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Abstract 
 

Model approaches to evaluating potential mechanisms of parasite diffusion 
By Jessica H. Belle 

 
 

Environmental parasites, including the trematode that causes schistosomiasis, are capable of 
dispersing across a landscape through environmental pathways, in particular hydrological 
networks. Yet our understanding of how environmental dispersion of parasites influences 

patterns of human disease is limited. In this thesis, several conceptualizations of environmental 
dispersion from putative sources of transmission were formulated and tested as to their ability to 
explain patterns of schistosomiasis incidence in Sichuan province, China. The dispersion models 

explored included: Euclidean dispersion; dispersion limited to downstream movement, where 
risk is determined by the nearest source; and dispersion occurring downstream of each source 
with exponentially decreasing likelihood, where the contributions of all upstream sources are 

summed. Each conceptualization of dispersion was used to generate exposure estimates for each 
location across a grid covering Sichuan Province. Statistical models were constructed to examine 

associations between each exposure estimate and the spatial distribution of cases reported to 
China’s National Infectious Disease Reporting system in Sichuan province for the period of 
January 1, 2005 through December 31, 2011. A zero-inflated negative binomial modeling 

framework was used, and model fit was evaluated based on the Akaike information criterion 
(AIC). The models including dispersion of any kind performed better than the model with no 

dispersion. The model including dispersion occurring with exponentially decreasing likelihood 
downstream of each source, with a median dispersal distance of 1,200 m, performed slightly 
better than the other dispersion models based on AIC. However, the differences in the AIC 
values between the different dispersion models were small. The residuals from each of the 

models were also examined for evidence of spatial auto-correlation, however the distributions of 
the residual values were highly skewed, and calculation of a global Moran’s I index was not 
possible. This paper makes methodological contributions to the literature despite the modest 

conclusions drawn, namely through the representation of anisotropic dispersion from a potential 
source in a regression framework where it could be directly related to spatial patterns of disease.  
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1. Introduction 

 China’s national schistosomiasis control program, established in the 1950s, in 

conjunction with a 1992-2001 World Bank initiative, achieved substantial reductions in 

the national burden of morbidity and mortality attributable to schistosomiasis (Spear, 

Seto et al. 2011, Zhang, Zhu et al. 2012). However, concerns have been raised regarding 

the ability of current strategies to effectively move the country from a low transmission 

scenario to disease elimination. This is due to potential re-emergent disease in areas 

where transmission had previously been considered interrupted (Spear, Seto et al. 2011), 

as well as the finding that the World Bank program failed to reduce the spatial 

distribution of disease using a combination of snail control and mass administration of 

praziquantel (Zhang, Zhu et al. 2012, Zhang, Zhu et al. 2012). The re-emergence of 

schistosomiasis, in particular, has raised questions concerning the ability of Schistosoma 

japonicum to diffuse across a landscape into formerly controlled areas (Gurarie and Seto 

2009) (Remais, Akullian et al. 2010). 

 The S. japonicum life cycle involves transmission from a mammalian host to an 

intermediate snail host and back to a mammalian host. The stages infectious to humans 

and snails are aquatic, and the Oncomelania snail is amphibious, spending a large portion 

of its lifespan underwater. Thus, river and irrigation networks determine, in part, the 

spatial distribution of the parasite and its intermediate host, which strongly mediates the 

epidemiology of human disease (Spear, Seto et al. 2004). However, accurately 

distinguishing between areas where risk of infection is present and areas where it is not is 
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challenging. This generally requires large-scale surveys, and becomes increasingly costly 

as the prevalence and infection intensity of human disease falls. Recently, there has been 

interest in identifying environmental factors determining infection risk. These could be 

monitored using satellite imagery, and would allow the use of targeted mapping to 

identify areas where sustained, endemic transmission is likely to occur (Lustigman, 

Prichard et al. 2012) (McManus, Li et al. 2009).  

In Sichuan, individual determinants of disease have been identified, including 

occupational status as a fisherman or farmer (Seto, Lee et al. 2007), age (Seto, Lee et al. 

2007), and education (Spear, Seto et al. 2004). At the village level, other important 

determinants have been identified, including presence of infected bovines and water 

buffalo (Raso, Li et al. 2009), density of snails (Spear, Seto et al. 2004, Seto, Lee et al. 

2007), number of infected snails (Spear, Seto et al. 2004), presence of irrigation channels 

(Maszle, Whitehead et al. 1998, Spear, Seto et al. 2004, Lowe, Xi et al. 2005), application 

of manure to crops, and crop type (Spear, Seto et al. 2004). Many such factors relate to 

water resources and to irrigated agriculture in particular. 

 Yet given a location with the potential to support sustained local transmission, 

additional questions arise as to the possibility of transmission risk radiating away from 

the site, through various dispersion mechanisms. Experimental studies have investigated 

the capability of cercariae and snails to move downstream, finding for instance that a 

small proportion of cercariae can be carried as far as a few kilometers downstream and 

remain viable during transit (Radke, Ritchie et al. 1961). Other work (Maszle, Whitehead 

et al. 1998, Lowe, Xi et al. 2005, Akullian, Lu et al. 2012) has corroborated these 

findings. For instance, Akullian et al. (Akullian, Lu et al. 2012) investigated snail 
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dispersion and found that the snails, on average, move downstream at a rate of a few 

meters a day. Similarly, although they do not explicitly consider direction, studies of 

parasite mitochondrial DNA sequences have shown that distance influences the 

likelihood that parasite populations will interbreed, but that interbreeding between 

spatially distributed populations of parasites is more common in the middle and lower 

reaches of the Yangtze river (Zhao, Jiang et al. 2012). It was speculated that this 

difference may be the result of flood events, and observational studies in the middle and 

lower reaches of the Yangtze found that flooding was associated with expansions in the 

range of the Oncomelania snail as well as human cases of schistosomiasis in either 

previously controlled areas or new habitat (Zhou, Dandan et al. 2002, Wu, Zhang et al. 

2008). This range expansion has been estimated to occur on a spatial scale of a few 

kilometers; however, the experimental studies seem to indicate that, in the absence of 

flooding, dispersion is likely to occur at smaller spatial scales. Small-scale studies in 

Sichuan using modeling have demonstrated that inter-village connectivity, and 

importation of parasites from upstream sources, may play a role in maintaining endemic 

schistosomiasis in individual villages (Xu, Gong et al. 2006, Spear 2012). However, the 

extent to which these forces may shape patterns of human disease at the province level 

has not been as thoroughly investigated. 

 The downstream dispersion of parasites and snails represents potential anisotropic 

determinants of the spatial distribution of schistosomiasis. However, the role of 

upstream/downstream relationships in contributing to spatial patterns of human disease is 

poorly understood. In order to investigate this process further, an analysis was conducted 

examining the role of anisotropic factors in determining patterns of reported 
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schistosomiasis cases. A series of alternative models were explored that considered 

various ways in which dispersion may occur: Euclidean-based dispersion, where 

direction and overland distance is ignored; hydrological dispersion assuming downstream 

dispersion only; and cumulative hydrological dispersion where disease risk from multiple 

upstream sources accumulates downstream, but the effect of each source diminishes 

exponentially with increasing distance. The relative capabilities of these models to 

predict the existing pattern of incident human disease were examined with respect to the 

role of upstream locations in supporting downstream transmission. 

2. Methods 

2.0 Study site 

Sichuan province is located in the western part of China, and includes only the 

upper reaches of the Yangtze River. Flooding occurs in this area, but the overall volume 

of precipitation associated with extreme rainfall events is lower than in the middle and 

lower reaches of the Yangtze (Su, Gemmer et al. 2008); thus, floods in Sichuan tend not 

to be as large or frequent as they are downstream. The diffusion of parasites and snails in 

the upper reaches of the Yangtze may occur somewhat differently than in the middle and 

lower reaches. Diffusion may not be as strongly associated with flood events, and may 

occur at smaller spatial scales. However, as evidenced by laboratory, modeling, and 

genetic studies, this does not preclude the possibility of diffusion of parasites, snails, and 

human disease over measurable spatial scales in Sichuan. 

2.1 Disease data 
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 Schistosomiasis incidence data were obtained from China’s National Infectious 

Disease Reporting (NIDR) system via a query of the NIDR database at the China Centers 

for Disease Control and Prevention in Chengdu, Sichuan. This query specified all cases 

of schistosomiasis involving patients residing in Sichuan province between January 1st, 

2005 and Dec. 31st 2011. Cases were initially classified as acute, chronic, or unknown, 

and were diagnosed using either purely clinical means or via laboratory confirmation, the 

later generally indicating Kato-Katz (Katz, Chaves et al. 1972). All cases were treated 

identically in the analysis regardless of classification.  

Data were geocoded using NAC locator (NAC Geographic Products 2011) and 

residential addresses, and the number of cases were counted in each cell of a 30 arc-

second (~1 km2) square grid in ArcGIS (ESRI 2012). To obtain rates, population data 

obtained from the 2010 Landscan dataset (Bright, Coleman et al. 2011) were used as a 

denominator. Locations with a population count equal to zero were excluded from the 

analysis; 241,781 locations were excluded as a result. 

2.2 Source identification and exposure estimation 

 Exposure in a given grid cell was defined by its distance from cells that could 

potentially serve as ‘sources’ of disease transmission. A grid cell was classified as a 

potential ‘source’ whenever three criteria were met: 1) the cell contained land used for 

irrigated agriculture; 2) the cell elevation was <2,150 m; and 3) the cell was >26,500 m 

from the border of Sichuan province (to reduce so-called edge-effects; figure 1). Land 

used for irrigated agriculture was identified from the Globcover 2005 10 arc-second 

(~300 m2) regional land use dataset for Central Asia (Arino, Gross et al. 2007). Locations 
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below 2,150 m were identified from the HydroSHEDS 3 arc-second (~90 m2) void-filled 

elevation dataset (Lehner, Verdin et al. 2008). The elevation cut-off was based on 

previous work examining seroprevalence across elevation (Steinmann, Zhou et al. 2007, 

Steinmann, Zhou et al. 2007). 

 Given classified source grid cells, exposure at all grid cells was calculated 

considering the proximity of each cell to sources and assuming five different dispersion 

scenarios. Scenarios are roughly based on the biology of the parasite and intermediate 

host (table 1). The first dispersion scheme considered simple Euclidean distance in 

meters, calculated using ArcGIS (ESRI 2012), between each cell and the nearest cell 

classified as a source. 

The other four exposure measures were based on dispersion schemes that 

accounted for hydrological distance. The Hydrological distance scheme used a path-

distance function (ESRI 2008) that applied an infinite cost to movement against the 

direction of water flow, as determined by the drainage directions available from 

HydroSHEDS (Lehner, Verdin et al. 2008). Overland distance accounting for changes in 

elevation information was included. Both the Euclidean and Hydrological distance 

models assume that disease risk associated with dispersion is only determined by the 

distance to the nearest source. In contrast, the dispersion models below consider all 

potential nearby sources. 

Three additional Cumulative hydrological distance dispersion functions were 

explored (table 1), each involving a different decay coefficient. A first-order decay 

function:  was used to assess the influence of multiple upstream ‘sources’ on 



7	  
	  

	  

downstream risk, where increasing distance, d, yielded diminishing influence as 

determined by the decay constant, k. Multiple values of k represented a range of potential 

scales of downstream sharing of risk, with each value being informed by experimental 

studies investigating cercarial and snail dispersion. The first k corresponds to a spatial 

scale assuming that the average lifetime dispersion distance of either snails or cercariae is 

equal to 300 m. This value corresponds to the median dispersion distance of cercariae 

over the course of their active lifetime (Lowe, Xi et al. 2005), as well as to rough 

estimates of the average annual dispersion of the snail hosts (Wu, Zhang et al. 2008, 

Akullian, Lu et al. 2012). The second k corresponds to a spatial scale where the median 

dispersion distance is equal to 1,200 m, a value based on a maximum cercarial lifetime 

dispersion distance (equal to 0.05 in kernel function) of ~3,000 m (Maszle, Whitehead et 

al. 1998, Akullian, Lu et al. 2012), as well as rough estimates of annual snail dispersion 

during flood years (Wu, Zhang et al. 2008). The third k, with an average dispersion 

distance equal to 2,600 m, corresponds to extrapolated snail lifetime dispersion estimates 

(Wu, Zhang et al. 2008), or combined snail and cercarial dispersion (Akullian, Lu et al. 

2012).  

 For the Cumulative distance models, the decayed hydrological distances from all 

sources contributing to a grid cell were summed to produce an estimate of the risk from 

all nearby sources, weighted by their proximity to the cell. Following calculation, the five 

different exposure measures were entered into statistical models of counts of cases in grid 

cells across the study region.  

2.3 Statistical analysis 
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  Logistic, Poisson, negative binomial, zero-inflated poisson, and zero-inflated 

negative binomial models were fit to incidence rate data for each of the exposure 

definitions outlined in table 1 using R (Zeileis, Kleiber et al. 2007, Team 2008). 

Additionally, these models were fit for a Source exposure definition, which used the 

binary classification of a location as a source or non-source, with no dispersion. A 

number of different categorizations, schemes, and transformations of the five different 

continuous exposure measures were explored under the different modeling frameworks, 

including deciles, quartiles, and log transforms of the continuous data. The fit and ability 

of each of the six models to explain the observed distribution of disease was assessed and 

compared using the Akaike Information Criterion (AIC) (Akaike 1974), as well as 

through examination of the residual errors (Arcaya, Brewster et al. 2012). These were 

tested for evidence of spatial autocorrelation using Moran’s I (Tiefelsdorf 1998, Leung, 

Mei et al. 2003), and mapped for visual comparisons in ArcGIS. (ESRI 2012).  

3. Results 

3.1 Disease data 

Out of the 1,750,384 possible ~1 km grid locations containing at least one person, 

261 had at least one case over the 6-year study period.. Within locations with at least one 

case, the median number of cases per person was 0.0027, and ranged from 0 to 2.33. The 

vast majority of the locations with reported cases had low case densities, with only a few 

grid cells having more than 0.02 cases per person. Cases were highly clustered in space, 

and were primarily reported in the plain around Chengdu and in the Yangtze headwaters 

in the Yi Autonomous prefecture (figure 2).  
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3.2 Source identification and exposure estimation 

 A total of 50,267 locations within Sichuan province were identified as sources 

based on the definition described above (containing land used for irrigated agriculture at 

≤2,150 m). Euclidean distances from all grid cells in the province to the nearest source 

grid cell ranged from 0 to 523.1 km, with the median at 70.4 km. The spatial distribution 

of the Euclidean distances, as categorized into quartiles, is shown in figure 3. As 

expected, lower values are found surrounding areas with sources present. The distribution 

of distances is right-skewed, and the values are concentrated at the lower end of the 

spectrum. The other four exposure variables are similarly right-skewed. 

 There were no locations containing cases that were found more than 134,800 m 

from a source using Euclidean distance. In order to ensure that all models would be able 

to converge while still being comparable to one another, these locations were removed 

prior to the analysis. This resulted in the exclusion of 370,528 locations, and reduced the 

total number of locations used in the analysis to 1,379,856.   

 The Hydrological distance was calculated using a moving window around each 

source location, effectively considering only sources ≤ 26,000 km from the grid cell of 

interest. Approximately 70% of grid cells in the total province were > 26,000 km from a 

source, and were considered ‘not calculated’ for the variable hydrological distance. This 

includes the 19.9% of all locations with at least one case for which Hydrological distance 

was not calculated. For the analysis, locations with not calculated data for hydrological 

distance were assigned values above the maximum recorded value, and were placed in a 

separate category, where the OR for ‘not calculated’ values was allowed to vary 



10	  
	  

	  

independently of the recorded values. The spatial distribution of this variable and of areas 

that were not calculated is presented in figure 4. This distribution is somewhat similar to 

the distribution observed for the Euclidean distance exposure variable. However, 

asymmetry is evident in this figure, a product of the cost-distance function that limits 

dispersion to the direction of water flow. 

 The Cumulative hydrological distance models all exhibited a similar right-skewed 

distribution of values, clustered around sources, as expected (figure 5). The first model, 

which incorporates a median dispersion distance from the source of only 300 m, 

generates a spatial distribution very similar to the original distribution of sources shown 

in figure 1. However, the second Cumulative hydrological distance model, incorporating 

a median dispersion distance of 1,200 m, shows a marked directional spreading of higher 

values out from the original source definitions, in the same direction as in the 

hydrological distance measure. The last Cumulative hydrological distance model, with a 

median dispersion distance of 2,600 m, shows this pattern yet more clearly, with higher 

values extending even further in the direction of water flow.  

3.3 Statistical Analysis 

 In a simple univariate analysis, locations defined as sources were 29.1 [24.7, 34.2] 

times more likely to contain cases than other locations in the province, which supports 

the definition of sources used in the dispersion analysis. Of the model fit options 

considered, the zero-inflated negative binomial model with continuous variables 

categorized into quartiles produced the best overall fit to the data for all six exposure 

models. Zero-inflated negative binomial regression detected significant associations 
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between the presence of a case in a grid cell and each of the six exposure models. 

Locations at increasing distances from the nearest source were less likely to harbor cases, 

while locations with larger values for the Cumulative hydrological distance measures 

were increasingly likely to harbor cases. All models that defined exposure based on an 

explicit dispersion mechanism offered an improved fit, based on a comparison of AIC, 

over the Source model. Based on AIC values, the best model was Cumulative 

hydrological distance at a spatial scale of 1,200 m, but Cumulative hydrological distance 

at the 2,600 m scale came in a close second. Apart from the Source model, the 

Cumulative hydrological distance model at the 300 m scale also performed poorly 

according to this criterion (table 2). 

The odds ratios output for different quartiles, as compared to the 0 values in each 

of the models, are highly significant, with the risk associated with residence in a location 

dropping sharply with increasing Euclidean and Hydrological distance, and increasing 

sharply with increasing Cumulative hydrological distance. However, the goal of this 

analysis was to evaluate a set of models for their fit to observed data, rather than to 

produce unbiased effect and error estimates for the exposure measures in each model. 

Potential confounders were not included, and therefore these values may be biased. 

 An examination of the residuals for evidence of spatial autocorrelation via 

Moran’s I indicated that residuals of all models exhibited significant spatial 

autocorrelation (table 2). The values from the global Moran’s I tests ranged from 0.0002 

to 0.0028 (z-scores between 1.98 and 8.66), with the Cumulative hydrological distance 

model at the 300 m scale producing the lowest (least clustering) value, and the model 

relating the Cumulative hydrological distance measure at the 1,200 m scale to the case 
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counts in each location producing the highest. However, visual examination of the raw 

residual values revealed that their statistical distribution was highly right-skewed and 

non-normal, with the majority of the values near zero and slightly negative (figure 6). 

This implies that the Moran’s I test, which assumes that the data is normally distributed, 

is not appropriate for use with this data and may produce unreliable results (Waller and 

Gotway 2004). For this reason, no substantive conclusions, other than that the inclusion 

of dispersion from a source, in this instance, produces a better-fitting model than 

categorization of locations as containing sources or not, can be drawn at this time. 

4. Discussion   

This study focused on the extent to which the spatial process of downstream 

diffusion, when incorporated into statistical models, influenced the association between 

at-risk locations and observed patterns of schistosomiasis incidence within Sichuan 

province. Using AIC as a metric, we showed that incorporating the effects of diffusion 

processes into the modeling framework improves the relative capability of a model to 

accurately represent the data. However, it is difficult to draw any substantive conclusions 

beyond that, since the relative differences in AIC values between the set of dispersion 

models were relatively small, and examination of the residuals produced inconclusive 

results.  

The analysis also did not account for other spatial or membership processes that 

may have influenced disease patterns (Arcaya, Brewster et al. 2012). This becomes 

particularly important in the context of the data used here. China’s NIDR system is a 

passive, hospital-based reporting system, and there may have been reporting bias 
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resulting in higher or lower numbers of reported cases in some areas. It is likely that 

underreporting not only exists, but exists differentially in space, and could thus have led 

to case misclassification. Case reporting may have been influenced by membership 

processes such as the hospital the patient visited, access to care, the diagnostic 

capabilities of the hospital, or township of residence. While it is difficult to conceptualize 

how these might vary substantially with upstream/downstream relationships, they may 

vary with the classification of land as being used for irrigated agriculture or not, 

particularly since hospitals are generally less available and well-equipped in rural areas. 

Without sensitivity analysis, it is difficult to predict the extent to which this would have 

influenced the results. Unfortunately, detailed information on the extent to which 

underreporting occurs for this disease in Sichuan, and what influences it, is not available 

at this time.  

 A further source of uncertainty in this study is the quality of the geospatial data. 

The land use, elevation, and flow direction rasters used to identify sources and calculate 

the exposures, as well as the population data, were originally drawn from satellite 

imagery. While every effort was made to ensure that the satellite images used to create 

these rasters came from years relevant to the study period, had good coverage over the 

study area, and had been vetted by other researchers, there is a certain amount of 

misclassification error inherent in the process of creating these datasets (Atkinson and 

Graham 2006, Arino, Gross et al. 2007). This is most likely to have been an issue with 

the identification of source locations. However, this type of uncertainty would most likely 

have influenced the significance of the relationship between the locations of cases sand 
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sources, rather than the relative differences between models that incorporated dispersion 

from the source and the Source model. 

Additionally, there is uncertainty associated with the location of cases. Had the 

analysis been conducted at the township level, as opposed to using a grid, this uncertainty 

would have been greatly mitigated, as the codes referencing the township of residence 

included in the database are fairly accurate and standardized. However, this would have 

come at the expense of using larger, less regular cells in which to count the cases, and 

may have required resampling the exposure and population data. The township 

boundaries are also based on political considerations that may have little to do with the 

hydrology of the landscape and so may have introduced bias in the form of the 

modifiable areal unit problem (Waller and Gotway 2004). In the face of this issue, a 

smaller unit of aggregation was chosen in order to limit the extent to which changes in 

data support and aggregation would influence the results.  

Finally, the use of the global Moran’s I statistic as a way of measuring the ability 

of each of the models to explain the existing patterns of human disease proved to be 

unreliable, given the distribution of the residuals in this dataset. A better option may have 

been to use a Monte Carlo test, in whcih the zero-inflated negative binomial distribution 

was simulated as the null model rather than the Gaussian distribution that the Moran’s I 

statistic is built on (Waller and Gotway 2004). Alternatively, an autocorrelation term 

could have been built into the model instead of being assessed as an outcome. However, 

this term would not have been directly comparable between models, leading to 

difficulties in its interpretation between models. 
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5. Conclusion 

While the results of this study were somewhat ambiguous, it was possible to 

establish that including parasite dispersion in a model of the spatial distribution of 

schistosomiasis cases improved model fit to the observed distribution of disease reporting 

patterns across an area, as compared to ignoring dispersion entirely. Furthermore, we 

show that our definition of a location as a source was a highly significant predictor of 

schistosomiasis risk in Sichuan Province in a simple univariate analysis. 

The methods used here also represent, at the very least, a new epidemiological 

approach to the problem of characterizing dispersion across a landscape. We were able to 

represent an anisotropic definition of of exposure based on environmental dispersion. Our 

exposure definitions accounted for the potential movement of schistosome parasites or 

their intermediate hosts across a landscape using distance or cost-distance based 

measures, and allowed for the evaluation of a variety of different conceptualizations of 

dispersion. The use of these exposure metrics in a regression framework where they were 

related to the spatial distribution of disease was demonstrated, and yet the analysis had a 

number of limitations. Future directions for this work would include thorough sensitivity 

analyses and adoption of a Monte Carlo test for spatial autocorrelation that would be 

more appropriate for the distribution of these data (Waller and Gotway 2004). A 

modeling approach could also be taken to validate the exposure metrics in a wider range 

of situations.   
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Figure 1: Spatial distribution of grid cells classified as ‘sources’, high elevation land 

used for irrigated agriculture (>2150 m, and thus not considered sources), and low 

elevation (<2,150 m) cells with land use other than irrigated agriculture. 

 

 

 

 

 

 

 

 



22	  
	  

	  

 

 

 

Dispersion 
Scheme 

Value used at 
cells 

Spatial Scale 
(average 
dispersion 
distance) 

Resolution of 
distance calculations 
(arc-seconds) 

Threshold 
value** (m) 

Euclidean 
distance 

Minimum - 

 

Calculated using 
vector data 

- 

Hydrological 
distance 

Minimum - 

 

15  26,500 

Cumulative 
hydrological 
distance  

Sum 300m 3  3,100 

Cumulative 
hydrological 
distance  

Sum 1,200m 15  26,500 

Cumulative 
hydrological 
distance  

Sum 2,600m 15  26,500 

** Equal to the distance at which the exponential kernel decay function with the largest 
spatial scale calculated at that resolution decays to below 0.001 plus the value of one 
additional pixel, rounded up to the nearest 100m. Also equal to half of an edge in the 
moving window used to calculate these values. 

 

Table 1: Relevant spatial scales and dispersion schemes loosely identified using 

biological data on parasite and host dispersion. 



23	  
	  

	  

 

Figure 2: Spatial distribution of cases per person for the period from 2005-2011 in 

Sichuan province, China. For reference, a Q-Q plot showing the distribution of the 

average numbers of cases per person has been included in the lower right-hand 

corner. 
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Figure 3: Spatial distribution of quartiles of Euclidean distance from each location 

to the nearest ‘source’ in Sichuan province. Some of the data was excluded from the 

analysis to ensure that all models would converge. 
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Figure 4: Spatial distribution of quartiles and areas not calculated for hydrological 

distance of each location to the nearest upstream source. 
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Figure 5: Spatial distribution of quartiles of cumulative hydrological distances for 

all three scales of shared downstream risk. 
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Dispersion 
Scheme 

AIC 
OR values – Shown on both quartile and value-based 

scales Moran’s I 
(Z-score) 

Binary 
definition of 
location as 

containing a 
source or not 

5,264.13 
27.94 [18.36, 42.51] 

0.0008 
(3.74) 

Euclidean 
distance 

5,061.28 

 
0.0015 
(5.63) 

Hydrological 
distance 

5,025.70 

 
0.0014 
(5.29) 

Cumulative 
hydrological 

distance – 300 
m scale 

5,097.89 

 
0.0002 
(1.98) 

Cumulative 
hydrological 

distance – 
1,200 m scale 

4,951.26 

 
0.0028 
(8.66) 
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First order 
decayed 

accumulated 
hydrological 

distance – 
2,600 m scale 

4,977.48 

 
0.0019 
(6.05) 

 

Table 2: OR and AIC values for each of the exposure models 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


