1534 6.31 0.45 5.43 0.36

High 2163 5.39 0.43 4.59 0.26

20

Low 5412 6.36 0.75 5.56 0.77
Low-Mod 1299 7.23 0.53 6.49 0.49
Mod-High 1176 6.71 0.48 5.69 0.37

High 1788 5.38 0.40 4.58 0.22

25

Low 7264 6.49 0.83 5.61 0.83
Low-Mod 724 7.67 0.59 6.75 0.52
Mod-High 792 6.96 0.53 5.88 0.43

High 1758 5.42 0.43 4.61 0.23

30

Low 8495 6.62 0.93 5.65 0.89
Low-Mod 621 7.92 0.62 6.91 0.60
Mod-High 656 7.09 0.60 5.90 0.46

High 1464 5.38 0.37 4.60 0.17

35

Low 7041 6.75 1.04 5.73 0.97
Low-Mod 455 8.10 0.54 7.06 0.48
Mod-High 547 7.36 0.62 6.11 0.50

High 1477 5.38 0.35 4.60 0.16

40

Low 4 8.76 0.31 7.99 0.35
Low-Mod 282 8.29 0.63 7.12 0.57
Mod-High 332 7.50 0.57 6.21 0.44

High 1393 5.38 0.32 4.61 0.15
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Table 5.36: Parameter estimates from Cox proportional hazards model for day peak number
infected for graphs above the epidemic threshold

Closeness Centralization

Day Peak Number Infected
Graphs Above Epidemic Threshold

Parameter Coefficient SE HR p-value
Centralization 1.0383 0.0101 2.8244 < 0.0001

Most Central Node First (ref: Random) 0.7461 0.0039 2.1087 < 0.0001
Order of Largest Component -0.0484 0.0002 0.9527 < 0.0001

Centralization*Most Central Node First 0.6788 0.0145 1.9715 < 0.0001
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Table 5.37: Average final cumulative number infected nodes by closeness centralization
quartile and largest component order for graphs above the epidemic threshold

Closeness Centralization

Final Cumulative Number Infected
Graphs Above Epidemic Threshold

Order Cent Quartile n
Random First Most Central First
Mean SD Mean SD

5

Low 1477 3.60 0.80 3.88 0.61
Low-Mod 1190 3.83 0.54 4.04 0.47
Mod-High 963 3.70 0.53 3.99 0.43

High 1469 3.52 0.32 3.93 0.23

10

Low 1738 5.73 1.23 6.81 1.06
Low-Mod 2031 7.09 1.20 7.91 1.01
Mod-High 1435 7.02 1.11 8.04 0.84

High 1859 6.15 0.77 7.52 0.53

15

Low 3264 8.16 1.43 10.28 1.28
Low-Mod 1791 10.27 1.67 11.90 1.37
Mod-High 1534 9.98 1.50 11.89 1.14

High 2163 8.68 1.02 11.09 0.73

20

Low 5412 10.68 1.80 13.83 1.65
Low-Mod 1299 13.29 2.13 15.86 1.71
Mod-High 1176 13.48 1.88 16.19 1.36

High 1788 10.92 1.12 14.42 0.77

25

Low 7264 13.32 2.18 17.52 1.90
Low-Mod 724 16.27 2.93 19.70 2.33
Mod-High 792 16.49 2.23 20.19 1.66

High 1758 13.46 1.67 17.99 1.19

30

Low 8495 16.15 2.41 21.40 1.99
Low-Mod 621 19.28 3.34 23.73 2.63
Mod-High 656 19.08 2.62 23.79 1.94

High 1464 15.62 1.53 21.28 1.08

35

Low 7041 19.30 2.70 25.54 2.10
Low-Mod 455 21.97 2.95 27.60 2.15
Mod-High 547 22.38 2.69 27.89 2.01

High 1477 17.89 1.66 24.61 1.09

40

Low 4 22.87 0.99 29.91 0.48
Low-Mod 282 25.97 3.35 32.36 2.36
Mod-High 332 27.25 3.38 33.43 2.37

High 1393 20.23 1.75 27.98 1.17
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Table 5.38: Parameter estimates from linear regression model for final cumulative number
of infected nodes for graphs above the epidemic threshold

Closeness Centralization

Final Cumulative Number of Infected Nodes
Graphs Above Epidemic Threshold

Parameter Estimate SE p-value
Intercept -2.2487 0.0104 < 0.0001

Centralization 1.5814 0.0205 < 0.0001
Most Central Node First (ref: Random) 4.1574 0.0081 < 0.0001

Order of Largest Component 0.6421 0.0003 < 0.0001
Centralization*Most Central Node First -0.9767 0.0289 < 0.0001
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Table 5.39: Average day final cumulative number of nodes infected by closeness centraliza-
tion quartile and largest component order for graphs above the epidemic threshold

Closeness Centralization

Day Final Cumulative Number Infected
Graphs Above Epidemic Threshold

Order Cent Quartile n
Random First Most Central First
Mean SD Mean SD

5

Low 1477 5.60 0.75 5.55 0.54
Low-Mod 1190 5.87 0.33 5.76 0.28
Mod-High 963 5.81 0.33 5.57 0.28

High 1469 5.56 0.39 5.18 0.32

10

Low 1738 7.42 0.93 7.44 0.85
Low-Mod 2031 8.10 0.57 8.02 0.50
Mod-High 1435 7.74 0.54 7.47 0.45

High 1859 6.58 0.67 6.26 0.58

15

Low 3264 8.41 1.16 8.54 1.13
Low-Mod 1791 9.67 0.71 9.68 0.60
Mod-High 1534 8.95 0.73 8.80 0.56

High 2163 7.08 0.88 6.85 0.81

20

Low 5412 9.20 1.29 9.49 1.34
Low-Mod 1299 10.72 0.83 10.93 0.74
Mod-High 1176 9.91 0.78 9.78 0.65

High 1788 7.09 0.90 6.93 0.87

25

Low 7264 9.67 1.49 10.06 1.61
Low-Mod 724 11.65 0.96 11.90 0.85
Mod-High 792 10.61 0.86 10.61 0.70

High 1758 7.22 1.03 7.09 0.97

30

Low 8495 10.13 1.68 10.56 1.82
Low-Mod 621 12.32 0.99 12.68 0.84
Mod-High 656 11.18 1.01 11.31 0.77

High 1464 7.14 0.95 7.04 0.94

35

Low 7041 10.60 1.94 11.06 2.11
Low-Mod 455 12.90 0.93 13.47 0.90
Mod-High 547 11.89 1.02 12.00 0.85

High 1477 7.16 0.93 7.11 0.94

40

Low 4 14.09 0.83 15.99 0.16
Low-Mod 282 13.47 1.00 13.94 1.03
Mod-High 332 12.31 0.94 12.33 0.75

High 1393 7.14 0.89 7.07 0.93
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Table 5.40: Parameter estimates from Cox proportional hazards model for day final cumu-
lative number infected for graphs above the epidemic threshold

Closeness Centralization

Day Final Cumulative Number Infected
Graphs Above Epidemic Threshold

Parameter Coefficient SE HR p-value
Centralization 1.2190 0.0107 3.3837 < 0.0001

Most Central Node First (ref: Random) -0.2448 0.0038 0.7829 < 0.0001
Order of Largest Component -0.0943 0.0002 0.9100 < 0.0001

Centralization*Most Central Node First 0.6204 0.0146 1.8597 < 0.0001
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Other Analytic Approaches

Figure 5.6: Parameter estimates from two GEE models predicting total number of nodes
infected in the full network by closeness centralization quartile for 5 node graph.

Figure 5.7: Parameter estimates from GEE model predicting total number of nodes infected
in the full network by degree centralization quartile for graphs of order 5-15

Other Infection Parameters

Movie 5.29. Daily average total number of infected nodes in the largest component by

degree centralization quartile with random node infected first for 30 node graph, probability

of recovery 0.2, and probability of transmission between 0.7 and 0.9.
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(Loading Video...)

Movie 5.30. Daily average total number of infected nodes in the largest component by degree

centralization quartile with most central node infected first for 30 node graph, probability

of recovery 0.2, and probability of transmission between 0.7 and 0.9.

(Loading Video...)

Movie 5.31. Daily average total number of infected nodes in the largest component by

degree centralization quartile and type of node infected first for 30 node graph, probability

of recovery 0.2, and probability of transmission between 0.7 and 0.9.
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(Loading Video...)

Movie 5.32. Daily average cumulative number of infected nodes in the largest component by

degree centralization quartile with random node infected first for 30 node graph, probability

of recovery 0.2, and probability of transmission between 0.7 and 0.9.

(Loading Video...)

Movie 5.33. Daily average cumulative number of infected nodes in the largest component

by degree centralization quartile with most central node infected first for 30 node graph,

probability of recovery 0.2, and probability of transmission between 0.7 and 0.9.
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(Loading Video...)

Movie 5.34. Daily average cumulative number of infected nodes in the largest component by

degree centralization quartile and type of node infected first for 30 node graph, probability

of recovery 0.2, and probability of transmission between 0.7 and 0.9.

(Loading Video...)
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Part V

Conclusion
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Chapter 6

Conclusion

Network science can aid in understanding the structure of the world around us. Network

science concepts are particularly useful in providing insight into public health issues. For

example, node centrality is commonly reported for public health networks to describe the

relative importance of individuals based on their location in the network. Frequently used

measures of centrality are closeness, betweenness, and degree. Closeness can be considered

as a measure of node independence or efficiency of information transfer. Betweenness can

be considered as a measure of node control. Lastly, degree is a measure of the number of

direct contacts of a node.

The centrality measures of closeness, betweenness, and degree can be extended to central-

ization. The concept of centralization, or how much one node could dominate a network,

seems intuitively important in public health networks. One node dominates all of the other

nodes while in decentralized networks all nodes are equivalent. Highly centralized net-

works could be ideal for more rapid transmission of infections than decentralized networks.

Unfortunately, very little research into centralization has been conducted. As a result,

centralization is not commonly used to describe networks in the scientific literature. This

program of research aimed to explore the properties of centralization and how it might be

important in public health networks.

An examination of common graph-generating mechanisms found that none of the methods
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currently used, including Erdös-Rènyi Gnm random, Barabási-Albert preferential attach-

ment, small world, and two node preferential attachment produce graphs along the full

range of centralization values and with a variety graph structures. This limitation of estab-

lished graph-generating methods stimulated the development of the Star Start program. As

shown in Chapter 3, the Star Start method successfully produces graphs along the full range

of centralization values and a wide variety of graph structures. As a result, the Star Start

method is the ideal method to generate graphs for examination of centralization properties

and to evaluate whether centralization could be important in disease spread networks. An

examination of centralization properties was described in Chapter 4. Unfortunately, cen-

tralization is not clearly associated with summary centrality measures, such as maximum

centrality or average centrality, that are easily calculated by common network software.

Additionally, there is not a strong correlation between the three centralization measures

examined. Chapter 5 examined SIR models in networks produced using a modified version

of the Star Start program that made it slightly more likely to produce centralized graphs.

This research clearly shows that centralization is associated with key epidemiologic end-

points like peak number of infected nodes, cumulative number of infected nodes, and day

that the peak number of nodes are infected.

Results of this research suggest that for the graph generating methods considered, low to

moderate centralization levels are most commonly produced. Although highly centralized

graphs are very unlikely to occur randomly, they have a profound impact on the course of

an epidemic. Unfortunately, the distribution of centralization values for real networks is

unknown since centralization is not commonly reported in the scientific literature. Further-

more, the forces that shape real networks are not well understood and there may be factors

encouraging real networks to be more centralized than would be expected. Thus, a graph

generating method that reliably produces highly centralized graphs, such as Star Start, can

be used to investigate the influence of centralization on public health networks.
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Chapter 7

A New Method for Creating

Centralized Graphs: Star Start

7.1 Introduction

There are many different graph generating methods in the literature. The majority of these

different methods aim to produce graphs with certain properties. For example, the small

world method produces graphs with a high clustering coefficient and a short path length.[90]

Barabási-Albert preferential attachment method produces graphs with a power law distribu-

tion for node degree.[87, 88] Erdös-Rènyi Gnm method randomly places edges in an empty

graph and as a result produces a range of graph structures that are all equally likely.[86]

However, if the interest is in producing graphs with the full range of centralization values

and a range of graph structures these methods are inadequate. It has previously been shown

that the small world method does not produce highly centralized graphs, Barabási-Albert

preferential attachment method produces highly centralized graphs but with a limited range

of structures.[97] Erdös-Rènyi Gnm random graphs do produce graphs with the full range

of centralization values but doing so requires a very, very large number of graphs for even

small graph orders.[149]

The Star Start program was designed to overcome these limitations by randomly sampling
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from the range of possible Erdös-Rènyi Gnm random graphs. In this way, Star Start

provides an alternative method for generating graphs with the full range of centralization

values that is efficient. Furthermore, the Star Start program can be used to approximate

Erdös-Rènyi Gnm random graphs so that inferences can be drawn.[149] Lastly, the Star

Start program can be modified so that large numbers of moderate to highly centralized

graphs are produced by limiting the number of graph changes that are allowed.

7.2 Star Start Program

The Star Start program begins by creating a complete graph (g0) with the user-specified

number of nodes, n. The edgelist of the complete graph is computed. Note, that this

edgelist is the list of all possible edges that could be added to an empty graph with n nodes.

The list contains n(n−1)
2 unique edges. Next, a star graph (g1) with the n nodes is created.

The edgelist of the star graph is computed (the Delete List) and compared to the edgelist

of the complete graph so that a list of edges not in the star graph is produced (the Add

List). Additionally, measurements of any graph and node properties of interest are taken

(Star Start was originally designed to compute relative closeness, betweenness, and degree

centrality and centralization[6], but other measures could be computed). A random number

between 0 and 1 is generated. If the random number is > 0.5, an edge from the Delete List is

randomly chosen and deleted from the graph. If the random number is ≤ 0.5, an edge from

the Add List is randomly selected and added to the graph. In this way, the structure of the

next graph, g2, is completely random and also prevents loops or multiple edges from being

created. Again, graph and node property measurements are taken of the new graph as well

a new list of edges that are not in the current graph. The process of randomly adding or

deleting edges is continued until the graph is complete (contains all possible edges) or empty

(contains no edges). As described here, there is no restriction on connectedness although

the method can be adapted to meet such a restriction. The program reruns the Star Start

method for a specified number of iterations.

The program outputs several different comma delimited files for the user to subsequently
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analyze. Summary information as well as the actual centrality and centralization values

for all graphs produced is output. The summary information includes minimum, mean,

maximum centrality and number of graphs that fell into a particular centralization bin.

The converse file with centrality binned is also produced. Another file records all of the

unique maximum centrality values that fall into a particular centralization bin. The actual

centrality and centralization value files distinguish different iterations of the programs in

separate columns.

The program was developed in R version 2.15.1 [73] using the igraph version 0.6.2package

[72].

7.3 Methods

As discussed in Chapter 3: Centralization in Various Graph Generating Methods, Star Start

and Two Node Preferential Attachment both generate the full range of centralization values

and graph structures.[97] In order to compare the utility of the Star Start Program with

Two Node Preferential Attachment method in producing graphs with high centralization

values, graphs were produced using both methods and the Freeman relative centrality and

centralization measures for closeness, betweenness, and degree were computed for each

graph.[6]

Closeness Intuitively, closeness between two nodes is simply a count of how many edges

connect one particular node to another node in the graph. Let d(ni, nj) be the number of

edges in the geodesic between node ni and node nj . By convention, if node ni and node

nj are not connected by any edges, then d (ni, nj) = ∞. Of course, the number of edges

between node ni and itself is 0, so d(ni, ni) = 0. Then the relative closeness centrality

(called closeness centrality from here forward) of node ni (in a connected graph) is defined

as C ′c (ni) =
[∑n

j=1 d(ni,nj)

n−1

]−1
= n−1∑n

j=1 d(ni,nj)
. By definition, closeness centrality can only

be computed for a connected graph (where each node is connected by at least one edge).

However, igraph package in R substitutes n for ∞ in the case of disconnected nodes so all
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nodes have closeness centrality values. Consequently, for this paper closeness centrality is

computed for all graphs, connected or disconnected.

Relative closeness centralization (called closeness centralization from here forward) is: Cc =∑n
i=1 [C

′
c(n∗)−C′c(ni)]

(n2−3n+2)�(2n−3)

, where C ′c (n∗) is the maximum closeness centrality of the observed

graph. Given this formula, it is clear that a centralization of 0 is obtained by a graph where

all nodes are equal (ex: ring graph, empty graph, complete graph).

Betweenness Any nodes on the geodesic connecting two nodes are said to be between

them. Betweenness centrality measures how often a node is between other nodes. CB (nk) =
n∑
i

n∑
<j
bij (nk) where bij (nk) =

gij(nk)
gij

is the number of geodesics connecting ni and nj

that contain nk and gij is the total number of geodesics connecting ni and nj . Since the

center point in a star graph obtains the maximum value, relative betweenness centrality

(betweenness centrality) is defined as: C ′B (nk) = 2∗CB(nk)
n2−3n+2

.

Relative betweenness centralization (betweenness centralization) is calculated as: CB =
n∑

i=1
[C′B(n∗)−C′B(ni)]

n−1 where C ′B (n∗) is the maximum betweenness centrality of the observed

graph.

Degree The number of edges connected to a node is the degree of the node. Degree

centrality is defined as: CD (nk) =
∑n

i=1 a (ni, nk) and relative degree centrality (degree

centrality) is defined as: C ′D (nk) =
∑n

i=1 a(ni,nk)
n−1 where

a (ni, nk) =

1, iff edge between ni and nk

0, otherwise
.

Relative degree centralization (degree centralization) is calculated as:

CD =

n∑
i=1

[CD(n∗)−CD(ni)]

n2−3n+2
where CD (n∗) is the maximum degree centrality of the observed

graph.

Two Node Type Preferential Attachment Heterogeneity in preference for forming

edges between nodes of different types is used to understand the importance of node com-

munities in a larger network and is the basis for homophily, or the idea that similar nodes
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will link to each other.[91] In this method, nodes are randomly divided into a set number of

types that link to each other with different probabilities. This paper investigated an equal

probability of being either of two node types. The probability of a link forming between two

nodes of the same type was p1 and the probability of two nodes of different types forming a

link was p2. Both p1 and p2 ranged from 0 to 1 in increments of 0.01 and all combinations

of p1 and p2 were tried. For each combination of values, 500 graphs were produced and

the three measures of centrality and centralization calculated. Thus, 10,201 probability

combinations were computed with 500 graphs produced for each combination. Note that

two node type preferential attachment graphs are not required to be connected. Unlike the

static version used here, most versions of node type preferential attachment add nodes and

edges over time.[92, 93, 91]

Star Start The Star Start method was implemented as described above for 500 iterations.

All three measures of centrality and centralization were taken for each update of g. Note

that the number of graphs in each iteration is not fixed and as a result the a fixed number

of iterations of the Star Start program produces a variable number of graphs.

7.4 Results

The Star Start program runs reasonably well for graphs of order 5 through 20 and 500

iterations. The program easily runs on a personal computer for graphs up to 10 nodes but

thereafter memory problems occur due to the large number of graphs produced. Unfor-

tunately, CPU time was not captured by the program for each graph order although the

actual length of time for the program to run on a high performance computer cluster was

recorded. Figure 7.1 describes the length in minutes of the actual computing time.

Figure 7.2 describes the total number of graphs produced by the program for 500 iterations

at each graph order as well as the minimum, mean, and maximum number of graphs pro-

duced in a single iteration. As shown in the table, the number of graphs produced increases

as graph order increases. Figure 7.3 describes the number of graphs that exited an iteration
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as either complete (fully connected) or empty (fully disconnected) by graph order.

As discussed in Chapter 3: Centralization in Various Graph Generating Methods, Star Start

and Two Node Type Preferential Attachment both generate the full range of centralization

values and graph structures.[97] As shown in Movies 7.1-7.3, the distribution of graphs into

four centralization categories (called low, low-moderate, moderate-high, and high) based

on centralization quartile are similar for both Two Node Type Preferential Attachment

and Start Start. Further comparison of the these two programs suggests that the Star

Start program can more efficiently produce many graphs of moderate to high centralization

values. As shown in Figures 7.4-.6, a relatively small number of graph changes captures

the majority of moderate to high centralization values. The results suggest that for all

three centralization measures, the maximum number of graph changes can be set to be

2 ∗ n, where n is number of nodes, in order to capture more than 50% of graphs with

centralization ≥ 0.3. Figures 7.7-.9 illustrate the top five combinations of node attachment

probabilities for the Two Node Type Preferential Attachment model that generate the

highest percentage of highly centralized graphs for graphs of order 5-8. As shown in the

tables, certain combinations of node attachment probabilities are more likely to produce

highly centralized graphs across graph order. However, none of these combinations produce

highly centralized graphs more than 40% of the time and the probability of producing a

highly centralized graph decreases as graph order increases.

7.5 Discussion

As described previously, the Star Start program produces most of the full range of cen-

tralization values for closeness, betweenness, and degree centralization (see [97]). Also, in

order to complete a Star Start iteration, either a minimum of n− 1 edges must be removed

from the star graph to create an empty graph or a minimum of (n−1)(n−2)
2 edges must be

added to the star graph to create a complete graph.[97] The minimum number of graphs

information in Table 1 confirms that the program is working according to design. The fact

that fewer steps are required to exit the iteration through creating an empty graph is clearly
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illustrated by the increasing number of empty graphs as graph order increases.

Although the number of graphs produced for Star Start is quite large, it is much less than

the 2
n(n−2)

2 graphs that would be required to produce the distribution of centralization

according to Erdös-Rènyi Gnm random graphs for a set number of nodes (see [149] for a

comparison of the graph numbers required for graphs of order 5-8).

A comparison of the utility of the Star Start program and Two Node Type Preferential

Attachment in producing highly centralized graphs suggests that with some modification,

the Star Start program can easily produce large numbers of highly centralized graphs.

Unlike the Two Node Type Preferential Attachment method which produces graphs based

on node linkage probabilities, the Star Start program starts with the most centralized graph

(a star graph) and with each step produces a new graph by adding or deleting an edge. In

this way, the number of graph changes for each Star Start iteration can be limited to

obtain large numbers of highly centralized graphs without also producing large numbers of

low centralization graphs. Unfortunately, even when the combinations of node attachment

probabilities that are most likely to produce highly centralized graphs are used, the vast

majority of those graphs have low centralization.

7.6 Conclusion

The Star Start program provides a new method to produce graphs that span most of the full

range centralization values for graphs of order 5-20. Additionally, the Star Start program

provides a reasonable alternative to computing a large number of Erdös-Rènyi Gnm random

graphs for inference purposes. Lastly, the Star Start program provides an efficient way to

generate large numbers of highly centralized graphs.

7.7 Figures, Movies
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Figure 7.1: Figure 1. Actual computing time for Star Start program by graph order

Figure 7.2: Number of graphs produced by the Star Start program by graph order
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Figure 7.3: Number of graphs with either empty or complete structure at the end of a Star
Start iteration by graph order
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Movie 7.1. Closeness centralization quartile for Star Start and Two Node Preferential

Attachment obtained for graphs of order 5-20 nodes.

(Loading Video...)

Movie 7.2. Betweenness centralization quartile for Star Start and Two Node Preferential

Attachment obtained for graphs of order 5-20 nodes.

(Loading Video...)

Movie 7.3. Degree centralization quartile for Star Start and Two Node Preferential Attach-

ment obtained for graphs of order 5-20 nodes.
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(Loading Video...)

Figure 7.4: Maximum number of graph changes required to produce at least 50% of graphs
with closeness centralizations ≥ a specified level

Figure 7.5: Maximum number of graph changes required to produce at least 50% of graphs
with betweenness centralizations ≥ a specified level
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Figure 7.6: Maximum number of graph changes required to produce at least 50% of graphs
with degree centralizations ≥ a specified level

Figure 7.7: Top five combinations of node attachment probabilities for the Two Node Type
Preferential Attachment model that produce the highest percentage of graphs with high
closeness centralization for graphs of order 5-8 nodes

Figure 7.8: Top five combinations of node attachment probabilities for the Two Node Type
Preferential Attachment model that produce the highest percentage of graphs with high
betweenness centralization for graphs of order 5-8 nodes
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Figure 7.9: Top five combinations of node attachment probabilities for the Two Node Type
Preferential Attachment model that produce the highest percentage of graphs with high
degree centralization for graphs of order 5-8 nodes

7.8 Program

This is the main Star Start program.

AddMinStar4=function(ver,rep)

# ver is number of vertices for the initial star graph

# rep is number of iterations

# type is "closeness", "betweeess", "degree"

{

library(igraph)

if(!exists("matrixFromList.R")){

source("C:/Users/Christina/NetworkResearch/matrixFromList.R")}

if(!exists("gprop3.R")){

source("C:/Users/Christina/NetworkResearch/gprop3.R")}

# need lists here since do not know how long vectors will be

CClose=list() # capture maximum vertex closeness centrality information

CVClose=list() # capture all vertex closeness centralization information

CCentral=list() # capture network closeness centralization information
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BClose=list() # capture maximum vertex betweenness centrality information

BVClose=list() # capture all vertex betweenness centrality information

BCentral=list() # capture network betweenness centralization information

DClose=list() # capture maximum vertex degree centrality information

DVClose=list() # capture all vertex degree centrality information

DCentral=list() # capture network degree centralization information

ranlist=list() # want a list to capture all random numbers for each iteration

for (j in 1:rep){ # do this for every iteration

g=list() # need a list to capture the networks

ranlist[[j]]=list() # need a list to capture random numbers

g[[1]]=graph.star(ver,mode="undirected") # starting network is star

e=get.edgelist(graph.full(ver, directed=FALSE, loops=FALSE))

# need edgelist for complete graph for comparison

b=get.edgelist(g[[1]]) # edgelist of first graph set

edge=e[apply(e, 1, function(x)

max( apply(b, 1, function(y)all.equal(x, y,

check.attributes=FALSE)))) != "TRUE",]

i=1

ranlist[[j]][[1]]=NULL

# loop while edgelist has edges to add

while (length(edge) >0 & length(edge)<length(e)){

i=i+1 # update graph number

ranlist[[j]][[i]]=runif(1) # generate random number to decide to add
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#or remove edges

if (ranlist[[j]][[i]]>0.5){ # remove edges

g[[i]]=delete.edges(g[[(i-1)]],

E(g[[i-1]],c(b[c(sample(1:nrow(b),1)),])))

# remove the randomly selected edge

}else if(ranlist[[j]][[i]]<=0.5 & length(edge)!=2){

g[[i]]=add.edges(g[[(i-1)]],edge[sample(1:nrow(edge),1),])

# randomly add edges by choosing two vertices

}else if(ranlist[[j]][[i]]<=0.5 & length(edge)==2){ # add edges

g[[i]]=add.edges(g[[i-1]],edge)}

# randomly add edges by choosing two vertices

b=get.edgelist(g[[i]],names=TRUE)

# need current edgelist to know what

#can be added/removed

# get list of edges that can be added

if (length(b)>2){

edge=e[apply(e, 1, function(x) max( apply(b, 1,

function(y)all.equal(x, y,

check.attributes=FALSE)))) != "TRUE",]

}else if (length(b)==2){

edge=e[as.vector(1-apply(e,1,function(x)

all(x==b,arr.ind=TRUE)),mode="logical"),]

}else{edge=e}

} # end loop for adding/deleting vertices

# CLOSENESS centrality/centralization for the networks produced

#for this iteration
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Close=sapply(g,function(g)

{centralization.closeness(g,mode="all",normalized=TRUE)})

# all closeness values

CCentral[[j]]=as.numeric(Close[2,]) # closeness centralization for each graph

CVClose[[j]]=Close[1,] # vertex closeness centrality

CClose[[j]]=as.numeric(lapply(CVClose[[j]],max))

# maximum vertex closeness centrality

# BETWEENNESS centrality/centralization for the networks produced

#for this iteration

Betw=sapply(g,function(g)

{centralization.betweenness(g,normalized=TRUE)})

# all betweenness values

BCentral[[j]]=as.numeric(Betw[2,]) # betweenness centralization for each graph

BVClose[[j]]=t(sapply(g,function(g){betweenness(g,normalized=TRUE)}))

BClose[[j]]=apply(BVClose[[j]],1,max) # maximum vertex betweenness centrality

# DEGREE centrality/centralization for the networks produced

#for this iteration

Deg=sapply(g,function(g)

{centralization.degree(g,mode="total",loops=FALSE,normalized=TRUE)})

# all degree values

DCentral[[j]]=as.numeric(Deg[2,]) # degree centralization for each graph

DVClose[[j]]=t(sapply(g,function(g)

{degree(g,mode="total",loops=FALSE,normalized=TRUE)}))

DClose[[j]]=apply(DVClose[[j]],1,max)

# save graph information for each repetition in case processing gets interrupted

write.table(t(CCentral[[j]]),
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file=paste("C:/Users/Christina/NetworkResearch/ImpCation",

ver,"close",rep,".txt",sep=""), append=TRUE,sep=",",

row.names=FALSE,col.names=FALSE)

write.table(t(BCentral[[j]]),

file=paste("C:/Users/Christina/NetworkResearch/ImpCation",

ver,"between",rep,".txt",sep=""),append=TRUE,sep=",",

row.names=FALSE,col.names=FALSE)

write.table(t(DCentral[[j]]),

file=paste("C:/Users/Christina/NetworkResearch/ImpCation",

ver,"degree",rep,".txt",sep=""), append=TRUE,sep=",",

row.names=FALSE,col.names=FALSE)

write.table(CVClose[[j]],

file=paste("C:/Users/Christina/NetworkResearch/ImpVerCity",

ver,"close",rep,".txt",sep=""), append=TRUE,sep=",",

row.names=FALSE,col.names=FALSE)

write.table(t(BVClose[[j]]),

file=paste("C:/Users/Christina/NetworkResearch/ImpVerCity",

ver,"between",rep,".txt",sep=""), append=TRUE,sep=",",

row.names=FALSE,col.names=FALSE)

write.table(t(DVClose[[j]]),

file=paste("C:/Users/Christina/NetworkResearch/ImpVerCity",

ver,"degree",rep,".txt",sep=""), append=TRUE,sep=",",

row.names=FALSE,col.names=FALSE)

} # end repetitions loop

gprop3(ver,rep,"closeness",CCentral,CClose)

gprop3(ver,rep,"betweenness",BCentral,BClose)

gprop3(ver,rep,"degree",DCentral,DClose)

} # end the function
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# call the function

AddMinStar4(5,500)

This is the function that is called to produce the summary tables.

gprop3=function(ver,rep,type,AA,BB)

{

# AA is centralization matrix

# BB is centrality matrix

# now need to work with lists and summarize information

# for most things need matrices

mCentral=matrixFromList(AA) # centralization matrix

mClose=matrixFromList(BB) # centrality matrix

mCentral2=apply(mCentral,2,function(x){cut(round(x,digits=7),

breaks=seq(-0.01,1,by=0.01),right=TRUE)})

# categorize centralization matrix into bins

mClose2=apply(mClose,2,function(x){cut(round(x,digits=7),

breaks=seq(-0.01,1,by=0.01),right=TRUE)})

# categorize closeness centrality matrix into bins

# need to round so that the "1" values bin properly. Not sure why

cat=as.vector(cut(seq(-0.01,by=0.01),seq(-0.01,1,by=0.01))[-1])

# create 100 bins for centralization

indx= apply(mCentral2,MARGIN=2, FUN=function(x) {match(x, cat)})

# find the locations of each centralization bin

indx2= apply(mClose2,MARGIN=2, FUN=function(x) {match(x, cat)})

# find the locations of each centrality bin
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# summarize the CENTRALITY information by CENTRALIZATION bin

lClose=list() # create list to store information

for (j in 1:101){ # loop for each centralization bin

lClose[[j]]=mClose[which(indx==j,arr.ind=TRUE)]

# list of all centrality values for a particular cenralization bin

} # end loop

mlClose=t(matrixFromList(lClose)) # create matrix from binned centrality list

graphClose=apply(mlClose,MARGIN=1,unique)

mgraphClose=t(matrixFromList(graphClose))

mgraphClose2=cbind(seq(0,1,by=0.01),mgraphClose)

# need centrality and centralization info to graph

rownames(mlClose)=cat # add row names so know bins

mlClose2=mlClose[!is.na(mlClose[,1]),] # get rid of bins with no information

mgraphClose3=mgraphClose2[!is.na(mgraphClose2[,2]),]

# get rid of bins with no information

colnames(mgraphClose3)=

c("centralization",sprintf("centrality%d",1:(ncol(mgraphClose2)-1)))

# summary information for centrality binned by centralization

CitybyCation=cbind(

apply(mlClose2, MARGIN=1,FUN=function(x) {min(as.numeric(x), na.rm=TRUE)}),

apply(mlClose2, MARGIN=1,FUN=function(x) {mean(as.numeric(x), na.rm=TRUE)}),

apply(mlClose2, MARGIN=1,FUN=function(x) {max(as.numeric(x), na.rm=TRUE)}),

rowSums(!is.na(mlClose2)))

colnames(CitybyCation)=c("min", "mean" ,"max", "n") # column names

# summarize the CENTRALIZATION information by CENTRALITY bin
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lCentral2=list() # create list to store information

for (j in 1:101){ # loop for each centralization bin

lCentral2[[j]]=mCentral[which(indx2==j,arr.ind=TRUE)]

#list of centralization values for a particular centralization bin

} # end loop

mlCentral3=t(matrixFromList(lCentral2))

# create matrix from binned centralization list

rownames(mlCentral3)=cat # add row names so know bins

mlCentral4=mlCentral3[!is.na(mlCentral3[,1]),]

# get rid of bins with no information

# summary information for centralization binned by centralization

CationbyCity=cbind(

apply(mlCentral4, MARGIN=1,FUN=function(x) {min(as.numeric(x), na.rm=TRUE)}),

apply(mlCentral4, MARGIN=1,FUN=function(x) {mean(as.numeric(x), na.rm=TRUE)}),

apply(mlCentral4, MARGIN=1,FUN=function(x) {max(as.numeric(x), na.rm=TRUE)}),

rowSums(!is.na(mlCentral4)))

colnames(CationbyCity)=c("min", "mean" ,"max", "n") # column names

write.table(CitybyCation,paste("C:/Users/Christina/NetworkResearch/ImpAMCitybyCation",

ver,type, rep,".txt",sep=""), sep=",",row.names=TRUE,col.names=TRUE)

write.table(CationbyCity,paste("C:/Users/Christina/NetworkResearch/ImpAMCationbyCity",

ver,type,rep,".txt",sep=""), sep=",",row.names=TRUE,col.names=TRUE)

write.table(mgraphClose3,paste("C:/Users/Christina/NetworkResearch/ImpAMgCity",

ver,type,rep,".txt",sep=""), sep=",",row.names=FALSE,col.names=TRUE)

}
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This is the function that creates a matrix out of a list.

# function to create matrix from list

matrixFromList=function(listX)

{

sapply(listX, function(x, n) c(x, rep(NA, n))[1:n], n = max(sapply(listX, length)))}
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[87] Albert-László Barabási and Réka Albert. “Emergence of scaling in random net-

works”. In: Science 286.5439 (1999), pp. 509–512.
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